

FCC TEST REPORT

Product : WIRELESS DOOR CHIME PUSH BUTTON
Trade mark : N/A
Model/Type reference : 2324TX, 2325TX, 2326TX, 2327TX
Serial Number : N/A
Report Number : EED32I001928R1
FCC ID : 2AE0F-WLDB2327TX
Date of Issue : Aug. 30, 2016
Test Standards : 47 CFR Part 15 Subpart C (2015)
Test result : PASS

Prepared for:

DONGGUAN SMART HERO ELECTRONIC PRODUCTS CO LTD
118 LI XIANG ROAD WEST, SHUI PING VILLAGE, DALANG,
DONGGUAN, GUANGDONG, CHINA.

Prepared by:

Centre Testing International Group Co., Ltd.
Hongwei Industrial Zone, Bao'an 70 District,
Shenzhen, Guangdong, China
TEL: +86-755-3368 3668
FAX: +86-755-3368 3385

Tested By:

Tom-chen
Tom chen (Test Project)

Compiled by:

Kevin Yang
Kevin yang (Project Engineer)

Reviewed by:

Kevin Ian
Kevin Ian (Reviewer)

Approved by:

Sheek Luo
Sheek Luo (Lab supervisor)

Aug. 30, 2016

Check No.: 2447637977

2 Version

Version No.	Date	Description
00	Aug. 12, 2016	Original
01	Aug. 30, 2016	Revise product Model

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	N/A
Field Strength of the Fundamental Signal	47 CFR Part 15 Subpart C Section 15.231 (b)	ANSI C63.10-2013	PASS
Spurious Emissions	47 CFR Part 15 Subpart C Section 15.231 (b)/15.209	ANSI C63.10-2013	PASS
20dB Bandwidth	47 CFR Part 15 Subpart C Section 15.231 (c)	ANSI C63.10-2013	PASS
Deactivated Time	47 CFR Part 15 Subpart C Section 15.231 (a)	ANSI C63.10-2013	PASS

Remark:

The tested samples and the sample information are provided by the client.

N/A: Not applicable for test device.

Model No.: 2324TX, 2325TX, 2326TX, 2327TX

Only the model 2324TX, 2326TX was tested, since the PCBA were identical for the above models, with difference being color of appearance, and 2326TX, 2327TX have Metal enclosure.

This test report (Ref. No.: EED32I001928R1) is only valid with the original test report (Ref. No.: EED32I001928).

Review this report and original report, this report just different product Model.

So all the test please refer to original report EED32I001928.

This testing report displaces the original report of No. EED32I001928, and the original one No. EED32I001928 was invalid since the date of this testing report released.

4 Contents

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENTS	4
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	5
5.2 GENERAL DESCRIPTION OF EUT	5
5.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	5
5.4 TEST ENVIRONMENT AND MODE	5
5.5 DESCRIPTION OF SUPPORT UNITS	5
5.6 TEST LOCATION	6
5.7 TEST FACILITY	6
5.8 DEVIATION FROM STANDARDS	7
5.9 ABNORMALITIES FROM STANDARD CONDITIONS	7
5.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
5.11 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	7
6 EQUIPMENT LIST	8
7 TEST RESULTS AND MEASUREMENT DATA	10
7.1 ANTENNA REQUIREMENT	10
7.2 RADIATED TRANSMITTER EMISSIONS	11
7.2.1 Duty Cycle	11
7.2.2 Radiated Emissions	14
7.3 20dB BANDWIDTH	23
7.4 DEACTIVATED TIME	24
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP	25
APPENDIX 2 PHOTOGRAPHS OF EUT	27

5 General Information

5.1 Client Information

Applicant:	DONGGUAN SMART HERO ELECTRONIC PRODUCTS CO LTD
Address of Applicant:	118 LI XIANG ROAD WEST, SHUI PING VILLAGE, DALANG, DONGGUAN, GUANGDONG, CHINA.
Manufacturer:	UNIVERSAL CONSUMER PRODUCTS
Address of Manufacturer:	2801 EAST BELTLINE NE, GRAND RAPIDS, MI 49525, USA
Factory:	DONGGUAN SMART HERO ELECTRONIC PRODUCTS CO LTD
Address of Factory:	118 LI XIANG ROAD WEST, SHUI PING VILLAGE, DALANG, DONGGUAN, GUANGDONG, CHINA.

5.2 General Description of EUT

Product Name:	WIRELESS DOOR CHIME PUSH BUTTON
Mode No.:	2324TX, 2325TX, 2326TX, 2327TX
Test Mode No.:	2324TX, 2326TX
Trade Mark:	N/A
EUT Primary Function:	The DOORBELL transmit a 315MHz ASK modulated signal to control the corresponding receiver
Power Supply:	3.0V DC (3.0V "CR2032" button battery)

5.3 Product Specification subjective to this standard

Frequency Range:	315MHz
Modulation Type:	ASK
Sample Type:	Portable production
Antenna Type:	Integral
Test voltage:	DC 3.0V
Sample Received Date:	Jul. 05, 2016
Sample tested Date:	Jul. 05, 2016 to Aug. 12, 2016

5.4 Test Environment and Mode

Operating Environment:	
Temperature:	24°C
Humidity:	52% RH
Atmospheric Pressure:	1010mbar
Test mode:	
TX mode:	Keep the EUT transmitted the continuous modulation test signal at the specific channel(s).

5.5 Description of Support Units

The EUT has been tested independently.

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

5.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2 .

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

5.8 Deviation from Standards

None.

5.9 Abnormalities from Standard Conditions

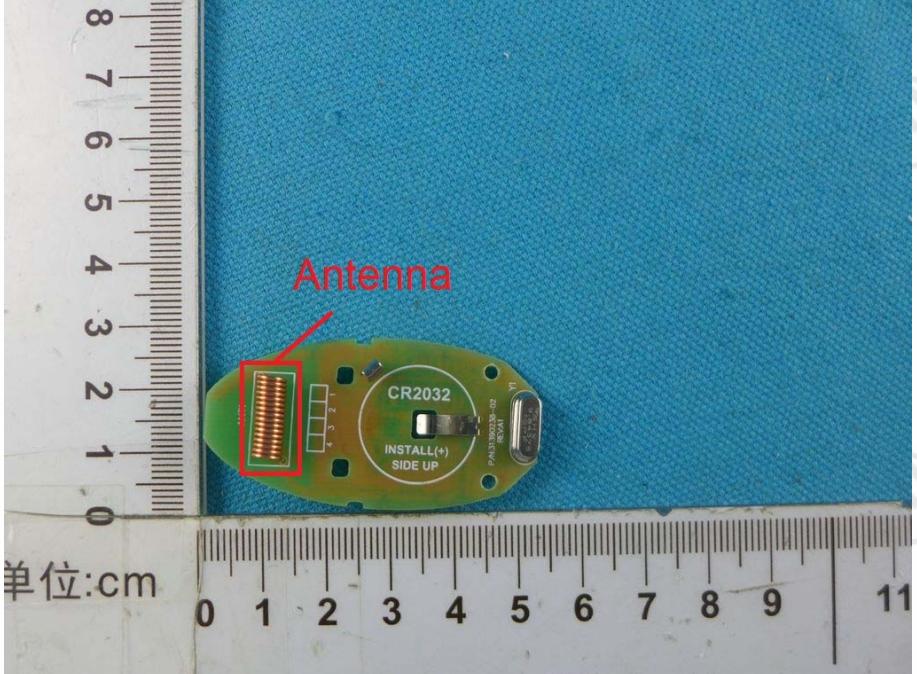
None.

