

Certificate # 2861.01

GRGTEST

Page 1 of 86

Test Report

Verified code: 580385

Report No.: E202210283700-01-2

Customer: Huizhou Desay SV Automotive Co., Ltd.

Address: 103, Hechang 5th Road West, Zhongkai National Hi-tech Industrial Development Zone, Huizhou, Guangdong, P.R. China

Sample Name: Infotainment Head Unit

Sample Model: IC2592/18

Receive Sample Date: Nov.07,2022

Test Date: Nov.07,2022 ~ Dec.22,2022

Reference Document: CFR 47, FCC Part 15 Subpart C
RADIO FREQUENCY DEVICES:Subpart C—Intentional Radiators

Test Result: Pass

Prepared by: Huang lifang

Reviewed by: Wu Harting

Approved by: Xiao Liang

GUANGZHOU GRG METROLOGY & TEST CO., LTD.

Issued Date: APPROVED 2023-02-15

GUANGZHOU GRG METROLOGY & TEST CO., LTD.

Address: No.163, Pingyun Road, West of Huangpu Avenue, Guangzhou, Guangdong, China
Tel: (+86) 400-602-0999 FAX: (+86) 020-38698685 Web: <http://www.grgtest.com>

Statement

1. The report is invalid without "special seal for inspection and testing"; some copies are invalid; The report is invalid if it is altered or missing; The report is invalid without the signature of the person who prepared, reviewed and approved it.
2. The sample information is provided by the client and responsible for its authenticity; The content of the report is only valid for the samples sent this time.
3. When there are reports in both Chinese and English, the Chinese version will prevail when the language problems are inconsistent.
4. If there is any objection concerning the report, please inform us within 15 days from the date of receiving the report.
5. Without the agreement of the laboratory, the client is not authorized to use the test results for unapproved propaganda.

----- The following blanks -----

TABLE OF CONTENTS

1.	TEST RESULT SUMMARY	6
2.	GENERAL DESCRIPTION OF EUT	7
2.1	APPLICANT	7
2.2	MANUFACTURER	7
2.3	FACTORY	7
2.4	BASIC DESCRIPTION OF EQUIPMENT UNDER TEST	7
2.5	CHANNEL LIST	7
2.6	TEST OPERATION MODE	8
2.7	LOCAL SUPPORTIVE INSTRUMENTS	8
2.8	CONFIGURATION OF SYSTEM UNDER TEST	8
2.9	DUTY CYCLE	10
3.	LABORATORY AND ACCREDITATIONS	11
3.1	LABORATORY	11
3.2	ACCREDITATIONS	11
3.3	MEASUREMENT UNCERTAINTY	12
4.	LIST OF USED TEST EQUIPMENT AT GRGT	13
5.	RADIATED SPURIOUS EMISSIONS	14
5.1	LIMITS	14
5.2	TEST PROCEDURES	14
5.3	TEST SETUP	18
5.4	DATA SAMPLE	19
5.5	TEST RESULTS	20
6.	6DB BANDWIDTH	34
6.1	LIMITS	34
6.2	TEST PROCEDURES	34
6.3	TEST SETUP	34
6.4	TEST RESULTS	35
7.	MAXIMUM PEAK OUTPUT POWER	41
7.1	LIMITS	41
7.2	TEST PROCEDURES	41
7.3	TEST SETUP	41
7.4	TEST RESULT	42
8.	POWER SPECTRAL DENSITY	43
8.1	LIMITS	43
8.2	TEST PROCEDURES	43
8.3	TEST SETUP	43
8.4	TEST RESULTS	44
9.	CONDUCTED BAND EDGES AND SPURIOUS EMISSIONS	50
9.1	LIMITS	50
9.2	TEST PROCEDURES	50
9.3	TEST SETUP	50
9.4	TEST RESULTS	51
10.	RESTRICTED BANDS OF OPERATION	70
10.1	LIMITS	70
10.2	TEST PROCEDURES	71

10.3	TEST SETUP.....	71
10.4	TEST RESULTS.....	72
APPENDIX A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM.....		86
APPENDIX B. PHOTOGRAPH OF THE EUT.....		86

———— The following blanks ——

REPORT ISSUED HISTORY

Report Version	Report No.	Description	Compile Date
1.0	E202210283700-01-2	Original Issue	2022-12-22

———— The following blanks ———

1. TEST RESULT SUMMARY

Standard	Item	Limit / Severity	Result
CFR 47, FCC Part 15 Subpart C (§15.247)	Antenna Requirement	§15.203	PASS
	Conducted Emissions	§15.207 (a)	NA ¹
	Radiated Spurious Emission	§15.247(d) §15.205 §15.209	PASS
	6 dB Bandwidth	§15.247 (a)(2)	PASS
	Maximum Peak Output Power	§15.247(b)(3)	PASS
	Power Spectral Density	§15.247(e)	PASS
	Conducted band edges and Spurious Emission	§15.247(d)	PASS
	Restricted bands of operation	§15.205 §15.209 §15.247(d)	PASS

Note: 1. The EUT is power by DC source, not applicable.

