

TEST REPORT

Test Report No. : UL-RPT-RP10874323JD05A

Manufacturer : ModCam AB
Model No. : MOD.01
FCC ID : 2AEV4-01
Technology : *Bluetooth – Basic Rate & EDR*
Test Standard(s) : FCC Parts 15.207, 15.209(a) & 15.247

1. This test report shall not be reproduced in full or partial, without the written approval of UL VS LTD.
2. The results in this report apply only to the sample(s) tested.
3. The sample tested is in compliance with the above standard(s).
4. The test results in this report are traceable to the national or international standards.
5. Version 1.0

Date of Issue:

30 September 2015

Checked by:

Sarah Williams
Engineer, Radio Laboratory

Issued by :

pp

John Newell
Quality Manager,
UL VS LTD

This laboratory is accredited by UKAS.
The tests reported herein have been
performed in accordance with its terms
of accreditation.

The *Bluetooth*® word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by UL VS LTD is under licence. Other trademarks and trade names are those of their respective owners.

UL VS LTD

Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG, UK
Telephone: +44 (0)1256 312000
Facsimile: +44 (0)1256 312001

This page has been left intentionally blank.

Table of Contents

1. Customer Information.....	4
2. Summary of Testing.....	5
2.1. General Information	5
2.2. Summary of Test Results	5
2.3. Methods and Procedures	5
2.4. Deviations from the Test Specification	5
3. Equipment Under Test (EUT)	6
3.1. Identification of Equipment Under Test (EUT)	6
3.2. Description of EUT	6
3.3. Modifications Incorporated in the EUT	6
3.4. Additional Information Related to Testing	7
3.5. Support Equipment	7
4. Operation and Monitoring of the EUT during Testing	8
4.1. Operating Modes	8
4.2. Configuration and Peripherals	8
5. Measurements, Examinations and Derived Results.....	9
5.1. General Comments	9
5.2. Test Results	10
5.2.1. Transmitter AC Conducted Spurious Emissions	10
5.2.2. Transmitter 20 dB Bandwidth	14
5.2.3. Transmitter Carrier Frequency Separation	19
5.2.4. Transmitter Number of Hopping Frequencies and Average Time of Occupancy	23
5.2.5. Transmitter Maximum Peak Output Power	26
5.2.6. Transmitter Radiated Emissions	34
5.2.7. Transmitter Band Edge Radiated Emissions	42
6. Measurement Uncertainty	50
7. Report Revision History	51

1. Customer Information

Company Name:	ModCam AB
Address:	Bredgatan 4, 211 30 Malmö, Sweden

2. Summary of Testing

2.1. General Information

Specification Reference:	47CFR15.247
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.247
Specification Reference:	47CFR15.207 and 47CFR15.209
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Sections 15.207 and 15.209
Site Registration:	209735
Location of Testing:	UL VS LTD, Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom
Test Dates:	29 August 2015 to 28 September 2015

2.2. Summary of Test Results

FCC Reference (47CFR)	Measurement	Result
Part 15.207	Transmitter AC Conducted Emissions	✓
Part 15.247(a)(1)	Transmitter 20 dB Bandwidth	✓
Part 15.247(a)(1)	Transmitter Carrier Frequency Separation	✓
Part 15.247(a)(1)(iii)	Transmitter Number of Hopping Frequencies and Average Time of Occupancy	✓
Part 15.247(b)(1)	Transmitter Maximum Peak Output Power	✓
Part 15.247(d) & 15.209(a)	Transmitter Radiated Emissions	✓
Part 15.247(d) & 15.209(a)	Transmitter Band Edge Radiated Emissions	✓
Key to Results		
✓ = Complied	✗ = Did not comply	

2.3. Methods and Procedures

Reference:	ANSI C63.10-2013
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	ModCam
Model Name or Number:	MOD.01
Test Sample Serial Number:	MC000170 (<i>Radiated sample</i>)
Hardware Version:	2.0
Software Version:	114
FCC ID:	2AEV4-01

Brand Name:	ModCam
Model Name or Number:	MOD.01
Test Sample Serial Number:	MC000058 (<i>Conducted sample with RF port</i>)
Hardware Version:	2.0
Software Version:	114
FCC ID:	2AEV4-01

3.2. Description of EUT

The equipment under test was an IP camera which incorporated the following wireless technologies; *Bluetooth, Bluetooth LE, GPS, Wireless LAN 2.4 GHz and 5 GHz bands*.

3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.4. Additional Information Related to Testing

Tested Technology:	<i>Bluetooth</i>				
Power Supply Requirement:	Nominal	3.8 VDC via 120 VAC 60 Hz			
Type of Unit:	Transceiver				
Channel Spacing:	1 MHz				
Mode:	Basic Rate	Enhanced Data Rate			
Modulation:	GFSK	$\pi/4$ -DQPSK	8DQPSK		
Packet Type: (Maximum Payload)	DH5	2DH5	3DH5		
Data Rate (Mbps):	1	2	3		
Maximum Conducted Output Power:	8.3 dBm				
Antenna Gain:	0.1 dBi				
Transmit Frequency Range:	2400 MHz to 2483.5 MHz				
Transmit Channels Tested:	Channel ID	Channel Number	Channel Frequency (MHz)		
	Bottom	0	2402		
	Middle	39	2441		
	Top	78	2480		

3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Test laptop
Brand Name:	Hewlett Packard
Model Name or Number:	Compaq 6910p
Serial Number:	HUB7451SGN

Description:	USB Cable
Brand Name:	SONY
Model Name or Number:	EC450
Serial Number:	132112D80289990

Description:	AC Charger
Brand Name:	SONY
Model Name or Number:	EP880
Serial Number:	8512W32 101946 SEM0600

4. Operation and Monitoring of the EUT during Testing

4.1. Operating Modes

The EUT was tested in the following operating mode(s):

- Continuously transmitting at maximum power on bottom, middle and top channels in Basic Rate (DH5 packets) or EDR (2DH5 or 3DH5 packets) as required.
- Continuously transmitting at maximum power in hopping mode on all channels in Basic Rate (DH5 packets) or EDR (2DH5 or 3DH5 packets) as required.

4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

- Transmit tests: The *Bluetooth* test mode commands were entered into the terminal application on the supplied test laptop. Once in test mode, a *Bluetooth* tester was used to enable continuous transmission and configure the test channels & packet types as required.
- Both EDR/Basic rate modes were compared and tests were performed with the mode that presented the worst case result. For output power, bandwidth, band edge and channel separation, all modes were tested.
- AC conducted emissions test was tested with the EUT transmitting on the top channel using DH5 packet type, as this mode was found to transmit the highest power.
- Transmitter radiated spurious emissions tests were performed with the EUT transmitting in DH5 mode as this mode was found to transmit the highest power.
- Transmitter radiated spurious emissions tests were performed with the AC Charger and USB cable connected to the EUT. The AC charger was powered by 120 VAC 60 Hz.
- The EUT was connected to a DC power supply for all conducted tests. A USB diagnostic cable was connected to the EUT to change channels as required.
- The EUT conducted sample was used for 20 dB Bandwidth, Carrier Frequency Separation, Number of Hopping Frequencies and Average Time of Occupancy and Maximum Peak Output Power.
- The EUT radiated sample was used for AC conducted emissions and radiated spurious emissions tests.

5. Measurements, Examinations and Derived Results

5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to *Section 6. Measurement Uncertainty* for details.

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

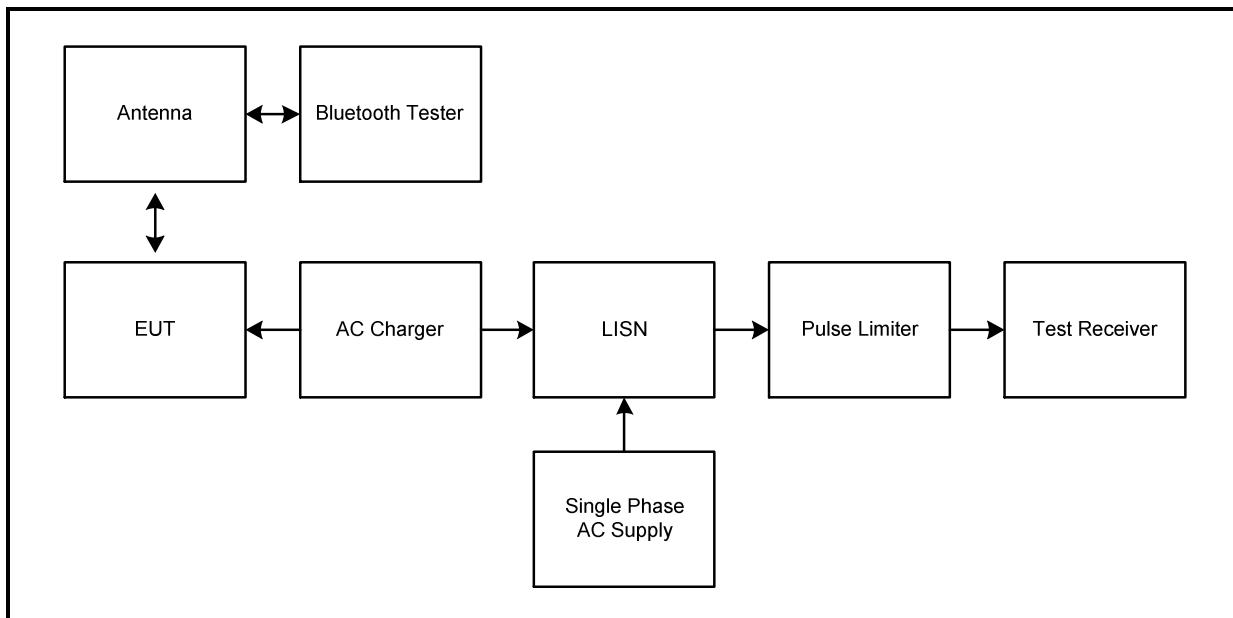
5.2. Test Results

5.2.1. Transmitter AC Conducted Spurious Emissions

Test Summary:

Test Engineers:	Andrew Edwards & Kiren Mistry	Test Date:	22 September 2015
Test Sample Serial Number:	MC000170		

FCC Reference:	Part 15.207
Test Method Used:	ANSI C63.10 Section 6.2


Environmental Conditions:

Temperature (°C):	21
Relative Humidity (%):	52

Note(s):

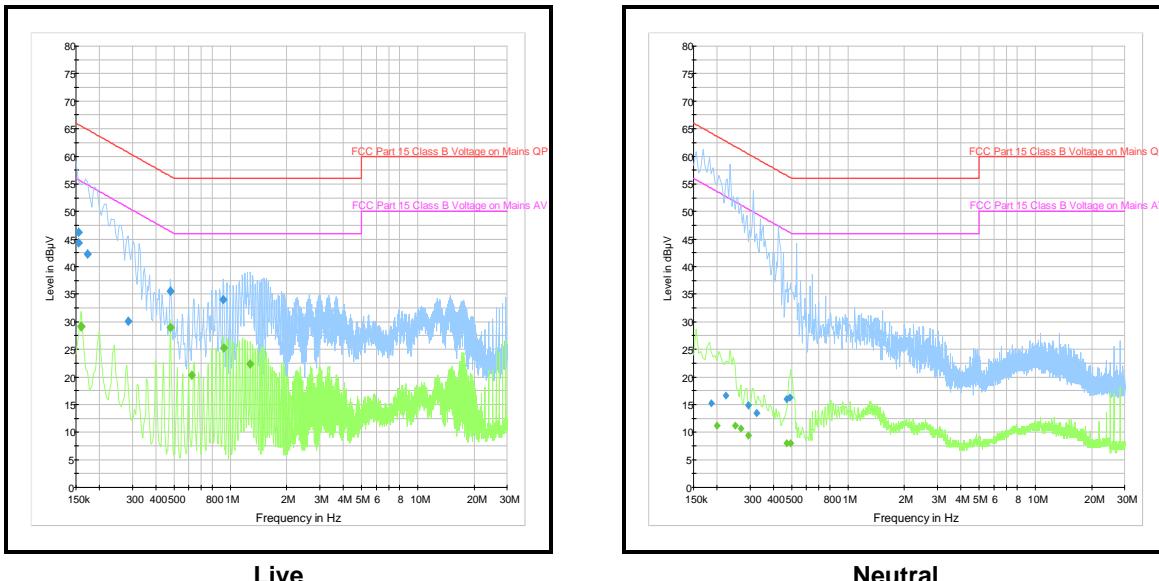
1. The EUT was plugged into a USB cable which was connected to an AC charger. The AC charger was connected to 120 VAC 60 Hz single phase supply via a LISN.
2. Pre-scans were performed and markers placed on the highest live and neutral measured levels. Final measurements were performed on the marker frequencies and the results entered into the tables below.
3. A pulse limiter was fitted between the LISN and the test receiver.

