SAR Test Report

Report No.: AGC02866150301FH01

FCC ID : 2AEJ9FREEDOM

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: GSM/WCDMA Mobile Phone

BRAND NAME : N/A

MODEL NAME: Freedom

CLIENT: Digit Secure India Private Limited

DATE OF ISSUE: Apr. 30,2015

IEEE Std. 1528:2003

47CFR § 2.1093 IEEE/ANSI C95.1

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC02866150301FH01 Page 2 of 144

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Apr. 30,2015	Valid	Original Report

Page 3 of 144

	Test Report Certification
Applicant Name :	Digit Secure India Private Limited
Applicant Address :	Plot No-1303&1304, 4th Floor, Khanamet, HiTech City, Ayappa Society, Madhapur Hyderabad, Telangana, India
Manufacturer Name :	SHENZHEN HSEM TECHNOLOGY CO., LTD.
Manufacturer Address :	4TH FLOOR, 5 PLANTS, TONGFUYU INDUSTRIAL, TAOYUAN STREET NANSHAN DISTRICT, SHENZHEN P.R. CHINA
Product Designation :	GSM/WCDMA Mobile Phone
Brand Name :	N/A
Model Name :	Freedom
Different Description	N/A
EUT Voltage :	DC3.7V by battery
Applicable Standard :	IEEE Std. 1528:2003 IEEE Std. 1528a:2005 47CFR § 2.1093 IEEE/ANSI C95.1
Test Date :	Apr. 22,2015 to Apr. 28,2015
	Attestation of Global Compliance(Shenzhen) Co., Ltd.
Performed Location	2 F, Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang Street, Bao'an District, Shenzhen, China
Report Template	AGCRT-US-3G3/SAR (2015-05-01)

Tested By

Bobby Wang Apr. 30,2015

Argela li

Angela Li Apr. 30,2015

Solyer 2lary

Authorized By

Solger Zhang

Apr. 30,2015

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	8
3.1. THE DASY5 SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. DASY5 E-FIELD PROBE	9
3.4. ROBOT	10
3.6. DEVICE HOLDER	11 11
3.8. PHANTOM	
4. SAR MEASUREMENT PROCEDURE	
4.1. SPECIFIC ABSORPTION RATE (SAR)	
4.2. SAR MEASUREMENT PROCEDURE	
5. TISSUE SIMULATING LIQUID	18
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	18
5.2. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	
6. SAR SYSTEM CHECK PROCEDURE	
6.1. SAR SYSTEM CHECK PROCEDURES	
7. EUT TEST POSITION	
7.1. DEFINE TWO IMAGINARY LINES ON THE HANDSET	
7.2. CHEEK POSITION	24
7.3. TITLE POSITION	
8. SAR EXPOSURE LIMITS	
9. TEST EQUIPMENT LIST	
10. MEASUREMENT UNCERTAINTY	28
11. CONDUCTED POWER MEASUREMENT	31
12. TEST RESULTS	
12.1. SAR Test Results Summary	39
APPENDIX A. SAR SYSTEM CHECK DATA	50
APPENDIX B. SAR MEASUREMENT DATA	56
APPENDIX C. TEST SETUP PHOTOGRAPHS &EUT PHOTOGRAPHS	85
APPENDIX D. CALIBRATION DATA	98

Page 5 of 144

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Fraguency Bond	Highest Reported SAR(W/Kg)		
Frequency Band —	Head	Body-worn(with 10mm separation)	
GSM 850	0.134	0.405	
PCS 1900	1.176	1.078	
UMTS Band II	1.476	1.027	
UMTS Band V	0.081	0.230	
WIFI 2.4G	0.092	0.057	
Simultaneous Reported SAR	1.581		

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2003; IEEE1528a-2005;47CFR § 2.1093; IEEE/ANSI C95.1 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v05r02
- KDB 648474 D04 Handset SAR v01r02
- KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03
- KDB 941225 D01 3G SAR Procedures v03
- KDB 941225 D06 Hot Spot SAR v02
- KDB 248227 D01 SAR meas for 802 11 a b g v02

