

Shenzhen CTL Testing Technology Co., Ltd.
Tel: +86-755-89486194 Fax: +86-755-26636041

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.225

Report Reference No.: **CTL1507302104-WF**

Compiled by:
(position+printed name+signature)

Jacky Chen
(File administrators)

Tested by:
(position+printed name+signature)

Allen Wang
(Test Engineer)

Approved by:
(position+printed name+signature)

Tracy Qi
(Manager)

Jacky Chen

Allen Wang

Tracy Qi

Product Name: All-in-one Multimedia Whiteboard Teaching Machine

Model/Type reference: TL6510-II-8900-80000-E4

List Model(s): TL6510- II-XXXX-XXXXX-YX (Y can be A~Z; X can be 0~9)

Trade Mark: TimeLink™
Vision at fingers

FCC ID: 2AEK2AMWTM

Applicant's name: Shenzhen TimeLink Technology Co.,Ltd.

Address of applicant: 14F, C2 Building, 1001 Xueyuan Avenue, Nanshan District, Shenzhen City

Test Firm: Shenzhen CTL Testing Technology Co., Ltd.

Address of Test Firm: Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, China 518055

Test specification:

Standard: FCC Part 15.225: Operation within the band 13.110–14.010 MHz.

TRF Originator: Shenzhen CTL Testing Technology Co., Ltd.

Master TRF: Dated 2011-01

Date of Receipt: July 30, 2015

Date of Test Date: July 30, 2015 - Aug. 06, 2015

Date of Issue: Aug. 07, 2015

Result: Positive

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	CTL1507302104-WF	Aug. 7, 2015 Date of issue
--------------------------	-------------------------	-------------------------------

Equipment under Test : All-in-one Multimedia Whiteboard Teaching Machine

Model /Type : TL6510-II-8900-80000-E4

Listed Models : TL6510- II-XXXX-XXXXX-YX (Y can be A~Z; X can be 0~9)

Applicant : **Shenzhen TimeLink Technology Co.,Ltd.**

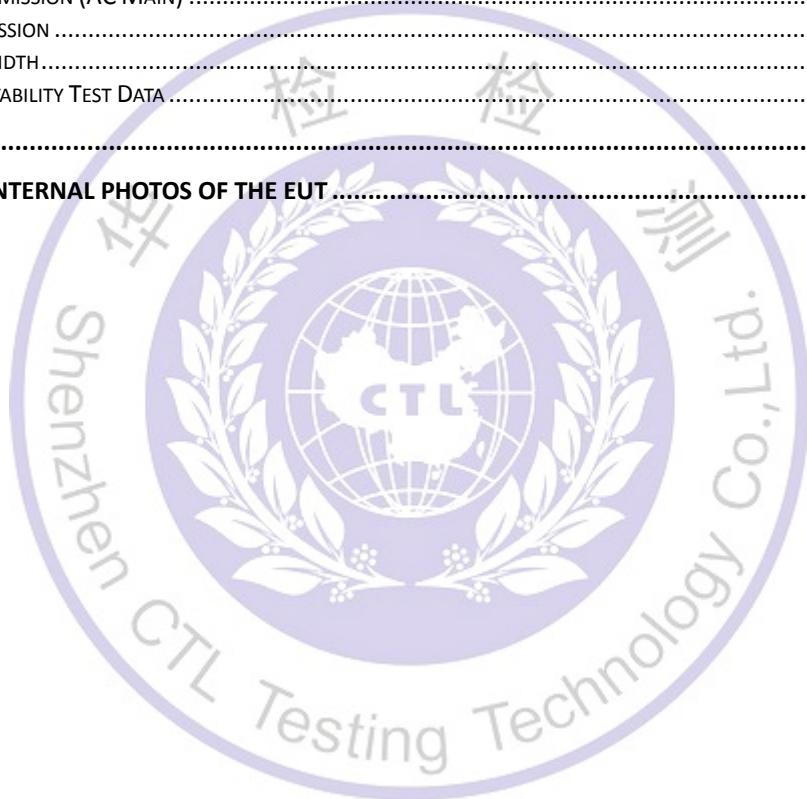
Address : 14F, C2 Building, 1001 Xueyuan Avenue, Nanshan District, Shenzhen City

Manufacturer : **Shenzhen TimeLink Technology Co.,Ltd.**

Address : 14F, C2 Building, 1001 Xueyuan Avenue, Nanshan District, Shenzhen City

Test result	Pass *
--------------------	---------------

* In the configuration tested, the EUT complied with the standards specified page 5.


