1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China.

Tel: +86-755-27559792

Report No.: GTI201505167F-5 Fax: +86-755-86116468 Page 1 of 107

TEST REPORT

Product Name: Mobile Phone

Trademark: elementt

Model/Type reference: Torch ES-F641

Listed Model(s) /

FCC ID...... 2AEMYESF641

ANSI C95.1-1999

Test Standards 47CFR §2.1093

KDB 447498

Applicant: South Mobile Ltda

Date of Receipt Apr. 15, 2015

Date of Test Date...... Apr. 28, 2015 - Apr. 29, 2015

Data of issue. Apr. 30, 2015

Test result	Pass *
-------------	--------

^{*} In the configuration tested, the EUT complied with the standards specified above

GENERAL DESCRIPTION OF EUT Equipment: Mobile Phone Model Name: Torch ES-F641 Manufacturer: South Mobile Ltda Avenida Apoquindo 6410, Of. 803. Las Condes. Santiago -Manufacturer Address: Chile DC 3.7V form 1700mAh by rechargeable battery or Power Rating: Input:100-240V~,50/60Hz DC 5.0V form adapter Output: 5.0V===1000mA

Compiled By:

iomus Morgan

Report No.: GTI201505167F-5

(Thomas Morgan)

Reviewed By:

(Tony Wang)

Approved By:

(Walter Chen)

This test report consists of 107 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by GTI. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of compiler, reviewer and approver. Any objections must be raised to GTI within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Table of Contents	Page
1. SUMMARY	
1.1 Test Standards	
1.2 SUMMARY OF MAXIMUM SAR VALUE	
1.3 Test Facility	
1.3.1 Address of the test laboratory	
1.3.2 Laboratory accreditation	
1.4 Measurement Uncertainty (300MHz-3GHz)	
1.5 System Check Uncertainty	
2. GENERAL INFORMATION	
2.1 Environmental conditions	
2.2 GENERAL DESCRIPTION OF EUT	
2.3 DESCRIPTION OF TEST MODES	
2.4 Measurement Instruments List	
3. SAR MEASUREMENTS SYSTEM CONFIGURATION	
3.1 SAR MEASUREMENT SET-UP	
3.2 DASY5 E-FIELD PROBE SYSTEM	
3.3 PHANTOMS	
3.4 DEVICE HOLDER	
3.5 SCANNING PROCEDURE	
3.6 DATA STORAGE AND EVALUATION	
4. TISSUE SIMULATING LIQUID	
4.1 THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	
4.2 TISSUE CALIBRATION RESULT	
5. SYSTEM CHECK	
6. EUT TEST POSITION	
6.1 Define Two Imaginary Lines on the Handset	
6.2 Cheek Position	
6.3 TITLE POSITION	
6.4 Body Worn Position	
7. MEASUREMENT PROCEDURES	
7.1 CONDUCTED POWER MEASUREMENT	
7.2 SAR MEASUREMENT	
7.2.1 GSM Test Configuration	
7.2.2 WCDMA Test Configuration	
7.2.3 WIFI Test Configuration	
8. TEST CONDITIONS AND RESULTS	
8.1 CONDUCTED POWER RESULTS	
8.2 Antenna Location	
8.3 TEST RESULTS	
8.3.1 SAR Test Results Summary	
8.3.3 Simultaneous SAR Evaluation	
9. SYSTEM CHECK RESULTS	
10. SAR TEST GRAPH RESULTS	
11. CALIBRATION CERTIFICATE	
11.1 PROBE CALIBRATION CERTIFICATE ES3DV3 (3292)	
11.2 PROBE CALIBRATION CERTIFICATE D835V2 (4D134)	
11.3 PROBE CALIBRATION CERTIFICATE D1900V2 (5d150)	
11.4 PROBE CALIBRATION CERTIFICATE D2450V2 (884)	
11.5 DAE CALIBRATION CERTIFICATE DAE4 (1315)	
12. EUT TEST PHOTO 13. PHOTOGRAPHS OF FUT CONSTRUCTIONAL	
IS PHOTOGRAPHS OF FULLONSTRUCTIONAL	107

1. SUMMARY

1.1 Test Standards

<u>IEEE Std C95.1, 1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

<u>IEEE Std 1528™-2003:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

<u>FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation:</u> Portable Devices

<u>KDB 447498 D01 Mobile Portable RF Exposure v05r02:</u> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r03: SAR Measurement Requirements for 100 MHz to 6 GHz

<u>KDB865664 D02 SAR Reporting v01r01:</u> RF Exposure Compliance Reporting and Documentation Considerations

<u>KDB248227 D01 802.11 Wi-Fi SAR v02:</u> SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS <u>KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01r02:</u> SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D06 Hot Spot SAR v02: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB941225 D01 3G SAR Procedures v03: 3G SAR MEAUREMENT PROCEDURES

1.2 Summary of Maximum SAR Value

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Head SAR Configuration

			Limit SAR _{1g} 1.6 W/kg				
Mode Test Channel Position /Frequency(MHz)		Highest Tested 1g-SAR(W/Kg)	Highest Scaled Maximum SAR(W/Kg)				
GSM 850	Right Cheek	190/836.6	0.390	0.421			
PCS 1900	Right Cheek	661/1880	0.597	0.722			
WCDMA Band II	Right Cheek	9400/1880	0.152	0.184			
WCDMA Band V	Right Cheek	4183/836.6	0.746	0.836			
WLAN2450	Left Cheek	6/2437	0.250	0.273			

Body Worn Configuration

Report No.: GTI201505167F-5

			Limit SAR _{1g} 1.6 W/kg				
Mode	Mode Test Channel Position /Frequency(MHz)		Highest Tested 1g-SAR(W/Kg)	Highest Scaled Maximum SAR(W/Kg)			
GSM 850	Rear Side	190/836.6	0.364	0.371			
PCS 1900	Rear Side	661/1880	1.07	1.156			
WCDMA Band II	Rear Side	9400/1880	0.690	0.835			
WCDMA Band V	Rear Side	4183/836.6	1.16	1.300			
WLAN2450	Rear Side	6/2437	0.386	0.421			

Highest Simultaneous transmission SAR Summary

Exposure Position	Transmission Combination	Highest Simultaneous Maximum SAR(W/Kg)
Head	WCDMA Band V+WLAN	1.093
Body-worn	WCDMA Band V+BT	1.508

Note:

- 1. This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1, and had been tested in accordance with measurement methods and procedures specified in IEEE 1528-2003 and the relevant KDB files.
- 2. This EUT owns G Sensor & ALS+PS Sensor, these sensor will not affect the RF characteristic, so no power reduction concerned in this report.

1.3 Test Facility

1.3.1 Address of the test laboratory

Shenzhen General Testing & Inspection Technology Co., Ltd.

Add: 1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9783A

The 3m alternate test site of Shenzhen GTI Technology Co., Ltd.EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Aug, 2011.

FCC-Registration No.: 214666

Shenzhen GTI Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 214666, Sep 19, 2011

1.4 Measurement Uncertainty (300MHz-3GHz)

No.	Error Description	Туре	Uncertai nty Value	Probably Distributi on	Div.	(Ci) 1g	(Ci) 10 g	Std. Unc. (1g)	Std. Unc. (10g)	Degre e of freedo m
			Measu	rement Syst	em					
1	Probe calibration	В	6.55%	N	1	1	1	6.55%	6.55%	∞
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.88%	3.88%	∞
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.58%	0.58%	∞
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.71%	2.71%	∞
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.58%	0.58%	∞
7	Readout Electronics	Α	0.30%	N	1	1	1	0.30%	0.30%	∞
8	Response Time	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
9	Integration Time	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
10	RF ambient conditions-noise	В	1.00%	R	$\sqrt{3}$	1	1	0.58%	0.58%	∞
11	RF ambient conditions-reflec tion	В	1.00%	R	$\sqrt{3}$	1	1	0.58%	0.58%	∞
12	Probe positioned mech. restrictions	В	0.80%	R	$\sqrt{3}$	1	1	0.46%	0.46%	∞
13	Probe positioning with respect to phantom shell	В	6.70%	R	$\sqrt{3}$	1	1	3.87%	3.87%	∞

Shenzhen General Testing & Inspection Technology Co., Ltd.

14	Max.SAR evaluation	В	2.00%	R	$\sqrt{3}$	1	1	1.15%	1.15%	∞
			Test S	ample Relat	ed	•			•	
15	Test sample positioning	Α	1.86%	N	1	1	1	1.86%	1.86%	8
16	Device holder uncertainty	Α	1.70%	N	1	1	1	1.70%	1.70%	∞
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.89%	2.89%	∞
			Phant	om and Set-	up					
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.31%	2.31%	8
19	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.4 3	1.85%	1.24%	8
20	Liquid conductivity (meas.)	А	2.50%	N	1	0.64	0.4 3	1.60%	1.08%	8
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.60	0.4 9	1.73%	1.41%	8
22	Liquid permittivity (meas.)	А	2.50%	N	1	0.60	0.4 9	1.50%	1.23%	8
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$	2	1	1	/	/	1	10.87%	10.63 %	8
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		1	R	K= 2	/	1	21.73%	21.27 %	∞

1.5 System Check Uncertainty

No.	Error Description	Туре	Uncertai nty Value	Probably Distributi on	Div.	(Ci) 1g	(Ci) 10 g	Std. Unc. (1g)	Std. Unc. (10g)	Degre e of freedo m
			Measu	rement Syste	em					
1	Probe calibration	В	6.55%	Ν	1	1	1	6.55%	6.55%	8
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	8
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.88%	3.88%	8
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.58%	0.58%	8
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.71%	2.71%	∞
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.58%	0.58%	∞
7	Readout Electronics	Α	0.30%	N	1	1	1	0.30%	0.30%	∞
8	Response Time	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
9	Integration Time	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
10	RF ambient conditions-noise	В	1.00%	R	$\sqrt{3}$	1	1	0.58%	0.58%	∞

Shenzhen General Testing & Inspection Technology Co., Ltd.

Page 8 of 107

Report No.: GTI201505167F-5

11	RF ambient conditions-reflec tion	В	1.00%	R	$\sqrt{3}$	1	1	0.58%	0.58%	∞
12	Probe positioned mech. restrictions	В	0.80%	R	$\sqrt{3}$	1	1	0.46%	0.46%	8
13	Probe positioning with respect to phantom shell	В	6.70%	R	$\sqrt{3}$	1	1	3.87%	3.87%	∞
14	Max.SAR evaluation	В	2.00%	R	$\sqrt{3}$	1	1	1.15%	1.15%	8
			Dip	ole Related						
15	Dev. of experimental dipole	В	5.50%	R	$\sqrt{3}$	1	1	3.18%	3.18%	∞
16	Dipole Axis to Liquid Dist.	В	2.00%	R	$\sqrt{3}$	1	1	1.15%	1.15%	∞
17	Input power & SAR drift	В	3.40%	R	$\sqrt{3}$	1	1	1.96%	1.96%	∞
			Phant	om and Setu	Jp					
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.31%	2.31%	∞
19	SAR correction	В	1.90%	R	$\sqrt{3}$	1	0.8	1.10%	0.92%	
20	Liquid conductivity (meas.)	Α	2.50%	N	1	0.7 8	0.7	1.95%	1.78%	8
21	Liquid permittivity (meas.)	А	2.50%	N	1	0.2 6	0.2 6	0.65%	0.65%	8
22	Temp. unc Conductivity	В	1.70%	R	$\sqrt{3}$	0.7 8	0.7 1	0.77%	0.70%	8
23	Temp. unc Permittivity	В	0.30%	R	$\sqrt{3}$	0.2 3	0.2 6	0.04%	0.05%	8
Combined standard uncertainty	$u_C = \sqrt{\sum_{t=1}^{28} c_t^2}$	_{ut} ²	1	1	/	/	/	10.65%	10.60 %	8
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		1	R	K=2	1	1	21.31%	21.20 %	∞

2. GENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	22°C
Relative Humidity:	35%-55 %
Air Pressure:	101 kPa

2.2 General Description of EUT

Product Name:	Mobile Phone
Model/Type reference:	Torch ES-F641
IMEI:	911438350850145
Test Device	Prototype
Power supply:	DC 3.7V from battery
Adapter information :	Model:C1000 Input: 100-240V, 50/60Hz 0.2A Output:DC5V===1000m A
Hardware version:	B808-MB-V0.2
Software version:	WCDMA-20150407
2G	
Operation Band:	GSM850, PCS1900
Supported Type:	GSM/GPRS/EGPRS
Power Class:	GSM850:Power Class 4 PCS1900:Power Class 1
Modulation Type:	GMSK for GSM/GPRS, GMSK /8PSK for EGPRS
GSM Release Version	R99
GPRS Multislot Class	12
EGPRS Multislot Class	12
WCDMA	
Operation Band:	FDD Band II & Band V
Power Class:	Power Class 3
Modulation Type:	QPSK for WCDMA/HSUPA/HSDPA
WCDMA Release Version:	R99
HSDPA Release Version:	Release 7, CAT14
HSUPA Release Version:	Release 6, CAT6
DC-HSUPA Release Version:	Not Supported

Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

WIFI Supported type: 802.11b/802.11g/802.11n(H20)/802.11n(H40) 802.11b: DSSS Modulation: 802.11g/802.11n(H20)/802.11n(H40): OFDM 802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz Operation frequency: 802.11n(H40): 2422MHz~2452MHz 802.11b/802.11g/802.11n(H20): 11 Channel number: 802.11n(H40): 7 Channel separation: 5MHz **FPC Antenna** Antenna type: 1.0dBi Antenna gain: Bluetooth 3.0 Version: Supported BT3.0 Modulation: GFSK, π/4DQPSK, 8DPSK Operation frequency: 2402MHz~2480MHz Channel number: 79 Channel separation: 1MHz **FPC Antenna** Antenna type: 1.0dBi Antenna gain: Bluetooth 4.0 Supported type: Version 4.0 for low Energy **GFSK** Modulation: 2402MHz to 2480MHz Operation frequency: Channel number: 40 Channel separation: 2 MHz **FPC Antenna** Antenna type: 1.0dBi Antenna gain:

2.3 Description of Test Modes

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power the EUT has been tested under typical operating condition and The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.4 Measurement Instruments List

Test Equipment	Manufacturer	Type/Model	Serial Number	Calibrated until
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	July 21,2015
E-field Probe	SPEAG	ES3DV3	3292	Aug 14,2015
System Validation Dipole 835V2	SPEAG	D835V2	4d134	July 23,2015
System Validation Dipole 1900V2	SPEAG	D1900V2	5d150	July 24,2015
System Validation Dipole 2450V2	SPEAG	D2450V2	884	Aug 31,2015
Dielectric Probe Kit	Agilent	85070E	US44020288	/
Power meter	Agilent	E4417A	GB41292254	Nov 25,2015
Power sensor	Agilent	8481H	MY41095360	Nov 25,2015
Power meter	Agilent	E4417A	GB41292255	Nov 25,2015
Power sensor	Agilent	8481H	MY41095361	Nov 25,2015
Network analyzer	Agilent	8753E	US37390562	Nov 24,2015
Dual Directional Coupler	Agilent	778D	50127	Nov 24,2015
Dual Directional Coupler	Agilent	772D	50348	Nov 24,2015
Power Amplifier	Mini-Circuits	ZHL-42W	13440021132	Nov 24,2015
Attenuator	PE	PE7005-10	E048	Nov 24,2015
Attenuator	PE	PE7005-3	E049	Nov 24,2015
Attenuator	Woken	WK0602-XX	E050	Nov 24,2015
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	112012	Oct 22,2015

Note: 1. The Cal. Interval was one year.

3. SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1 SAR MEASUREMENT SET-UP

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software.

An arm extension for accommodating the data acquisition electronics (DAE).

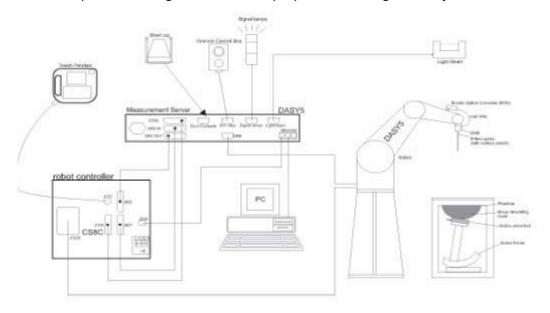
A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003. DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

3.2 DASY5 E-FIELD PROBE SYSTEM

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification:

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 10 MHz to 4 GHz;

Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity $\pm 0.2 \text{ dB}$ in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe

axis)

Dynamic Range 5 μ W/g to > 100 W/kg;

Linearity: ± 0.2 dB

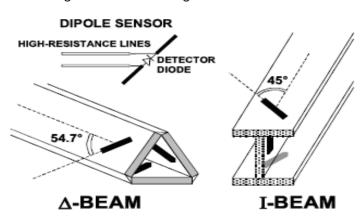
Dimensions Overall length: 337 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of Mobile Phones


Compatibility DASY3, DASY4, DASY52 SAR and higher,

EASY4/MRI

Isotropic E-Field Probe:

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

Report No.: GTI201505167F-5

3.3 PHANTOMS

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fibreglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

Report No.: GTI201505167F-5

SAM Twin Phantom

3.4 DEVICE HOLDER

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

3.5 SCANNING PROCEDURE

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe

(It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.) According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test dimeasurement point on the test	on, is smaller than the above, must be ≤ the corresponding levice with at least one

Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz.

Maximum zoom scan s	spatial reso	lution: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume	X V 7		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 17 of 107 Report No.: GTI201505167F-5

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g.

3.6 DATA STORAGE AND EVALUATION

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [W/kg], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)Ui = input signal of channel i (i = x, y, z)cf = crest factor of exciting field (DASY parameter) dcpi = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – field
probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H- fieldprobes :

With Vi = compensated signal of channel i

 $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ (i = x, y, z) (i = x, y, z)Normi = sensor sensitivity of channel i [mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

= local specific absorption rate in W/kg with SAR

Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m] σ = equivalent tissue density in g/cm3 ρ

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 4.2

4.1 The composition of the tissue simulating liquid

Ingredient	835MHz		1900N	ИНz	2450MHz	
(% Weight)	Head Body		Head	Body	Head	Body
Water	41.45	52.5	55.242	69.91	62.7	73.2
Salt	1.45	1.40	0.306	0.13	0.50	0.10
Sugar	56	45.0	0.00	0.00	0.00	0.00
Preventol	0.10	0.10	0.00	0.00	0.00	0.00
HEC	1.00	1.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	44.452	29.96	36.8	26.7

4.2 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using COMOSAR Dielectric Probe Kit and Agilent Network Analyzer 8753E.

Frequen	Frequency (MHz) Dielectric Parameters (±5%)			Tissue Temp [° C]	Test Date
835	head	εr 39.425-43.575 41.55			Apr.,28,2015
633	body	εr 52.44-57.96 55.92	δ[s/m] 0.9215-1.0185 0.95	22	Apr.,29,2015

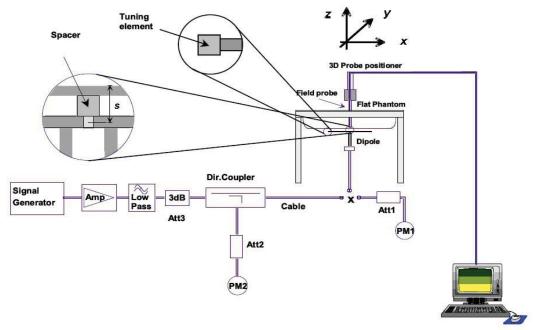
Frequen	Frequency (MHz) Dielectric Parameters (±5%)		Tissue Temp [° C]	Test Date	
1000	head	εr 38.00-42.00 39.78	38.00-42.00 1.33-1.47		Apr.,28,2015
1900	body	ε r 50.635-55.965 51.12	δ[s/m] 1.444-1.596 1.56	22	Apr.,29,2015

Frequency (MHz)		Dielectric Para	Dielectric Parameters (±5%)				
2450	head	Er 37.24-41.16 37.94			Apr.,28,2015		
2450	body	Er 50.065-55.335 50.73	δ[s/m] 1.8525-2.0475 2.01	22	Apr.,29,2015		

Shenzhen General Testing & Inspection Technology Co., Ltd.

1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China

Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn



5. System Check

The purpose of the system check is to verify that the system operates within its specifications at the device test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

The output power on dipole port must be calibrated to 24 dBm (250mW) before dipole is connected.

Photo of Dipole Setup

System Check in Head Tissue Simulating Liquid

Measur	Measurement					
Verification	Frequency (MHz)	Target value (W/kg)	Measured 250mW value (W/kg)	Normalized 1W value (W/kg)	Deviation	Date
results	835	9.62	2.39	9.56	-0.62%	Apr.,28,2015
resuits	1900	38.30	9.64	38.56	0.68%	Apr.,28,2015
	2450	52.10	12.81	51.24	-1.65%	Apr.,28,2015

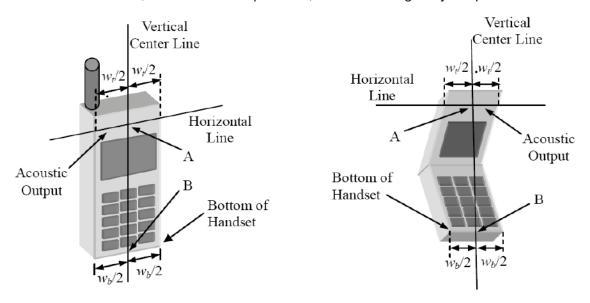
Note: 1. The graph results see Chapter9.

2. Target Values used derive from the calibration certificate

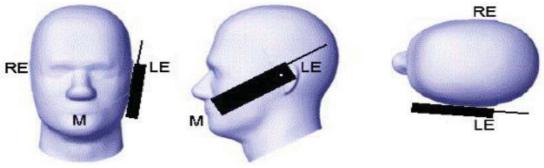
System Check in Body Tissue Simulating Liquid

Measur	Measurement					
Verification	Frequency (MHz)	Target value (W/kg)	Measured 250mW value (W/kg)	Normalized 1W value (W/kg)	Deviation	Date
results	835	9.77	2.43	9.72	-0.51%	Apr.,29,2015
	1900	39.90	9.84	39.36	-1.35%	Apr.,29,2015
	2450	51.60	12.82	51.28	-0.62%	Apr.,29,2015

Note: 1. The graph results see Chapter9.

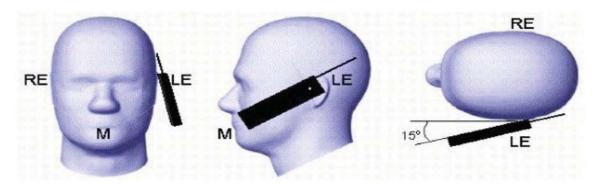

2. Target Values used derive from the calibration certificate

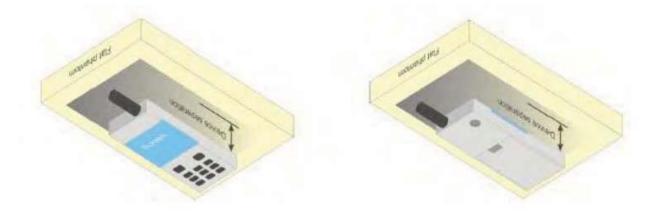
6. EUT TEST POSITION


6.1 Define Two Imaginary Lines on the Handset

- (1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

6.2 Cheek Position


- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost


6.3 Title Position

- (1) To position the device in the —cheek position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.

6.4 Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 5mm. (Hotspot mode the distance of 10mm).

7. Measurement Procedures

The measurement procedures are as follows:

7.1 Conducted power measurement

- a) For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- b) Read the WWAN RF power level from the base station simulator.
- c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.
- d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

7.2 SAR measurement

7.2.1 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. The power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5. The EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction calculation method are shown in chapter8.1 NOTES 1).

7.2.2 WCDMA Test Configuration

7.2.2.1 3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

7.2.2.2 Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control

procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are requied in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

7.2.2.3 Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

7.2.2.4 Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

7.2.2.5 Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors (β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Bhs CM(dB) β_d Sub-set (note 1, note MPR(dB) β_c β_d β_c/β_d (SF) (note 3) 2) 2/15 15/15 64 2/15 0.0 0.0 1 4/15 12/15 15/15 12/15 2 64 24/15 1.0 0.0 (note 4) (note 4) (note 4) 3 8/15 64 30/15 1.5 0.5 15/15 15/8 4 15/15 4/15 64 15/4 30/15 1.5 0.5

Table 1: Subtests for WCDMA Release 5 HSDPA

Note1: \triangle_{ACK} , \triangle_{NACK} and \triangle_{CQI} = 8 \Leftrightarrow A_{hs} = β_{hs}/β_c =30/15 \Leftrightarrow β_{hs} =30/15* β_c

Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

Shenzhen General Testing & Inspection Technology Co., Ltd.

1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China
Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

7.2.2.6 HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

Table 2: Sub-Test 5 Setup for Release 6 HSUPA

Sub - set	βс	βd	β _d (SF)	βc/βd	$\beta_{\text{hs}}{}^{(1)}$	βec	$eta_{ ext{ed}}$	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} :47/15 β _{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 \Leftrightarrow A_{hs} = $\underline{\beta}$ hs/ $\underline{\beta}$ c = 30/15 \Leftrightarrow $\underline{\beta}$ hs= 30/15 * β c.
- Note 2: CM = 1 for $\beta c/\beta d$ =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.
- Note 4: For subtest 5 the β c/ β d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β c = 14/15 and β d = 15/15.
- Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g. Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Table 3: HSUPA UE category

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E- DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
0	2	8	2	4	2798	4.4500
2	2	4	10	4	14484	1.4592
3	2	4	10	4	14484	1.4592
4	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	2	0.050.0.054	11484	5.76
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	2.00
7	4	8	2	2 SF2 & 2 SF4	22996	?
(No DPDCH)	4	4	10		20000	?

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.

UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)

7.2.2.7 HSPA, HSPA+ Test Configuration

Measurement is required for HSPA, HSPA+, a KDB inquiry is required to confirm that the wireless mode configurations in the test setup have remained stable throughout the SAR measurements without prior KDB confirmation to determine the SAR results are acceptable, a PBA is required for TCB approval.

SAR test exclusion for HSPA, HSPA+ is determined according to the following:

- 1) The HSPA procedures are applied to configure 3GPP Rel. 6 HSPA devices in the required sub-test mode(s) to determine SAR test exclusion.
- 2) SAR is required for Rel. 7 HSPA+ when SAR is required for Rel. 6 HSPA; otherwise, the 3G SAR test reduction procedure is applied to (uplink) HSPA+ with 12.2 kbps RMC as the primary mode.36 Power is measured for HSPA+ that supports uplink 16 QAM according to configurations in Table C.11.1.4 of 3GPP TS 34.121-1 to determine SAR test reduction.
- 3) Regardless of whether a PBA is required, the following information must be verified and included in the SAR report for devices supporting HSPA, HSPA+: a) The output power measurement results and applicable release version(s) of 3GPP TS 34.121.
 - a) Power measurement difficulties due to test equipment setup or availability must be resolved between the grantee and its test lab.
 - b) The power measurement results are in agreement with the individual device implementation and specifications. When Enhanced MPR (E-MPR) applies, the normal MPR targets may be modified according to the Cubic Metric (CM) measured by the device, which must be taken into consideration.
 - c) The UE category, operating parameters, such as the β and Δ values used to configure the device for testing, power setback procedures described in 3GGPP TS 34.121 for the power measurements, and HSPA/HSPA+ channel conditions (active and stable) for the entire duration of the measurement according to the required E-TFCI and AG index values.
- 4) When SAR measurement is required, the test configurations, procedures and power measurement results must be clearly described to confirm that the required test parameters are used, including E-TFCI and AG index stability and output power conditions.