5.10 Other Information Requested by the Customer

None.

5.11 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9×10^{-8}
2	RF power, conducted	0.31dB (30MHz-1GHz)
		0.57dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
		4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
		3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%


6 Equipment List

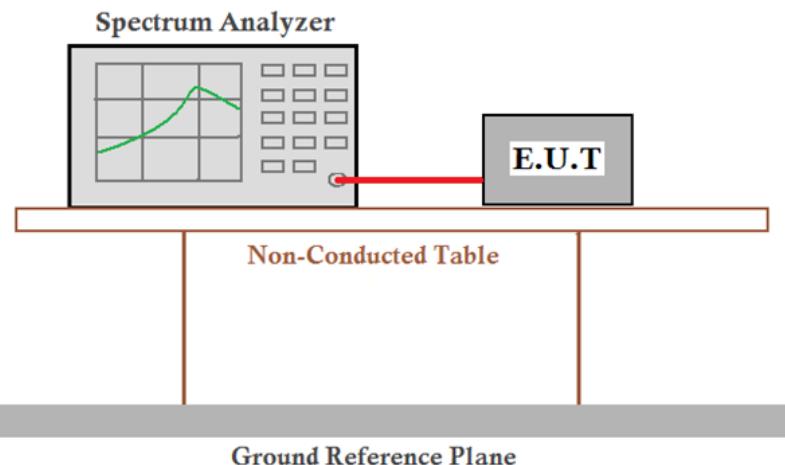
3M Semi/full-anechoic Chamber					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	---	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112	---	01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	---	01-12-2016	01-11-2017
High-pass filter	MICRO-TRONICS	SPA-F-63029-4	---	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	---	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001	---	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002	---	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001	---	01-12-2016	01-11-2017

RF Conducted test					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	---	01-12-2016	01-11-2017
High-pass filter	MICRO-TRONICS	SPA-F-63029-4	---	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	---	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001	---	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002	---	01-12-2016	01-11-2017

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203
<p>15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.</p> <p>Result: PCB antenna is used. It is permanently attached antenna and not be replaced by user.</p>	

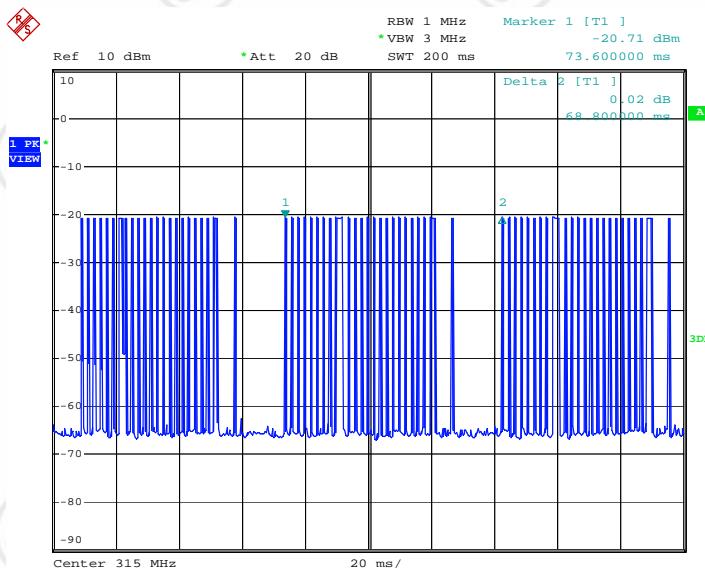

7.2 Radiated Transmitter Emissions

7.2.1 Duty Cycle

Test Requirement: 47 CFR Part 15C Section 15.35 (c)

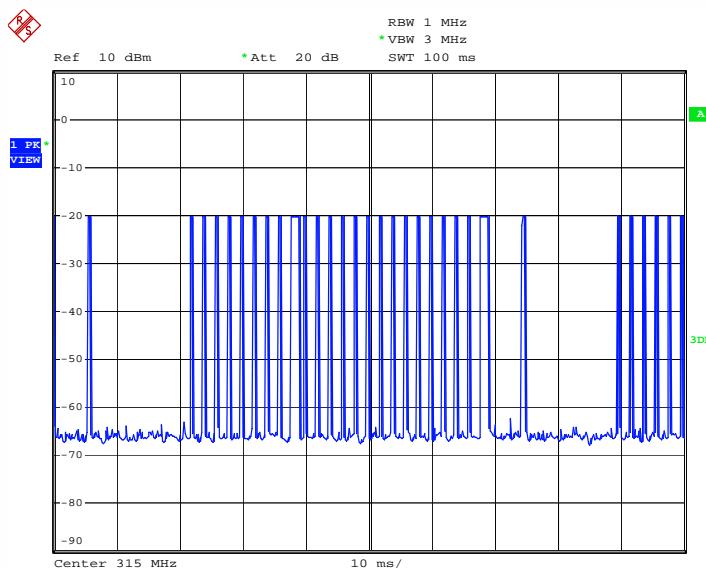
Test Method: ANSI C63.10

Test Setup:

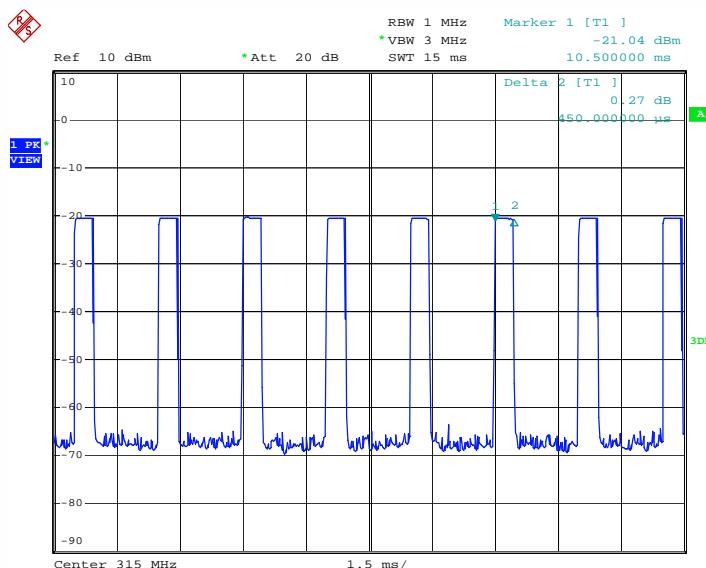


Limit: N/A

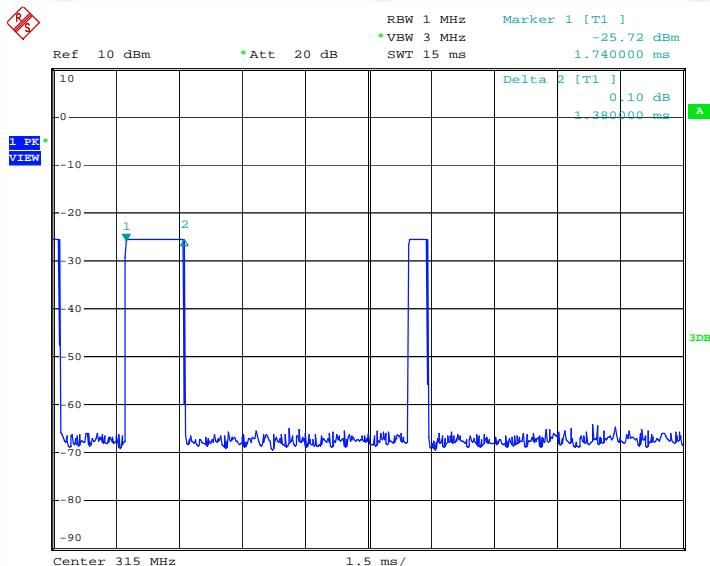
Test Mode: TX mode


Instruments Used: Refer to section 6 for details

Test plot as follows:



Date: 10.AUG.2016 17:37:21


Time slot:

Date: 10.AUG.2016 17:36:24

Date: 10.AUG.2016 17:33:57

Date: 10.AUG.2016 17:38:15

Average factor:

Calculate Formula:	Average value=Peak value + PDCF(in 100ms time frame)
	PDCF=20 log(Duty cycle in 68.80ms time frame)
	Duty cycle(in 100ms time frame)= T on time / 68.80ms
Calculated average factor:	Ton time (the worst case) = (23*0.45+2*1.38)ms=13.11ms
	PDCF(in 68.80ms time frame) = 20 log(13.11/68.80)=-14.3dB

7.2.2 Radiated Emissions

Test Requirement: 47 CFR Part 15C Section 15.231(b) and 15.209

Test Method: ANSI C63.10

Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber)

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
	Peak	1MHz	10Hz	Average

Test Setup:

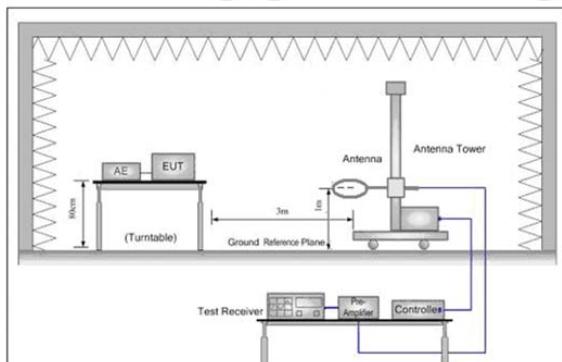


Figure 1. Below 30MHz

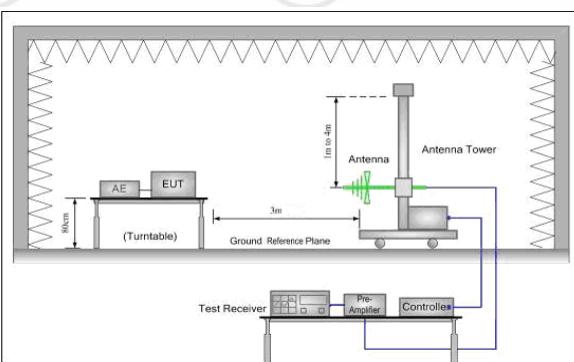


Figure 2. 30MHz to 1GHz

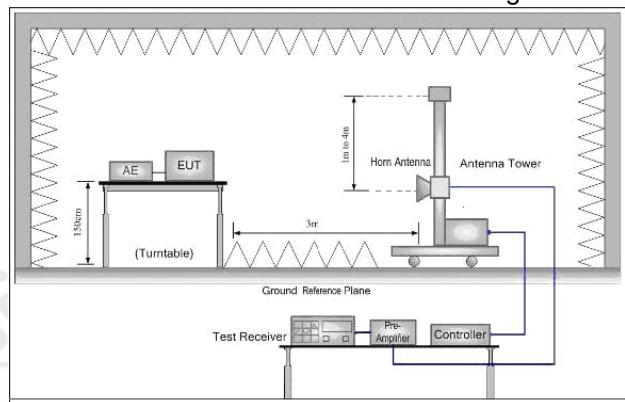


Figure 3. Above 1GHz

Test Procedure:**Below 1GHz test procedure as below:**

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,middle channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:
(Spurious)

Frequency	Limit (dB μ V/m @3m)	Detector
30MHz - 10 th harmonics	55.62	Average
	75.62	Peak

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Limit:
(Fundamental)

Frequency	Limit (dB μ V/m @3m)	Detector
315MHz	75.62	Average
	95.62	Peak

Test Mode:

TX mode

**Instruments
Used:**

Refer to section 6 for details

Test Results:

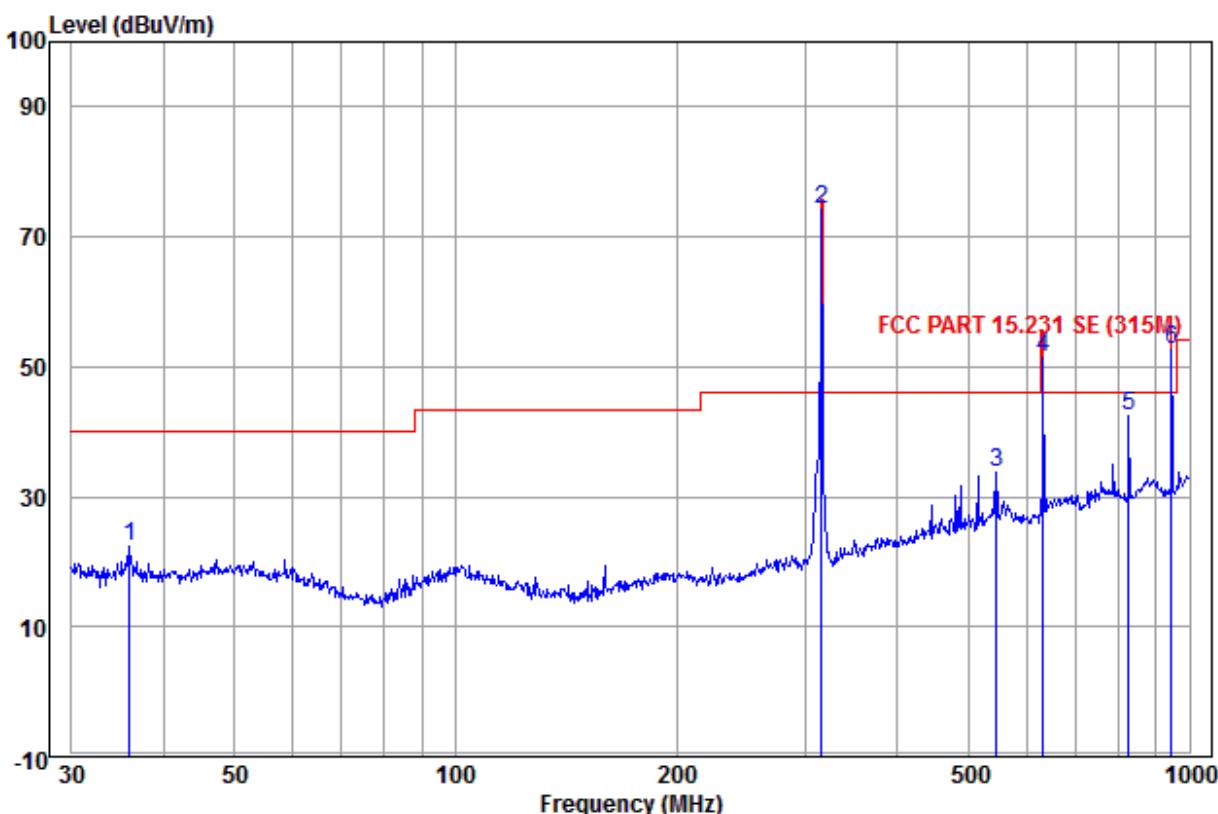
PASS

Test data**Fundamental Emission****2324TX:**

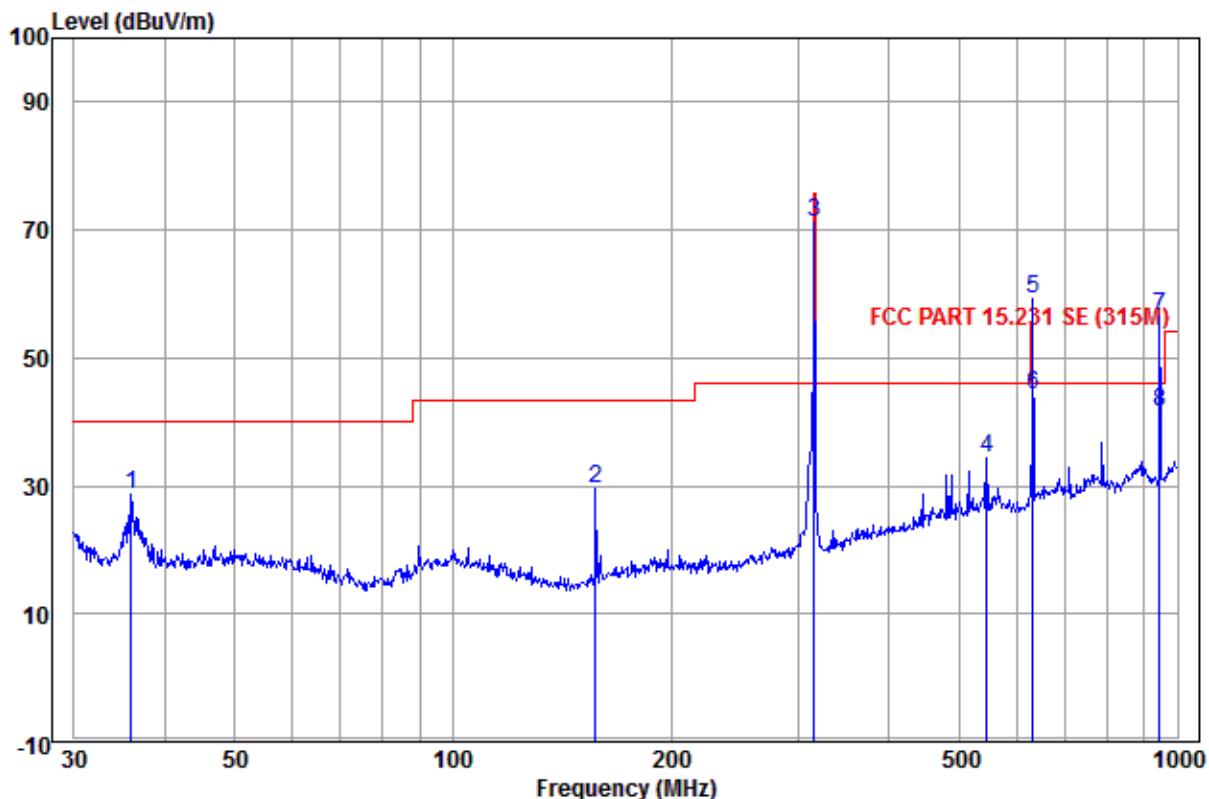
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Read Level (dB μ V)	Peak Level (dB μ V/m)	Average Limit (dB μ V/m)	Over Limit (dB)	Polarization
315	13.92	2.49	57.73	74.14	75.62	-1.48	Horizontal
315	13.92	2.49	54.96	71.37	75.62	-4.25	Vertical

2326TX:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Read Level (dB μ V)	Peak Level (dB μ V/m)	Average Limit (dB μ V/m)	Over Limit (dB)	Polarization
315	13.92	2.49	45.72	62.13	75.62	-13.49	Horizontal
315	13.92	2.49	42.44	58.85	75.62	-16.77	Vertical

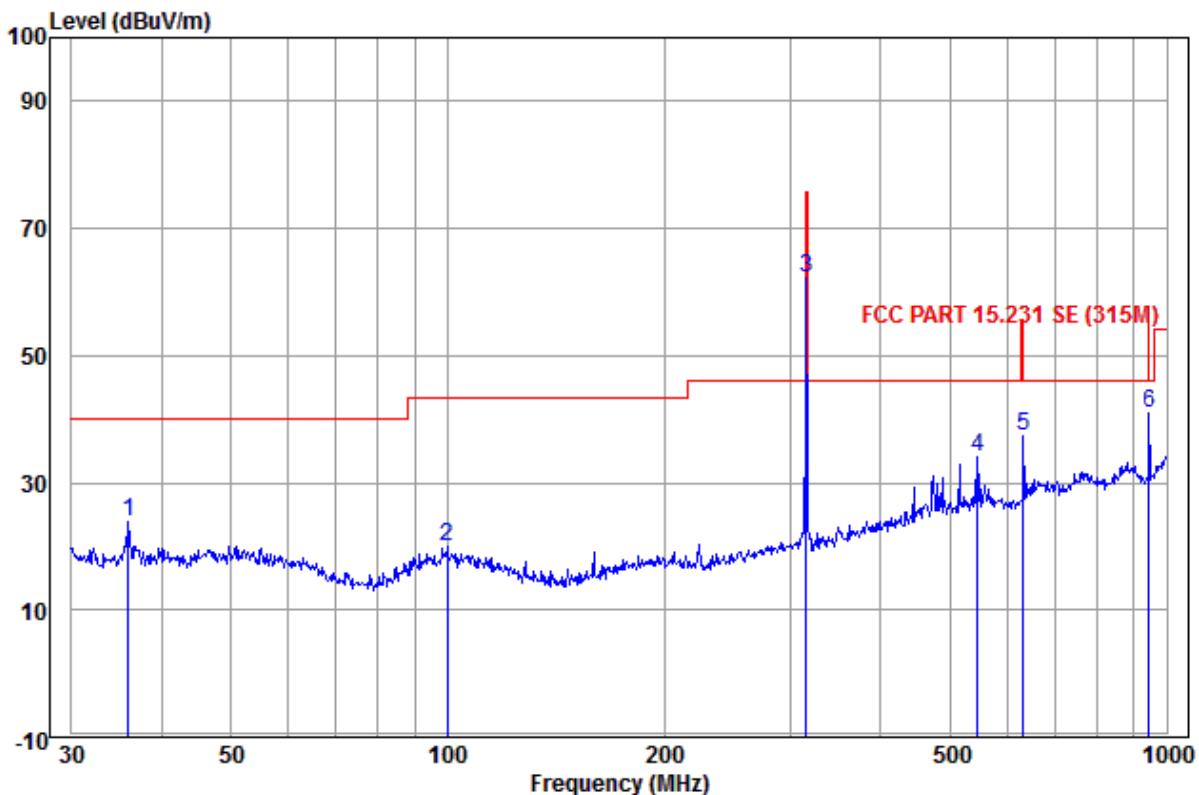

Remark: As shown in this section, for field strength of the fundamental signal measurements, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above. So, only the peak value is measured.