The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

	Table of Contents	Page
1. SUMMARY.....		5
1.1. TEST STANDARDS.....		5
1.2. TEST DESCRIPTION.....		5
1.3. TEST FACILITY		6
1.4. STATEMENT OF THE MEASUREMENT UNCERTAINTY.....		6
2. GENERAL INFORMATION.....		7
2.1. ENVIRONMENTAL CONDITIONS		7
2.2. GENERAL DESCRIPTION OF EUT		7
2.3. DESCRIPTION OF TEST MODES		7
2.4. EQUIPMENTS USED DURING THE TEST		8
2.5. RELATED SUBMITTAL(S) / GRANT (S).....		8
2.6. MODIFICATIONS.....		8
3. TEST CONDITIONS AND RESULTS		9
3.1. CONDUCTED EMISSION (AC MAIN)		9
3.2. RADIATED EMISSION		12
3.3. 20DB BANDWIDTH.....		15
3.4. FREQUENCY STABILITY TEST DATA.....		16
4. EUT TEST PHOTO		18
5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT.....		19

1. SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

[FCC Rules Part 15.225](#): Operation within the band 13.110–14.010 MHz

[ANSI C63.10-2009](#): American National Standard for Testing Unlicensed Wireless Devices

1.2. Test Description

FCC PART 15 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 2.1049	20dB Bandwidth	PASS
FCC Part 15.225(a) (b) (c)	In-band Emissions	PASS
FCC Part 15.225(d)/15.207	Out-of-band Emissions	PASS
FCC Part 15.225(e)	Frequency Stability Tolerance	PASS

Remark: The measurement uncertainty is not included in the test result.

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance 0.15~30MHz	±3.20dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	All-in-one Multimedia Whiteboard Teaching Machine
Model/Type reference:	TL6510-II-8900-80000-E4
Power supply:	DC 12V from adapter
RFID	
Operation frequency:	13.56MHz
Modulation :	ASK
No. of Channel :	1
Antenna type:	Loop Antenna
2.4GHz Receiver(RX only)	
Operation frequency:	2400MHz-2483.5MHz
Modulation :	GFSK

Note: For more details, please refer to the user's manual of the EUT.

2.3. Description of Test Modes

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

Operation Frequency List RFID :

Channel	Frequency (MHz)
01	13.56

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2015/06/02	2016/06/01
EMI Test Receiver	R&S	ESCI	103710	2015/06/02	2016/06/01
Spectrum Analyzer	Agilent	E4407B	MY41440676	2015/05/21	2016/05/20
Controller	EM Electronics	Controller EM 1000	N/A	2015/05/21	2016/05/20
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2015/05/19	2016/05/18
LISN	R&S	ENV216	3560.6550.12	2015/06/02	2016/06/01
LISN	R&S	ESH2-Z5	860014/010	2015/06/02	2016/06/01
Amplifier	Agilent	8349B	3008A02306	2015/05/19	2016/05/18
Amplifier	Agilent	8447D	2944A10176	2015/05/19	2016/05/18
Transient Limiter	SCHWARZCECK	VTSD 9561F	9666	2015/06/02	2016/06/01
Temperature/Humidity Meter	Gangxing	CTH-608	02	2015/05/20	2016/05/19

The calibration interval was one year

2.5. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AEK2AMWWTM filing to comply with Section 15.225 of the FCC Part 15, Subpart C Rules.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emission (AC Main)

LIMIT

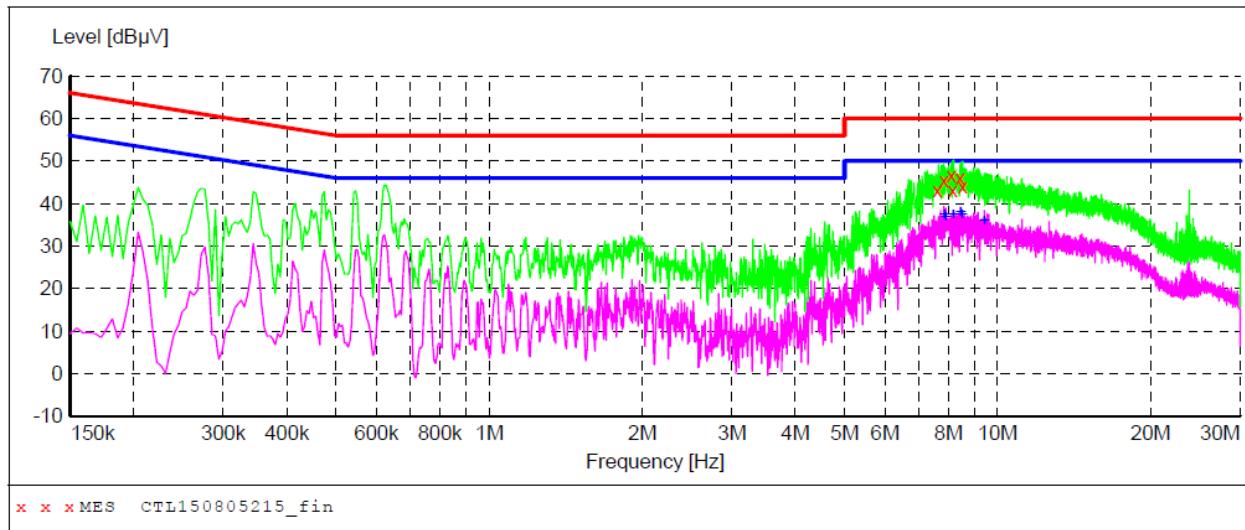
FCC CFR Title 47 Part 15 Subpart C Section 15.207

Frequency range (MHz)	Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE


1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a flood stand system; a wooden table with a height of 0.1 meters is used and is placed on the ground plane as per ANSI C63.10-2009.
2. Support equipment, if needed, was placed as per ANSI C63.10-2009
3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2009
4. The EUT received DC12V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
5. All support equipments received AC power from a second LISN, if any.
6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
8. During the above scans, the emissions were maximized by cable manipulation.