Test setup:

Transmitter AC Conducted Spurious Emissions (continued)**Results: Live / Quasi Peak**

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.155	Live	46.2	65.8	19.6	Complied
0.173	Live	42.3	64.8	22.5	Complied
0.285	Live	30.1	60.7	30.6	Complied
0.479	Live	35.5	56.4	20.9	Complied
0.915	Live	34.0	56.0	22.0	Complied

Results: Live / Average


Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.159	Live	29.2	55.5	26.3	Complied
0.479	Live	29.0	46.4	17.4	Complied
0.623	Live	20.3	46.0	25.7	Complied
0.920	Live	25.2	46.0	20.8	Complied
1.275	Live	22.4	46.0	23.6	Complied

Transmitter AC Conducted Spurious Emissions (continued)**Results: Neutral / Quasi Peak**

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.186	Neutral	15.3	64.2	48.9	Complied
0.222	Neutral	16.7	62.7	46.0	Complied
0.294	Neutral	14.9	60.4	45.5	Complied
0.326	Neutral	13.5	59.6	46.1	Complied
0.470	Neutral	16.0	56.5	40.5	Complied
0.488	Neutral	16.3	56.2	39.9	Complied

Results: Neutral / Average

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.200	Neutral	11.2	53.6	42.4	Complied
0.249	Neutral	11.2	51.8	40.6	Complied
0.267	Neutral	10.7	51.2	40.5	Complied
0.294	Neutral	9.4	50.4	41.0	Complied
0.470	Neutral	7.9	46.5	38.6	Complied
0.492	Neutral	8.0	46.1	38.1	Complied

Transmitter AC Conducted Spurious Emissions (continued)**Live****Neutral**

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

Test Equipment Used:

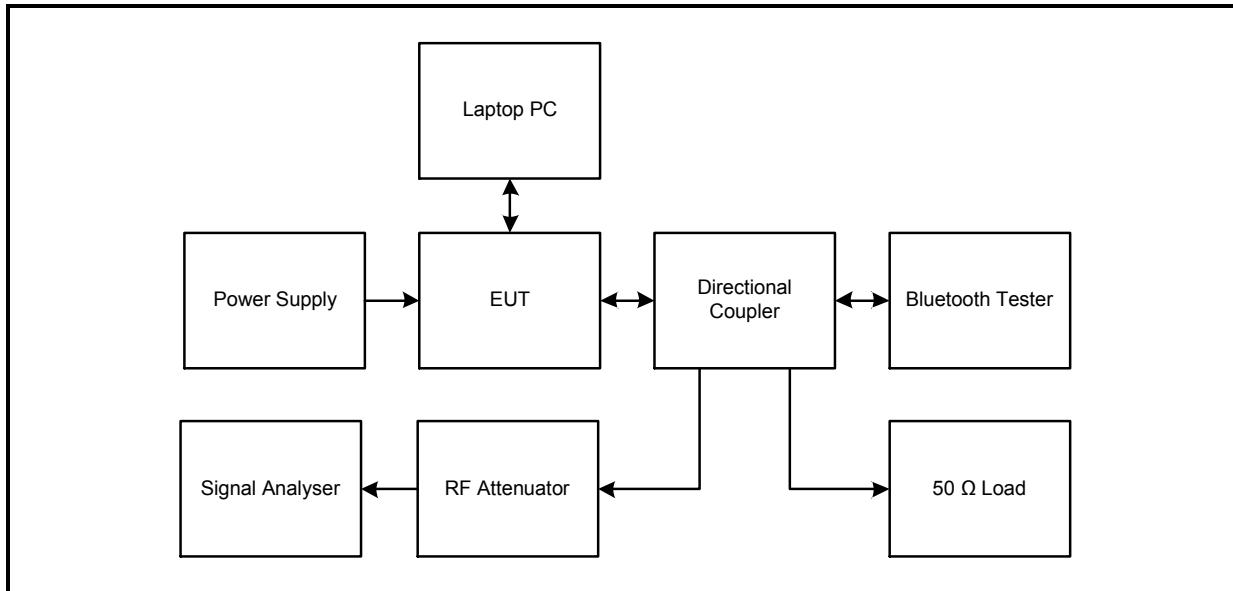
Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1625	Thermohygrometer	JM Handelpunkt	30.5015.06	Not stated	07 Jan 2016	12
M1263	Test Receiver	Rohde & Schwarz	ESIB7	100265	14 Oct 2015	12
A649	LISN	Rohde & Schwarz	ESH3-Z5	825562/008	14 Jul 2016	12
A1830	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100668	02 Mar 2016	12

5.2.2. Transmitter 20 dB Bandwidth

Test Summary:

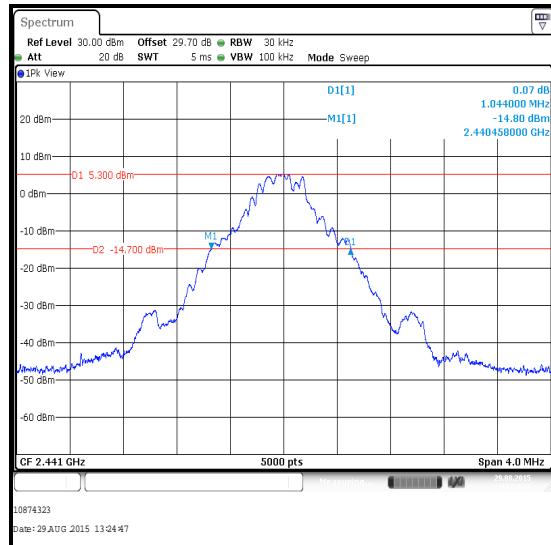
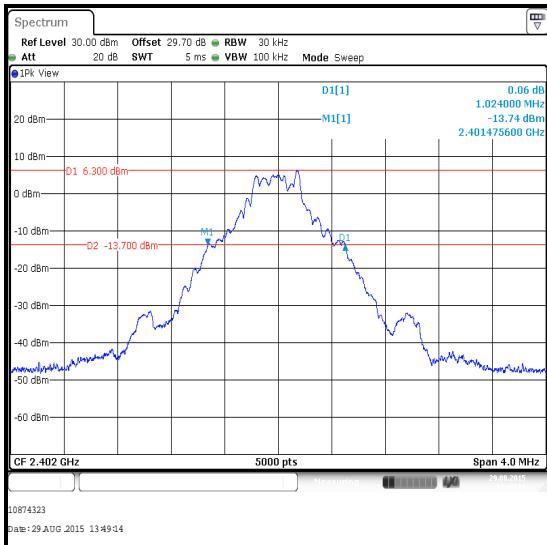
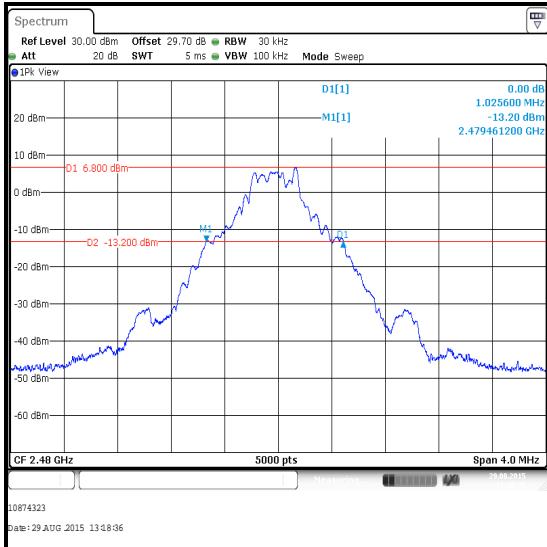
Test Engineer:	Andrew Edwards	Test Date:	29 August 2015
Test Sample Serial Number:	MC000058		

FCC Reference:	Part 15.247(a)(1)
Test Method Used:	ANSI C63.10 Section 6.9.2

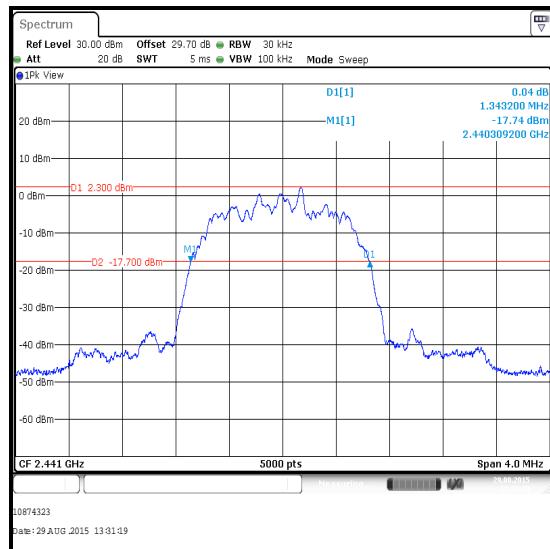
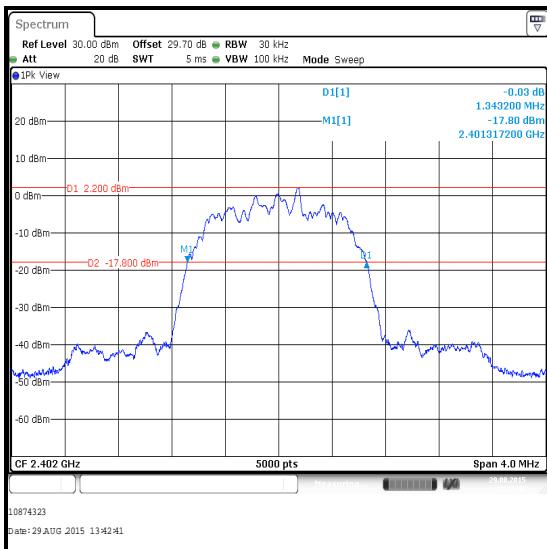
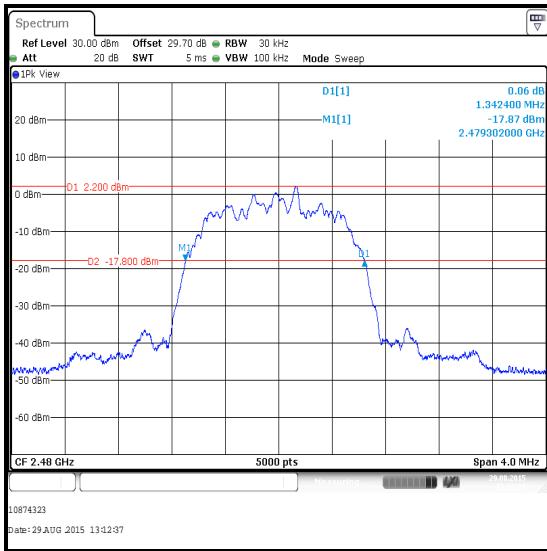

Environmental Conditions:

Temperature (°C):	25
Relative Humidity (%):	39

Note(s):

