








#### **CETECOM ICT Services**

consulting - testing - certification >>>

# **TEST REPORT**

Test report no.: 1-0585/15-01-10



#### **Testing laboratory**

#### **CETECOM ICT Services GmbH**

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: <a href="http://www.cetecom.com">http://www.cetecom.com</a>
e-mail: ict@cetecom.com

#### **Accredited Testing Laboratory:**

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

## **Applicant**

#### **Neratec Solutions AG**

Rosswiesstrasse 29

8608 Bubikon / SWITZERLAND Phone: +41 55 253 2078 Fax: +41 55 253 20 70 Contact: Michael Aeschbacher

e-mail: michael.aeschbacher@neratec.com

Phone: +41 55 253 20 73

#### Manufacturer

#### **Neratec Solutions AG**

Rosswiesstrasse 29

8608 Bubikon / SWITZERLAND

#### Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

Radio Communications & EMC

For further applied test standards please refer to section 3 of this test report.

**Test Item** 

Kind of test item: WLAN modem Model name: DT50RF MK2

FCC ID: 2AEJD-103902-DT50RF IC: 9301A-103902DT50

**UNII** bands

Frequency: 5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz;

5470 MHz to 5725 MHz and 5725 MHz to 5850 MHz

Technology tested: WLAN (OFDM/a-; n HT20- & n HT40-mode)

Antenna: External Sencity® Spot-S antenna with 3 ports

Power supply: 3.3 V DC by external power supply

Temperature range: -40°C to +85°C

Radio Communications & EMC



This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

| Test report authorized: | Test performed: |
|-------------------------|-----------------|
|                         |                 |
|                         |                 |
| Andreas Luckenbill      | Marco Bertolino |



# Table of contents

| 1  | Table of contents   |                                                                                                            |     |  |  |  |  |
|----|---------------------|------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| 2  | General information |                                                                                                            |     |  |  |  |  |
| _  |                     | Notes and disclaimer                                                                                       |     |  |  |  |  |
|    |                     | Application details                                                                                        |     |  |  |  |  |
| 3  | Test s              | tandard/s and references                                                                                   | :   |  |  |  |  |
| 4  |                     | nvironment                                                                                                 |     |  |  |  |  |
| 5  |                     | em                                                                                                         |     |  |  |  |  |
| 5  |                     |                                                                                                            |     |  |  |  |  |
|    |                     | General description                                                                                        |     |  |  |  |  |
| _  |                     | boratories sub-contracted                                                                                  |     |  |  |  |  |
| 6  |                     |                                                                                                            |     |  |  |  |  |
| 7  |                     | ption of the test setup                                                                                    |     |  |  |  |  |
|    |                     | Shielded semi anechoic chamber                                                                             |     |  |  |  |  |
|    |                     | Shielded fully anechoic chamber                                                                            |     |  |  |  |  |
|    |                     | Conducted measurements                                                                                     |     |  |  |  |  |
| 8  |                     | nce of testing                                                                                             |     |  |  |  |  |
| •  | -                   | _                                                                                                          |     |  |  |  |  |
|    |                     | Sequence of testing radiated spurious 9 kHz to 30 MHzSequence of testing radiated spurious 30 MHz to 1 GHz |     |  |  |  |  |
|    |                     | Sequence of testing radiated spurious 1 GHz to 18 GHz                                                      |     |  |  |  |  |
|    |                     | Sequence of testing radiated spurious above 18 GHz                                                         |     |  |  |  |  |
| 9  | Measu               | rement uncertainty                                                                                         | 1   |  |  |  |  |
| 10 | Sumi                | mary of measurement results                                                                                | 16  |  |  |  |  |
| 11 | Addit               | ional comments                                                                                             | 17  |  |  |  |  |
| 12 | Meas                | urement results                                                                                            | 19  |  |  |  |  |
|    | 12.1                | Identify worst case data rate                                                                              |     |  |  |  |  |
|    | 12.2                | Antenna gain                                                                                               |     |  |  |  |  |
|    | 12.3                | Duty cycle                                                                                                 | 2′  |  |  |  |  |
|    | 12.4                | Maximum output power conducted                                                                             |     |  |  |  |  |
|    | 12.5                | Power spectral density                                                                                     |     |  |  |  |  |
|    | 12.6                | Minimum emission bandwidth for the band 5.725-5.85 GHz                                                     |     |  |  |  |  |
|    | 12.7                | Spectrum bandwidth – 26 dB bandwidth                                                                       |     |  |  |  |  |
|    | 12.8<br>12.9        | Occupied bandwidth – 99% emission bandwidth  Band edge compliance radiated                                 |     |  |  |  |  |
|    | 12.9                | TX spurious emissions radiated                                                                             |     |  |  |  |  |
|    | 12.10               | Spurious emissions radiated < 30 MHz                                                                       |     |  |  |  |  |
| 13 |                     | rvations                                                                                                   |     |  |  |  |  |
|    | nex A               | Document history                                                                                           |     |  |  |  |  |
|    | nex B               | Further information                                                                                        |     |  |  |  |  |
|    |                     | Accreditation Certificate                                                                                  | 361 |  |  |  |  |



#### 2 General information

#### 2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

#### 2.2 Application details

Date of receipt of order: 2015-12-02
Date of receipt of test item: 2015-12-02
Start of test: 2015-12-07
End of test: 2016-04-05
Person(s) present during the test: -/-

. , ,

## 3 Test standard/s and references

| Test standard     | Date             | Description                                                                                                                                                     |
|-------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 CFR Part 15    | -/-              | Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices                                                                       |
| RSS - 247 Issue 1 | May 2015         | Digital Transmission Systems (DTSs), Frequency Hopping<br>Systems (FHSs) and Licence - Exempt Local Area Network (LE-<br>LAN) Devices                           |
| RSS - Gen Issue 4 | November<br>2014 | Spectrum Management and Telecommunications Radio Standards<br>Specifications - General Requirements and Information for the<br>Certification of Radio Apparatus |



| Guidance             | Version | Description                                                                                                                                                                          |
|----------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNII: KDB 789033 D02 | v01r01  | Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E Compliance measurement procedures for unlicensed - national |
| UNII: KDB 905462 D02 | v01r02  | information infrastructure devices operating in the 5250 - 5350 MHz and 5470 - 5725 MHz bands incorporating dynamic frequency selection                                              |
| ANSI C63.4-2014      | -/-     | American national standard for methods of measurement of radio-<br>noise emissions from low-voltage electrical and electronic<br>equipment in the range of 9 kHz to 40 GHz           |
| ANSI C63.10-2013     | -/-     | American national standard of procedures for compliance testing of unlicensed wireless devices                                                                                       |
| KDB 662911 D01       | V02r01  | Emissions Testing of Transmitters with Multiple Outputs in the Same Band                                                                                                             |



#### 4 Test environment

| Temperature                                  | : | $T_{nom} \ T_{max} \ T_{min}$ | +23 °C during room temperature tests No tests under extreme conditions required! No tests under extreme conditions required! |
|----------------------------------------------|---|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Relative humidity content                    | : |                               | 55 %                                                                                                                         |
| Barometric pressure                          | : |                               | not relevant for this kind of testing                                                                                        |
| Power supply : V <sub>max</sub> No tests und |   | $V_{max}$                     | 3.3 V DC by external power supply No tests under extreme conditions required! No tests under extreme conditions required!    |

## 5 Test item

## 5.1 General description

| Kind of test item :                                    | WLAN modem                                                                                                 |  |  |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| Type identification :                                  | DT50RF MK2                                                                                                 |  |  |
| HMN :                                                  | -/-                                                                                                        |  |  |
| PMN :                                                  | DT50RF_MK2                                                                                                 |  |  |
| HVIN :                                                 | DT50RF_MK2                                                                                                 |  |  |
| FVIN :                                                 | 6.6                                                                                                        |  |  |
| S/N serial number :                                    | Conducted unit: 0060010001030016 Radiated unit: 0060010001030021                                           |  |  |
| HW hardware status :                                   | MK2                                                                                                        |  |  |
| SW software status :                                   | 6.6                                                                                                        |  |  |
| Frequency band :                                       | UNII bands<br>5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz;<br>5470 MHz to 5725 MHz and 5725 MHz to 5850 MHz |  |  |
| Type of radio transmission: Use of frequency spectrum: | OFDM                                                                                                       |  |  |
| Type of modulation :                                   | BPSK, QPSK, 16 – QAM, 64 – QAM                                                                             |  |  |
| Antenna :                                              | External Sencity® Spot-S antenna with 3 ports                                                              |  |  |
| Power supply :                                         | 3.3 V DC by external power supply                                                                          |  |  |
| Temperature range :                                    | -40°C to +85°C                                                                                             |  |  |

## 5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-0585/15-01-01\_AnnexA

1-0585/15-01-01\_AnnexB 1-0585/15-01-01\_AnnexD

#### 6 Test laboratories sub-contracted

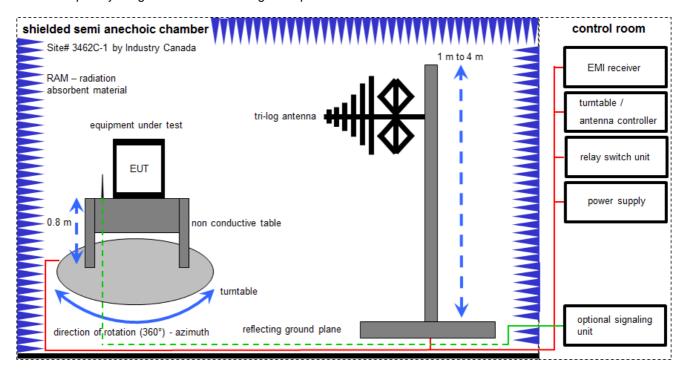
None



## 7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


#### Agenda: Kind of Calibration

| k     | calibration / calibrated                   | EK  | limited calibration                                  |
|-------|--------------------------------------------|-----|------------------------------------------------------|
| ne    | not required (k, ev, izw, zw not required) | ZW  | cyclical maintenance (external cyclical maintenance) |
| ev    | periodic self verification                 | izw | internal cyclical maintenance                        |
| Ve    | long-term stability recognized             | g   | blocked for accredited testing                       |
| vlkl! | Attention: extended calibration interval   |     |                                                      |
| NK!   | Attention: not calibrated                  | *)  | next calibration ordered / currently in progress     |



#### 7.1 Shielded semi anechoic chamber

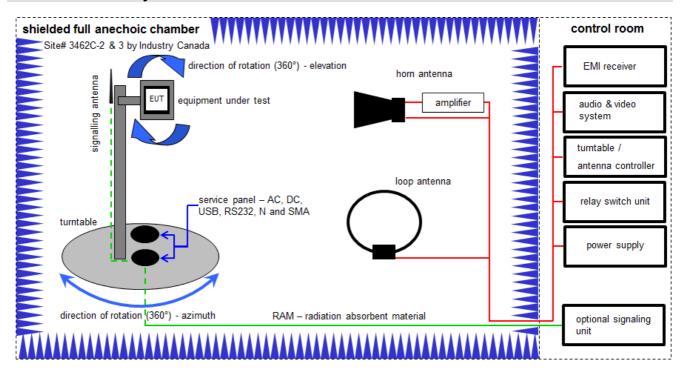
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.



Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


#### Example calculation:

FS  $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \( \mu V/m \))$ 

| No. | Lab /<br>Item | Equipment                                          | Туре         | Manufacturer | Serial No. | INV. No<br>Cetecom | Kind of Calibration | Last Calibration | Next Calibration |
|-----|---------------|----------------------------------------------------|--------------|--------------|------------|--------------------|---------------------|------------------|------------------|
| 1   | Α             | EMI Test Receiver                                  | ESCI 3       | R&S          | 100083     | 300003312          | k                   | 26.01.2016       | 27.01.2017       |
| 2   | Α             | Antenna Tower                                      | Model 2175   | ETS-Lindgren | 64762      | 300003745          | izw                 | -/-              | -/-              |
| 3   | А             | Positioning<br>Controller                          | Model 2090   | ETS-Lindgren | 64672      | 300003746          | izw                 | -/-              | -/-              |
| 4   | А             | Turntable Interface-<br>Box                        | Model 105637 | ETS-Lindgren | 44583      | 300003747          | izw                 | -/-              | -/-              |
| 5   | А             | TRILOG Broadband<br>Test-Antenna 30<br>MHz - 3 GHz | VULB9163     | Schwarzbeck  | 295        | 300003787          | k                   | 22.04.2014       | 22.04.2016       |