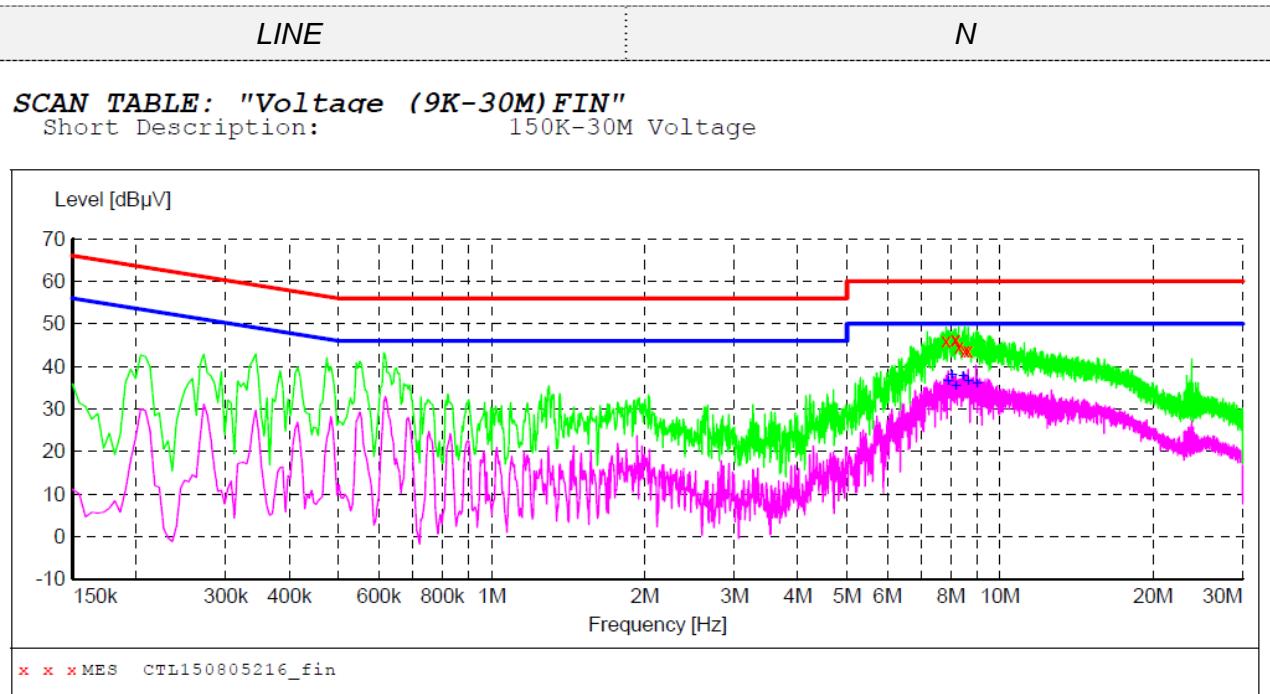
TEST RESULTS

LINE

L

SCAN TABLE: "Voltage (9K-30M) FIN"
 Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL150805215_fin"


8/5/2015 3:25PM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
7.606501	43.10	10.5	60	16.9	QP	L1	GND
7.845001	45.50	10.5	60	14.5	QP	L1	GND
8.106001	46.70	10.5	60	13.3	QP	L1	GND
8.155501	43.20	10.5	60	16.8	QP	L1	GND
8.439001	46.10	10.6	60	13.9	QP	L1	GND
8.538001	44.10	10.6	60	15.9	QP	L1	GND

MEASUREMENT RESULT: "CTL150805215_fin2"

8/5/2015 3:25PM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
7.840501	37.20	10.5	50	12.8	AV	L1	GND
7.894501	36.60	10.5	50	13.4	AV	L1	GND
8.182501	37.30	10.5	50	12.7	AV	L1	GND
8.448001	38.00	10.6	50	12.0	AV	L1	GND
8.511001	37.20	10.6	50	12.8	AV	L1	GND
9.415501	35.70	10.6	50	14.3	AV	L1	GND

MEASUREMENT RESULT: "CTL150805216_fin"

8/5/2015 3:29PM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
7.822501	45.90	10.5	60	14.1	QP	N	GND
8.164501	46.30	10.5	60	13.7	QP	N	GND
8.169001	46.20	10.5	60	13.8	QP	N	GND
8.295001	44.50	10.5	60	15.5	QP	N	GND
8.529001	43.60	10.6	60	16.4	QP	N	GND
8.641501	43.80	10.6	60	16.2	QP	N	GND

MEASUREMENT RESULT: "CTL150805216_fin2"

8/5/2015 3:29PM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
7.908001	36.40	10.5	50	13.6	AV	N	GND
8.029501	38.00	10.5	50	12.0	AV	N	GND
8.182501	35.30	10.5	50	14.7	AV	N	GND
8.448001	37.50	10.6	50	12.5	AV	N	GND
8.646001	36.50	10.6	50	13.5	AV	N	GND
8.988001	35.80	10.6	50	14.2	AV	N	GND

