

FCC PART 15 SUBPART C TEST REPORT

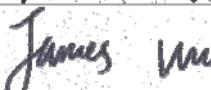
FCC PART 15.247

Report Reference No.....: A150A166267-RW

FCC ID.....: 2AEP9-DXS-W014S

Compiled by

(position+printed name+signature) ..: File administrators Tony Li


Supervised by

(position+printed name+signature) ..: Technique principal Robin Fang

Approved by

(position+printed name+signature) ..: Manager James Wu

Date of issue.....: May 04, 2015

Representative Laboratory Name: Shenzhen CTL Electron Technology Co., Ltd.

Address: A0402, Block 1, Kefa Industrial District, Huanguan Nan Rd, Xintian community, Guanlan, Baoan, Shenzhen, China

Testing Laboratory Name.....: Dongguan Dongdian Testing Service Co.,Ltd

Address: No.17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Guangdong Province, China

Applicant's name.....: SHENZHEN YUANLI ELECTRONICS CO., LTD.

Address: 5F West, Building F, Licheng Industrial Park, Xinhe road, Shajing town, Baoan District, Shenzhen, Guangdong, P.R.C.

Test specification

Standard: **FCC Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz**

TRF Originator.....: Shenzhen CTL Electron Technology Co., Ltd.

Master TRF.....: Dated 2012-06

Shenzhen CTL Electron Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Electron Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Electron Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Wireless WIFI Module

Trade Mark: YUANLI

Model/Type reference.....: DXS-W014S

Listed Models: /

Manufacturer: **SHENZHEN YUANLI ELECTRONICS CO., LTD.**

Operation Frequency.....: From 2402MHz to 2480MHz

Rating: DC 3.30V

Result.....: **PASS**

TEST REPORT

Test Report No. :	A150A166267-RW	May 04, 2015
		Date of issue

Equipment under Test : Wireless WIFI Module

Model /Type : DXS-W014S

Listed Models : /

Applicant : **SHENZHEN YUANLI ELECTRONICS CO., LTD.**

Address : 5F West, Building F, Licheng Industrial Park, Xinhe road, Shajing town, Baoan District, Shenzhen, Guangdong, P.R.C.

Manufacturer : **SHENZHEN YUANLI ELECTRONICS CO., LTD.**

Address : 5F West, Building F, Licheng Industrial Park, Xinhe road, Shajing town, Baoan District, Shenzhen, Guangdong, P.R.C.

Test Result:	PASS
---------------------	-------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	<u>TEST STANDARDS</u>	<u>4</u>
<u>2.</u>	<u>SUMMARY</u>	<u>5</u>
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Equipment Under Test	5
2.4.	Short description of the Equipment under Test (EUT)	5
2.5.	EUT operation mode	5
2.6.	Block Diagram of Test Setup	6
2.7.	Related Submittal(s) / Grant (s)	6
2.8.	Modifications	6
2.9.	NOTE	6
<u>3.</u>	<u>TEST ENVIRONMENT</u>	<u>7</u>
3.1.	Address of the test laboratory	7
3.2.	Test Facility	7
3.3.	Environmental conditions	7
3.4.	Test Description	7
3.5.	Statement of the measurement uncertainty	8
3.6.	Equipments Used during the Test	9
<u>4.</u>	<u>TEST CONDITIONS AND RESULTS</u>	<u>10</u>
4.1.	AC Power Conducted Emission	10
4.2.	Radiated Emission.....	13
4.3.	Maximum Peak Output Power.....	18
4.4.	Power Spectral Density	19
4.5.	6dB Bandwidth	28
4.6.	Band Edge Compliance of RF Emission	37
4.7.	Spurious RF Conducted Emission	48
4.8.	Antenna Requirement.....	85
<u>5.</u>	<u>TEST SETUP PHOTOS OF THE EUT</u>	<u>86</u>
<u>6.</u>	<u>EXTERNAL AND INTERNAL PHOTOS OF THE EUT</u>	<u>87</u>

1. TEST STANDARDS

The tests were performed according to following standards:

[FCC Rules Part 15.247](#): Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

[ANSI C63.10-2013](#): American National Standard for Testing Unlicensed Wireless Devices

[KDB558074 D01 V03r02](#): Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Apr 22, 2015
Testing commenced on	:	Apr 22, 2015
Testing concluded on	:	Apr 30, 2015

2.2. Product Description

The **SHENZHEN YUANLI ELECTRONICS CO., LTD.**’s Model: DXS-W014S or the “EUT” as referred to in this report; more general information as follows, for more details, refer to the user’s manual of the EUT.

Name of EUT	Wireless WIFI Module
Model Number	DXS-W014S
FCC ID	2AEP9-DXS-W014S
WLAN	Supported 802.11b/802.11g/802.11n
Antenna Type	Internal
WLAN FCC Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz IEEE 802.11n HT40: 2422MHz—2452MHz
WLAN Modulation	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	<input type="radio"/>	120V / 60 Hz	<input type="radio"/>	115V / 60Hz
		<input type="radio"/>	12 V DC	<input type="radio"/>	24 V DC
		<input checked="" type="radio"/>	Other (specified in blank below)		

DC 3.30V

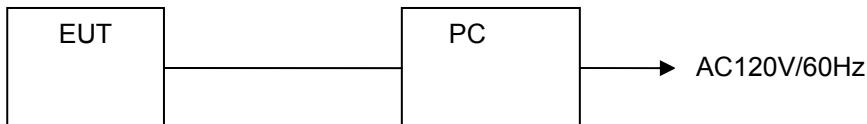
2.4. Short description of the Equipment under Test (EUT)

2.4GHz (Wireless WIFI Module (M/N: DXS-W014S))

For more details, refer to the user’s manual of the EUT.

2.5. EUT operation mode

The application provider specific test software to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.


IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457

4	2427	11	2462
5	2432	12	2467
6	2437	13	2472
7	2442		

2.6. Block Diagram of Test Setup

Fig. 2-1 Configuration of Tested System

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AEP9-DXS-W014S** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria.

2.9. NOTE

1. The EUT is a Wireless WIFI Module, The functions of the EUT listed as below:

	Test Standards	Reference Report
WLAN	FCC Part 15 Subpart C	A150A166267-RW
MPE	FCC Per 47 CFR 2.1091(d)	A150A166267-MPE

2. The frequency bands used in this EUT are listed as follows:

Frequency Band(MHz)	2400-2483.5	5150-5350	5470-5725	5725-5850
802.11b	✓	—	—	—
802.11g	✓	—	—	—
802.11n(20MHz)	✓	—	—	—
802.11n(40MHz)	✓	—	—	—

3. The EUT incorporates a SISO function, Physically, the EUT provides one completed transmitter and one completed receiver.

Modulation Mode	TX Function
802.11b	1TX
802.11g	1TX
802.11n (20MHz)	1TX
802.11n (40MHz)	1TX

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Dongguan Dongdian Testing Service Co.,Ltd

No.17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Guangdong Province, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 10288A-1

The 3m alternate test site of Dongguan Dongdian Testing Service Co.,Ltd EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 10288A-1 on May, 2012.

FCC-Registration No.: 270092

Dongguan Dongdian Testing Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 270092, Mar, 2015.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Test Description

Test Specification clause	Test case	Test Mode	Test Channel	Recorded In Report		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	802.11b	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	802.11b	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.247(e)	Power spectral density	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.247(a)(1)	Spectrum bandwidth – 6 dB bandwidth	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.247(b)(1)	Maximum output power	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.247(d)	Band edge compliance conducted	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/> <input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.205	Band edge compliance radiated	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies

§15.247(d)	TX spurious emissions conducted	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.247(d)	TX spurious emissions radiated	802.11b 802.11g 802.11n HT20 802.11n HT40	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	802.11b	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	802.11b	-/-	802.11b	-/-	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	802.11b	-/-	802.11b	-/-	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	complies

Remark:

1. The measurement uncertainty is not included in the test result.
2. NA = Not Applicable; NP = Not Performed

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density	11g/OFDM	6 Mbps	1/6/11
6dB Bandwidth	11n(20MHz)/OFDM	6.5Mbps	1/6/11
Spurious RF conducted emission	11n(40MHz)/OFDM	13.5Mbps	3/6/9
Radiated Emission 9kHz~1GHz&			
Radiated Emission 1GHz~10 th Harmonic			
Band Edge	11b/DSSS	1 Mbps	1/11
	11g/OFDM	6 Mbps	1/11
	11n(20MHz)/OFDM	6.5Mbps	1/11
	11n(40MHz)/OFDM	13.5Mbps	3/9

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 „Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements“ and is documented in the Dongguan Dongdian Testing Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Dongguan Dongdian Testing Service Co.,Ltd laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.16 dB	(1)
Radiated Emission	1~18GHz	2.56 dB	(1)
Radiated Emission	18-40GHz	2.56 dB	(1)
Conducted Disturbance	0.15~30MHz	2.44 dB	(1)