Report No.: AGC02866150301FH01 Page 6 of 144

2.1. EUT Description

2. GENERAL INFORMATION

General Information			
Product Designation	GSM/WCDMA Mobile Phone		
Test Model	Freedom		
Hardware Version	DX01_MB_P2_V01		
Software Version	ALPS.KK1.MP1.V2.11		
Device Category	Portable		
RF Exposure Environment	Uncontrolled		
Antenna Type	Internal		
GSM and GPRS& EGPRS	·		
Support Band	☑GSM 850 ☑PCS 1900 ☑GSM 900 ☑DCS 1800		
GPRS & EGPRS Type	Class B		
GPRS & EGPRS Class	Class 12(1Tx+4Rx, 2Tx+3Rx, 3Tx+2Rx, 4Tx+1Rx)		
TX Frequency Range	GSM 850 : 824.2~848.8MHz;; PCS 1900: 1850.2~1909.8MHz;		
RX Frequency Range	GSM 850 : 869~894MHz; PCS 1900: 1930~1990MHz		
Release Version	R99		
Type of modulation	GMSK for GSM/GPRS; GMSK & 8-PSK for EGPRS		
Antenna Gain	-1.0dBi(GSM 850), -0.8dBi (GSM 1900)		
Max. Average Power (Max. Peak Power)	GSM850: 31.29dBm(32.62dBm) ;PCS1900: 28.23dBm(29.72dBm)		
WCDMA			
Support Band	☑UMTS FDD Band II☑UMTS FDD Band V☑UMTS FDD Band I☑UMTS FDD Band VIII		
HS Type	HSPA(HSUPA/HSDPA)		
TX Frequency Range	WCDMA FDD Band II: 1852.4 -1907.6MHz WCDMA FDD Band V: 826.4-846.6MHz		
RX Frequency Range	WCDMA FDD Band II: 1930-1990MHz WCDMA FDD Band V: 869-894MHz		
Release Version	Rel-6		
Type of modulation	HSDPA:QPSK/16QAM; HSUPA:BPSK; WCDMA:QPSK		
Antenna Gain	-1.0dBi(WCDMA 850), -0.8dBi (WCDMA 1900)		
Max. Average Power (Max. Peak Power)	Band II: 21.42dBm (23.58dBm); Band V: 21.38dBm (23.69dBm)		

⊠V4.0

☐ Identical Prototype

Page 7 of 144

EUT Description(Continue)

Bluetooth

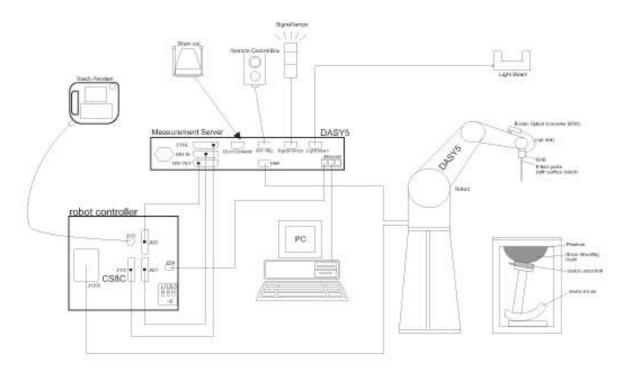
Product

Bluetooth Version

Operation Frequency

Type of modulation	⊠GFSK ⊠∏/4-DQPSK ⊠8-DPSK		
Avg. Burst Power	3.41dBm		
Antenna Gain	0.7dBi		
WIFI			
WIFI Specification	□802.11a ⊠802.11b ⊠802.11g ⊠802.11n(20) ⊠802.11n(40)		
Operation Frequency	2412~2462MHz		
Avg. Burst Power	11b:10.48dBm,11g:8.53dBm,11n(20):8.25dBm,11n(40):6.73dBm		
Antenna Gain	0.8dBi		
Accessories			
Battery	Brand name: N/A Model No. : Freedom Voltage and Capacitance: 3.7 V & 4000mAh		
Adapter	Brand name: N/A Model No.: Freedom Input: AC 100-240V, 50/60Hz, 0.35A Output: DC 5V, 2000mA		
Earphone	Brand name: N/A Model No. : N/A		
Note:CMU200 can measur	e the average power and Peak power at the same time		
Product	Туре		