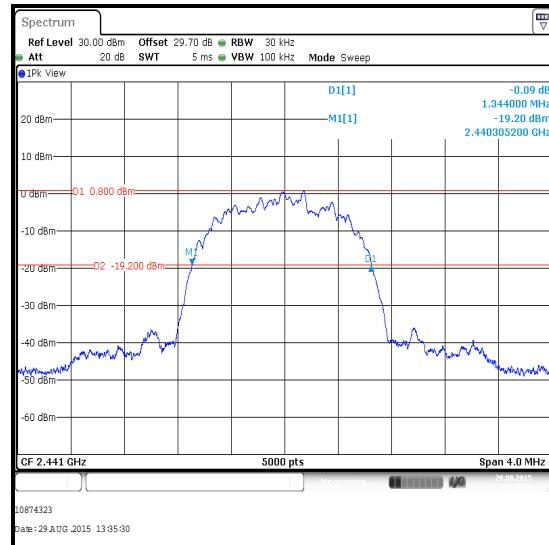
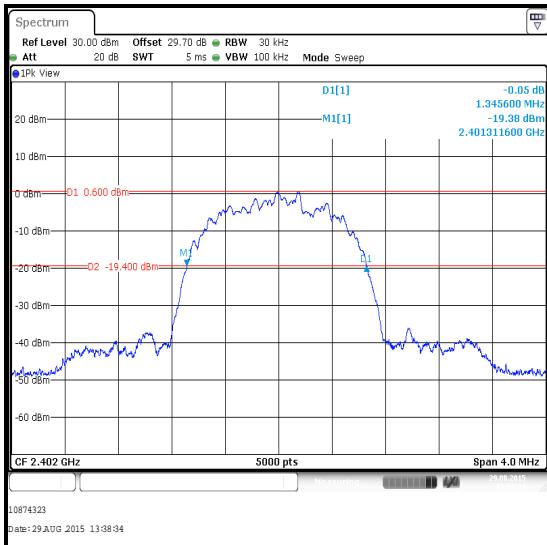
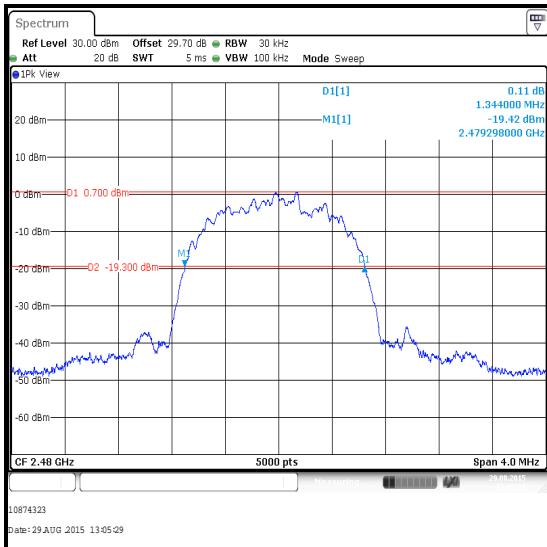



1. The signal analyser resolution bandwidth was set to 30 kHz and video bandwidth 100 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The span was set to 4 MHz. Normal and delta markers were placed 20 dB down from the peak of the carrier. These results are documented in the tables below.
2. The signal analyser was connected to the RF port via a directional coupler on the EUT using suitable attenuation and RF cable. An RF offset level was entered on the signal analyser to compensate for the loss of the attenuator and RF cable.

Test setup:




Transmitter 20 dB Bandwidth (continued)**Results DH5:**

Channel	20 dB Bandwidth (kHz)
Bottom	1024.000
Middle	1044.000
Top	1025.600

Bottom Channel**Middle Channel****Top Channel**




Transmitter 20 dB Bandwidth (continued)**Results 2DH5:**

Channel	20 dB Bandwidth (kHz)
Bottom	1343.200
Middle	1343.200
Top	1342.400

Bottom Channel**Top Channel****Middle Channel**

Transmitter 20 dB Bandwidth (continued)**Results 3DH5:**

Channel	20 dB Bandwidth (kHz)
Bottom	1345.600
Middle	1344.000
Top	1344.000

Bottom Channel**Middle Channel****Top Channel**

Transmitter 20 dB Bandwidth (continued)**Test Equipment Used:**

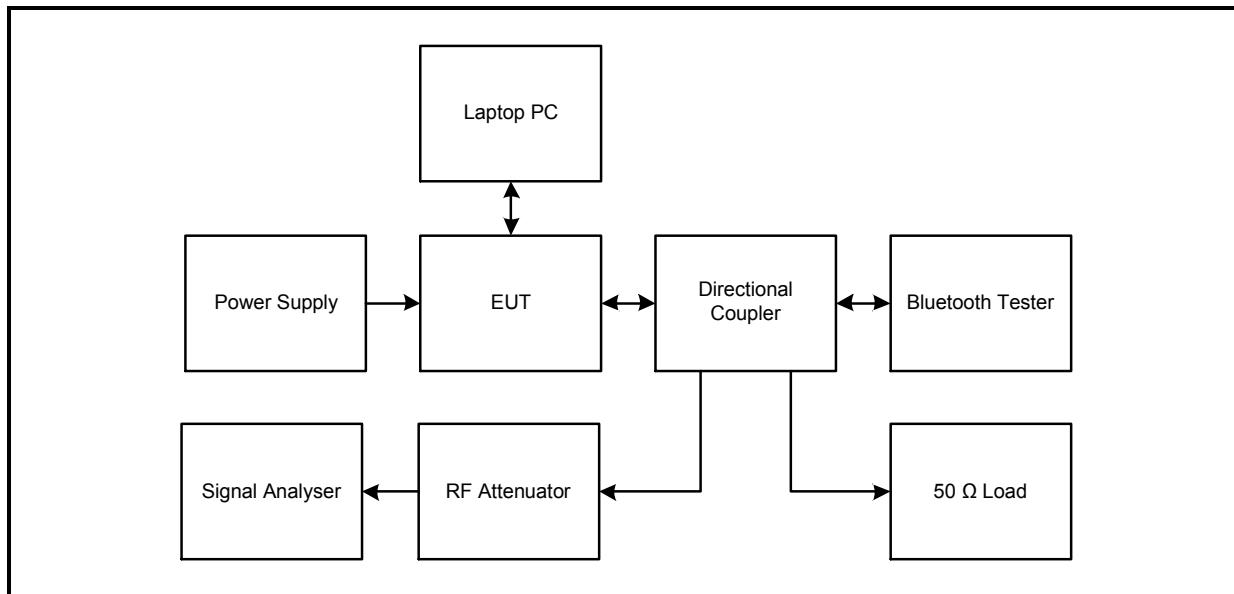
Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1783	Thermohygrometer	JM Handelpunkt	30.5015.13	Not stated	23 Apr 2016	12
M1883	Signal Analyser	Rohde & Schwarz	FSV30	103084	23 Jul 2016	12
A2521	Attenuator	AtlanTechRF	AN18-20	832797#2	Calibrated before use	-
A2072	Directional Coupler	Narda	4242B	03549	Calibrated before use	-
M122	Multimeter	Fluke	77	64910017	22 Apr 2016	12
S021	Power Supply Unit	TTI	CPX200	061034	Calibrated before use	-

5.2.3. Transmitter Carrier Frequency Separation

Test Summary:

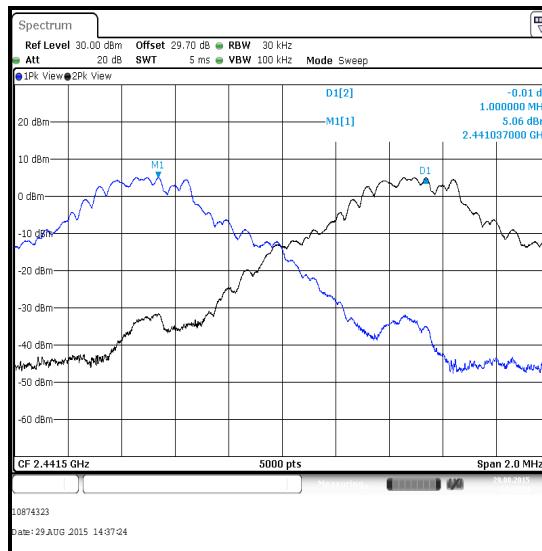
Test Engineer:	Andrew Edwards	Test Date:	29 August 2015
Test Sample Serial Number:	MC000058		

FCC Reference:	Part 15.247(a)(1)
Test Method Used:	ANSI C63.10 Section 7.8.2

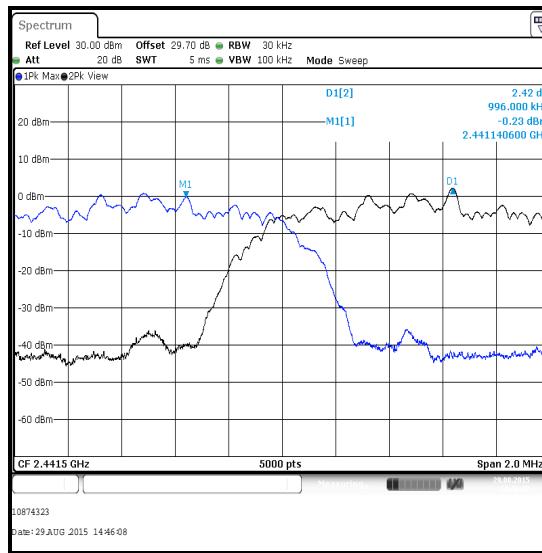

Environmental Conditions:

Temperature (°C):	26
Relative Humidity (%):	38

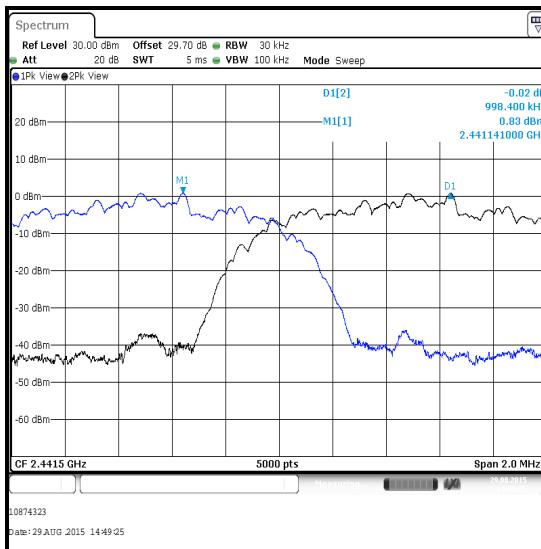
Note(s):


1. In order to identify the centre of adjacent channels, the signal analyser resolution bandwidth was set to 30 kHz and video bandwidth of 100 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 2 MHz. A marker was placed at the peak on the first channel and then a delta marker was placed on the same peak of the adjacent channel. The delta between the two markers was recorded for each mode of operation.
2. The 20 dB bandwidth measured for the middle channel operating at 2441 MHz was used to calculate the limit.
3. The signal analyser was connected to the RF port via a directional coupler on the EUT using suitable attenuation and RF cable. An RF offset level was entered on the signal analyser to compensate for the loss of the attenuator and RF cable.