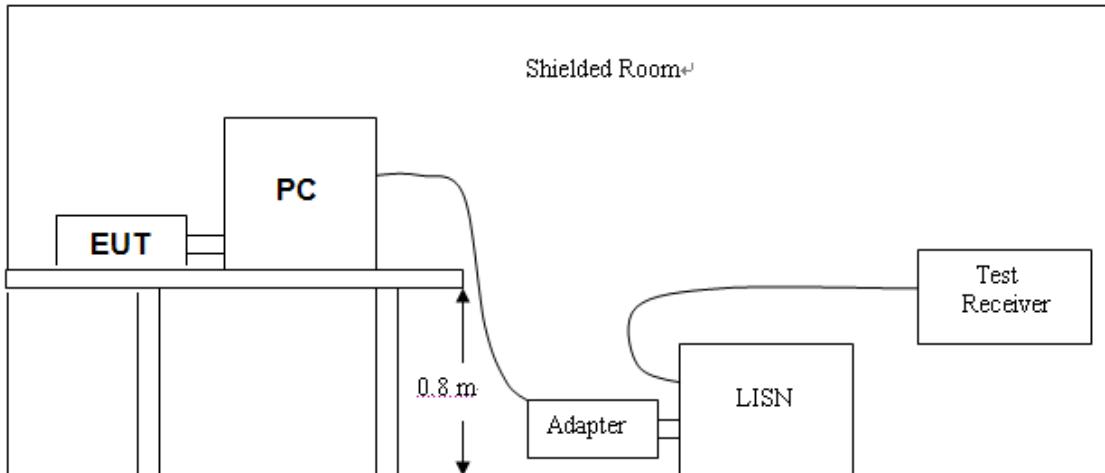
(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Radiated Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	462	2015/04/12	3 years
2	EMI TEST Receiver	Rohde&Schwarz	ESU8	100316	2014/10/25	1 years
3	EMI TEST Software	Audix	E3	6.111111	N/A	N/A
4	Horn Anternna	EMCO	3116	00060095	2015/04/12	3 years
5	Pre-Amplifier	Rohde&Schwarz	SCU-01	10049	2014/10/25	1 years
6	Pre-Amplifier	A.H.	PAM0-0118	360	2014/10/25	1 years
7	Pre-Amplifier	A.H.	PAM-1840VH	562	2014/10/25	1 years
8	Double Ridged Horn Antenna	Rohde&Schwarz	HF907	100265	2015/04/12	3 years
9	Active Loop Antenna	Schwarz beck	FMZB1519	0.38	2015/04/12	3 years
11	TURNTABLE	MATURO	TT2.0	----	N/A	N/A
12	ANTENNA MAST	MATURO	TAM-4.0-P	----	N/A	N/A
13	Spectrum Analyzer	R&S	FSU26	1166.1660.26	2014/10/25	1 years

Maximum Peak Output Power / 20dB Bandwidth / Number of hopping frequency& Time of Occupancy / Band Edge Compliance of RF Emission / Spurious RF Conducted Emission/ Frequency Separation

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Power Sensor	Rohde&Schwarz	NRP-Z81	102638	2014/11/02	1 years
2	Spectrum Analyzer	Agilent	N9030A	MY49430428	2014/11/02	1 years


AC Power Conducted Emission

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Artificial Mains	Rohde&Schwarz	ENV216	101109	2014/10/25	1 years
2	Artificial Mains	Rohde&Schwarz	ESH3-Z5	100309	2014/10/25	1 years
3	EMI Test Receiver	Rohde&Schwarz	ESU8	100316	2014/10/25	1 years
4	Pulse Limiter	Rohde&Schwarz	ESH3-Z2	101242	2014/10/25	1 years
5	EMI TEST Software	Audix	E3	6.111111	N/A	N/A

4. TEST CONDITIONS AND RESULTS

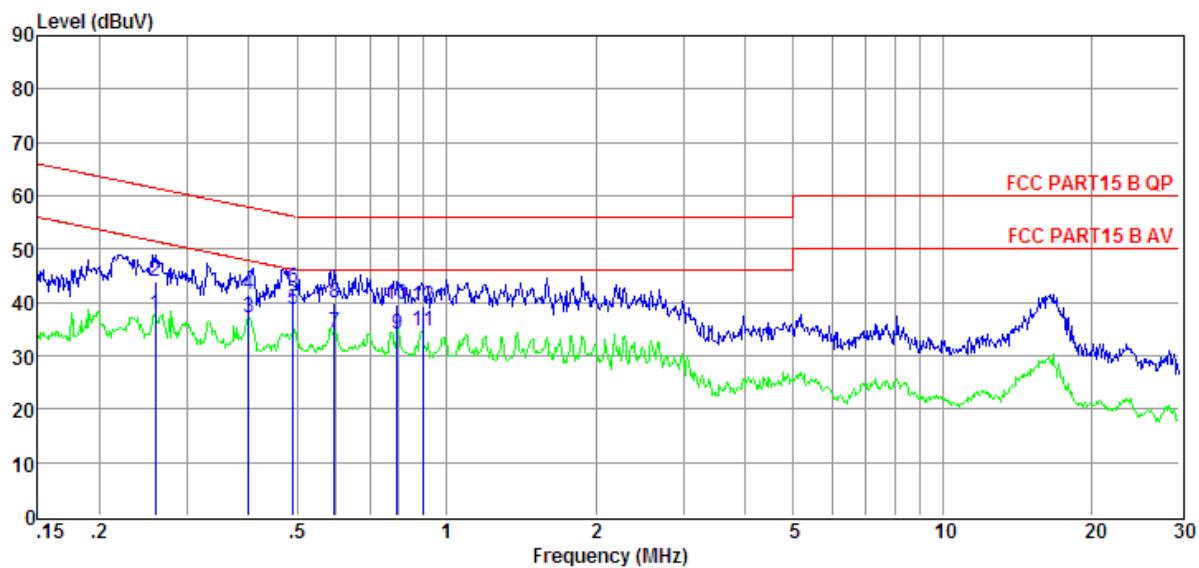
4.1. AC Power Conducted Emission

TEST CONFIGURATION

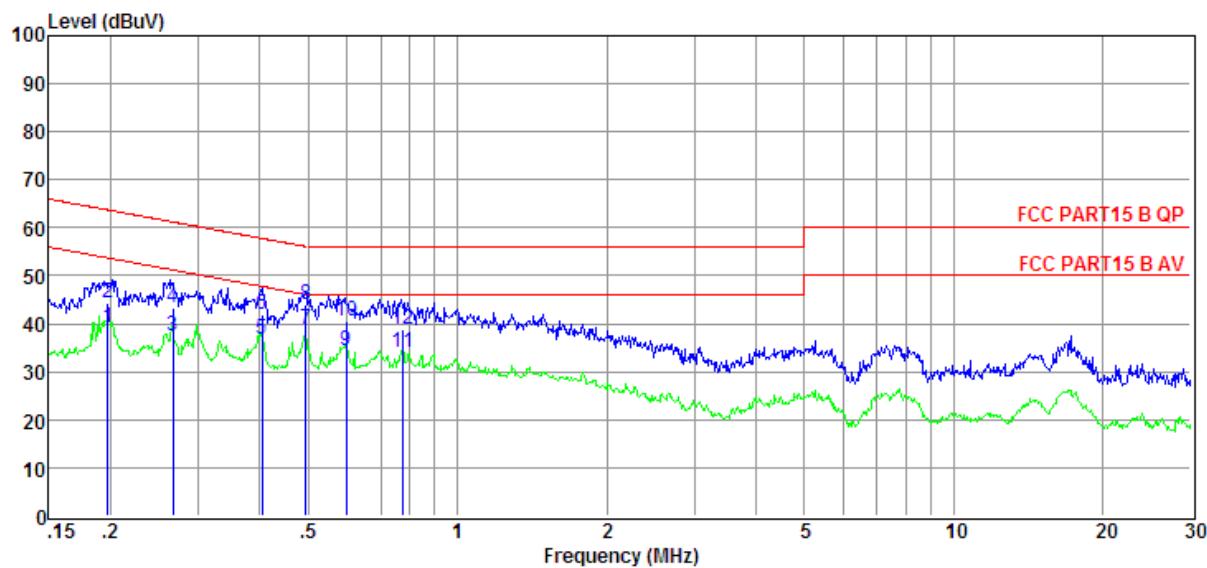
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2014.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013;
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013;
- 4 The EUT received DC3.3V power from PC USB port, the adapter of PC received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit


For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency (MHz)	Maximum RF Line Voltage (dB μ V)			
	CLASS A		CLASS B	
	Q.P.	Ave.	Q.P.	Ave.
0.15 - 0.50	79	66	66-56*	56-46*
0.50 - 5.00	73	60	56	46
5.00 - 30.0	73	60	60	50