 □V2.0
 □V2.1
 □V2.1+EDR
 ⊠V3.0


2402~2480MHz

Production unit

Page 8 of 144

3. SAR MEASUREMENT SYSTEM

3.1. The DASY5 system used for performing compliance tests consists of following items

- A standard high precision 6-axis robot with controller, teach pendant and software.
- Data acquisition electronics (DAE) which attached to the robot arm extension. The DAE consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock
- A dosimetric probe equipped with an optical surface detector system.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital Communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- A Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- Phantoms, device holders and other accessories according to the targeted measurement.

Report No.: AGC02866150301FH01 Page 9 of 144

3.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	EX3DV4					
Manufacture	SPEAG					
frequency	0.3GHz-6 GHz Linearity:±0.2dB(300 MHz-6 GHz)					
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.2dB					
Dimensions	Overall length:337mm Tip diameter:2.5mm Typical distance from probe tip to dipole centers:1mm					
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.					

3.3. Data Acquisition Electronics description

The data acquisition electronics (DAE) consist if a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement sever is accomplished through an optical downlink fir data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

DAE4

Input Impedance	200MOhm	
The Inputs	Symmetrical and floating	A DOMESTICAL DESIGNATION OF THE PROPERTY OF TH
Common mode rejection	above 80 dB	DASE A SULPHING OF THE PARTY OF

Page 10 of 144

3.4. Robot

The DASY system uses the high precision robots (DASY5:TX60) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from is used.

The XL robot series have many features that are important for our application:

- ☐ High precision (repeatability 0.02 mm)
- ☐ High reliability (industrial design)
- ☐ Jerk-free straight movements
- □ Low ELF interference (the closed metallic construction shields against motor control fields)
- □ 6-axis controller

3.5. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned prob.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. e, the same position will be reached with another aligned probe within 0

Page 11 of 144

3.6. Device Holder

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon{=}3$ and loss tangent $\delta=0.02.$ The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.7. Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip-disk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DAYS I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Page 12 of 144

3.8. PHANTOM SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

□ Left head

☐ Right head

☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

ELI4 Phantom

☐ Flat phantom a fiberglass shell flat phantom with 2mm+/- 0.2 mm shell thickness. It has only one measurement area for Flat phantom

Page 13 of 144

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;

E is the r.m.s. value of the electric field strength in the tissue in volts per meter;

σ is the conductivity of the tissue in siemens per metre;

ρ is the density of the tissue in kilograms per cubic metre;

ch is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t=0 is the initial time derivative of temperature in the tissue in kelvins per second

Page 14 of 144

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528 and IEC62209 standards, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

Page 15 of 144

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}			\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	$\begin{array}{c} \Delta z_{Z00m}(1)\text{: between} \\ 1^{\text{st}} \text{ two points closest} \\ \text{to phantom surface} \\ \\ \Delta z_{Z00m}(n>1)\text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$	1 st two points closest	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		≤ 1.5·Δz	Zoom(n-1)	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

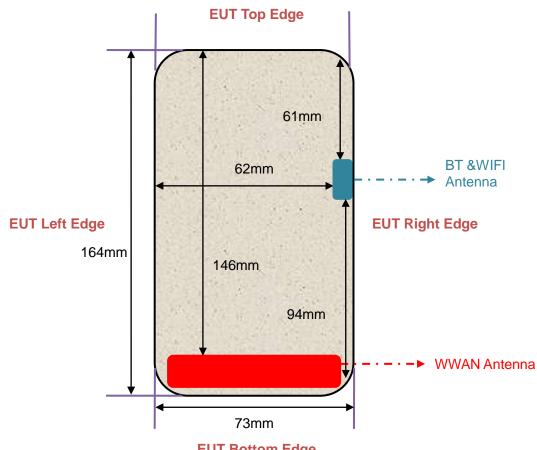
Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: AGC02866150301FH01 Page 16 of 144

4.3. RF Exposure Conditions


Test Configuration and setting:

The EUT is a model of GSM Portable Mobile Station (MS). It supports GSM/GPRS/EGPRS, WCDMA/HSPA, BT, WIFI, and support hot spot mode.