3.2. Radiated Emission

Limit

- a The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.
- b Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- c Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- d The field strength of any emissions appearing outside of the 13.110– 14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

Frequency (MHz)	Distance (Meters)	Radiated (dBuV/m)	Radiated (μ V/m)
0.009-0.49	3	$20\log(2400/F(\text{KHz}))+40\log(300/3)$	$2400/F(\text{KHz})$
0.49-1.705	3	$20\log(24000/F(\text{KHz}))+40\log(30/3)$	$24000/F(\text{KHz})$
1.705-13.110	3	69.54	30
13.110-13.410	3	80.50	106
13.410-13.553	3	90.47	334
13.553-13.567	3	124.00	15848
13.567-13.710	3	90.47	334
13.710-14.010	3	80.50	106
14.010-30.0	3	69.54	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Test Procedure

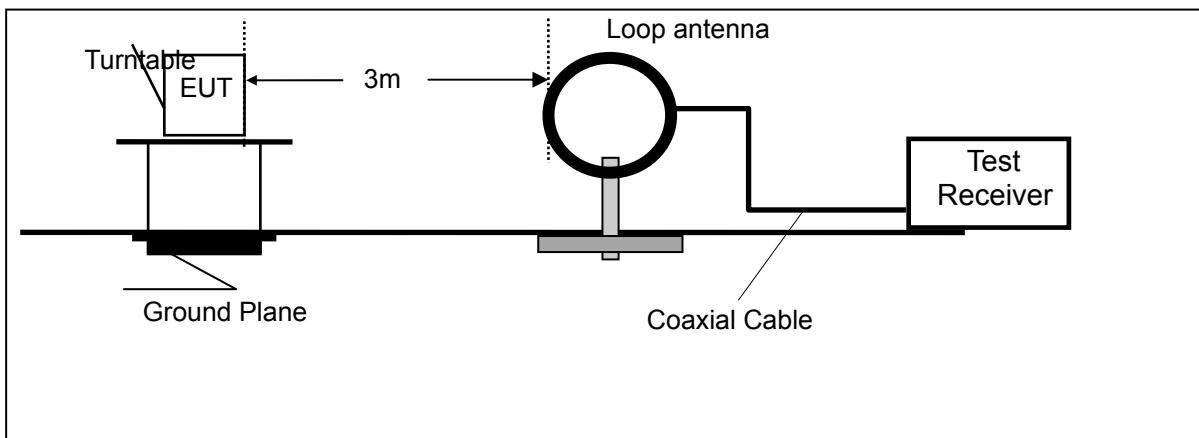
1. The EUT was placed on 10cm wooden desk above ground plane which on a turn table.
2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
4. Repeat above procedures until all frequency measurements have been completed.

Field Strength Calculation

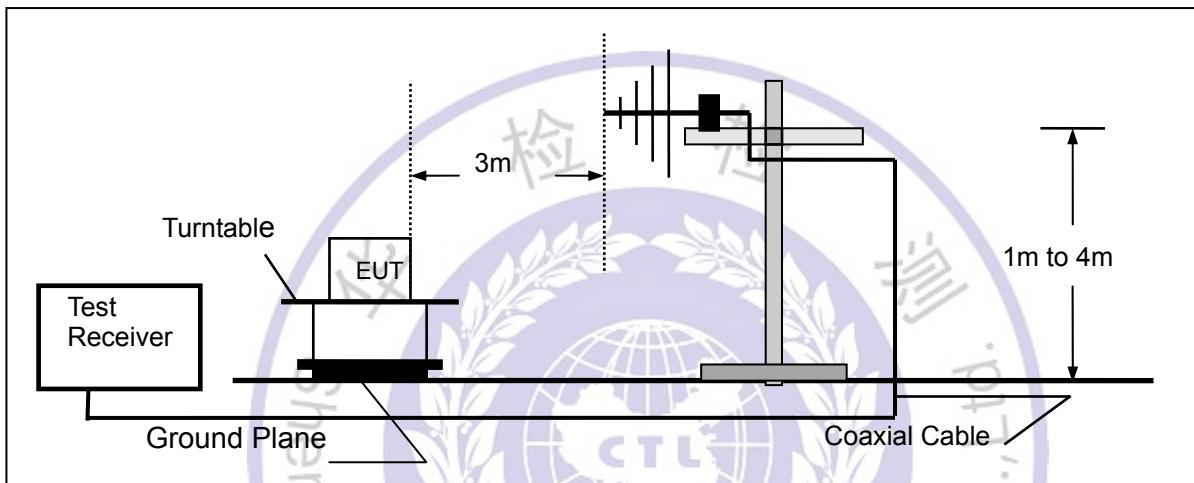
The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	


For example

Frequency (MHz)	FS (dBuV/m)	RA (dBuV/m)	AF (dB)	CL (dB)	AG (dB)	Transd (dB)
150.00	40	58.1	12.2	1.6	31.90	-18.1


$$\text{Transd} = AF + CL - AG$$

Test Configuration

Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Test Results**3.2.1 In-band Emissions**