Test setup:


Transmitter Carrier Frequency Separation (continued)**Results: DH5**

Carrier Frequency Separation (kHz)	Limit $\frac{2}{3}$ of 20 dB BW (kHz)	Margin (kHz)	Result
1000.000	696.000	304.000	Complied


Transmitter Carrier Frequency Separation (continued)**Results: 2DH5**

Carrier Frequency Separation (kHz)	Limit $\frac{2}{3}$ of 20 dB BW (kHz)	Margin (kHz)	Result
996.000	895.467	100.533	Complied

Transmitter Carrier Frequency Separation (continued)**Results: 3DH5**

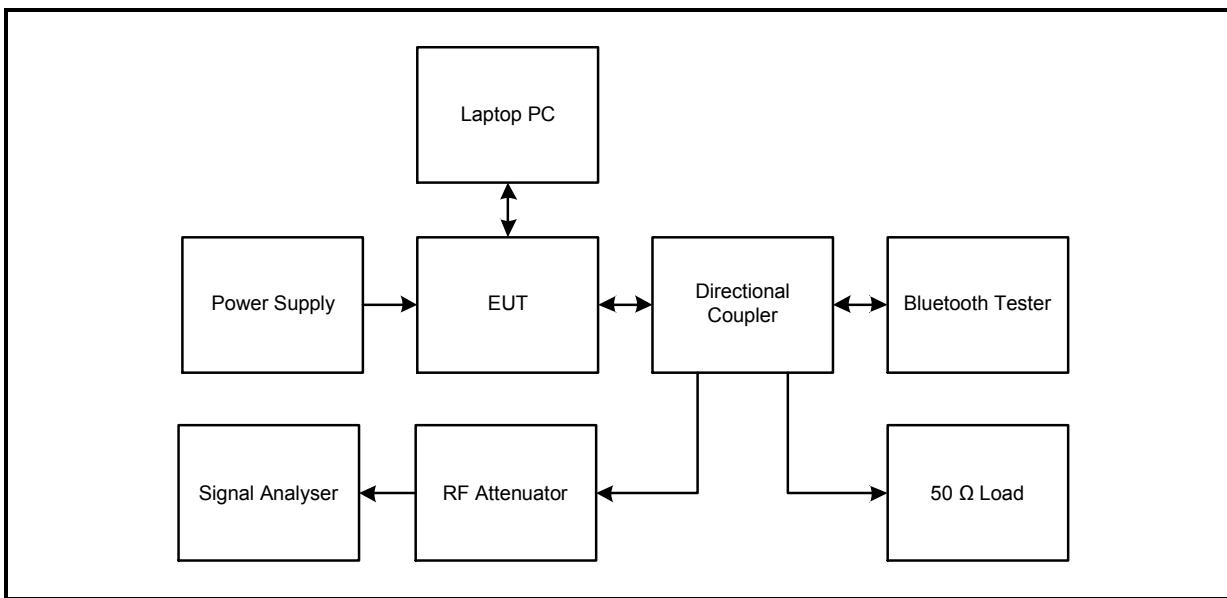
Carrier Frequency Separation (kHz)	Limit $\frac{2}{3}$ of 20 dB BW (kHz)	Margin (kHz)	Result
998.400	896.000	102.400	Complied

Test Equipment Used:

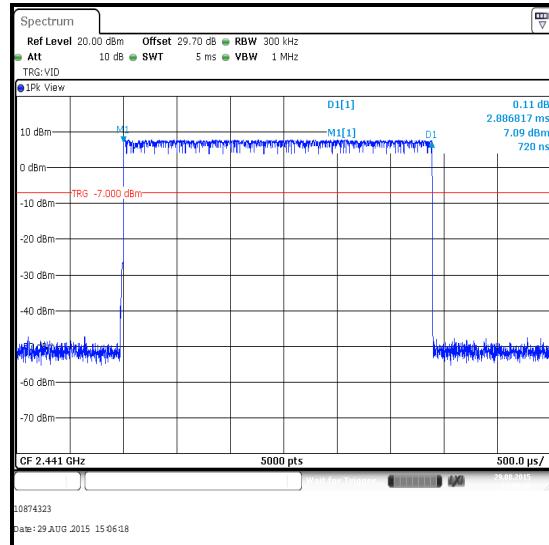
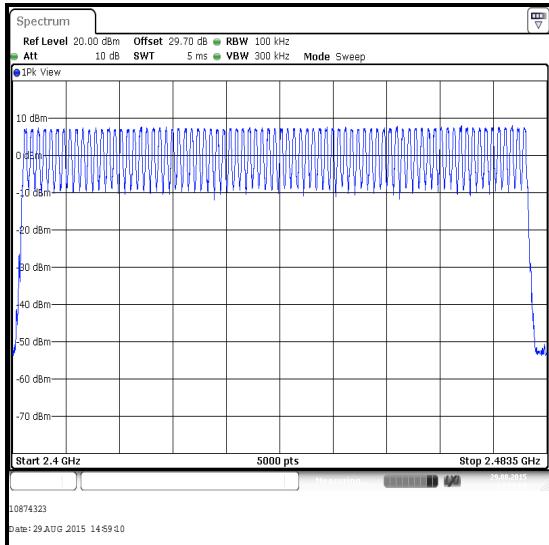
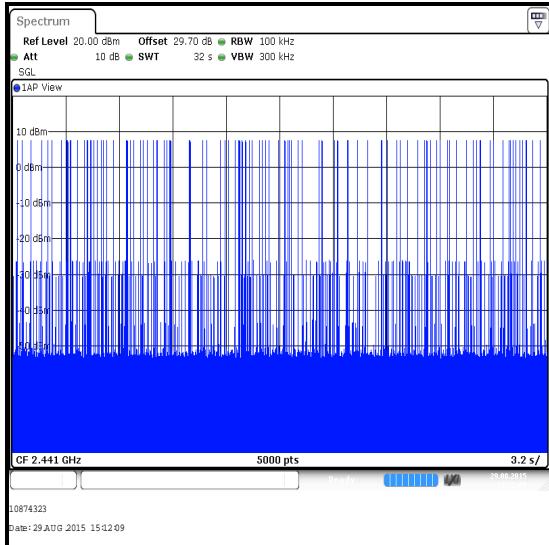
Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1783	Thermohygrometer	JM Handelpunkt	30.5015.13	Not stated	23 Apr 2016	12
M1883	Signal Analyser	Rohde & Schwarz	FSV30	103084	23 Jul 2016	12
A2521	Attenuator	AtlanTechRF	AN18-20	832797#2	Calibrated before use	-
A2072	Directional Coupler	Narda	4242B	03549	Calibrated before use	-
M122	Multimeter	Fluke	77	64910017	22 Apr 2016	12
S021	Power Supply Unit	TTI	CPX200	061034	Calibrated before use	-

5.2.4. Transmitter Number of Hopping Frequencies and Average Time of Occupancy**Test Summary:**

Test Engineer:	Andrew Edwards	Test Date:	29 August 2015
Test Sample Serial Number:	MC000058		


FCC Reference:	Part 15.247(a)(1)(iii)
Test Method Used:	ANSI C63.10 Sections 7.8.3 & 7.8.4

Environmental Conditions:




Temperature (°C):	26
Relative Humidity (%):	38

Note(s):

1. Tests were performed to identify the average time of occupancy in number of channels (79) x 0.4 seconds. The calculated period is 31.6 seconds.
2. Number of Hopping Frequencies test: The signal analyser resolution bandwidth was set to 100 kHz and video bandwidth of 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 83.5 MHz which covers the frequency band of operation. The number of hopping frequencies was recorded.
3. Emission Width test: The signal analyser resolution bandwidth was set to 300 kHz and video bandwidth of 1 MHz. A peak detector was used and sweep time was set to auto with a span of zero Hz. The signal analyser was set to trigger at 1 ms, with a marker placed at the start of the emission and a delta marked place at the end of the emission. The emission width was recorded.
4. Number of Hops in a 32 second period test: The centre channel was monitored. The signal analyser resolution bandwidth was set to 100 kHz and video bandwidth of 300 kHz. A peak detector was used and sweep time was set to 32 seconds. The EUT was set to transmit in a hopping frequency mode with zero span. The total number of hops on the centre channel observed in a 32 second period was recorded.
5. The signal analyser was connected to the RF port via a directional coupler on the EUT using suitable attenuation and RF cable. An RF offset level was entered on the signal analyser to compensate for the loss of the attenuator and RF cable.

Transmitter Number of Hopping Frequencies and Average Time of Occupancy (continued)**Test setup:****Results:**

Emission Width (μs)	Number of Hops in 31.6 Seconds	Average Time of Occupancy (s)	Limit (s)	Margin (s)	Result
2886.817	108	0.312	0.4	0.088	Complied

Transmitter Number of Hopping Frequencies and Average Time of Occupancy (continued)**Number of Hopping Frequencies****Emission Width****Number of Hopping Frequencies in 32 s****Test Equipment Used:**

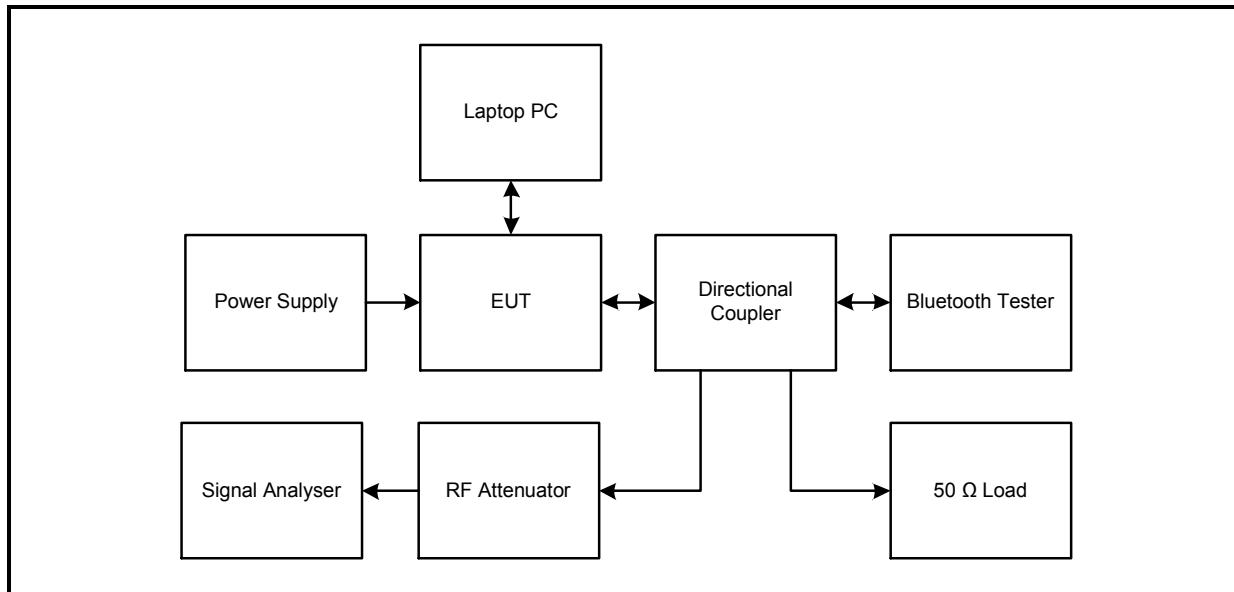
Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1783	Thermohygrometer	JM Handelpunkt	30.5015.13	Not stated	23 Apr 2016	12
M1883	Signal Analyser	Rohde & Schwarz	FSV30	103084	23 Jul 2016	12
A2521	Attenuator	AtlanTechRF	AN18-20	832797#2	Calibrated before use	-
A2072	Directional Coupler	Narda	4242B	03549	Calibrated before use	-
M122	Multimeter	Fluke	77	64910017	22 Apr 2016	12
S021	Power Supply Unit	TTI	CPX200	061034	Calibrated before use	-

5.2.5. Transmitter Maximum Peak Output Power

Test Summary:

Test Engineer:	Andrew Edwards	Test Date:	29 August 2015
Test Sample Serial Number:	MC000058		

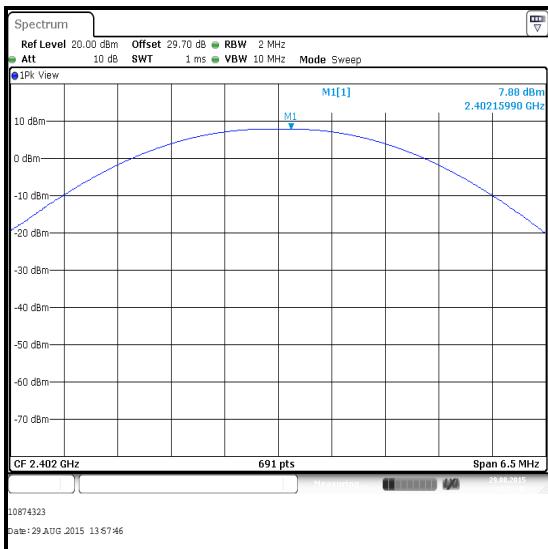
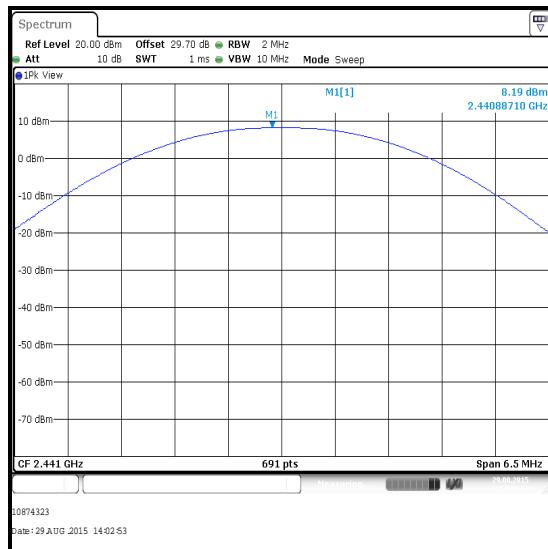
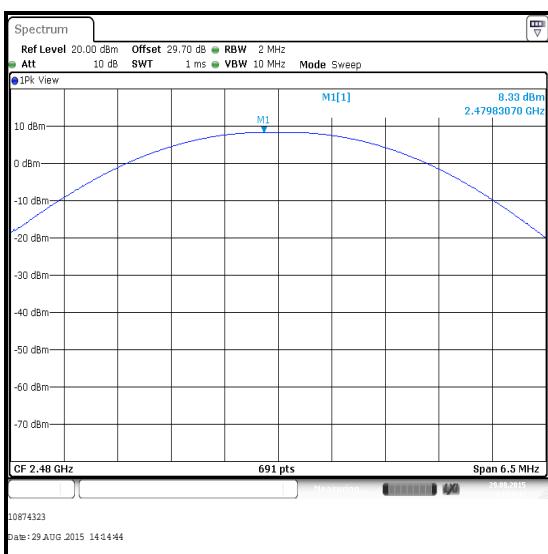
FCC Reference:	Part 15.247(b)(1)
Test Method Used:	ANSI C63.10 Section 7.8.5


