

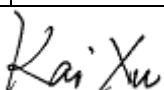
SAR TEST REPORT

Product Name Smartisan T1
Model Name SM701
FCC ID 2AEUYSM701
Applicant Smartisan Technology Co., Ltd
Manufacturer Smartisan Technology Co., Ltd
Date of issue July 22, 2015

TA Technology (Shanghai) Co., Ltd.

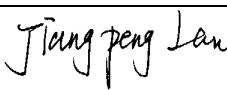
TA Technology (Shanghai) Co., Ltd.

Test Report

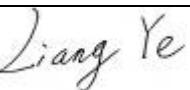

Report No.: RXA1505-0075SAR01R1

Page 2 of 110

GENERAL SUMMARY


Reference Standard(s)	<p>FCC 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices</p> <p>ANSI C95.1, 1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.(IEEE Std C95.1-1991)</p> <p>IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.</p> <p>KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03: SAR Measurement Requirements for 100 MHz to 6 GHz</p> <p>KDB 447498 D01 Mobile Portable RF Exposure v05r02: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies</p> <p>KDB 648474 D04 Handset SAR v01r02: SAR Evaluation Considerations for Wireless Handsets.</p> <p>KDB 941225 D01 SAR test for 3G devices v03: SAR Measurement Procedures CDMA 20001x RTT, 1x Ev-Do, WCDMA, HSDPA/HSPA</p> <p>KDB 941225 D06 Hotspot Mode SAR v02: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities</p> <p>KDB 248227 D01 802.11 Wi-Fi SAR v02r01: SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters</p>
Conclusion	<p>This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards for the tested bands only.</p> <p>General Judgment: Pass</p>
Comment	The test result only responds to the measured sample.

Approved by


Kai Xu
Director

Revised by

Jiang peng Lan
SAR Manager

Performed by

Liang Ye
SAR Engineer

TA Technology (Shanghai) Co., Ltd.
Test Report

TABLE OF CONTENT

1.	General Information	5
1.1.	Notes of the Test Report.....	5
1.2.	Testing Laboratory	5
1.3.	Applicant Information	6
1.4.	Manufacturer Information.....	6
1.5.	Information of EUT.....	7
1.6.	EUT Antenna Locations	8
1.7.	The Maximum Reported SAR _{1g}	9
1.8.	Test Date	9
2.	SAR Measurements System Configuration.....	10
2.1.	SAR Measurement Set-up	10
2.2.	DASY5 E-field Probe System	11
2.2.1.	EX3DV4 Probe Specification	11
2.2.2.	E-field Probe Calibration	12
2.3.	Other Test Equipment	12
2.3.1.	Device Holder for Transmitters	12
2.3.2.	Phantom	13
2.4.	Scanning Procedure	13
2.5.	Data Storage and Evaluation	15
2.5.1.	Data Storage.....	15
2.5.2.	Data Evaluation by SEMCAD	15
3.	Laboratory Environment.....	17
4.	Tissue-equivalent Liquid	18
4.1.	Tissue-equivalent Liquid Ingredients.....	18
4.2.	Tissue-equivalent Liquid Properties	20
5.	System Check	21
5.1.	Description of System Check	21
5.2.	System Check Results	22
6.	Operational Conditions during Test	23
6.1.	General Description of Test Procedures	23
6.2.	Test Positions.....	23
6.2.1.	Against Phantom Head.....	23
6.2.2.	Body Worn Configuration.....	23
6.3.	Measurement Variability.....	25
6.4.	Test Configuration	26
6.4.1.	GSM Test Configuration.....	26
6.4.2.	UMTS Test Configuration	27
6.4.3.	HSUPA Test Configuration	28
6.4.4.	WIFI Test Configuration	30
7.	Test Results	30

TA Technology (Shanghai) Co., Ltd.

Test Report

7.1. Conducted Power Results	31
7.2. Standalone SAR Test Exclusion Considerations	35
7.3. SAR Test Results	36
7.3.1. GSM 850.....	36
7.3.2. GSM 1900.....	37
7.3.3. UMTS Band V.....	38
7.3.4. WIFI.....	39
7.4. Simultaneous Transmission Conditions	40
8. Measurement Uncertainty	44
9. Main Test Instruments	44
ANNEX A: Test Layout	46
ANNEX B: System Check Results	50
ANNEX C: Plots Results	56
ANNEX D: Probe Calibration Certificate	64
ANNEX E: D835V2 Dipole Calibration Certificate	74
ANNEX F: D1900V2 Dipole Calibration Certificate	82
ANNEX G: D2450V2 Dipole Calibration Certificate.....	90
ANNEX H: DAE4 Calibration Certificate.....	98
ANNEX I: The EUT Appearances and Test Configuration	103

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1505-0075SAR01R1

Page 5 of 110

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. The sample under test was selected by the Client. This report only refers to the item that has undergone the test.

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of **TA Technology (Shanghai) Co., Ltd.**

If the electronic report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.
Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City: Shanghai
Post code: 201201
Country: P. R. China
Contact: Xu Kai
Telephone: +86-021-50791141/2/3
Fax: +86-021-50791141/2/3-8000
Website: <http://www.ta-shanghai.com>
E-mail: xukai@ta-shanghai.com

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1505-0075SAR01R1

Page 6 of 110

1.3. Applicant Information

Company: Smartisan Technology Co., Ltd
Address: 7th Floor, Motorola Building, 1 East Wangjing Road, Chaoyang District, Beijing, 100102, P.R. China

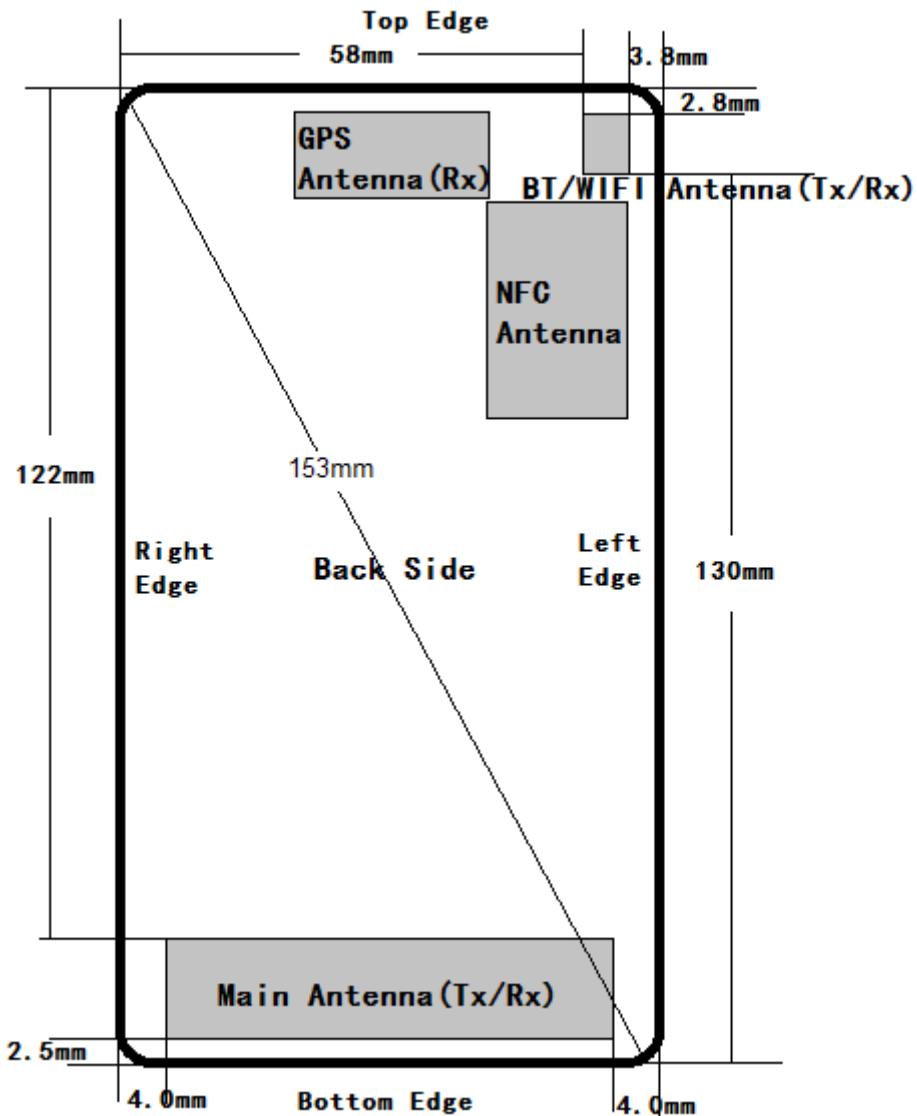
1.4. Manufacturer Information

Company: Smartisan Technology Co., Ltd
Address: 7th Floor, Motorola Building, 1 East Wangjing Road, Chaoyang District, Beijing, 100102, P.R. China

TA Technology (Shanghai) Co., Ltd.
Test Report

1.5. Information of EUT

General Information


Device Type:	Portable Device	
Exposure Category:	Uncontrolled Environment / General Population	
State of Sample:	Prototype Unit	
Product IMEI:	864516020010443	
Hardware Version:	MMR500003C	
Software Version:	V1.5.0	
Antenna Type:	Internal Antenna	
Device Operating Configurations :		
Test Mode(s):	GSM 850/GSM 1900; UMTS Band V; 802.11b/g/n HT20; Bluetooth /Bluetooth 4.0;	
Test Modulation:	(GSM)GMSK,8PSK; (UMTS)QPSK; (WIFI)DSSS,OFDM;	
Device Class:	B	
HSDPA UE Category:	14	
HSUPA UE Category:	6	
GPRS Multislot Class(12):	Max Number of Timeslots in Uplink	4
	Max Number of Timeslots in Downlink	4
	Max Total Timeslot	5
EGPRS Multislot Class(12):	Max Number of Timeslots in Uplink	4
	Max Number of Timeslots in Downlink	4
	Max Total Timeslot	5
Test Frequency Range(s):	Mode	Tx (MHz)
	GSM 850	824.2 ~ 848.8
	GSM 1900	1850.2 ~ 1909.8
	UMTS Band V	826.4 ~ 846.6
	WIFI	2402 ~2472
	Bluetooth /Bluetooth 4.0	2402 ~2480
Power Class:	GSM 850: 4	
	GSM 1900: 1	
	UMTS Band V: 3	
Power Level:	GSM 850: level 5	
	GSM 1900: level 0	
	UMTS Band V: all up bits	

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 8 of 110

1.6. EUT Antenna Locations

Mobile Hotspot Sides for SAR Testing

Mode	Back Side	Front Side	Left Edge	Right Edge	Top Edge	Bottom Edge
GSM 850	Yes	Yes	Yes	Yes	N/A	Yes
GSM 1900	Yes	Yes	Yes	Yes	N/A	Yes
UMTS Band V	Yes	Yes	Yes	Yes	N/A	Yes
2.4GHz WLAN	Yes	Yes	Yes	N/A	Yes	N/A

Note: When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

TA Technology (Shanghai) Co., Ltd.
Test Report

1.7. The Maximum Reported SAR_{1g}

Head SAR Configuration

Mode	Test Position	Channel /Frequency(MHz)	Limit SAR _{1g} 1.6 W/kg	
			Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
GSM 850	Right Cheek	190/836.6	0.095	0.112
GSM 1900	Right Cheek	661/1880	0.149	0.168
UMTS Band V	Right Cheek	4183/836.6	0.094	0.109
WiFi(802.11b)	Right Cheek	6/2437	0.475	0.588

Body Worn Configuration

Mode	Test Position	Channel /Frequency(MHz)	Limit SAR _{1g} 1.6 W/kg	
			Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
GSM 850	Back Side	190/836.6	0.207	0.244
GSM 1900	Back Side	661/1880	0.161	0.181
UMTS Band V	Back Side	4183/836.6	0.135	0.158
WiFi(802.11b)	Back Side	6/2437	0.084	0.105

Note: WiFi SAR is typically not measured for all test positions, the highest SAR measured for the initial test position or initial test configuration should be used for other test positions.

Hotspot SAR Configuration

Mode	Test Position	Channel /Frequency(MHz)	Limit SAR _{1g} 1.6 W/kg	
			Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
GSM 850	Back Side	190/836.6	0.448	0.546
GSM 1900	Back Side	661/1880	0.725	0.830
UMTS Band V	Back Side	4183/836.6	0.135	0.158
WiFi(802.11b)	Top Edge	6/2437	0.084	0.105

1.8. Test Date

The test performed from May 12, 2015 to May 21, 2015.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

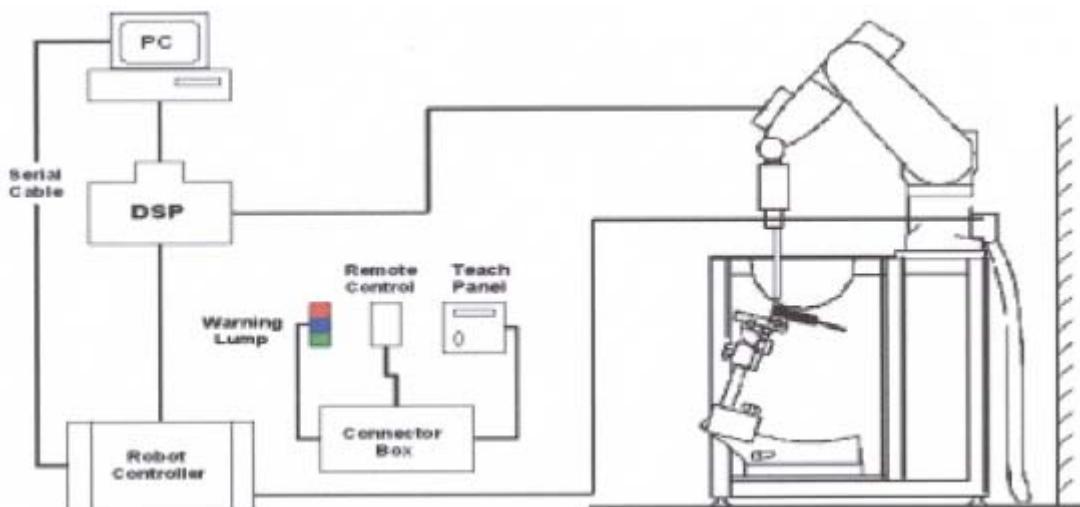


Figure 1 SAR Lab Test Measurement Set-up

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. EX3DV4 Probe Specification

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Figure 2. EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),
 C = Heat capacity of tissue (brain or muscle),
 ΔT = Temperature increase due to RF exposure.

Or

$$\text{SAR} = \frac{|E|^2 \sigma}{\rho}$$

Where:
 σ = Simulated tissue conductivity,
 ρ = Tissue density (kg/m³).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the different positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Figure 4 Device Holder

2.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2 ± 0.1 mm

Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W) Available Special

Figure 5 Generic Twin Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. $\pm 5\%$.
- The “surface check” measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)
- Area Scan
The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid

TA Technology (Shanghai) Co., Ltd.

Test Report

spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

- **Zoom Scan**

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

- **Spatial Peak Detection**

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

Frequency	Maximum Area Scan Resolution (mm) ($\Delta x_{area}, \Delta y_{area}$)	Maximum Zoom Scan Resolution (mm) ($\Delta x_{zoom}, \Delta y_{zoom}$)	Maximum Zoom Scan Spatial Resolution (mm) $\Delta z_{zoom}(n)$	Minimum Zoom Scan Volume (mm) (x,y,z)
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≥ 22

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension “.DAE4”. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	Conv F_i
	- Diode compression point	Dcp _i

Device parameters:	- Frequency	f
	- Crest factor	cf

Media parameters:	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1505-0075SAR01R1

Page 16 of 110

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c_f / d_c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

U_i = input signal of channel i (i = x, y, z)

c_f = crest factor of exciting field (DASY parameter)

$d_c p_i$ = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

$Norm_i$ = sensor sensitivity of channel i (i = x, y, z)
[mV/(V/m)²] for E-field Probes

$ConvF$ = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (p \cdot 1000)$$

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 17 of 110

with **SAR** = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

= conductivity in [mho/m]

or [Siemens/m]

= equivalent tissue density

in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with **P_{pwe}** = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m

H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 2: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.	

TA Technology (Shanghai) Co., Ltd.

Test Report

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 3 and table 4 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB 865664 D01.

Table 3: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz
Water	41.45
Sugar	56
Salt	1.45
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz $\epsilon=41.5$ $\sigma=0.9$

MIXTURE%	FREQUENCY(Brain) 1900MHz
Water	55.242
Glycol monobutyl	44.452
Salt	0.306
Dielectric Parameters Target Value	f=1900MHz $\epsilon=40.0$ $\sigma=1.40$

MIXTURE%	FREQUENCY(Brain) 2450MHz
Water	62.7
Glycol	36.8
Salt	0.5
Dielectric Parameters Target Value	f=2450MHz $\epsilon=39.2$ $\sigma=1.80$

TA Technology (Shanghai) Co., Ltd.
Test Report

Table 4: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz
Water	52.5
Sugar	45
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz $\epsilon=55.2$ $\sigma=0.97$

MIXTURE%	FREQUENCY (Body) 1900MHz
Water	69.91
Glycol monobutyl	29.96
Salt	0.13
Dielectric Parameters Target Value	f=1900MHz $\epsilon=53.3$ $\sigma=1.52$

MIXTURE%	FREQUENCY(Body) 2450MHz
Water	73.2
Glycol	26.7
Salt	0.1
Dielectric Parameters Target Value	f=2450MHz $\epsilon=52.7$ $\sigma=1.95$

TA Technology (Shanghai) Co., Ltd.
Test Report

4.2. Tissue-equivalent Liquid Properties

Table 5: Dielectric Performance of Tissue Simulating Liquid

Frequency	Test Date	Temp °C	Measured Dielectric Parameters		Target Dielectric Parameters		Limit (Within $\pm 5\%$)	
			ϵ_r	$\sigma(\text{s/m})$	ϵ_r	$\sigma(\text{s/m})$	Dev $\epsilon_r(\%)$	Dev $\sigma(\%)$
835MHz (head)	2015-5-14	21.5	41.4	0.93	41.5	0.90	-0.24	3.33
1900MHz (head)	2015-5-12	21.5	39.6	1.43	40.0	1.40	-1.00	2.14
2450MHz (head)	2015-5-21	21.5	38.6	1.81	39.2	1.80	-1.53	0.56
835MHz (body)	2015-5-14	21.5	55.9	0.96	55.2	0.97	1.27	-1.03
1900MHz (body)	2015-5-12	21.5	53.1	1.52	53.3	1.52	-0.38	0.00
2450MHz (body)	2015-5-21	21.5	52.1	1.99	52.7	1.95	-1.14	2.05

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 6 and table 7.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