Frequency(MHz):			13.56			Polarity:		HORIZONTAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	13.15	39.65	PK	80.50	40.14	35.66	5.26	-0.56	4.70
2	13.55	49.48	PK	90.47	40.99	44.69	5.36	-0.57	4.79
3	13.56	85.98	PK	124.00	37.78	81.34	5.45	-0.57	4.88
4	13.57	49.23	PK	90.47	41.32	44.01	5.49	-0.35	5.14
5	13.75	40.41	PK	80.50	39.87	35.30	5.63	-0.30	5.33

Frequency(MHz):			13.56			Polarity:		VERTICAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	13.15	40.36	PK	80.50	40.14	35.66	5.26	-0.56	4.70
2	13.55	49.48	PK	90.47	40.99	44.69	5.36	-0.57	4.79
3	13.56	86.22	PK	124.00	37.78	81.34	5.45	-0.57	4.88
4	13.57	49.15	PK	90.47	41.32	44.01	5.49	-0.35	5.14
5	13.75	40.63	PK	80.50	39.87	35.30	5.63	-0.30	5.33

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)
3. Margin value = Limit value- Emission level.
4. The other emission levels were very low against the limit.

3.2.2 Out-of-band Emissions

Frequency(MHz):			13.56			Polarity:		HORIZONTAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	27.12	37.98	PK	69.54	31.56	30.48	7.25	0.25	7.50
2	40.68	33.78	PK	40.00	6.22	24.97	8.25	0.56	8.81
3	54.24	27.55	PK	40.00	12.45	18.51	8.30	0.74	9.04
4	67.80	28.69	PK	40.00	11.31	19.16	8.55	0.98	9.53

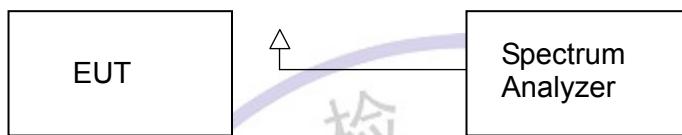
Frequency(MHz):			13.56			Polarity:		HORIZONTAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	27.12	37.98	PK	69.54	31.56	30.48	7.25	0.25	7.50
2	40.68	33.78	PK	40.00	6.22	24.97	8.25	0.56	8.81
3	54.24	27.55	PK	40.00	12.45	18.51	8.30	0.74	9.04
4	67.80	28.69	PK	40.00	11.31	19.16	8.55	0.98	9.53

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)
3. Margin value = Limit value- Emission level.
4. The other emission levels were very low against the limit.

3.3. 20dB Bandwidth

Limit


No limit for 20dB bandwidth.

Test Procedure

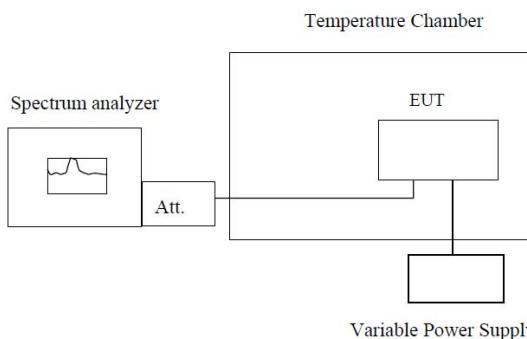
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

Modulation	Frequency(MHz)	20dB bandwidth (MHz)	Result
ASK	CH00	0.274	Pass



3.4. Frequency Stability Test Data

LIMIT

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

TEST CONFIGURATION

Note : Measurement setup for testing on Antenna connector

TEST PROCEDURE

1. The equipment under test was connected to an external AC power supply and input rated voltage.
2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
3. The EUT was placed inside the temperature chamber.
4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency.
5. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.
7. Reduce the input voltage to specified extreme voltage variation (+/- 15%) or endpoint, record the maximum frequency change.

TEST RESULTS

Reference Frequency: 13.56MHz				
Voltage (V)	Temperature (°C)	Frequency (Hz)	Frequency Deviation(Hz)	Deviation (%)
AC120	+20(Ref)	13,560,006	6	0.000044
	-20	13,560,015	15	0.000111
	-10	13,560,004	4	0.000029
	0	13,559,985	-15	-0.000111
	+10	13,560,003	3	0.000022
	+20	13,560,014	14	0.000103
	+25	13,560,020	20	0.000147
	+30	13,559,991	-9	-0.000066
	+40	13,559,990	-10	-0.000074
	+50	13,559,995	-5	-0.000037
AC138	+20	13,560,011	11	0.000081
AC102	+20	13,560,006	6	0.000044