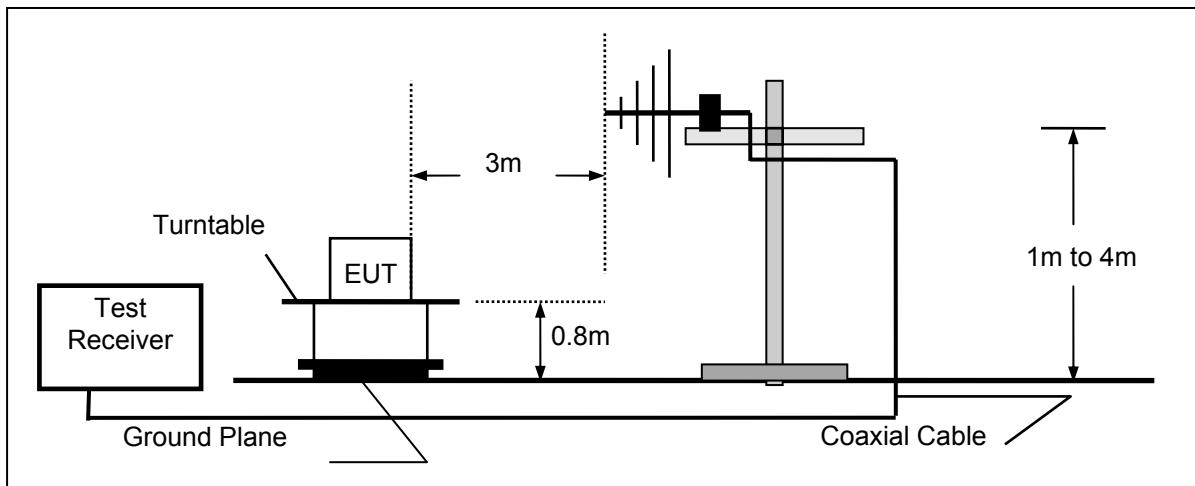

* Decreasing linearly with the logarithm of the frequency

TEST RESULTS

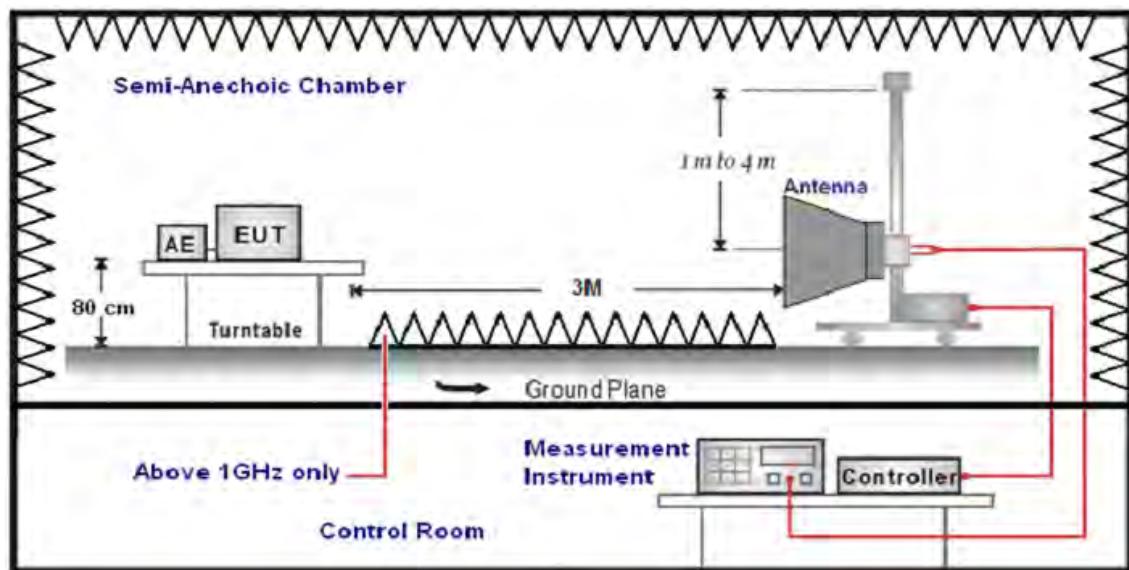
The AC Power Conducted Emission measurement are performed at WLAN Link mode.

Item (Mark)	Freq (MHz)	Read Level (dB μ V)	LISN Factor (dB)	Cable Loss (dB)	Pulse Limiter Factor (dB)	Result Level (dB μ V)	Limit Line (dB μ V)	Over Limit (dB)	Detector	Phase
1	0.26	18.19	9.60	0.02	9.85	37.66	51.47	-13.81	Average	NEUTRAL
2	0.26	24.45	9.60	0.02	9.85	43.92	61.47	-17.55	QP	NEUTRAL
3	0.40	17.69	9.61	0.03	9.86	37.19	47.86	-10.67	Average	NEUTRAL
4	0.40	21.79	9.61	0.03	9.86	41.29	57.86	-16.57	QP	NEUTRAL
5	0.49	19.02	9.61	0.03	9.87	38.53	46.14	-7.61	Average	NEUTRAL
6	0.49	23.14	9.61	0.03	9.87	42.65	56.14	-13.49	QP	NEUTRAL
7	0.59	14.72	9.62	0.05	9.86	34.25	46.00	-11.75	Average	NEUTRAL
8	0.59	20.23	9.62	0.05	9.86	39.76	56.00	-16.24	QP	NEUTRAL
9	0.80	14.62	9.61	0.08	9.86	34.17	46.00	-11.83	Average	NEUTRAL
10	0.80	19.93	9.61	0.08	9.86	39.48	56.00	-16.52	QP	NEUTRAL
11	0.89	15.15	9.61	0.06	9.86	34.68	46.00	-11.32	Average	NEUTRAL
12	0.89	19.87	9.61	0.06	9.86	39.40	56.00	-16.60	QP	NEUTRAL

Item (Mark)	Freq (MHz)	Read Level (dB μ V)	LISN Factor (dB)	Cable Loss (dB)	Pulse Limiter Factor (dB)	Result Level (dB μ V)	Limit Line (dB μ V)	Over Limit (dB)	Detector	Phase
1	0.20	19.80	9.62	0.02	9.85	39.29	53.71	-14.42	Average	LINE
2	0.20	24.95	9.62	0.02	9.85	44.44	63.71	-19.27	QP	LINE
3	0.27	17.90	9.62	0.02	9.85	37.39	51.20	-13.81	Average	LINE
4	0.27	23.79	9.62	0.02	9.85	43.28	61.20	-17.92	QP	LINE
5	0.40	17.41	9.63	0.03	9.86	36.93	47.77	-10.84	Average	LINE
6	0.40	22.36	9.63	0.03	9.86	41.88	57.77	-15.89	QP	LINE
7	0.49	19.41	9.63	0.03	9.87	38.94	46.10	-7.16	Average	LINE
8	0.49	24.55	9.63	0.03	9.87	44.08	56.10	-12.02	QP	LINE
9	0.60	14.96	9.62	0.05	9.86	34.49	46.00	-11.51	Average	LINE
10	0.60	21.00	9.62	0.05	9.86	40.53	56.00	-15.47	QP	LINE
11	0.78	14.62	9.62	0.08	9.86	34.18	46.00	-11.82	Average	LINE
12	0.78	19.37	9.62	0.08	9.86	38.93	56.00	-17.07	QP	LINE


Note:

1. Result Level = Read Level + LISN Factor + Pulse Limiter Factor + Cable loss.
2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz), Step size: 4 kHz, Scan time: auto.


4.2. Radiated Emission

TEST CONFIGURATION

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

1. The EUT was placed on a turn table which is 0.8m above ground plane.
2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
4. Repeat above procedures until all frequency measurements have been completed.
5. The EUT minimum operation frequency was 40MHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 30MHz to 25GHz.
6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Antenna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto	Peak

	Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	
--	--	--

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$\mathbf{FS = RA + AF - AG}$$

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

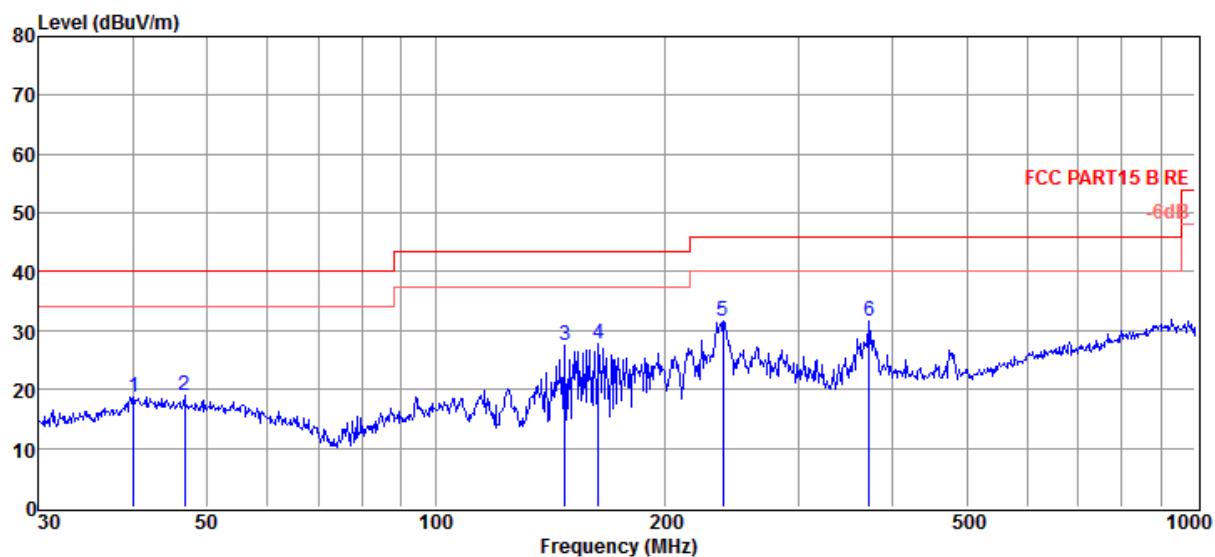
For example

Frequency (MHz)	FS (dB μ V/m)	RA (dB μ V/m)	AF (dB)	CL (dB)	AG (dB)	Transd (dB)
300.00	40	58.1	12.2	1.6	31.90	-18.1