2. The EUT antenna is IPEX internal PCB antenna. The max gain of Antenna is 4.7dBi which accordance 15.203 is considered sufficient to comply with the provisions of this section.

———— The following blanks ———

2. GENERAL DESCRIPTION OF EUT

2.1 APPLICANT

Name: Huizhou Desay SV Automotive Co., Ltd.

Address: 103, Hechang 5th Road West, Zhongkai National Hi-tech Industrial Development Zone, Huizhou, Guangdong, P.R. China

2.2 MANUFACTURER

Name: Huizhou Desay SV Automotive Co., Ltd.

Address: 103, Hechang 5th Road West, Zhongkai National Hi-tech Industrial Development Zone, Huizhou, Guangdong, P.R. China

2.3 FACTORY

Name: Huizhou Desay SV Automotive Co., Ltd.

Address: 103, Hechang 5th Road West, Zhongkai National Hi-tech Industrial Development Zone, Huizhou, Guangdong, P.R. China

2.4 BASIC DESCRIPTION OF EQUIPMENT UNDER TEST

Product Name: Infotainment Head Unit

Product Model: IC2592/18

Adding Model: /

Trade Name: DESAY SV

FCC ID: 2AEQTIC259218

Power Supply: DC 12V

Frequency Band: 2412MHz-2462MHz for 802.11b/g/n HT20

Modulation Type: DSSS for 802.11b mode;
OFDM for 802.11g/n mode

Antenna Specification: IPEX internal PCB antenna with 4.7dBi gain (Max)

Temperature Range: -30°C~80°C

Hardware Version: 1.0.0

Software Version: 00.01.00

Sample submitting way: Provided by customer Sampling

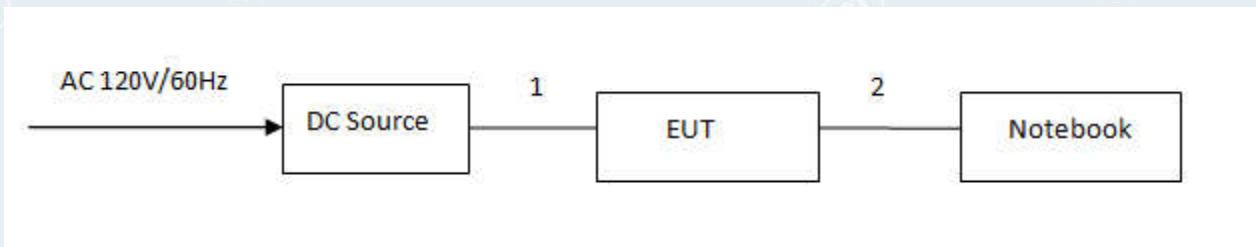
Sample No: E202210283700-01-0001, E202210283700-01-0003

Note: /

2.5 CHANNEL LIST

CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n HT20							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

2.6 TEST OPERATION MODE


Mode No.	Description of the modes
1	2.4G Wi-Fi TX mode

2.7 LOCAL SUPPORTIVE INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Note
Notebook	LENOVO	TianYi 310-14ISK	MP18DLC6	/
DC Source	Keysight	E36131A	/	/

No.	Cable Type	Qty.	Shielded Type	Ferrite Core(Qty.)	Length
1	DC Cable	1	No	0	1.5m
2	USB Cable	1	No	0	1.5m

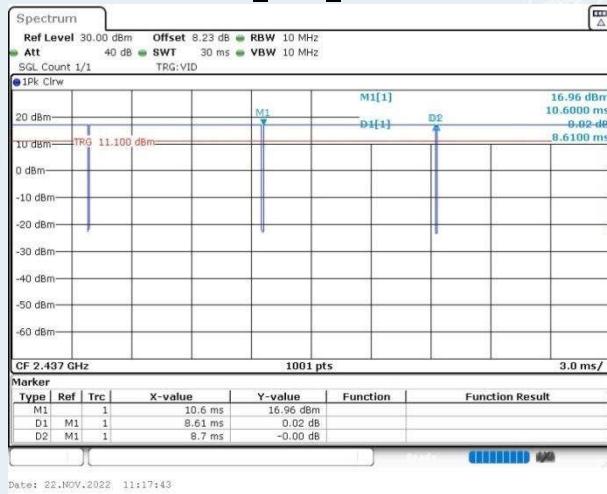
2.8 CONFIGURATION OF SYSTEM UNDER TEST

Test software:

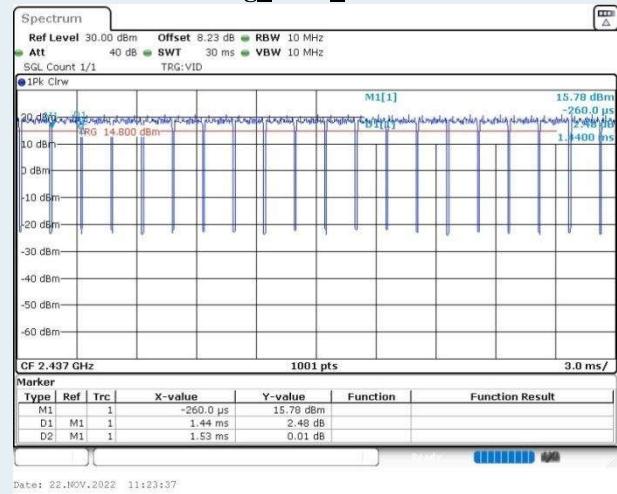
Software version
ADB

Power Setting:

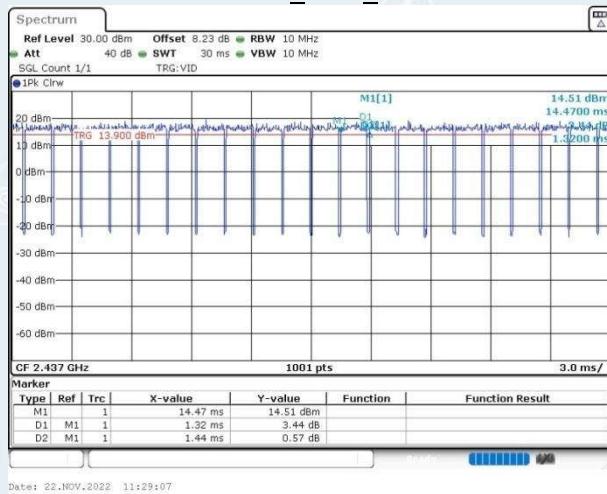
Mode	Date Rate	Frequency (MHz)	Power Setting
802.11b	1M	2412	18
		2437	18
		2462	18
802.11g	6M	2412	16
		2437	16
		2462	16
802.11n HT20	MCS0	2412	14
		2437	14
		2462	14


----- The following blanks -----

2.9 DUTY CYCLE


EUT Name	Infotainment Head Unit	Model	IC2592/18
Environmental Conditions	24.2 °C/49%RH/101.0kPa	Test Voltage	DC 12V
Tested By	Yang Zhaoyun	Tested Date	2022-11-22

Test Mode	Antenna	Frequency (MHz)	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	T [s]
802.11b	Ant1	2437	8.61	8.70	98.97	0.00861
802.11g	Ant1	2437	1.44	1.53	94.12	0.00144
802.11n HT20	Ant1	2437	1.32	1.44	91.67	0.00132


802.11b_Ant1_2437MHz

802.11g_Ant1_2437MHz

802.11n HT20_Ant1_2437MHz

3. LABORATORY AND ACCREDITATIONS

3.1 LABORATORY

The tests & measurements refer to this report were performed by Shenzhen EMC Laboratory of Guangzhou GRG Metrology & Test Co., Ltd.

Add : No.1301 Guanguang Road Xinlan Community, Guanlan Street, Longhua District
Shenzhen, 518110, People's Republic of China

P.C. : 518110

Tel : 0755-61180008

Fax : 0755-61180008

3.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA A2LA(Certificate#:2861.01)

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada ISED (Company Number: 24897, CAB identifier:CN0069)

USA FCC (Registration Number: 759402, Designation Number:CN1198)

Copies of granted accreditation certificates are available for downloading from our web site,
<http://www.grgtest.com>

----- The following blanks -----

3.3 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement		Frequency	Uncertainty
Radiated Emission	Horizontal	9kHz~30MHz	5.1dB
		30MHz~200MHz	4.5dB
		200MHz~1000MHz	4.4 dB
		1GHz~18GHz	5.6dB
		18GHz~26.5GHz	3.65dB
	Vertical	9kHz~30MHz	5.1dB
		30MHz~200MHz	4.4dB
		200MHz~1000MHz	4.5dB
		1GHz~18GHz	5.6dB
		18GHz~26.5GHz	3.65dB

Measurement	Uncertainty
RF frequency	6.0×10^{-6}
RF power conducted	0.78 dB
Occupied channel bandwidth	0.4 dB
Unwanted emission, conducted	0.68 dB
Humidity	6 %
Temperature	2 °C

This uncertainty represents an expanded uncertainty factor of $k=2$.