Table 4: HS-DSCH UE category

Table 5.1a: FDD HS-DSCH physical layer categories

Report No.: GTI201505167F-5

HS-DSCH category	Maximum number of HS-DSCH codes received	Minimum inter-TTI interval	Maximum number of bits of an HS- DSCH transport block received within an HS-DSCH TTI NOTE 1	Total number of soft channel bits	Supported modulations without MIMO operation or dual cell operation	Supported modulatio ns with MIMO operation and without dual cell operation	Supported modulatio ns with dual cell operation	
Category 1	5	3	7298	19200	l.			
Category 2	5	3	7298	28800	1			
Category 3	5	2	7298	28800				
Category 4	5	2	7298	38400	i			
Category 5	5	1	7298	57600	0001/ 400444			
Category 6	5	1	7298	67200	QPSK, 16QAM			
Category 7	10	1	14411	115200	1	Not		
Category 8	10	1	14411	134400		applicable		
Category 9	15	1	20251	172800		(MIMO not	Not applicable (dual cell operation not supported)	
Category 10	15	1	27952	172800		supported)		
Category 11	5	2	3630	14400	THE REST OF THE RE			
Category 12	5	1	3630	28800	QPSK			
Category 13	15	1	35280	259200	QPSK.			
Category 14	15	1	42192	259200	16QAM, 64QAM			
Category 15	15	1	23370	345600	ODCK 4	20414		
Category 16	15	1	27952	345600	QPSK, 16	QAM		
Category 17	15	1	35280	259200	QPSK, 16QAM, 64QAM	-	supported)	
NOTE 2	1 2000		23370	345600	-	QPSK, 16QAM		
Category 18 NOTE 3	15	1	42192	259200	QPSK, 16QAM, 64QAM	-		
NOIE 3	1 0000		27952	345600	-	QPSK, 16QAM	3	
Category 19	15	1	35280	518400	ODCK 4004		i i	
Category 20	15	1	42192	518400	QPSK, 16QAI	W, 64QAM		
Category 21	15	1	23370	345600			QPSK,	
Category 22	15	1	27952	345600	1		16QAM	
Category 23	15	1	35280	518400	1		QPSK,	
Category 24	15	1	42192	518400		55	16QAM, 64QAM	

7.2.3 WIFI Test Configuration

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. The Tx power is set to 14.5 for 802.11 b mode by software. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

8. TEST CONDITIONS AND RESULTS

8.1 Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

Conducted power measurement results (GSM850/1900)

			red Power		t results (GSM Calculation	Frame-Averaged Power			
Mode	Txslot		ı	` ,	(dB)		(dBm)		
		128	190	251	. ,	128	190	251	
GSM850	/	32.71	32.65	32.60	/	1	/	/	
CDDC	1 Txslot	32.67	32.64	32.59	-9.03	23.64	23.61	23.56	
GPRS 850	2 Txslot	29.88	29.94	29.97	-6.02	23.86	23.92	23.95	
(GMSK)	3 Txslot	27.90	27.87	27.83	-4.26	23.64	23.61	23.67	
	4 Txslot	26.86	26.69	26.68	-3.01	23.85	23.68	23.67	
50000	1 Txslot	32.64	32.63	32.56	-9.03	23.61	23.60	23.53	
EGPRS 850	2 Txslot	29.78	29.86	29.88	-6.02	23.76	23.84	23.86	
(GMSK)	3 Txslot	27.92	27.89	27.85	-4.26	23.66	23.63	23.59	
,	4 Txslot	26.75	26.81	26.71	-3.01	23.74	23.80	23.70	
	1 Txslot	30.82	30.61	30.32	-9.03	21.79	21.58	21.29	
EGPRS 850	2 Txslot	28.06	27.96	27.77	-6.02	22.04	21.94	21.75	
(8PSK)	3 Txslot	26.16	25.99	25.94	-4.26	21.90	21.73	21.68	
	4 Txslot	25.06	24.57	24.49	-3.01	22.02	21.56	21.48	
NAl.				•			•		
Mode	Txslot	Measu	red Power	(dBm)	Calculation	Frame	-Averaged (dBm)	Power	
Mode	Txslot	Measu 512	red Power 661	(dBm) 810	Calculation (dB)	Frame 512		Power 810	
Mode PCS1900	Txslot		ı	` ,			(dBm)	ı	
PCS1900		512	661	810	(dB)	512	(dBm) 661	810	
PCS1900 GPRS	/	512 29.21	661 29.17	810 29.27	(dB)	512 /	(dBm) 661	810 /	
PCS1900	/ 1 Txslot	512 29.21 29.19	661 29.17 29.15	810 29.27 29.25	(dB) / -9.03	512 / 20.16	(dBm) 661 / 20.12	810 / 20.22	
PCS1900 GPRS 1900	/ 1 Txslot 2 Txslot	512 29.21 29.19 27.12	29.17 29.15 27.09	810 29.27 29.25 27.05	(dB) / -9.03 -6.02	512 / 20.16 21.10	(dBm) 661 / 20.12 21.07	810 / 20.22 21.03	
PCS1900 GPRS 1900 (GMSK)	/ 1 Txslot 2 Txslot 3 Txslot	512 29.21 29.19 27.12 25.54	29.17 29.15 27.09 25.54	810 29.27 29.25 27.05 25.57	(dB) / -9.03 -6.02 -4.26	512 / 20.16 21.10 21.28	(dBm) 661 / 20.12 21.07 21.28	810 / 20.22 21.03 21.31	
PCS1900 GPRS 1900 (GMSK)	/ 1 Txslot 2 Txslot 3 Txslot 4 Txslot	512 29.21 29.19 27.12 25.54 24.50	29.17 29.15 27.09 25.54 24.66	810 29.27 29.25 27.05 25.57 24.65	(dB) / -9.03 -6.02 -4.26 -3.01	512 / 20.16 21.10 21.28 21.49	(dBm) 661 / 20.12 21.07 21.28 21.65	810 / 20.22 21.03 21.31 21.64	
PCS1900 GPRS 1900 (GMSK)	/ 1 Txslot 2 Txslot 3 Txslot 4 Txslot 1 Txslot	512 29.21 29.19 27.12 25.54 24.50 29.15	29.17 29.15 27.09 25.54 24.66 29.14	810 29.27 29.25 27.05 25.57 24.65 29.22	(dB) / -9.03 -6.02 -4.26 -3.01 -9.03	512 / 20.16 21.10 21.28 21.49 20.12	(dBm) 661 / 20.12 21.07 21.28 21.65 20.11	810 / 20.22 21.03 21.31 21.64 20.19	
PCS1900 GPRS 1900 (GMSK) EGPRS 1900	/ 1 Txslot 2 Txslot 3 Txslot 4 Txslot 1 Txslot 2 Txslot	512 29.21 29.19 27.12 25.54 24.50 29.15 27.22	29.17 29.15 27.09 25.54 24.66 29.14 27.09	810 29.27 29.25 27.05 25.57 24.65 29.22 27.16	(dB) / -9.03 -6.02 -4.26 -3.01 -9.03 -6.02	512 / 20.16 21.10 21.28 21.49 20.12 21.20	(dBm) 661 / 20.12 21.07 21.28 21.65 20.11 21.07	810 / 20.22 21.03 21.31 21.64 20.19 21.14	
PCS1900 GPRS 1900 (GMSK) EGPRS 1900 (GMSK)	/ 1 Txslot 2 Txslot 3 Txslot 4 Txslot 1 Txslot 2 Txslot 3 Txslot	512 29.21 29.19 27.12 25.54 24.50 29.15 27.22 25.26	29.17 29.15 27.09 25.54 24.66 29.14 27.09 25.21	810 29.27 29.25 27.05 25.57 24.65 29.22 27.16 25.50	(dB) / -9.03 -6.02 -4.26 -3.01 -9.03 -6.02 -4.26	512 / 20.16 21.10 21.28 21.49 20.12 21.20 21.00	(dBm) 661 / 20.12 21.07 21.28 21.65 20.11 21.07 20.95	810 / 20.22 21.03 21.31 21.64 20.19 21.14 21.24	
PCS1900 GPRS 1900 (GMSK) EGPRS 1900 (GMSK)	/ 1 Txslot 2 Txslot 3 Txslot 4 Txslot 1 Txslot 2 Txslot 3 Txslot 4 Txslot	512 29.21 29.19 27.12 25.54 24.50 29.15 27.22 25.26 24.52	29.17 29.15 27.09 25.54 24.66 29.14 27.09 25.21 24.67	810 29.27 29.25 27.05 25.57 24.65 29.22 27.16 25.50 24.34	(dB) / -9.03 -6.02 -4.26 -3.01 -9.03 -6.02 -4.26 -3.01	512 / 20.16 21.10 21.28 21.49 20.12 21.20 21.00 21.51	(dBm) 661 / 20.12 21.07 21.28 21.65 20.11 21.07 20.95 21.66	810 / 20.22 21.03 21.31 21.64 20.19 21.14 21.24 21.33	
PCS1900 GPRS 1900 (GMSK) EGPRS 1900 (GMSK)	/ 1 Txslot 2 Txslot 3 Txslot 4 Txslot 1 Txslot 2 Txslot 3 Txslot 4 Txslot 1 Txslot 1 Txslot	512 29.21 29.19 27.12 25.54 24.50 29.15 27.22 25.26 24.52 26.69	29.17 29.15 27.09 25.54 24.66 29.14 27.09 25.21 24.67 26.71	810 29.27 29.25 27.05 25.57 24.65 29.22 27.16 25.50 24.34 26.55	(dB) / -9.03 -6.02 -4.26 -3.01 -9.03 -6.02 -4.26 -3.01 -9.03	512 / 20.16 21.10 21.28 21.49 20.12 21.20 21.00 21.51 17.66	(dBm) 661 / 20.12 21.07 21.28 21.65 20.11 21.07 20.95 21.66 17.68	810 / 20.22 21.03 21.31 21.64 20.19 21.14 21.24 21.33 17.52	

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

- 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB
- 2) According to the conducted power as above, the body measurements are performed with 2Txslots for GPRS850 and 4Txslots GPRS1900.

Conducted power measurement results (WCDMA Band II/V)

	Band	FDD B	and II resu	It (dBm)	FDD Ba	nd V result	t (dBm)	
Item	Danu	•	Test Chann	el	Test Channel			
	ARFCN	9262	9400	9538	4132	4183	4233	
AMR	12.2kbps AMR	22.13	22.15	22.04	22.09	22.49	22.16	
RMC	12.2kbps RMC	22.15	22.16	22.05	22.10	22.51	22.17	
	Sub - Test 1	21.36	21.34	21.25	21.23	21.22	21.14	
HSDPA	Sub - Test 2	21.21	21.38	21.15	21.43	21.45	21.56	
ПЭДРА	Sub - Test 3	20.30	20.88	20.22	20.86	20.90	20.43	
	Sub - Test 4	20.39	20.27	20.19	20.38	20.37	20.55	
	Sub - Test 1	21.05	21.34	21.08	21.34	21.48	21.05	
	Sub - Test 2	21.32	21.47	21.88	21.49	21.59	21.38	
HSUPA	Sub - Test 3	20.55	20.68	20.78	20.71	20.34	20.93	
	Sub - Test 4	20.29	20.13	20.06	20.21	20.72	20.11	
	Sub - Test 5	21.39	21.33	21.14	21.45	21.59	21.56	

Conducted Power Measurement Results (Wifi 802.11 b/g/n)

Conducted Power of 802.11b mode										
Powe	er Compariso Channels	n of	Power Comparison of Date Rates							
Channel	Frequency (MHz)	Data rate 1Mbps	CH6 2Mbps							
CH 1	2412	17.54								
CH 6	2437	17.64	17.61	17.63	17.58					
CH 11	2462	17.41								

	Conducted Power of 802.11g mode									
Power Comparison of Channels Power Comparison of Date Rates										
Channel	Frequency (MHz)	Data rate 6Mbps	CH6 9Mbps							
CH 1	2412	15.34								
CH 6	2437	15.65	15.63	15.41	15.38	15.46	15.61	15.59	15.62	
CH 11	2462	15.62								

Conducted Power of 802.11n(20MHz) mode										
Pow	er Compariso Channels	on of		Р	ower Con	nparison o	f Date Rat	tes		
Channel	Frequency (MHz)	Data rate 6.5Mbps	CH6 MCS1							
CH 1	2412	14.21								
CH 6	2437	14.34	14.32	14.29	14.26	14.31	14.22	14.18	14.23	
CH 11	2462	14.11								

	Conducted Power of 802.11n(40MHz) mode								
Power Comparison of Channels Power Comparison of Date Rates									
Channel	Frequency (MHz)	Data rate 13.5Mbps	CH6 CH6 CH6 CH6 CH6 CH6						CH6 MCS7
CH 3	2422	13.12							13.27
CH 6	2437	13.32	13.28	13.26	13.26	13.29	13.19	13.25	
CH 9	2452	13.20							

Note:

- Per KDB248227 D01 802.11 Wi-Fi SAR v02, For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate.
- 2. Per KDB248227 D01 802.11 Wi-Fi SAR v02, 802.11g, 802.11n-HT20 and 802.11n-HT40 output power is less than 1/4dB higher than 11b mode, SAR can be excluded

Conducted Power Measurement Results (Bluetooth)

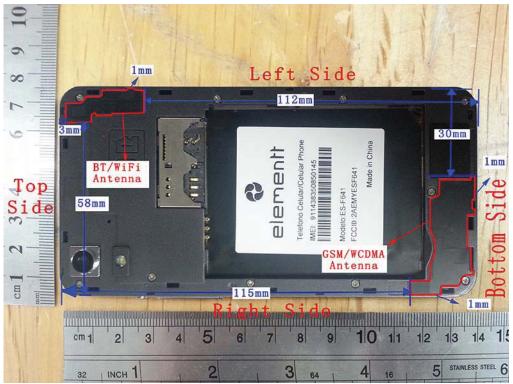
Mode	Channel	Frequency (MHz)	Conducted Peak Output Power			
			(dBm)	0.72 0.69 0.60 4.26 4.13 3.93 3.61 3.49 3.26 3.61		
	00	2402	-1.43	0.72		
LBE	19	2440	-1.63	0.69		
	39	2480	-2.19	0.60		
	00	2402	6.29	4.26		
GFSK	39	2441	6.16	4.13		
	78	2480	5.94	3.93		
	00	2402	5.58	3.61		
π/4DQPSK	39	2441	5.43	3.49		
	78	2480	5.13	3.26		
	00	2402	5.57	3.61		
8DPSK	39	2441	5.49	3.54		
	78	2480	5.20	3.31		

Note:

Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] . [$\sqrt{f(GHz)}$] \leq 3 for 1-g SAR and] \leq 7.5 for 10-g extremity SAR

- •f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- •The result is rounded to one decimal place for comparison


Bluetooth Max Power Allowed (dBm)	Bluetooth Max Power Rounded (mW)	Calculated Value Rounded	Separation Distance (mm)	Frequency (GHz)	Exclusion thresholds
7	5	1.55	5	2402	3

Note:

Per KDB 447498 D01v05r02, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 1.55 which is \leq 3, SAR testing is not required.

8.2 Antenna Location

DUT Rear View

SAR Measurement Positions

According to the KDB447498 D01 General RF Exposure Guidance v05r02, the test exclusion threshold is determined by the closet separation between the antenna and the user, if the test separation distance is <5mm, 5mm is used to determin SAR exclusion threshold.