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command.

Antenna Location: (the front view)

EUT Bottom Edge

Page 17 of 144

For WWAN mode:

Test Configurations	Antenna to edges/surface	SAR required	Note
Head			
Left Touch		Yes	
Left Tilt		Yes	
Right Touch		Yes	
Right Tilt		Yes	
Body			
Back	<25mm	Yes	
Front	<25mm	Yes	
Hotspot			
Back	<25mm	Yes	
Front	<25mm	Yes	
Edge 1 (Top)	146	No	SAR is not required for the distance between the antenna and the edge is>25mm as per KDB 941225D06 Hotspot SAR
Edge 2 (Right)	3	Yes	
Edge 3 (Bottom)	5	Yes	
Edge 4 (Left)	6	Yes	

For WLAN mode:

FOR WILAN Mode:				
Test Configurations	Antenna to edges/surface	SAR required	Note	
Head				
Left Touch		Yes		
Left Tilt		Yes		
Right Touch		Yes		
Right Tilt		Yes		
Body				
Back	<25mm	Yes		
Front	<25mm	Yes		
Hotspot				
Back	<25mm	Yes		
Front	<25mm	Yes		
Edge 1 (Top)	61	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225D06 Hotspot SAR	
Edge 2 (Right)	3	Yes		
Edge 3 (Bottom)	94	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225D06 Hotspot SAR	
Edge 4 (Left)	62	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225D06 Hotspot SAR	

Page 18 of 144

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 4.2

5.1. The composition of the tissue simulating liquid

	P				<i>,</i> q			
Ingredient	Water	Salt	Sugar	HEC	Preventol	DGBE	TWEEN	Triton X-100
835MHz Head	√	√	√	√	√			
835MHz Body	√	√	√	√	√			
1900MHz Head	√	√				√		
1900MHz Body	√	√	√	√	√			
2450MHz Head	√	√						√
2450MHz Body	√	√				√		

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	h	ead	bo	ody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

($\varepsilon r = relative permittivity$, $\sigma = conductivity and <math>\rho = 1000 \text{ kg/m}3$)

Report No.: AGC02866150301FH01 Page 19 of 144

5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and R&S Network Analyzer ZVL6.

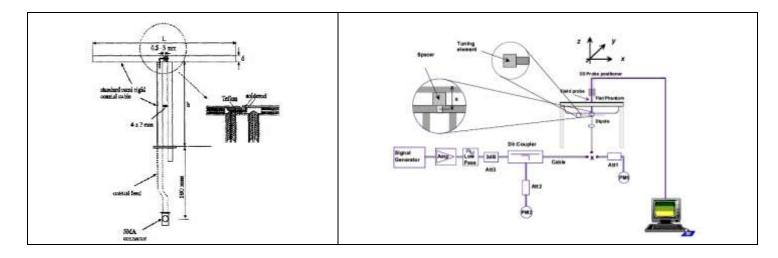
		Tissue Stimulant M	easurement for 835MHz			
	Fr.	Dielectric Par	ameters (±5%)	Tissue	T	
	(MHz)	εr 41.5 (39.425-43.575)	δ[s/m] 0.90(0.855-0.945)	Temp [°C]	Test time	
	824.2	42.81	0.86			
Head	826.4	42.35	0.87			
	835	42.01	0.88	22.1	Apr. 25,2015	
	836.6	41.37	0.90	22.1	Apr. 25,2015	
	846.6 40.98		0.91			
	848.8	40.54	0.92			
	Fr.	Dielectric Par	ameters (±5%)	Tissue	Test time	
	(MHz)	εr 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [°C]	1 651 11116	
	824.2	56.55	0.94			
Pody	826.4	55.96	0.95			
Body	835	55.43	0.96	22.3	Apr. 25,2015	
	836.6	54.29	0.98	22.3	Apr. 25,2015	
	846.6	54.00	0.98			
	848.8	53.69	0.99			