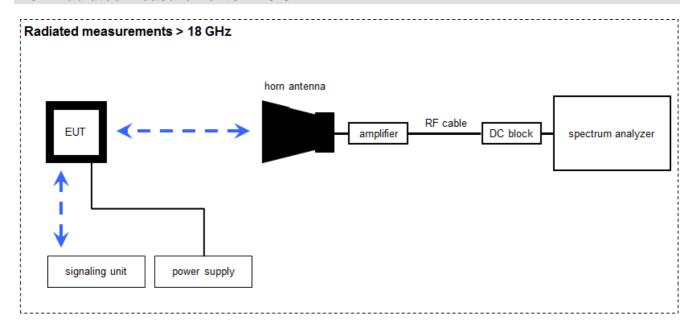
## 7.2 Shielded fully anechoic chamber



Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


#### Example calculation:

 $\overline{FS} [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$ 

| No. | Lab /<br>Item | Equipment                                            | Туре                    | Manufacturer         | Serial No.          | INV. No<br>Cetecom | Kind of Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|------------------------------------------------------|-------------------------|----------------------|---------------------|--------------------|---------------------|------------------|---------------------|
| 1   | A, B          | DC power supply,<br>60Vdc, 50A, 1200 W               | 6032A                   | HP                   | 2818A03450          | 300001040          | Ve                  | 20.01.2015       | 20.01.2018          |
| 2   | А             | Double-Ridged<br>Waveguide Horn<br>Antenna 1-18.0GHz | 3115                    | EMCO                 | 8812-3088           | 300001032          | vIKI!               | 20.05.2015       | 20.05.2017          |
| 3   | A, B          | Anechoic chamber                                     | FAC 3/5m                | MWB / TDK            | 87400/02            | 300000996          | ev                  | -/-              | -/-                 |
| 4   | A, B          | Switch / Control Unit                                | 3488A                   | HP                   | *                   | 300000199          | ne                  | -/-              | -/-                 |
| 5   | A, B          | Active Loop Antenna<br>10 kHz to 30 MHz              | 6502                    | EMCO/2               | 8905-2342           | 300000256          | k                   | 24.06.2015       | 24.06.2017          |
| 6   | А             | Amplifier                                            | js42-00502650-28-<br>5a | Parzich GMBH         | 928979              | 300003143          | ne                  | -/-              | -/-                 |
| 7   | Α             | Highpass Filter                                      | WHKX7.0/18G-8SS         | Wainwright           | 18                  | 300003789          | ne                  | -/-              | -/-                 |
| 8   | Α             | 4U RF Switch<br>Platform                             | L4491A                  | Agilent Technologies | MY50000037          | 300004509          | ne                  | -/-              | -/-                 |
| 9   | A, B          | EMI Test Receiver<br>9kHz-26,5GHz                    | ESR26                   | R&S                  | 101376              | 300005063          | k                   | 04.09.2015       | 04.09.2016          |
| 10  | С             | Signal Analyzer                                      | FSV40                   | R&S                  | 101042              | 300004517          | k                   | 21.01.2016       | 21.01.2017          |
| 11  | С             | Amplifier 2-40 GHz                                   | JS32-02004000-57-<br>5P | MITEQ                | 1777200             | 300004541          | ev                  | -/-              | -/-                 |
| 12  | С             | RF-Cable                                             | ST18/SMAm/SMAm/<br>48   | Huber & Suhner       | Batch no.<br>600918 | 400001182          | ev                  | -/-              | -/-                 |
| 13  | С             | RF-Cable                                             | ST18/SMAm/SMm/4<br>8    | Huber & Suhner       | Batch no.<br>127377 | 400001183          | ev                  | -/-              | -/-                 |
| 14  | С             | DC-Blocker 0.1-40<br>GHz                             | 8141A                   | Inmet                | Batch no.<br>606844 | 400001185          | ev                  | -/-              | -/-                 |
| 15  | С             | Std. Gain Horn<br>Antenna 12.4 to 18.0<br>GHz        | 639                     | Narda                | 8402                | 300000787          | k                   | 14.08.2015       | 14.08.2017          |



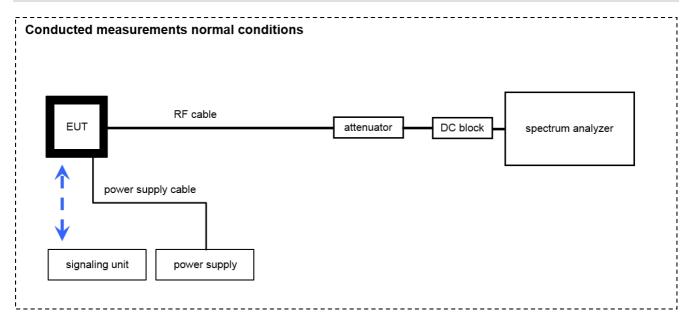
#### 7.3 Radiated measurements > 18 GHz



Measurement distance: horn antenna 50 cm

 $FS = U_R + CA + AF$ 

(FS-field strength; U<sub>R</sub>-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)


#### Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 40.0 \text{ [dB}\mu\text{V/m]} + (-60.1) \text{ [dB]} + 36.74 \text{ [dB/m]} = 16.64 \text{ [dB}\mu\text{V/m]} (6.79 \mu\text{V/m})$ 

| No. | Lab /<br>Item | Equipment                                     | Туре                    | Manufacturer   | Serial No.          | INV. No<br>Cetecom | Kind of Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|-----------------------------------------------|-------------------------|----------------|---------------------|--------------------|---------------------|------------------|---------------------|
| 1   | А             | Signal Analyzer 40<br>GHz                     | FSV40                   | R&S            | 101042              | 300004517          | k                   | 21.01.2016       | 21.01.2017          |
| 2   | А             | Amplifier 2-40 GHz                            | JS32-02004000-57-<br>5P | MITEQ          | 1777200             | 300004541          | ev                  | -/-              | -/-                 |
| 3   | А             | RF-Cable                                      | ST18/SMAm/SMAm/<br>48   | Huber & Suhner | Batch no.<br>600918 | 400001182          | ev                  | -/-              | -/-                 |
| 4   | А             | RF-Cable                                      | ST18/SMAm/SMm/4<br>8    | Huber & Suhner | Batch no.<br>127377 | 400001183          | ev                  | -/-              | -/-                 |
| 5   | А             | DC-Blocker 0.1-40<br>GHz                      | 8141A                   | Inmet          | Batch no.<br>606844 | 400001185          | ev                  | -/-              | -/-                 |
| 6   | А             | Std. Gain Horn<br>Antenna 18.0 to 26.5<br>GHz | 638                     | Narda          | 8402                | 300000486          | k                   | 10.09.2015       | 10.09.2017          |
| 7   | А             | Std. Gain Horn<br>Antenna 26.5 to 40.0<br>GHz | V637                    | Narda          | 82-16               | 300000510          | k                   | 14.08.2015       | 14.08.2017          |



#### 7.4 Conducted measurements



OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

#### Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

| No. | Lab /<br>Item | Equipment                                             | Туре                                        | Manufacturer                 | Serial No.          | INV. No<br>Cetecom | Kind of Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|-------------------------------------------------------|---------------------------------------------|------------------------------|---------------------|--------------------|---------------------|------------------|---------------------|
| 1   | A, B          | PC-WLAN Tester                                        | Intel Core i3<br>3220/3,3 GHz,<br>Prozessor | -/-                          | 2V2403033A45<br>23  | 300004589          | ne                  | -/-              | -/-                 |
| 2   | A, B          | Teststand                                             | Teststand Custom<br>Sequence Editor         | National Instruments<br>GmbH | 2V2403033A45<br>23  | 300004590          | ne                  | -/-              | -/-                 |
| 3   | A, B          | RF-Cable                                              | ST18/SMAm/SMAm/<br>60                       | Huber & Suhner               | Batch no.<br>606844 | 400001181          | ev                  | -/-              | -/-                 |
| 4   | A, B          | DC-Blocker 0.1-40<br>GHz                              | 8141A                                       | Inmet                        | Batch no.<br>606844 | 400001185          | ev                  | -/-              | -/-                 |
| 5   | В             | Signal Analyzer 40<br>GHz                             | FSV40                                       | R&S                          | 101042              | 300004517          | k                   | 21.01.2016       | 21.01.2017          |
| 6   | Α             | NRP Power meter<br>Display and control<br>unit AC sup | NRP                                         | R&S                          | 100212              | 300003780          | vIKI!               | 25.01.2016       | 24.01.2017          |



## 8 Sequence of testing

## 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
  emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.



## 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.



## 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.



## 8.4 Sequence of testing radiated spurious above 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

#### **Premeasurement**

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.



# 9 Measurement uncertainty

| Measurement uncertainty                                  |                                     |  |  |  |  |  |
|----------------------------------------------------------|-------------------------------------|--|--|--|--|--|
| Test case                                                | Uncertainty                         |  |  |  |  |  |
| Antenna gain                                             | ± 3 dB                              |  |  |  |  |  |
| Power spectral density                                   | ± 1.5 dB                            |  |  |  |  |  |
| Spectrum bandwidth                                       | ± 100 kHz (depends on the used RBW) |  |  |  |  |  |
| Occupied bandwidth                                       | ± 100 kHz (depends on the used RBW) |  |  |  |  |  |
| Maximum output power                                     | ± 1.5 dB                            |  |  |  |  |  |
| Minimum emissions bandwidth                              | ± 100 kHz (depends on the used RBW) |  |  |  |  |  |
| Spurious emissions conducted                             | ± 3 dB                              |  |  |  |  |  |
| Spurious emissions radiated below 30 MHz                 | ± 3 dB                              |  |  |  |  |  |
| Spurious emissions radiated 30 MHz to 1 GHz              | ± 3 dB                              |  |  |  |  |  |
| Spurious emissions radiated 1 GHz to 12.75 GHz           | ± 3.7 dB                            |  |  |  |  |  |
| Spurious emissions radiated above 12.75 GHz              | ± 4.5 dB                            |  |  |  |  |  |
| Spurious emissions conducted below 30 MHz (AC conducted) | ± 2.6 dB                            |  |  |  |  |  |



# 10 Summary of measurement results No deviations from the technical specifications were ascertained There were deviations from the technical specifications ascertained

This test report is only a partial test report.

 $\boxtimes$ 

| TC Identifier | Description                     | Verdict   | Date       | Remark |
|---------------|---------------------------------|-----------|------------|--------|
| RF-Testing    | CFR Part 15<br>RSS 247, Issue 1 | see table | 2016-04-26 | -/-    |

The content and verdict of the performed test cases are listed below.

| Test specification clause                                                                                      | Test case                                       | Temperature conditions | Power source voltages | С           | NC | NA         | NP          | Remark                                       |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------|-----------------------|-------------|----|------------|-------------|----------------------------------------------|
| -/-                                                                                                            | Output power verification (conducted)           | Nominal                | Nominal               |             | -/ | / <u>-</u> |             | -/-                                          |
| -/-                                                                                                            | Antenna gain                                    | Nominal                | Nominal               |             | -/ | <b>/</b> _ |             | Declared                                     |
| U-NII Part 15                                                                                                  | Duty cycle                                      | Nominal                | Nominal               |             | -/ | /_         |             | -/-                                          |
| §15.407(a)<br>RSS - 247 (6.2.1) (1)<br>RSS - 247 (6.2.2) (1)<br>RSS - 247 (6.2.3) (1)<br>RSS - 247 (6.2.4) (1) | Maximum output power (conducted & radiated)     | Nominal                | Nominal               | $\boxtimes$ |    |            |             | -/-                                          |
| §15.407(a)<br>RSS - 247 (6.2.1) (1)<br>RSS - 247 (6.2.2) (1)<br>RSS - 247 (6.2.3) (1)<br>RSS - 247 (6.2.4) (1) | Power spectral density                          | Nominal                | Nominal               | $\boxtimes$ |    |            |             | -/-                                          |
| RSS - 247 (6.2.4)                                                                                              | Spectrum bandwidth 6dB bandwidth                | Nominal                | Nominal               | $\boxtimes$ |    |            |             | -/-                                          |
| §15.407(a)                                                                                                     | Spectrum bandwidth 26dB bandwidth               | Nominal                | Nominal               | $\boxtimes$ |    |            |             | -/-                                          |
| RSS Gen<br>clause 6.6                                                                                          | Spectrum bandwidth 99% bandwidth                | Nominal                | Nominal               | -/-         |    |            |             | -/-                                          |
| §15.205<br>RSS - 247 (6.2.1) (2)<br>RSS - 247 (6.2.2) (2)<br>RSS - 247 (6.2.3) (2)<br>RSS - 247 (6.2.4) (2)    | Band edge<br>compliance radiated                | Nominal                | Nominal               | $\boxtimes$ |    |            |             | -/-                                          |
| §15.407(b)<br>RSS - 247 (6.2.1) (2)<br>RSS - 247 (6.2.2) (2)<br>RSS - 247 (6.2.3) (2)<br>RSS - 247 (6.2.4) (2) | TX spurious emissions radiated                  | Nominal                | Nominal               | $\boxtimes$ |    |            |             | -/-                                          |
| §15.109<br>RSS-Gen                                                                                             | RX spurious emissions radiated                  | Nominal                | Nominal               |             |    |            | $\boxtimes$ | See reports from<br>1-0585/15-02<br>project. |
| §15.209(a)<br>RSS-Gen                                                                                          | Spurious emissions radiated < 30 MHz            | Nominal                | Nominal               | $\boxtimes$ |    |            |             | -/-                                          |
| §15.107(a)<br>§15.207                                                                                          | Spurious emissions conducted emissions < 30 MHz | Nominal                | Nominal               | $\boxtimes$ |    |            |             | -/-                                          |
| §15.407<br>RSS - 247 (6.3)                                                                                     | DFS                                             | Nominal                | Nominal               |             |    |            | $\boxtimes$ | See report<br>1-0585/15-01-<br>06 & 07       |

**Note:** C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

<sup>\*</sup> Test cases performed under the project number: 1-0585/15-02



#### 11 Additional comments

Reference documents: 5G\_Patch\_3x3\_9dBi\_HuberSuhner

Antennas\_DT50RF\_Module\_Certification

Cetecom\_Customer\_Questionnaire

Offer\_request\_Cetecom

PowerSettings\_MIMO\_SPA\_5600\_65\_9\_0\_MIMO

Special test descriptions: EUT supports 3 TX / RX antennas with 3 spatial streams