Per KDB447498 D01, 4.3.1. Standalone SAR test exclusion considerations

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum *test separation distance* is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum *test separation distance* is \leq 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

- 2) At 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B:
 - a) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
- b) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and \leq 6 GHz

SAR test exclusion table

		T	T			
Evpocuro	Wireless Interface	GPRS850 2Tx Slot	PCS1900 4Tx Slot	WCDMA Band II RMC	WCDMA Band V RMC	802.11 b/g/n
Exposure Position	Tune-up Maximum Power(dBm)	24.0	22.0	23.0	23.0	18.0
	Tune-up Maximum Power(mW)	251	158	200	200	63
	Antenna to User(mm)		2)		2
Rear side	SAR exclusion threshold(mW)	16	11	11	16	10
	SAR test required?	Yes	Yes	Yes	Yes	Yes
	Antenna to User(mm)					8
Front side	SAR exclusion threshold(mW)	26	17	17	26	15
	SAR test required?	Yes	Yes	Yes	Yes	Yes
	Antenna to User(mm)		1			58
Right side	SAR exclusion threshold(mW)	16	11	11	16	176
	SAR test required?	Yes	Yes	Yes	Yes	No
	Antenna to User(mm)		30	0		1
Left side	SAR exclusion threshold(mW)	98	65	65	98	10
	SAR test required?	Yes	Yes	Yes	Yes	Yes
	Antenna to User(mm)		11	5		3
Top side	SAR exclusion threshold(mW)	526	759	759	526	10
	SAR test required?	No	No	No	No	Yes
	Antenna to User(mm)		1			112
Bottom side	SAR exclusion threshold(mW)	16	11	11	16	716
	SAR test required?	Yes	Yes	Yes	Yes	No

8.3 TEST RESULTS

8.3.1 SAR Test Results Summary

Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE1528, and Body SAR was performed with the device 5mm from the phantom; Body SAR was also performed with the headset attached and without.

Operation Mode ·

- According to KDB 447498 D01 v05r02 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- Per KDB 865664 D01 v01r03, for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
- 1) When the original highest measured SAR is \geq 0.8W/Kg, repeat that measurement once.
- 2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
- 3) Perform a third repeated measurement only if the original, first and second repeated measurement is \geq 1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is \geq 1.20.
- According to KDB 648474 D04 v01r02, when the reported SAR for a body-worn accessory
 measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a
 headset connected is not required.
- According to 941225 D06 v02, when the overall device length and width are > 9cm×5cm, Hotspot mode with a test separation distance of 10mm. For device with form factors smaller than 9cm×5cm, Hotspot mode with a test separation distance of 5mm. Body SAR was also performed with the headset attached and without.
- According to 941225 D06 v02, when the same wireless mode transmission configurations are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations. This typically applies to the back and front surfaces of a handset when SAR is required for both hotspot mode and body-worn accessory exposure conditions.
- According to KDB248227 D01 802.11 Wi-Fi SAR v02, SAR is not required for 802.11g channels when the maximum average output power is less than 1/4dB higher than measured on the corresponding 802.11b channels.
- Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:
 Maximum Scaling SAR =tested SAR (Max.) × [maximum turn-up power (mw)/ maximum measurement output power(mw)]

8.3.2 Standalone SAR

SAR Values [GSM 850 (GSM/GPRS)]

				Maximum	Conducted	Drift ± 0.21dB		Limit SAR	_{lg} 1.6 W/kg		
Test Position	Channel/ Frequency(MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results	
	Test Position of Head										
Left/Cheek	190/836.6	Voice	1:8.3	33	32.65	-0.08	0.362	1.08	0.391	N/A	
Left/Tilt	190/836.6	Voice	1:8.3	33	32.65	0.07	0.264	1.08	0.285	N/A	
Right/Cheek	190/836.6	Voice	1:8.3	33	32.65	-0.14	0.390	1.08	0.421	Figure. 1	
Right/Tilt	190/836.6	Voice	1:8.3	33	32.65	0.16	0.288	1.08	0.311	N/A	
		Test	position	n of Body-w	orn accesso	ry(Distanc	e 5mm)				
Rear Side	190/836.6	Voice	1:8.3	33	32.65	0.12	0.342	1.08	0.369	N/A	
Front Side	190/836.6	Voice	1:8.3	33	32.65	0.04	0.169	1.08	0.183	N/A	
	Tes	t position	of Body	y-worn acc	essory& Hots	spot Mode	(Distance 5	mm)			
Rear Side	190/836.6	2Txslots	1:4.15	24	23.92	0.18	0.364	1.02	0.371	Figure.2	
Front Side	190/836.6	2Txslots	1:4.15	24	23.92	-0.01	0.187	1.02	0.191	N/A	
		Te	est posi	tion of Hots	spot Mode (D	istance 10	mm)				
Left Edge	190/836.6	2Txslots	1:4.15	24	23.92	-0.03	0.032	1.02	0.033	N/A	
Right Edge	190/836.6	2Txslots	1:4.15	24	23.92	0.05	0.086	1.02	0.088	N/A	
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Bottom Edge	190/836.6	2Txslots	1:4.15	24	23.92	-0.04	0.112	1.02	0.114	N/A	
	\	Norst Cas	e Positi	ion of Body	with EGPRS	GMSK(Di	stance 5mm)			
Rear Side	190/836.6	2Txslots	1:4.15	24	23.84	-0.08	0.355	1.04	0.369	N/A	
	,	Worst Cas	se Posit	ion of Body	with EGPR	S 8PSK(Dis	tance 5mm)			
Rear Side	190/836.6	2Txslots	1:4.15	23	21.94	-0.08	0.282	1.28	0.361	N/A	

Note: 1.The value with green color is the maximum SAR Value of each test band.

Shenzhen General Testing & Inspection Technology Co., Ltd.

1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China

Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

^{2.} Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

^{3.} When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

^{4.} Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

^{5.} When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode

Page 37 of 107 Report No.: GTI201505167F-5

SAR Values [GSM 1900 (GSM/GPRS)]

			SAR	values [G	SM 1900 (G	SW/GPK	>)]			
				Maximum	Conducted	Drift ± 0.21dB	ı	_imit SAR	R _{1g} 1.6 W/kg	
Test Position	Channel/ Frequency (MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
	J	<u> </u>		Test P	osition of He	ad				
Left Cheek	661/1880	Voice	1:8.3	30	29.17	0.09	0.562	1.21	0.680	N/A
Left Tilt	661/1880	Voice	1:8.3	30	29.17	-0.05	0.221	1.21	0.267	N/A
Right Cheek	661/1880	Voice	1:8.3	30	29.17	0.12	0.597	1.21	0.722	Figure.3
Right Tilt	661/1880	Voice	1:8.3	30	29.17	-0.14	0.233	1.21	0.282	N/A
	•	Te	est positio	n of Body-	worn access	ory(Distanc	e 5mm)	l		
Rear Side	661/1880	Voice	1:8.3	30	29.17	0.08	0.638	1.21	0.772	N/A
Front Side	661/1880	Voice	1:8.3	30	29.17	0.02	0.514	1.21	0.622	N/A
		Test posit	ion of Boo	dy-worn acc	essory& Hot	spot Mode	(Distance 5r	nm)		
	661/1880	4 Txslots	1:2.07	22	21.65	-0.06	1.07	1.08	1.156	Figure.4
Rear Side	521/1850.2	4 Txslots	1:2.07	22	21.49	0.04	0.982	1.12	1.100	N/A
	810/1909.8	4 Txslots	1:2.07	22	21.64	-0.08	1.05	1.09	1.145	N/A
Front Side	661/1880	4 Txslots	1:2.07	22	21.65	0.02	0.625	1.08	0.675	N/A
			Test pos	ition of Ho	tspot Mode (I	Distance 10	mm)			
Left Edge	661/1880	4 Txslots	1:2.07	22	21.65	-0.03	0.074	1.08	0.080	N/A
Right Edge	661/1880	4 Txslots	1:2.07	22	21.65	0.05	0.706	1.08	0.762	N/A
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	661/1880	4 Txslots	1:2.07	22	21.65	-0.11	0.721	1.08	0.779	N/A
		Worst C	ase Positi	on of Body	SAR (1 st Repe	ated SAR, D	Distance 5mm)		
Rear Side	661/1880	4 Txslots	1:2.07	22	21.65	-0.08	1.06	1.08	1.145	N/A
	ı	Worst C	ase Posit	ion of Body	With EGPR	S GMSK (D	istance 5mm)		
Rear Side	661/1880	4 Txslots	1:2.07	22	21.66	-0.07	1.06	1.08	1.145	N/A
		Worst (Case Posi	tion of Bod	y With EGPR	S 8PSK (Di	stance 5mm)		
Rear Side	661/1880	4 Txslots	1:2.07	20	18.97	-0.07	0.842	1.27	1.069	N/A

Note: 1.The value with green color is the maximum SAR Value of each test band.

Shenzhen General Testing & Inspection Technology Co., Ltd.

1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China

Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

^{2.} Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

^{3.} When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

^{4.} Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg; no additional SAR evaluations using a headset cable were required.

^{5.}When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode

SAR Values [WCDMA Band II (WCDMA/HSDPA/HSUPA)]

Report No.: GTI201505167F-5

		JAIN Values [Maximum	Conducted	Drift ± 0.21dB	/-	imit SAR	1.6 W/kg	
Test Position	Channel/ Frequency (MHz)	Channel Type	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
			•	Test Positio	on of Head			-		
Left Cheek	9400/1880	RMC 12.2K	1:1	23	22.16	-0.11	0.134	1.21	0.162	N/A
Left Tilt	9400/1880	RMC 12.2K	1:1	23	22.16	0.09	0.036	1.21	0.044	N/A
Right Cheek	9400/1880	RMC 12.2K	1:1	23	22.16	0.16	0.152	1.21	0.184	Figure.5
Right Tilt	9400/1880	RMC 12.2K	1:1	23	22.16	-0.07	0.043	1.21	0.052	N/A
	Tes	t position of B	ody-wo	rn accesso	ry& Hotspot	Mode (Dist	ance 5mm)			
	9262/1852.4	RMC 12.2K	1:1	23	22.15	0.06	0.673	1.22	0.821	N/A
Rear Side	9400/1880	RMC 12.2K	1:1	23	22.16	0.17	0.688	1.21	0.832	N/A
	9538/1907.6	RMC 12.2K	1:1	23	22.05	0.04	0.668	1.24	0.828	N/A
Front Side	9400/1880	RMC 12.2K	1:1	23	22.16	-0.05	0.312	1.21	0.378	N/A
		Test p	osition	of Hotspot	Mode (Dista	nce 10mm)				
Left Edge	9400/1880	RMC 12.2K	1:1	23	22.16	0.08	0.141	1.21	0.171	N/A
Right Edge	9400/1880	RMC 12.2K	1:1	23	22.16	0.02	0.432	1.21	0.523	N/A
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	9400/1880	RMC 12.2K	1:1	23	22.16	-0.09	0.421	1.21	0.509	N/A
		Worst Case Po	osition	of SAR (1st	Repeated SA	AR, Distanc	e 5mm)	•		<u> </u>
Rear Side	9400/1880	RMC 12.2K	1:1	23	22.16	0.05	0.690	1.21	0.835	Figure.6

Note: 1.The value with green color is the maximum SAR Value of each test band.

^{2.} Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

^{3.} Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

^{4.}When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

SAR Values [WCDMA Band V (WCDMA/HSDPA/HSUPA)]

		SAR Values [MCDIV	IA Band V	/ (WCDIMA/		SUPA)]			
				Maximum	Conducted	Drift \pm 0.21dB	Li	imit SAR	ıg 1.6 W/kg	
Test Position	Channel/ Frequency (MHz)	Channel Type	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
		!		Test Position	on of Head					
Left Cheek	4183/836.6	RMC 12.2K	1:1	23	22.51	0.09	0.688	1.12	0.771	N/A
Left Tilt	4183/836.6	RMC 12.2K	1:1	23	22.51	-0.12	0.249	1.12	0.279	N/A
	4132/826.4	RMC 12.2K	1:1	23	22.10	0.05	0.661	1.12	0.813	N/A
Right Cheek	4183/836.6	RMC 12.2K	1:1	23	22.51	0.13	0.746	1.12	0.836	Figure.7
	4233/846.6	RMC 12.2K	1:1	23	22.17	0.16	0.681	1.12	0.824	N/A
Right Tilt	4183/836.6	RMC 12.2K	1:1	23	22.51	0.10	0.271	1.12	0.304	N/A
		Worst	Case P	osition of H	lead SAR (1st	Repeated)				
Right Cheek	4183/836.6	RMC 12.2K	1:1	23	22.51	0.13	0.743	1.12	0.832	N/A
	Tes	st position of B	ody-wo	rn accesso	ry& Hotspot	Mode (Dist	ance 5mm)			
	4132/826.4	RMC 12.2K	1:1	23	22.10	0.07	1.03	1.23	1.267	N/A
Rear Side	4183/836.6	RMC 12.2K	1:1	23	22.51	-0.04	1.16	1.12	1.30	Figure.8
	4233/846.6	RMC 12.2K	1:1	23	22.17	0.03	1.06	1.21	1.283	N/A
Front Side	4183/836.6	RMC 12.2K	1:1	23	22.51	0.11	0.612	1.12	0.685	N/A
		Test p	osition	of Hotspot	Mode (Dista	nce 10mm)				
Left Edge	4183/836.6	RMC 12.2K	1:1	23	22.51	-0.09	0.114	1.12	0.128	N/A
Right Edge	4183/836.6	RMC 12.2K	1:1	23	22.51	-0.05	0.186	1.12	0.208	N/A
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	4183/836.6	RMC 12.2K	1:1	23	22.51	0.03	0.173	1.12	0.194	N/A
	W	orst Case Posi	tion of I	Body SAR (1 st Repeated	SAR, Dista	ance 5mm)			
Rear Side	4183/836.6	RMC 12.2K	1:1	23	22.51	-0.05	1.14	1.12	1.277	N/A
		Worst Case	Positio	n of Body V	With Headset	(Distance	5mm)			
Rear Side	4183/836.6	RMC 12.2K	1:1	23	22.51	-0.11	1.10	1.12	1.232	N/A

Note: 1.The value with green color is the maximum SAR Value of each test band.

Shenzhen General Testing & Inspection Technology Co., Ltd.