		Tissue Stimulant Me	easurement for 1900MHz			
	Fr.	Dielectric Par	ameters (±5%)	Tissue	To at time a	
	(MHz)	εr40.00(38.00-42.00)	δ[s/m]1.40(1.33-1.47)	Temp [°C]	Test time	
	1850.2	41.58	1.37			
Head	1852.4	41.02	1.38			
	1880	40.77	1.39	22	Apr. 22,2015	
	1900 40.32		1.41	22	Αρι. 22,2013	
	1907.6	40.08	1.43			
	1909.8	39.33	1.44			
	Fr.	Dielectric Par	Dielectric Parameters (±5%)		Test time	
	(MHz)	εr53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [°C]	rest time	
	1850.2	54.68	1.47			
Pody	1852.4	53.86	1.48			
Body	1880	53.17	1.50	21.7	Apr 22 2015	
	1900	52.79	1.53	21.7	Apr. 22,2015	
	1907.6	52.35	1.55			
	1909.8	51.11	1.57			

Page 20 of 144

		Tissue Stimulant Me	easurement for 2450MHz		
	Fr.	Dielectric Par	Tissue	To at time a	
	(MHz)	εr39.2(37.24-41.16) δ[s/m]1.80(1.71-1.89)		Temp [°C]	Test time
Head	2412	40.90	1.77		
	2437	40.24	1.80	21.5	Apr. 28,2015
	2450 39.65		1.82	21.5	Αρι. 20,2013
	2462	38.77	1.83		
	Fr.	Dielectric Par	ameters (±5%)	Tissue	Test time
	(MHz)	εr52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [°C]	rest time
Pody	2412	54.62	1.89		
Body	2437	53.15	1.91	21.8	Apr 20 2015
	2450	52.56	1.94	21.0	Apr. 28,2015
	2462	52.13	1.96		

Page 21 of 144


6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.


Each DASY system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

Page 22 of 144

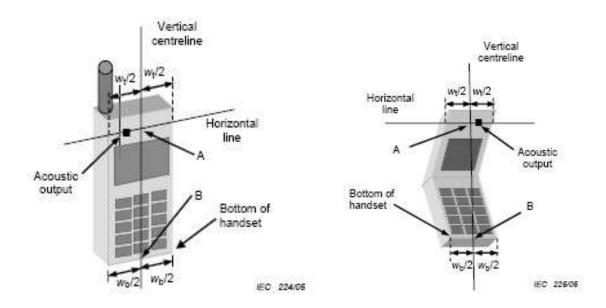
6.2. SAR System Check 6.2.1. Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6
1900MHz	68	39.5	3.6
2450MHz	51.5	30.4	3.6

6.2.2. System Check Result

System Perf	ormance	Check at 8	335MHz&1900MI	Hz for Head						
Validation K	Validation Kit: SN 46/11DIP 0G835-190 & SN 46/11DIP 1G900-187									
Frequency	Tar Value(get W/Kg)	Reference Result (± 10%)		Tested Value(W/Kg)		Tissue Temp.	Test time		
[MHz]	1g	10g	1g	10g	1g	10g	[°C]			
835	9.60	6.20	8.64-10.56	5.58-6.82	10.544	6.88	22.1	Apr. 25,2015		
1900	39.65	20.24	35.685-43.615	18.216-22.264	40.8	21.28	22	Apr. 22,2015		
2450	54.40	23.75	48.96-59.84	21.375-26.125	51.52	26.56	21.5	Apr. 28,2015		
System Perf	ormance	Check at 8	335 MHz &1900N	IHz for Body						
Frequency	Tar Value(get W/Kg)		ce Result 0%)		sted (W/Kg)	Tissue Temp.	Test time		
[MHz]	1g	10g	1g	10g	1g	10g	[°C]			
835	9.90	6.39	8.91-10.89	5.75-7.03	10.848	7.008	22.3	Apr. 25,2015		
1900	40.74	21.43	36.666-44.814	19.287-23.573	38.72	20.16	21.7	Apr. 22,2015		
2450	54.19	24.96	48.771-59.609	22.464-27.456	56	25.44	21.8	Apr. 28,2015		

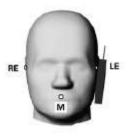

Page 23 of 144

7. EUT TEST POSITION

This EUT was tested in Right Cheek, Right Titled, Left Cheek, Left Titled, Body back and Body front and 4 edges.