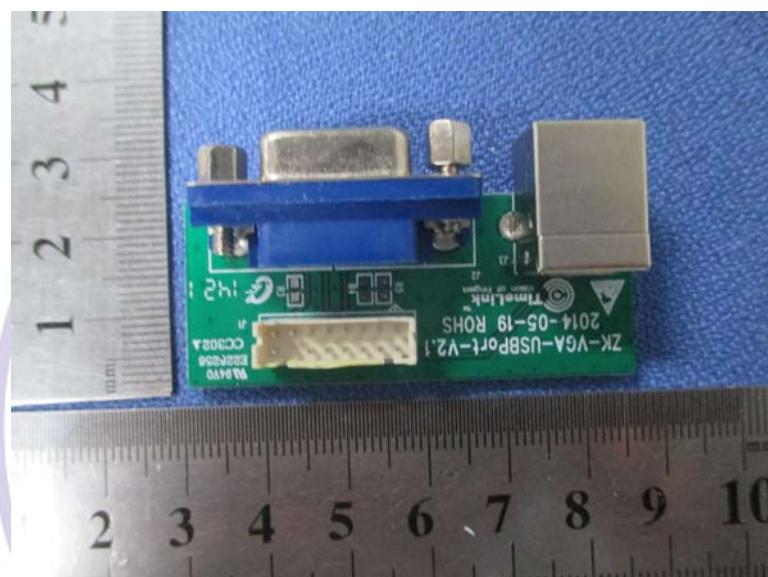
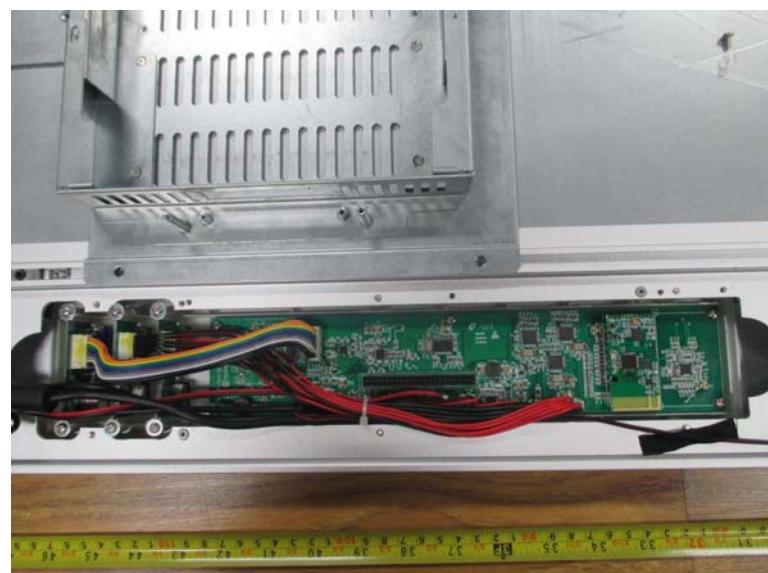
4. EUT TEST PHOTO

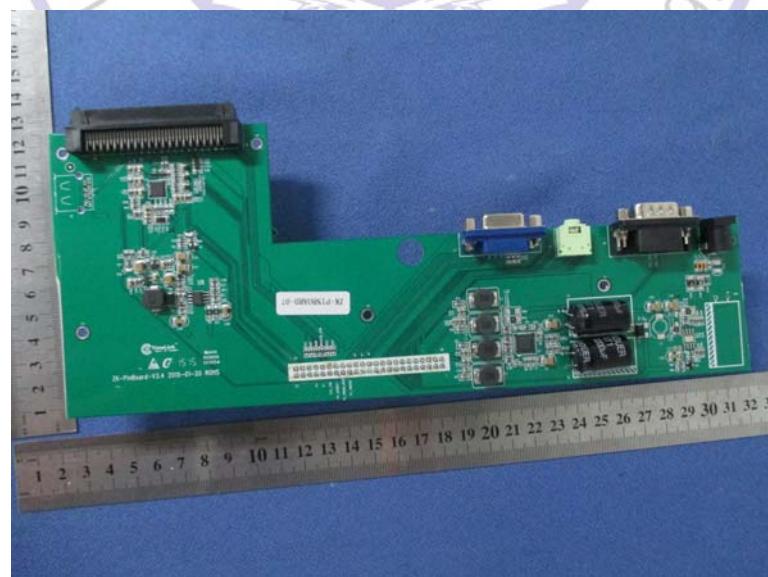
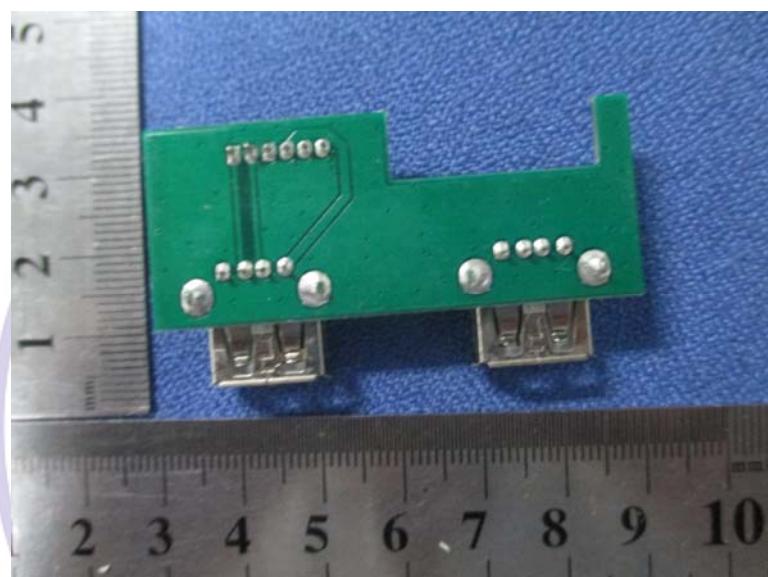
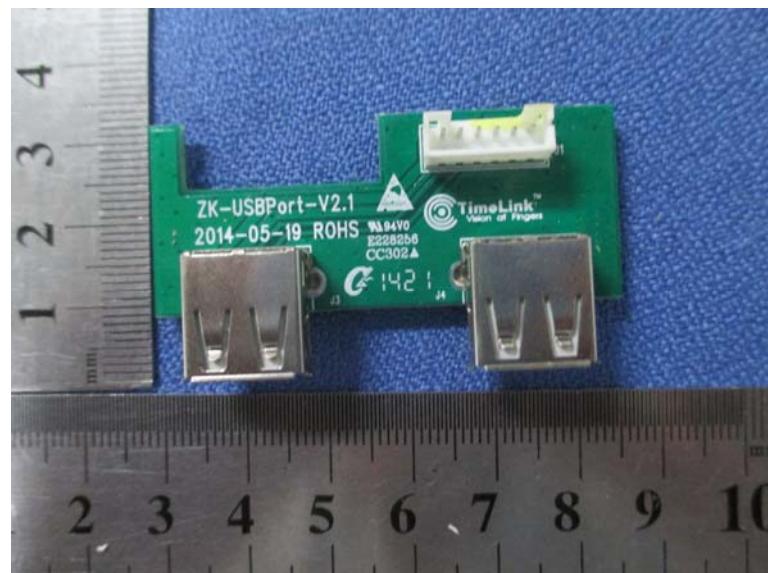
Radiated Emission