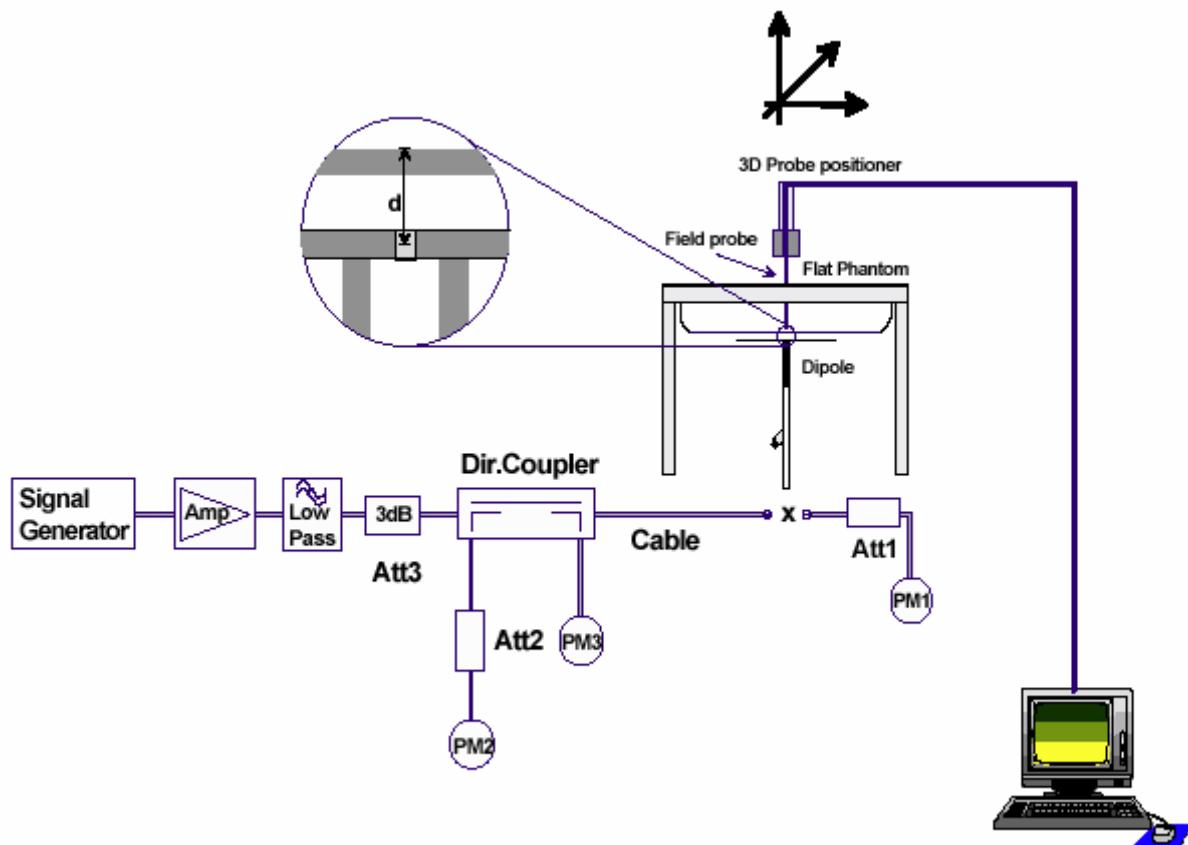


Figure 6 System Check Set-up

TA Technology (Shanghai) Co., Ltd.
Test Report

5.2. System Check Results

Table 6: System Check in Head Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10% Deviation)
		ϵ_r	σ (s/m)	(W/kg)			
835MHz	2015-5-14	41.4	0.93	2.44	9.76	9.54	2.31%
1900MHz	2015-5-12	39.6	1.43	9.48	37.92	39.20	-3.27%
2450MHz	2015-5-21	38.6	1.81	13.70	54.80	52.50	4.38%

Note: 1. The graph results see ANNEX B.
2. Target Values used derive from the calibration certificate

Table 7: System Check in Body Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10% Deviation)
		ϵ_r	σ (s/m)	(W/kg)			
835MHz	2015-5-14	55.9	0.96	2.41	9.64	9.54	1.05%
1900MHz	2015-5-12	53.1	1.52	9.93	39.72	40.00	-0.70%
2450MHz	2015-5-21	52.1	1.99	12.50	50.00	52.40	-4.58%

Note: 1. The graph results see ANNEX B.
2. Target Values used derive from the calibration certificate

6. Operational Conditions during Test

6.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

6.2. Test Positions

6.2.1. Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

6.2.2. Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is $> 1.2 \text{ W/kg}$, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1

Page 24 of 110

different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.3. Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

6.4. Test Configuration

6.4.1. GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power level is set to “5” for GSM 850, set to “0” for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

Output power of reductions:

Table 8: The allowed power reduction in the multi-slot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

6.4.2. UMTS Test Configuration

6.4.2.1. 3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.³ This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as “otherwise” in the applicable procedures; SAR measurement is required for the secondary mode.

6.4.2.2. Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all “1’s” for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

6.4.2.3. Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all “1’s”. The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

6.4.2.4. Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all “1’s”. The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

6.4.2.5. Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the “Release 5 HSDPA Data Devices” section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β_c , β_d), and HS-DPCCH power offset parameters (Δ_{ACK} , Δ_{NACK} , Δ_{CQI}) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Table 9: Subtests for UMTS Release 5 HSDPA

Sub-set	β_c	β_d	β_d (SF)	β_c/β_d	β_{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI}=8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

6.4.3. HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the “Release 6 HSPA Data Devices” section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

TA Technology (Shanghai) Co., Ltd.
Test Report

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

Table 10: Sub-Test 5 Setup for Release 6 HSUPA

Sub-set	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β_{ec}	β_{ed}	β_{ed} (SF)	β_{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1}:47/15$ $\beta_{ed2}:47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$.

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

Table 11: HSUPA UE category

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
2	2	8	2	4	2798	1.4592
	2	4	10	4	14484	
3	2	4	10	4	14484	1.4592
4	2	8	2	2	5772	2.9185
	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6 (No DPDCH)	4	8	2	2 SF2 & 2 SF4	11484	5.76
	4	4	10		20000	2.00
7 (No DPDCH)	4	8	2	2 SF2 & 2 SF4	22996	?
	4	4	10		20000	?

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.

UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)

6.4.4. WIFI Test Configuration

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported SAR* for the *initial test position* is:

- $\leq 0.4 \text{ W/kg}$, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- 0.4 W/kg , SAR is repeated using the same wireless mode test configuration tested in the *initial test position* to measure the subsequent next closest/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the *reported SAR* is $\leq 0.8 \text{ W/kg}$ or all required test positions are tested.
 - ❖ For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - ❖ When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the *initial test position* and subsequent test positions, when the *reported SAR* is $> 0.8 \text{ W/kg}$, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the *reported SAR* is $\leq 1.2 \text{ W/kg}$ or all required test channels are considered.
 - ❖ The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

TA Technology (Shanghai) Co., Ltd.
Test Report

7. Test Results

7.1. Conducted Power Results

Table 12: Conducted Power Measurement Results

GSM 850		Burst Conducted Power(dBm)			/	Average power(dBm)			
		Channel/Frequency(MHz)				Channel/Frequency(MHz)			
		128/824.2	190/836.6	251/848.8		128/824.2	190/836.6	251/848.8	
GSM		32.22	32.28	32.59	-9.03dB	23.19	23.25	23.56	
GPRS (GMSK)	1Txslot	32.49	32.48	32.40	-9.03dB	23.46	23.45	23.37	
	2Txslots	30.40	30.75	30.68	-6.02dB	24.38	24.73	24.66	
	3Txslots	29.20	29.34	29.45	-4.26dB	24.94	25.08	25.19	
	4Txslots	28.05	28.14	28.28	-3.01dB	25.04	25.13	25.27	
EGPRS (8PSK)	1Txslot	26.24	26.20	26.42	-9.03dB	17.21	17.17	17.39	
	2Txslots	25.65	25.66	25.83	-6.02dB	19.63	19.64	19.81	
	3Txslots	24.56	24.47	24.65	-4.26dB	20.30	20.21	20.39	
	4Txslots	23.43	23.37	23.51	-3.01dB	20.42	20.36	20.50	
GSM 1900		Burst Conducted Power(dBm)			/	Average power(dBm)			
		Channel/Frequency(MHz)				Channel/Frequency(MHz)			
		512/1850.2	661/1880	810/1909.8		512/1850.2	661/1880	810/1909.8	
GSM		29.35	29.48	29.34	-9.03dB	20.32	20.45	20.31	
GPRS (GMSK)	1Txslot	29.38	29.46	29.30	-9.03dB	20.35	20.43	20.27	
	2Txslots	28.85	28.97	28.80	-6.02dB	22.83	22.95	22.78	
	3Txslots	27.95	27.85	27.88	-4.26dB	23.69	23.59	23.62	
	4Txslots	26.88	26.91	26.92	-3.01dB	23.87	23.90	23.91	
EGPRS (8PSK)	1Txslot	25.69	25.69	25.62	-9.03dB	16.66	16.66	16.59	
	2Txslots	25.20	25.14	25.05	-6.02dB	19.18	19.12	19.03	
	3Txslots	24.12	24.04	24.04	-4.26dB	19.86	19.78	19.78	
	4Txslots	23.06	22.96	22.97	-3.01dB	20.05	19.95	19.96	

Note:

1) Division Factors

To average the power, the division factor is as follows:

1Txslot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2Txslots = 2 transmit time slots out of 8 time slots

=> conducted power divided by (8/2) => -6.02 dB

3Txslots = 3 transmit time slots out of 8 time slots

=> conducted power divided by (8/3) => -4.26 dB

4Txslots = 4 transmit time slots out of 8 time slots

=> conducted power divided by (8/4) => -3.01 dB

2) Average power numbers

The maximum power numbers are marks in bold.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1

Page 32 of 110

UMTS Band V		Conducted Power (dBm)		
		Channel/Frequency(MHz)		
		4132/826.4	4183/836.6	4233/846.6
RMC	12.2kbps RMC	23.12	23.32	23.15
	64kbps RMC	23.10	23.27	23.15
	144kbps RMC	23.10	23.32	23.13
	384kbps RMC	23.08	23.28	23.16
HSDPA	Sub - Test 1	21.98	22.18	22.00
	Sub - Test 2	21.95	22.13	22.02
	Sub - Test 3	21.42	21.70	21.50
	Sub - Test 4	21.47	21.62	21.52
HSUPA	Sub - Test 1	20.26	19.27	19.36
	Sub - Test 2	19.74	19.93	19.71
	Sub - Test 3	20.85	20.74	20.62
	Sub - Test 4	21.86	21.88	21.66
	Sub - Test 5	20.89	21.26	20.79

TA Technology (Shanghai) Co., Ltd.
Test Report

BT	AV Conducted Power (dBm)		
	Channel/Frequency(MHz)		
	Ch 0/2402 MHz	Ch 39/2441 MHz	Ch 78/2480 MHz
GFSK	8.7	9.6	9.0
π/4DQPSK	7.3	8.1	7.5
8DPSK	7.4	8.2	7.6
BT 4.0	Ch 0/2402 MHz	Ch 19/2440 MHz	Ch 39/2480 MHz
GFSK	1.7	2.1	1.1

Mode	Channel/ Frequency(MHz)	Data rate (Mbps)	AV Power (dBm)
802.11b	1/2412	1	14.62
		2	14.52
		5.5	14.17
		11	14.05
	6/2437	1	15.07
		2	15.01
		5.5	14.52
		11	14.12
	11/2462	1	15.29
		2	15.14
		5.5	14.52
		11	14.45
802.11g	1/2412	6	14.32
		9	14.13
		12	14.03
		18	13.16
		24	13.17
		36	12.63
		48	12.14
		54	11.23
	6/2437	6	15.02
		9	14.81
		12	14.73
		18	14.21
		24	13.70
		36	13.11
		48	12.62
		54	12.42

TA Technology (Shanghai) Co., Ltd.
Test Report

	11/2462	6	15.33
		9	15.10
		12	14.92
		18	14.64
		24	14.08
		36	13.62
		48	12.94
		54	12.65
	1/2412	MCS0	14.37
		MCS1	14.28
		MCS2	14.26
		MCS3	14.23
		MCS4	14.27
		MCS5	14.25
		MCS6	14.26
		MCS7	14.22
	6/2437	MCS0	14.81
		MCS1	14.12
		MCS2	14.31
		MCS3	14.52
		MCS4	14.44
		MCS5	14.32
		MCS6	14.51
		MCS7	14.1
	11/2462	MCS0	15.02
		MCS1	14.92
		MCS2	14.87
		MCS3	14.68
		MCS4	14.78
		MCS5	14.56
		MCS6	14.33
		MCS7	14.21

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1505-0075SAR01R1

Page 35 of 110

7.2. Standalone SAR Test Exclusion Considerations

Per FCC KDB 447498 D01, the SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{(\text{max. power of channel, including tune-up tolerance, mW})}{(\text{min. test separation distance, mm})} * \sqrt{\text{Frequency (GHz)}} \leq 3.0$$

Band	Configuration	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (mm)	Calculation Result	SAR Exclusion Thresholds	Standalone SAR
Bluetooth	Head	2480	9.7	5	3.0	3.0	No
	Body	2480	9.7	10	1.5	3.0	No
Wifi 2.4GHz	Head	2462	16	5	12.5	3.0	Yes
	Body	2462	16	10	6.2	3.0	Yes

TA Technology (Shanghai) Co., Ltd.
Test Report

7.3. SAR Test Results

7.3.1. GSM 850

Table 13: SAR Values

Test Position	Channel/ Frequency (MHz)	Time slot	Duty Cycle	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Drift $\pm 0.21\text{dB}$	Limit SAR_{1g} 1.6 W/kg				Graph Results
							Drift (dB)	Measured SAR_{1g} (W/kg)	Scaling Factor	Reported SAR_{1g} (W/kg)	
Test Position of Head											
Left Cheek	190/836.6	GSM	1:8.3	33.00	32.28	0.040	0.089	1.18	0.105	/	
Left Tilt	190/836.6	GSM	1:8.3	33.00	32.28	0.035	0.052	1.18	0.061	/	
Right Cheek	190/836.6	GSM	1:8.3	33.00	32.28	-0.020	0.095	1.18	0.112	Figure.13	
Right Tilt	190/836.6	GSM	1:8.3	33.00	32.28	0.050	0.061	1.18	0.072	/	
Test position of Body (Distance 15mm)											
Back Side	190/836.6	GSM	1:8.3	33.00	32.28	0.070	0.207	1.18	0.244	/	
Front Side	190/836.6	GSM	1:8.3	33.00	32.28	-0.020	0.152	1.18	0.179	/	
Test position of Body (Distance 10mm)											
Back Side	190/836.6	4Txslots	1:2.07	29.00	28.14	-0.080	0.448	1.22	0.546	Figure.14	
Front Side	190/836.6	4Txslots	1:2.07	29.00	28.14	-0.070	0.266	1.22	0.324	/	
Left Edge	190/836.6	4Txslots	1:2.07	29.00	28.14	0.030	0.235	1.22	0.286	/	
Right Edge	190/836.6	4Txslots	1:2.07	29.00	28.14	-0.030	0.174	1.22	0.212	/	
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Bottom Edge	190/836.6	4Txslots	1:2.07	29.00	28.14	-0.025	0.114	1.22	0.139	/	

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1

Page 37 of 110

7.3.2. GSM 1900

Table 14: SAR Values

Test Position	Channel/ Frequency (MHz)	Time slot	Duty Cycle	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Drift $\pm 0.21\text{dB}$	Limit SAR_{1g} 1.6 W/kg			
						Drift (dB)	Measured SAR_{1g} (W/kg)	Scaling Factor	Reported SAR_{1g} (W/kg)	Graph Results
Test Position of Head										
Left Cheek	661/1880	GSM	1:8.3	30.00	29.48	-0.025	0.105	1.13	0.118	/
Left Tilt	661/1880	GSM	1:8.3	30.00	29.48	0.090	0.094	1.13	0.106	/
Right Cheek	661/1880	GSM	1:8.3	30.00	29.48	0.073	0.149	1.13	0.168	Figure.15
Right Tilt	661/1880	GSM	1:8.3	30.00	29.48	-0.100	0.060	1.13	0.068	/
Test position of Body (Distance 15mm)										
Back Side	661/1880	GSM	1:8.3	30.00	29.48	0.029	0.161	1.13	0.181	/
Front Side	661/1880	GSM	1:8.3	30.00	29.48	-0.010	0.147	1.13	0.166	/
Test position of Body (Distance 10mm)										
Back Side	810/1909.8	4Txslots	1:2.07	27.5	26.92	0.100	0.719	1.14	0.822	/
	661/1880	4Txslots	1:2.07	27.5	26.91	-0.160	0.725	1.15	0.830	Figure.16
	512/1850.2	4Txslots	1:2.07	27.5	26.88	0.080	0.705	1.15	0.813	/
Front Side	661/1880	4Txslots	1:2.07	27.5	26.91	0.090	0.653	1.15	0.748	/
Left Edge	661/1880	4Txslots	1:2.07	27.5	26.91	-0.161	0.172	1.15	0.197	/
Right Edge	661/1880	4Txslots	1:2.07	27.5	26.91	0.060	0.465	1.15	0.533	/
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	661/1880	4Txslots	1:2.07	27.5	26.91	-0.080	0.486	1.15	0.557	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

TA Technology (Shanghai) Co., Ltd.
Test Report

7.3.3. UMTS Band V

Table 15: SAR Values

Test Position	Channel/ Frequency (MHz)	Channel Type	Duty Cycle	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Drift ± 0.21dB	Limit SAR _{1g} 1.6 W/kg				Graph Results
							Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	
Test Position of Head											
Left Cheek	4183/836.6	RMC 12.2K	1:1	24.00	23.32	0.010	0.088	1.17	0.103	/	
Left Tilt	4183/836.6	RMC 12.2K	1:1	24.00	23.32	0.027	0.052	1.17	0.060	/	
Right Cheek	4183/836.6	RMC 12.2K	1:1	24.00	23.32	0.050	0.094	1.17	0.109	Figure.17	
Right Tilt	4183/836.6	RMC 12.2K	1:1	24.00	23.32	0.020	0.067	1.17	0.078	/	
Test position of Body (Distance 10mm)											
Back Side	4183/836.6	RMC 12.2K	1:1	24.00	23.32	0.150	0.135	1.17	0.158	Figure.18	
Front Side	4183/836.6	RMC 12.2K	1:1	24.00	23.32	0.110	0.082	1.17	0.096	/	
Left Edge	4183/836.6	RMC 12.2K	1:1	24.00	23.32	0.020	0.077	1.17	0.090	/	
Right Edge	4183/836.6	RMC 12.2K	1:1	24.00	23.32	0.050	0.051	1.17	0.060	/	
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Bottom Edge	4183/836.6	RMC 12.2K	1:1	24.00	23.32	0.020	0.039	1.17	0.045	/	

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
3. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.
4. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

TA Technology (Shanghai) Co., Ltd.
Test Report

7.3.4. WIFI

Table 16: SAR Values

Test Position	Channel/ Frequency (MHz)	Service	Duty Cycle	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Area Scan Max. SAR (W/kg)	Drift $\pm 0.21\text{dB}$	Limit of SAR 1.6 W/kg			
								Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)
Test Position of Head with 802.11b											
Left Cheek	6/2437	DSSS	1:1	16	15.07	0.126	-0.090	0.149	1.24	0.185	/
Left Tilt	6/2437	DSSS	1:1	16	15.07	0.124	/	/	/	/	/
Right Cheek	6/2437	DSSS	1:1	16	15.07	0.342	0.020	0.475	1.24	0.588	Figure.19
Right Tilt	6/2437	DSSS	1:1	16	15.07	0.265	0.028	0.364	1.24	0.451	/
Test position of Body with 802.11b (Distance 10mm)											
Back Side	6/2437	DSSS	1:1	16	15.07	0.077	/	/	/	/	/
Front Side	6/2437	DSSS	1:1	16	15.07	0.069	/	/	/	/	/
Left Edge	6/2437	DSSS	1:1	16	15.07	0.009	/	/	/	/	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	6/2437	DSSS	1:1	16	15.07	0.092	0.044	0.084	1.24	0.105	Figure.20
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is $\leq 0.8 \text{ W/kg}$ then testing at the other channels is optional for such test configuration(s).
3. Highest reported SAR is $\leq 0.4 \text{ W/kg}$. Therefore, further SAR measurements within this exposure condition are not required. Highest reported SAR is $> 0.4 \text{ W/kg}$. Due to the highest reported SAR for this test position, other test positions in Head exposure condition were evaluated until a SAR $\leq 0.8 \text{ W/kg}$ was reported.
4. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$, SAR measurement is not required for 2.4 GHz 802.11g/n OFDM configurations.