7.1. Define Two Imaginary Lines on the Handset

- (1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

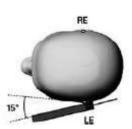


Page 24 of 144

7.2. Cheek Position

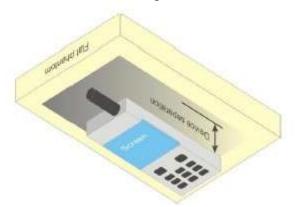
(1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.

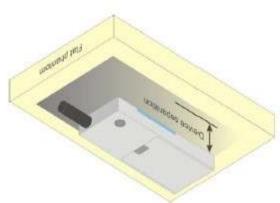
(2) To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost



7.3. Title Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.




Page 25 of 144

7.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 10mm.

General Note: Referring KDB941225 D06 v02, when the overall device length and width are \geq 9cm *5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna within 25mm from that surface or edge.

Page 26 of 144

8. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

Page 27 of 144

9. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date
Stäubli Robot	Stäubli-TX60	F13/5Q2UD1/A/01	N/A	N/A
Robot Controller	Stäubli-CS8	139522	N/A	N/A
TISSUE Probe	SATIMO	SN 45/11 OCPG45	12/03/2014	12/02/2015
E-Field Probe	Speag-EX3DV4	3953	11/06/2014	11/05/2015
SAM Twin Phantom	Speag-SAM	1790	N/A	N/A
Device Holder	Speag-SD 000 H01 KA	SD 000 H01 KA	N/A	N/A
DAE4	Speag-SD 000 D04 BM	1398	03/11/2015	03/10/2016
SAR Software	Speag-DASY5	DASY52.8	N/A	N/A
Liquid	SATIMO	-	N/A	N/A
Radio Communication Tester	R&S-CMU200	069Y7-158-13-712	03/06/2015	03/05/2016
Dipole	SATIMO SID835	SN46/11 DIP 0G835-190	10/02/2014	10/01/2017
Dipole	SATIMO SID1900	SN46/11 DIP 1G900-187	11/14/2013	11/13/2016
Dipole	SATIMO SID2450	SN46/11 DIP 2G450-189	11/14/2013	11/13/2016
Signal Generator	Agilent-E4438C	MY44260051	03/06/2015	03/05/2016
Power Sensor	NRP-Z23	US38261498	03/06/2015	03/05/2016
Spectrum Analyzer E4440	Agilent	US41421290	05/27/2014	05/26/2015
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	03/06/2015	03/05/2016
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A
Amplifier	EM30180	SN060552	03/06/2015	03/05/2016
Directional Couple	Werlatone/ C5571-10	SN99463	07/30/2014	07/29/2015
Directional Couple	Werlatone/ C6026-10	SN99482	07/30/2014	07/29/2015
Power Sensor	NRP-Z21	1137.6000.02	10/22/2014	10/21/2015
Power Viewer	R&S	V2.3.1.0	N/A	N/A

Note: Per KDB 865664Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

Page 28 of 144

10. MEASUREMENT UNCERTAINTY

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table as follow.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor(a)	1/k(b)	1/√3	1/√6	1/√2

- (a) Standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 13.1 Standard Uncertainty for Assumed Distribution (above table)