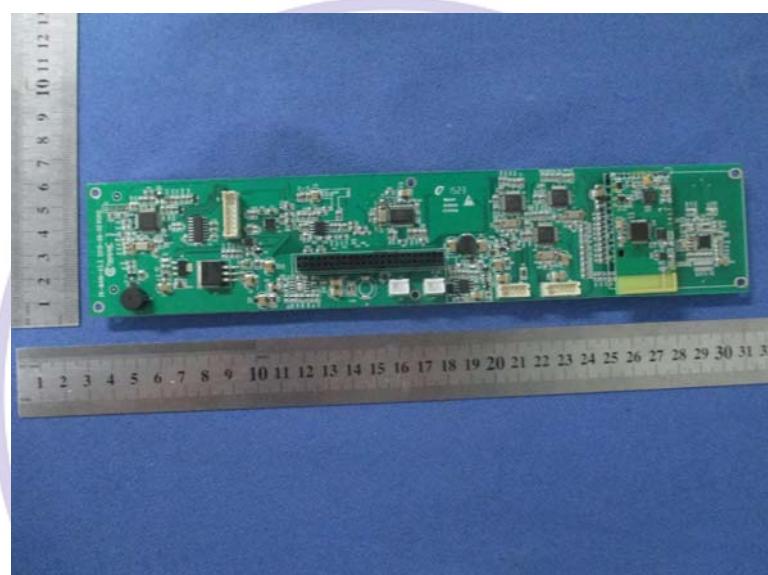
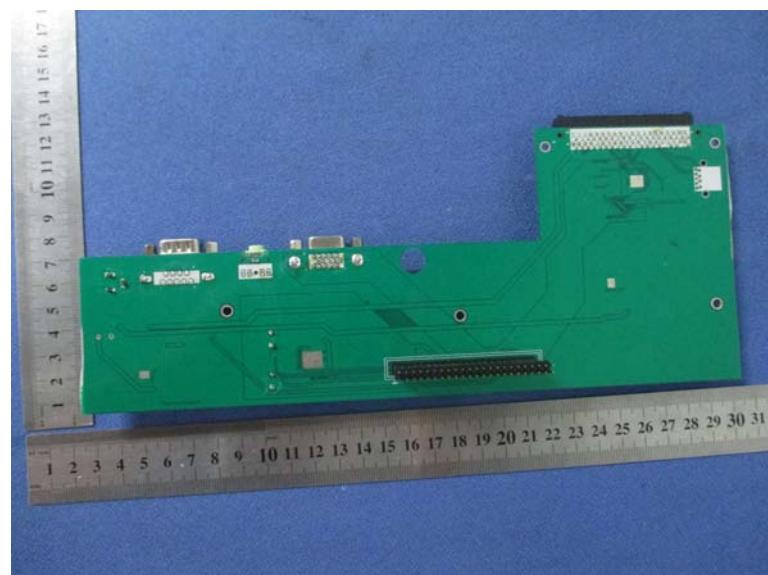
Conducted Emission