1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China

Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

^{2.} Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

^{3.} Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

^{4.}When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode

Page 40 of 107 Report No.: GTI201505167F-5

SAR Values (802.11b/g/n)

	01			Maximum	Conducted	Drift ± 0.21dB		Limit of S	AR 1.6 W/kg	J
Test Position	Channel/ Frequency (MHz)	Service	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
	'	,	-	Test	Position of H	lead				
Left Cheek	6/2437	DSSS	1:1	18	17.64	0.13	0.250	1.09	0.273	Figure.9
Left Tilt	6/2437	DSSS	1:1	18	17.64	0.11	0.187	1.09	0.204	N/A
Right Cheek	6/2437	DSSS	1:1	18	17.64	0.06	0.236	1.09	0.257	N/A
Right Tilt	6/2437	DSSS	1:1	18	17.64	-0.14	0.161	1.09	0.175	N/A
		Test posi	tion of I	Body-worn a	ccessory& H	otspot Mode	e (Distance 5	imm)		
Rear Side	6/2437	DSSS	1:1	18	17.64	0.06	0.386	1.09	0.421	Figure.10
Front Side	6/2437	DSSS	1:1	18	17.64	-0.04	0.239	1.09	0.261	N/A
			Test	oosition of H	lotspot Mode	(Distance 1	0mm)			
Left Edge	6/2437	DSSS	1:1	18	17.64	-0.04	0.277	1.09	0.302	N/A
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	6/2437	DSSS	1:1	18	17.64	0.11	0.214	1.09	0.233	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1. The value with green color is the maximum SAR Value of each test band.

^{2.} Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s). 3. KDB 248227-SAR is not required for 802.11g/n channels when the maximum average output power is less than $\frac{1}{4}$ dB higher than measured on the corresponding 802.11b channels.

8.3.3 Simultaneous SAR Evaluation

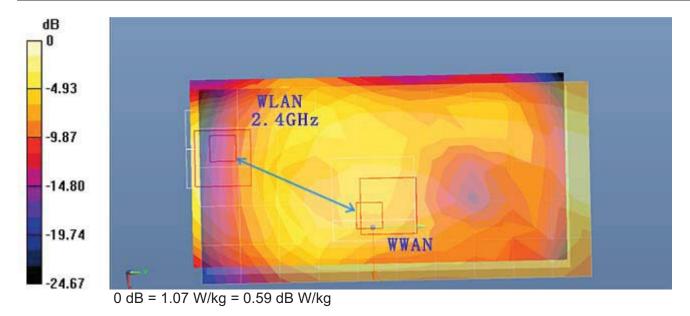
Application Simultaneous Transmission information:

NO.	Simultaneous Transmission Configurations	Smart	phone	Note
INO.	Simultaneous transmission Configurations	Head	Body	Note
1	GSM(Voice) + WLAN2.4GHz(data)	Yes	Yes	-
2	WCDMA(Voice) + WLAN2.4GHz(data)	Yes	Yes	-
3	GSM(Voice) + Bluetooth(data)	Yes	Yes	-
4	WCDMA((Voice) + Bluetooth(data)	Yes	Yes	-
5	GPRS/EDGE(Data) + WLAN2.4GHz(data)		Yes	2.4GHz Hotspot
6	WCDMA(Data) + WLAN2.4GHz(data)		Yes	2.4GHz Hotspot
7	GPRS/EDGE(Data) + Bluetooth(data)		Yes	Bluetooth Tethering
8	WCDMA(Data) + Bluetooth(data)		Yes	Bluetooth Tethering

NOTE:

- 1) WLAN2.4GHz and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 2) The Reported SAR summation is calculated based on the same configuration and test position.
- 3) Per KDB 447498 D01v05r02, simultaneous transmission SAR is compliant if,
 - a) Scalar SAR summation < 1.6W/kg.
 - b) SPLSR = (SAR1 + SAR2) ^{1.5} / (min. separation distance, mm), and the peak separation distance is determined from the square root of \[(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2\], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan
 - c) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary
 - d) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg
- 4) For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r02 based on the formula below.
 - a) (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] .[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - b) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion.
 - c) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Bluetooth Max Power Allowed (dBm)	Bluetooth Max Power Rounded(mW)	Exposure Position	Test Separation Distances	Estimated SAR (W/kg)
7	5	Head, Body Front &Rear	5mm	0.208
7	5	Bluetooth Tethering Left & Top	10mm	0.104
7	5	Bluetooth Tethering Right & Bottom	> 50 mm	0.400
WiFi Max Power Allowed (dBm)	WiFi Max Power Rounded(mW)	Exposure Position	Test Separation Distances	Estimated SAR (W/kg)
18	63	Hotspot Right& Bottom Edge	> 50 mm	0.400
WWAN	Antenna	Exposure Position	Test Separation Distances	Estimated SAR (W/kg)
		Hotspot Top Edge	> 50 mm	0.400


Simultaneous transmission SAR for WIFI and GSM/WCDMA

SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	WCDMA Band II	WCDMA Band V	WIFI	MAX. ΣSAR _{1g}	Peak location separation ratio
Left, Cheek	0.391	0.680	0.162	0.771	0.273	1.044	N/A
Left, Tilt	0.285	0.267	0.044	0.279	0.204	0.489	N/A
Right, Cheek	0.421	0.722	0.184	0.836	0.257	1.093	N/A
Right, Tilt	0.311	0.282	0.052	0.304	0.175	0.486	N/A
Rear Side	0.371	1.156	0.835	1.300	0.421	1.721	0.04
Front Side	0.191	0.675	0.378	0.685	0.261	0.946	N/A
Left Edge	0.033	0.080	0.171	0.128	0.302	0.473	N/A
Right Edge	0.088	0.762	0.523	0.208	0.400*	1.162	N/A
Top Edge	0.400*	0.400*	0.400*	0.400*	0.233	0.633	N/A
Bottom Edge	0.114	0.779	0.509	0.194	0.400*	1.179	N/A

Note: 1.The value with * mark is estimated by the maximum tune-up power per KDB 447498 D01v05r02.Refer to chapter 8.3.3 sub-clause 4) of this report.

SPLSR Evaluation:

Positio Band	SAR	SAR P	eak Location	on (m)	3D Dista	Sum SAR	SPLS	Simultaneou	
n	Baria	(W/kg)	Х	Υ	Z	nce (mm)	(W/kg)	R	s SAR
Body	WCDM A V	1.300	0.0065	-0.0113	-0.186	57.1	1.721	0.04	Not Doguirod
Rear side	WLAN 2.4GHz	0.421	-0.0286	-0.0564	-0.184	37.1	1.721	0.04	Not Required

MAX. ΣSAR_{1g} = 1.721 W/kg >1.6 W/kg, SPSLR \leq 0.04, so the Simultaneous transmission SAR with volume scan are not required for WIFI and GSM/WCDMA

Simultaneous transmission SAR for Bluetooth and GSM/WCDMA

SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	WCDMA Band II	WCDM A Band V	Estimated SAR of Bluetooth (W/kg)	MAX. ΣSAR _{1g}	Peak location separation ratio
Left, Cheek	0.391	0.680	0.162	0.771	0.208*	0.979	N/A
Left, Tilt	0.285	0.267	0.044	0.279	0.208*	0.493	N/A
Right, Cheek	0.421	0.722	0.184	0.836	0.208*	1.044	N/A
Right, Tilt	0.311	0.282	0.052	0.304	0.208*	0.519	N/A
Rear Side	0.371	1.156	0.835	1.300	0.208*	1.508	N/A
Front Side	0.191	0.675	0.378	0.685	0.208*	0.893	N/A
Left Edge	0.033	0.080	0.171	0.128	0.104*	0.275	N/A
Right Edge	0.088	0.762	0.523	0.208	0.400*	1.162	N/A
Top Edge	0.400*	0.400*	0.400*	0.400*	0.104*	0.504	N/A
Bottom Edge	0.114	0.779	0.509	0.194	0.400*	1.179	N/A

Note: 1.The value with * mark is estimated by the maximum tune-up power per KDB 447498 D01v05r02. Refer to chapter 8.3.3 sub-clause 4) of this report.

MAX. Σ SAR_{1g} = 1.508 W/kg <1.6 W/kg, so the Simultaneous transmission SAR with volume scan are not required for BT and GSM/WCDMA

9. System Check Results

System Performance Check at 835 MHz Head

Date: 28/04/2015

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.89$ S/m; $\varepsilon_r = 41.55$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(6.23, 6.23, 6.23); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

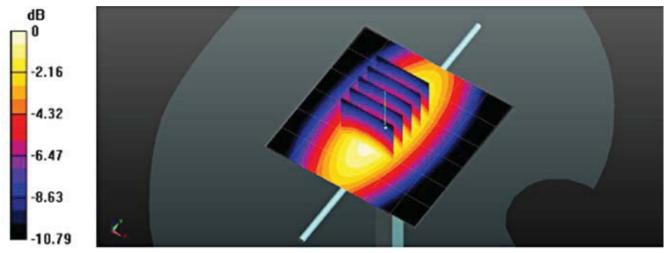
•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (7x7x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (measured) = 3.11 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 52.998 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 3.446 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.49 W/kg

Maximum value of SAR (measured) = 3.01 W/kg

0 dB = 3.11 W/kg = 9.86 dB W/kg

System Performance Check 835MHz Head 250mW

System Performance Check at 835 MHz Body

Date: 29/04/2015

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.95$ S/m; $\varepsilon_r = 55.92$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (6.11, 6.11, 6.11); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

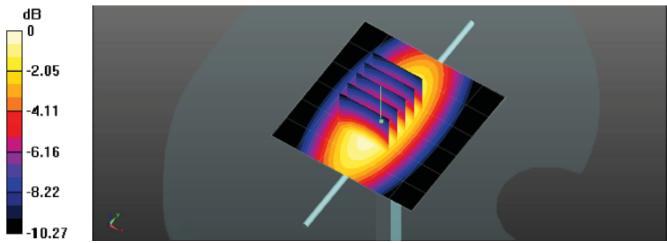
•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (7x7x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (measured) = 3.25 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 46.531 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.568 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.25 W/kg = 10.24dB W/kg

System Performance Check 835MHz Body 250mW

System Performance Check at 1900 MHz Head

Date: 28/04/2015

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.43 \text{ S/m}$; $\epsilon_r = 39.78$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (5.03, 5.03, 5.03); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

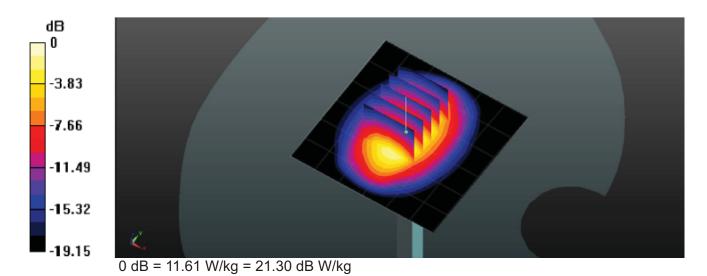
•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (7x7x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (measured) = 11.61 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 91.821 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 14.363 W/kg

SAR(1 g) = 9.64 W/kg; SAR(10 g) = 5.00 W/kg

Maximum value of SAR (measured) = 11.43 W/kg

System Performance Check 1900MHz Head 250mW

System Performance Check at 1900 MHz Body

Date: 29/04/2015

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.56 \text{ S/m}$; $\epsilon r = 51.12$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (4.66, 4.66, 4.66); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

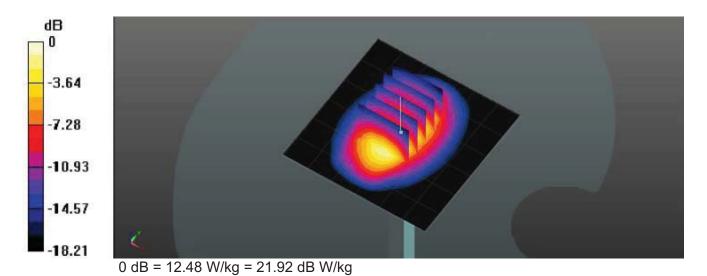
•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (7x7x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (measured) = 12.48 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 83.825 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 16.826 W/kg

SAR (1 g) = 9.84 W/kg; SAR (10 g) = 5.18 W/kg

Maximum value of SAR (measured) = 12.39 W/kg

System Performance Check 1900MHz Body 250mW

System Performance Check at 2450 MHz Head

Date: 28/04/2015

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.82$ S/m; $\epsilon r = 37.94$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (4.43, 4.43, 4.43); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

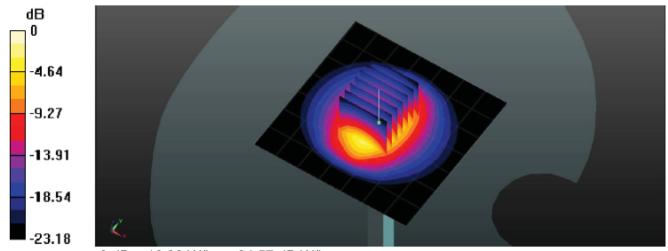
•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (8x8x1): Measurement grid: dx=12.00 mm, dy=12.00 mm

Maximum value of SAR (measured) = 16.93 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.419 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.11 W/kg

SAR (1 g) = 12.81 W/kg; SAR (10 g) = 5.98 W/kg

Maximum value of SAR (measured) = 16.88 W/kg

0 dB = 16.93 W/kg = 24.57 dB W/kg

System Performance Check 2450MHz Head 250mW

System Performance Check at 2450 MHz Body

Date: 29/04/2015

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 2.01 \text{ S/m}$; $\epsilon r = 50.73$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (4.23, 4.23, 4.23); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

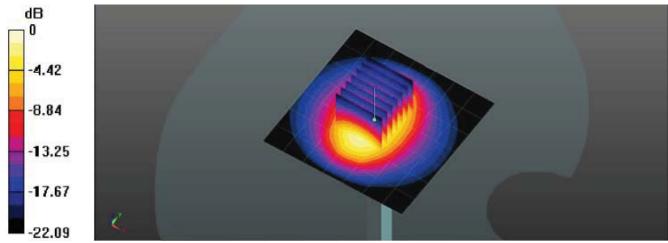
•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (8x8x1): Measurement grid: dx=12.00 mm, dy=12.00 mm

Maximum value of SAR (measured) = 16.68 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.976 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.51 W/kg

SAR (1 g) = 12.82 W/kg; SAR (10 g) = 6.01 W/kg

Maximum value of SAR (measured) = 16.61 W/kg

0 dB = 16.68 W/kg = 24.44 dB W/kg

System Performance Check 2450MHz Body 250mW

10. SAR Test Graph Results

GSM 850 Right Cheek Middle Channel

Date: 28/04/2015

Communication System: Customer System; Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: f = 836.6 MHz; σ = 0.89 S/m; ϵ_r = 41.55; ρ = 1000 kg/m³

Phantom section: Right Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (6.23, 6.23, 6.23); Calibrated: 15/08/2014;