TA Technology (Shanghai) Co., Ltd.
Test Report

7.4. Simultaneous Transmission Conditions

Air-Interface	Band (MHz)	Type	Simultaneous Transmissions Note: Not to be tested	Voice Over Digital Transport (Data)
GSM	850	Voice	Yes WIFI or BT	NA
	1900	Voice		NA
	GPRS	Data	Yes WIFI or BT	NA
	EGPRS	Data	Yes WIFI or BT	NA
WCDMA	Band V	Voice	Yes WIFI or BT	NA
	HSDPA/HSUPA/ RMC	Data	Yes WIFI or BT	NA
WIFI	2450	Data	Yes GSM,GPRS, EGPRS HSDPA/HSUPA/RMC	Yes
Bluetooth (BT)	2450	Data	Yes GSM,GPRS, EGPRS HSDPA/HSUPA/RMC	NA

TA Technology (Shanghai) Co., Ltd.
Test Report

When standalone SAR is not required to be measured per FCC KDB 447498 D01, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

$$\text{Estimated SAR} = \frac{(\text{max. power of channel, including tune-up tolerance, mW}) * \sqrt{f(\text{GHz})}}{(\text{min. test separation distance, mm})} \cdot 7.5$$

Band	Configuration	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR (W/kg)
Bluetooth	Head	2480	9.7	5	0.392
	Body	2480	9.7	10	0.196

Per FCC KDB 447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

$$\text{Ratio} = \frac{(\text{SAR}_1 + \text{SAR}_2)^{1.5}}{(\text{peak location separation, mm})} < 0.04$$

TA Technology (Shanghai) Co., Ltd.
Test Report

Simultaneous transimiton SAR For Bluetooth and GSM/UMTS

SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band V	Bluetooth	MAX. Σ SAR _{1g}	Peak location separation ratio
Left, Touch	0.105	0.118	0.103	0.392	0.510	No
Left, Tilt	0.061	0.106	0.060	0.392	0.498	No
Right, Touch	0.112	0.168	0.109	0.392	0.560	No
Right, Tilt	0.072	0.068	0.078	0.392	0.470	No
Back Side(15mm)	0.244	0.181	0.158	0.196	0.440	No
Front Side(15mm)	0.179	0.166	0.096	0.196	0.375	No
Back Side(10mm)	0.546	0.830	0.158	0.196	1.026	No
Front Side(10mm)	0.324	0.748	0.096	0.196	0.944	No
Left Edge(10mm)	0.286	0.197	0.090	0.196	0.482	No
Right Edge(10mm)	0.212	0.533	0.060	0.196	0.729	No
Top Edge(10mm)	N/A	N/A	N/A	0.196	0.196	No
Bottom Edge(10mm)	0.139	0.557	0.045	0.196	0.753	No

Note: 1. The value with blue color is the maximum Σ SAR_{1g} Value.
2. MAX. Σ SAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

MAX. Σ SAR_{1g} = 1.026 W/kg <1.6 W/kg, So the Simultaneous transimiton SAR with volum scan are not required for BT and GSM/UMTS antenna.

TA Technology (Shanghai) Co., Ltd.
Test Report

Simultaneous transimition SAR For WIFI and GSM/UMTS

SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band V	WIFI	MAX. ΣSAR _{1g}	Peak location separation ratio
Left, Touch	0.105	0.118	0.103	0.185	0.303	No
Left, Tilt	0.061	0.106	0.060	0.588	0.694	No
Right, Touch	0.112	0.168	0.109	0.588	0.756	No
Right, Tilt	0.072	0.068	0.078	0.451	0.529	No
Back Side(15mm)	0.244	0.181	0.158	0.105	0.349	No
Front Side(15mm)	0.179	0.166	0.096	0.105	0.284	No
Back Side(10mm)	0.546	0.830	0.158	0.105	0.935	No
Front Side(10mm)	0.324	0.748	0.096	0.105	0.853	No
Left Edge(10mm)	0.286	0.197	0.090	0.105	0.391	No
Right Edge(10mm)	0.212	0.533	0.060	0.105	0.638	No
Top Edge(10mm)	N/A	N/A	N/A	0.105	0.105	No
Bottom Edge(10mm)	0.139	0.557	0.045	0.105	0.662	No

Note: 1. The value with blue color is the maximum ΣSAR_{1g} Value.
 2. MAX. ΣSAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}
 3. The highest SAR measured for the initial test position or initial test configuration should be used to determine SAR test exclusion according to the sum of 1-g SAR and SAR peak to location ratio provisions in KDB 447498.

MAX. ΣSAR_{1g} = 0.935W/kg <1.6 W/kg, so the Simultaneous transimition SAR with volum scan are not required for WIFI and GSM/UMTS antenna.

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1505-0075SAR01R1

Page 44 of 110

8. Measurement Uncertainty

The measured SAR were <1.5 W/kg for all frequency bands, therefore per KDB Publication 865664 D01v01r03, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2003 is not required in SAR reports.

TA Technology (Shanghai) Co., Ltd.
Test Report

9. Main Test Instruments

Table 17: List of Main Instruments

No.	Name	Type	Serial Number	Calibration Date	Expiration Time	Valid Period
01	Network analyzer	E5071B	MY42404014	2014-05-26	2015-05-25	1 year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested		
03	Power meter	Agilent E4417A	GB41291714	2015-03-08	2016-03-07	1 year
04	Power sensor	Agilent N8481H	MY50350004	2014-09-24	2015-09-23	1 year
05	Power sensor	E9327A	US40441622	2015-01-02	2016-01-01	1 year
06	Signal Generator	HP 8341B	2730A00804	2014-09-02	2015-09-01	1 year
07	Dual directional coupler	778D-012	50519	2015-03-02	2016-03-01	1 year
08	Dual directional coupler	777D	50146	2015-03-02	2016-03-01	1 year
09	Amplifier	IXA-020	0401	No Calibration Requested		
10	BTS	E5515C	MY48360988	2014-05-26	2015-05-25	1 year
11	E-field Probe	EX3DV4	3677	2015-01-30	2016-01-29	1 year
12	DAE	DAE4	1291	2014-11-14	2015-11-13	1 year
13	Validation Kit 835MHz	D835V2	4d020	2014-08-28	2017-08-27	3 years
14	Validation Kit 1900MHz	D1900V2	5d060	2014-09-01	2017-08-31	3 years
15	Validation Kit 2450MHz	D2450V2	786	2014-09-01	2017-08-31	3 years
16	Temperature Probe	JM222	AA1009129	2015-03-02	2016-03-01	1 year
17	Hygrothermograph	WS-1	64591	2014-09-25	2015-09-24	1 year

*****END OF REPORT*****

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1505-0075SAR01R1

Page 46 of 110

ANNEX A: Test Layout

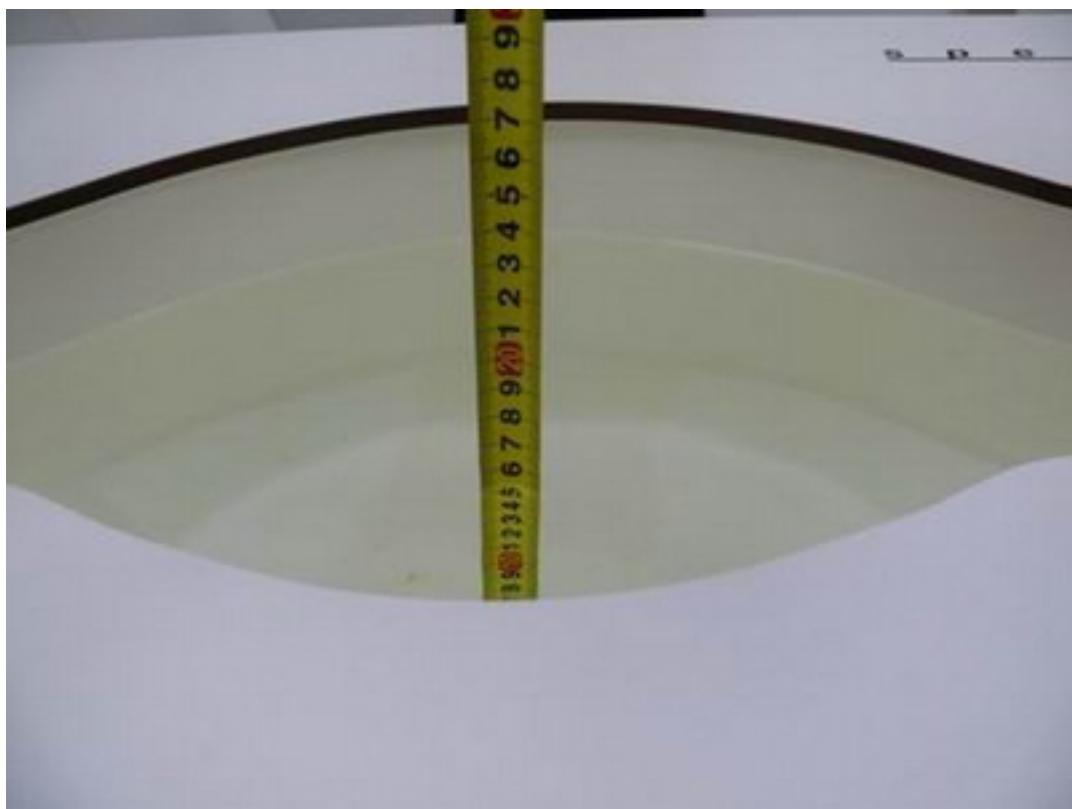
Picture 1: Specific Absorption Rate Test Layout


**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1505-0075SAR01R1

Page 47 of 110

Picture 2: Liquid depth in the flat Phantom (835MHz, 15.4cm depth)



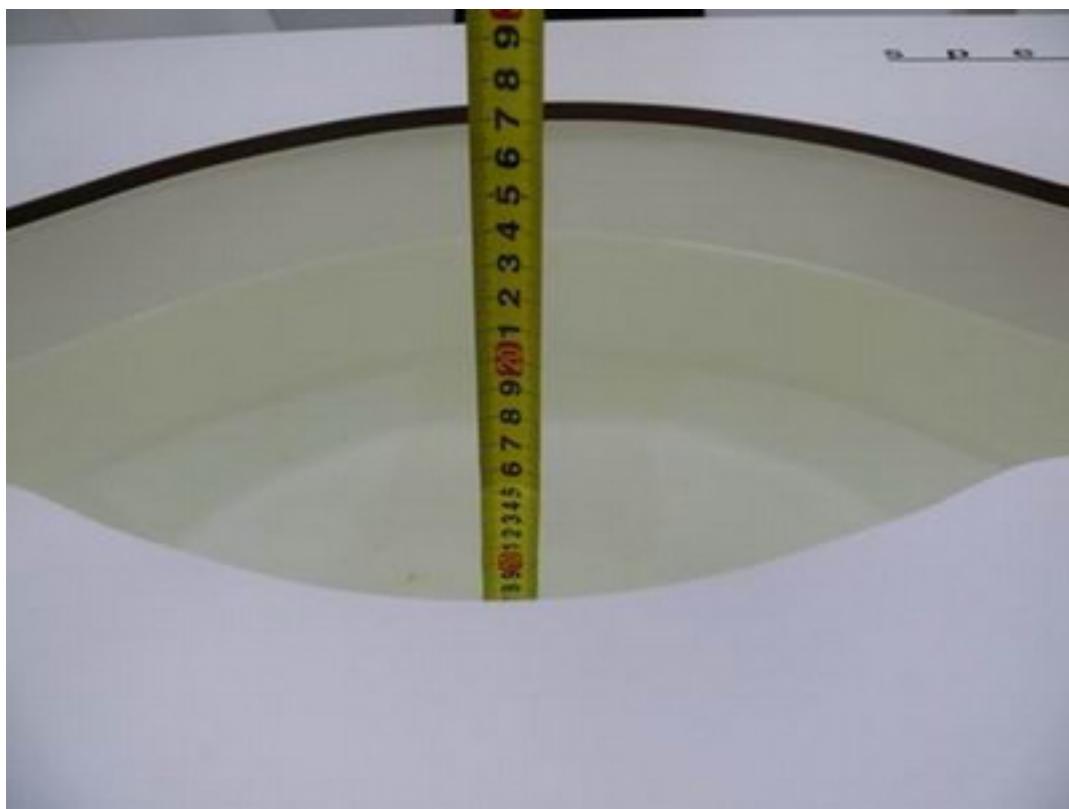
Picture 3: Liquid depth in the head Phantom (835MHz, 15.3cm depth)

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1505-0075SAR01R1

Page 48 of 110

Picture 4: Liquid depth in the flat Phantom (1900 MHz, 15.2cm depth)



Picture 5: liquid depth in the head Phantom (1900 MHz, 15.3cm depth)

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1505-0075SAR01R1

Page 49 of 110

Picture 6: Liquid depth in the flat Phantom (2450 MHz, 15.3cm depth)

Picture 7: Liquid depth in the head Phantom (2450 MHz, 15.4cm depth)

ANNEX B: System Check Results

System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date: 5/14/2015

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 835$ MHz; $\sigma = 0.93$ mho/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.64 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.4 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.64 mW/g

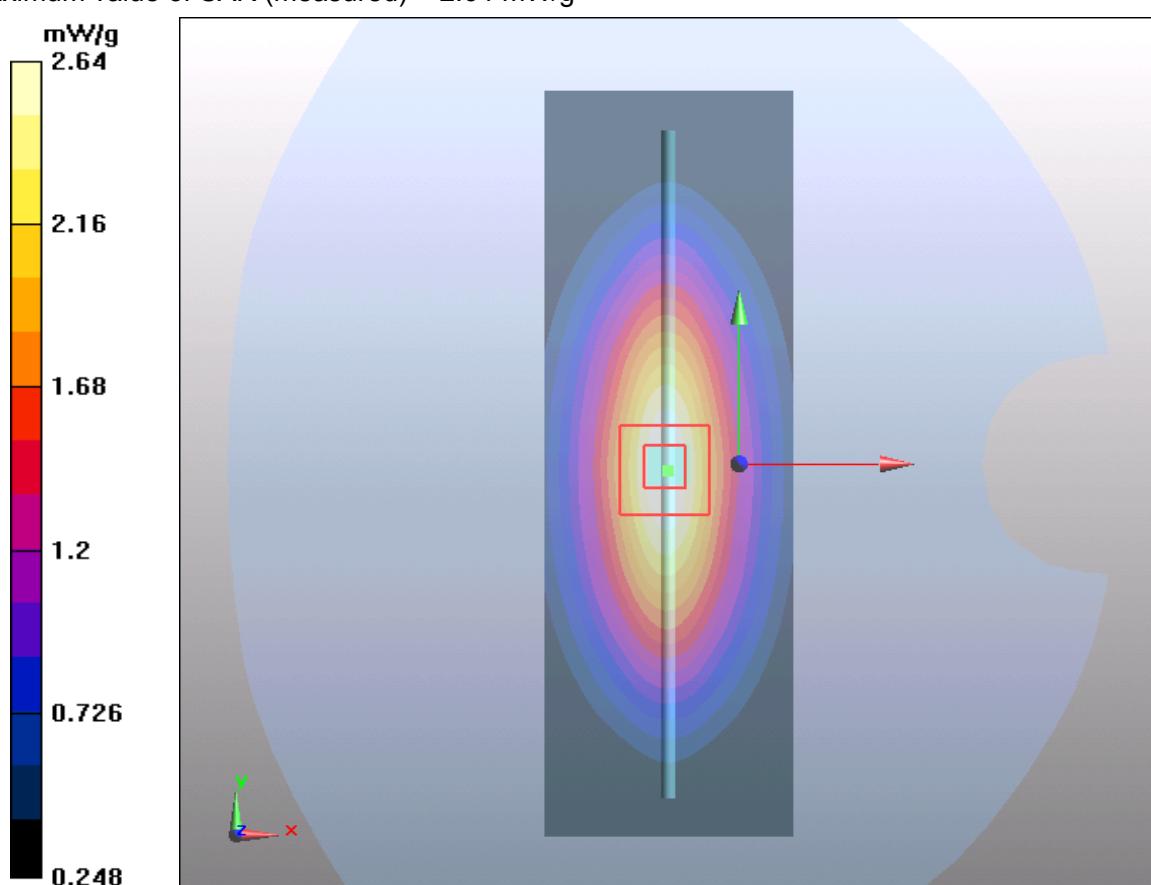


Figure 7 System Performance Check 835MHz 250mW

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1

Page 51 of 110

System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date: 5/14/2015

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 835$ MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.45, 9.45, 9.45); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.58 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.9 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 3.5 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.6 mW/g

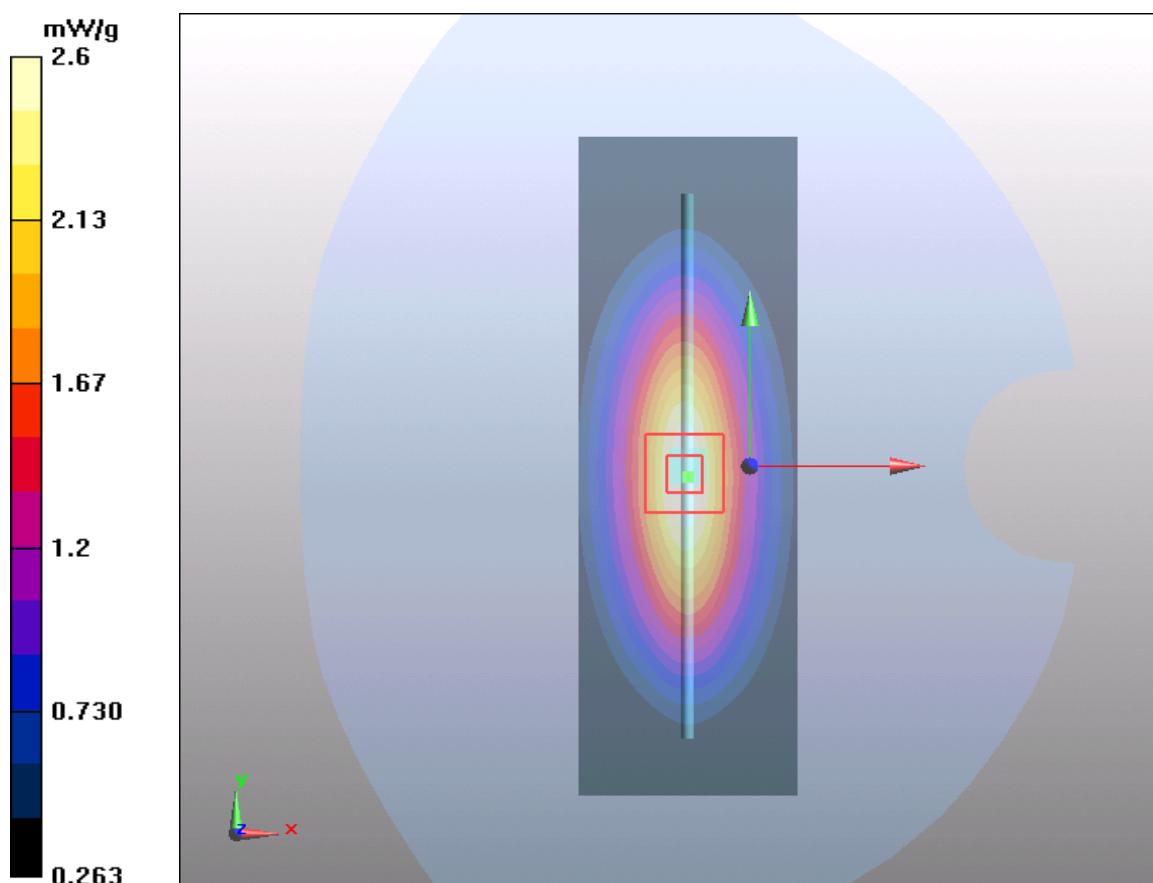


Figure 8 System Performance Check 835MHz 250mW

System Performance Check at 1900 MHz Head TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date: 5/12/2015

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 39.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 11.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.5 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.48 mW/g; SAR(10 g) = 4.9 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