## Configuration descriptions:

| Channel             | 36          | 38          | 40          | 44          | 46          | 48          | 52          | 54          | 56          | 60          | 62          | 64          |
|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Center<br>Frequency | 5180<br>MHz | 5190<br>MHz | 5200<br>MHz | 5220<br>MHz | 5230<br>MHz | 5240<br>MHz | 5260<br>MHz | 5270<br>MHz | 5280<br>MHz | 5300<br>MHz | 5310<br>MHz | 5320<br>MHz |
| а                   | 10          |             | 10          | 9           |             | 10          | 16          |             | 17          | 17          |             | 17          |
| n20                 | 11          |             | 13          | 13          |             | 14          | 15          |             | 15          | 16          |             | 17          |
| n40                 |             | 11          |             |             | 13          |             |             | 15          |             |             | 12          |             |

| Channel             | 100         | 102         | 104         | 108         | 110         | 112         | 116         | 118         | 120         | 124         | 126         | 128         | 132         | 134         | 136         | 140         |
|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Center<br>Frequency | 5500<br>MHz | 5510<br>MHz | 5520<br>MHz | 5540<br>MHz | 5550<br>MHz | 5560<br>MHz | 5580<br>MHz | 5590<br>MHz | 5600<br>MHz | 5620<br>MHz | 5630<br>MHz | 5640<br>MHz | 5660<br>MHz | 5670<br>MHz | 5680<br>MHz | 5700<br>MHz |
| а                   | 17          |             | 17          | 17          |             | 14          | 13          |             | 16          | 16          |             | 16          | 16          |             | 16          | 16          |
| n20                 | 18          |             | 18          | 18          |             | 17          | 17          |             | 16          | 12          |             | 12          | 16          |             | 17          | 16          |
| n40                 |             | 13          |             |             | 16          |             |             | 17          |             |             | 17          |             |             | 17          |             |             |

| Channel          | 149      | 151      | 153      | 157      | 159      | 161      | 165      |
|------------------|----------|----------|----------|----------|----------|----------|----------|
| Center Frequency | 5745 MHz | 5755 MHz | 5765 MHz | 5785 MHz | 5795 MHz | 5805 MHz | 5825 MHz |
| a                | 15       |          | 16       | 15       |          | 14       | 16       |
| n20              | 15       |          | 15       | 14       |          | 16       | 13       |
| n40              |          | 15       |          |          | 13       |          |          |



| Test mode:                             |             | No test mode available.  Iperf was used to ping another device with the largest support packet size                                                                                                                                                                                                                                                                          |
|----------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | $\boxtimes$ | Special software is used. EUT is transmitting pseudo random data by itself                                                                                                                                                                                                                                                                                                   |
| Antennas and transmit operating modes: |             | <ul> <li>Operating mode 1 (single antenna)</li> <li>Equipment with 1 antenna,</li> <li>Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used,</li> <li>Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)</li> </ul> |
|                                        |             | Operating mode 2 (multiple antennas, no beamforming)  - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.                                                                                                                                                                   |
|                                        |             | Operating mode 3 (multiple antennas, with beamforming)  - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming.  In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.                            |



#### 12 Measurement results

## 12.1 Identify worst case data rate

#### Measurement:

All modes of the module will be measured with an average power meter or spectrum analyzer to identify the maximum transmission power.

In further tests only the identified worst case modulation scheme or bandwidth will be measured and this mode is used as representative mode for all other modulation schemes.

Additional the band edge compliance test will be performed in the lowest and highest modulation scheme.

#### **Measurement parameters:**

| Measurement parameter    |                     |  |  |  |  |
|--------------------------|---------------------|--|--|--|--|
| Detector:                | Peak                |  |  |  |  |
| Sweep time:              | Auto                |  |  |  |  |
| Resolution bandwidth:    | 3 MHz               |  |  |  |  |
| Video bandwidth:         | 3 MHz               |  |  |  |  |
| Trace mode:              | Max hold            |  |  |  |  |
| Used test setup:         | see chapter 7.4 – A |  |  |  |  |
| Measurement uncertainty: | see chapter 9       |  |  |  |  |

#### Results:

| Modulation           | Modulation scheme / bandwidth |          |          |          |          |          |  |
|----------------------|-------------------------------|----------|----------|----------|----------|----------|--|
| Frequency            | 5180 MHz                      | 5320 MHz | 5500 MH  | 5700 MHz | 5745 MHz | 5825 MHz |  |
| OFDM / a – mode      | 6 Mbit/s                      | 6 Mbit/s | 6 Mbit/s | 6 Mbit/s | 6 Mbit/s | 6 Mbit/s |  |
| OFDM / n HT20 – mode | MCS0                          | MCS0     | MCS0     | MCS0     | MCS0     | MCS0     |  |
| Frequency            | 5190 MHz                      | 5310 MHz | 5510 MHz | 5670 MHz | 5755 MHz | 5815 MHz |  |
| OFDM / n HT40 – mode | MCS0                          | MCS0     | MCS0     | MCS0     | MCS0     | MCS0     |  |



## 12.2 Antenna gain

#### Limits:

| FCC                              | IC                               |
|----------------------------------|----------------------------------|
| 6 dBi / > 6 dBi output power and | power density reduction required |

#### **Results:**

| T <sub>nom</sub> | V <sub>nom</sub>        | UNII bands |
|------------------|-------------------------|------------|
|                  | [dBi]<br>e manufacturer | 9.0        |

## **Product Configuration**

## **Technical Data**

#### **Electrical Data**

|                          | Danu I      |
|--------------------------|-------------|
| Frequency (MHz)          | 5150 - 5875 |
| VSWR                     | 1.7         |
| Gain                     | 9 dBi       |
| 3dB beamwidth (h) (°)    | 65          |
| 3dB beamwidth (v) (°)    | 65          |
| Electrical downtilit (v) | 0           |
| Isolation between Port   | 20 dB       |

**General Data** 

Nominal Impedance  $50 \Omega$ 

Connector N, plug (male), bottom

Pigtail Type: SUCOFORM\_86\_LSFH, Length: 0.9 m

Dand 1

Composite Power max. 2 W Ambient Temperature 25 °C

MIMO antenna with following polarization: 3 x linear: vertical / dual-slant ±45°

Electrical data (VSWR, Gain and beam width) are defining the vertical polarized radiator of this MIMO antenna.

Note: Output power limit and power spectral density limit shall be reduced by 3 dB.



## 12.3 Duty cycle

#### **Description:**

The duty cycle is necessary to compute the maximum power during an actual transmission. The shown plots and values are to show an example of the measurement procedure. The real value is measured direct during the power measurement or power density measurement. The correction value is shown in each plot of these measurements.

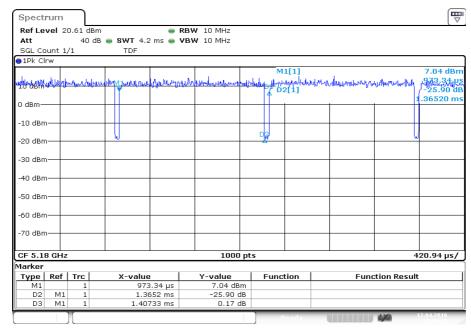
#### Measurement:

| Measurement parameter                  |                                     |  |  |  |  |
|----------------------------------------|-------------------------------------|--|--|--|--|
| According to: KDB789033 D02, B.        |                                     |  |  |  |  |
| Detector:                              | Peak                                |  |  |  |  |
| Sweep time:                            | Auto                                |  |  |  |  |
| Resolution bandwidth:                  | 10 MHz                              |  |  |  |  |
| Video bandwidth:                       | 10 MHz                              |  |  |  |  |
| Span:                                  | Zero                                |  |  |  |  |
| Trace-Mode:                            | Video trigger / view / single sweep |  |  |  |  |
| Used test setup: see chapter 7.4 – A   |                                     |  |  |  |  |
| Measurement uncertainty: see chapter 9 |                                     |  |  |  |  |

#### Results:

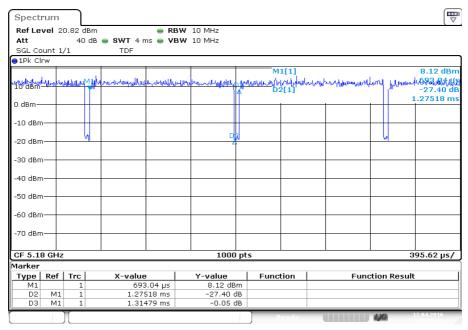
<u>Duty cycle and correction factor:</u> example for one channel and one antenna port

OFDM / a – mode: 97.01 % duty cycle => 0.13 dB


OFDM / n HT20 – mode: 97.00 % duty cycle => 0.13 dB

OFDM / n HT40 - mode: 94.91 % duty cycle => 0.23 dB

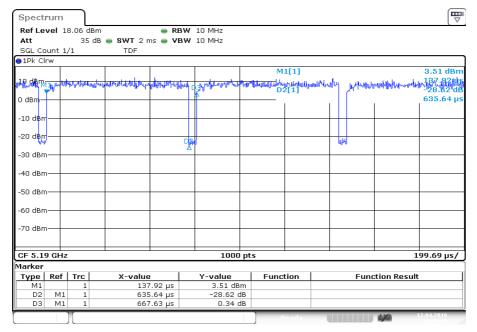



#### Plots:

**Plot 1:** duty cycle of the transmitter – OFDM / a – mode



Date: 12.APR.2016 17:46:03


**Plot 2:** duty cycle of the transmitter – OFDM / n HT20 – mode



Date: 12.APR.2016 18:15:35



**Plot 3:** duty cycle of the transmitter – OFDM / n HT40 – mode



Date: 12.APR.2016 18:45:06



# 12.4 Maximum output power conducted

## **Description:**

Measurement of the maximum output power conduced

#### Measurement:

| Measurement parameter               |                                                    |  |  |  |
|-------------------------------------|----------------------------------------------------|--|--|--|
| According to: KDB789033 D02, E.2.e. |                                                    |  |  |  |
| Detector:                           | RMS                                                |  |  |  |
| Sweep time:                         | ≥10*(swp points)*(total on/off time)               |  |  |  |
| Resolution bandwidth:               | 1 MHz                                              |  |  |  |
| Video bandwidth:                    | 3 MHz                                              |  |  |  |
| Span:                               | > EBW                                              |  |  |  |
| Trace-Mode:                         | Max hold                                           |  |  |  |
| Analyzer function                   | Band power / channel power<br>Interval > 26 dB EBW |  |  |  |
| Used test setup:                    | see chapter 7.4 – A                                |  |  |  |
| Measurement uncertainty:            | see chapter 9                                      |  |  |  |

## Limits:

| Radiated output power                                                                                                  | Conducted output power                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.150-5.250 GHz<br>200 mW or 10 dBm + 10 log Bandwidth (IC)<br>All other bands:<br>Conducted power + 6dBi antenna gain | 250mW 5.150-5.250 GHz (FCC)  The lesser one of  250mW or 11 dBm + 10 log Bandwidth 5.250-5.350 GHz  250mW or 11 dBm + 10 log Bandwidth 5.470-5.725 GHz  (where Bandwidth is the 26dB Bandwidth [MHz])  1W 5.725-5.85 GHz |
| 5.150-5.250 GHz 200 mW or 10 dBm + 10 log Bandwidth (IC)  All other bands:  Conducted power + 9dBi antenna gain*       | 200 mW (EIRP) ≙ 25 mW (cond.) = 14 dBm (cond.)<br>250 mW: 24 dBm − 3 dB = 15 dBm = 32 mW<br>1 W: 30 dBm − 3 dB = 27 dBm = 500 mW                                                                                         |

Note: \*all limits shall be reduced by 3 dB because of 9 dBi antenna gain.