----- The following blanks -----

4. LIST OF USED TEST EQUIPMENT AT GRGT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Radiated Spurious Emission&Restricted bands of operation				
Test S/W	EZ	CCS-2ANT	/	/
Loop Antenna	TESEQ	HLA6121	52599	2023-04-02
Test Receiver	R&S	ESR7	102444	2023-09-02
Preamplifier	EMEC	EM330	I00426	2023-03-05
Bi-log Antenna	TESEQ	CBL6143A	26039	2024-10-23
Horn Antenna	Schwarzbeck	BBHA 9120D	02143	2023-10-15
Test Receiver	R&S	ESR26	101758	2023-10-27
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	BBHA 9170-497	2023-10-14
Amplifier	Tonscend	TAP01018048	AP20E8060075	2023-05-05
Amplifier	Tonscend	TAP184050	AP20E806071	2023-05-05
Amplifier	SHIRONG ELECTRONIC	DLNA-1G18G-G40	20200928005	2023-05-08
Test S/W	Tonscend	JS32-RE/2.5.2.4		
6 dB Bandwidth				
Spectrum Analyzer	R&S	FSV30	104381	2023-11-17
Simultaneous sampling DAQ	TONSCEND	JS0806-2	186060020	2023-07-24
Output Power				
Pulse power sensor	Agilent	MA2411B	1126150	2023-03-01
Power meter	Anritsu	ML2495A	1204003	2023-02-28
Conducted band edges and Spurious Emission				
Spectrum Analyzer	R&S	FSV30	104381	2023-11-17
Simultaneous sampling DAQ	TONSCEND	JS0806-2	186060020	2023-07-24
Power Spectral Density				
Spectrum Analyzer	R&S	FSV30	104381	2023-11-17
Simultaneous sampling DAQ	TONSCEND	JS0806-2	186060020	2023-07-24

Note: The calibration interval of the above test instruments is 12 months except Bi-log Antenna, The calibration interval of the Bi-log Antenna is 24 months.

5. RADIATED SPURIOUS EMISSIONS

5.1 LIMITS

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required.

Frequency (MHz)	Quasi-peak(μ V/m)	Measurement distance(m)	Quasi-peak(dB μ V/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	128.5~93.8
0.490-1.705	24000/F(kHz)	30	73.8~63
1.705-30.0	30	30	69.5
30~88	100	3	40
88~216	150	3	43.5
216~960	200	3	46
Above 960	500	3	54

NOTE:

- (1) The emission limits for the ranges 9-90kHz and 110-490kHz are based on measurements employing a linear average detector.
- (2) The lower limit shall apply at the transition frequencies.
- (3) Above 18GHz test distance is 1m, so the PeakLimit=74+20*log(3/1)=83.54 (dB μ V/m).
The Avg Limit=54+20*log(3/1)=63.54 (dB μ V/m).

5.2 TEST PROCEDURES

1) Sequence of testing 9kHz to 30MHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- The EUT is placed on a desktop position in the center of the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Pre measurement:

- The turntable rotates from 0° to 360°.
- The antenna height is 1.0 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- Identified emissions during the pre measurement the software maximizes by rotating the turntable

position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

2) Sequence of testing 30MHz to 1GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.

--- The EUT is placed on a desktop position in the center of the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Pre measurement:

--- The turntable rotates from 0° to 360°.

--- The antenna is polarized vertical and horizontal.

--- The antenna height changes from 1 to 4 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable rotates from 0° to 360° and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1GHz to 18GHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- The EUT is placed on a desktop position in the center of the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Pre measurement:

- The turntable rotates from 0° to 360°.
- The antenna is polarized vertical and horizontal.
- The antenna height scan range is 1 meter to 4 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable rotates from 0° to 360° and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18GHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Use serial board or connecting line to make EUT and notebook to communicate, according to the actual need to make EUT send constant frequency signal continuously.
- The EUT is placed on a desktop position in the center of the turntable.
- The measurement distance is 1 meter.
- The EUT was set into operation.

Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

NOTE:

- (a). The frequency from 9kHz to 150kHz, Set RBW=300Hz(for Peak&AVG), RBW=300Hz(for Peak&AVG).
the frequency from 150kHz to 30MHz, Set RBW=9kHz, RBW=9kHz,(for QP Detector).
- (b). The frequency from 30MHz to 1GHz, Set RBW=120kHz, RBW=300kHz,(for QP Detector).
- (c). The frequency above 1GHz, for Peak detector: Set RBW=1MHz, RBW=3MHz.
- (d). The frequency above 1GHz, for Avg detector: Set RBW=1MHz, if the EUT is configured to transmit with duty cycle $\geq 98\%$, set $VBW \leq RBW/100$ (i.e., 10kHz) but not less than 10Hz. if the EUT duty cycle is $< 98\%$, set $VBW \geq 1/T$, Where T is defined in section 2.9.