$$\text{Transd} = \text{AF} + \text{CL} - \text{AG}$$

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

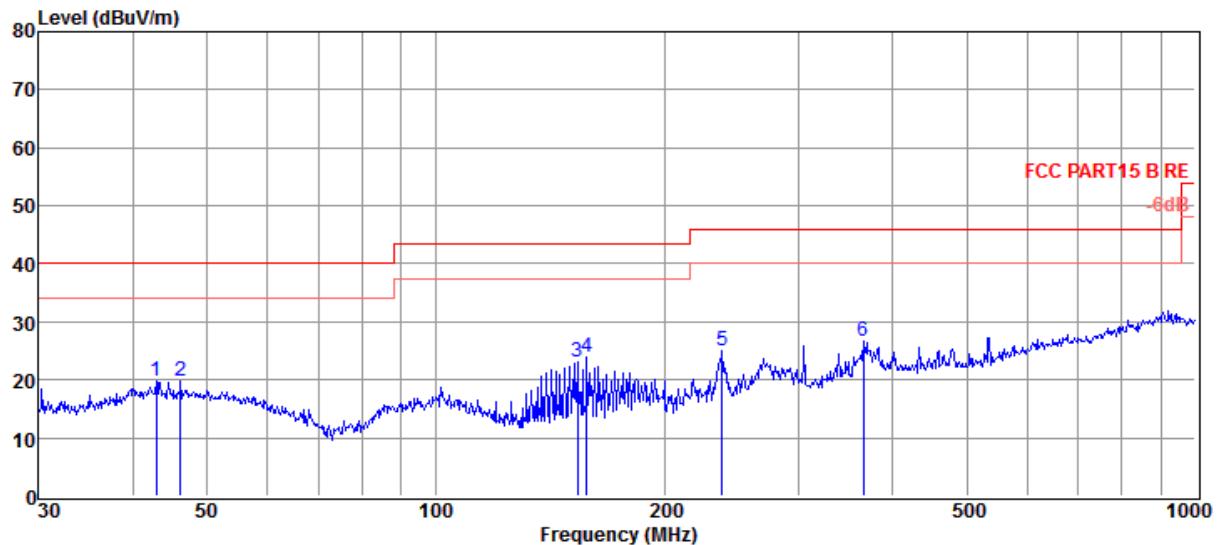

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dB μ V/m)	Radiated (μ V/m)
0.009-0.49	3	$20\log(2400/F(\text{kHz}))+40\log(300/3)$	$2400/F(\text{kHz})$
0.49-1.705	3	$20\log(24000/F(\text{kHz}))+40\log(30/3)$	$24000/F(\text{kHz})$
1.705-30	3	$20\log(30)+40\log(30/3)$	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

1. We tested three positions and recorded worst case.
2. We tested WLAN IEEE 802.11b Link mode for below 1G;


For 30MHz to 1000MHz

Item (Mark)	Freq (MHz)	Read Level (dB μ V)	Antenna Factor (dB/m)	Cable Loss dB	Result Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)	Detector	Polarization
1	39.99	3.83	14.00	0.99	18.82	40.00	-21.18	QP	HORIZONTAL
2	46.67	3.27	14.70	1.05	19.02	40.00	-20.98	QP	HORIZONTAL
3	147.92	17.02	8.67	1.79	27.48	43.50	-16.02	QP	HORIZONTAL
4	163.76	17.06	8.63	1.98	27.67	43.50	-15.83	QP	HORIZONTAL
5	239.15	17.69	11.70	2.31	31.70	46.00	-14.30	QP	HORIZONTAL
6	372.00	13.22	15.32	3.14	31.68	46.00	-14.32	QP	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Item (Mark)	Freq (MHz)	Read Level (dB μ V)	Antenna Factor (dB/m)	Cable Loss dB	Result Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)	Detector	Polarization
1	42.90	3.74	14.90	1.02	19.66	40.00	-20.34	QP	VERTICAL
2	46.18	3.95	14.70	1.04	19.69	40.00	-20.31	QP	VERTICAL
3	153.74	12.50	8.63	1.88	23.01	43.50	-20.49	QP	VERTICAL
4	158.11	13.21	8.67	1.93	23.81	43.50	-19.69	QP	VERTICAL
5	238.31	11.36	11.29	2.30	24.95	46.00	-21.05	QP	VERTICAL
6	365.54	8.41	15.16	3.11	26.68	46.00	-19.32	QP	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.
 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

For 1GHz to 25GHz

802.11b Mode@ Low Channel @ Channel 1 @ 2412 MHz

Item (Mark)	Freq (MHz)	Read Level (dB μ V)	Antenna Factor (dB/m)	PRM Factor dB	Cable Loss (dB)	Result Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)	Detector	Polarization
1	4824.00	38.51	35.52	29.11	12.10	57.02	74.00	-16.98	Peak	Horizontal
1	4824.00	24.75	35.52	29.11	12.10	43.26	54.00	-10.74	AV ^[1]	Horizontal
2	7236.00	39.38	37.46	29.76	15.26	62.34	74.00	-11.66	Peak	Horizontal
2	7236.00	23.89	37.46	29.76	15.26	46.85	54.00	-7.15	AV ^[1]	Horizontal

Item (Mark)	Freq (MHz)	Read Level (dB μ V)	Antenna Factor (dB/m)	PRM Factor dB	Cable Loss (dB)	Result Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)	Detector	Polarization
1	4824.00	35.26	35.52	29.11	12.10	53.77	74.00	-20.23	Peak	Vertical
1	4824.00	23.44	35.52	29.11	12.10	41.95	54.00	-12.05	AV ^[1]	Vertical
2	7236.00	36.33	37.46	29.76	15.26	59.29	74.00	-14.71	Peak	Vertical
2	7236.00	19.76	37.46	29.76	15.26	42.72	54.00	-11.28	AV ^[1]	Vertical

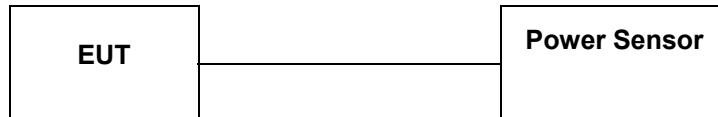
802.11b Mode@ Middle Channel @ Channel 6 @ 2437 MHz

Item (Mark)	Freq (MHz)	Read Level (dB μ V)	Antenna Factor (dB/m)	PRM Factor dB	Cable Loss (dB)	Result Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)	Detector	Polarization
1	4874.00	41.51	35.51	29.08	12.04	59.98	74.00	-14.02	Peak	Horizontal
1	4874.00	26.66	35.51	29.08	12.04	45.13	54.00	-8.87	AV ^[1]	Horizontal
2	7311.00	38.93	37.30	29.88	15.32	61.67	74.00	-12.33	Peak	Horizontal
2	7311.00	22.97	37.30	29.88	15.32	45.71	54.00	-8.29	AV ^[1]	Horizontal

Item (Mark)	Freq (MHz)	Read Level (dB μ V)	Antenna Factor (dB/m)	PRM Factor dB	Cable Loss (dB)	Result Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)	Detector	Polarization
1	4874.00	35.88	35.51	29.08	12.04	54.35	74.00	-19.65	Peak	Vertical
1	4874.00	23.00	35.51	29.08	12.04	41.47	54.00	-12.53	AV ^[1]	Vertical
2	7311.00	36.08	37.30	29.88	15.32	58.82	74.00	-15.18	Peak	Vertical
2	7311.00	22.30	37.30	29.88	15.32	45.04	54.00	-8.96	AV ^[1]	Vertical

802.11b Mode@ High Channel @ Channel 11 @ 2462 MHz

Item (Mark)	Freq (MHz)	Read Level (dB μ V)	Antenna Factor (dB/m)	PRM Factor dB	Cable Loss (dB)	Result Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)	Detector	Polarization
1	4924.00	42.84	35.64	29.04	12.02	61.46	74.00	-12.54	Peak	Horizontal
1	4924.00	27.26	35.64	29.04	12.02	45.88	54.00	-8.12	AV ^[1]	Horizontal
2	7386.00	40.31	37.37	30.12	15.66	63.22	74.00	-10.78	Peak	Horizontal
2	7386.00	24.50	37.37	30.12	15.66	47.41	54.00	-6.59	AV ^[1]	Horizontal


Item (Mark)	Freq (MHz)	Read Level (dB μ V)	Antenna Factor (dB/m)	PRM Factor dB	Cable Loss (dB)	Result Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)	Detector	Polarization
1	4924.00	37.47	35.64	29.04	12.02	56.09	74.00	-17.91	Peak	Vertical
1	4924.00	25.19	35.64	29.04	12.02	43.81	54.00	-10.19	AV ^[1]	Vertical
2	7386.00	36.05	37.37	30.12	15.66	58.96	74.00	-15.04	Peak	Vertical
2	7386.00	22.64	37.37	30.12	15.66	45.55	54.00	-8.45	AV ^[1]	Vertical

REMARKS:

1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.
2. The other emission levels were very low against the limit.
3. Over Limit= Emission Level - Limit.
4. The average measurement was not performed when the peak measured data under the limit of average detection.
5. Detector AV is setting spectrum/receiver. RBW=1MHz/VBW=10Hz/Sweep time=Auto/Detector=Peak;
6. For Wireless 802.11b mode at 1Mbps.