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Page 29 of 144

Measureme	DAY ent uncertainty for	S5 Measurement			r 1 gram	ı / 10 gram.	
Error Description	Uncertainty value(±10%)	Probability Distribution	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g)	Standard Uncertainty (10g)
Measurement System							
Probe Calibration	6.53	Normal	1	1	1	6.53	6.53
Axial Isotropy	4.6	Rectangular	$\sqrt{3}$	1	1	2.66	2.66
Hemispherical Isotropy	9.3	Rectangular	$\sqrt{3}$	1	1	5.37	5.37
Linearity	4.5	Rectangular	$\sqrt{3}$	1	1	2.60	2.60
Probe Modulation Response	0.2	Rectangular	$\sqrt{3}$	1	1	0.12	0.12
System Detection Limits	0.9	Rectangular	$\sqrt{3}$	1	1	0.52	0.52
Boundary Effects	0.9	Rectangular	$\sqrt{3}$	0	0	0	0
Readout Electronics	0.2	Normal	$\sqrt{3}$	1	1	0.12	0.12
Response Time	0	Rectangular	$\sqrt{3}$	1	1	0	0
Integration Time	0	Rectangular	$\sqrt{3}$	1	1	0	0
RF Ambient Noise	0.9	Rectangular	$\sqrt{3}$	1	1	0.52	0.52
RF Ambient Reflection	0.9	Rectangular	$\sqrt{3}$	1	1	0.52	0.52
Probe Positioner	0.7	Rectangular	$\sqrt{3}$	1	1	0.40	0.40
Probe Positioning	6.5	Rectangular	$\sqrt{3}$	1	1	3.75	3.75
Post-processing	3.8	Rectangular	$\sqrt{3}$	1	1	2.19	2.19
Test Sample Related		_					
Device Positioning	3.6	Normal	1	1	1	3.6	3.6
Device Holder	2.9	Normal	1	1	1	2.9	2.9
Measurement SAR Drift	5.0	Rectangular	$\sqrt{3}$	1	1	2.89	2.89
Power Scaling	0.0	Rectangular	$\sqrt{3}$	1	1	0	0
Phantom and Setup							
Phantom Uncertainty	3.9	Rectangular	$\sqrt{3}$	1	1	2.25	2.25
Liquid Conductivity(Meas.)	2.4	Normal	1	0.78	0.71	1.87	1.70
Liquid Conductivity(Target)	4.9	Rectangular	$\sqrt{3}$	0.64	0.43	1.81	1.22
Liquid Permittivity(Meas.)	2.4	Normal	1	0.26	0.26	0.62	0.62
Liquid Permittivity((Target)	4.9	Rectangular	$\sqrt{3}$	0.6	0.49	1.70	1.39
Liquid Conductivity-temperature uncertainty	1.6	Rectangular	$\sqrt{3}$	0.78	0.71	0.72	0.66
Liquid Permittivity-temperature uncertainty	0.2	Rectangular	$\sqrt{3}$	0.23	0.26	0.026	0.03
Combined Standard Uncertain	nty					12.03	12.00
Coverage Factor for 95%							=2
Expanded Uncertainty						±24.06%	±24.00%

Report No.: AGC02866150301FH01 Page 30 of 144

DAYS5	System Ch	neck Uncertainty	y for 30	MHz to	6GHz ave	eraged range	9	
Error Description	Uncer. value (±10%)	Prob. Dist.	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(v _i) V _{eff}
Measurement System								
Probe Calibration	6.53	Normal	1	1	1	6.53	6.53	8
Axial Isotropy	4.6	Rectangular	$\sqrt{3}$	1	1	2.66	2.66	8
Hemispherical Isotropy	9.3	Rectangular	$\sqrt{3}$	1	1	5.37	5.37	8
Boundary Effects	0.9	Rectangular	$\sqrt{3}$	0	0	0	0	8
Linearity	4.5	Rectangular	$\sqrt{3}$	1	1	2.60	2.60	8
System Detection Limits	0.9	Rectangular	$\sqrt{3}$	1	1	0.52	0.52	8
Modulation Response	0	Rectangular	$\sqrt{3}$	1	1	0	0	8
Readout Electronics	0.2	Normal	1	1	1	0.2	0.2	8
Response Time	0	Rectangular	$\sqrt{3}$	1	1	0	0	8
Integration Time	0	Rectangular	$\sqrt{3}$	1	1	0	0	8
RF Ambient Noise	0.9	Rectangular	$\sqrt{3}$	1	1	0.52	0.52	8
RF Ambient Reflection	0.9	Rectangular	$\sqrt{3}$	1	1	0.52	0.52	8
Probe Positioner	0.7	Rectangular	$\sqrt{3}$	1	1	0.402	0.402	8
Probe Positioning	6.5	Rectangular	$\sqrt{3}$	1	1	3.752	3.752	8
Max. SAR Eval.	1.9	Rectangular	$\sqrt{3}$	1	1	1.10	1.10	8
Dipole Related								
Deviation of exp. dipole	5.3	Rectangular	$\sqrt{3}$	1	1	3.06	3.06	8
Dipole Axis to Liquid Dist.	2.0	Rectangular	$\sqrt{3}$	1	1	1.15	1.15	8
Input power & SAR drift	3.3	Rectangular	$\sqrt{3}$	1	1	1.91	1.91	8
Phantom and Setup								
Phantom Uncertainty	3.9	Rectangular	$\sqrt{3}$	1	1	2.25	2.25	8
SAR correction	1.8	Rectangular	$\sqrt{3}$	1	0.84	1.04	0.87	8
Liquid Conductivity(Meas.)	2.4	Normal	1	0.78	0.71	1.87	1.70	8
Liquid Permittivity(Meas.)	2.4	Normal	1	0.26	0.26	0.62	0.62	8
Temp. unc Conductivity	1.6	Rectangular	$\sqrt{3}$	0.78	0.71	0.72	0.66	8
Temp. unc Permittivity	0.2	Rectangular	$\sqrt{3}$	0.23	0.26	0.02	0.03	8
Combined Std. Uncertainty	•	-				11.16	11.10	
Expanded STD Uncertainty						±22.32%	±22.20%	

