

849 NW STATE ROAD 45
NEWBERRY, FL 32669 USA
PH: 888.472.2424 OR
352.472.5500
FAX: 352.472.2030
EMAIL: INFO@TIMCOENGR.COM
[HTTP://WWW.TIMCOENGR.COM](http://WWW.TIMCOENGR.COM)

RF Exposure Evaluation Report

APPLICANT	PRESIDENT ELECTRONICS USA
	1104 COLLIER CENTER WAY SUITE 206 NAPLES FL 34110 USA
FCC ID	UT411JOHNN3
MODEL NUMBER	UT411 JOHNN3
PRODUCT DESCRIPTION	CB TRANSCEIVER
STANDARD APPLIED	CFR 47 Part 2.1091
PREPARED BY	Cory Leverett

We, TIMCO ENGINEERING, INC. would like to declare that the device has been evaluated in accordance with 47 CFR Part 2.1091 and meets the requirements.

The attached report shall not be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

GENERAL REMARKS

Attestations

This equipment has been evaluated in accordance with the standards identified in this report. To the best of my knowledge and belief, these evaluations were performed using the procedures described in this report.

I attest that the necessary evaluations were made, under my supervision, at:

**Timco Engineering Inc.
849 NW State Road 45
Newberry, FL 32669**

Authorized Signatory Name:

Sid Sanders

Engineering Project Manager

Date:

RF Exposure Requirements

General information

Device type: CB TRANSCEIVER

Devices that operate under Part 90 of this chapter are subject to RF exposure evaluation prior to equipment authorization or use.

Antenna

The manufacturer does not specify an antenna, but a typical antenna has a gain of 0 dBi.

Configuration	Antenna p/n	Type	Max. Gain (dBi)
Fixed mounted	Any	omni	0

Operating configuration and exposure conditions:

The conducted output power is shown in the table below. Typical use qualifies for a maximum duty cycle factor of 100%.

Operation: A typical installation consists of an antenna system with a 10 meter coaxial cable of the type RG 213/ U type which has a loss as follows;

Nom. Attenuation for RG 213/U:

Frequency MHz	Attenuation per 100ft. dB
1	.27
10	.55
50	1.3
100	1.9
200	2.7
400	4.1
700	6.5
900	7.6
1000	8.0
4000	21.5

MPE Calculation:

The minimum separation distance is calculated as follows:

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$

$$\text{Power density: } P_d(mW/cm^2) = \frac{E^2}{3770}$$

The limit for general uncontrolled exposure environment is shown in FCC rule Part 1.11310, Table 1.

Minimum Separation Distance for Mobile or Fixed Devices
General Population/Uncontrolled Exposure

Insert values in yellow highlighted boxes to determine Minimum Separation Distance

Max Power	4	W	equals	Max Power	4000	mW
Duty Cycle	50	%	equals	Duty Factor	0.5	numeric
Antenna Gain	3	dB	equals	Gain numeric	1.995262	numeric
Coax Loss	1	dB		Gain - Coax Loss	1.584893	numeric
Power Density	0.2	mW/cm ²				

Enter power Density from the chart to the right

Frequency 27.4 MHz

Rule Part 1.1310, Table 1 (B)

Frequency rang	Power den	Enter this value
MHz	mW/cm ²	mW/cm ²
0.3-1.34	100	100
1.34-30	180/f ²	0.2
30-300	0.2	0.2
300-1,500	f/1500	0.0
1,500-100,000	1	1

f = frequency in MHz

Minimum Separation Distance	36 cm	0.36 m
------------------------------------	--------------	---------------

Minimum Separation in Inches 13.97106 Inches

Applicant: PRESIDENT ELECTRONICS USA

FCC ID: UT411JOHNN3

Report: P\President\2245IC15\2245IC15TestReport.docx