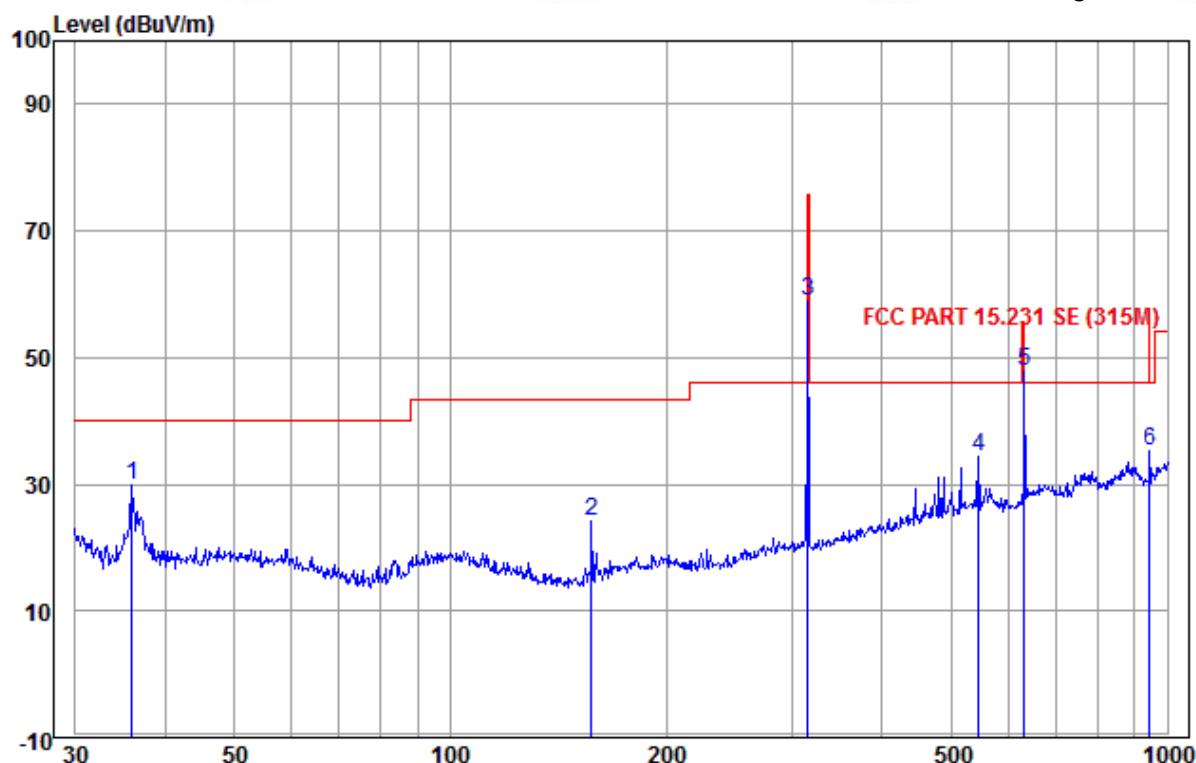
Spurious Emissions


30MHz-1GHz

Peak Detector:

2324TX:


Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Read Level (dBuV)	Peak Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
36.001	13.58	0.77	8.14	22.49	40.00 (QP)	-17.51	Horizontal
545.183	18.58	3.20	11.99	33.77	46.00 (QP)	-12.23	Horizontal
631.688	19.31	3.55	28.53	51.39	55.62 (AVG)	-4.23	Horizontal
827.493	21.77	4.03	16.70	42.50	46.00 (QP)	-3.50	Horizontal
945.440	22.40	4.32	25.79	52.51	55.62 (AVG)	-3.11	Horizontal


Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Read Level (dBuV)	Peak Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
36.001	13.58	0.77	14.40	28.75	40.00 (QP)	-11.25	Vertical
157.559	10.02	1.69	17.76	29.47	43.50 (QP)	-14.03	Vertical
545.183	18.58	3.20	12.51	34.29	46.00 (QP)	-11.71	Vertical

Average value:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Read Level (dBuV)	Peak Value (dBuV/m)	PDHF (from P.12)	Calculated Average value (dBuV/m)	Average Limit (dBuV/m)	Over Limit (dB)	Polarization
631.688	19.31	3.55	36.45	59.31	-14.30	45.01	55.62	-10.61	Vertical
945.440	22.40	4.32	29.95	56.67	-14.30	42.37	55.62	-13.25	Vertical

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Read Level (dBuV)	Peak Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
36.001	13.58	0.77	9.57	23.92	40.00 (QP)	-16.08	Horizontal
99.878	13.18	1.57	5.29	20.04	43.50 (QP)	-23.46	Horizontal
545.183	18.58	3.20	12.26	34.04	46.00 (QP)	-11.96	Horizontal
631.688	19.31	3.55	14.58	37.44	55.62 (AVG)	-18.18	Horizontal
945.440	22.40	4.32	14.35	41.07	55.62 (AVG)	-14.55	Horizontal

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Read Level (dBuV)	Peak Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
36.001	13.58	0.77	15.37	29.72	40.00 (QP)	-10.28	Vertical
157.559	10.02	1.69	12.60	24.31	43.50 (QP)	-19.19	Vertical
545.183	18.58	3.20	12.46	34.24	46.00 (QP)	-11.76	Vertical
631.688	19.31	3.55	24.91	47.77	55.62 (AVG)	-7.85	Vertical
945.440	22.40	4.32	8.42	35.14	55.62 (AVG)	-20.48	Vertical

Report No. : EED32I001928R1

Page 21 of 31

Above 1GHz
2324TX:

Peak value:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dB μ V)	Level (dB μ V/m)	Average Limit (dB μ V/m)	Over Limit (dB)	Polarization
1764.712	31.34	3.05	34.46	49.64	49.57	55.62	-6.05	Horizontal
2520.728	32.78	4.59	34.41	52.45	55.41	55.62	-0.21	Horizontal
3147.870	33.47	5.59	34.52	50.97	55.51	55.62	-0.11	Horizontal
2837.161*	33.34	5.29	34.47	48.00	52.16	54.00	-1.84	Horizontal
3779.099*	32.96	5.48	34.58	47.19	51.05	54.00	-2.95	Horizontal
1573.520*	31.01	2.89	34.61	54.68	53.97	54.00	-0.03	Vertical

Average value:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Peak Value (dB μ V/m)	PDCF (from P.12)	Calculated Average value (dB μ V/m)	Average Limit (dB μ V/m)	Over Limit (dB)	Polarization
1777.406	31.36	3.06	34.45	55.89	-14.30	41.59	55.62	-14.03	Vertical
1889.051	31.54	3.15	34.37	64.39	-14.30	50.09	55.62	-5.53	Vertical
2520.728	32.78	4.59	34.41	64.11	-14.30	49.81	55.62	-5.81	Vertical
3153.515	33.46	5.59	34.52	62.94	-14.30	48.64	55.62	-6.98	Vertical
2203.762*	32.15	3.80	34.35	54.60	-14.30	40.30	54.00	-13.70	Vertical
2837.161*	33.34	5.29	34.47	61.30	-14.30	47.00	54.00	-7.00	Vertical

2326TX:

Peak value:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dB μ V)	Level (dB μ V/m)	Average Limit (dB μ V/m)	Over Limit (dB)	Polarization
1889.051	31.54	3.15	34.37	49.11	49.43	55.62	-6.19	Horizontal
2203.762*	32.15	3.80	34.35	48.75	50.35	54.00	-3.65	Horizontal
3779.099*	32.96	5.48	34.58	47.54	51.40	54.00	-2.60	Horizontal
1573.520*	31.01	2.89	34.61	52.10	51.39	54.00	-2.61	Vertical
3779.099*	32.96	5.48	34.58	45.85	49.71	54.00	-4.29	Vertical