----- The following blanks -----

5.3 TEST SETUP

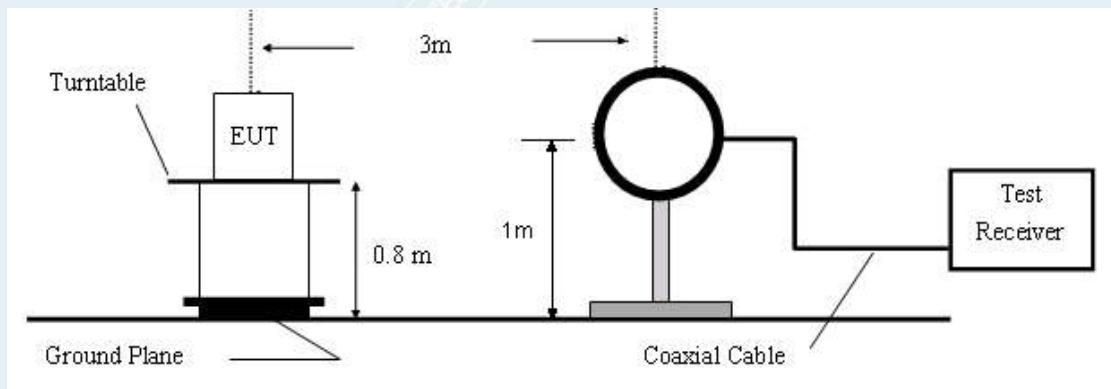


Figure 1. 9kHz to 30MHz radiated emissions test configuration

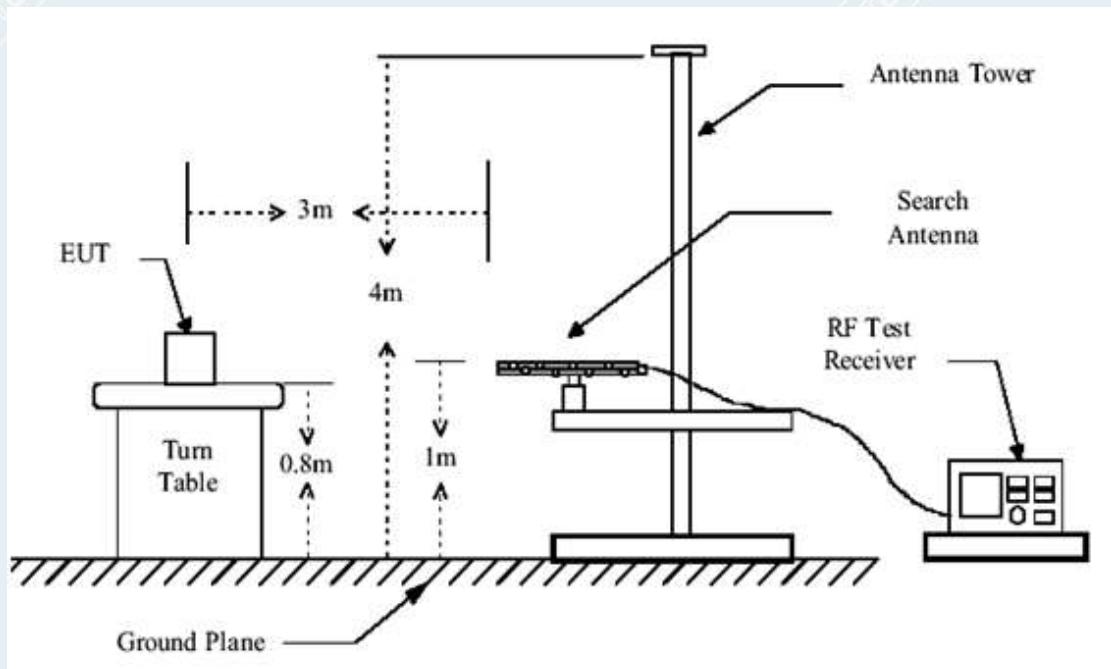


Figure 2. 30MHz to 1GHz radiated emissions test configuration

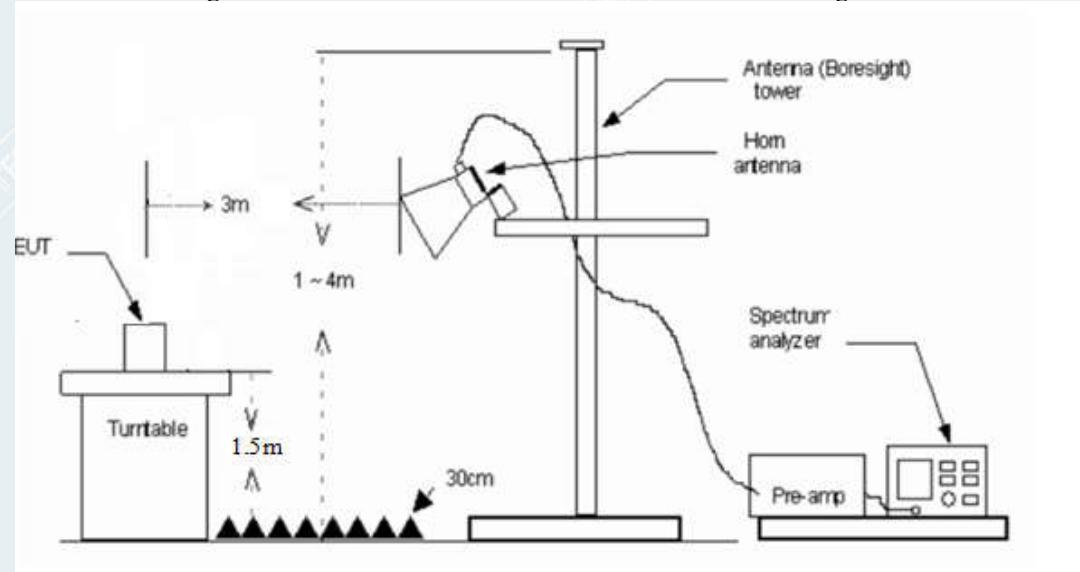


Figure 3. 1GHz to 18GHz radiated emissions test configuration

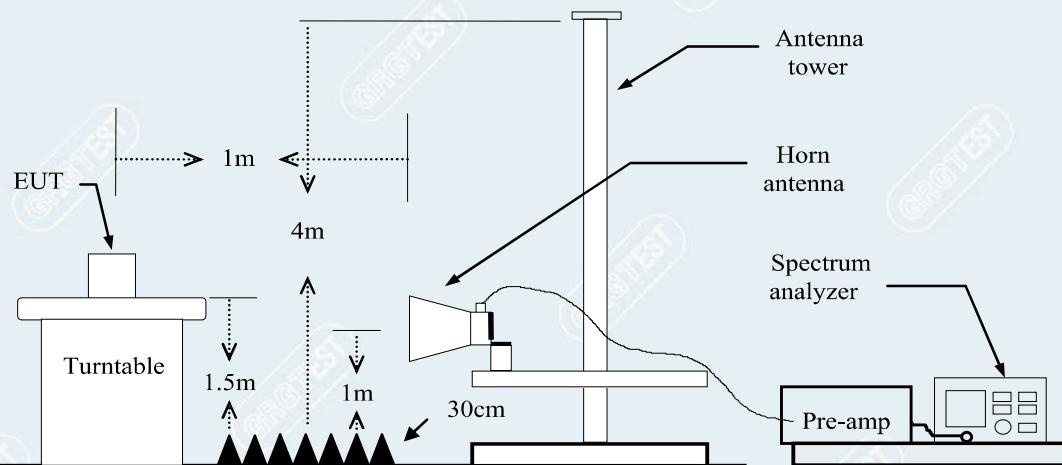


Figure 4.18GHz to 26.5GHz radiated emissions test configuration

5.4 DATA SAMPLE

30MHz to 1GHz

No.	Frequency	Reading	Factor	Level	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
xxx	xxx	37.06	-15.48	21.58	40.00	-18.42	QP	Vertical

1GHz-18GHz

No.	Frequency	Reading	Factor	Level	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
xxx	xxx	65.45	-11.12	54.33	74.00	-19.67	peak	Vertical
xxx	xxx	63.00	-11.12	51.88	54.00	-2.12	AVG	Vertical

Above 18GHz

No.	Frequency	Reading	Factor	Level	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
xxx	xxx	68.86	57.66	-11.20	83.54	25.88	peak	Vertical
xxx	xxx	68.89	-11.20	57.69	63.54	5.85	AVG	Vertical

Frequency (MHz)

= Emission frequency in MHz

Ant.Pol. (H/V)

= Antenna polarization

Reading (dBuV)

= Uncorrected Analyzer / Receiver reading

Correction Factor (dB/m)

= Antenna factor + Cable loss – Amplifier gain

Result (dBuV/m)

= Reading (dBuV) + Correction Factor (dB/m)

Limit (dBuV/m)

= Limit stated in standard

Margin (dB)

= Remark Result (dBuV/m) – Limit (dBuV/m)