Environmental Conditions:

Temperature (°C):	25
Relative Humidity (%):	37

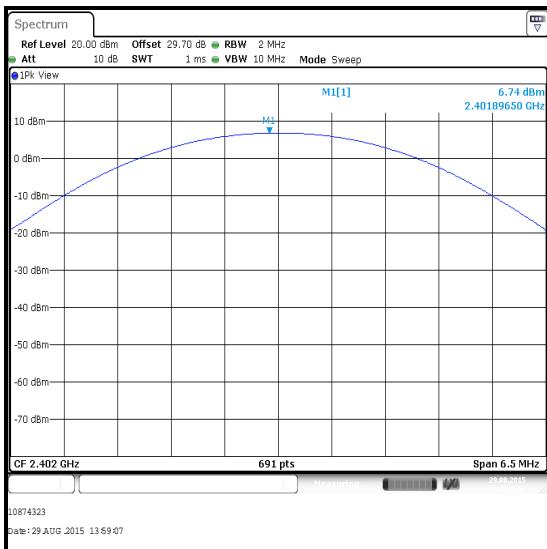
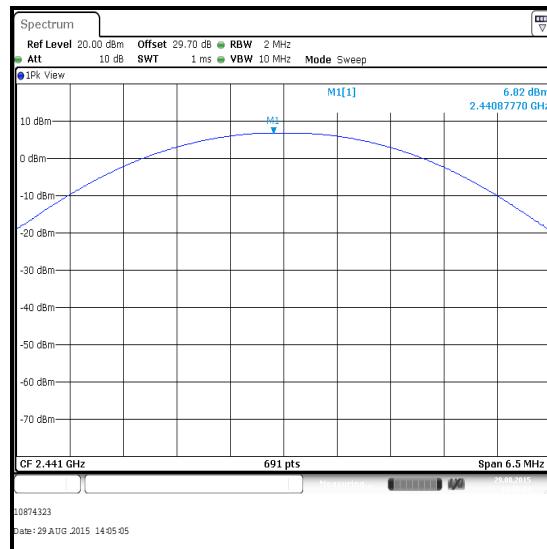
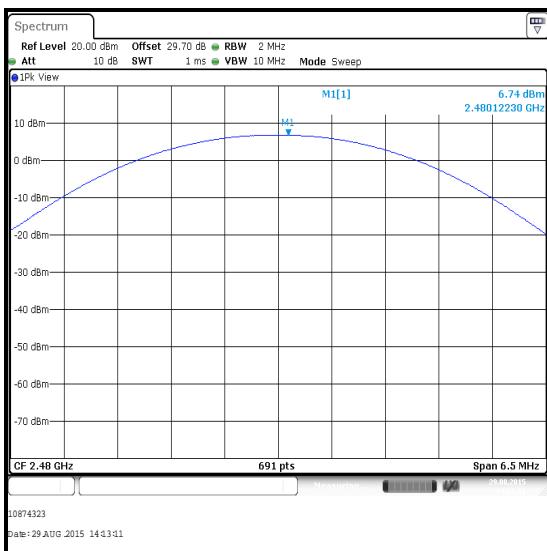
Note(s):

1. The signal analyser resolution bandwidth was set to 2 MHz (greater than the 20 dB bandwidth) and video bandwidth of 10 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 6.5 MHz (approximately five times the 20 dB bandwidth). A marker was placed at the peak of the signal and the results recorded in the tables below.
2. The signal analyser was connected to the RF port via a directional coupler on the EUT using suitable attenuation and RF cable. An RF offset level was entered on the signal analyser to compensate for the loss of the attenuator and RF cable.
3. The declared antenna gain was added to the conducted peak power to obtain the EIRP.




Test setup:

Transmitter Maximum Peak Output Power (continued)**Results: DH5**

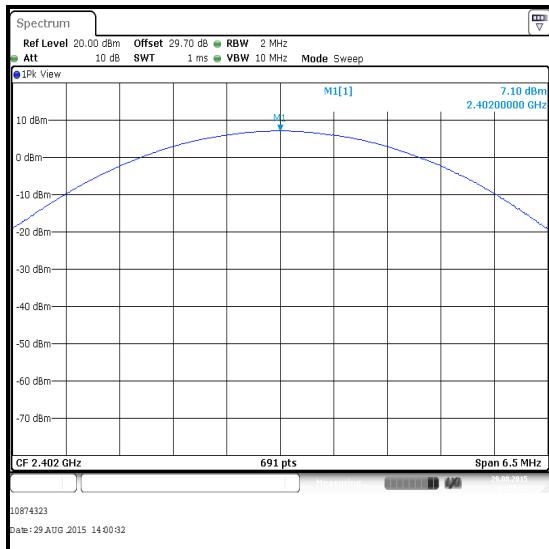
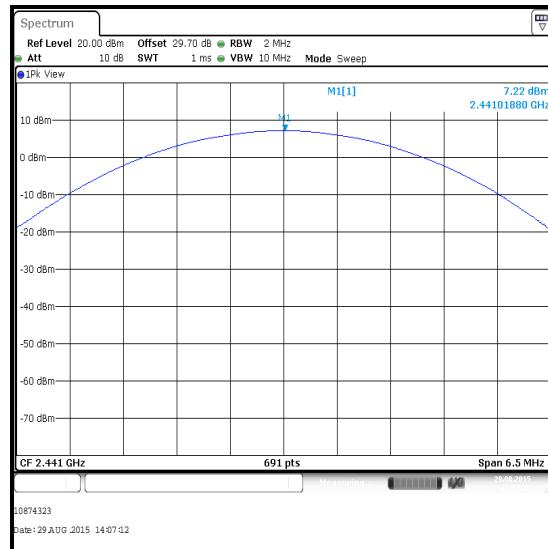
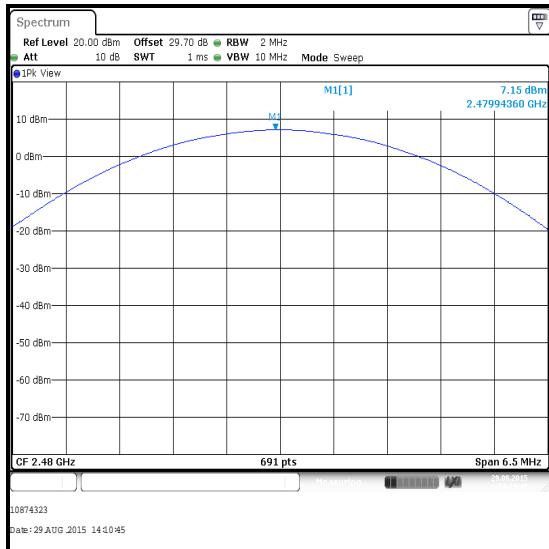
Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	7.9	30.0	22.1	Complied
Middle	8.2	30.0	21.8	Complied
Top	8.3	30.0	21.7	Complied




Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	7.9	0.1	8.0	36.0	28.0	Complied
Middle	8.2	0.1	8.3	36.0	27.7	Complied
Top	8.3	0.1	8.4	36.0	27.6	Complied

Transmitter Maximum Peak Output Power (continued)**Results: DH5****Bottom Channel****Middle Channel****Top Channel**

Transmitter Maximum Peak Output Power (continued)**Results: 2DH5**

Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	6.7	21.0	14.3	Complied
Middle	6.8	21.0	14.2	Complied
Top	6.7	21.0	14.3	Complied




Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	6.7	0.1	6.8	27.0	20.2	Complied
Middle	6.8	0.1	6.9	27.0	20.1	Complied
Top	6.7	0.1	6.8	27.0	20.2	Complied

Transmitter Maximum Peak Output Power (continued)**Results: 2DH5****Bottom Channel****Middle Channel****Top Channel**

Transmitter Maximum Peak Output Power (continued)**Results: 3DH5**

Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	7.1	21.0	13.9	Complied
Middle	7.2	21.0	13.8	Complied
Top	7.2	21.0	13.8	Complied

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	7.1	0.1	7.2	27.0	19.8	Complied
Middle	7.2	0.1	7.3	27.0	19.7	Complied
Top	7.2	0.1	7.3	27.0	19.7	Complied

Transmitter Maximum Peak Output Power (continued)**Results: 3DH5****Bottom Channel****Middle Channel****Top Channel**