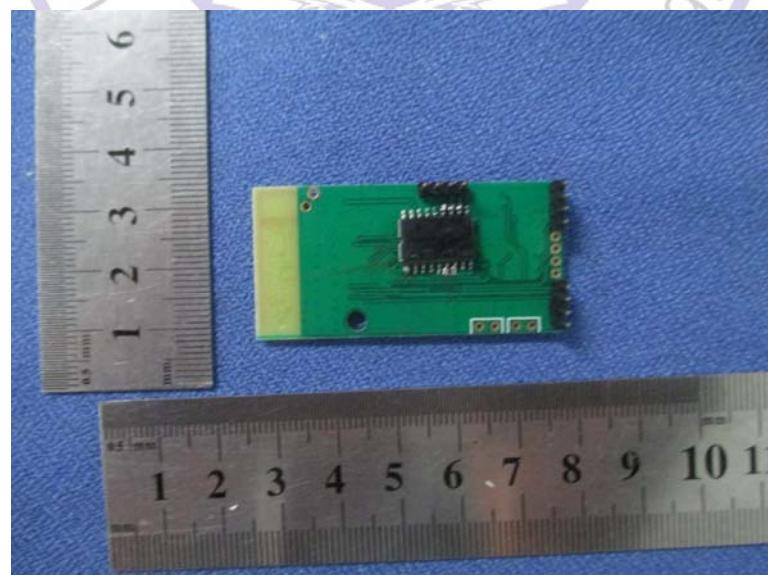
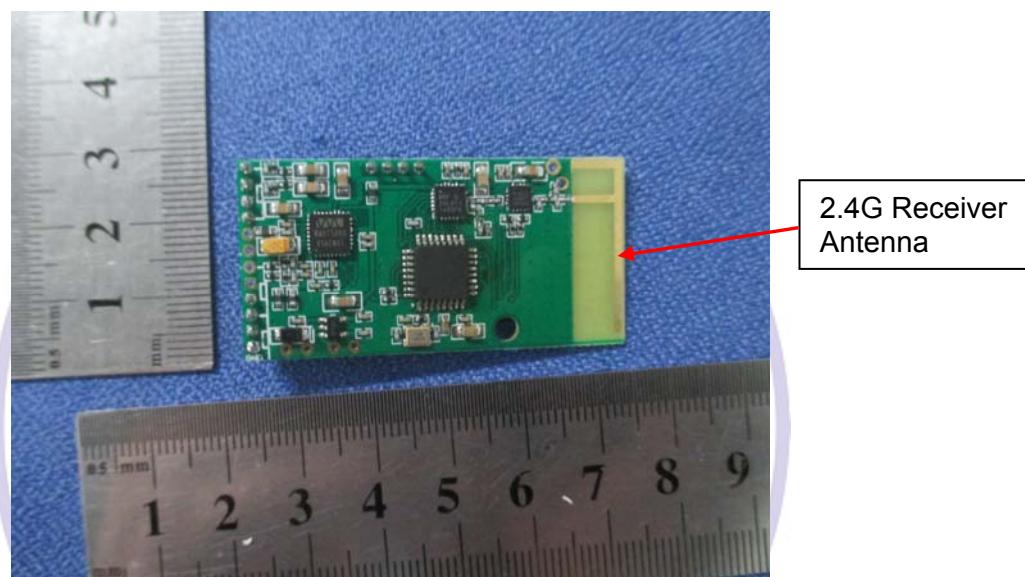
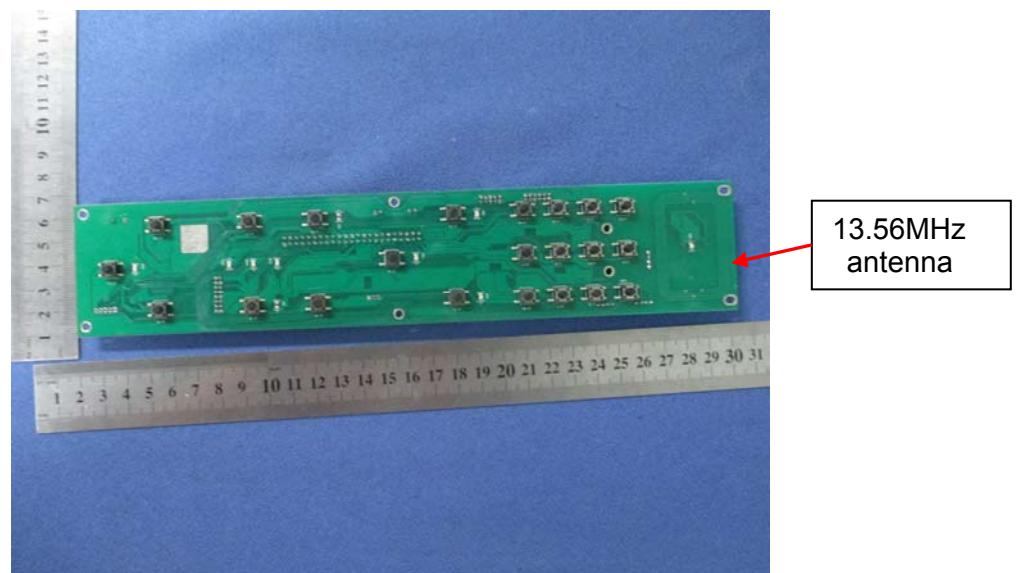
5. External and Internal Photos of the EUT

External Photos of EUT




Internal Photos of EUT

***** End of Report *****