Result: antenna port 1

| OFDM / a - mode                        | Maximum output power conducted [dBm] |          |          |          |  |
|----------------------------------------|--------------------------------------|----------|----------|----------|--|
| Channel                                | 5180 MHz                             | 5200 MHz | 5300 MHz | 5320 MHz |  |
| Including duty cycle correction factor | 11.3                                 | 12.4     | 14.3     | 14.3     |  |
| Channel                                | 5500 MHz                             | 5600 MHz | 5700 MHz | -/-      |  |
| Including duty cycle correction factor | 14.1                                 | 14.2     | 13.7     | -/-      |  |
| Channel                                | 5745 MHz                             | 5765 MHz | 5805 MHz | 5825 MHz |  |
| Including duty cycle correction factor | 12.3                                 | 13.3     | 11.7     | 13.3     |  |

| OFDM / n HT20 – mode                   | Maximum output power conducted [dBm] |          |          |          |  |
|----------------------------------------|--------------------------------------|----------|----------|----------|--|
| Channel                                | 5180 MHz                             | 5200 MHz | 5300 MHz | 5320 MHz |  |
| Including duty cycle correction factor | 8.2                                  | 10.4     | 13.1     | 14.1     |  |
| Channel                                | 5500 MHz                             | 5600 MHz | 5700 MHz | -/-      |  |
| Including duty cycle correction factor | 14.9                                 | 13.1     | 13.6     | -/-      |  |
| Channel                                | 5745 MHz                             | 5765 MHz | 5805 MHz | 5825 MHz |  |
| Including duty cycle correction factor | 12.1                                 | 12.7     | 12.6     | 10.6     |  |

| OFDM / n HT40 – mode                   | Maximum output power conducted [dBm] |          |          |          |  |
|----------------------------------------|--------------------------------------|----------|----------|----------|--|
| Channel                                | 5190 MHz                             | 5230 MHz | 5270 MHz | 5310 MHz |  |
| Including duty cycle correction factor | 8.3                                  | 12.6     | 12.0     | 9.3      |  |
| Channel                                | 5510 MHz                             | 5550 MHz | 5630 MHz | 5670 MHz |  |
| Including duty cycle correction factor | 9.8                                  | 13.2     | 14.5     | 13.9     |  |
| Channel                                | 5755 MHz                             | 5795 MHz | -/-      | -/-      |  |
| Including duty cycle correction factor | 12.3                                 | 10.6     | -/-      | -/-      |  |



Result: antenna port 2

| OFDM / a – mode                        | Maximum output power conducted [dBm] |          |          |          |  |
|----------------------------------------|--------------------------------------|----------|----------|----------|--|
| Channel                                | 5180 MHz                             | 5200 MHz | 5300 MHz | 5320 MHz |  |
| Including duty cycle correction factor | 10.7                                 | 12.0     | 13.5     | 13.8     |  |
| Channel                                | 5500 MHz                             | 5600 MHz | 5700 MHz | -/-      |  |
| Including duty cycle correction factor | 13.5                                 | 14.5     | 14.0     | -/-      |  |
| Channel                                | 5745 MHz                             | 5765 MHz | 5805 MHz | 5825 MHz |  |
| Including duty cycle correction factor | 13.2                                 | 13.2     | 11.4     | 12.9     |  |

| OFDM / n HT20 – mode                   | Maximum output power conducted [dBm] |          |          |          |  |
|----------------------------------------|--------------------------------------|----------|----------|----------|--|
| Channel                                | 5180 MHz                             | 5200 MHz | 5300 MHz | 5320 MHz |  |
| Including duty cycle correction factor | 7.7                                  | 10.1     | 12.8     | 13.8     |  |
| Channel                                | 5500 MHz                             | 5600 MHz | 5700 MHz | -/-      |  |
| Including duty cycle correction factor | 14.7                                 | 13.4     | 14.1     | -/-      |  |
| Channel                                | 5745 MHz                             | 5765 MHz | 5805 MHz | 5825 MHz |  |
| Including duty cycle correction factor | 12.9                                 | 12.8     | 13.1     | 10.8     |  |

| OFDM / n HT40 – mode                   | Maximum output power conducted [dBm] |          |          |          |  |
|----------------------------------------|--------------------------------------|----------|----------|----------|--|
| Channel                                | 5190 MHz                             | 5230 MHz | 5270 MHz | 5310 MHz |  |
| Including duty cycle correction factor | 8.3                                  | 12.0     | 12.5     | 9.2      |  |
| Channel                                | 5510 MHz                             | 5550 MHz | 5630 MHz | 5670 MHz |  |
| Including duty cycle correction factor | 9.7                                  | 12.7     | 14.4     | 14.3     |  |
| Channel                                | 5755 MHz                             | 5795 MHz | -/-      | -/-      |  |
| Including duty cycle correction factor | 12.7                                 | 10.4     | -/-      | -/-      |  |



Result: antenna port 3

| OFDM / a - mode                        | Maximum output power conducted [dBm] |          |          |          |  |
|----------------------------------------|--------------------------------------|----------|----------|----------|--|
| Channel                                | 5180 MHz                             | 5200 MHz | 5300 MHz | 5320 MHz |  |
| Including duty cycle correction factor | 12.0                                 | 12.8     | 15.1     | 15.1     |  |
| Channel                                | 5500 MHz                             | 5600 MHz | 5700 MHz | -/-      |  |
| Including duty cycle correction factor | 14.8                                 | 15.4     | 14.4     | -/-      |  |
| Channel                                | 5745 MHz                             | 5765 MHz | 5805 MHz | 5825 MHz |  |
| Including duty cycle correction factor | 13.0                                 | 13.6     | 12.2     | 13.9     |  |

| OFDM / n HT20 – mode                   | Maximum output power conducted [dBm] |          |          |          |  |
|----------------------------------------|--------------------------------------|----------|----------|----------|--|
| Channel                                | 5180 MHz                             | 5200 MHz | 5300 MHz | 5320 MHz |  |
| Including duty cycle correction factor | 8.8                                  | 10.7     | 13.6     | 14.7     |  |
| Channel                                | 5500 MHz                             | 5600 MHz | 5700 MHz | -/-      |  |
| Including duty cycle correction factor | 15.4                                 | 14.4     | 14.3     | -/-      |  |
| Channel                                | 5745 MHz                             | 5765 MHz | 5805 MHz | 5825 MHz |  |
| Including duty cycle correction factor | 13.2                                 | 12.8     | 13.6     | 11.0     |  |

| OFDM / n HT40 – mode                   | Maximum output power conducted [dBm] |          |          |          |  |
|----------------------------------------|--------------------------------------|----------|----------|----------|--|
| Channel                                | 5190 MHz                             | 5230 MHz | 5270 MHz | 5310 MHz |  |
| Including duty cycle correction factor | 9.2                                  | 13.3     | 13.3     | 10.1     |  |
| Channel                                | 5510 MHz                             | 5550 MHz | 5630 MHz | 5670 MHz |  |
| Including duty cycle correction factor | 10.3                                 | 13.8     | 14.8     | 14.7     |  |
| Channel                                | 5755 MHz                             | 5795 MHz | -/-      | -/-      |  |
| Including duty cycle correction factor | 13.0                                 | 11.3     | -/-      | -/-      |  |



Result: antenna port 1 + antenna port 2

| OFDM / a – mode                        | Maximum output power conducted [dBm] |          |          |          |  |
|----------------------------------------|--------------------------------------|----------|----------|----------|--|
| Channel                                | 5180 MHz                             | 5200 MHz | 5300 MHz | 5320 MHz |  |
| Including duty cycle correction factor | 14.0                                 | 15.2     | 16.9     | 17.1     |  |
| Channel                                | 5500 MHz                             | 5600 MHz | 5700 MHz | -/-      |  |
| Including duty cycle correction factor | 16.8                                 | 17.4     | 16.9     | -/-      |  |
| Channel                                | 5745 MHz                             | 5765 MHz | 5805 MHz | 5825 MHz |  |
| Including duty cycle correction factor | 15.8                                 | 16.3     | 14.6     | 16.1     |  |

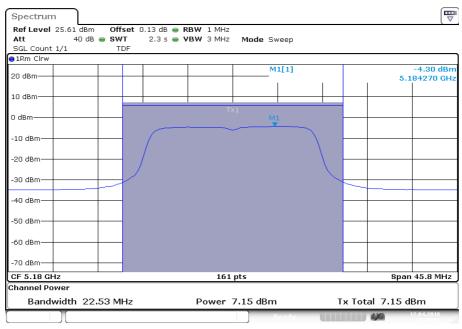
| OFDM / n HT20 – mode                   | Maximum output power conducted [dBm] |          |          |          |
|----------------------------------------|--------------------------------------|----------|----------|----------|
| Channel                                | 5180 MHz                             | 5200 MHz | 5300 MHz | 5320 MHz |
| Including duty cycle correction factor | 11.0                                 | 13.2     | 16.0     | 16.9     |
| Channel                                | 5500 MHz                             | 5600 MHz | 5700 MHz | -/-      |
| Including duty cycle correction factor | 17.8                                 | 16.3     | 16.9     | -/-      |
| Channel                                | 5745 MHz                             | 5765 MHz | 5805 MHz | 5825 MHz |
| Including duty cycle correction factor | 15.5                                 | 15.7     | 15.9     | 13.7     |

| OFDM / n HT40 – mode                   | Maximum output power conducted [dBm] |          |          |          |
|----------------------------------------|--------------------------------------|----------|----------|----------|
| Channel                                | 5190 MHz                             | 5230 MHz | 5270 MHz | 5310 MHz |
| Including duty cycle correction factor | 11.3                                 | 15.3     | 15.3     | 12.3     |
| Channel                                | 5510 MHz                             | 5550 MHz | 5630 MHz | 5670 MHz |
| Including duty cycle correction factor | 12.8                                 | 16.0     | 17.5     | 17.1     |
| Channel                                | 5755 MHz                             | 5795 MHz | -/-      | -/-      |
| Including duty cycle correction factor | 15.5                                 | 13.5     | -/-      | -/-      |



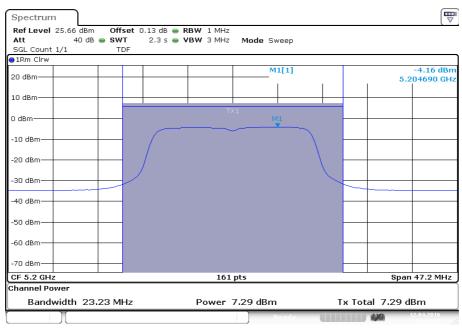
Result: antenna port 1 + antenna port 2 + antenna port 3

| OFDM / a – mode                        | Maximum output power conducted [dBm] |          |          |          |
|----------------------------------------|--------------------------------------|----------|----------|----------|
| Channel                                | 5180 MHz                             | 5200 MHz | 5300 MHz | 5320 MHz |
| Including duty cycle correction factor | 16.1                                 | 17.2     | 19.1     | 19.2     |
| Channel                                | 5500 MHz                             | 5600 MHz | 5700 MHz | -/-      |
| Including duty cycle correction factor | 18.9                                 | 19.5     | 18.8     | -/-      |
| Channel                                | 5745 MHz                             | 5765 MHz | 5805 MHz | 5825 MHz |
| Including duty cycle correction factor | 17.6                                 | 18.2     | 16.5     | 18.1     |


| OFDM / n HT20 – mode                   | Maximum output power conducted [dBm] |          |          |          |
|----------------------------------------|--------------------------------------|----------|----------|----------|
| Channel                                | 5180 MHz                             | 5200 MHz | 5300 MHz | 5320 MHz |
| Including duty cycle correction factor | 13.0                                 | 15.2     | 18.0     | 19.0     |
| Channel                                | 5500 MHz                             | 5600 MHz | 5700 MHz | -/-      |
| Including duty cycle correction factor | 19.8                                 | 18.5     | 18.8     | -/-      |
| Channel                                | 5745 MHz                             | 5765 MHz | 5805 MHz | 5825 MHz |
| Including duty cycle correction factor | 17.5                                 | 17.5     | 17.9     | 15.6     |

| OFDM / n HT40 – mode                   | Maximum output power conducted [dBm] |          |          |          |
|----------------------------------------|--------------------------------------|----------|----------|----------|
| Channel                                | 5190 MHz                             | 5230 MHz | 5270 MHz | 5310 MHz |
| Including duty cycle correction factor | 13.4                                 | 17.4     | 17.4     | 14.3     |
| Channel                                | 5510 MHz                             | 5550 MHz | 5630 MHz | 5670 MHz |
| Including duty cycle correction factor | 14.7                                 | 18.0     | 19.4     | 19.1     |
| Channel                                | 5755 MHz                             | 5795 MHz | -/-      | -/-      |
| Including duty cycle correction factor | 17.4                                 | 15.6     | -/-      | -/-      |

