

FCC PART 15.247

TEST REPORT

For

ZTE TRUNKING TECHNOLOGY CORPORATION

4/F, R&D Building 1, ZTE Industrial Park, LiuXian Road, Xili, Nanshan District, Shenzhen,
P.R.China

FCC ID: 2AEKCPH7X0U1

Report Type: Class II Permissive Change	Product Type: DIGITAL PORTABLE RADIO
Report Number: <u>RSZ161008001-00AA1</u>	
Report Date: <u>2017-01-16</u>	
Oscar Ye <i>Oscar.Ye</i>	
Reviewed By: <u>Engineer</u>	
Prepared By: Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S).....	3
TEST METHODOLOGY	3
MEASUREMENT UNCERTAINTY	4
TEST FACILITY.....	4
SYSTEM TEST CONFIGURATION.....	5
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS.....	6
TEST EQUIPMENT LIST	7
FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE	8
APPLICABLE STANDARD	8
FCC §15.203 – ANTENNA REQUIREMENT.....	9
APPLICABLE STANDARD	9
ANTENNA CONNECTOR CONSTRUCTION	9
FCC §15.207 – AC LINE CONDUCTED EMISSIONS.....	10
APPLICABLE STANDARD	10
EUT SETUP	10
EMI TEST RECEIVER SETUP.....	10
TEST PROCEDURE	10
CORRECTED FACTOR & MARGIN CALCULATION	11
TEST RESULTS SUMMARY	11
TEST DATA	11
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS.....	14
APPLICABLE STANDARD	14
EUT SETUP	14
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	15
TEST PROCEDURE	15
CORRECTED AMPLITUDE & MARGIN CALCULATION	15
TEST RESULTS SUMMARY	15
TEST DATA	16

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *ZTE TRUNKING TECHNOLOGY CORPORATION*'s product, model number: PH700 U(1) (*FCC ID: 2AEKCPH7X0U1*) or the "EUT" in this report was a *DIGITAL PORTABLE RADIO*, which was measured approximately: 150 mm (L) x 60 mm (W) x 38 mm (H), rated with input voltage: DC 7.4 V rechargeable battery.

** All measurement and test data in this report was gathered from production sample serial number: 1603361. (Assigned by BACL, Kunshan). The EUT supplied by the applicant was received on 2016-10-08.*

Objective

This test report is prepared on behalf of *ZTE TRUNKING TECHNOLOGY CORPORATION* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

This is a CIIPC application of the device, the differences between the original device and the current one are as follows:

- (1) Changing the model name to "PH700 U(1)".
- (2) Changing the appearance of EUT, which remove the screen and keypad from the EUT.
- (3) Changing the bluethooth antenna

For the change made to the device, the test item "Radiated Emissions" was performed.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS and Part 90 TNF submissions with FCC ID: 2AEKCPH7X0U1.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Item	Uncertainty	
AC Power Lines Conducted Emissions	±3.26 dB	
RF conducted test with spectrum	±0.9dB	
RF Output Power with Power meter	±0.5dB	
Radiated emission	30MHz~1GHz	±5.91dB
	Above 1G	±4.92dB
Occupied Bandwidth	±0.5kHz	
Temperature	±1.0 °C	
Humidity	±6%	

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10-2013.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