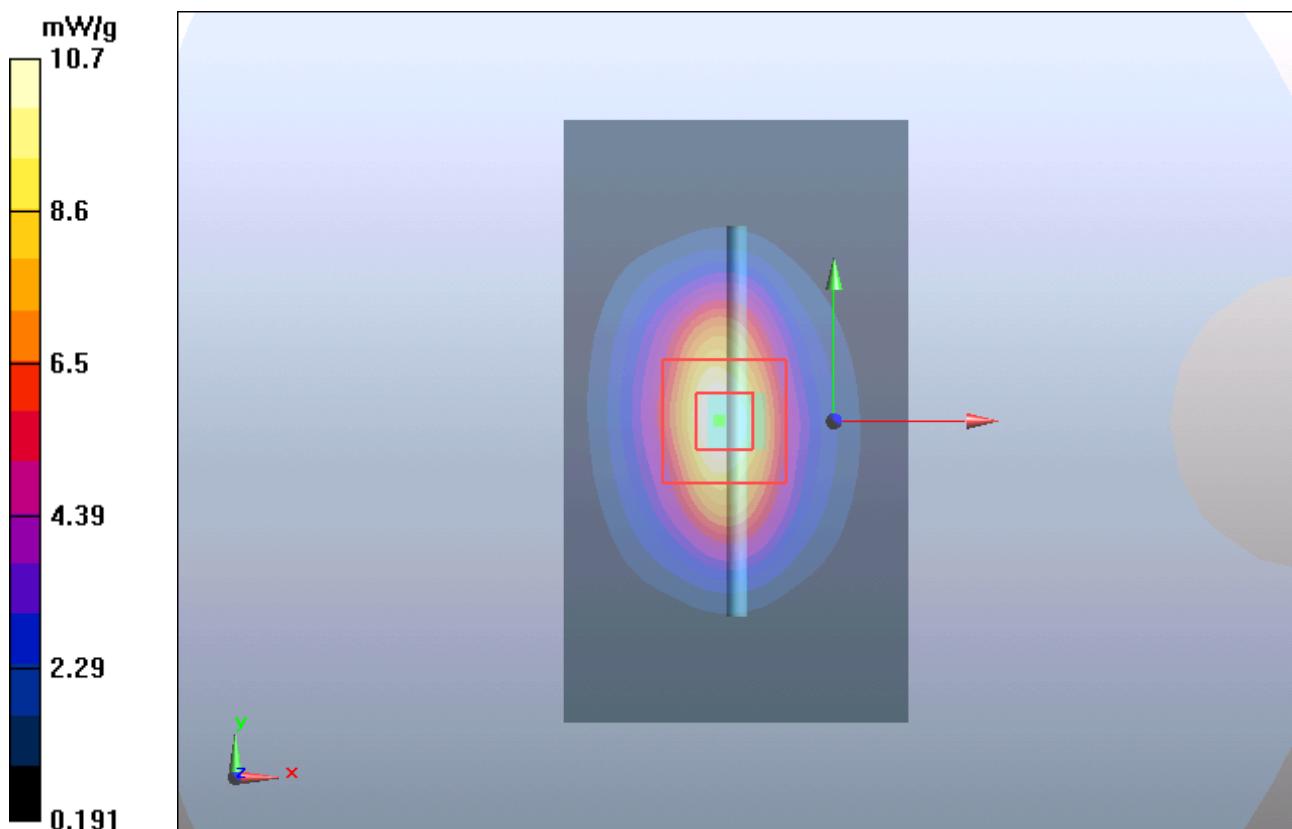


Figure 9 System Performance Check 1900MHz 250mW

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1

Page 53 of 110

System Performance Check at 1900 MHz Body TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date: 5/12/2015

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 53.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.57, 7.57, 7.57); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 12.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.3 V/m; Power Drift = 0.068 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.25 mW/g

Maximum value of SAR (measured) = 11.3 mW/g

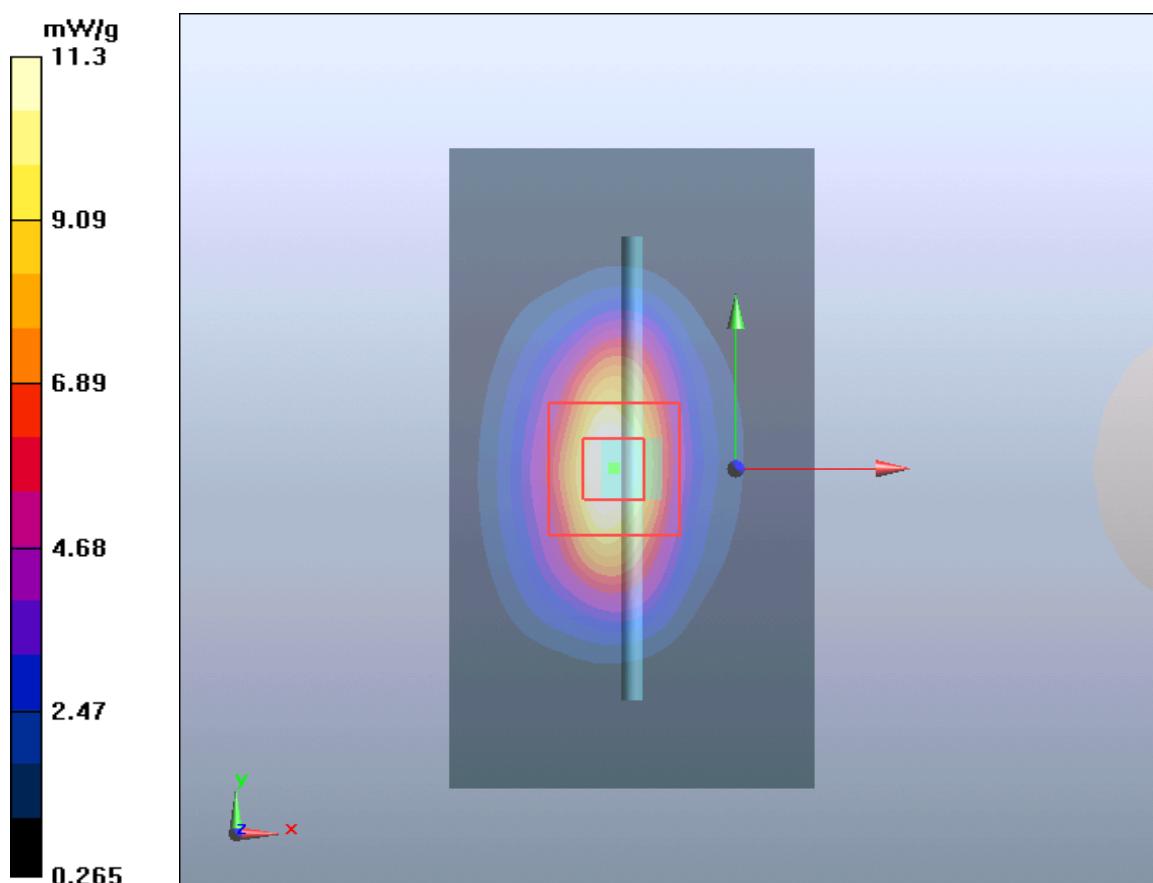


Figure 10 System Performance Check 1900MHz 250mW

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1

Page 54 of 110

System Performance Check at 2450 MHz Head TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 5/21/2015

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.81$ mho/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.22, 7.22, 7.22); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 18.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.8 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 30 W/kg

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.22 mW/g

Maximum value of SAR (measured) = 15.9 mW/g

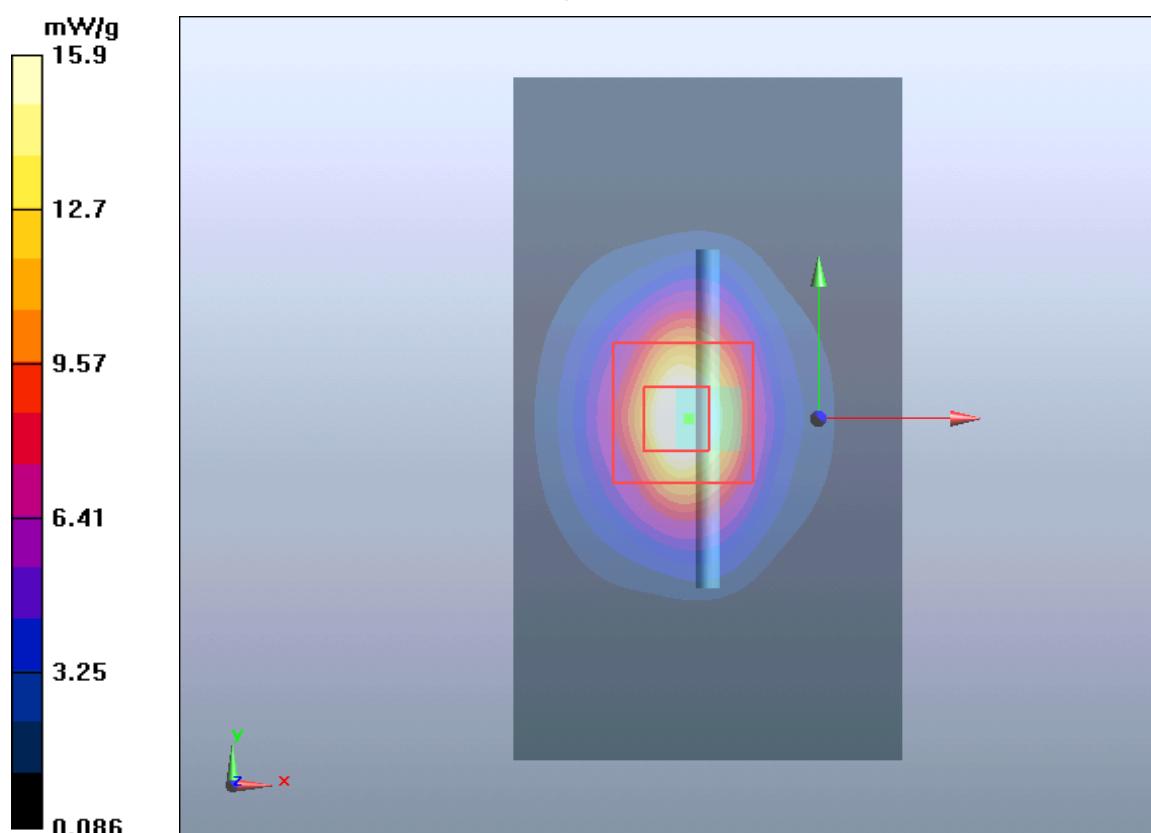


Figure 11 System Performance Check 2450MHz 250mW

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1

Page 55 of 110

System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 5/21/2015

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.99$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.42, 7.42, 7.42); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 16 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 81.2 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 6.20 mW/g

Maximum value of SAR (measured) = 14.4 mW/g

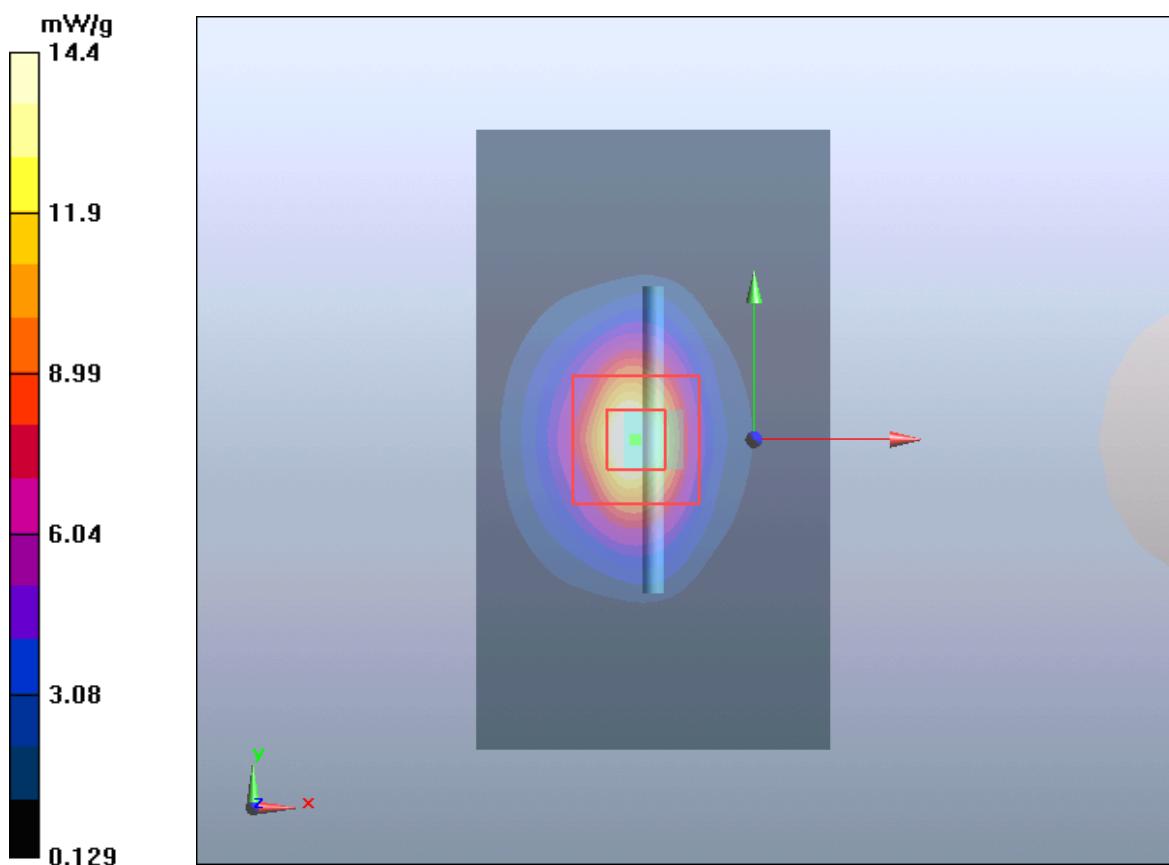


Figure 12 System Performance Check 2450MHz 250mW

ANNEX C: Plots Results

GSM 850 Right Cheek Middle

Date: 5/14/2015

Communication System: UID 0, GSM (0); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $f = 837$ MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 41.357$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right/Cheek Middle/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.101 W/kg

Right/Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.998 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.111 W/kg

SAR(1 g) = 0.095 W/kg; SAR(10 g) = 0.075 W/kg

Maximum value of SAR (measured) = 0.0979 W/kg

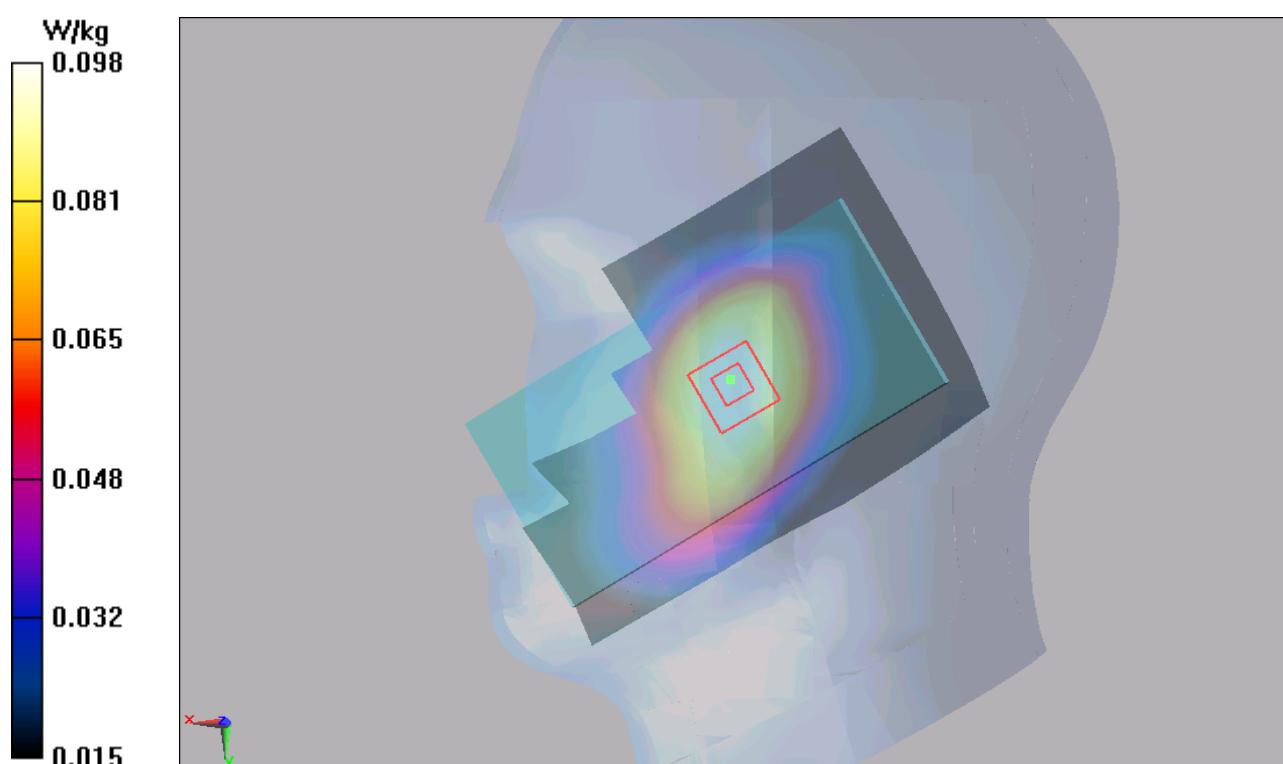


Figure 13 Right Hand Touch Cheek GSM 850 Channel 190

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1

Page 57 of 110

GSM 850 Back Side Middle

Date: 5/14/2015

Communication System: UID 0, GPRS 4TX (0); Frequency: 836.6 MHz; Duty Cycle: 1:2.07491

Medium parameters used: $f = 837$ MHz; $\sigma = 0.992$ S/m; $\epsilon_r = 55.882$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.45, 9.45, 9.45); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Middle /Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.471 W/kg

Back Side Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.88 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.552 W/kg

SAR(1 g) = 0.448 W/kg; SAR(10 g) = 0.345 W/kg

Maximum value of SAR (measured) = 0.463 W/kg

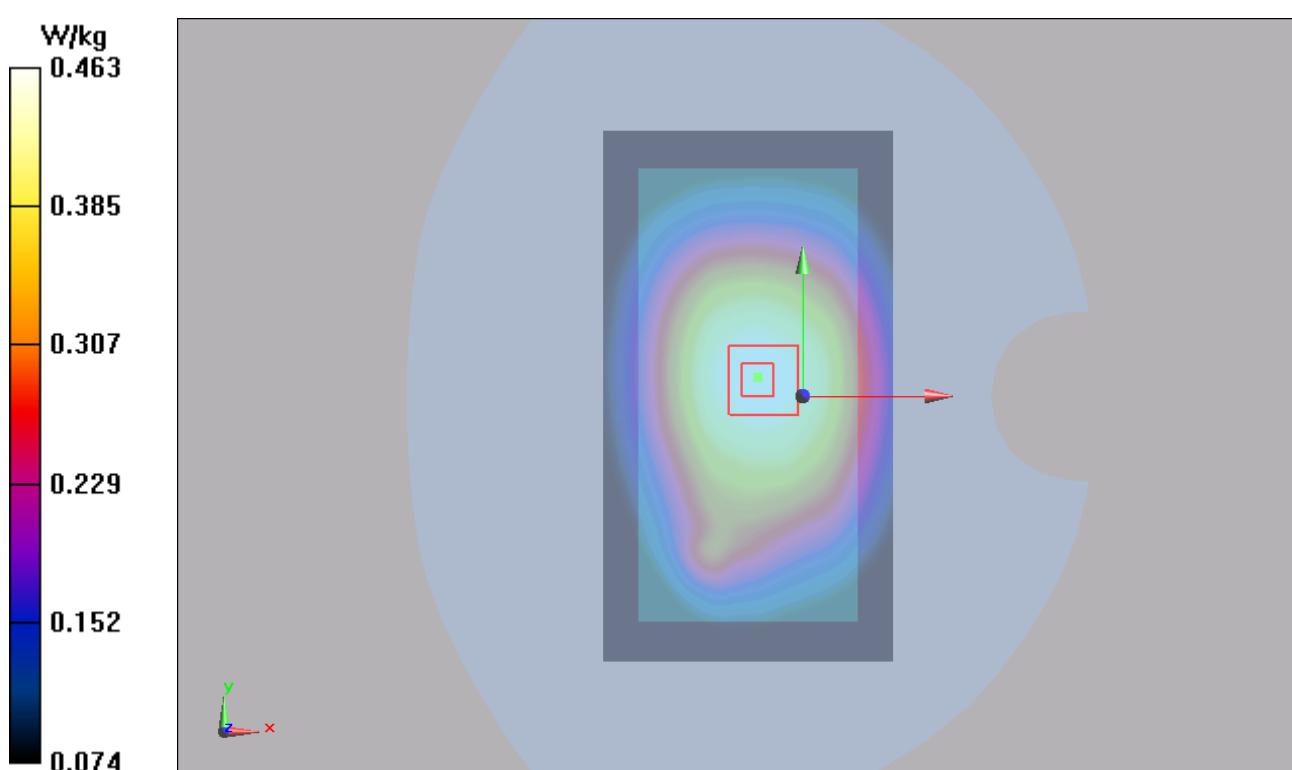


Figure 14 Body, Back Side, GSM 850 Channel 190

GSM 1900 Right Cheek Middle

Date: 5/12/2015

Communication System: UID 0, GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.413$ S/m; $\epsilon_r = 39.689$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 1/30/2015;