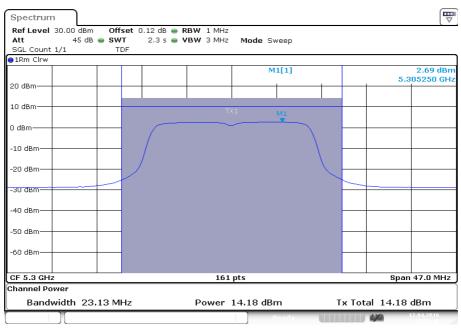



Plots: OFDM / a - mode, antenna port 1

**Plot 1:** 5180 MHz

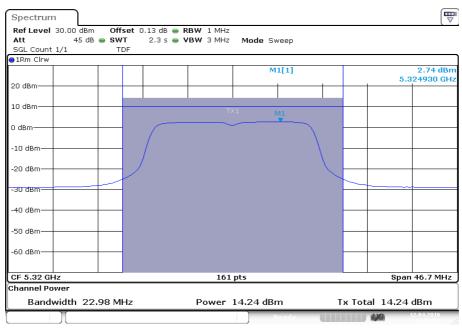


Date: 12.APR.2016 17:46:34


Plot 2: 5200 MHz



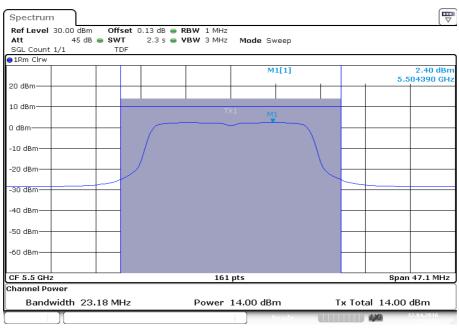
Date: 12.APR.2016 17:47:48




**Plot 3:** 5300 MHz

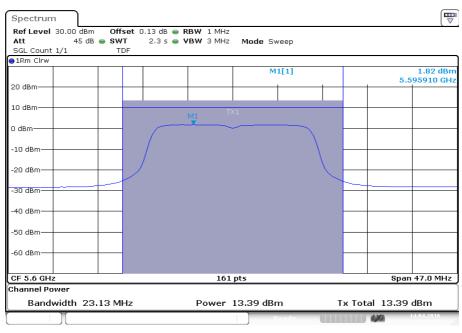


Date: 12.APR.2016 17:53:47


Plot 4: 5320 MHz



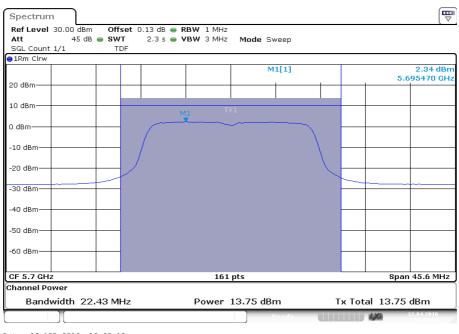
Date: 12.APR.2016 17:54:57




**Plot 5:** 5500 MHz

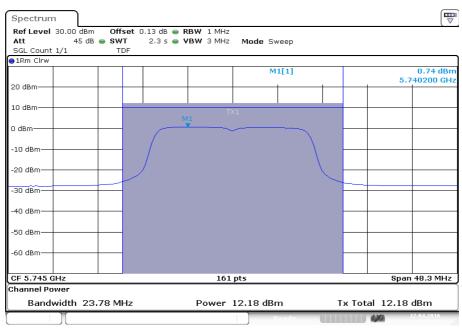


Date: 12.APR.2016 17:56:11


Plot 6: 5600 MHz



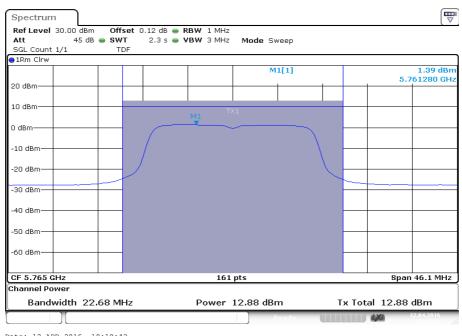
Date: 14.APR.2016 11:23:56




**Plot 7:** 5700 MHz

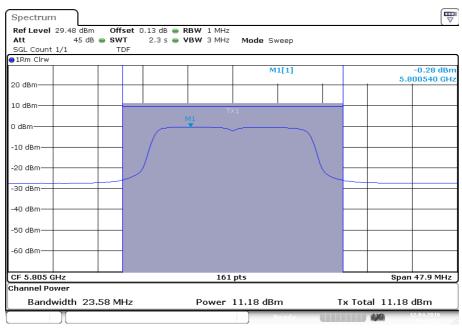


Date: 12.APR.2016 18:08:10


**Plot 8:** 5745 MHz



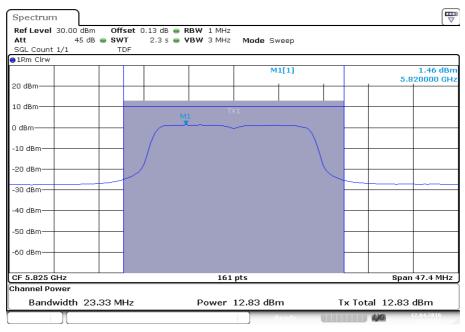
Date: 12.APR.2016 18:09:23




**Plot 9:** 5765 MHz



Date: 12.APR.2016 18:10:42

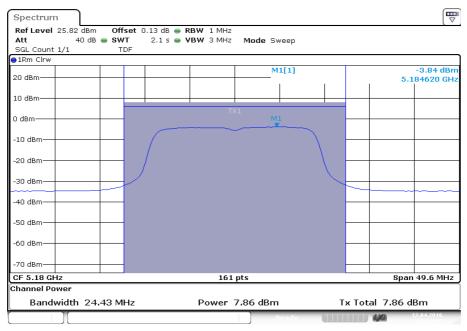

Plot 10: 5805 MHz



Date: 12.APR.2016 18:13:22

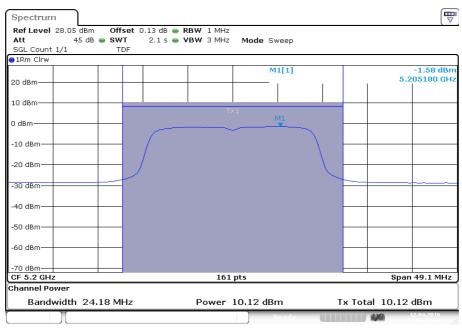


#### **Plot 11:** 5825 MHz




Date: 12.APR.2016 18:14:41

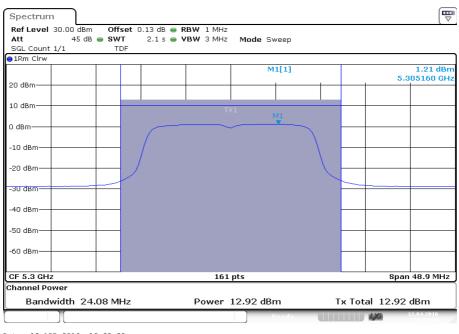



Plots: OFDM / n HT20 - mode, antenna port 1

**Plot 1:** 5180 MHz

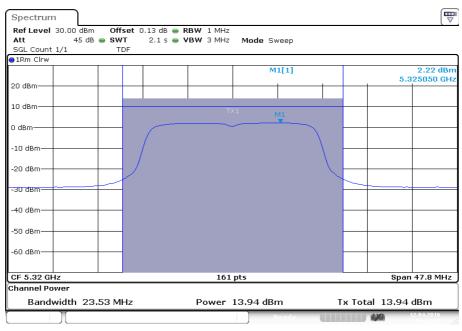


Date: 12.APR.2016 18:16:05


Plot 2: 5200 MHz



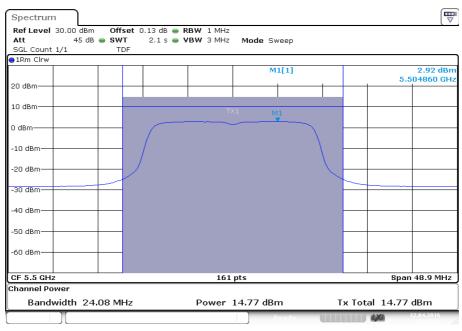
Date: 12.APR.2016 18:17:19




**Plot 3:** 5300 MHz

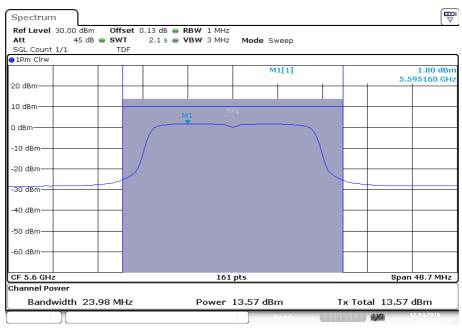


Date: 12.APR.2016 18:23:20


Plot 4: 5320 MHz



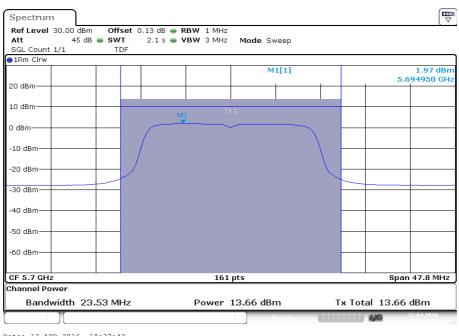
Date: 12.APR.2016 18:24:30




**Plot 5:** 5500 MHz

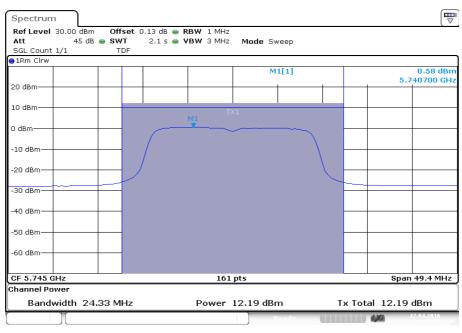


Date: 12.APR.2016 18:25:43


Plot 6: 5600 MHz



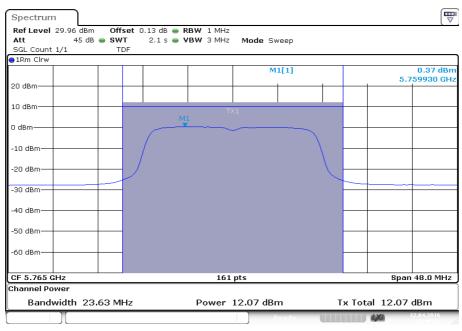
Date: 12.APR.2016 18:31:40




**Plot 7:** 5700 MHz

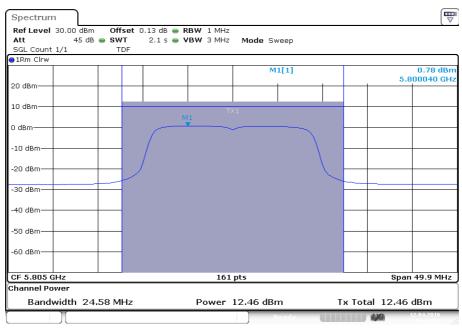


Date: 12.APR.2016 18:37:42


**Plot 8:** 5745 MHz



Date: 12.APR.2016 18:38:54

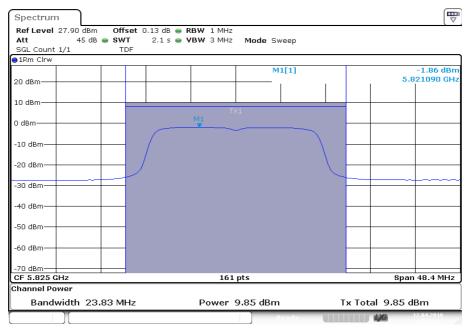



**Plot 9:** 5765 MHz



Date: 12.APR.2016 18:40:15

Plot 10: 5805 MHz

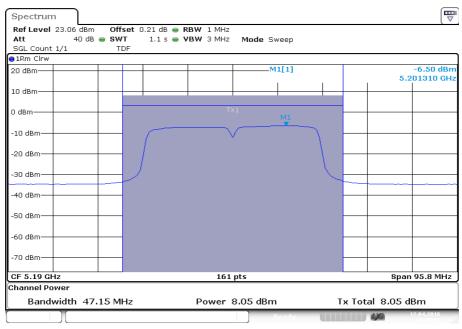



Date: 12.APR.2016 18:42:54

# Test report no.: 1-0585/15-01-10

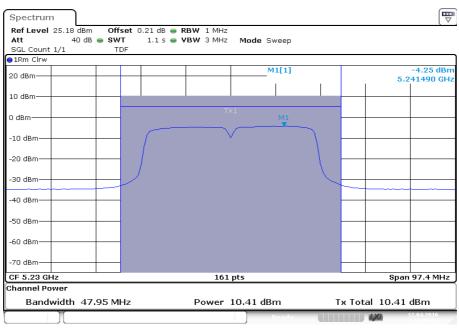


## **Plot 11:** 5825 MHz




Date: 12.APR.2016 18:44:12

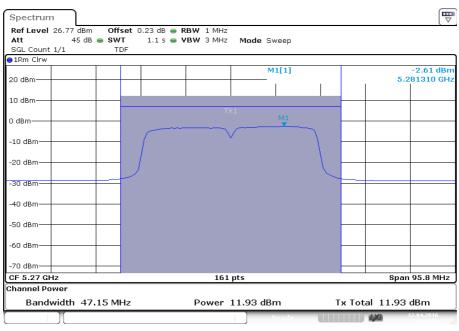



Plots: OFDM / n HT40 - mode, antenna port 1