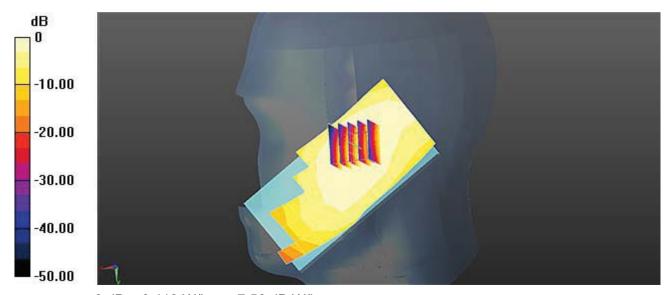
•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.419 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.696 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.481 W/kg

SAR(1 g) = 0.390 W/kg; SAR(10 g) = 0.307 W/kg Maximum value of SAR (measured) = 0.405 W/kg

0 dB = 0.419 W/kg = -7.56 dB W/kg

Figure 1 Right Head Cheek GSM 850 Channel 190

GSM 850 GPRS (2Txslots) Rear Side Middle Channel

Date: 29/04/2015

Communication System: Customer System; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium parameters used: f = 836.6 MHz; $\sigma = 0.95$ S/m; $\varepsilon_r = 55.92$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (6.11, 6.11, 6.11); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

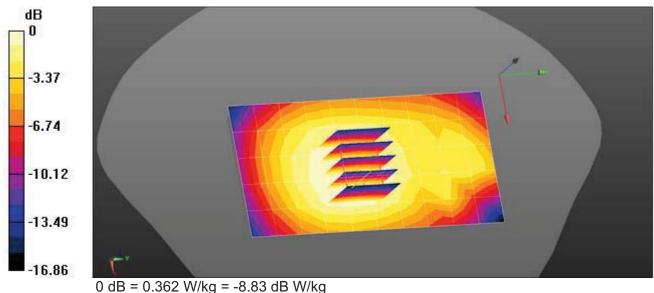
•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.362 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.945 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.456 W/kg

SAR(1 g) = 0.364 W/kg; SAR(10 g) = 0.275 W/kg

Maximum value of SAR (measured) = 0.387 W/kg

7 db - 0.302 VV/kg - -0.03 db VV/kg

Figure 2: Body Rear Side, GSM 850 GPRS (2Txslots) Channel 190

GSM 1900 Right Cheek Middle Channel

Date: 28/04/2015

Communication System: Customer System; Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: f = 1880 MHz; σ = 1.44 S/m; ϵ_r = 39.70; ρ = 1000 kg/m³

Phantom section: Right Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (5.03, 5.03, 5.03); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.638 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.567 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.879 W/kg

SAR(1 g) = 0.597 W/kg; SAR(10 g) = 0.381 W/kg

Maximum value of SAR (measured) = 0.638 W/kg

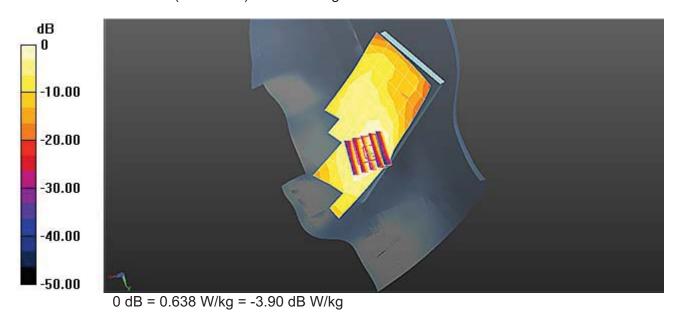


Figure 3 Right Head Cheek GSM 1900 Channel 661

GSM 1900 GPRS (4Txslots) Rear Side Middle Channel

Date: 29/04/2015

Communication System: Customer System; Frequency: 1880 MHz; Duty Cycle: 1:2.07491

Medium parameters used: f = 1880 MHz; $\sigma = 1.56 \text{ S/m}$; $\varepsilon_r = 51.21$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (4.66, 4.66, 4.66); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

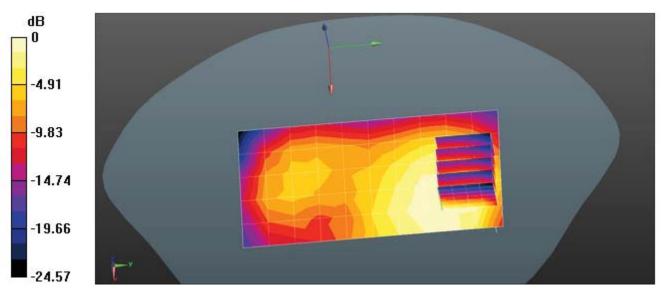
•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (6x11x1): Measurement grid: dx=15 mm, dy=15 mm

Maximum value of SAR (measured) = 1.44 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.802 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 2.014 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.781 W/kg

Maximum value of SAR (measured) = 1.41 W/kg

0 dB = 1.44 W/kg = 3.17 dB W/kg

Figure 4: Body Rear Side, GSM 1900 GPRS (4Txslots) Channel 661

WCDMA Band II Right Cheek Middle Channel

Date: 28/04/2015

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.45 \text{ S/m}$; $\varepsilon_r = 39.74$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (5.03, 5.03, 5.03); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (6x11x1): Measurement grid: dx=15 mm, dy=15 mm

Maximum value of SAR (measured) = 0.149 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.945 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.220 W/kg

SAR(1 g) = 0.152 W/kg; SAR(10 g) = 0.098 W/kg

Maximum value of SAR (measured) = 0.166 W/kg

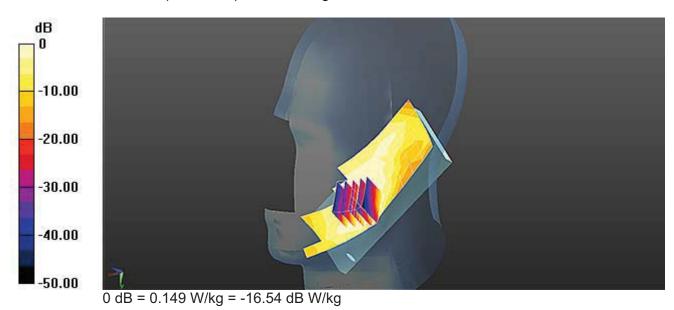


Figure 5: Right Head Cheek WCDMA Band II Channel 9400

WCDMA Band II Rear Side Middle Channel

Date: 29/04/2015

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.57 \text{ S/m}$; $\varepsilon_r = 51.14$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (4.66, 4.66, 4.66); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (6x11x1): Measurement grid: dx=15 mm, dy=15 mm

Maximum value of SAR (measured) = 0.759 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.386 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.231 W/kg

SAR(1 g) = 0.690 W/kg; SAR(10 g) = 0.367 W/kg

Maximum value of SAR (measured) = 0.723 W/kg

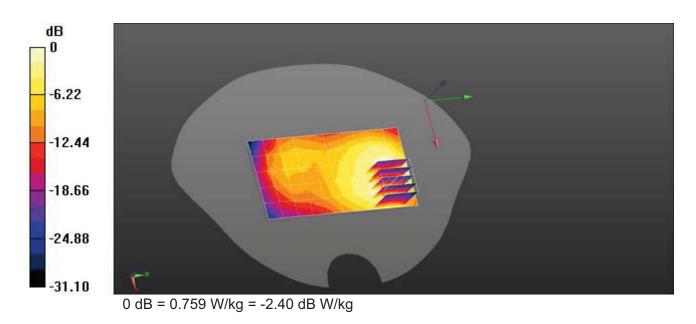


Figure 6: Body, Rear Side, WCDMA Band II Channel 9400

WCDMA Band V Right Cheek Middle Channel

Date: 28/04/2015

Communication System: WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836.6 MHz; σ = 0.89 S/m; ϵ_r = 41.55; ρ = 1000 kg/m³

Phantom section: Right Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (6.23, 6.23, 6.23); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (6x11x1): Measurement grid: dx=15 mm, dy=15 mm

Maximum value of SAR (measured) = 0.749 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.540 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.944 W/kg

SAR(1 g) = 0.746 W/kg; SAR(10 g) = 0.567 W/kg

Maximum value of SAR (measured) = 0.794 W/kg

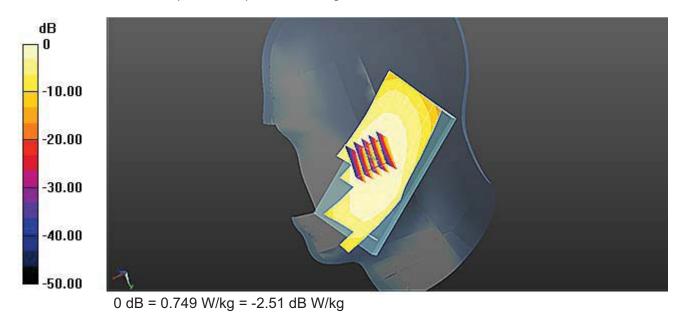


Figure 7 Right Head Cheek WCDMA Band V Channel 4183

WCDMA Band V Rear Side Middle Channel

Date: 29/04/2015

Communication System: WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836.6 MHz; σ = 0.95 S/m; ϵ_r = 55.92; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (6.11, 6.11, 6.11); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (6x11x1): Measurement grid: dx=15 mm, dy=15 mm

Maximum value of SAR (measured) = 1.07 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.771 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.043 W/kg

SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.658 W/kg

Maximum value of SAR (measured) = 1.58 W/kg

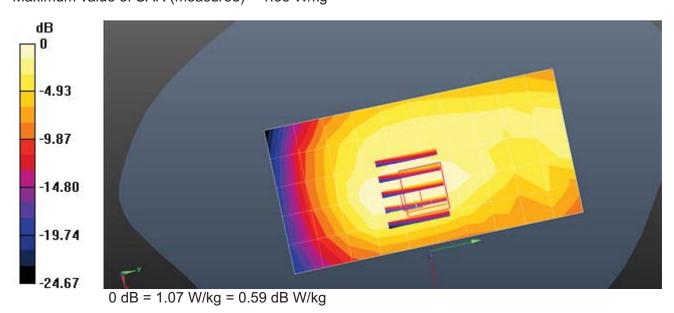


Figure 8: Body, Rear Side, WCDMA Band V Channel 4183

802.11b Left Cheek Middle Channel

Date: 28/04/2015

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; σ = 1.83 S/m; ϵ_r = 37.99; ρ = 1000 kg/m³

Phantom section: Left Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (4.43, 4.43, 4.43); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

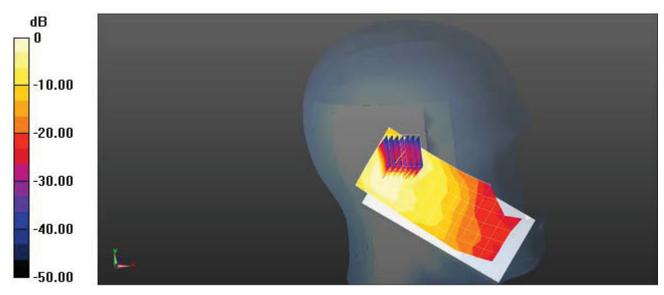
•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (7x13x1): Measurement grid: dx=12 mm, dy=12 mm

Maximum value of SAR (measured) = 0.258 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.002 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.439 W/kg

SAR(1 g) = 0.250 W/kg; SAR(10 g) = 0.137 W/kg

Maximum value of SAR (measured) = 0.283 W/kg

0 dB = 0.258 W/kg = -11.77 dB W/kg

Figure 9: Left Head Cheek 802.11b Channel 6

802.11b Rear Side Middle Channel

Date: 29/04/2015

Communication System: Customer System; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 2.02$ S/m; $\varepsilon_r = 50.74$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF (4.23, 4.23, 4.23); Calibrated: 15/08/2014;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 22/07/2014

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (7x13x1): Measurement grid: dx=12 mm, dy=12 mm

Maximum value of SAR (measured) = 0.446 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.789 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.284 W/kg

SAR(1 g) = 0.386 W/kg; SAR(10 g) = 0.258 W/kg

Maximum value of SAR (measured) = 0.454 W/kg

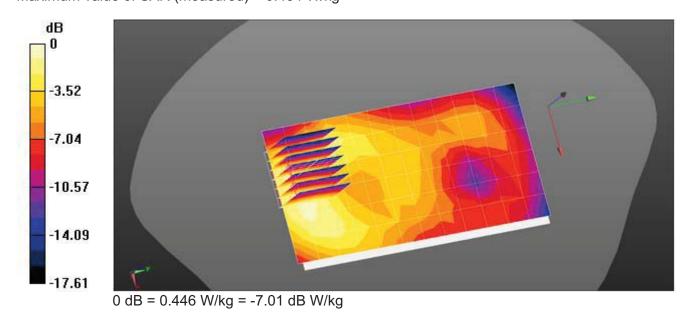


Figure 10: Body, Back Side, 802.11b Channel 6

11. CALIBRATION CERTIFICATE

11.1 Probe Calibration Certificate ES3DV3 (3292)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Report No.: GTI201505167F-5

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

CIQ (Auden)

Accreditation No.: SCS 108

Certificate No: ES3-3292_Aug14

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3292

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

August 15, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E44198	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Name Function
Casibrated by: Claudio Leubler Laboratory Technician

Approved by: Katja Pokovic Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Issued: August 15, 2014

Certificate No: ES3-3292 Aug14

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

DCP CF A, B, C, D

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1. "Frocedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx.y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax.y,z; Bx.y,z; Cx.y,z; Dx.y,z; VRx.y,z: A. B. C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3292_Aug14

Page 2 of 11

ES3DV3 - SN:3292

August 15, 2014

Report No.: GTI201505167F-5

Probe ES3DV3

SN:3292

Manufactured:

July 6, 2010

Repaired:

July 28, 2014

Calibrated:

August 15, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3292_Aug14

Page 3 of 11

ES3DV3-SN:3292

August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Basic Calibration Parameters

The same of the sa	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.89	0.95	1.46	± 10.1 %
DCP (mV) ⁸	107.1	106.1	103.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	×	0.0	0.0	1.0	0.00	209.7	±3.8 %
7		Y	0.0	0.0	1.0		218.8	
		Z	0.0	0.0	1.0		198.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3292_Aug14

Page 4 of 11

Tel.: (86)755-27588991 Fax: (86)755-86116468

^a The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3-SN:3292 August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
835	41.5	0.90	6.23	6.23	6.23	0.80	1.11	± 12.0 %
900	41.5	0.97	6.10	6.10	6.10	0.76	1.17	± 12.0 %
1810	40.0	1.40	5.07	5.07	5.07	0.61	1.36	± 12.0 %
1900	40.0	1.40	5.03	5.03	5.03	0.45	1.55	± 12.0 %
2100	39.8	1.49	5.04	5.04	5.04	0.77	1.17	± 12.0 %
2450	39.2	1.80	4.43	4.43	4.43	0.73	1.23	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (s and s) can be released to ± 100 MHz.