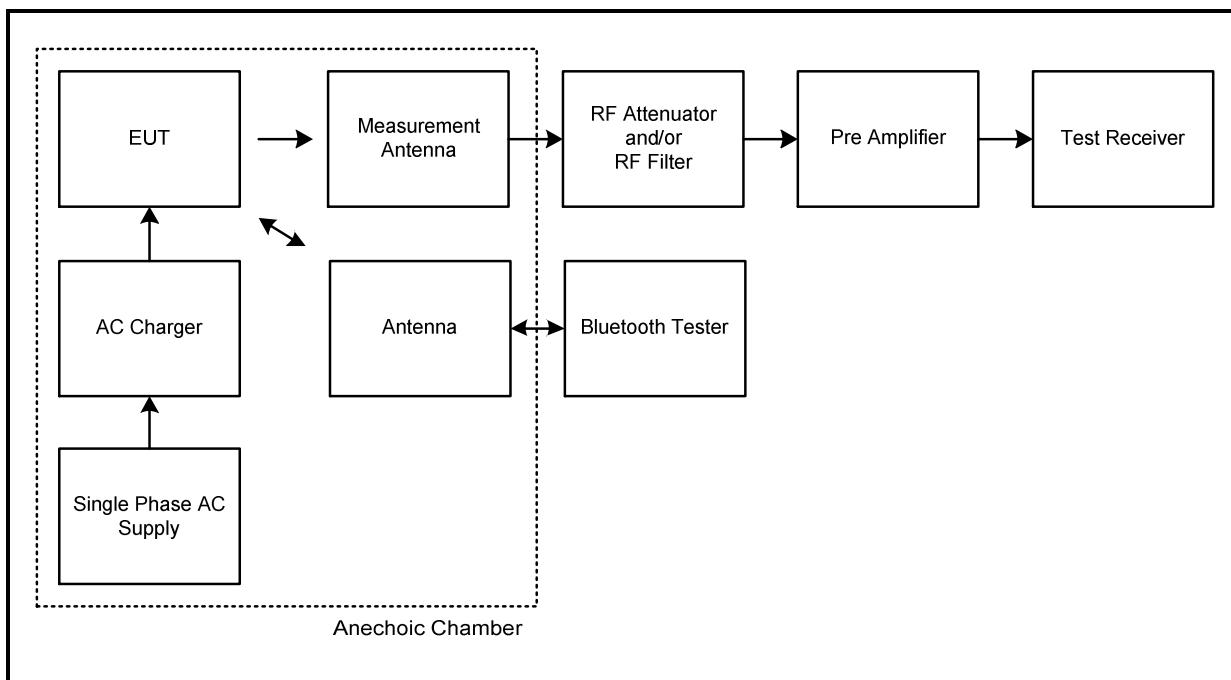
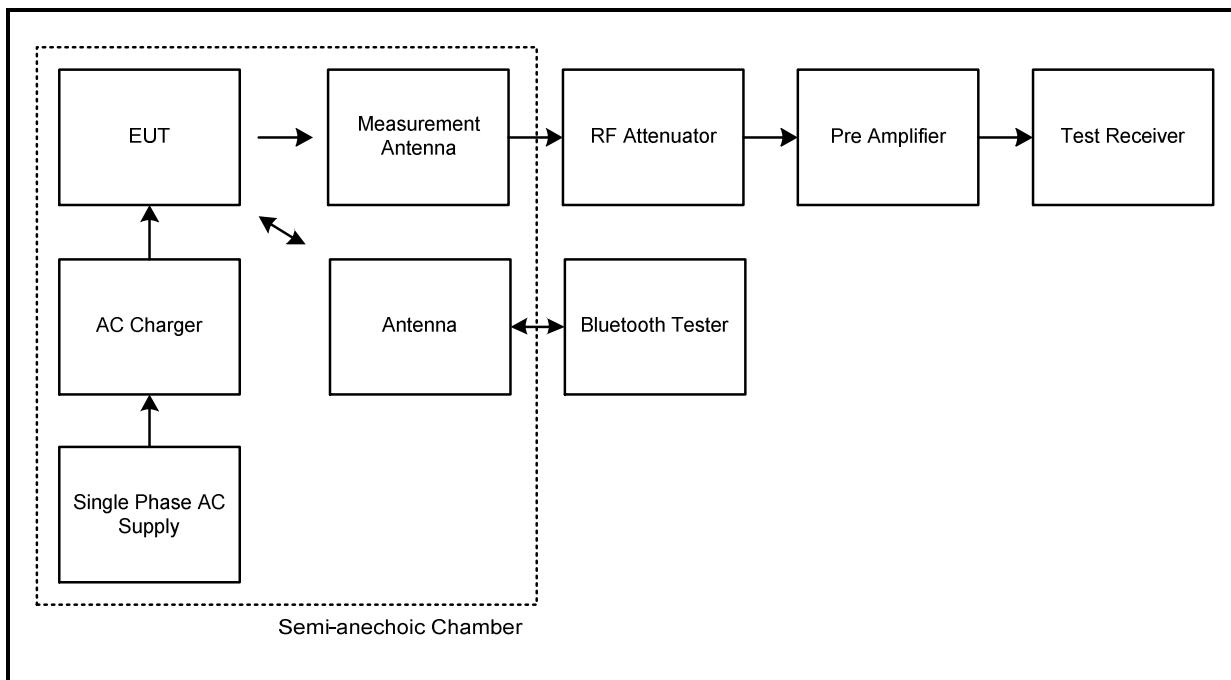
Transmitter Maximum Peak Output Power (continued)**Test Equipment Used:**

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1783	Thermohygrometer	JM Handelpunkt	30.5015.13	Not stated	23 Apr 2016	12
M1883	Signal Analyser	Rohde & Schwarz	FSV30	103084	23 Jul 2016	12
A2521	Attenuator	AtlanTechRF	AN18-20	832797#2	Calibrated before use	-
A2072	Directional Coupler	Narda	4242B	03549	Calibrated before use	-
G0614	Signal Generator	Rohde & Schwarz	SMB100A	177687	01 May 2017	36
M199	Power Meter	Rohde & Schwarz	NRVS	827023/075	08 Apr 2016	24
M1267	Power Sensor	Rohde & Schwarz	NRV-Z52	100155	23 Apr 2016	24
M122	Multimeter	Fluke	77	64910017	22 Apr 2016	12
S021	Power Supply Unit	TTI	CPX200	061034	Calibrated before use	-

5.2.6. Transmitter Radiated Emissions

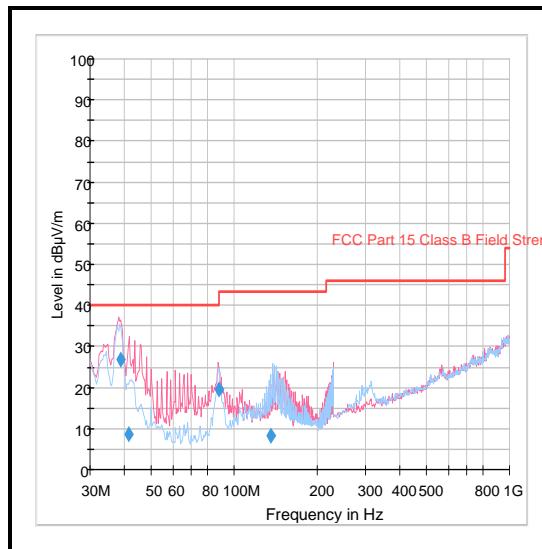
Test Summary:

Test Engineer:	Andrew Edwards	Test Date:	30 August 2015
Test Sample Serial Number:	MC000170		



FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.5
Frequency Range	30 MHz to 1000 MHz

Environmental Conditions:

Temperature (°C):	24
Relative Humidity (%):	43


Note(s):

1. Transmitter radiated spurious emissions tests were performed with the EUT transmitting in DH5 mode as this was found to transmit the highest power and therefore deemed worst case.
2. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
3. The preliminary scans showed similar emission levels below 1 GHz, for each channel of operation. Therefore final radiated emissions measurements were performed with the EUT set to the middle channel only.
4. All other emissions shown on the pre-scan plot were investigated and found to be ambient or >20 dB below the applicable limit or below the measurement system noise floor.
5. Measurements below 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.

Transmitter Radiated Emissions (continued)**Test set up for radiated measurements:**

Transmitter Radiated Emissions (continued)**Results: Quasi-Peak / DH5**

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
325.465	Horizontal	36.1	46.0	9.9	Complied

Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying table.

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1945	Thermohygrometer	JM Handelspunkt	30.5015.01	0112	23 Apr 2016	12
K0001	5 m RSE Chamber	Rainford EMC	N/A	N/A	19 Mar 2016	12
M1273	Test Receiver	Rohde & Schwarz	ESIB26	100275	19 Mar 2016	12
A490	Antenna	Chase	CBL6111A	1590	30 Apr 2016	12
G0543	Amplifier	Sonoma	310N	230801	06 Nov 2015	3
A1834	Attenuator	Hewlett Packard	8491B	10444	05 Mar 2016	12

Transmitter Radiated Emissions (continued)**Test Summary:**

Test Engineers:	Andrew Edwards & Kiren Mistry	Test Date:	24 September 2015
Test Sample Serial Number:	MC000170		

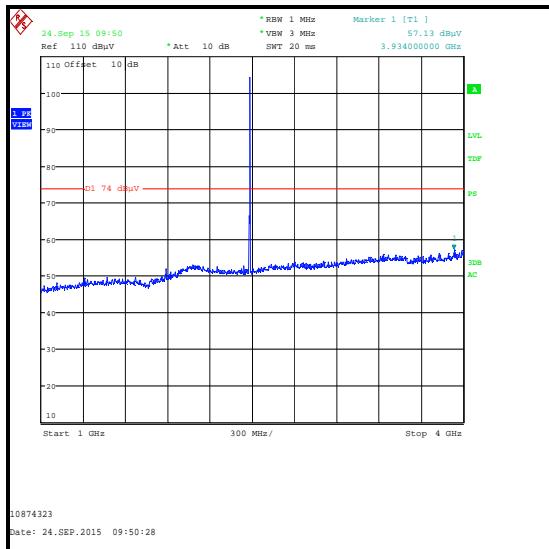
FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.6
Frequency Range	1 GHz to 25 GHz

Environmental Conditions:

Temperature (°C):	24
Relative Humidity (%):	45

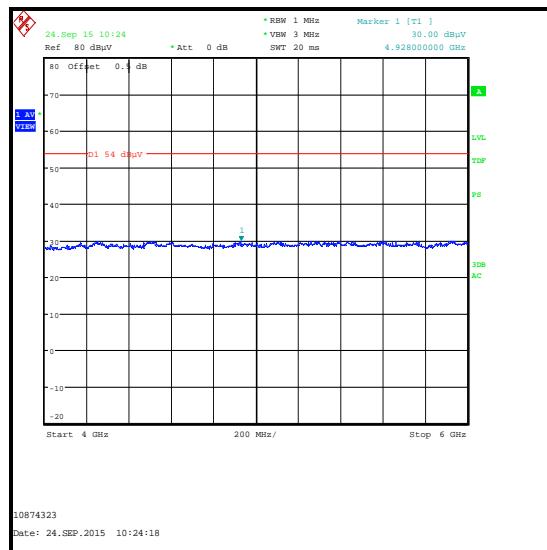
Note(s):

1. Transmitter radiated spurious emissions tests were performed with the EUT transmitting in DH5 mode as this was found to transmit the highest power and therefore deemed worst case.
2. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
3. The emission shown on the 1 GHz to 4 GHz plot is the EUT fundamental at 2441 MHz.
4. No spurious emissions were detected above the noise floor of the measuring receiver therefore the highest peak and average noise floor reading of the measuring receiver was recorded as shown in the tables below.
5. Pre-scans above 1 GHz were performed in a fully anechoic chamber (Asset Number K0002) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT.
6. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto. Peak and average measurements were performed with their own appropriate detectors during the pre-scan measurements.


Results: Peak / Middle Channel / DH5

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
3934.000	Vertical	57.1	74.0	16.9	Complied

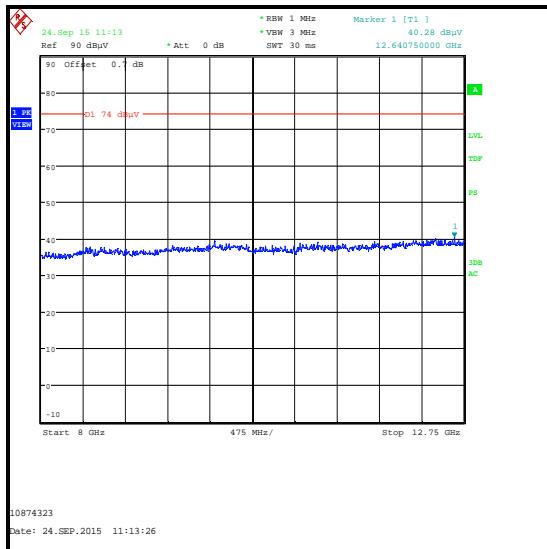
Results: Average / Middle Channel / DH5


Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
3934.000	Vertical	47.2	54.0	6.8	Complied

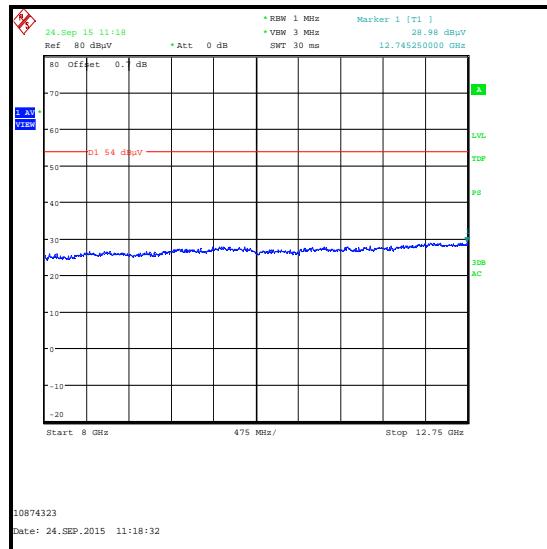
Transmitter Radiated Emissions (continued)