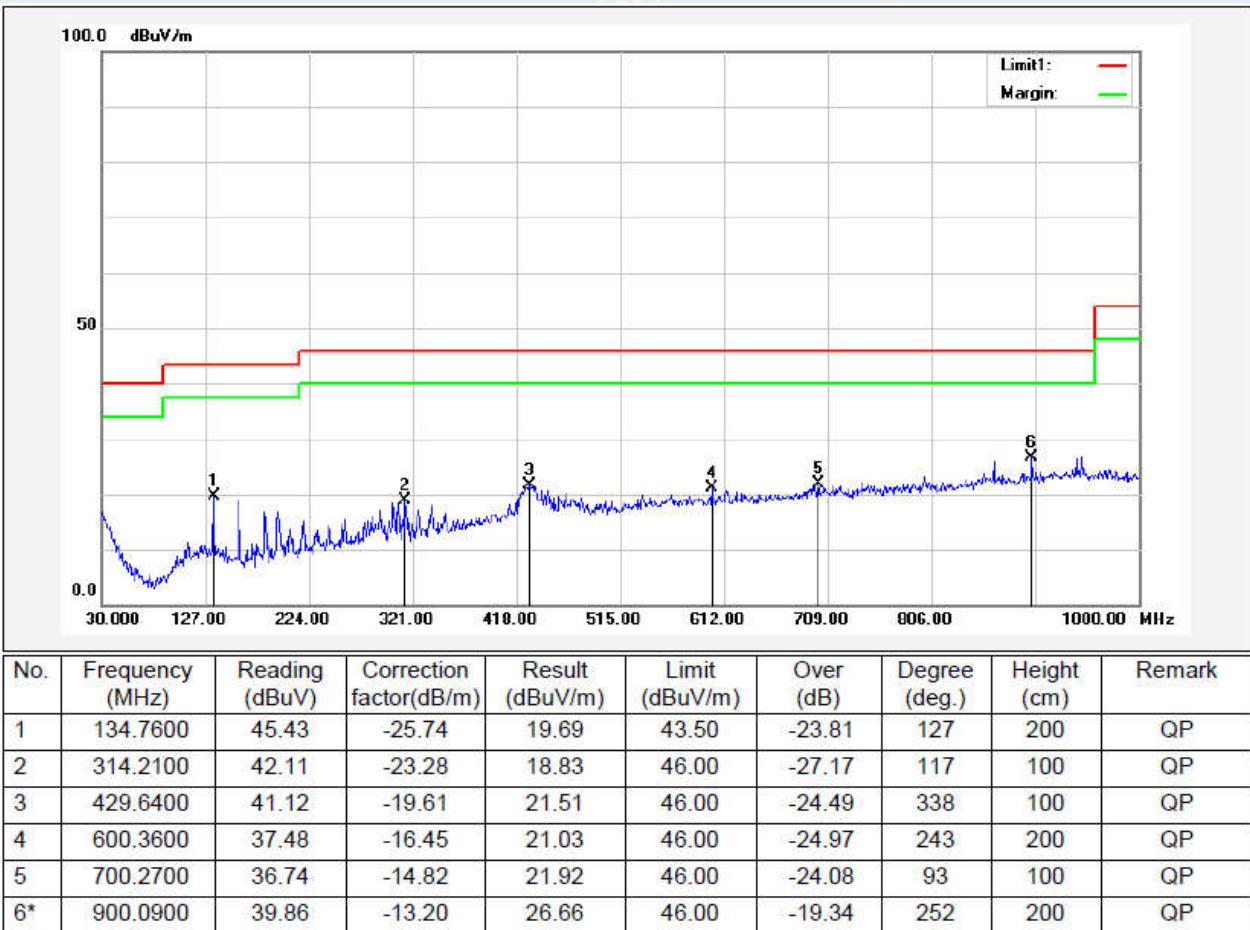
Peak

= Peak Reading

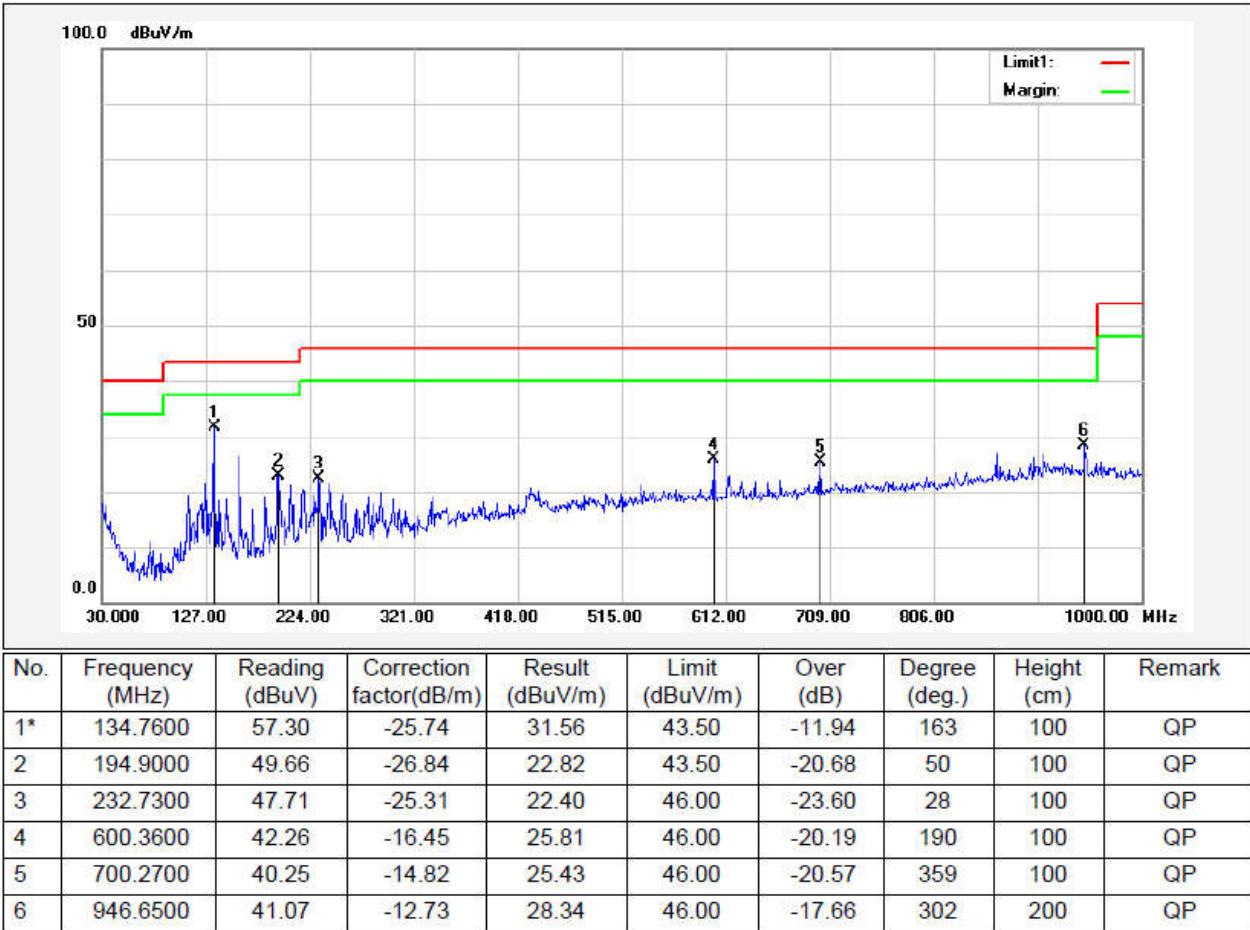
QP

= Quasi-peak Reading

AVG


= Average Reading

5.5 TEST RESULTS


Below 1GHz

All models were pretested and only the worst modes and channels were recorded in this report. (IEEE 802.11g 2462MHz)

EUT Name	Infotainment Head Unit	Model	IC2592/18
Environmental Conditions	21.9°C/49%RH/101.0kPa	Test Voltage	DC 12V
Test Mode	IEEE 802.11g Frequency (2462MHz)	Polarity	Horizontal
Tested By	Huang Xinlong	Tested Date	2022-12-05

EUT Name	Infotainment Head Unit	Model	IC2592/18
Environmental Conditions	21.9 °C/49%RH/101.0kPa	Test Voltage	DC 12V
Test Mode	IEEE 802.11g Frequency (2462MHz)	Polarity	Vertical
Tested By	Huang Xinlong	Tested Date	2022-12-05

Remark:

- 1 No emission found between lowest internal used/generated frequency to 30MHz.
- 2 Radiated emissions measured in frequency range from 9 kHz to 1GHz were made with an instrument using Quasi-peak detector mode.
- 3 Data of measurement within this frequency range shown “---” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 The IF bandwidth of Receiver between 30MHz to 1GHz was 120 kHz.

1GHz-18GHz:

Mode: IEEE 802.11b

Lowest Frequency (2412MHz)

Environment: 22.9°C/58%RH/101.0kPa

Tested By:Zhang Zishan

Date: 2022-12-03

Voltage:DC 12V

Suspected Data List									
NO.	Freq. [MHz]	Reading [dB μ V/m]	Level [dB μ V/m]	Factor [dB]	Limit [dB μ V/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	1164.5206	69.13	44.49	-24.64	74.00	29.51	200	142	Horizontal
2	1327.2909	66.36	43.32	-23.04	74.00	30.68	100	124	Horizontal
3	1599.825	69.31	46.55	-22.76	74.00	27.45	200	298	Horizontal
4	2514.9394	65.92	47.32	-18.60	74.00	26.68	100	25	Horizontal
5	5998.4998	56.73	47.54	-9.19	74.00	26.46	200	345	Horizontal
6	17634.3293	39.41	47.87	8.46	74.00	26.13	200	159	Horizontal

Suspected Data List									
NO.	Freq. [MHz]	Reading [dB μ V/m]	Level [dB μ V/m]	Factor [dB]	Limit [dB μ V/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	1163.2704	71.48	47.26	-24.22	74.00	26.74	100	358	Vertical
2	1327.2909	70.35	47.65	-22.70	74.00	26.35	100	349	Vertical
3	1999.875	66.70	46.23	-20.47	74.00	27.77	100	310	Vertical
4	2524.4406	66.90	47.43	-19.47	74.00	26.57	100	93	Vertical
5	2845.2307	63.77	46.31	-17.46	74.00	27.69	200	83	Vertical
6	17954.9944	34.69	46.59	11.90	74.00	27.41	200	41	Vertical