Certificate No: ES3-3292_Aug14

Page 5 of 11

^{**}At frequencies below 3 GHz, the validity of tissue parameters (c and d) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**AlpharDepth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip dramster from the boundary.

ES3DV3- SN:3292 August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	7.10	7.10	7.10	0.13	1.00	± 13.3 %
835	55.2	0.97	6.11	6.11	6.11	0.36	1.78	± 12.0 %
900	55.0	1.05	5.97	5.97	5.97	0.73	1.22	± 12.0 %
1810	53.3	1.52	4.79	4.79	4.79	0.59	1.45	± 12.0 %
1900	53.3	1.52	4.66	4.66	4.66	0.41	1.79	± 12.0 %
2100	53.2	1.62	4.77	4.77	4.77	0.63	1.42	± 12.0 %
2450	52.7	1.95	4.23	4.23	4.23	0.66	0.98	± 12.0 %

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

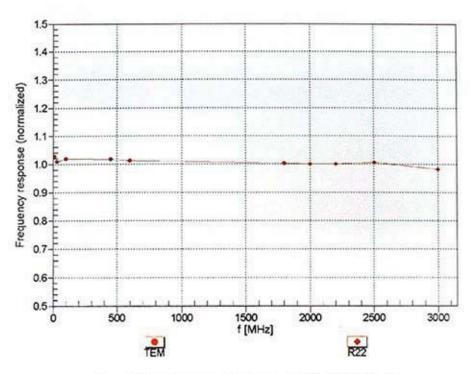
Certificate No: ES3-3292_Aug14

Page 6 of 11

validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (c and d) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and d) is restricted to ± 5%. The uncertainty is the RSS of the Corvet uncertainty for indicated target tissue parameters.

the Cor.V uncertainty for indicated target tissue parameters.


Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always lass than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip dignerer from the boundary.

ES3DV3-SN:3292

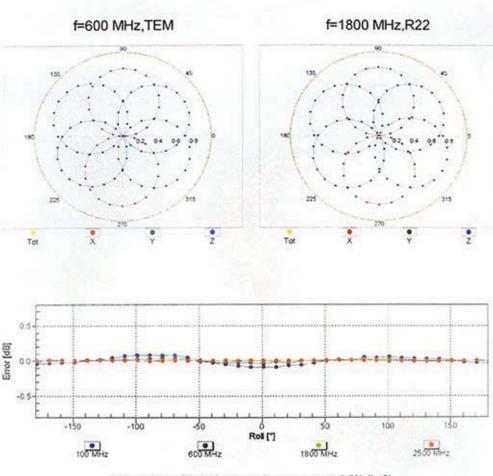
August 15, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3292_Aug14

Page 7 of 11



ES3DV3-SN:3292

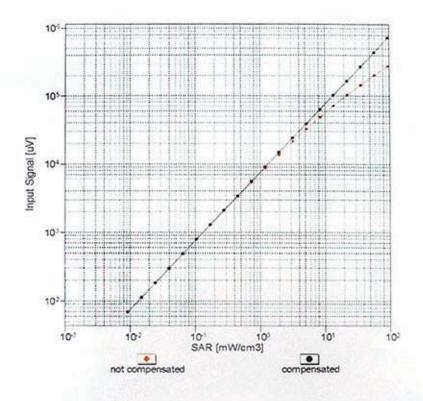
August 15, 2014

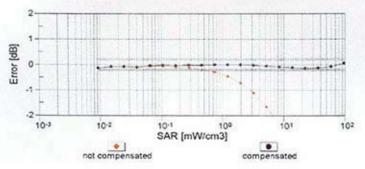
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3292_Aug14

Page 8 of 11





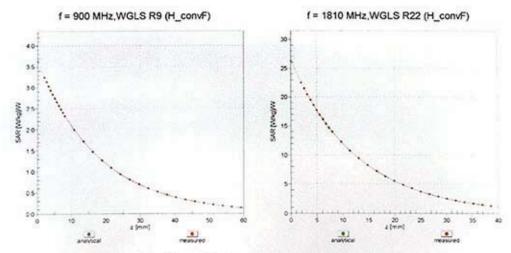
ES3DV3-SN:3292

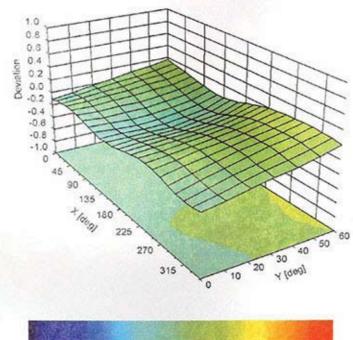
August 15, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3292_Aug14


Page 9 of 11


ES3DV3- SN:3292 August 15, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (6, 8), f = 900 MHz

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1. Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3292_Aug14

Page 10 of 11

ES3DV3-SN:3292

August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-8.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3292_Aug14

Page 11 of 11

11.2 Probe Calibration Certificate D835V2 (4d134)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

CNAS

CALIBRATION
No. L0570

Report No.: GTI201505167F-5

Client

CIQ (Auden)

Certificate No: Z14-97067

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d134

Calibration Procedure(s)

TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date:

July 24, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) ^{*}C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID # Cal Date(Calibrated by. Certificate No.) Scheduled Calibration

Power Meter NRVD	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep -14
Reference Probe EX3DV4	SN 3846	3- Sep-13 (SPEAG, No.EX3-3846_Sep13)	Sep-14
DAE4	SN 1331	23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Jan -15
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

Name Function

Calibrated by: Yu Zongying SAR Test Engineer

Reviewed by: Qi Dianyuan SAR Project Leader

Approved by: Lu Bingsong Deputy Director of the laboratory

Issued: July 28, 2014

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97067

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Report No.: GTI201505167F-5

TSL tissue simulating liquid sensitivity in TSL / NORMx,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the
 dipole positioned under the liquid filled phantom. The impedance stated is transformed
 from the measurement at the SMA connector to the feed point. The Return Loss
 ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97067

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.7 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.41 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	9.62 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.57 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.77 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.64 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.50 mW /g ± 20.4 % (k=2)

Certificate No: Z14-97067

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.8Ω + 3.34jΩ
Return Loss	- 28.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.9\Omega + 7.08j\Omega$
Return Loss	- 23.0dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,261 ns
Electrical Scialy (one all controlly	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z14-97067

Page 4 of 8

Date: 24.07.2014

Report No.: GTI201505167F-5

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d134

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.904$ S/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³

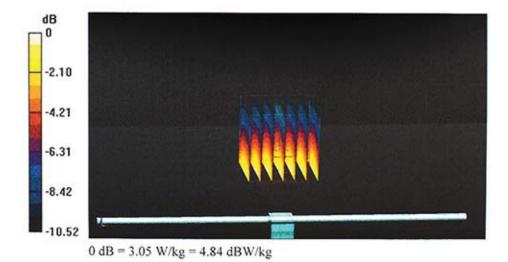
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(9.32, 9.32, 9.32); Calibrated: 2013-09-03;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C: Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52. Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.91 V/m; Power Drift = -0.05 dB

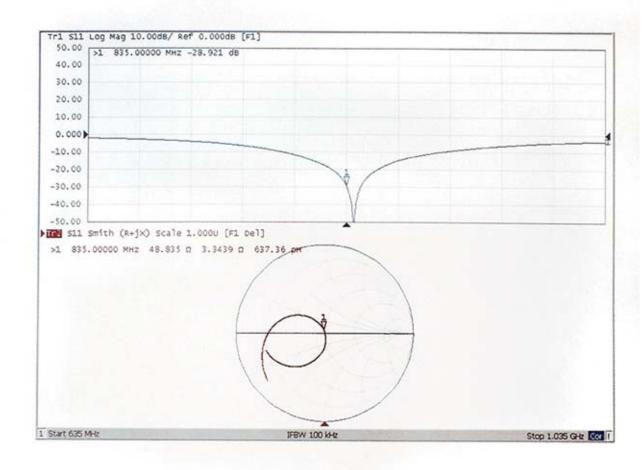
Peak SAR (extrapolated) = 3.60 W/kg

SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 3.05 W/kg

Certificate No: Z14-97067

Page 5 of 8



Impedance Measurement Plot for Head TSL

Certificate No: Z14-97067

Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL Date: 24.07.2014

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d134

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.986$ S/m; $\varepsilon_t = 55.6$; $\rho = 1000$ kg/m³

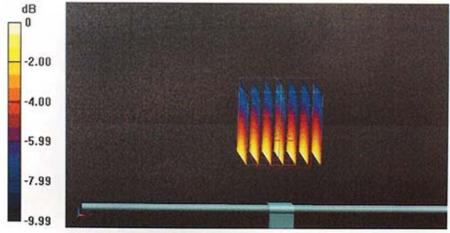
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(8.96, 8.96, 8.96); Calibrated: 2013-09-03;
- · Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.01 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.66 W/kg

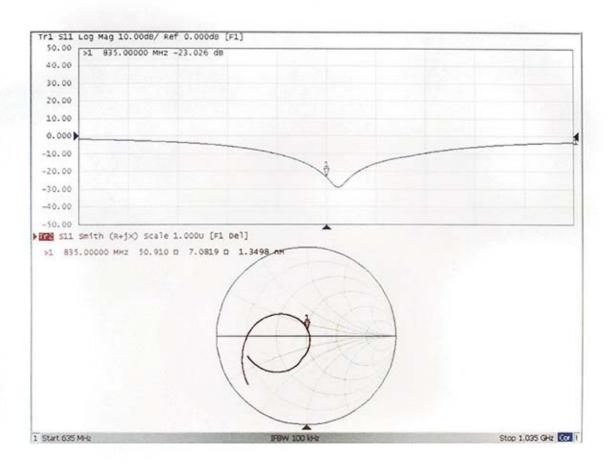
SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.64 W/kg

Maximum value of SAR (measured) = 3.10 W/kg

0 dB = 3.10 W/kg = 4.91 dBW/kg

Certificate No: Z14-97067

Page 7 of 8



Impedance Measurement Plot for Body TSL

Certificate No: Z14-97067

Page 8 of 8

11.3 Probe Calibration Certificate D1900V2 (5d150)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com

Http://www.chinattl.cn

Report No.: GTI201505167F-5

Client

CIQ (Auden)

Certificate No: Z14-97071

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d150

Calibration Procedure(s) TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date: July 25, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)*C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration

Power Meter NRVD 102083 11-Sep-13 (TMC, No.JZ13-443) Sep-14 Power sensor NRV-Z5 100595 11-Sep-13 (TMC, No. JZ13-443) Sep -14 Reference Probe EX3DV4 SN 3846 3- Sep-13 (SPEAG, No.EX3-3846_Sep13) Sep-14 DAE4 SN 1331 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Jan -15 Signal Generator E4438C MY49070393 13-Nov-13 (TMC, No.JZ13-394) Nov-14 Network Analyzer E8362B MY43021135 19-Oct-13 (TMC, No.JZ13-278) Oct-14

Name Function Calibrated by:

Yu Zongying SAR Test Engineer

Reviewed by: Qi Dianyuan SAR Project Leader

Approved by: Lu Bingsong Deputy Director of the laboratory

ignature

Issued: July 28, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97071

Page 1 of 8

Report No.: GTI201505167F-5

Glossary:

TSL ConvF N/A tissue simulating liquid

sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the
 dipole positioned under the liquid filled phantom. The impedance stated is transformed
 from the measurement at the SMA connector to the feed point. The Return Loss
 ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97071

Page 2 of 8

Report No.: GTI201505167F-5

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	117-1

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.71 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.3 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.08 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.2 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.98 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.26 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.0 mW /g ± 20.4 % (k=2)

Certificate No: Z14-97071

Page 3 of 8

Report No.: GTI201505167F-5

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3Ω+ 3.17jΩ
Return Loss	- 30.0dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8Ω+ 3.92jΩ
Return Loss	- 27.7dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.048 ns
A STATE OF THE PROPERTY OF THE	VERNOUS CONTRACTOR

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

PEAG
P

Certificate No: Z14-97071

Page 4 of 8

Date: 25.07.2014

CALIBRATION

No. L0570

Report No.: GTI201505167F-5

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d150

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.416$ S/m; $\epsilon_r = 38.91$; $\rho = 1000$ kg/m³

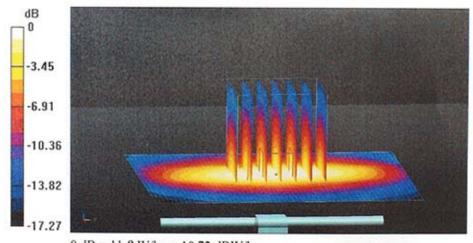
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(7.65, 7.65, 7.65); Calibrated: 2013-09-03;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331: Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C: Type: QD 000 P51 CA: Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8): SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.05 V/m: Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.9 W/kg

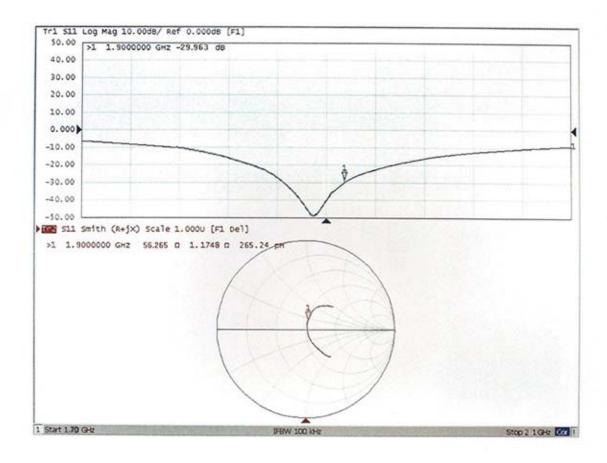
SAR(1 g) = 9.71 W/kg; SAR(10 g) = 5.08 W/kg

Maximum value of SAR (measured) = 11.8 W/kg

0 dB = 11.8 W/kg = 10.72 dBW/kg

Certificate No: Z14-97071

Page 5 of 8



Impedance Measurement Plot for Head TSL

Certificate No: Z14-97071

Page 6 of 8

Date: 25.07.2014

DASY5 Validation Report for Body TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d150

Communication System: UID 0, CW: Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.528$ S/m; $\varepsilon_r = 53.74$: $\rho = 1000$ kg/m³