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.1. The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

LIMIT

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

Remark: We measured output power at difference data rate for each mode and recorded worst case for each mode.

4.3.1 802.11b Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
1	2412	15.13	30	PASS
6	2437	14.68	30	PASS
11	2462	14.55	30	PASS

4.3.2 802.11g Test Mode

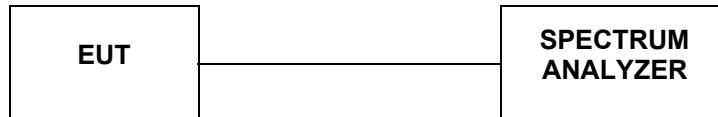
A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
1	2412	20.74	30	PASS
6	2437	20.40	30	PASS
11	2462	20.27	30	PASS

4.3.3 802.11n HT20 Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
1	2412	20.90	30	PASS
6	2437	20.45	30	PASS
11	2462	20.33	30	PASS


4.3.4 802.11n HT40 Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
3	2422	20.72	30	PASS
6	2437	20.47	30	PASS
9	2452	20.32	30	PASS

4.4. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

According to KDB 558074 D01 V03 Method PKPSD (peak PSD) This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

1. Set analyzer center frequency to DTS channel center frequency.
2. Set the span to 1.5 times the DTS bandwidth.
3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
4. Set the VBW $\geq 3 \text{ RBW}$.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use the peak marker function to determine the maximum amplitude level within the RBW.
10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

4.4.1 802.11b Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Report PSD (dBm/100KHz)	Refer to Plot	Limits (dBm/3KHz)	Verdict
1	2412	1.748	Plot 4.4.1 A	8	PASS
6	2437	1.188	Plot 4.4.1 B	8	PASS
11	2462	1.053	Plot 4.4.1 C	8	PASS

Note:

1. For 802.11b mode at final test to get the worst-case emission at 1Mbps.
2. The test results including the cable loss.

B. Test Plots

(Plot 4.4.1 A: Channel 1: 2412MHz @ 802.11b)

(Plot 4.4.1 B: Channel 6: 2437MHz @ 802.11b)

(Plot 4.4.1 C: Channel 11: 2462MHz @ 802.11b)

4.4.2 802.11g Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Report PSD (dBm/100KHz)	Refer to Plot	Limits (dBm/3KHz)	Verdict
1	2412	-0.367	Plot 4.4.2 A	8	PASS
6	2437	-0.958	Plot 4.4.2 B	8	PASS
11	2462	-1.283	Plot 4.4.2 C	8	PASS

Note:

1. For 802.11g mode at final test to get the worst-case emission at 6Mbps.
2. The test results including the cable loss.

B. Test Plots

(Plot 4.4.2 A: Channel 1: 2412MHz @ 802.11g)

(Plot 4.4.2 B: Channel 6: 2437MHz @ 802.11g)

(Plot 4.4.2 C: Channel 11: 2462MHz @ 802.11g)

4.4.3 802.11n HT20 Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Report PSD (dBm/100KHz)	Refer to Plot	Limits (dBm/3KHz)	Verdict
1	2412	-0.260	Plot 4.4.3 A	8	PASS
6	2437	-0.708	Plot 4.4.3 B	8	PASS
11	2462	-1.060	Plot 4.4.3 C	8	PASS

Note:

1. For 802.11n HT20 mode at final test to get the worst-case emission at 6.5Mbps.
2. The test results including the cable loss.


B. Test Plots

(Plot 4.4.3 A: Channel 1: 2412MHz @ 802.11n HT20)

(Plot 4.4.3 B: Channel 6: 2437MHz @ 802.11n HT20)

(Plot 4.4.3 C: Channel 11: 2462MHz @ 802.11n HT20)

4.4.4 802.11n HT40 Test Mode


A. Test Verdict

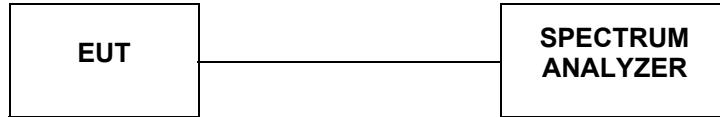
Channel	Frequency (MHz)	Report PSD (dBm/100KHz)	Refer to Plot	Limits (dBm/3KHz)	Verdict
1	2422	-3.917	Plot 4.4.3 A	8	PASS
6	2437	-4.557	Plot 4.4.3 B	8	PASS
11	2452	-4.659	Plot 4.4.3 C	8	PASS

Note:

1. For 802.11n HT40 mode at final test to get the worst-case emission at 13.5Mbps.
2. The test results including the cable loss.

B. Test Plots

(Plot 4.4.4 A: Channel 3: 2422MHz @ 802.11n HT40)


(Plot 4.4.4 B: Channel 6: 2437MHz @ 802.11n HT40)

(Plot 4.4.4 C: Channel 9: 2452MHz @ 802.11n HT40)

4.5. 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with $RBW=100$ KHz and $VBW=300$ KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB558074 D01 V03 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

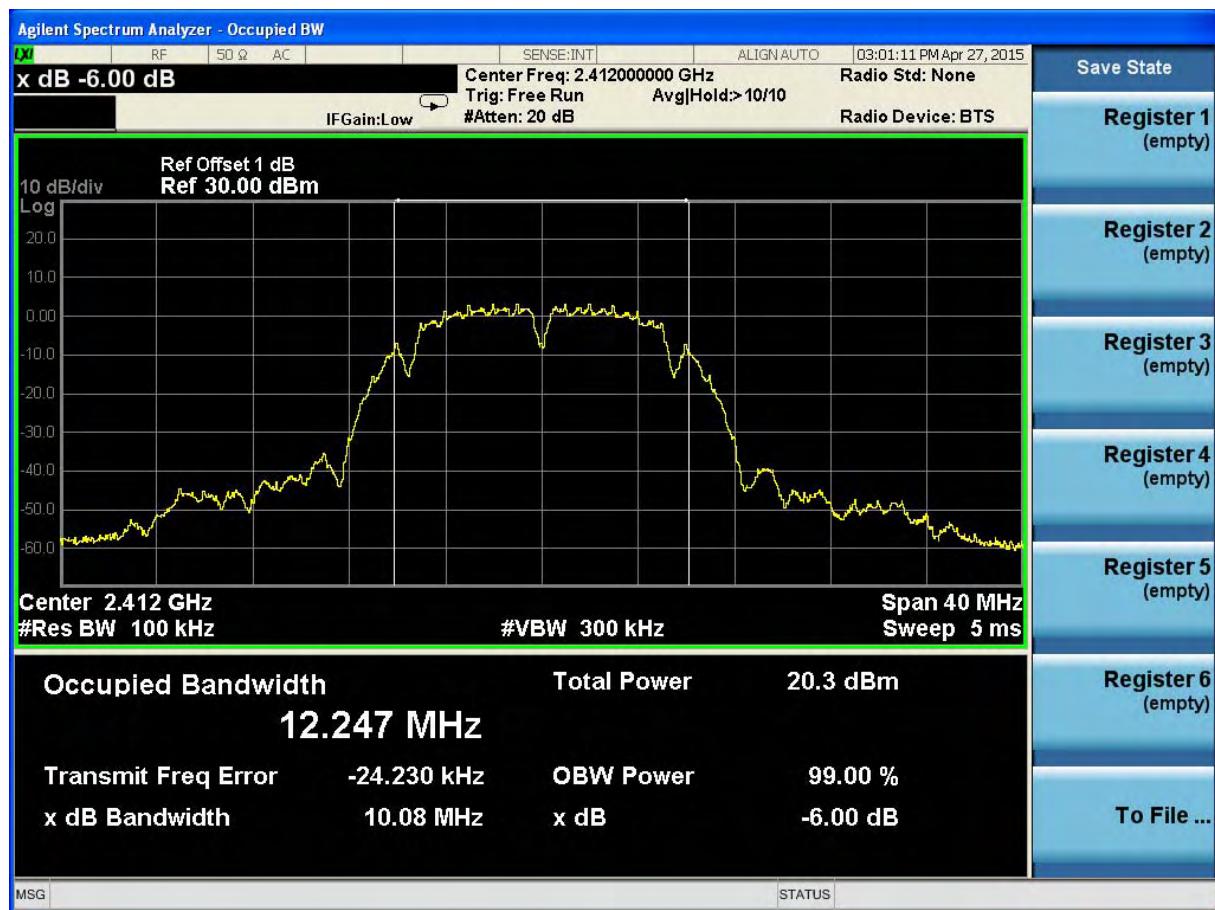
1. Set $RBW = 100$ kHz.
2. Set the video bandwidth (VBW) ≥ 3 RBW .
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