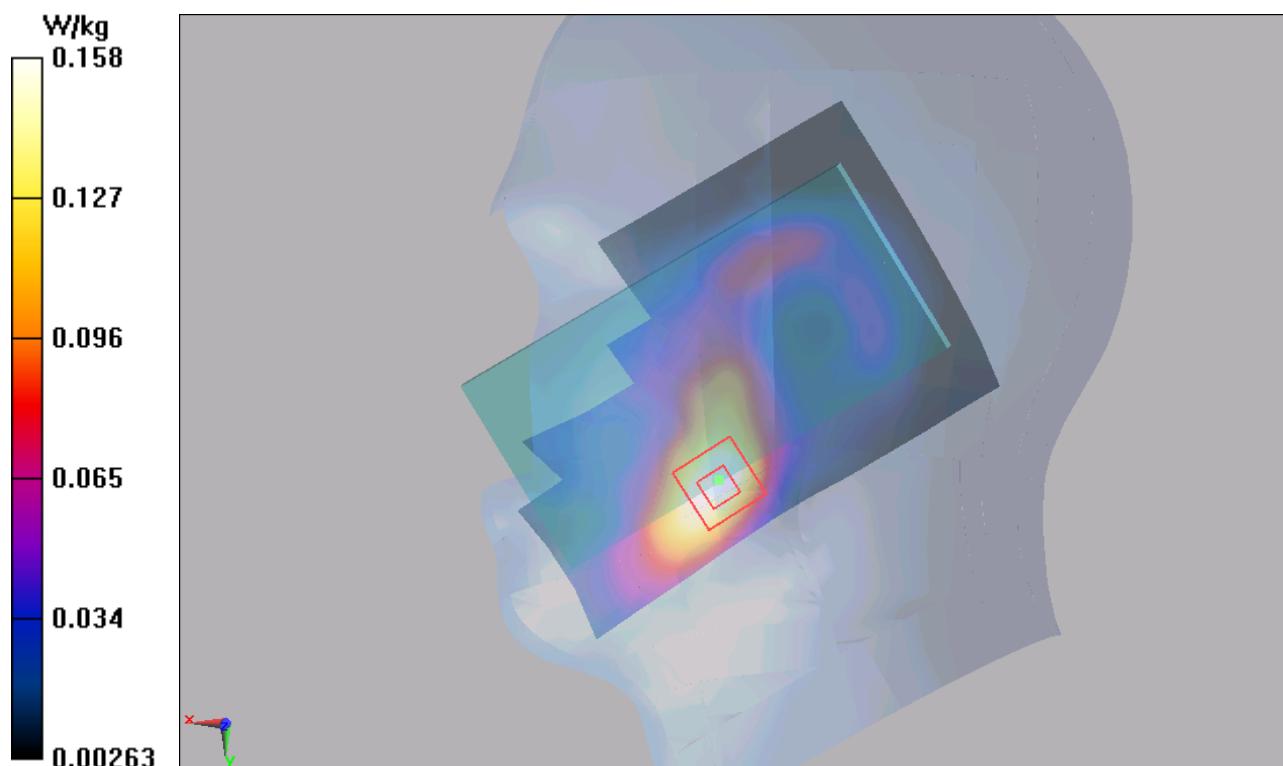
Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right/Cheek Middle/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.169 W/kg


Right/Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.712 V/m; Power Drift = 0.073 dB

Peak SAR (extrapolated) = 0.221 W/kg

SAR(1 g) = 0.149 W/kg; SAR(10 g) = 0.091 W/kg

Maximum value of SAR (measured) = 0.158 W/kg

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1

Page 59 of 110

GSM 1900 Back Side Middle

Date: 5/12/2015

Communication System: UID 0, GPRS 4TX (0); Frequency: 1880 MHz; Duty Cycle: 1:2.07491

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.504$ S/m; $\epsilon_r = 53.137$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.57, 7.57, 7.57); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.784 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.35 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.725 W/kg; SAR(10 g) = 0.448 W/kg

Maximum value of SAR (measured) = 0.743 W/kg

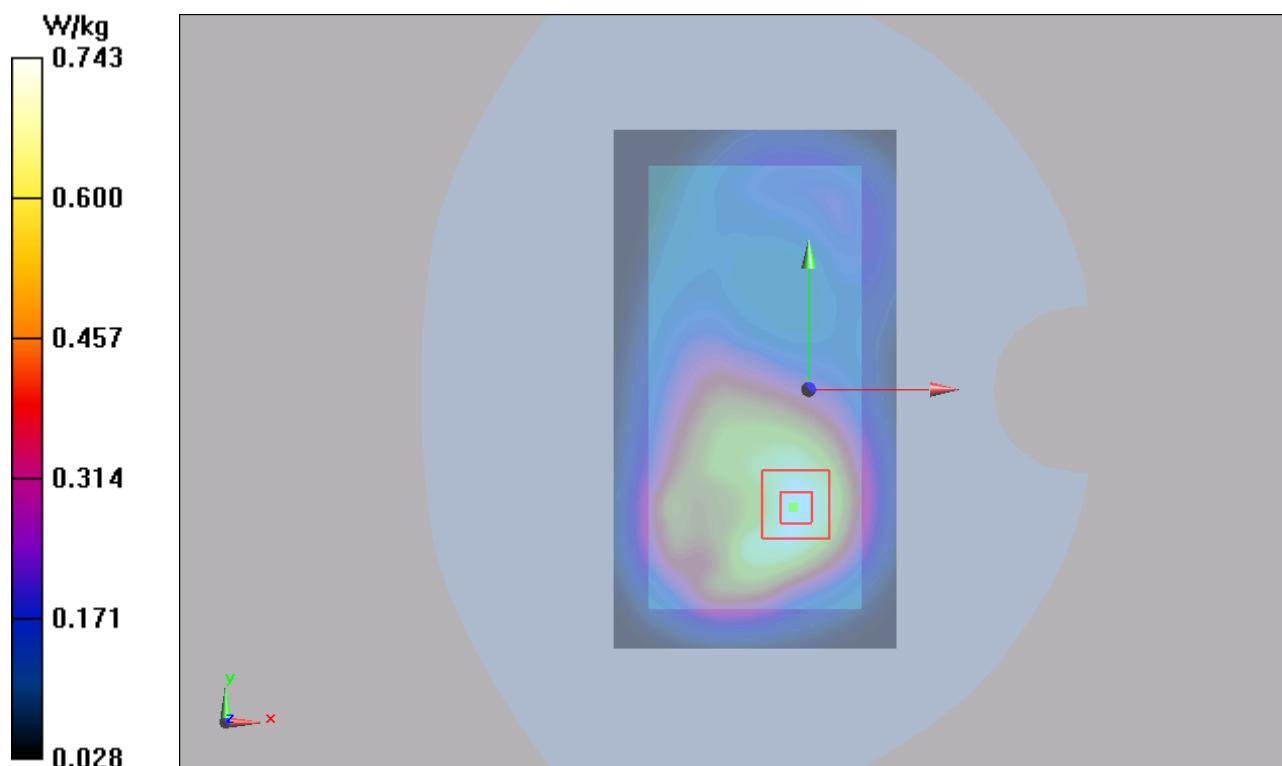


Figure 16 Body, Back Side, GSM 1900 Channel 661

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1

Page 60 of 110

UMTS Band V Right Cheek Middle

Date: 5/14/2015

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 41.357$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.30, 9.30, 9.30); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right/Cheek Middle/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0977 W/kg

Right/Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.152 V/m; Power Drift = 0.050 dB

Peak SAR (extrapolated) = 0.116 W/kg

SAR(1 g) = 0.094 W/kg; SAR(10 g) = 0.071 W/kg

Maximum value of SAR (measured) = 0.0967 W/kg

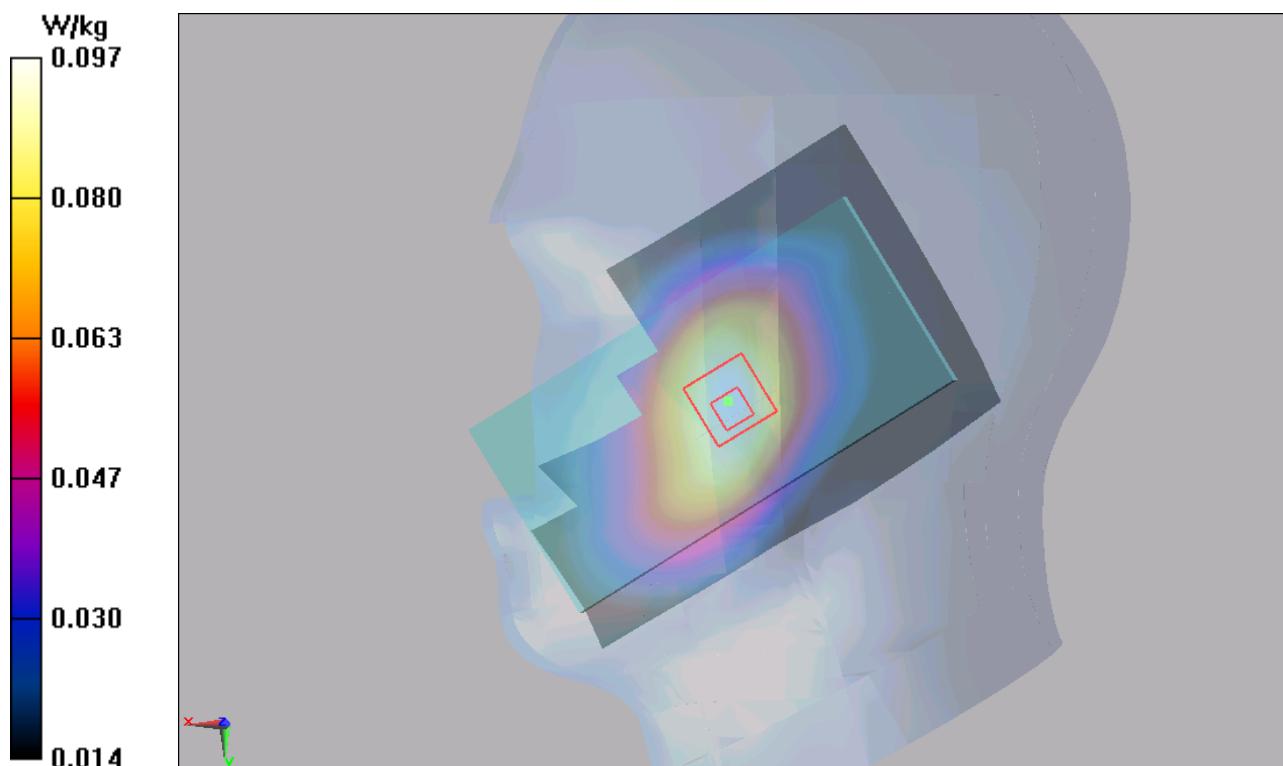


Figure 17 Right Hand Touch Cheek UMTS Band V Channel 4183

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 61 of 110

UMTS Band V Back Side Middle

Date: 5/14/2015

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.992$ S/m; $\epsilon_r = 55.882$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.45, 9.45, 9.45); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Middle /Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.137 W/kg

Back Side Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.79 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.165 W/kg

SAR(1 g) = 0.135 W/kg; SAR(10 g) = 0.104 W/kg

Maximum value of SAR (measured) = 0.140 W/kg

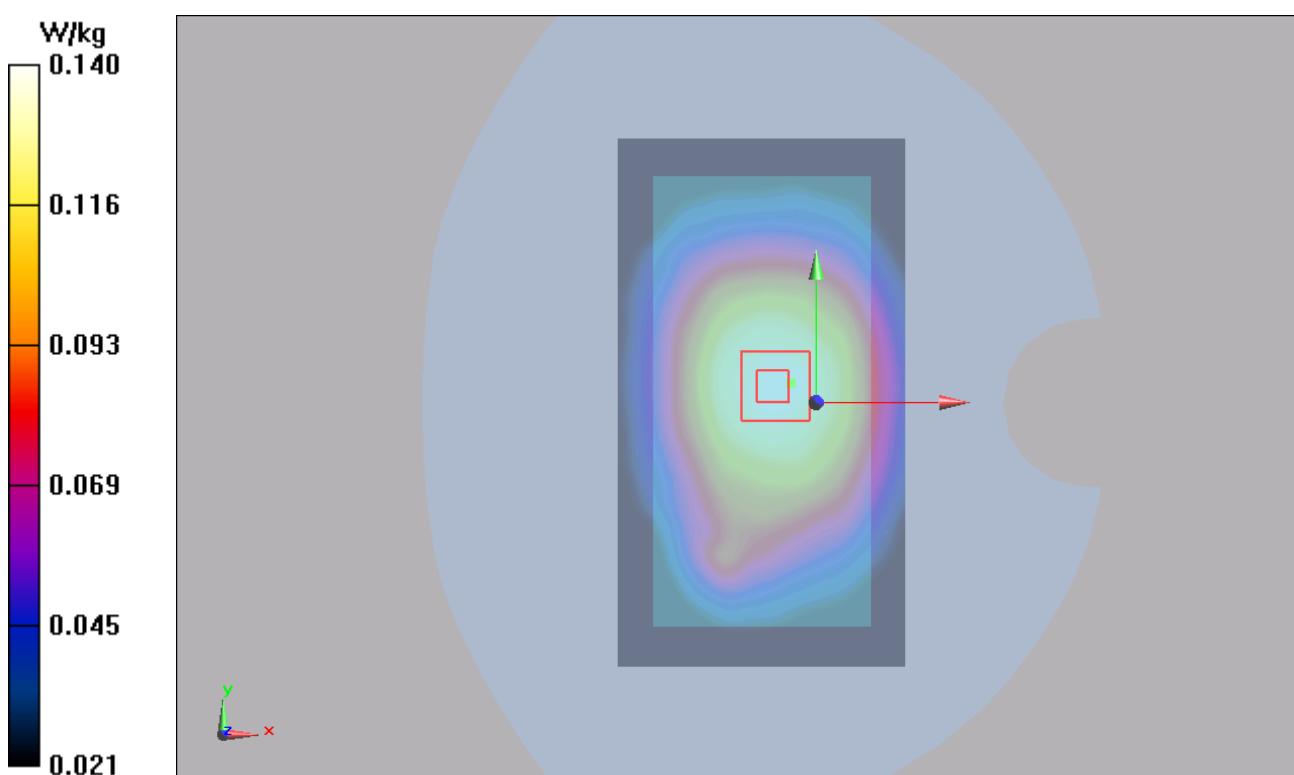


Figure 18 Body, Back Side, UMTS Band V Channel 4183

802.11b Right Cheek Middle

Date: 5/21/2015

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2437$ MHz; $\sigma = 1.79$ S/m; $\epsilon_r = 38.666$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.22, 7.22, 7.22); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Right/Cheek Middle/Area Scan (91x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.492 W/kg

Right/Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.398 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.475 W/kg; SAR(10 g) = 0.197 W/kg

Maximum value of SAR (measured) = 0.529 W/kg

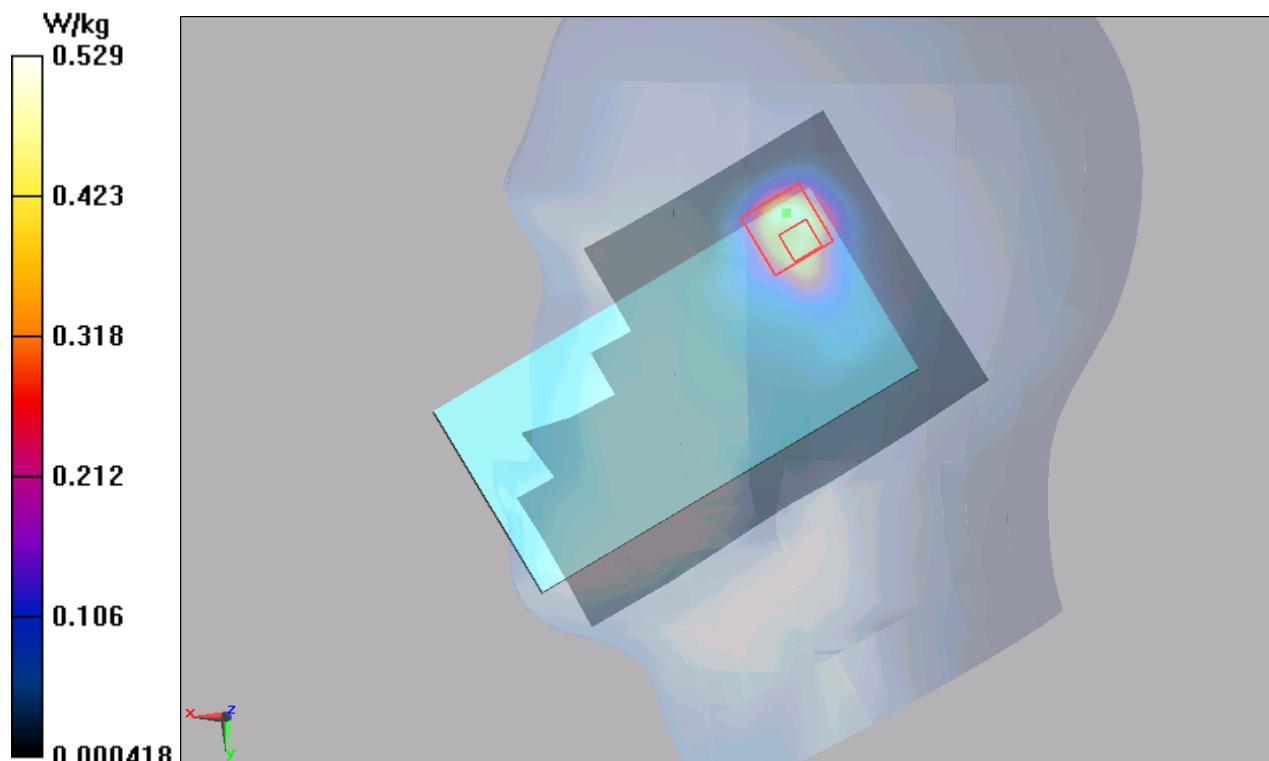


Figure 19 Right Hand Touch Cheek 802.11b Channel 6

802.11b Top Edge Middle

Date: 5/21/2015

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2437$ MHz; $\sigma = 1.977$ S/m; $\epsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.42, 7.42, 7.42); Calibrated: 1/30/2015;

Electronics: DAE4 Sn1291; Calibrated: 11/14/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Top Edge Middle/Area Scan (51x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.103 W/kg

Top Edge Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.086 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 0.147 W/kg