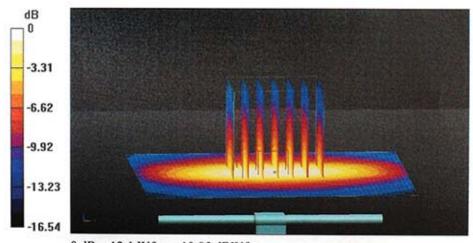
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846: ConvF(7.36, 7.36, 7.36); Calibrated: 2013-09-03;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C: Type: QD 000 P51 CA: Serial: 1161/3
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.606 V/m: Power Drift = 0.02 dB

Peak SAR (extrapolated) = 17.7 W/kg

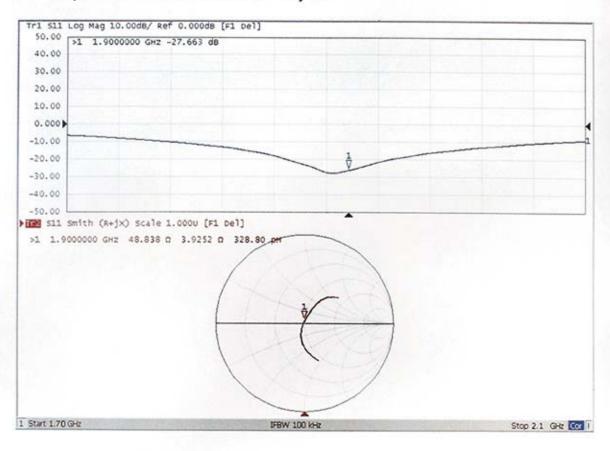
SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.26 W/kg

Maximum value of SAR (measured) = 12.1 W/kg

0 dB = 12.1 W/kg = 10.83 dBW/kg

Certificate No: Z14-97071

Page 7 of 8



Impedance Measurement Plot for Body TSL

Certificate No: Z14-97071

Page 8 of 8

11.4 Probe Calibration Certificate D2450V2 (884)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn E-mail: ettl@chinattl.com

Report No.: GTI201505167F-5

Client

CIQ (Auden)

Certificate No: Z14-97070

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 884

Calibration Procedure(s)

TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date:

September 1, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards

Cal Date(Calibrated by, Certificate No.) ID#

Scheduled Calibration

Power Meter NRVD	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep -14
Reference Probe ES3DV3	SN 3149	5- Sep-13 (SPEAG, No.ES3-3149_Sep13)	Sep-14
DAE3	SN 536	23-Jan-14 (SPEAG, DAE3-536_Jan14)	Jan -15
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

Name

Function

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

Issued: September 4, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97070

Page 1 of 8

Report No.: GTI201505167F-5

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the
 dipole positioned under the liquid filled phantom. The impedance stated is transformed
 from the measurement at the SMA connector to the feed point. The Return Loss
 ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97070

Page 2 of 8

Report No.: GTI201505167F-5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	52.1 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.17 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	24.6 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.11 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW /g ± 20.4 % (k=2)

Certificate No: Z14-97070

Page 3 of 8

Report No.: GTI201505167F-5

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	58.3Ω- 0.76jΩ	
Return Loss	- 22.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	58.1Ω+ 2.61jΩ	
Return Loss	- 22.1dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.224 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	

Certificate No: Z14-97070

Page 4 of 8

Report No.: GTI201505167F-5

Date: 01.09.2014

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL. Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 884

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³

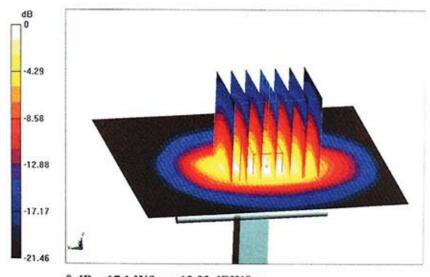
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149: ConvF(4.48, 4.48, 4.48): Calibrated: 2013-09-05;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C: Type: QD 000 P51 CA: Serial: 1161/1
- Measurement SW: DASY52. Version 52.8 (8): SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.491 V/m; Power Drift = -0.03 dB

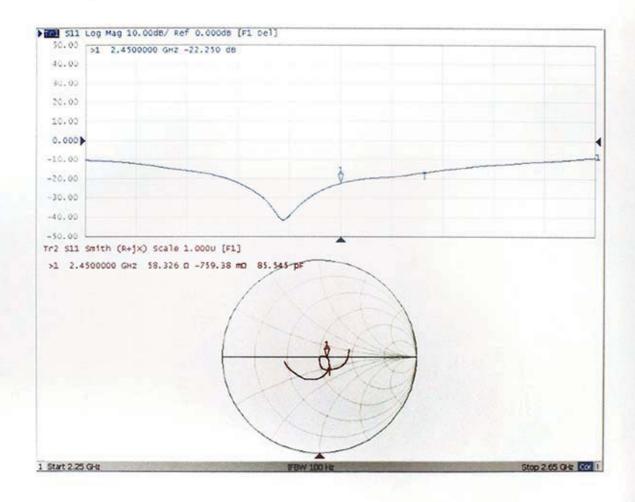
Peak SAR (extrapolated) = 26.6 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.17 W/kg

Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg

Certificate No: Z14-97070


Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z14-97070

Page 6 of 8

Date: 01.09.2014

Report No.: GTI201505167F-5

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 884

Communication System: UID 0. CW: Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.988$ S/m; $\varepsilon_r = 51.25$; $\rho = 1000$ kg/m³

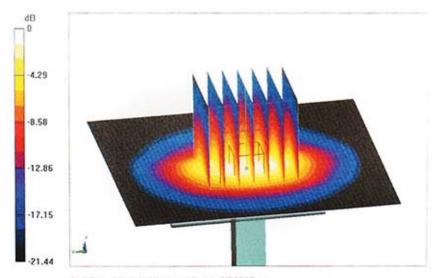
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(4.21, 4.21, 4.21); Calibrated: 2013-09-03;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C: Type: QD 000 P51 CA: Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8): SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.180 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 27.6 W/kg

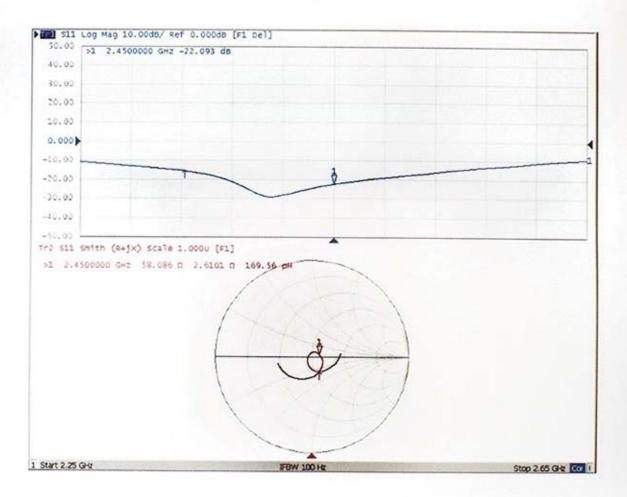
SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 17.4 W/kg

0 dB = 17.4 W/kg = 12.41 dBW/kg

Certificate No: Z14-97070

Page 7 of 8



Impedance Measurement Plot for Body TSL

Certificate No: Z14-97070

Page 8 of 8

11.5 DAE Calibration Certificate DAE4 (1315)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Report No.: GTI201505167F-5

Client :

CIQ (Auden)

Certificate No: Z14-97066

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 1315

Calibration Procedure(s)

TMC-OS-E-01-198

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

July 22, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Documenting Process Calibrator 753	1971018	01-July-14 (CTTL, No:J14X02147)	July-15

Name

Function

Cianatura

Calibrated by:

Yu Zongying

SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

(3) pars d.

Issued: July 23, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratoty.

Certificate No: Z14-97066

Page 1 of 3

Report No.: GTI201505167F-5

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z14-97066

Page 2 of 3

Report No.: GTI201505167F-5

DC Voltage Measurement

A/D - Converter Resolution nominal

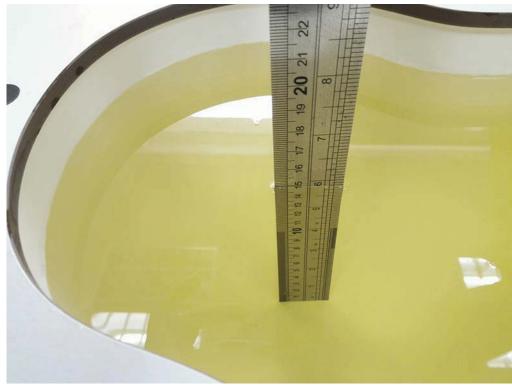
High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	Z
High Range	405.162 ± 0.15% (k=2)	405.006 ± 0.15% (k=2)	404.963 ± 0.15% (k=2)
Low Range	3.99072 ± 0.7% (k=2)	3.98481 ± 0.7% (k=2)	3.98836 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	22° ± 1 °

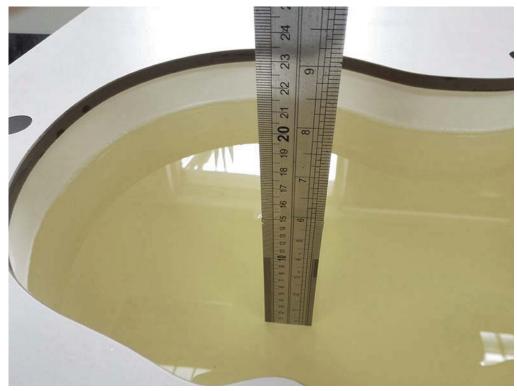
Certificate No: Z14-97066


Page 3 of 3

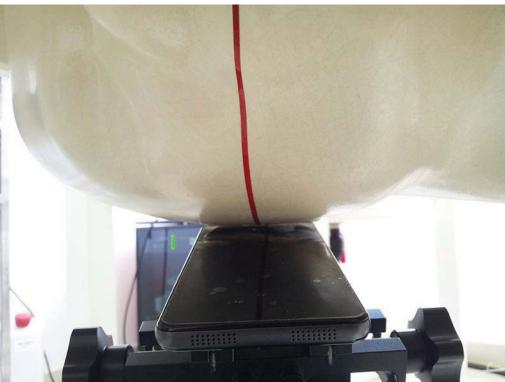
12. EUT TEST PHOTO

Photograph of the depth in the flat Phantom (835MHz)

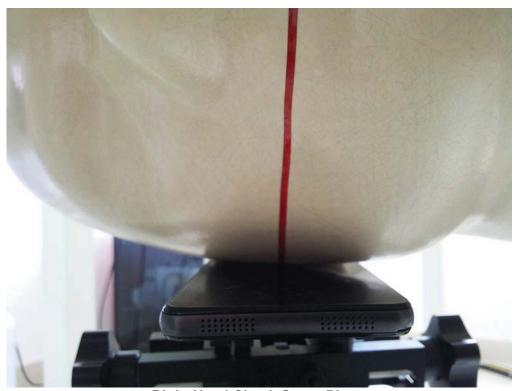
Photograph of the depth in the head Phantom (835MHz)


Liquid depth in the flat Phantom (1900 MHz, 15.2cm depth)

Liquid depth in the head Phantom (1900 MHz, 15.3cm depth)



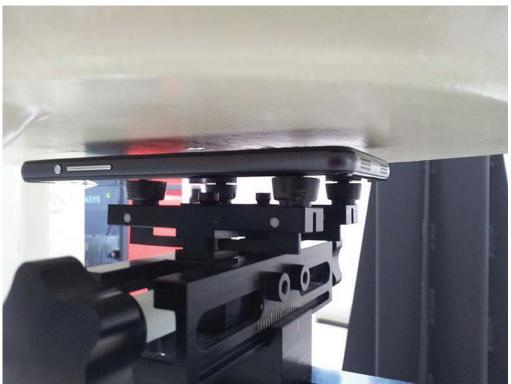
Liquid depth in the flat Phantom (2450 MHz, 15.3cm depth)



Liquid depth in the head Phantom (2450 MHz, 15.4cm depth)

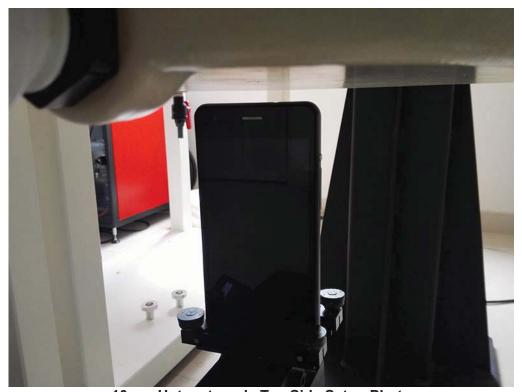
Right Head Tilt Setup Photo

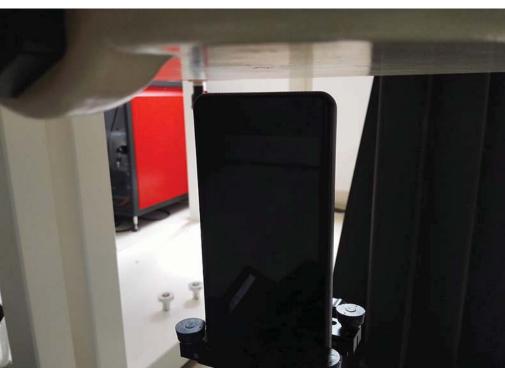
Right Head Cheek Setup Photo

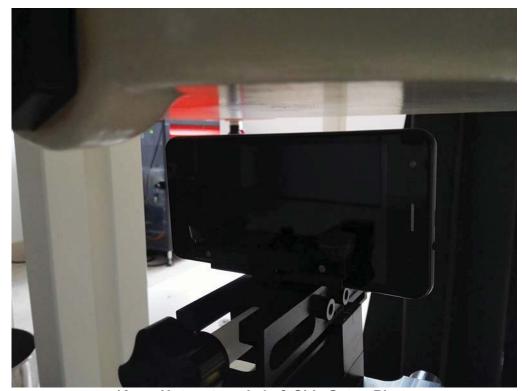


Left Head Tilt Setup Photo

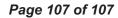
Left Head Cheek Setup Photo


5mm Body-worn accessory & Hotspot Mode Rear Side Setup Photo


5mm Body-worn accessory & Hotspot Mode Front Side Setup Photo


5mm Body-worn accessory with Headset Rear Side Setup Photo

10mm Hotspot mode Top Side Setup Photo


10mm Hotspot mode Bottom Side Setup Photo

10mm Hotspot mode Left Side Setup Photo

10mm Hotspot mode Right Side Setup Photo

13. PHOTOGRAPHS OF EUT CONSTRUCTIONAL