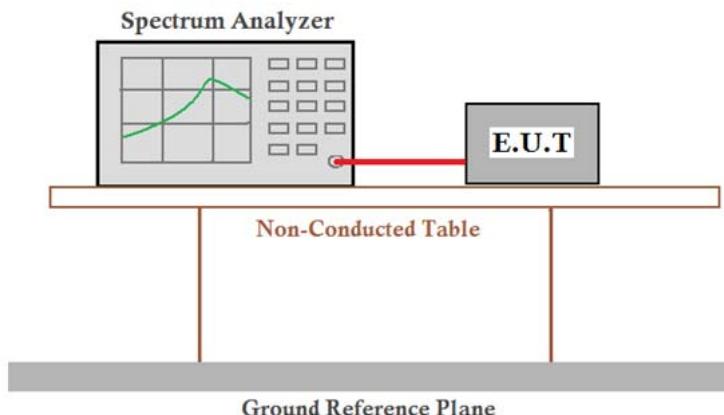
Average value:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Peak Value (dB μ V/m)	PDCF (from P.12)	Calculated Average value (dB μ V/m)	Average Limit (dB μ V/m)	Over Limit (dB)	Polarization
2520.728	32.78	4.59	34.41	58.32	-14.30	44.02	55.62	-11.60	Horizontal
3153.515	33.46	5.59	34.52	59.53	-14.30	45.23	55.62	-10.39	Horizontal
2837.161*	33.34	5.29	34.47	60.72	-14.30	46.42	54.00	-7.58	Horizontal
1889.051	31.54	3.15	34.37	59.14	-14.30	44.84	55.62	-10.78	Vertical
2520.728	32.78	4.59	34.41	60.28	-14.30	45.98	55.62	-9.64	Vertical
3153.515	33.46	5.59	34.52	58.04	-14.30	43.74	55.62	-11.88	Vertical
2837.161*	33.34	5.29	34.47	62.99	-14.30	48.69	54.00	-5.31	Vertical

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

$$\text{Final Test Level} = \text{Receiver Reading} - \text{Correct Factor}$$


$$\text{Correct Factor} = \text{Preamplifier Factor} - \text{Antenna Factor} - \text{Cable Factor}$$
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) ** The emission is falling in FCC restricted band of section 15.205, the general limit of 15.209 shall be used instead of the limit of spurious emission under 15.231(b)
- 4) Scan from 9kHz to 4GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

7.3 20dB Bandwidth

Test Requirement: 47 CFR Part 15C Section 15.231 (c)

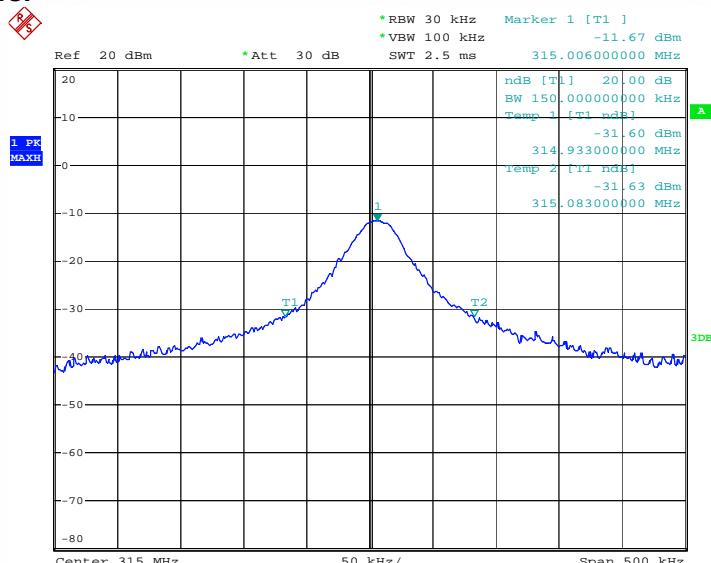
Test Method: ANSI C63.10

Test Setup:

Limit:

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Test Mode: TX mode

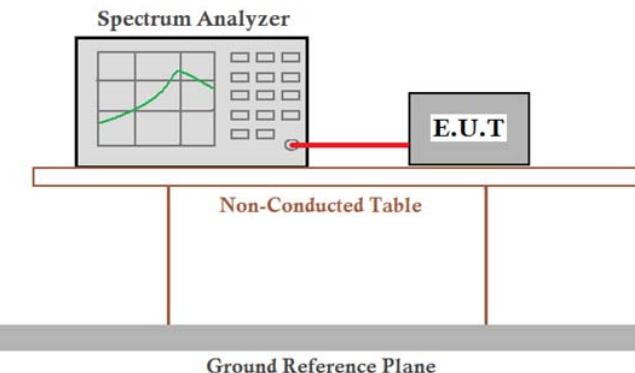

Instruments Used: Refer to section 6 for details

Test Results: Pass

Test data

20dB bandwidth (kHz)	Limit (kHz)	Results
150	787.5	Pass

Test plot as follows:


Date: 10.AUG.2016 14:52:05

7.4 Deactivated Time

Test Requirement: 47 CFR Part 15C Section 15.231 (a)

Test Method: ANSI C63.10

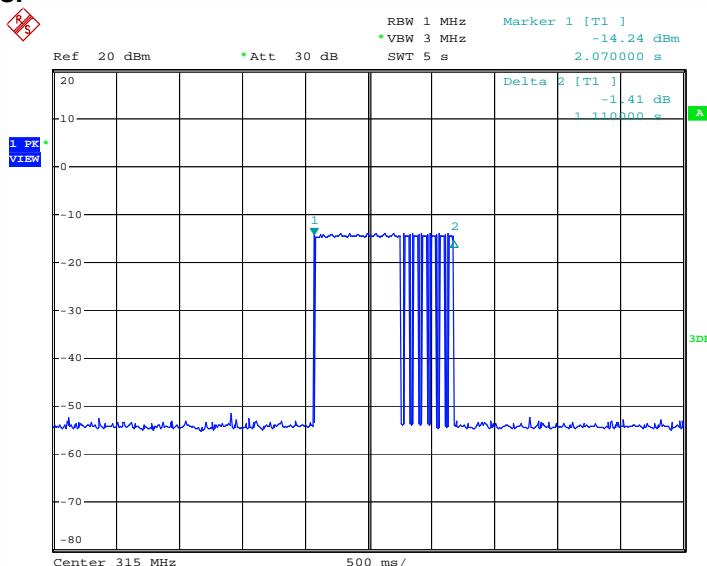
Test Setup:

Limit: Automatically deactivate the transmitter within 5 seconds of being released