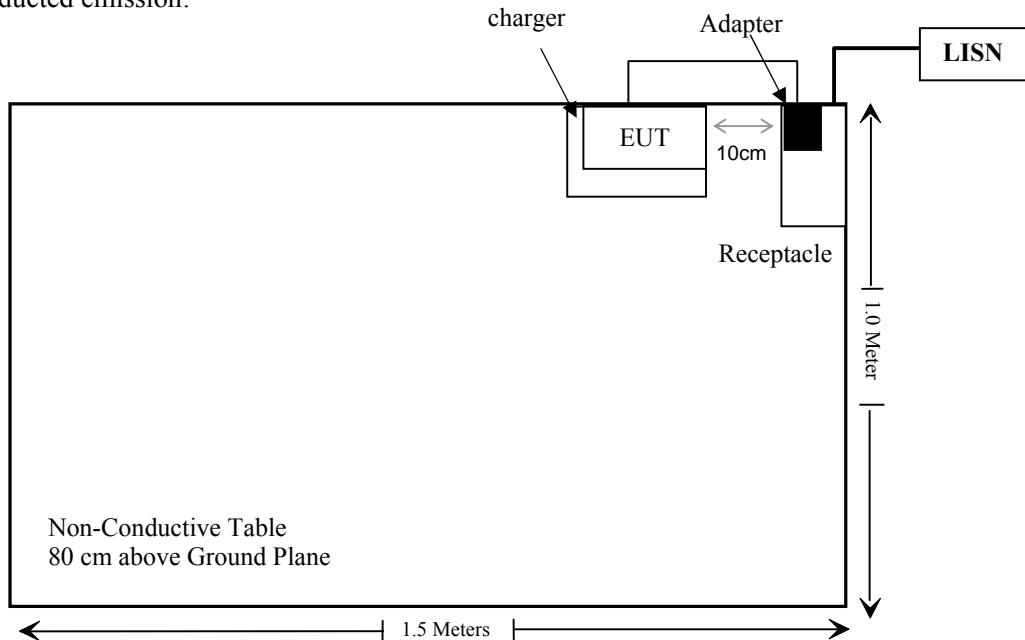
Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

“CSR Blue Suite” software was used.

Special Accessories


No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Block Diagram of Test Setup

For conducted emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance*
§15.247(a)(1)	Channel Separation Test	Compliance*
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance*
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance*
§15.247(b)(1)	Peak Output Power Measurement	Compliance*
§15.247(d)	Band edges	Compliance*

Compliance*: Please referred to original report with FCC ID: 2AEKCPH7X0U1 granted on 2016-09-19, which was tested by Bay Area Compliance Laboratories Corp. (Shenzhen).

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
AC Line Conducted Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESCS30	834115/007	2016-11-25	2017-11-25
Rohde & Schwarz	LISN	ESH3-Z5	862770/011	2016-10-10	2017-10-10
Rohde & Schwarz	Pulse limiter	ESH3-Z2	879940/0058	2016-06-18	2017-06-17
MICRO-COAX	Coaxial line	UFB-293B-1-0480-50X50	97F0173	2016-09-08	2017-09-08
Rohde & Schwarz	CE Test software	EMC 32	V 09.10.0	NCR	NCR
Radiation test					
Sonoma Instrunent	Amplifier	330	171377	2016-09-16	2017-09-16
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2015-11-12	2016-11-11
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2015-11-07	2016-11-06
Mini	Pre-amplifier	ZVA-183-S+	857001418	2016-09-16	2017-09-15
DUCOMMUN	Pre-amplifier	ALN-22093530-01	990147	2016-09-16	2017-09-15
EMCO	Horn Antenna	3116	9510-2384	2015-11-07	2016-11-06
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048	2015-11-12	2016-11-11
ETS	Horn Antenna	3115	6229	2015-11-07	2016-11-06
R&S	Auto test Software	EMC32	V 09.10.0	NCR	NCR
BACL	RF cable	KS-LAB-012	KS-LAB-012	2015-06-16	2016-12-15
BACL	RF cable	KS-LAB-010	KS-LAB-010	2015-12-16	2016-12-15

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE**Applicable Standard**

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR, where}$

1. $f(\text{GHz})$ is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency (MHz)	Maximum coudected Tune-up power		Calculated Distance (mm)	Calculated value	Threshold (1-g SAR)	SAR Test Exclusion
	power (dBm)	power (mW)				
2480	7.0	5.01	5	1.6	3.0	Yes