SAR(1 g) = 0.084 W/kg; SAR(10 g) = 0.044 W/kg

Maximum value of SAR (measured) = 0.0893 W/kg

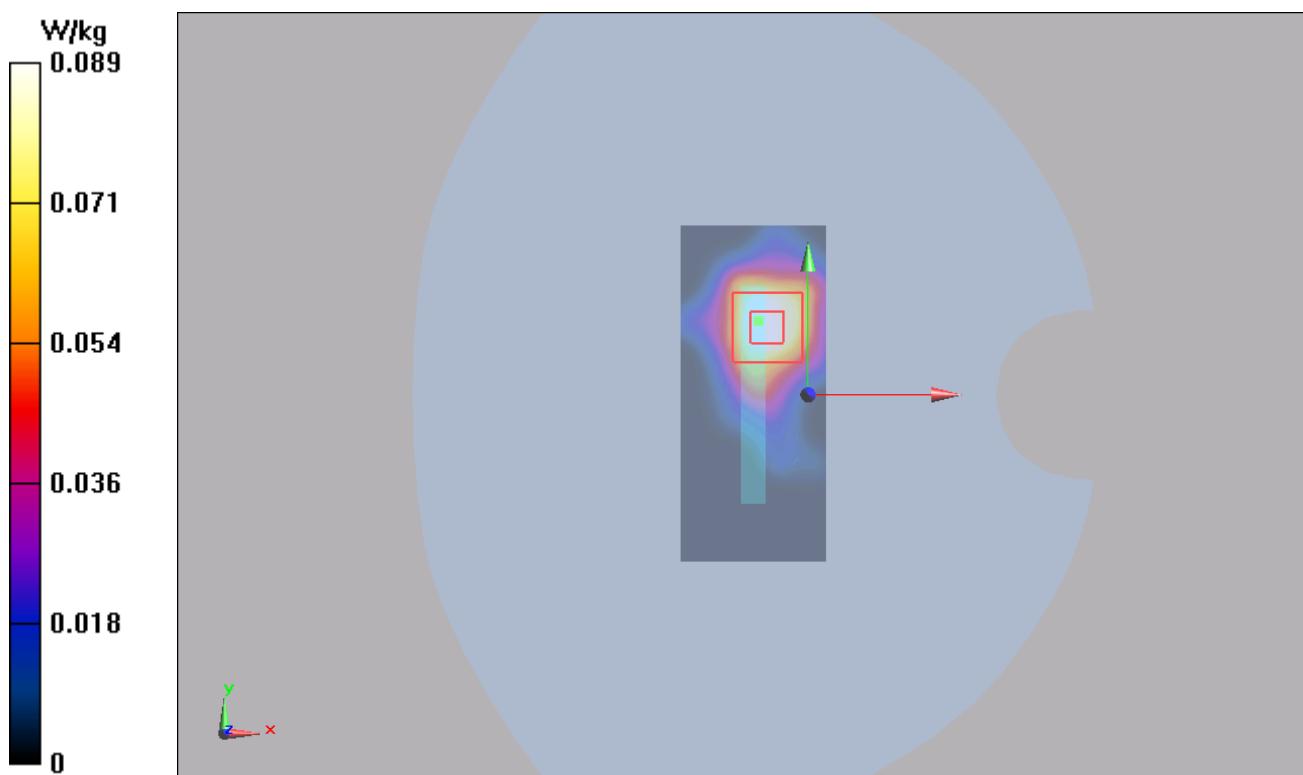


Figure 20 Body, Top Edge, 802.11b Channel 6

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 64 of 110

ANNEX D: Probe Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

CALIBRATION
No. L0570

Client

TA-Shanghai

Certificate No: Z15-97010

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3677

Calibration Procedure(s) FD-Z11-2-004-01
Calibration Procedures for Dosimetric E-field Probes

Calibration date: January 30, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power sensor NRP-Z91	101547	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power sensor NRP-Z91	101548	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Reference10dBAttenuator	18N50W-10dB	13-Mar-14(TMC, No.JZ14-1103)	Mar-16
Reference20dBAttenuator	18N50W-20dB	13-Mar-14(TMC, No.JZ14-1104)	Mar-16
Reference Probe EX3DV4	SN 3617	28-Aug-14(SPEAG, No.EX3-3617_Aug14)	Aug-15
DAE4	SN 777	17-Sep-14 (SPEAG, DAE4-777_Sep14)	Sep-15
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-14 (CTTL, No.J14X02145)	Jun-15
Network Analyzer E5071C	MY46110673	15-Feb-14 (TMC, No.JZ14-781)	Feb-15

	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Blingsong	Deputy Director of the laboratory	

Issued: January 31, 2015.

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 65 of 110

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization $\theta=0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z; A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z}* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1

Page 66 of 110

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctt@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Probe EX3DV4

SN: 3677

Calibrated: January 30, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 67 of 110

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μ V/(V/m) ²) ^A	0.41	0.46	0.40	$\pm 10.8\%$
DCP(mV) ^B	101.9	102.0	104.6	

Modulation Calibration Parameters

UID	Communication System Name	A dB	B dB· μ V	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	182.5
		Y	0.0	0.0	1.0		198.5
		Z	0.0	0.0	1.0		179.8

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 68 of 110

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ct@chinattl.com Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3677

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.79	9.79	9.79	0.30	0.84	±12%
835	41.5	0.90	9.30	9.30	9.30	0.19	1.05	±12%
1750	40.1	1.37	8.02	8.02	8.02	0.21	1.14	±12%
1900	40.0	1.40	7.94	7.94	7.94	0.24	1.04	±12%
2450	39.2	1.80	7.22	7.22	7.22	0.65	0.68	±12%
2600	39.0	1.96	6.94	6.94	6.94	0.33	0.95	±12%
5200	36.0	4.66	5.55	5.55	5.55	0.42	1.18	±13%
5300	35.9	4.76	5.35	5.35	5.35	0.45	1.05	±13%
5600	35.5	5.07	5.05	5.05	5.05	0.42	1.26	±13%
5800	35.3	5.27	5.01	5.01	5.01	0.48	1.13	±13%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 69 of 110

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3677

Calibration Parameter Determined in Body Tissue Simulating Media

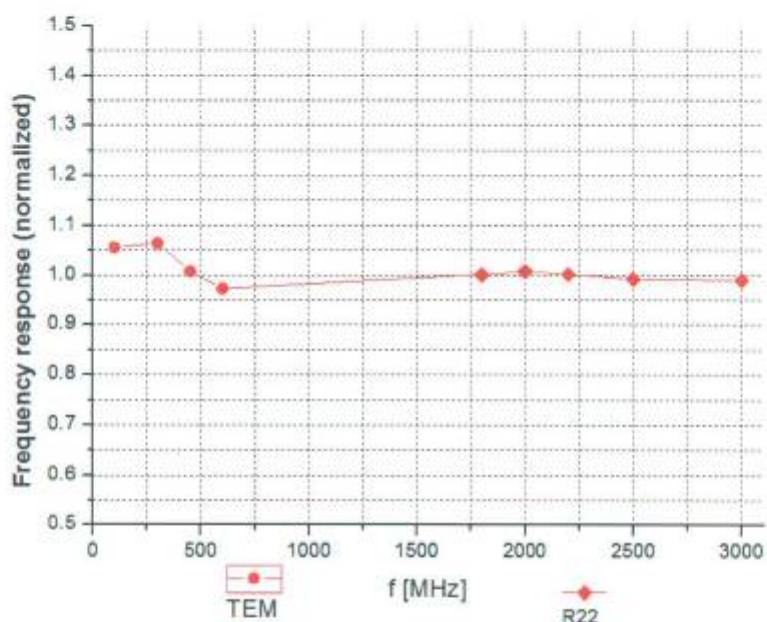
f [MHz] ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^g (mm)	Unct. (k=2)
750	55.5	0.96	9.53	9.53	9.53	0.15	1.46	±12%
835	55.2	0.97	9.45	9.45	9.45	0.17	1.35	±12%
1750	53.4	1.49	7.74	7.74	7.74	0.18	1.36	±12%
1900	53.3	1.52	7.57	7.57	7.57	0.18	1.31	±12%
2450	52.7	1.95	7.42	7.42	7.42	0.37	1.08	±12%
2600	52.5	2.16	7.29	7.29	7.29	0.40	0.97	±12%
5200	49.0	5.30	4.96	4.96	4.96	0.45	1.42	±13%
5300	48.9	5.42	4.76	4.76	4.76	0.46	1.48	±13%
5600	48.5	5.77	4.36	4.36	4.36	0.49	1.80	±13%
5800	48.2	6.00	4.45	4.45	4.45	0.50	1.20	±13%

^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

**TA Technology (Shanghai) Co., Ltd.
Test Report**


Report No.: RXA1505-0075SAR01R1

Page 70 of 110

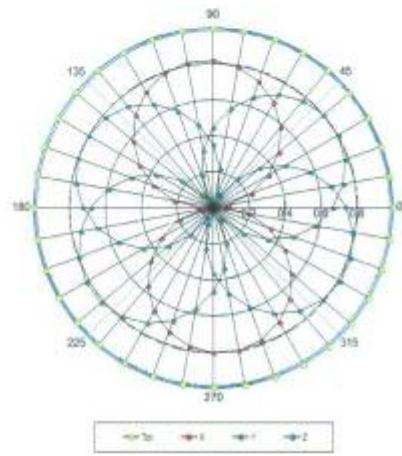
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

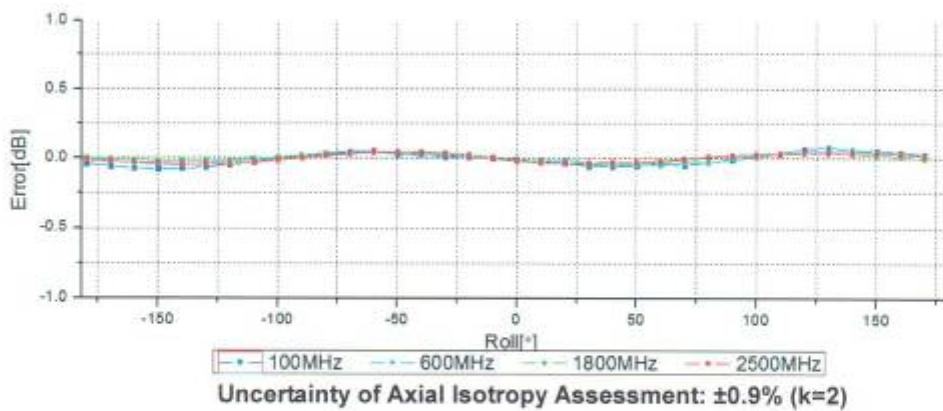
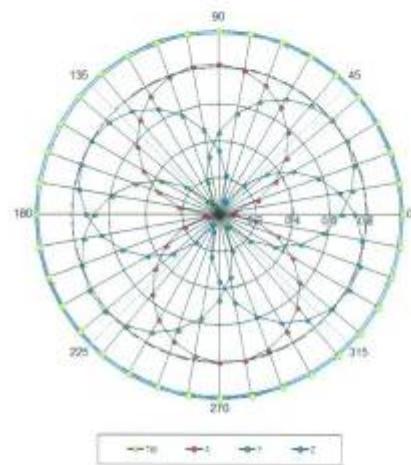
**Frequency Response of E-Field
(TEM-Cell: ifi110 EXX, Waveguide: R22)**

Uncertainty of Frequency Response of E-field: $\pm 7.5\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1


Page 71 of 110

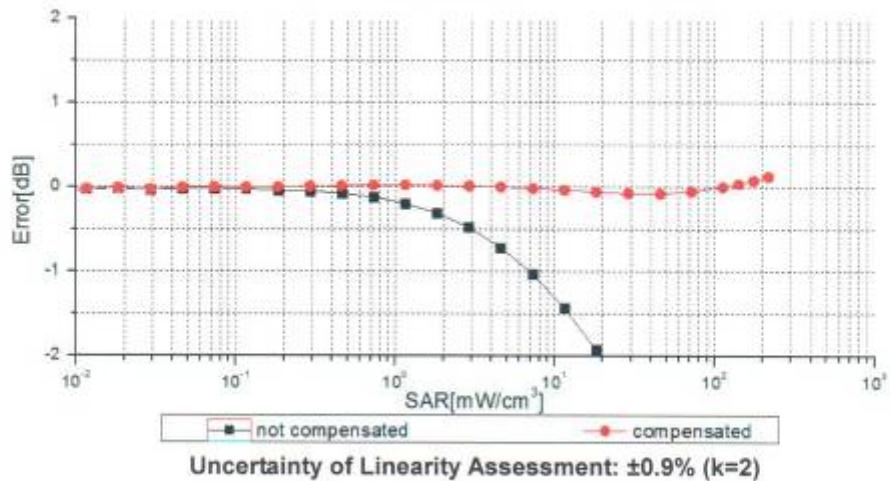
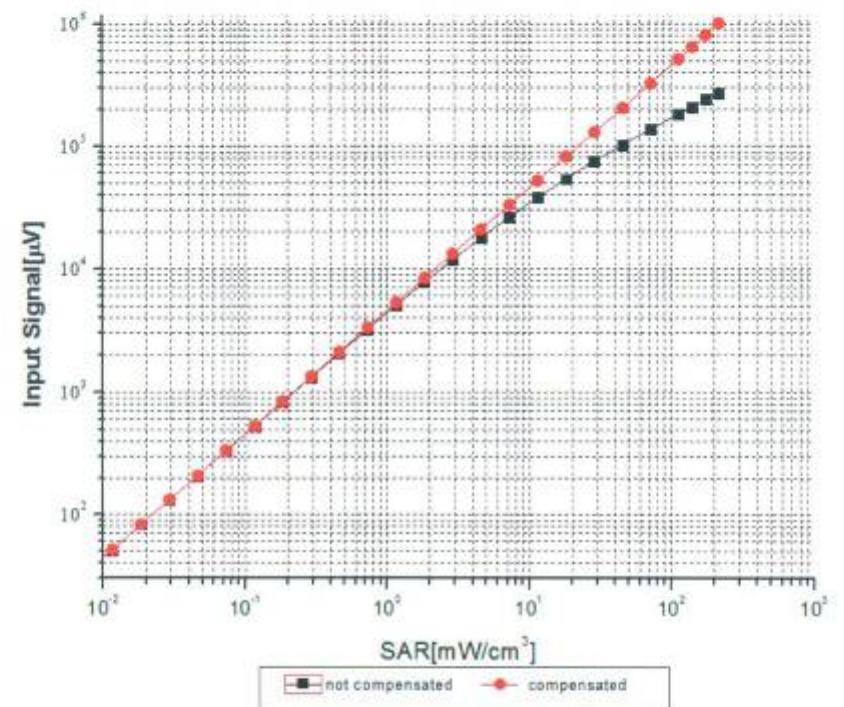


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctli@chinattl.com Http://www.chinattl.cn

Receiving Pattern (Φ), $\theta=0^\circ$

f=600 MHz, TEM

f=1800 MHz, R22

TA Technology (Shanghai) Co., Ltd.
Test Report



Report No.: RXA1505-0075SAR01R1

Page 72 of 110

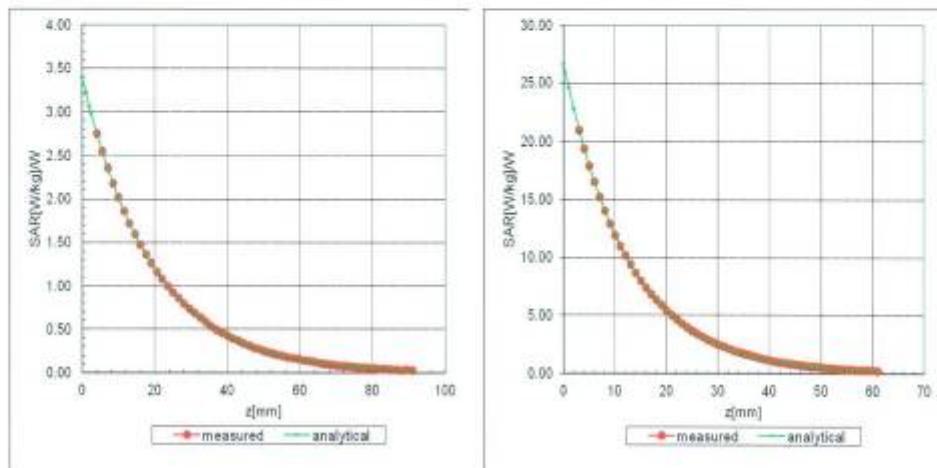
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctll@chinattl.com Http://www.chinattl.cn

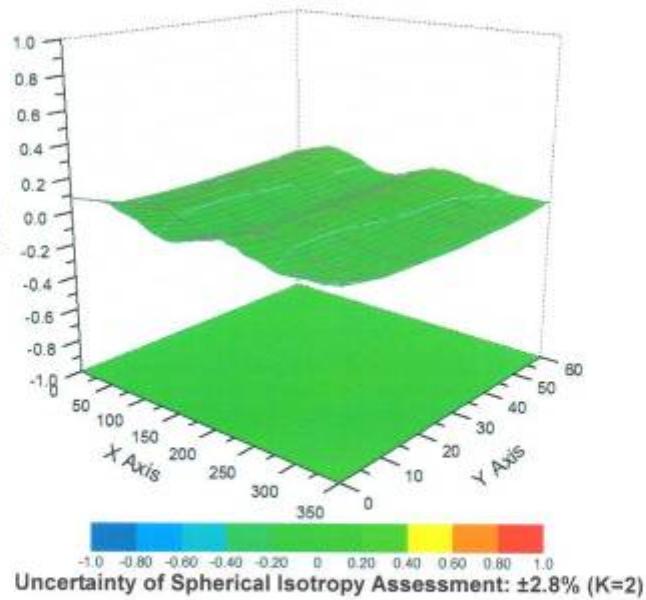
**Dynamic Range f(SAR_{head})
(TEM cell, f = 900 MHz)**

Uncertainty of Linearity Assessment: $\pm 0.9\%$ (k=2)

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1


Page 73 of 110


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn

Conversion Factor Assessment

$f=835$ MHz, WGLS R9(H_convF) $f=1750$ MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 74 of 110

ANNEX E: D835V2 Dipole Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ttl@chinattl.com Http://www.chinattl.cn

CALIBRATION
No. L0570

Client

TA(Shanghai)

Certificate No: Z14-97073

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d020

Calibration Procedure(s) TMC-OS-E-02-194
Calibration procedure for dipole validation kits

Calibration date: August 28, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRV	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep -14
Reference Probe ES3DV3	SN 3149	5- Sep-13 (SPEAG, No.ES3-3149_Sep13)	Sep-14
DAE3	SN 536	23-Jan-14 (SPEAG, DAE3-536_Jan14)	Jan -15
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: September 4, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 75 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctli@chinattl.com Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMxyz
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1505-0075SAR01R1

Page 76 of 110

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: ctu@chinattl.com Http://www.chinattl.cn

CALIBRATION
 No. L0570

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	42.5 \pm 6 %	0.91 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	9.54 mW/g \pm 20.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.57 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	6.26 mW/g \pm 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	56.7 \pm 6 %	0.97 mho/m \pm 6 %
Body TSL temperature change during test	<1.0 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	9.54 mW/g \pm 20.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.57 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	6.31 mW/g \pm 20.4 % (k=2)

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 77 of 110

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctu@chinattl.com Http://www.chinattl.cn

CALIBRATION
No. L0570

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$48.6\Omega + 2.75j\Omega$
Return Loss	-30.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$54.0\Omega + 5.88j\Omega$
Return Loss	-23.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.242 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 78 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctu@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 28.08.2014

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

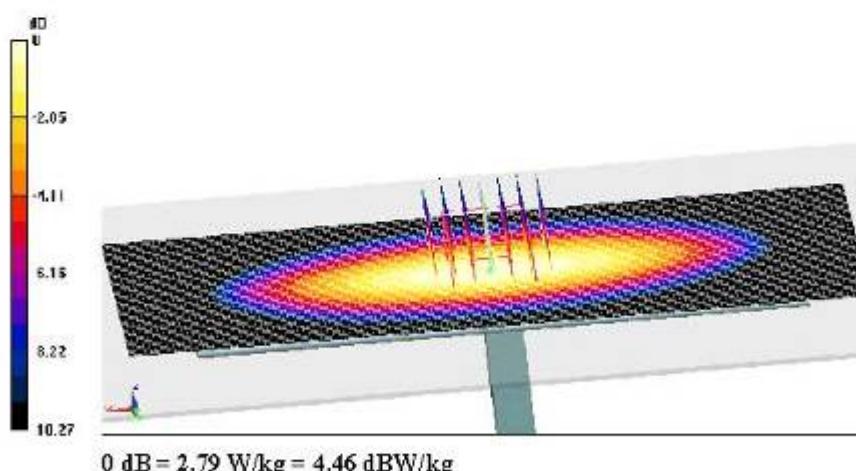
Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 835$ MHz; $\sigma = 0.909$ S/m; $\epsilon_r = 42.49$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3149; ConvF(6.21, 6.21, 6.21); Calibrated: 2013-09-05;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.88 V/m; Power Drift = -0.01 dB