Test Mode: Press and release the button immediately with the normal sample

Instruments Used: Refer to section 6 for details

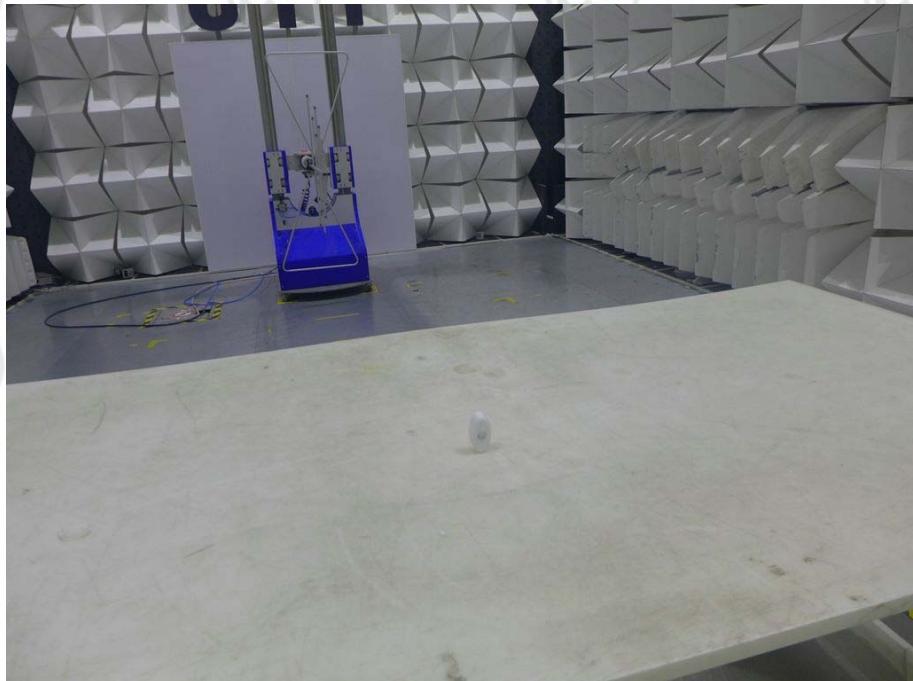
Test Results: **PASS**

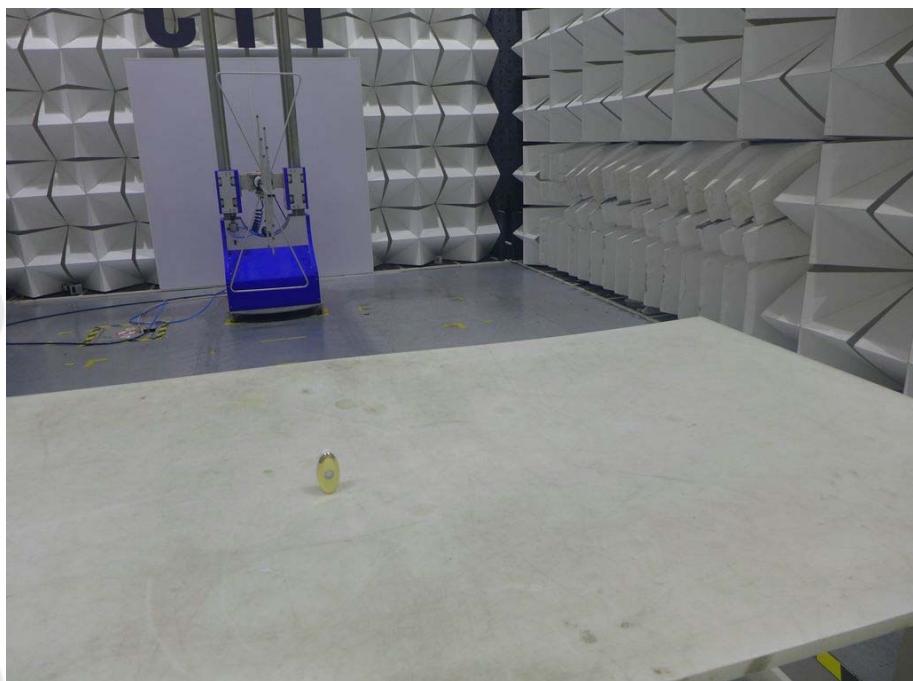

Remark:

- 1) Only manually switching and no automatic activation.
- 2) No Periodic transmission
- 3) No emergencies function.
- 4) No transmission of setup-information for security system exceed transmission during limit in (a)(1) and (a)(2).

Test data:

Test item	Test value	Limit (s)	Results
Manually press button	1.11s	≤5s	Pass


Test plot as follows:

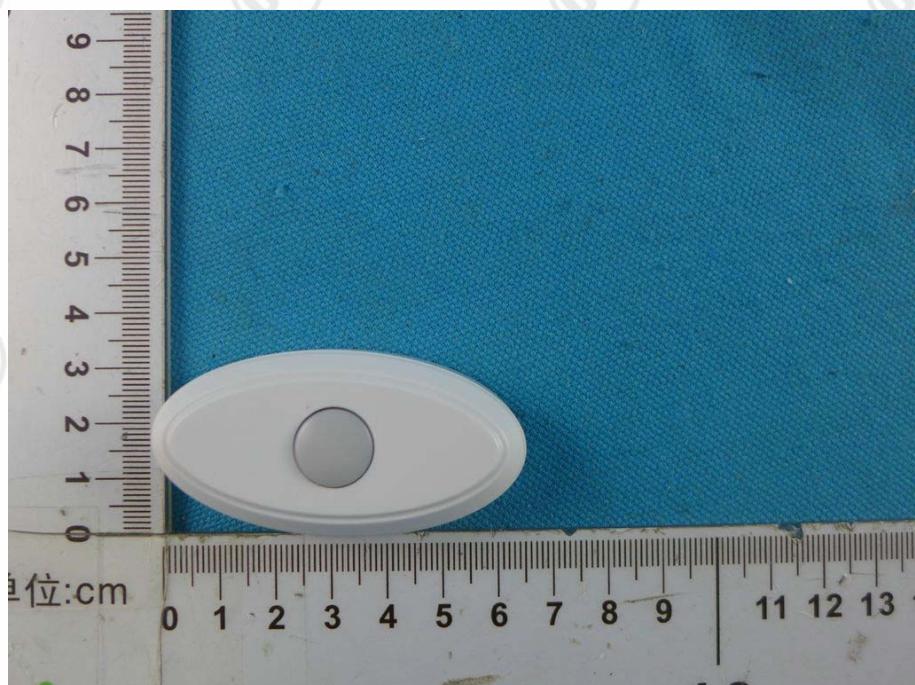

Date: 10.AUG.2016 14:55:59

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Test Model No.: 2324TX, 2326TX

Radiated emission Test Setup for 2324TX -1(30MHz~1GHz)

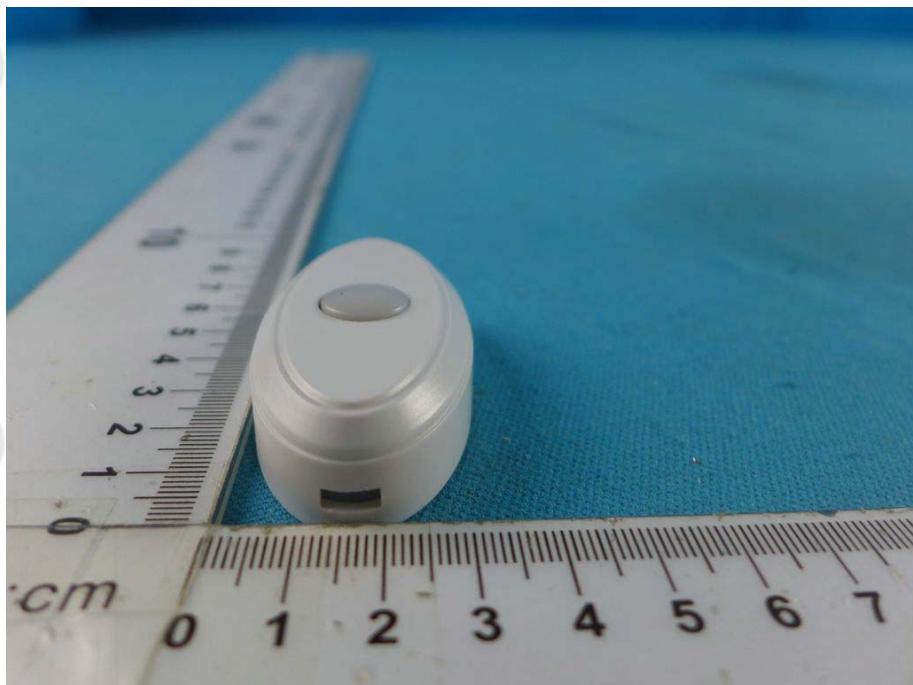
Radiated emission Test Setup for 2326TX -2(30MHz~1GHz)