Result: No SAR test is required

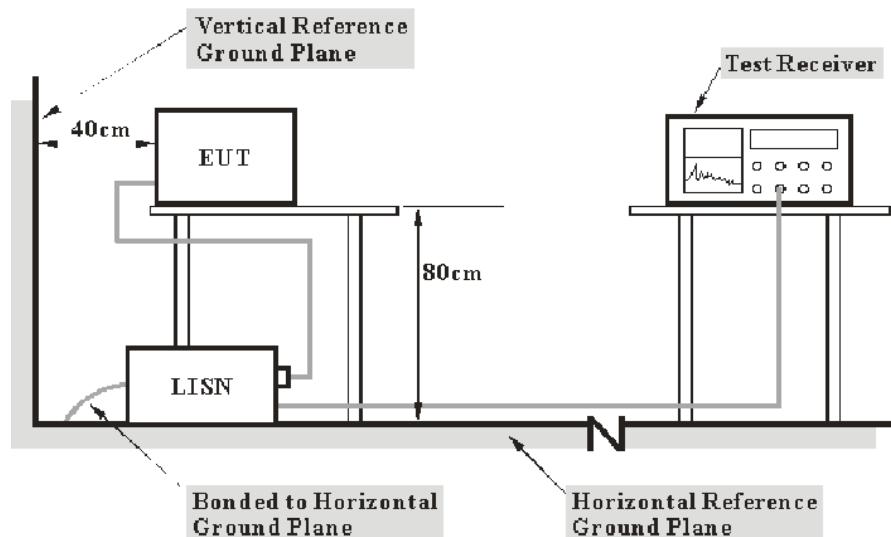
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna arrangement for bluetooth, which was permanently attached and the antenna gain is -2 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 – AC LINE CONDUCTED EMISSIONS

Applicable Standard

According to FCC §15.207

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with per ANSI C63.4-2014. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

$$\text{Correction Factor} = \text{LISN VDF} + \text{Cable Loss} + \text{Transient Limiter Attenuation}$$

The “**Margin**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Results Summary

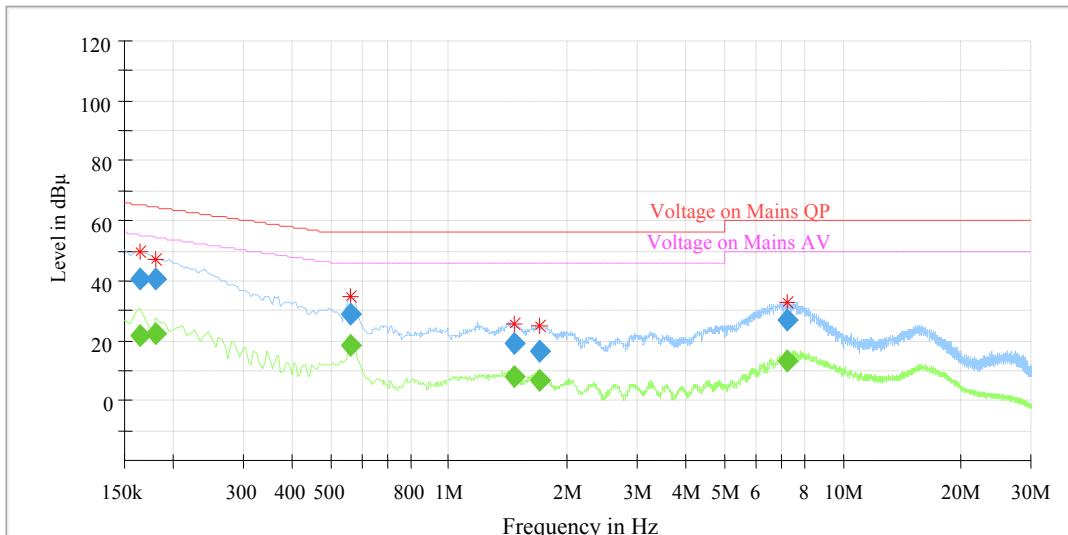
According to the recorded data in following table, the EUT complied with the [FCC Part 15.207](#).