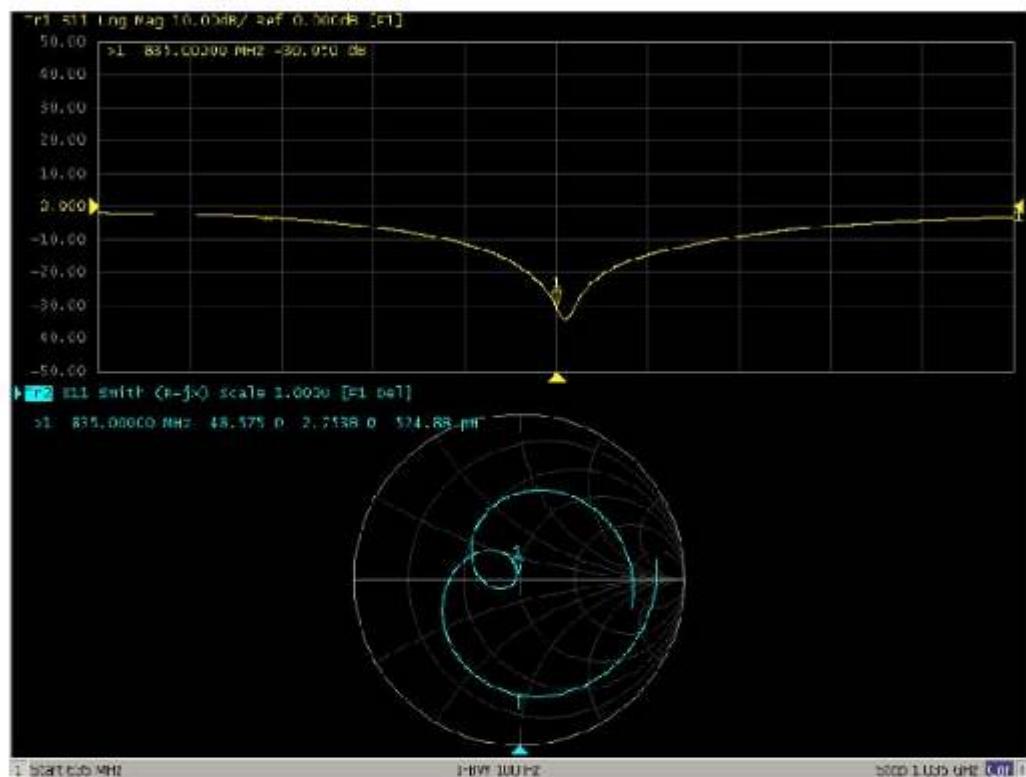
Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.79 W/kg

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1


Page 79 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctt@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Impedance Measurement Plot for Head TSL

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 80 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctu@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 28.08.2014

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

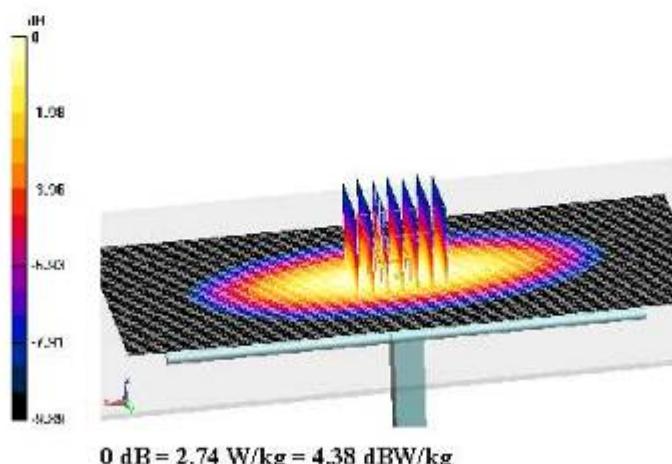
Communication System: UUD 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 835$ MHz; $\sigma = 0.97$ S/m; $\epsilon_r = 56.745$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3149; ConvF(5.98, 5.98, 5.98); Calibrated: 2013-09-05;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.515 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.45 W/kg

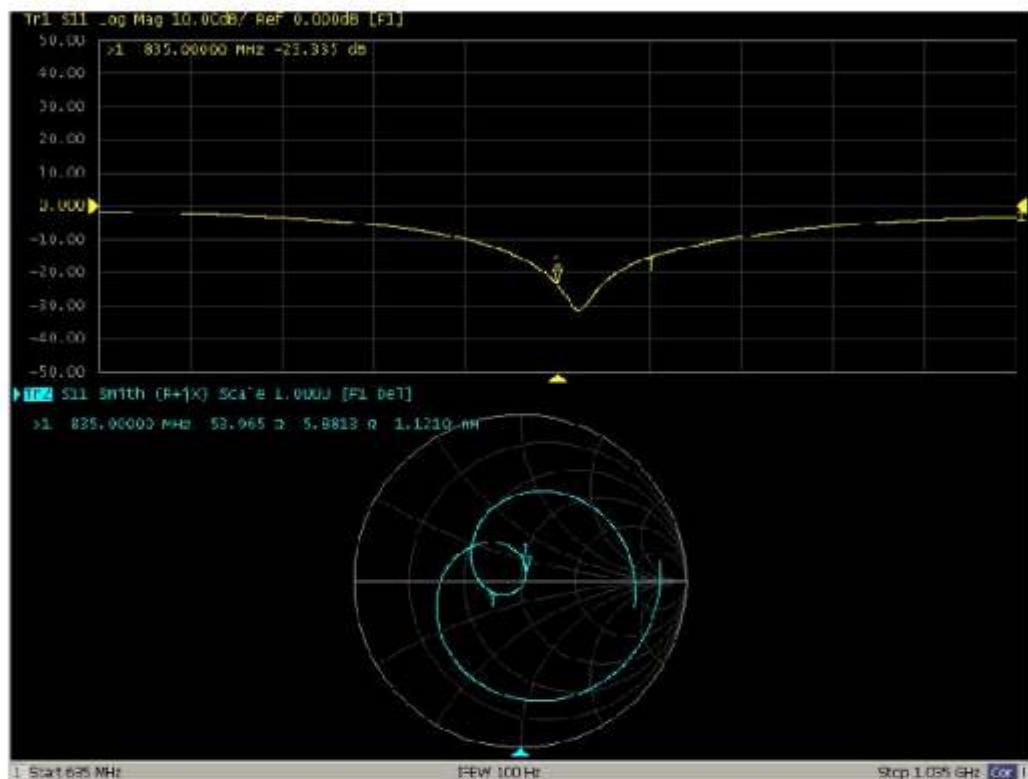
SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.74 W/kg

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 81 of 110


In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctu@chinattl.com Http://www.chinattl.cn

CALIBRATION
No. L0570

Impedance Measurement Plot for Body TSL

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 82 of 110

ANNEX F: D1900V2 Dipole Calibration Certificate

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

CALIBRATION
No. L0570

Client

TA(Shanghai)

Certificate No: Z14-97074

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d060

Calibration Procedure(s) TMC-OS-E-02-194
Calibration procedure for dipole validation kits

Calibration date: September 1, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRV	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep -14
Reference Probe ES3DV3	SN 3149	5- Sep-13 (SPEAG, No.ES3-3149_Sep13)	Sep-14
DAE3	SN 536	23-Jan-14 (SPEAG, DAE3-536_Jan14)	Jan -15
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: September 4, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 83 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctli@chinattl.com Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMxyz
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1505-0075SAR01R1

Page 84 of 110

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctli@chinattl.com Http://www.chinattl.cn

CALIBRATION
No. L0570

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$dx, dy, dz = 5 \text{ mm}$	
Frequency	$1900 \text{ MHz} \pm 1 \text{ MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	$(22.0 \pm 0.2) \text{ °C}$	$39.8 \pm 6 \text{ %}$	$1.37 \text{ mho/m} \pm 6 \text{ %}$
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.69 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	39.2 mW/g $\pm 20.8 \text{ % (k=2)}$
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.14 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	20.7 mW/g $\pm 20.4 \text{ % (k=2)}$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	$(22.0 \pm 0.2) \text{ °C}$	$51.8 \pm 6 \text{ %}$	$1.50 \text{ mho/m} \pm 6 \text{ %}$
Body TSL temperature change during test	<1.0 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.98 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	40.0 mW/g $\pm 20.8 \text{ % (k=2)}$
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.28 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.1 mW/g $\pm 20.4 \text{ % (k=2)}$

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 85 of 110

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctu@chinattl.com Http://www.chinattl.cn

CALIBRATION
No. L0570

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.1Ω- 6.34jΩ
Return Loss	- 22.8dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	57.6Ω- 4.76jΩ
Return Loss	- 21.6dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.248 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 86 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctu@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 01.09.2014

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: DL900V2; Serial: DL900V2 - SN: 5d060

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

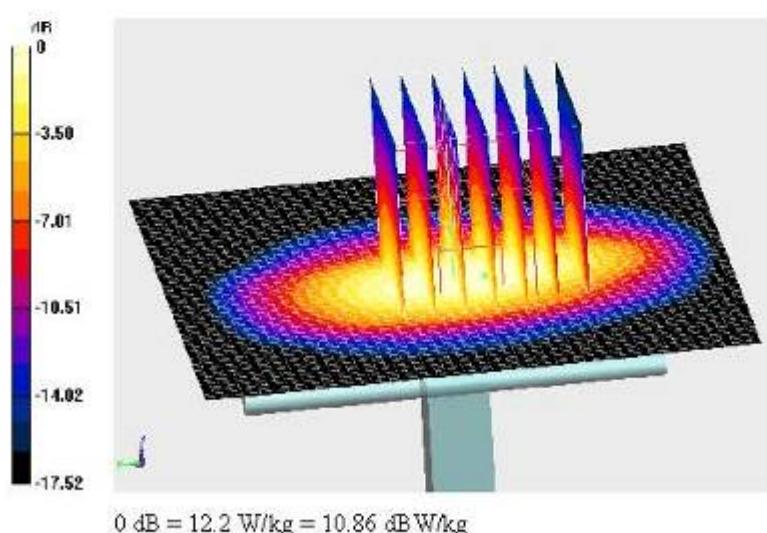
Medium parameters used: $f = 1900$ MHz, $\sigma = 1.371$ S/m, $\epsilon_r = 39.83$, $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3149, ConvF(5.06, 5.06, 5.06); Calibrated: 2013-09-05;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.911 V/m; Power Drift = -0.06 dB

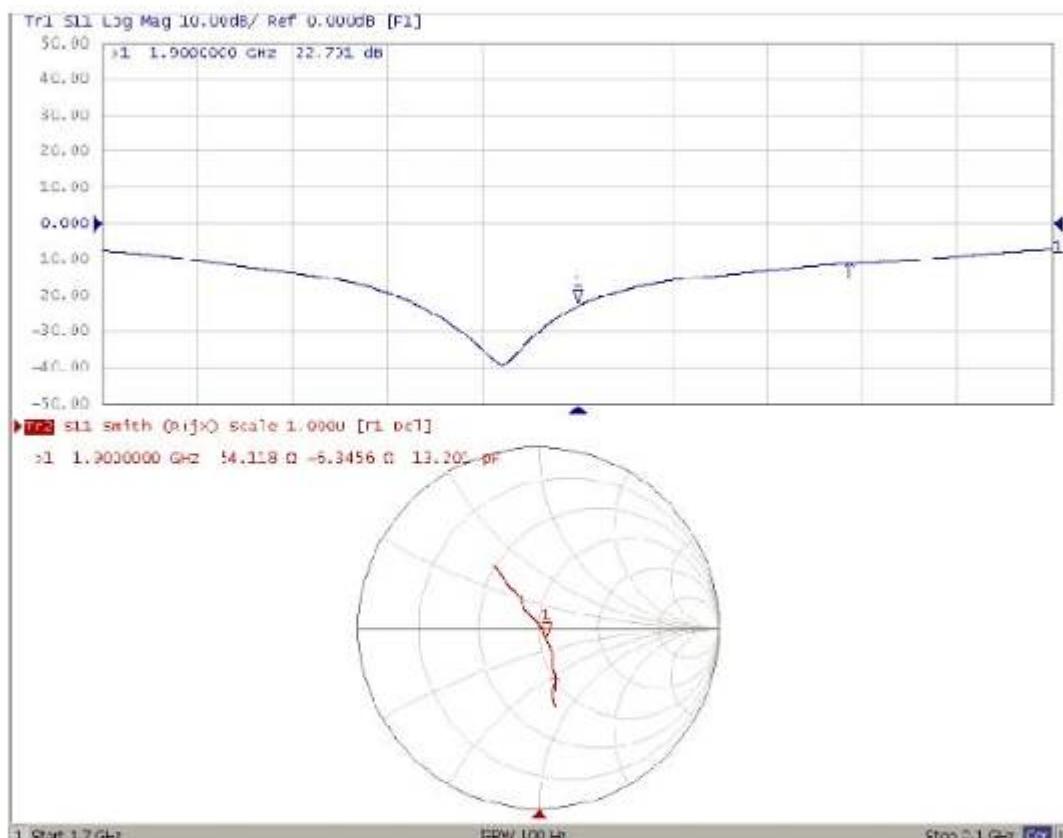
Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.69 W/kg; SAR(10 g) = 5.14 W/kg

Maximum value of SAR (measured) = 12.2 W/kg

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1


Page 87 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctt@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Impedance Measurement Plot for Head TSL

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 88 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctu@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 01.09.2014

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: UID 0, CW; Frequency: 1900 MHz, Duty Cycle: 1:1

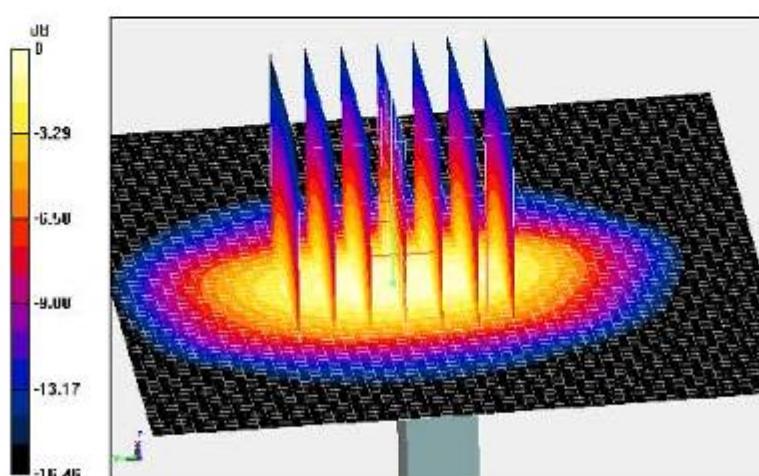
Medium parameters used: $f = 1900 \text{ MHz}$; $\sigma = 1.5 \text{ S/m}$; $\epsilon_r = 51.78$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3149, ConvF(4.72, 4.72, 4.72); Calibrated: 2013-09-03;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.668 V/m; Power Drift = -0.01 dB

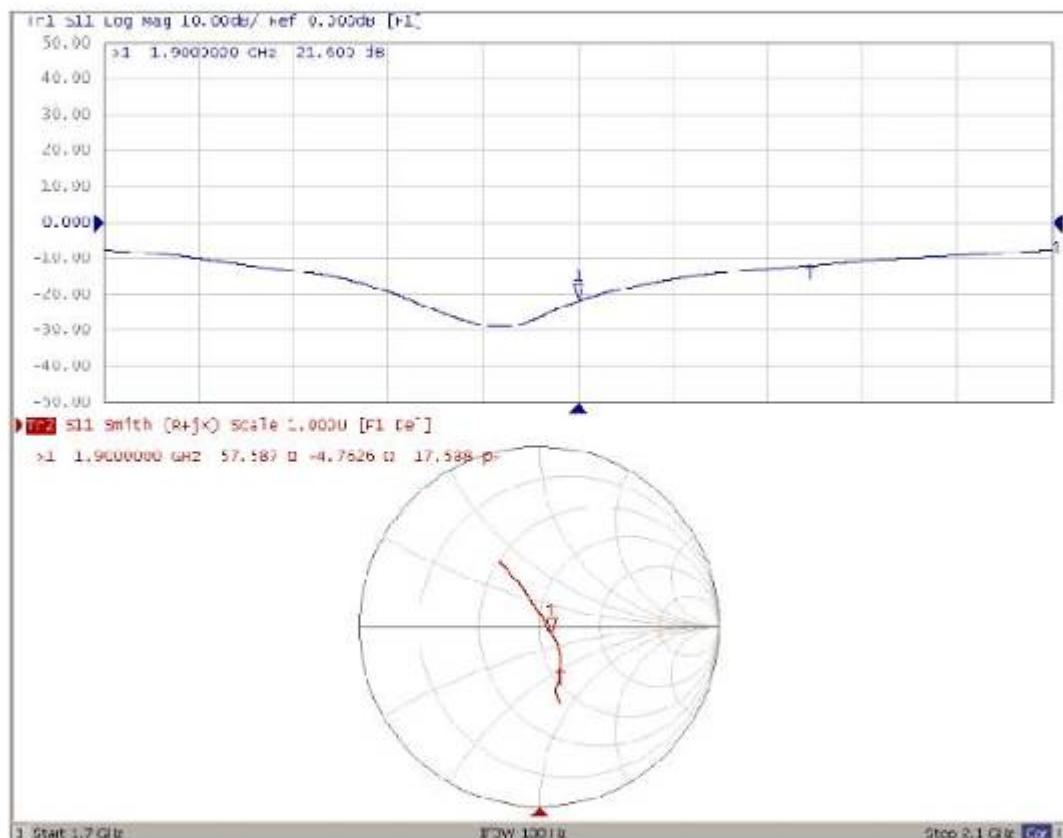
Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.28 W/kg

Maximum value of SAR (measured) = 12.6 W/kg

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1


Page 89 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctt@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Impedance Measurement Plot for Body TSL

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1505-0075SAR01R1

Page 90 of 110

ANNEX G: D2450V2 Dipole Calibration Certificate

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctll@chinatll.com Http://www.chinatll.cn

CALIBRATION
No. L0570

Client

TA(Shanghai)

Certificate No: Z14-97075

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 786

Calibration Procedure(s) TMC-OS-E-02-194
Calibration procedure for dipole validation kits

Calibration date: September 1, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRV	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep -14
Reference Probe ES3DV3	SN 3149	5- Sep-13 (SPEAG, No.ES3-3149_Sep13)	Sep-14
DAE3	SN 536	23-Jan-14 (SPEAG, DAE3-536_Jan14)	Jan -15
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: September 4, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 91 of 110

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctu@chinattl.com Http://www.chinattl.cn

CALIBRATION
No. L0570

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMxyz
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1505-0075SAR01R1

Page 92 of 110

In Collaboration with

s p e a g
CALIBRATION LABORATORY

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctli@chinattl.com Http://www.chinattl.cn

CALIBRATION
No. L0570

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	52.5 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.20 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	24.8 mW/g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.3 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	52.4 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.20 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	24.6 mW/g ± 20.4 % (k=2)

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 93 of 110

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctu@chinattl.com Http://www.chinattl.cn

CALIBRATION
No. L0570

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$57.1\Omega - 0.57j\Omega$
Return Loss	-23.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$56.0\Omega + 3.31j\Omega$
Return Loss	-23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.192 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 94 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctu@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 01.09.2014

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

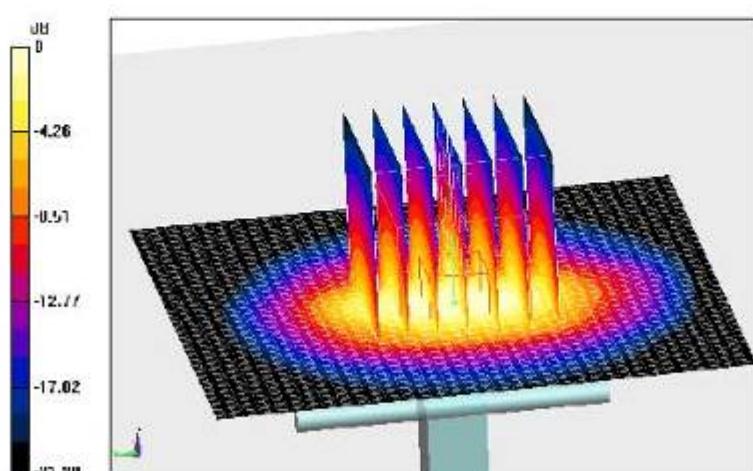
Medium parameters used: $\epsilon = 2450 \text{ MHz}$; $\sigma = 1.84 \text{ S/m}$; $\epsilon_r = 40.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3149; ConvF(4.48, 4.48, 4.48); Calibrated: 2013-09-05;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.583 V/m; Power Drift = -0.08 dB