**Plot 1:** 5190 MHz

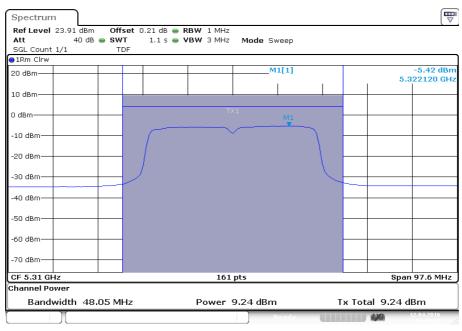


Date: 12.APR.2016 18:45:35


Plot 2: 5230 MHz



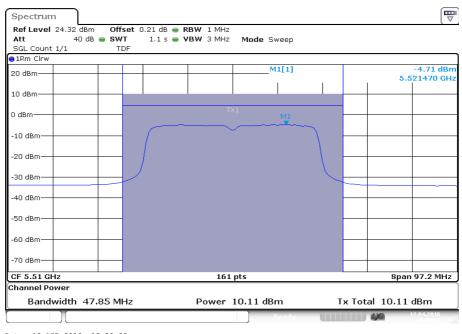
Date: 12.APR.2016 18:46:53




**Plot 3:** 5270 MHz

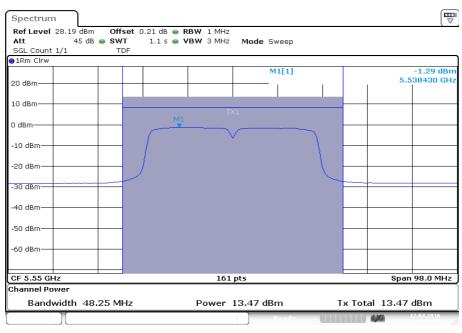


Date: 12.APR.2016 18:48:07


Plot 4: 5310 MHz



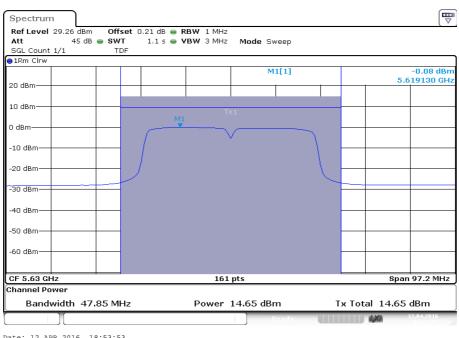
Date: 12.APR.2016 18:49:20




**Plot 5:** 5510 MHz

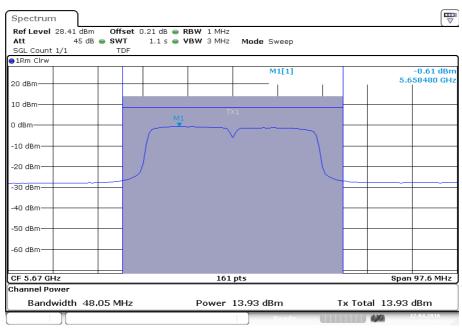


Date: 12.APR.2016 18:50:28


Plot 6: 5550 MHz



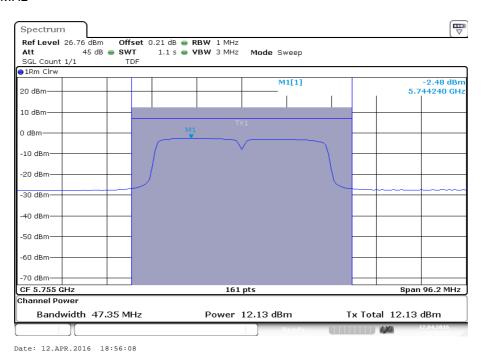
Date: 12.APR.2016 18:51:36



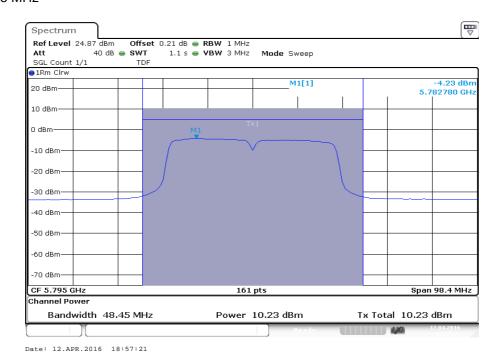

**Plot 7:** 5630 MHz



Date: 12.APR.2016 18:53:53


**Plot 8:** 5670 MHz

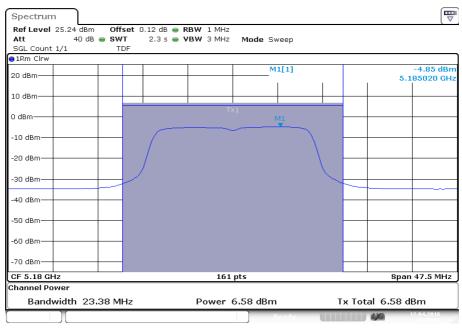



Date: 12.APR.2016 18:55:01



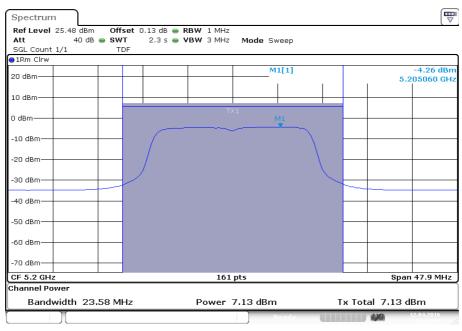
**Plot 9:** 5755 MHz




**Plot 10:** 5795 MHz



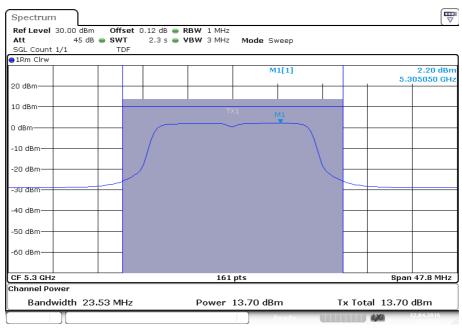



Plots: OFDM / a - mode, antenna port 2

**Plot 1:** 5180 MHz

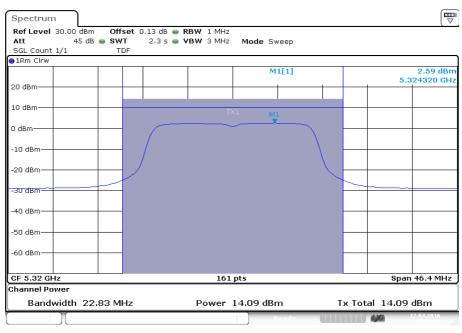


Date: 12.APR.2016 16:38:48


Plot 2: 5200 MHz



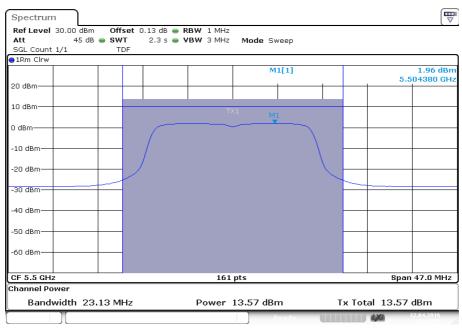
Date: 12.APR.2016 17:11:34




**Plot 3:** 5300 MHz

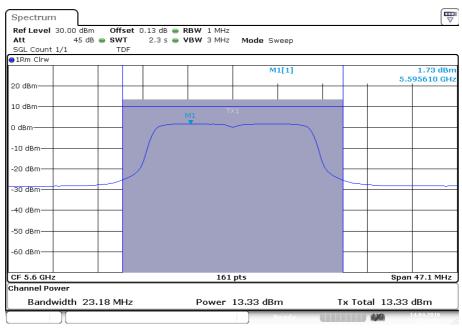


Date: 12.APR.2016 17:17:32


Plot 4: 5320 MHz



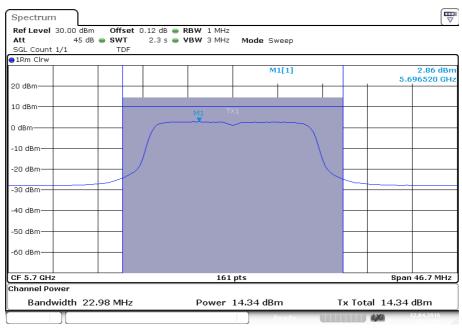
Date: 12.APR.2016 17:18:43




**Plot 5:** 5500 MHz

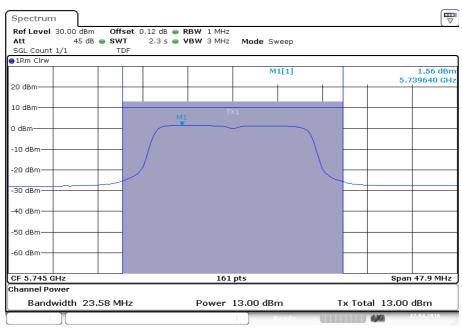


Date: 12.APR.2016 17:19:56


Plot 6: 5600 MHz



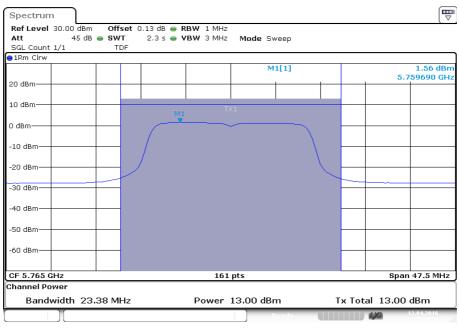
Date: 14.APR.2016 12:11:59




**Plot 7:** 5700 MHz

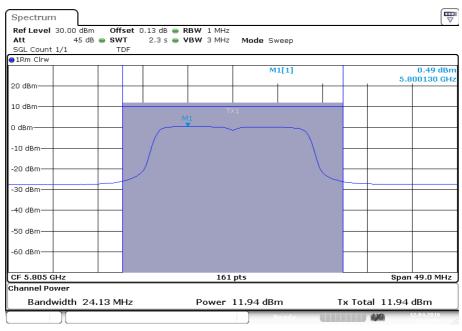


Date: 12.APR.2016 17:31:55


Plot 8: 5745 MHz



Date: 12.APR.2016 17:33:08

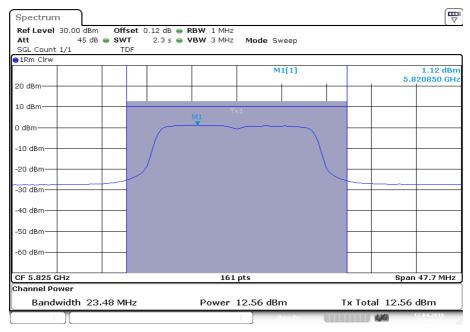



**Plot 9:** 5765 MHz



Date: 12.APR.2016 17:34:27

Plot 10: 5805 MHz

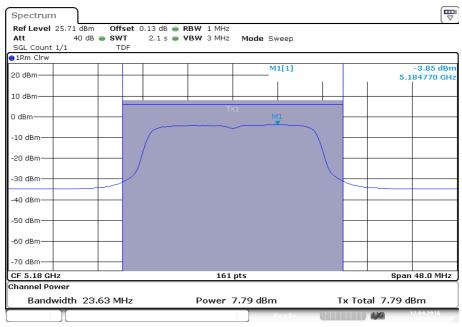



Date: 12.APR.2016 17:37:07

# Test report no.: 1-0585/15-01-10

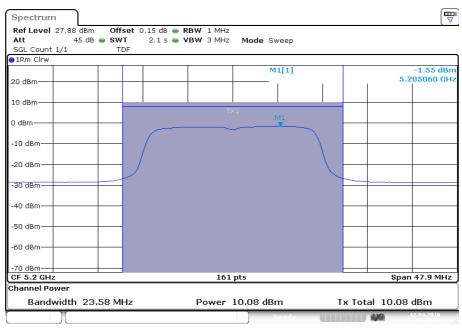


## **Plot 11:** 5825 MHz




Date: 12.APR.2016 17:38:25

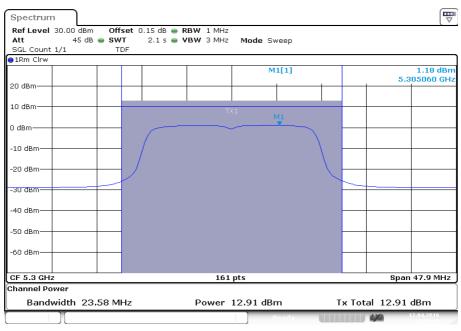



Plots: OFDM / n HT20 - mode, antenna port 2

**Plot 1:** 5180 MHz

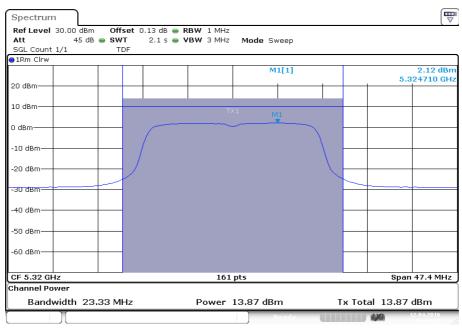


Date: 12.APR.2016 16:27:54


Plot 2: 5200 MHz



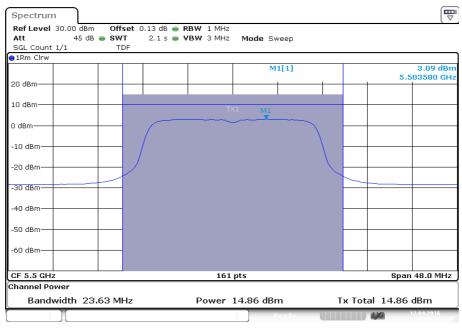
Date: 12.APR.2016 16:29:09