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_m + U_{(Lm)} \leq L_{\text{lim}} + U_{\text{cisp}}$$

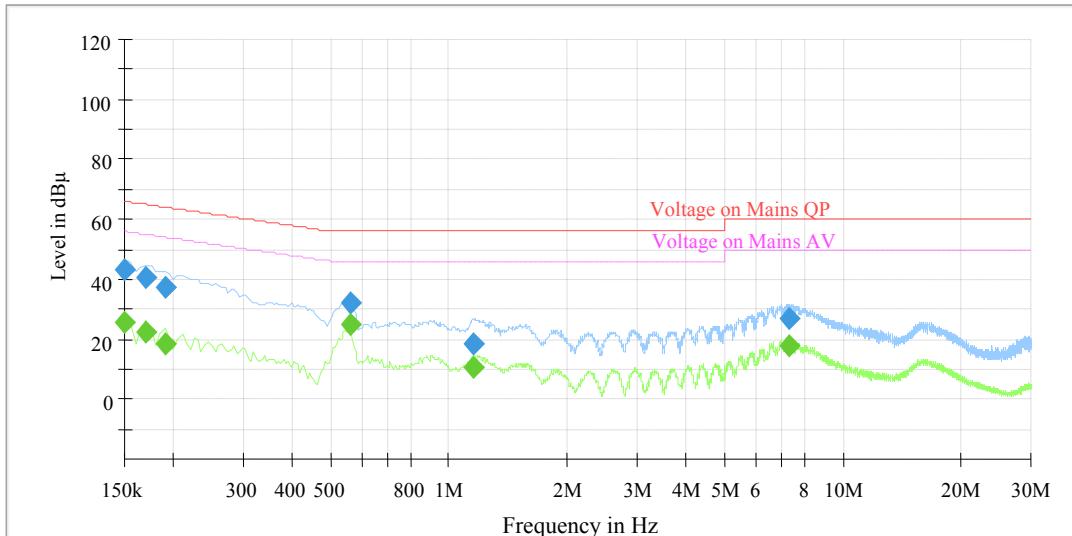
In BACL., $U_{(Lm)}$ is less than U_{cisp} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data


Environmental Conditions

Temperature:	23.5 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by Layne Li on 2017-01-16.


EUT Operation Mode: charging & transmitting

AC 120V/60 Hz, Line

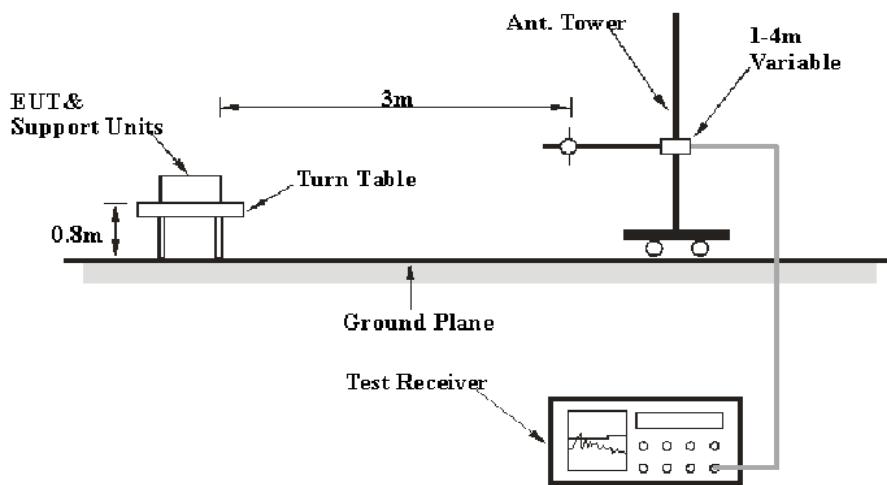
Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.165000	---	21.64	9.000	L1	10.3	33.57	55.21	Compliance
0.165000	40.39	---	9.000	L1	10.3	24.82	65.21	Compliance
0.180000	---	22.60	9.000	L1	10.3	31.89	54.49	Compliance
0.180000	40.77	---	9.000	L1	10.3	23.72	64.49	Compliance
0.565000	---	18.28	9.000	L1	10.3	27.72	46.00	Compliance
0.565000	28.82	---	9.000	L1	10.3	27.18	56.00	Compliance
1.470000	---	8.15	9.000	L1	10.3	37.85	46.00	Compliance
1.470000	19.03	---	9.000	L1	10.3	36.97	56.00	Compliance
1.700000	---	6.77	9.000	L1	10.4	39.23	46.00	Compliance
1.700000	16.77	---	9.000	L1	10.4	39.23	56.00	Compliance
7.245000	---	13.11	9.000	L1	10.5	36.89	50.00	Compliance
7.245000	26.59	---	9.000	L1	10.5	33.41	60.00	Compliance