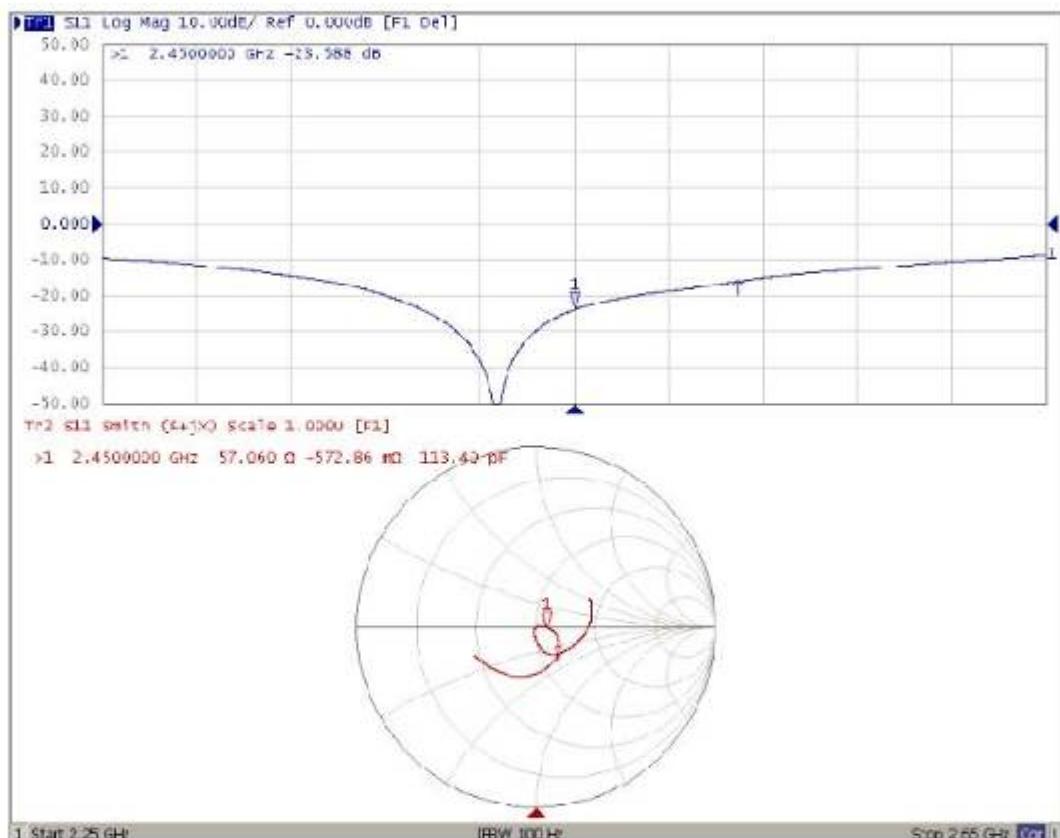
Peak SAR (extrapolated) = 26.6 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1


Page 95 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctt@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Impedance Measurement Plot for Head TSL

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1

Page 96 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctu@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 01.09.2014

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz, Duty Cycle: 1:1

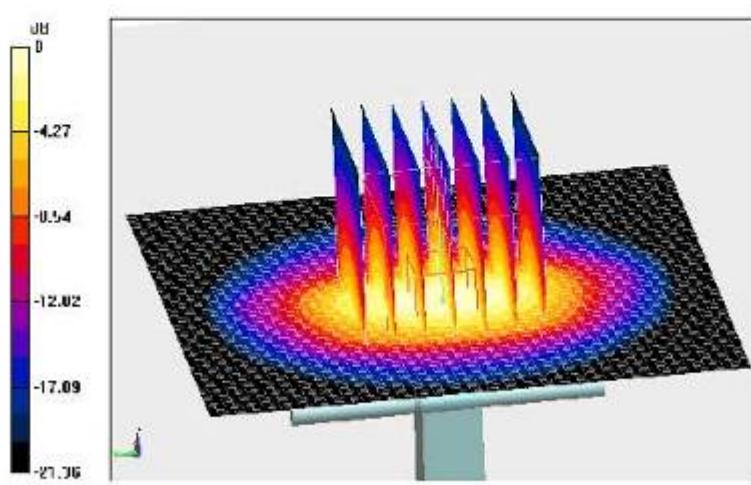
Medium parameters used: $f = 2450$ MHz; $\sigma = 1.988$ S/m; $\epsilon_r = 51.25$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3149, ConvF(4.21, 4.21, 4.21); Calibrated: 2013-09-03;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.120 V/m; Power Drift = -0.05 dB

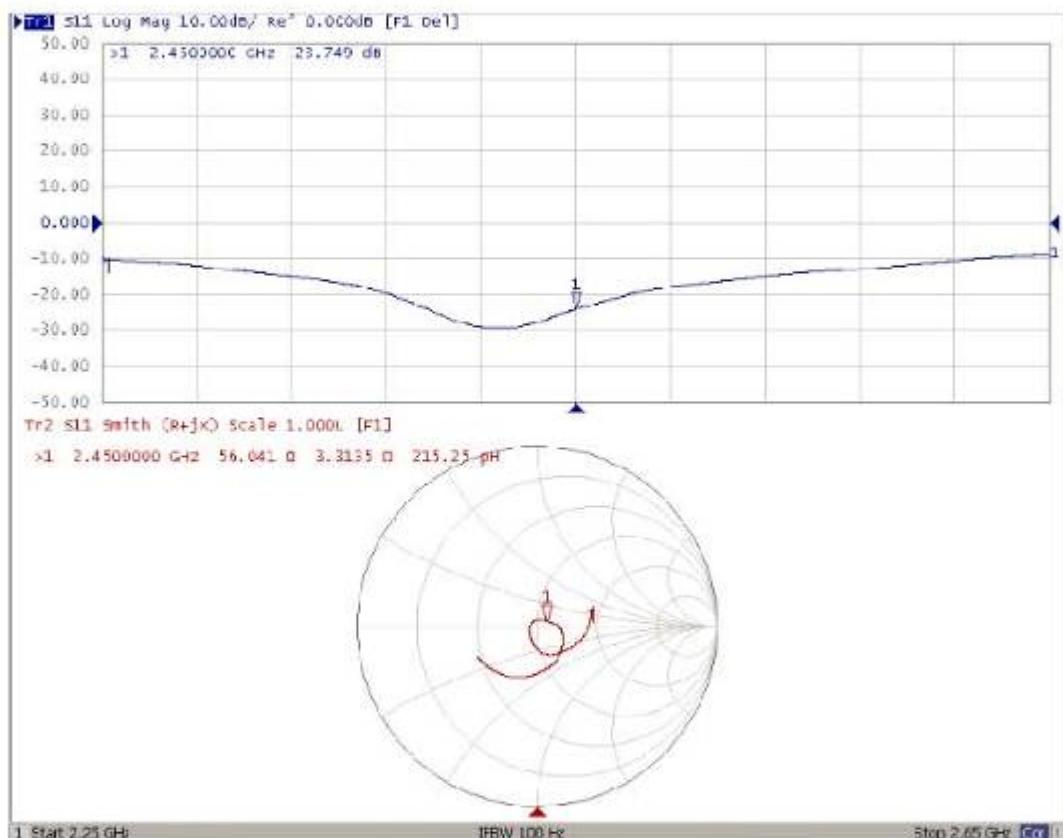
Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1505-0075SAR01R1


Page 97 of 110

Add: No 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctt@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Impedance Measurement Plot for Body TSL

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1505-0075SAR01R1

Page 98 of 110

ANNEX H: DAE4 Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA-Shanghai (Auden)

Certificate No: DAE4-1291_Nov14

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BM - SN: 1291

Calibration procedure(s) QA CAL-06.v28
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: November 14, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-14 (No:15573)	Oct-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-14 (in house check)	In house check: Jan-15
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-14 (in house check)	In house check: Jan-15

Calibrated by: Name Dominique Steffen Function Technician

Signature

Approved by: Fin Bomholt Deputy Technical Manager

Issued: November 14, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1505-0075SAR01R1

Page 99 of 110

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 108

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1505-0075SAR01R1

Page 100 of 110

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = $-100\ldots+300\text{ mV}$

Low Range: 1LSB = 61nV , full range = $-1\ldots+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$402.613 \pm 0.02\% \text{ (k=2)}$	$403.293 \pm 0.02\% \text{ (k=2)}$	$403.205 \pm 0.02\% \text{ (k=2)}$
Low Range	$3.97544 \pm 1.50\% \text{ (k=2)}$	$3.93356 \pm 1.50\% \text{ (k=2)}$	$3.99377 \pm 1.50\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$308.5^\circ \pm 1^\circ$
---	---------------------------

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1505-0075SAR01R1

Page 101 of 110

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	200033.82	-3.10	-0.00
Channel X + Input	20004.15	-0.02	-0.00
Channel X - Input	-20004.31	1.85	-0.01
Channel Y + Input	200033.24	-3.41	-0.00
Channel Y + Input	20003.47	-0.54	-0.00
Channel Y - Input	-20006.08	0.19	-0.00
Channel Z + Input	200036.05	-0.73	-0.00
Channel Z + Input	20001.26	-2.68	-0.01
Channel Z - Input	-20007.69	-1.47	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.57	-0.08	-0.00
Channel X + Input	200.57	-0.14	-0.07
Channel X - Input	-199.31	-0.00	0.00
Channel Y + Input	1999.81	-0.79	-0.04
Channel Y + Input	200.05	-0.62	-0.31
Channel Y - Input	-199.06	0.30	-0.15
Channel Z + Input	2001.14	0.56	0.03
Channel Z + Input	199.16	-1.42	-0.71
Channel Z - Input	-200.73	-1.23	0.62

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	9.64	7.77
	-200	-6.77	-8.44
Channel Y	200	13.71	13.30
	-200	-14.01	-14.19
Channel Z	200	-16.88	-16.56
	-200	13.70	13.86

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	3.91	-4.26
Channel Y	200	8.88	-	3.64
Channel Z	200	10.51	7.45	-

TA Technology (Shanghai) Co., Ltd. Test Report

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16003	13374
Channel Y	15805	15470
Channel Z	16035	14317

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.37	-1.17	1.61	0.49
Channel Y	0.25	-0.91	1.56	0.48
Channel Z	-0.62	-1.83	0.60	0.47

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

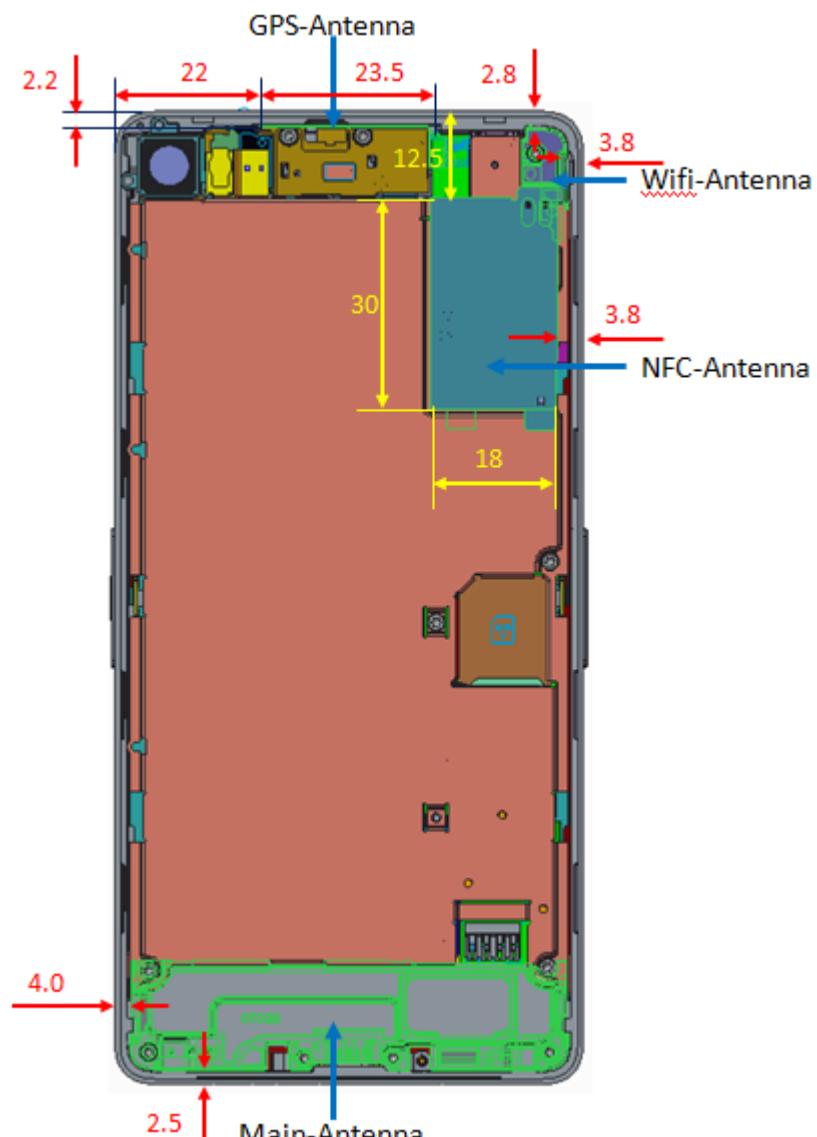
Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1505-0075SAR01R1

Page 103 of 110

ANNEX I: The EUT Appearances and Test Configuration



a: EUT

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1505-0075SAR01R1

Page 104 of 110

b: Antenna

Picture 8: Constituents of EUT

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1505-0075SAR01R1

Page 105 of 110

Picture 9: Left Hand Touch Cheek Position

Picture 10: Left Hand Tilt 15 Degree Position

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1505-0075SAR01R1

Page 106 of 110

Picture 11: Right Hand Touch Cheek Position

Picture 12: Right Hand Tilt 15 Degree Position

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1505-0075SAR01R1

Page 107 of 110

Picture 13: Back Side, the distance from handset to the bottom of the Phantom is 15mm

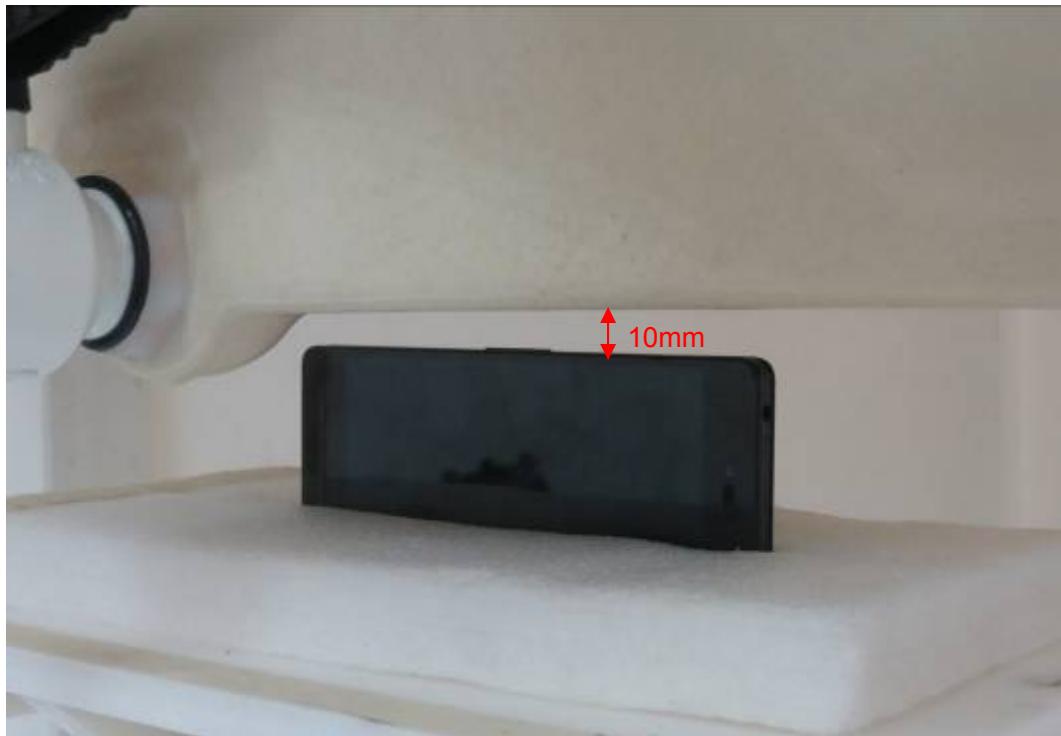
Picture 14: Front Side, the distance from handset to the bottom of the Phantom is 15mm

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1505-0075SAR01R1

Page 108 of 110

Picture 15: Back Side, the distance from handset to the bottom of the Phantom is 10mm



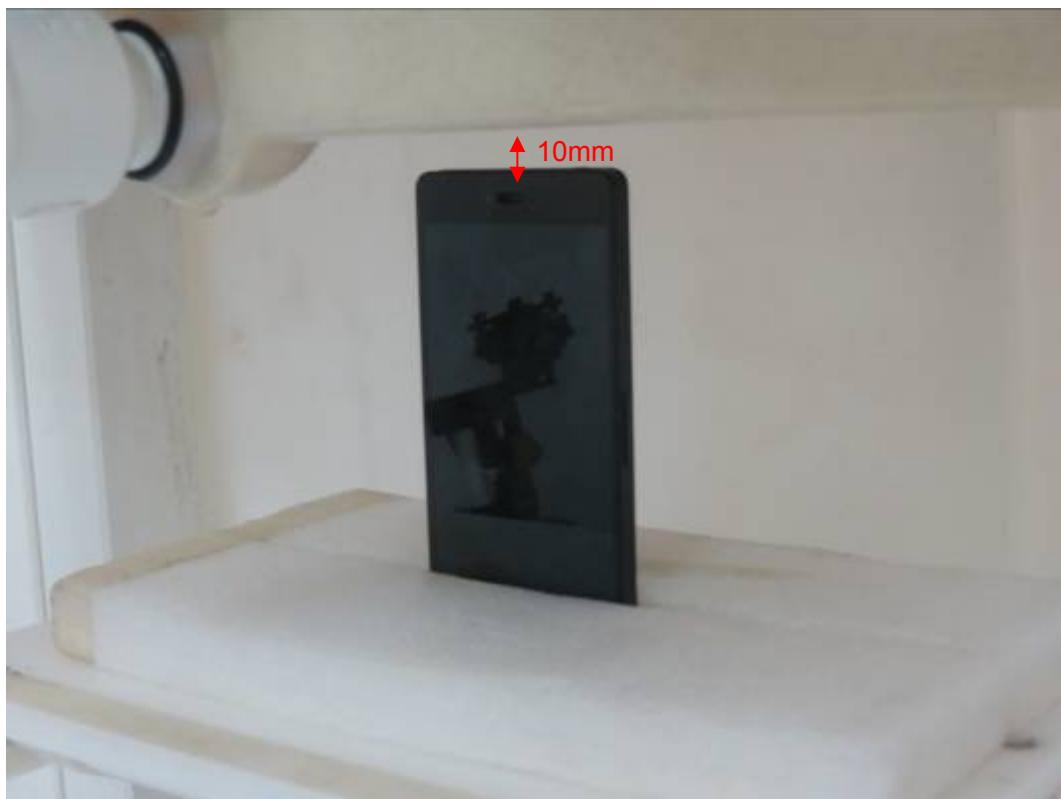
Picture 16: Front Side, the distance from handset to the bottom of the Phantom is 10mm

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1505-0075SAR01R1

Page 109 of 110

Picture 17: Left Edge, the distance from handset to the bottom of the Phantom is 10mm



Picture 18: Right Edge, the distance from handset to the bottom of the Phantom is 10mm

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1505-0075SAR01R1

Page 110 of 110

Picture 19: Top Edge, the distance from handset to the bottom of the Phantom is 10mm

Picture 20: Bottom Edge, the distance from handset to the bottom of the Phantom is 10mm