Peak Detector

Average Detector

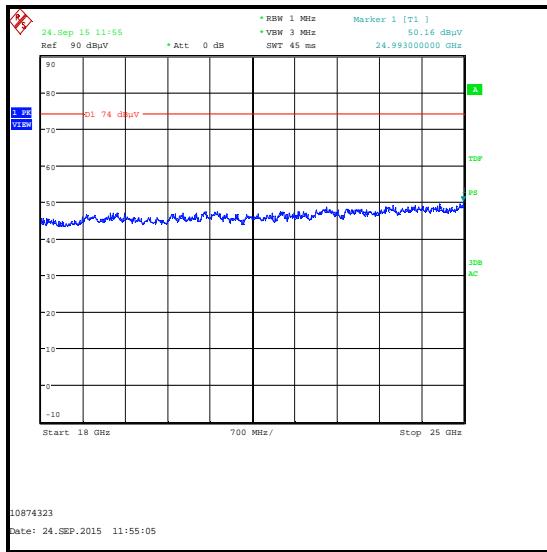

Peak Detector

Average Detector

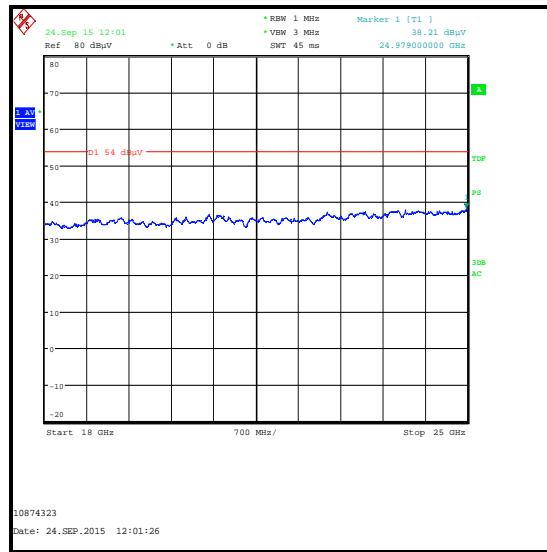

Transmitter Radiated Emissions (continued)

Peak Detector

Peak Detector



Average Detector


Transmitter Radiated Emissions (continued)

Peak Detector

Peak Detector

Average Detector

Transmitter Radiated Emissions (continued)**Test Equipment Used:**

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1656	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	23 Apr 2016	12
K0002	3m RSE Chamber	Rainford EMC	N/A	N/A	01 May 2016	12
M1874	Test Receiver	Rohde & Schwarz	ESU26	100553	12 Jun 2016	12
A1534	Pre Amplifier	Hewlett Packard	8449B	3008A00405	21 Dec 2015	12
A1818	Antenna	EMCO	3118	00075692	20 Dec 2015	12
A253	Antenna	Flann Microwave	12240-20	128	20 Dec 2015	12
A254	Antenna	Flann Microwave	14240-20	139	20 Dec 2015	12
A255	Antenna	Flann Microwave	16240-20	519	20 Dec 2015	12
A256	Antenna	Flann Microwave	18240-20	400	20 Dec 2015	12
A436	Antenna	Flann Microwave	20240-20	330	21 Dec 2015	12
A1396	Attenuator	Huber & Suhner	6810.17.B	757987	05 May 2016	12
A1975	High Pass Filter	AtlanTecRF	AFH-03000	090424010	17 Apr 2016	12

5.2.7. Transmitter Band Edge Radiated Emissions

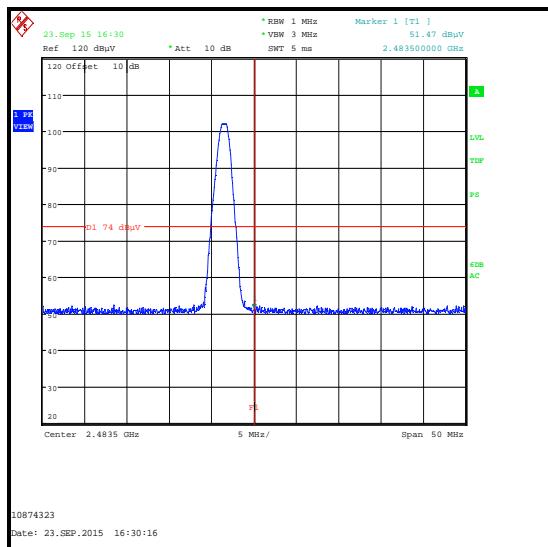
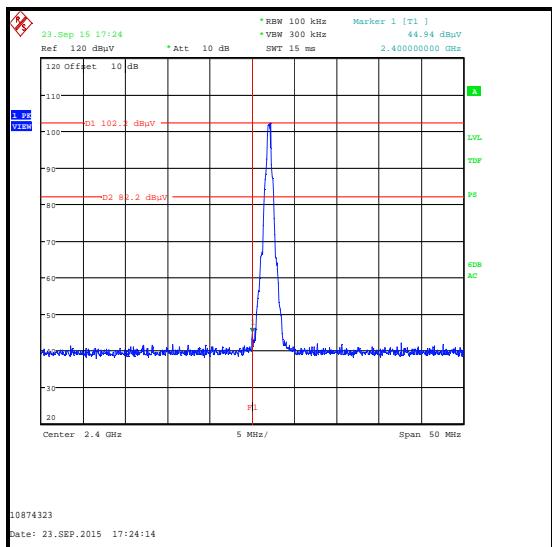
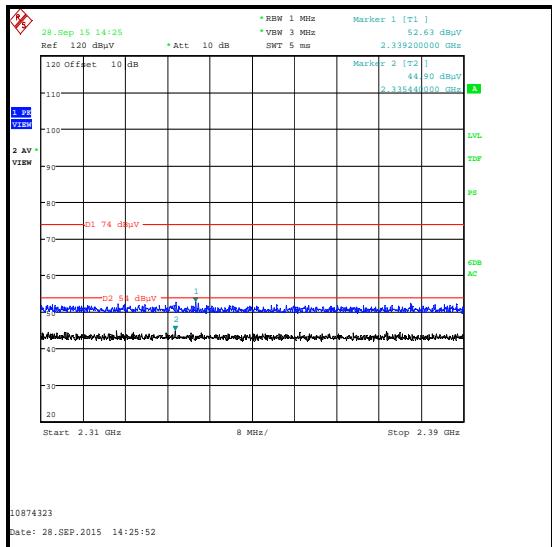
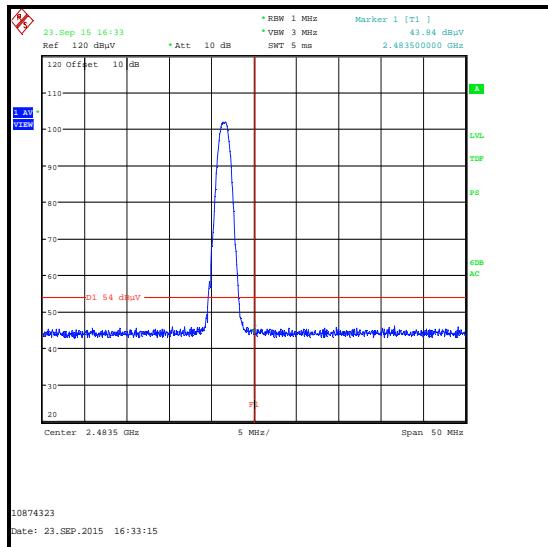
Test Summary:

Test Engineer:	Andrew Edwards	Test Dates:	23 September 2015 & 28 September 2015
Test Sample Serial Number:	MC000170		

FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	ANSI C63.10 Sections 6.10.4 & 6.10.5

Environmental Conditions:

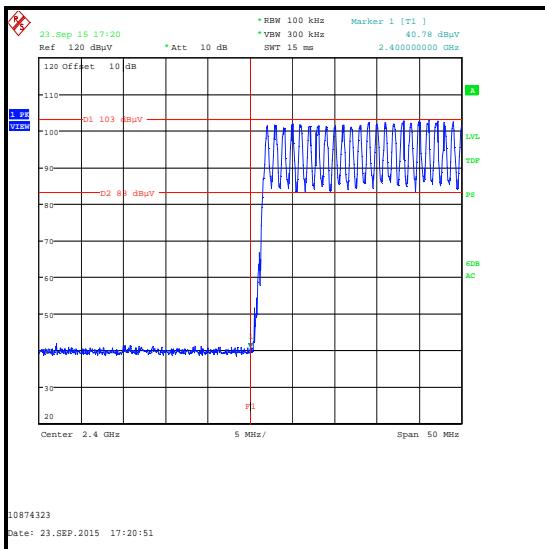
Temperature (°C):	23 to 24
Relative Humidity (%):	41 to 43





Note(s):

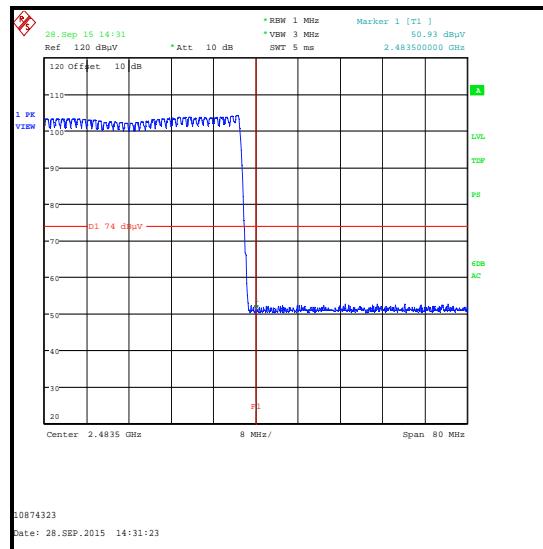
1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. The lower band edge falls within a non-restricted band. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent band (where a higher level emission was present). Marker frequencies and levels were recorded.
3. The upper band edge falls within a restricted band. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. Peak and average measurements were performed with their respective detectors, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent band (where a higher level emission was present). Marker frequencies and levels were recorded.
4. There is a restricted band 10 MHz below the lower band edge. The test receiver was set up as follows: the RBW set to 1 MHz, the VBW set to 3 MHz, with the sweep time set to auto couple. Peak and average measurements were performed with their respective detectors. Markers were placed on the highest point on each trace.
5. The restricted band plot for 2310 MHz to 2390 MHz can be found under the results for DH5 static as this mode had the highest output power and was therefore deemed worst case.
6. * -20 dBc limit.

Transmitter Band Edge Radiated Emissions (continued)**Results: Static Mode / DH5**

Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2339.200	Horizontal	52.6	74.0	21.4	Complied
2400.0	Horizontal	44.9	82.2*	37.3	Complied
2483.5	Horizontal	51.5	74.0	22.5	Complied


Frequency (MHz)	Antenna Polarity	Average Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2335.440	Horizontal	44.9	54.0	9.1	Complied
2483.5	Horizontal	43.8	54.0	10.2	Complied

Lower Band Edge Peak Static**Upper Band Edge Peak Static****2310 MHz to 2390 MHz Restricted Band Plot****Upper Band Edge Average Static**

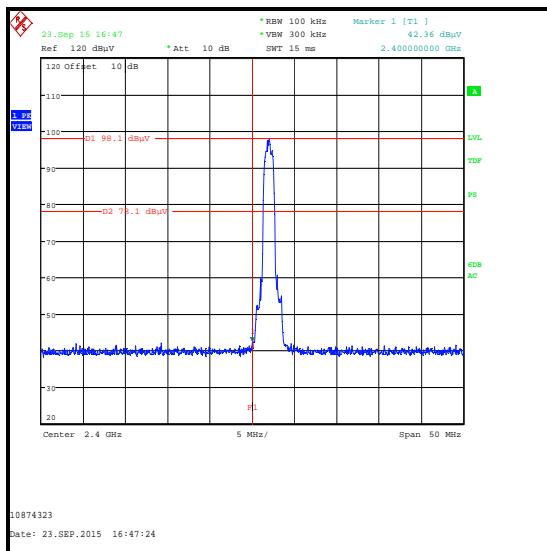

Transmitter Band Edge Radiated Emissions (continued)**Results: Hopping Mode / DH5**

Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2400.0	Horizontal	40.8	83.0*	42.2	Complied
2483.5	Horizontal	50.9	74.0	23.1	Complied