LIMIT

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS

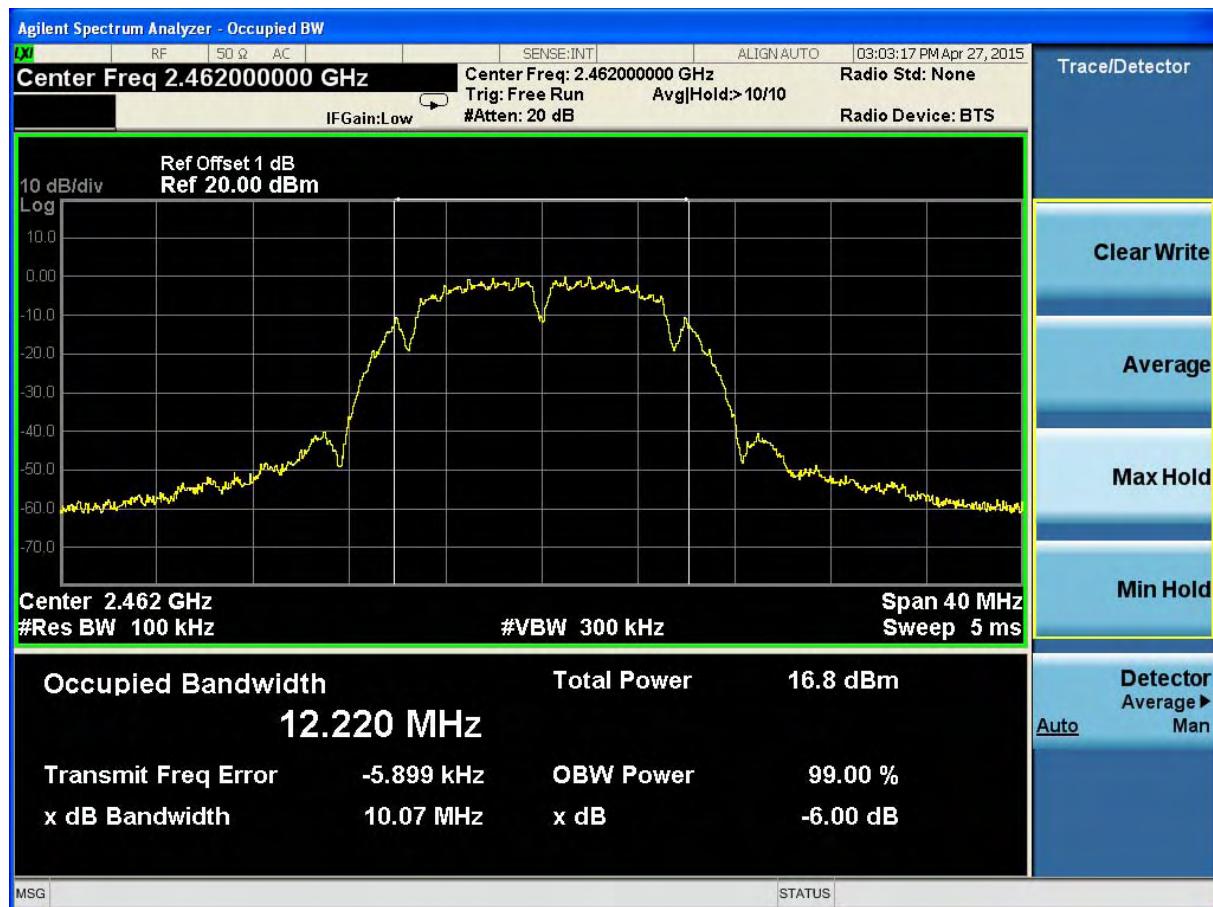
4.5.1 801.11b Test Mode


A. Test Verdict

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Refer to Plot	Limits (kHz)	Verdict
1	2412	10.08	Plot 4.5.1 A	≥ 500	PASS
6	2437	10.07	Plot 4.5.1 B	≥ 500	PASS
11	2462	10.07	Plot 4.5.1 C	≥ 500	PASS

Note:

1. For 802.11b mode at final test to get the worst-case emission at 1Mbps.
2. The test results including the cable loss.

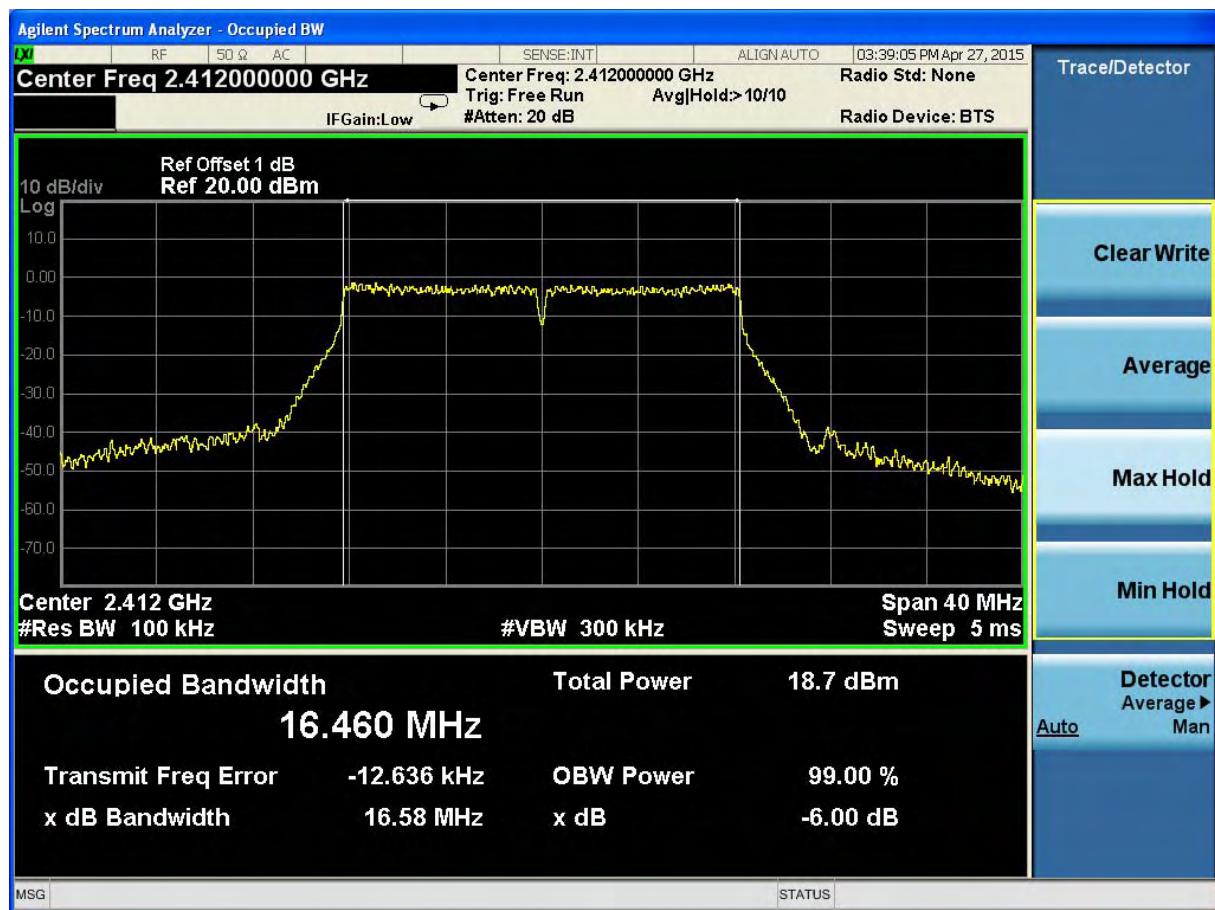

B. Test Plots

(Plot 4.5.1 A: Channel 1: 2412MHz @ 802.11b)