Radiated spurious emission Test Setup for 2324TX -3(Above 1GHz)

Radiated spurious emission Test Setup for 2326TX -4(Above 1GHz)

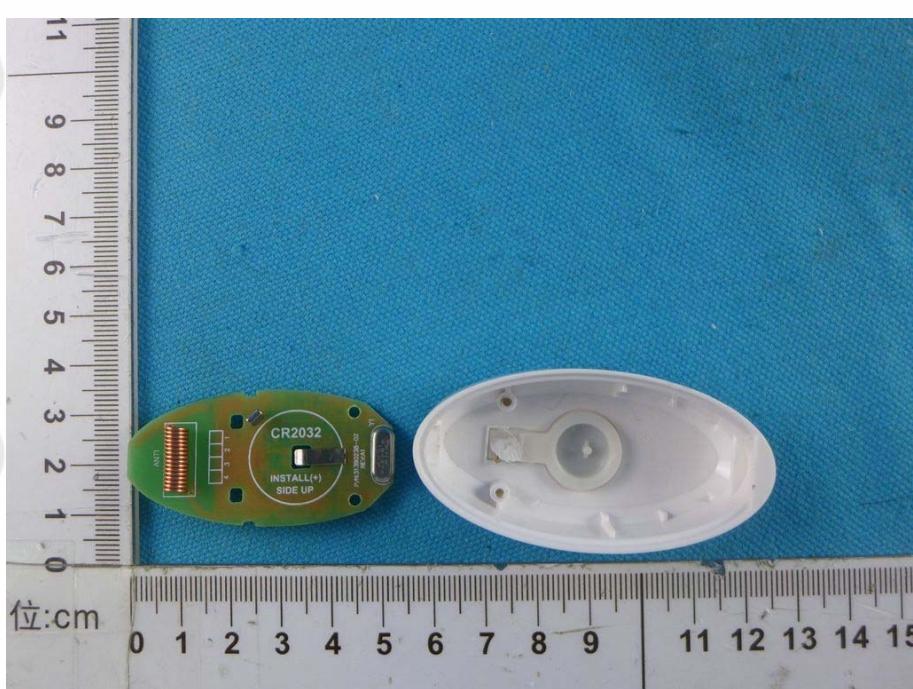
APPENDIX 2 PHOTOGRAPHS OF EUT

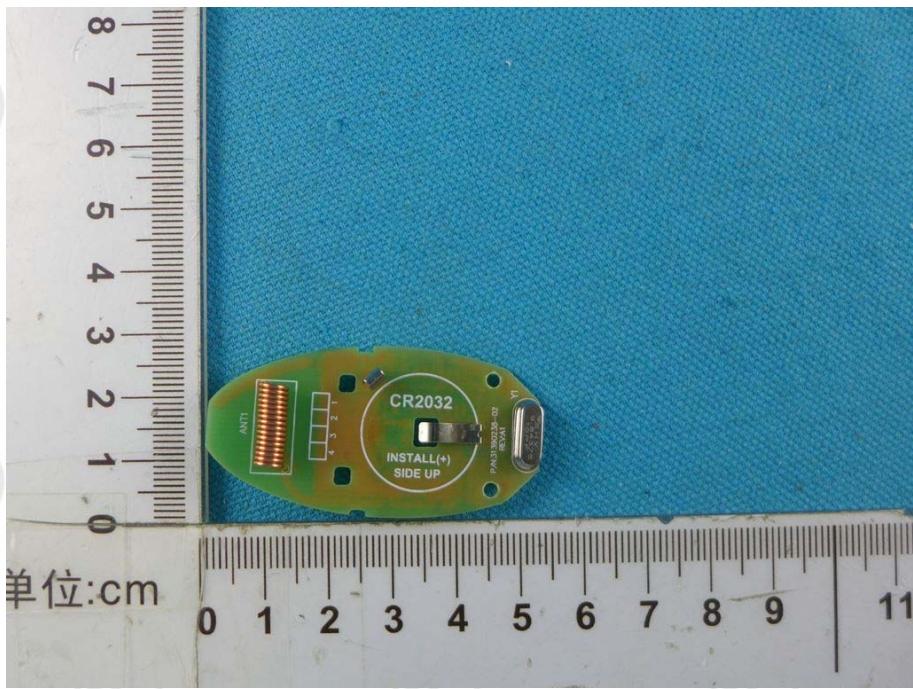
Test mode No.: 2324TX


View of Product-1

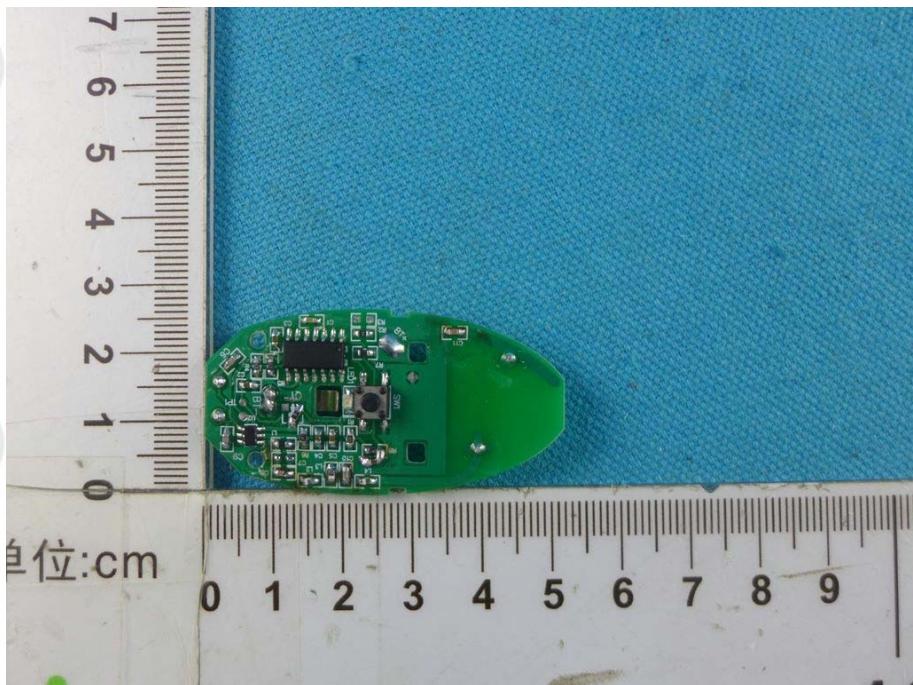

View of Product-2

View of Product-3


View of Product-4



View of Product-5



View of Product-6

View of Product-9

View of Product-10

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.