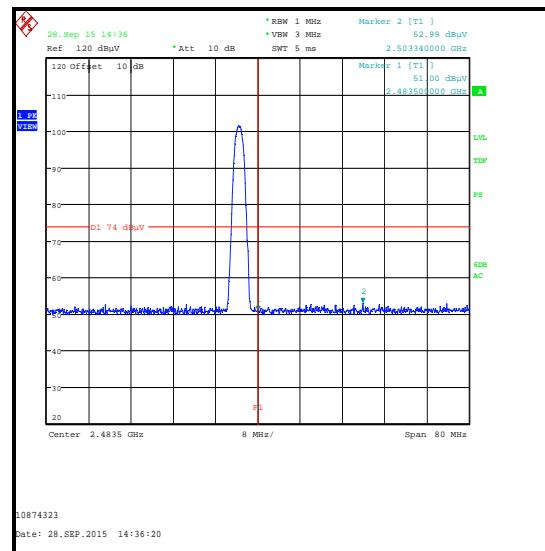
Frequency (MHz)	Antenna Polarity	Average Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2483.5	Horizontal	43.2	54.0	10.8	Complied

Lower Band Edge Peak Hopping

Upper Band Edge Peak Hopping



Upper Band Edge Average Hopping

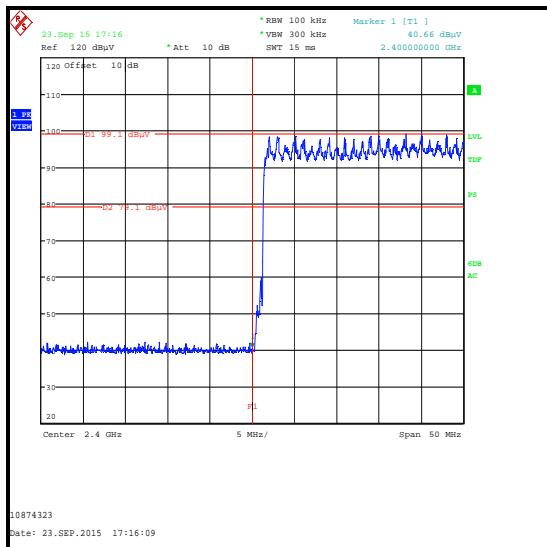

Transmitter Band Edge Radiated Emissions (continued)**Results: Static Mode / 2DH5**

Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2400.0	Horizontal	42.4	78.1*	35.7	Complied
2483.5	Horizontal	51.0	74.0	23.0	Complied
2503.340	Horizontal	53.0	74.0	21.0	Complied

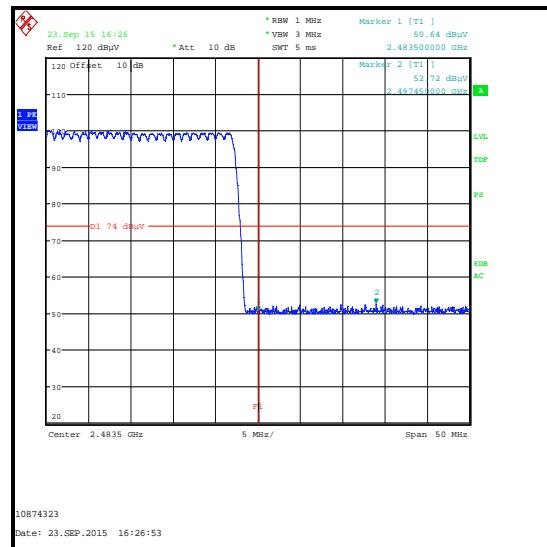
Frequency (MHz)	Antenna Polarity	Average Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2483.5	Horizontal	44.2	54.0	9.8	Complied
2498.220	Horizontal	45.3	54.0	8.7	Complied

Lower Band Edge Peak Static

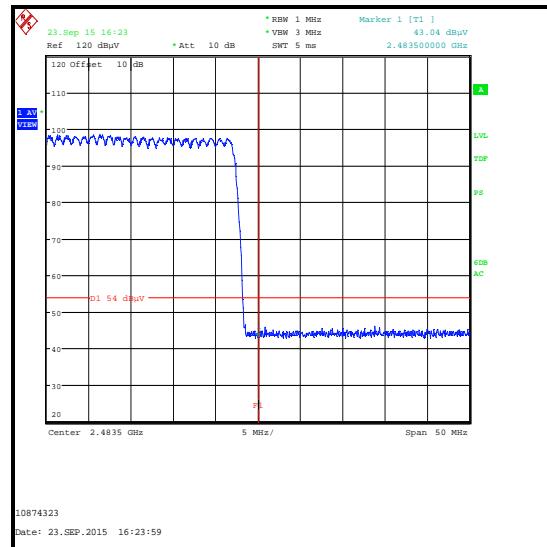
Upper Band Edge Peak Static



Upper Band Edge Average Static

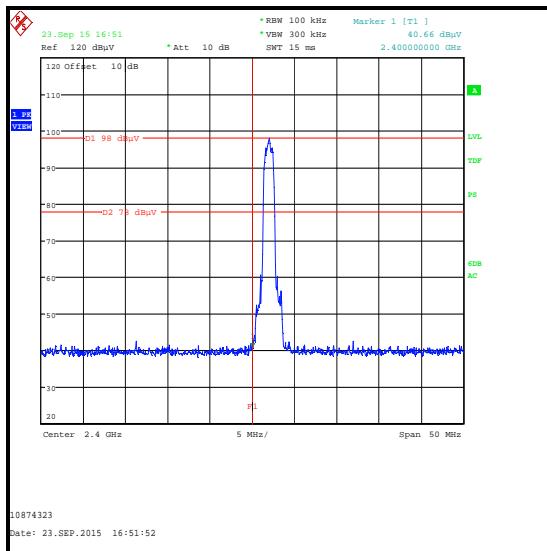

Transmitter Band Edge Radiated Emissions (continued)**Results: Hopping Mode / 2DH5**

Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2400.0	Horizontal	40.7	79.1*	38.4	Complied
2483.5	Horizontal	50.6	74.0	23.4	Complied
2497.450	Horizontal	52.7	74.0	21.3	Complied

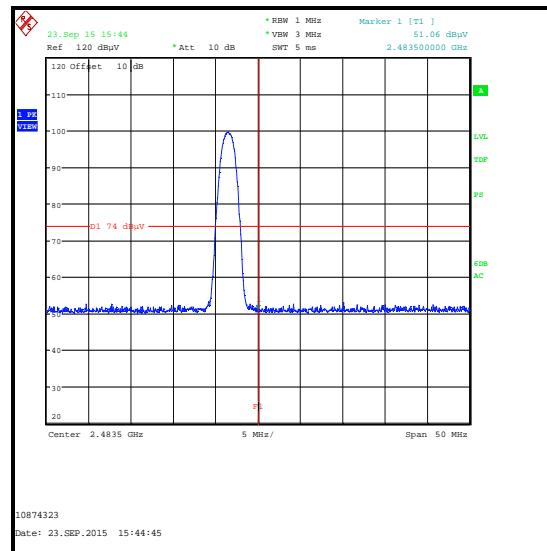

Frequency (MHz)	Antenna Polarity	Average Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2483.5	Horizontal	43.0	54.0	11.0	Complied

Lower Band Edge Peak Hopping

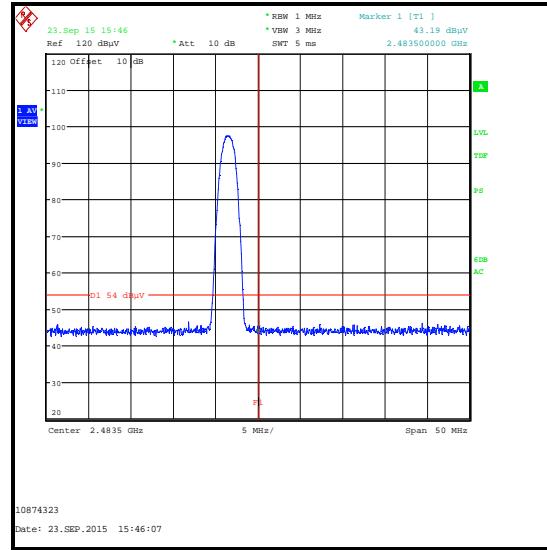
Upper Band Edge Peak Hopping



Upper Band Edge Average Hopping

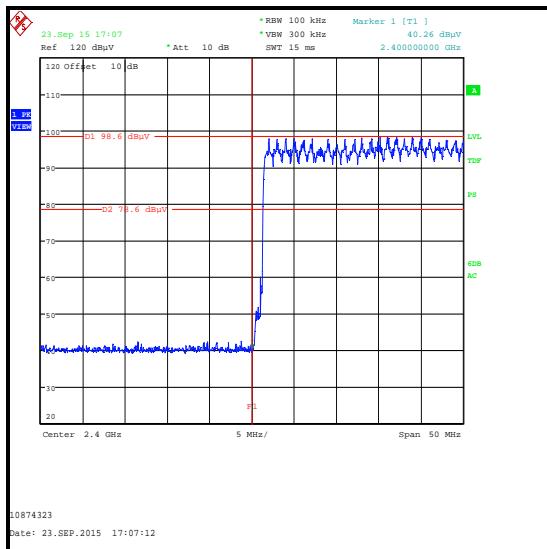

Transmitter Band Edge Radiated Emissions (continued)**Results: Static Mode / 3DH5**

Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2400.0	Horizontal	40.7	78.0*	37.3	Complied
2483.5	Horizontal	51.1	74.0	22.9	Complied

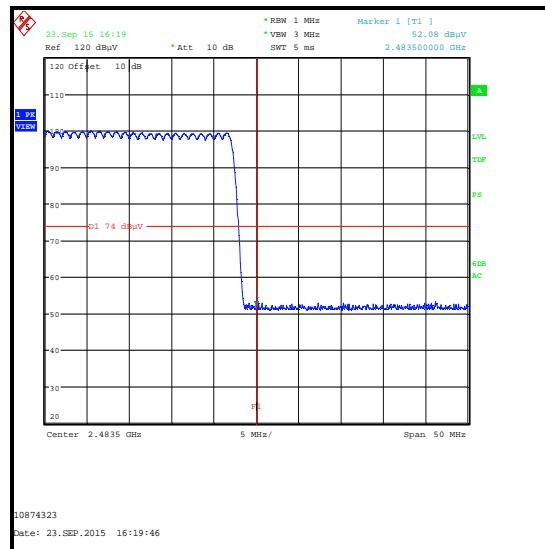

Frequency (MHz)	Antenna Polarity	Average Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2483.5	Horizontal	43.2	54.0	10.8	Complied

Lower Band Edge Peak Static

Upper Band Edge Peak Static



Upper Band Edge Average Static


Transmitter Band Edge Radiated Emissions (continued)**Results: Hopping Mode / 3DH5**

Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2400.0	Horizontal	40.3	78.6*	38.3	Complied
2483.5	Horizontal	52.1	74.0	21.9	Complied


Frequency (MHz)	Antenna Polarity	Average Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2483.5	Horizontal	43.2	54.0	10.8	Complied

Lower Band Edge Peak Hopping

Upper Band Edge Peak Hopping

Upper Band Edge Average Hopping

Transmitter Band Edge Radiated Emissions (continued)**Test Equipment Used:**

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1656	Thermohygrometer	JM Handelpunkt	30.5015.13	None stated	23 Apr 2016	12
K0002	3m RSE Chamber	Rainford EMC	N/A	N/A	01 May 2016	12
M1874	Test Receiver	Rohde & Schwarz	ESU26	100553	12 Jun 2016	12
A1534	Pre Amplifier	Hewlett Packard	8449B	3008A00405	21 Dec 2015	12
A1818	Antenna	EMCO	3118	00075692	20 Dec 2015	12
A1396	Attenuator	Huber & Suhner	6810.17.B	757987	05 May 2016	12

6. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
AC Conducted Spurious Emissions	0.15 MHz to 30 MHz	95%	±4.69 dB
Conducted Maximum Peak Output Power	2.4 GHz to 2.4835 GHz	95%	±1.13 dB
Carrier Frequency Separation	2.4 GHz to 2.4835 GHz	95%	±3.92 %
Average Time of Occupancy	2.4 GHz to 2.4835 GHz	95%	±3.53 ns
20 dB Bandwidth	2.4 GHz to 2.4835 GHz	95%	±3.92 %
Radiated Spurious Emissions	30 MHz to 1 GHz	95%	±5.65 dB
Radiated Spurious Emissions	1 GHz to 26.5 GHz	95%	±2.94 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

7. Report Revision History

Version Number	Revision Details		
	Page No(s)	Clause	Details
1.0	-	-	Initial Version

--- END OF REPORT ---