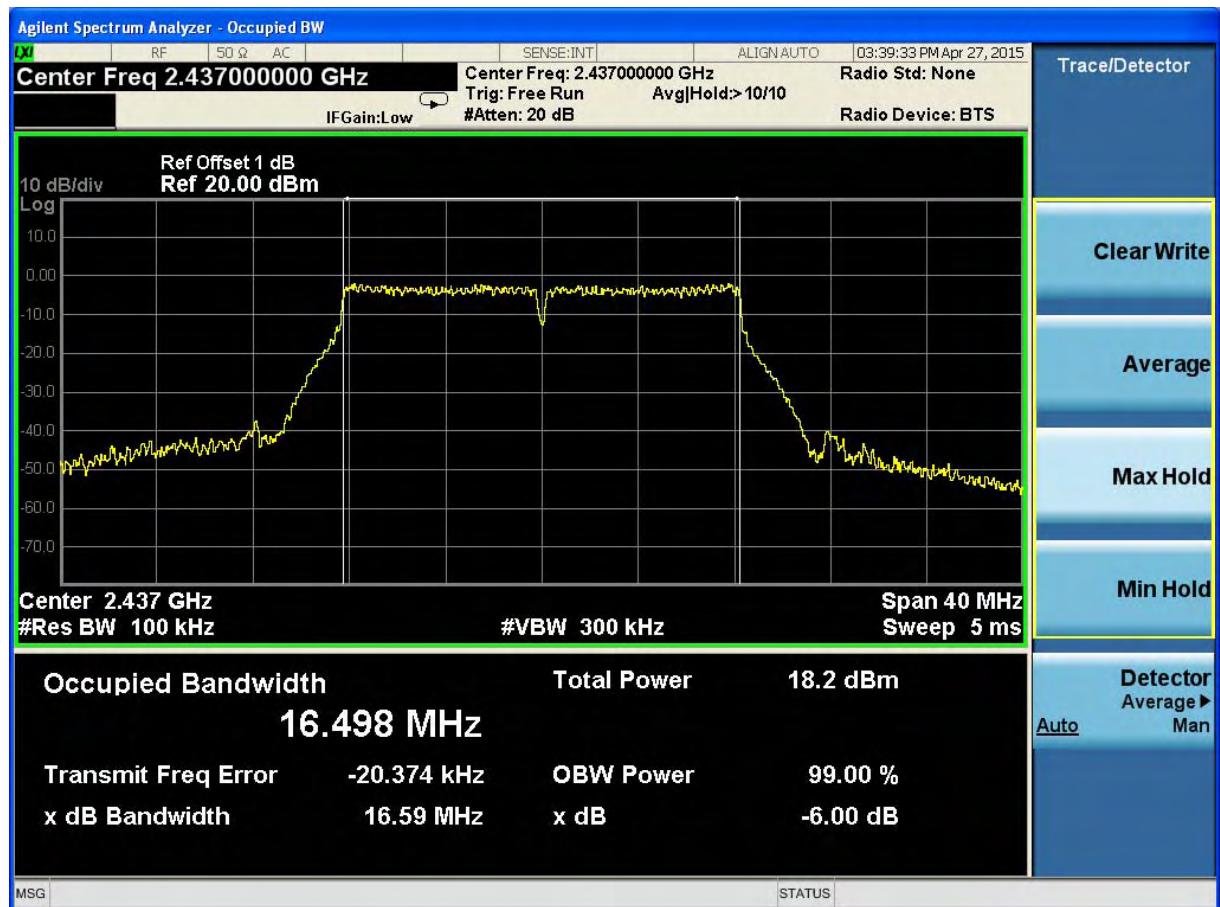
(Plot 4.5.1 B: Channel 6: 2437MHz @ 802.11b)

(Plot 4.5.1 C: Channel 11: 2462MHz @ 802.11b)

4.5.2 801.11g Test Mode


A. Test Verdict

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Refer to Plot	Limits (kHz)	Verdict
1	2412	16.58	Plot 4.5.2 A	≥500	PASS
6	2437	16.59	Plot 4.5.2 B	≥500	PASS
11	2462	16.59	Plot 4.5.2 C	≥500	PASS


Note: 16.38

1. For 802.11g mode at final test to get the worst-case emission at 6Mbps.
2. The test results including the cable loss.

B. Test Plots

(Plot 4.5.2 A: Channel 1: 2412MHz @ 802.11g)

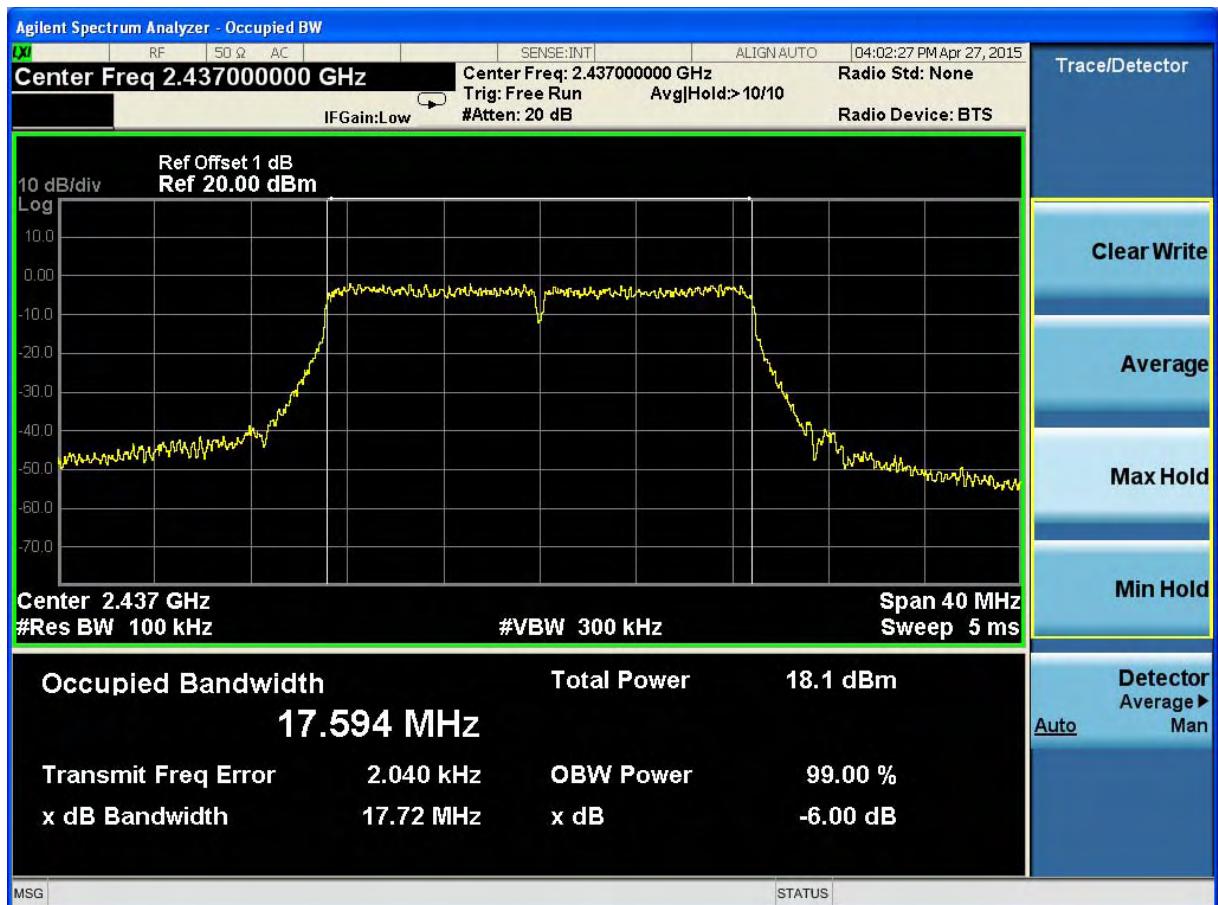
(Plot 4.5.2 B: Channel 6: 2437MHz @ 802.11g)

(Plot 4.5.2 C: Channel 11: 2462MHz @ 802.11g)