**Plot 3:** 5300 MHz

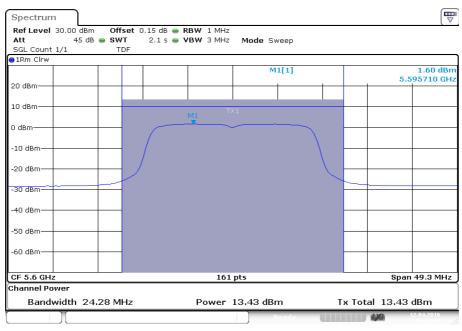


Date: 12.APR.2016 16:35:07


Plot 4: 5320 MHz



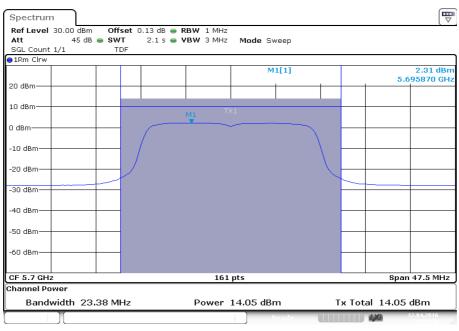
Date: 12.APR.2016 16:36:18




**Plot 5:** 5500 MHz

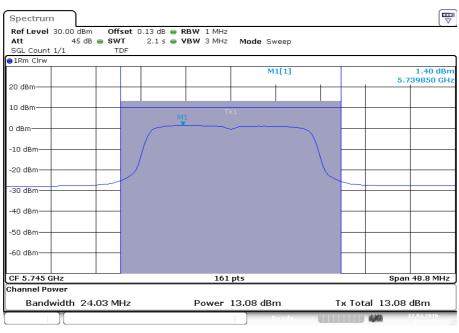


Date: 12.APR.2016 16:37:30


Plot 6: 5600 MHz



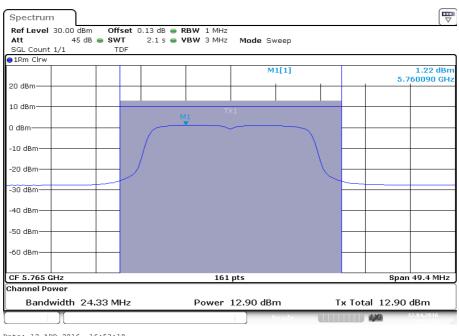
Date: 12.APR.2016 16:44:45




**Plot 7:** 5700 MHz

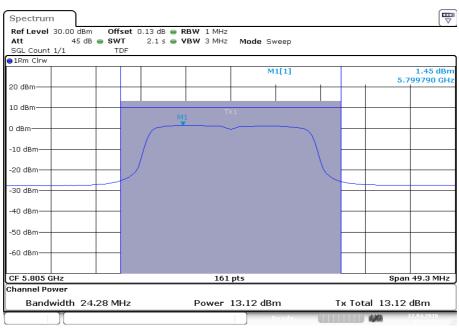


Date: 12.APR.2016 16:50:47


Plot 8: 5745 MHz



Date: 12.APR.2016 16:51:59

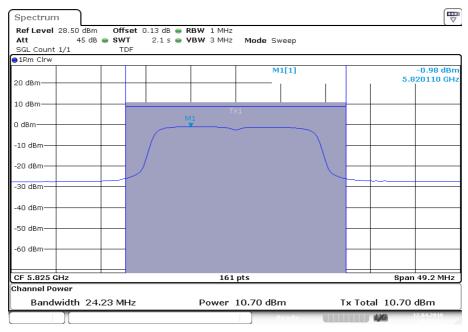



**Plot 9:** 5765 MHz



Date: 12.APR.2016 16:53:18

Plot 10: 5805 MHz

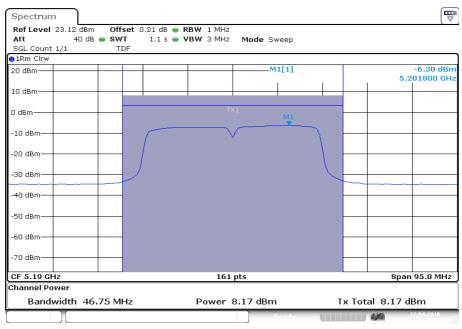



Date: 12.APR.2016 16:55:57

# Test report no.: 1-0585/15-01-10

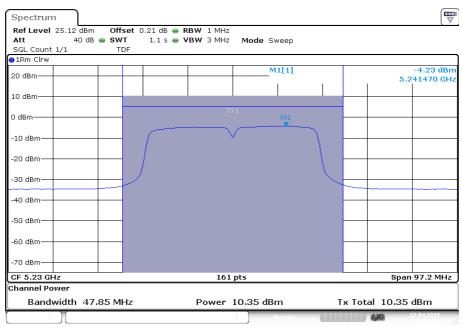


## **Plot 11:** 5825 MHz




Date: 12.APR.2016 16:57:16

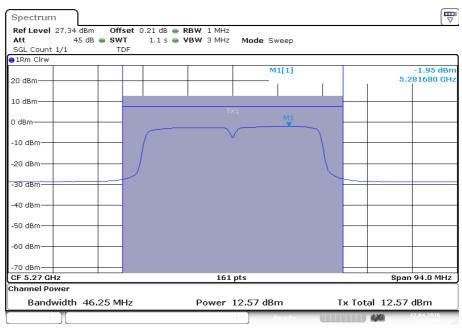



Plots: OFDM / n HT40 - mode, antenna port 2

**Plot 1:** 5190 MHz

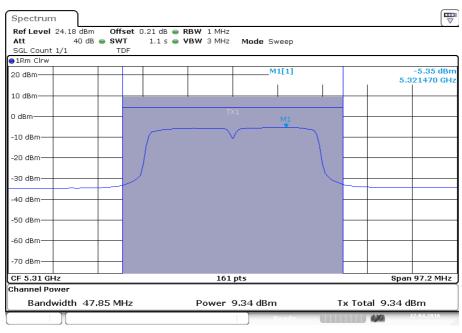


Date: 12.APR.2016 16:58:39


Plot 2: 5230 MHz



Date: 12.APR.2016 16:59:52



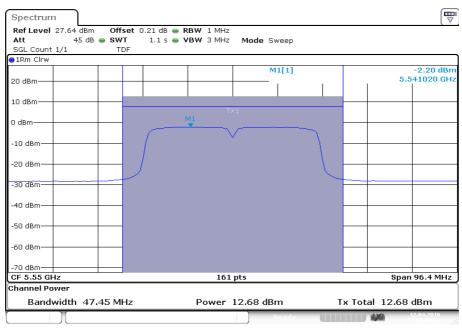

**Plot 3:** 5270 MHz



Date: 12.APR.2016 17:01:05

Plot 4: 5310 MHz

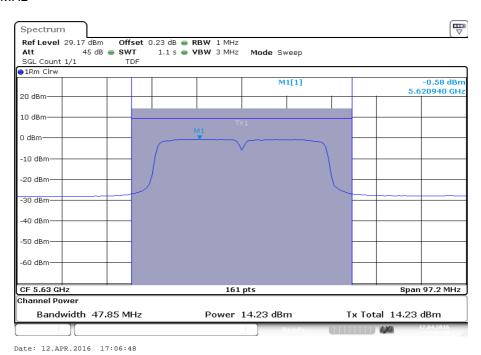



Date: 12.APR.2016 17:02:19

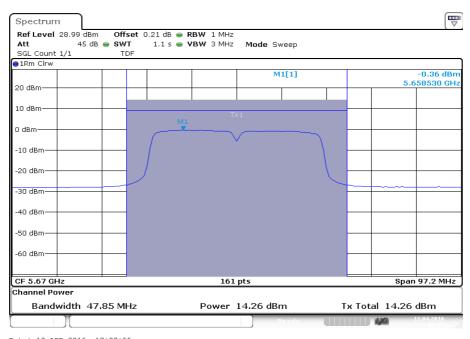


**Plot 5:** 5510 MHz



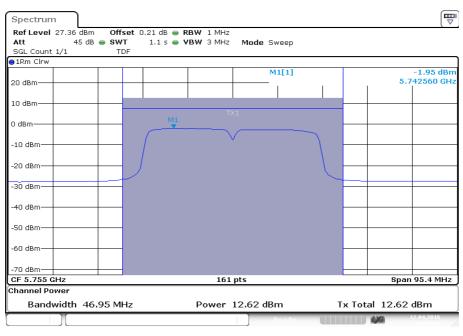

Plot 6: 5550 MHz




Date: 12.APR.2016 17:04:34

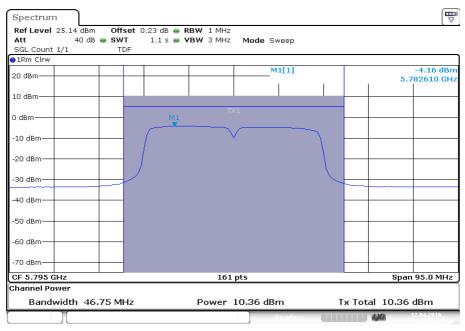


**Plot 7:** 5630 MHz




Plot 8: 5670 MHz



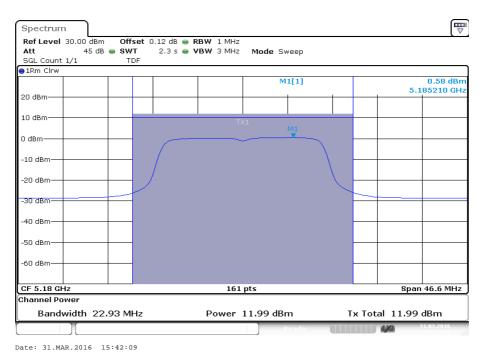



**Plot 9:** 5755 MHz

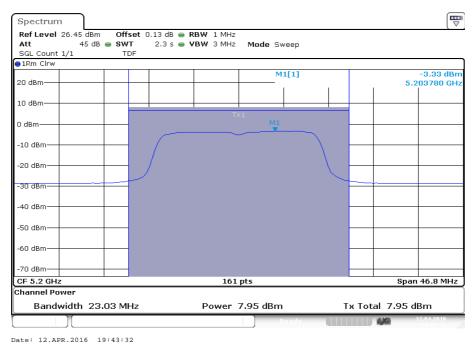


Date: 12.APR.2016 17:09:02

Plot 10: 5795 MHz

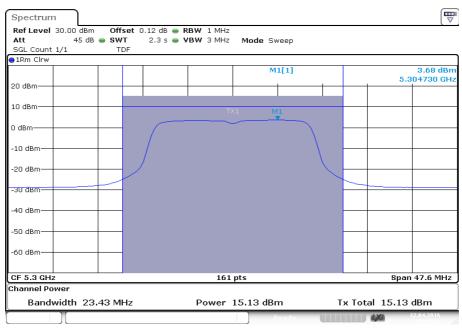



Date: 12.APR.2016 17:10:16



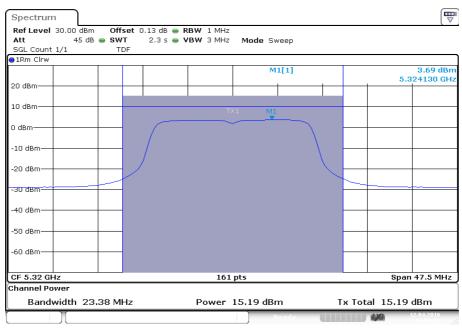

Plots: OFDM / a - mode, antenna port 3

**Plot 1:** 5180 MHz




**Plot 2:** 5200 MHz

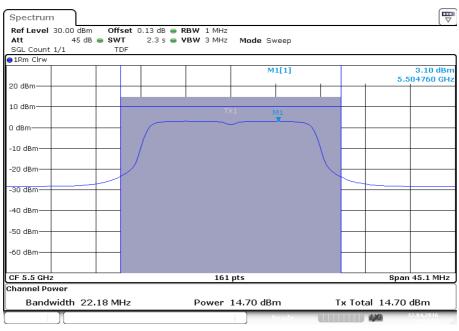





**Plot 3:** 5300 MHz

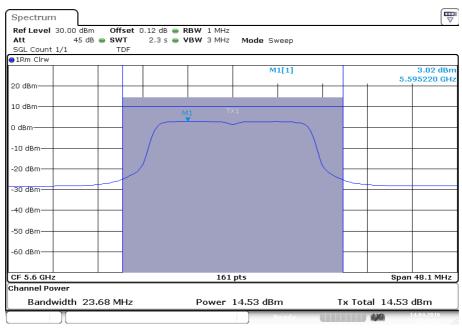


Date: 12.APR.2016 19:49:31


Plot 4: 5320 MHz



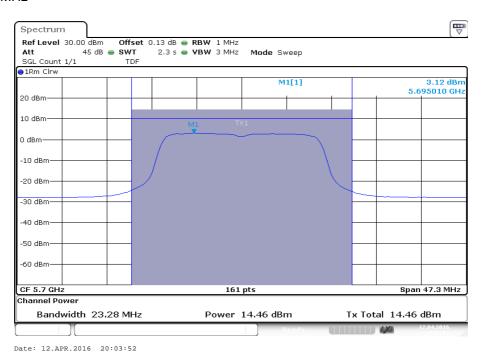
Date: 12.APR.2016 19:50:42



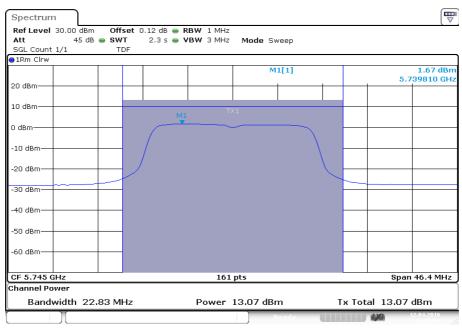

**Plot 5:** 5500 MHz



Date: 12.APR.2016 19:51:55


Plot 6: 5600 MHz

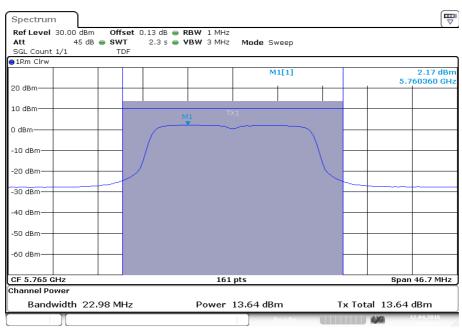



Date: 14.APR.2016 11:41:22