AC 120V/60 Hz, Neutral

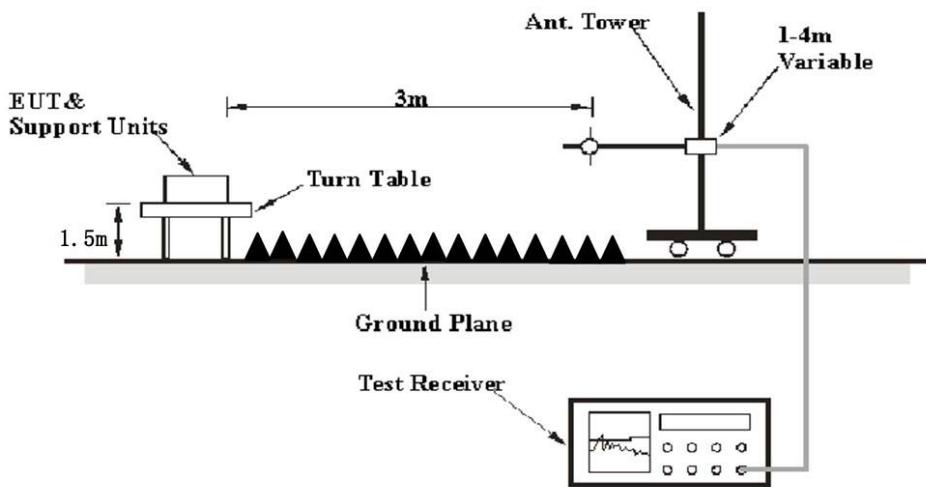
Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.150000	---	25.58	9.000	N	10.3	30.42	56.00	Compliance
0.150000	43.07	---	9.000	N	10.3	22.93	66.00	Compliance
0.170000	---	22.52	9.000	N	10.3	32.44	54.96	Compliance
0.170000	40.56	---	9.000	N	10.3	24.40	64.96	Compliance
0.190000	---	18.52	9.000	N	10.3	35.52	54.04	Compliance
0.190000	37.47	---	9.000	N	10.3	26.57	64.04	Compliance
0.565000	---	24.86	9.000	N	10.3	21.14	46.00	Compliance
0.565000	32.35	---	9.000	N	10.3	23.65	56.00	Compliance
1.150000	---	10.56	9.000	N	10.3	35.44	46.00	Compliance
1.150000	18.38	---	9.000	N	10.3	37.62	56.00	Compliance
7.270000	---	17.75	9.000	N	10.6	32.25	50.00	Compliance
7.270000	26.66	---	9.000	N	10.6	33.34	60.00	Compliance

Note:

- 1) Corrected Amplitude = Reading + Correction Factor
- 2) Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation
- 3) Margin = Limit – Corrected Amplitude


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
	1 MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_m + + U_{(Lm)} \leq L_{lim} + + U_{cisp}$$

In BACL, $U_{(Lm)}$ is less than $+ U_{cisp}$, if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by Layne Li on 2016-10-13.