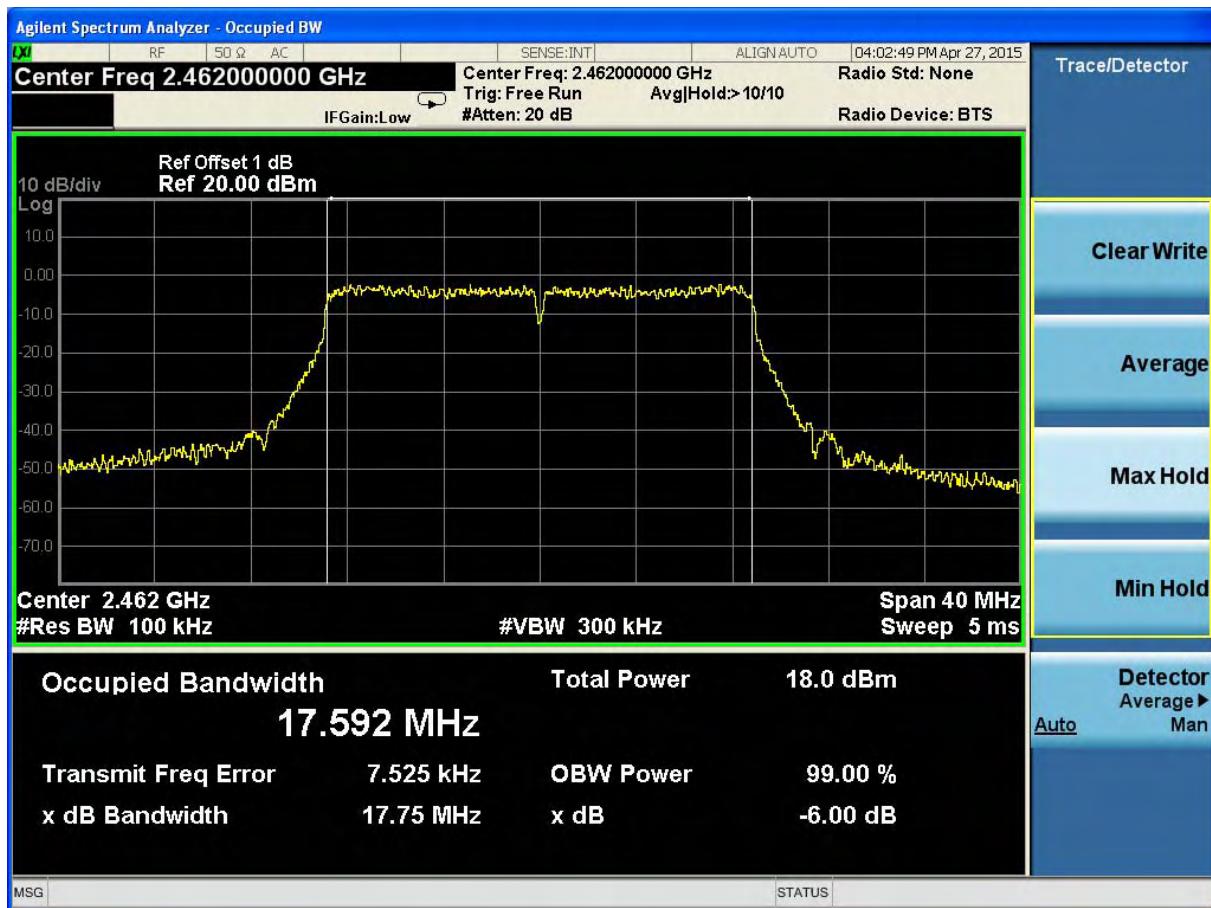
4.5.3 801.11n HT20 Test Mode

A. Test Verdict

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Refer to Plot	Limits (kHz)	Verdict
1	2412	17.72	Plot 4.5.3 A	≥500	PASS
6	2437	17.72	Plot 4.5.3 B	≥500	PASS
11	2462	17.75	Plot 4.5.3 C	≥500	PASS


Note:

1. For 802.11n HT20 mode at final test to get the worst-case emission at 6.5Mbps.
2. The test results including the cable loss.


B. Test Plots

(Plot 4.5.3 A: Channel 1: 2412MHz @ 802.11n HT20)

(Plot 4.5.3 B: Channel 6: 2437MHz @ 802.11n HT20)

(Plot 4.5.3 C: Channel 11: 2462MHz @ 802.11n HT20)

4.5.4 801.11n HT40 Test Mode


A. Test Verdict

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Refer to Plot	Limits (kHz)	Verdict
3	2422	36.52	Plot 4.5.4 A	≥500	PASS
6	2437	36.53	Plot 4.5.4 B	≥500	PASS
9	2452	36.58	Plot 4.5.4 C	≥500	PASS

Note:

1. For 802.11n HT40 mode at final test to get the worst-case emission at 13.5Mbps.
2. The test results including the cable loss.

B. Test Plots

(Plot 4.5.4 A: Channel 3: 2422MHz @ 802.11n HT40)

(Plot 4.5.4 B: Channel 6: 2437MHz @ 802.11n HT40)

(Plot 4.5.4 C: Channel 9: 2452MHz @ 802.11n HT40)

4.6. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

According to KDB 558074 D01 V03 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=10Hz for average detector.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.
6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
8. Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies \leq 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies $>$ 1000 MHz).
9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
10. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

$$E = EIRP - 20\log D + 104.8$$

where:

E = electric field strength in $\text{dB}\mu\text{V/m}$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.
12. Compare the resultant electric field strength level to the applicable regulatory limit.
13. Perform radiated spurious emission test dures until all measured frequencies were complete.

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

4.6.1 802.11b Test Mode

A. Test Verdict

Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Refer to Plot
2390.00	-47.763	3.00	0.00	50.497	Peak	74.00	Plot 4.6.1 A1
2390.00	-59.743	3.00	0.00	38.517	AV	54.00	Plot 4.6.1 A2
2410.62	6.399	3.00	0.00	104.659	Peak	---	Plot 4.6.1 A1
2410.62	2.556	3.00	0.00	100.816	AV	---	Plot 4.6.1 A2
2463.52	5.837	3.00	0.00	104.097	Peak	---	Plot 4.6.1 A3
2463.52	1.794	3.00	0.00	100.054	AV	---	Plot 4.6.1 A4
2483.50	-48.812	3.00	0.00	49.448	Peak	74.00	Plot 4.6.1 A3
2483.50	-60.464	3.00	0.00	37.796	AV	54.00	Plot 4.6.1 A4

Note:

1. For 802.11b mode at final test to get the worst-case emission at 1Mbps.
2. The test results including the cable loss.
3. “---” means that the fundamental frequency not for 15.209 limits requirement.

B. Test Plots

(Plot 4.6.1 A1: Channel 1: 2412MHz @ 802.11b)

(Plot 4.6.1 A2: Channel 1: 2412MHz @ 802.11b)

(Plot 4.6.1 A3: Channel 11: 2462MHz @ 802.11b)

(Plot 4.6.1 A4: Channel 11: 2462MHz @ 802.11b)

4.6.2 802.11g Test Mode

A. Test Verdict

Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Refer to Plot
2390.00	-33.650	3.00	0.00	64.610	Peak	74.00	Plot 4.6.2 A1
2390.00	-51.916	3.00	0.00	46.344	AV	54.00	Plot 4.6.2 A2
2404.78	9.910	3.00	0.00	108.170	Peak	---	Plot 4.6.2 A1
2404.78	0.503	3.00	0.00	98.763	AV	---	Plot 4.6.2 A2
2469.50	9.156	3.00	0.00	107.416	Peak	---	Plot 4.6.2 A3
2469.50	-0.539	3.00	0.00	97.721	AV	---	Plot 4.6.2 A4
2483.50	-42.649	3.00	0.00	55.611	Peak	74.00	Plot 4.6.2 A3
2483.50	-56.637	3.00	0.00	41.623	AV	54.00	Plot 4.6.2 A4

Note:

1. For 802.11g mode at final test to get the worst-case emission at 6Mbps.
2. The test results including the cable loss.
3. “---” means that the fundamental frequency not for 15.209 limits requirement.

B. Test Plots


(Plot 4.6.2 A1: Channel 1: 2412MHz @ 802.11g)

(Plot 4.6.2 A2: Channel 1: 2412MHz @ 802.11g)

(Plot 4.6.2 A3: Channel 11: 2462MHz @ 802.11g)

(Plot 4.6.2 A4: Channel 11: 2462MHz @ 802.11g)

4.6.3 802.11n HT20 Test Mode

A. Test Verdict

Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Refer to Plot
2390.00	-29.195	3.00	0.00	69.065	Peak	74.00	Plot 4.6.3 A1
2390.00	-49.994	3.00	0.00	48.266	AV	54.00	Plot 4.6.3 A2
2404.52	10.128	3.00	0.00	108.388	Peak	---	Plot 4.6.3 A1
2405.04	-0.118	3.00	0.00	98.142	AV	---	Plot 4.6.3 A2
2454.60	9.262	3.00	0.00	107.522	Peak	---	Plot 4.6.3 A3
2468.90	-1.018	3.00	0.00	97.242	AV	---	Plot 4.6.3 A4
2483.50	-40.610	3.00	0.00	57.650	Peak	74.00	Plot 4.6.3 A3
2483.50	-56.197	3.00	0.00	42.063	AV	54.00	Plot 4.6.3 A4

Note:

1. For 802.11n HT20 mode at final test to get the worst-case emission at 6.5Mbps.
2. The test results including the cable loss.
3. “---” means that the fundamental frequency not for 15.209 limits requirement.

B. Test Plots


(Plot 4.6.3 A1: Channel 1: 2412MHz @ 802.11n HT20)

(Plot 4.6.3 A2: Channel 1: 2412MHz @ 802.11n HT20)

(Plot 4.6.3 A3: Channel 11: 2462MHz @ 802.11n HT20)

(Plot 4.6.3 A4: Channel 11: 2462MHz @ 802.11n HT20)

4.6.4 802.11n HT40 Test Mode

A. Test Verdict

Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Refer to Plot
2388.80	-30.328	3.00	0.00	67.932	Peak	74.00	Plot 4.6.4 A1
2390.00	-45.802	3.00	0.00	52.458	AV	54.00	Plot 4.6.4 A2
2405.40	6.651	3.00	0.00	104.911	Peak	---	Plot 4.6.4 A1
2405.60	-3.117	3.00	0.00	95.143	AV	---	Plot 4.6.4 A2
2435.40	5.874	3.00	0.00	104.134	Peak	---	Plot 4.6.4 A3
2435.76	-3.914	3.00	0.00	94.346	AV	---	Plot 4.6.4 A4
2483.50	-40.025	3.00	0.00	58.235	Peak	74.00	Plot 4.6.4 A3
2483.50	-52.687	3.00	0.00	45.573	AV	54.00	Plot 4.6.4 A4

Note:

1. For 802.11n HT40 mode at final test to get the worst-case emission at 13.5Mbps.
2. The test results including the cable loss.
3. “---” means that the fundamental frequency not for 15.209 limits requirement.

B. Test Plots