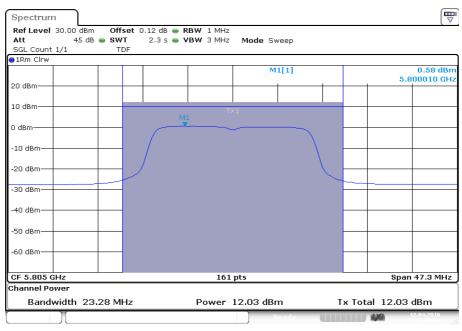
**Plot 7:** 5700 MHz




Plot 8: 5745 MHz



Date: 12.APR.2016 20:05:04




**Plot 9:** 5765 MHz



Date: 12.APR.2016 20:06:24

Plot 10: 5805 MHz

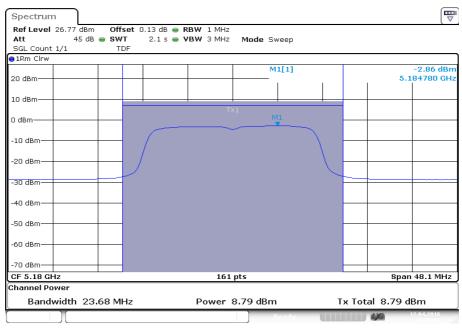


Date: 12.APR.2016 20:09:03

# Test report no.: 1-0585/15-01-10

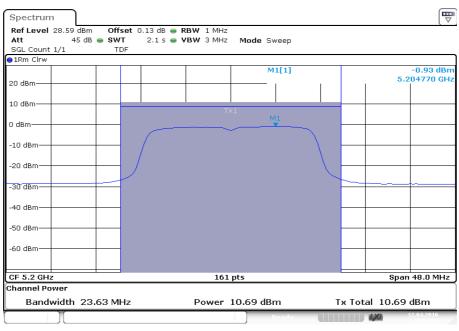


## **Plot 11:** 5825 MHz




Date: 12.APR.2016 20:10:21

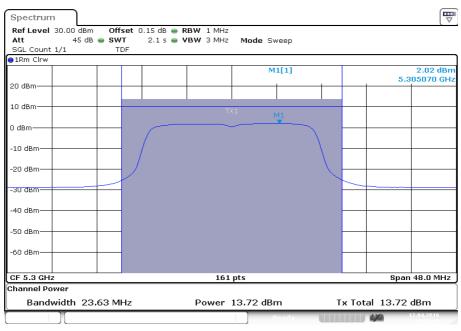



Plots: OFDM / n HT20 - mode, antenna port 3

**Plot 1:** 5180 MHz

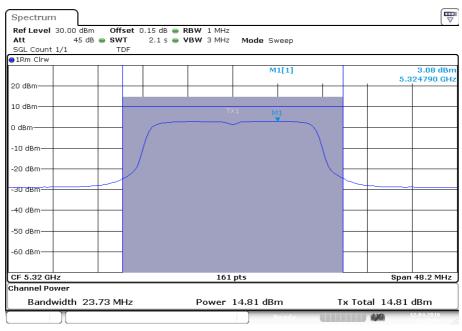


Date: 12.APR.2016 20:16:42


Plot 2: 5200 MHz



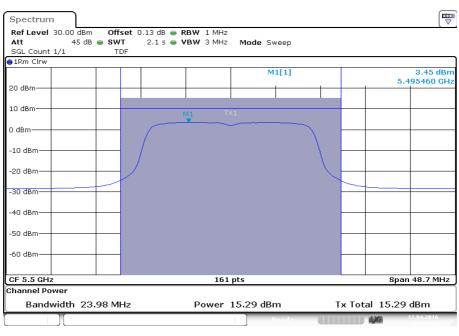
Date: 12.APR.2016 20:17:56




**Plot 3:** 5300 MHz

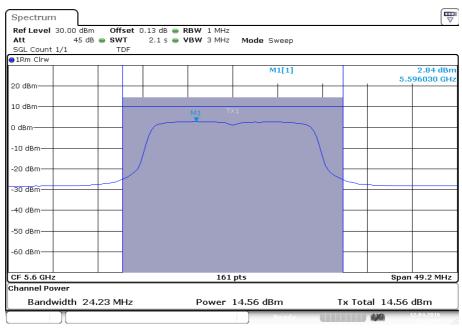


Date: 12.APR.2016 20:23:55


Plot 4: 5320 MHz



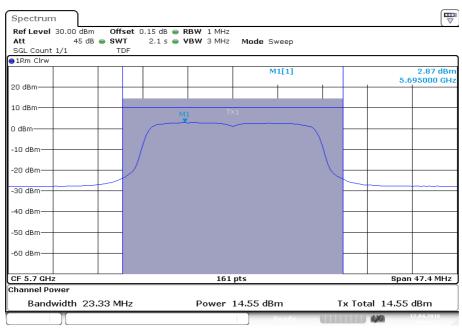
Date: 12.APR.2016 20:25:06




**Plot 5:** 5500 MHz

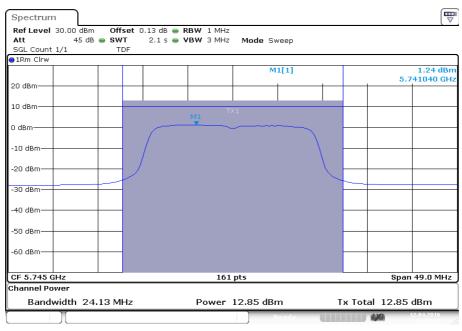


Date: 12.APR.2016 20:26:19


Plot 6: 5600 MHz



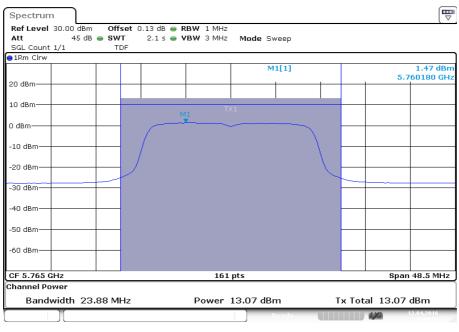
Date: 12.APR.2016 20:32:15




**Plot 7:** 5700 MHz

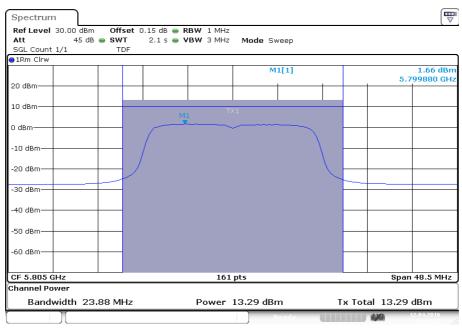


Date: 12.APR.2016 20:38:17


Plot 8: 5745 MHz



Date: 12.APR.2016 20:39:30

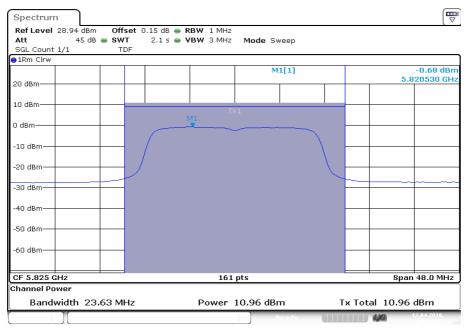



**Plot 9:** 5765 MHz



Date: 12.APR.2016 20:40:49

Plot 10: 5805 MHz

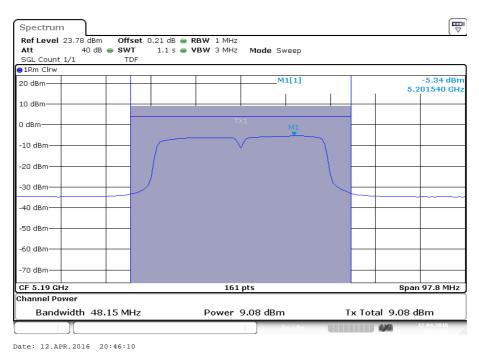



Date: 12.APR.2016 20:43:28

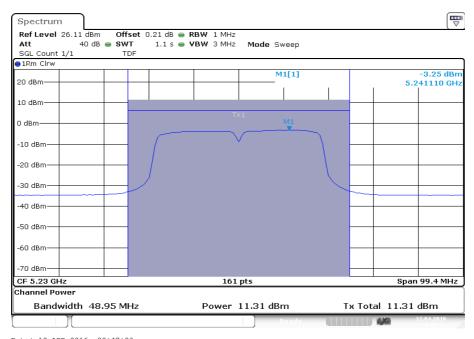
# Test report no.: 1-0585/15-01-10



## **Plot 11:** 5825 MHz

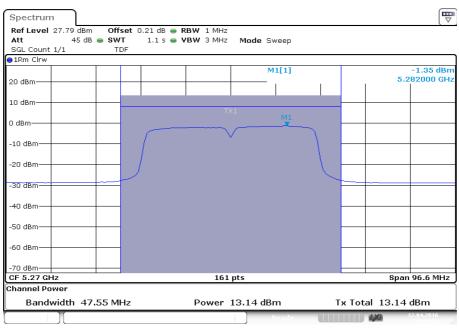



Date: 12.APR.2016 20:44:47



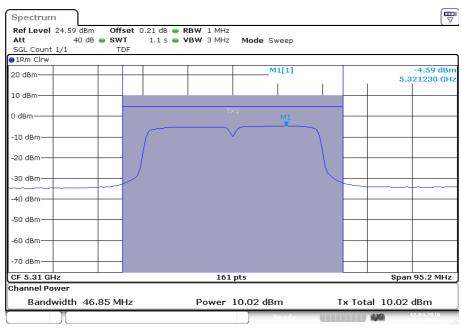

Plots: OFDM / n HT40 - mode, antenna port 3

**Plot 1:** 5190 MHz




Plot 2: 5230 MHz

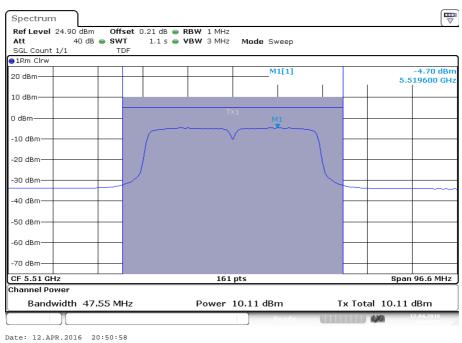




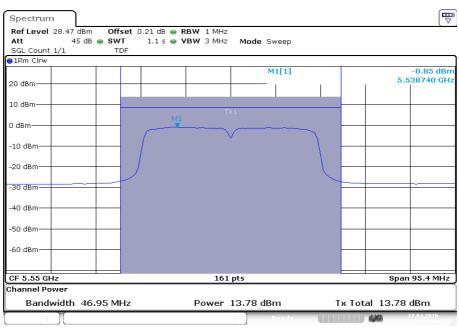

**Plot 3:** 5270 MHz



Date: 12.APR.2016 20:48:37


Plot 4: 5310 MHz

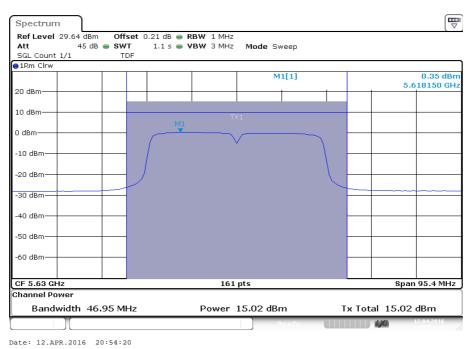



Date: 12.APR.2016 20:49:50

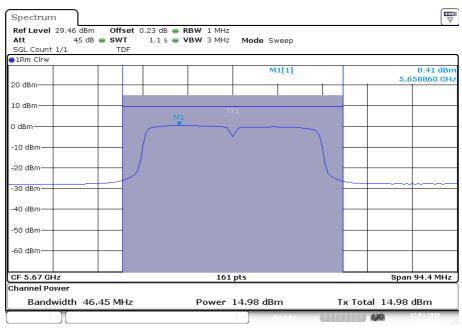


**Plot 5:** 5510 MHz




Plot 6: 5550 MHz

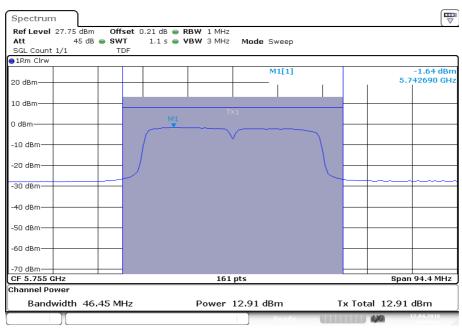



Date: 12.APR.2016 20:52:05



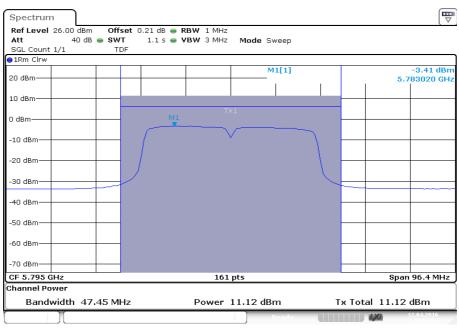
**Plot 7:** 5630 MHz




Plot 8: 5670 MHz



Date: 12.APR.2016 20:55:27




**Plot 9:** 5755 MHz



Date: 12.APR.2016 20:56:34

Plot 10: 5795 MHz



Date: 12.APR.2016 20:57:47