EUT operation mode: Transmitting

30 MHz -25 GHz: (Scan with GFSK, π/4-DQPSK, 8-DPSK mode, the worst case is BDR Mode (GFSK))

Frequency (MHz)	Receiver		Turntable Degree	Rx Antenna		Corrected Factor (dB)	Corrected Amplitude (dB μ V/m)	FCC Part 15.247	
	Reading (dB μ V)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)			Limit (dB μ V/m)	Margin (dB)
Low Channel (2402 MHz)									
932.51	35.46	QP	251	1.4	H	-4.07	31.39	46	14.61
2402.00	97.55	PK	128	2.5	H	-3.04	94.51	/	/
2402.00	86.91	Ave.	128	2.5	H	-3.04	83.87	/	/
2402.00	95.90	PK	248	1.9	V	-3.04	92.86	/	/
2402.00	84.88	Ave.	248	1.9	V	-3.04	81.84	/	/
2386.31	41.55	PK	33	1.9	H	-3.05	38.50	74	35.50
2386.31	27.96	Ave.	33	1.9	H	-3.05	24.91	54	29.09
2323.31	42.31	PK	58	2.1	H	-3.09	39.22	74	34.78
2323.31	27.66	Ave.	58	2.1	H	-3.09	24.57	54	29.43
2492.65	43.09	PK	176	1.2	H	-2.98	40.11	74	33.89
2492.65	29.27	Ave.	176	1.2	H	-2.98	26.29	54	27.71
4804.00	51.30	PK	100	1.2	V	7.16	58.46	74	15.54
4804.00	39.35	Ave.	100	1.2	V	7.16	46.51	54	7.49

Frequency (MHz)	Receiver		Turntable Degree	Rx Antenna		Corrected Factor (dB)	Corrected Amplitude (dB μ V/m)	FCC Part 15.247	
	Reading (dB μ V)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)			Limit (dB μ V/m)	Margin (dB)
Middle Channel (2441 MHz)									
932.51	35.92	QP	6	1.8	H	-4.07	31.85	46	14.15
2441.00	99.91	PK	296	1.3	H	-3.02	96.89	/	/
2441.00	89.01	Ave.	296	1.3	H	-3.02	85.99	/	/
2441.00	99.72	PK	37	1.7	V	-3.02	96.70	/	/
2441.00	88.97	Ave.	37	1.7	V	-3.02	85.95	/	/
2387.75	42.14	PK	307	1.6	H	-3.05	39.09	74	34.91
2387.75	27.96	Ave.	307	1.6	H	-3.05	24.91	54	29.09
2369.47	42.58	PK	248	2.5	H	-3.06	39.52	74	34.48
2369.47	27.97	Ave.	248	2.5	H	-3.06	24.91	54	29.09
2494.37	42.89	PK	332	1.4	H	-2.98	39.91	74	34.09
2494.37	29.27	Ave.	332	1.4	H	-2.98	26.29	54	27.71
4882.00	49.52	PK	243	1.7	V	7.28	56.80	74	17.20
4882.00	37.24	Ave.	243	1.7	V	7.28	44.52	54	9.48
High Channel (2480 MHz)									
932.51	36.50	QP	105	2.3	H	-4.07	32.43	46	13.57
2480.00	100.10	PK	242	1.6	H	-2.99	97.11	/	/
2480.00	89.66	Ave.	242	1.6	H	-2.99	86.67	/	/
2480.00	97.90	PK	206	1.3	V	-2.99	94.91	/	/
2480.00	87.08	Ave.	206	1.3	V	-2.99	84.09	/	/
2383.74	41.91	PK	30	1.3	H	-3.05	38.86	74	35.14
2383.74	27.96	Ave.	30	1.3	H	-3.05	24.91	54	29.09
2483.50	45.15	PK	258	2.2	H	-2.99	42.16	74	31.84
2483.50	31.21	Ave.	258	2.2	H	-2.99	28.22	54	25.78
2485.97	43.05	PK	239	1.0	H	-2.99	40.06	74	33.94
2485.97	29.28	Ave.	239	1.0	H	-2.99	26.29	54	27.71
4960.00	47.60	PK	350	1.4	V	7.40	55.00	74	19.00
4960.00	33.88	Ave.	350	1.4	V	7.40	41.28	54	12.72

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading

Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB below the limit was not recorded.

******* END OF REPORT *******