Page 31 of 144

11. CONDUCTED POWER MEASUREMENT GSM BAND

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)			
Maximum Power <1>							
	824.2	31.29	-9	22.29			
GSM 850	836.6	31.27	-9	22.27			
	848.8	31.22	-9	22.22			
CDDC 050	824.2	30.86	-9	21.86			
GPRS 850 (1 Slot)	836.6	30.82	-9	21.82			
(1 300)	848.8	30.78	-9	21.78			
ODD0 050	824.2	28.37	-6	22.37			
GPRS 850 (2 Slot)	836.6	28.32	-6	22.32			
(2 300)	848.8	28.31	-6	22.31			
0000 050	824.2	26.28	-4.26	22.02			
GPRS 850 (3 Slot)	836.6	26.26	-4.26	22			
(3 300)	848.8	26.21	-4.26	21.95			
000000	824.2	25.35	-3	22.35			
GPRS 850 (4 Slot)	836.6	25.32	-3	22.32			
(4 3101)	848.8	25.29	-3	22.29			
50550.050	824.2	25.19	-9	16.19			
EGPRS 850 (1 Slot)	836.6	25.16	-9	16.16			
(1 5101)	848.8	25.13	-9	16.13			
50550.050	824.2	24.11	-6	18.11			
EGPRS 850 (2 Slot)	836.6	24.08	-6	18.08			
(2 5101)	848.8	24.06	-6	18.06			
50000.05	824.2	22.41	-4.26	18.15			
EGPRS 850 (3 Slot)	836.6	22.36	-4.26	18.1			
	848.8	22.32	-4.26	18.06			
	824.2	21.47	-3	18.47			
EGPRS 850 (4 Slot)	836.6	21.42	-3	18.42			
(4 3101)	848.8	21.38	-3	18.38			

Page 32 of 144

GSM BAND CONTINUE

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
	1850.2	28.23	-9	19.23
PCS1900	1880	28.18	-9	19.18
	1909.8	28.13	-9	19.13
CDDC4000	1850.2	27.83	-9	18.83
GPRS1900 (1 Slot)	1880	27.77	-9	18.77
(1000)	1909.8	27.72	-9	18.72
CDDC4000	1850.2	25.32	-6	19.32
GPRS1900 (2 Slot)	1880	25.29	-6	19.29
(2 0101)	1909.8	25.25	-6	19.25
ODD04000	1850.2	23.23	-4.26	18.97
GPRS1900 (3 Slot)	1880	23.21	-4.26	18.95
(3 300)	1909.8	23.18	-4.26	18.92
ODD04000	1850.2	22.34	-3	19.34
GPRS1900 (4 Slot)	1880	22.29	-3	19.29
(4 300)	1909.8	22.23	-3	19.23
ECDD04000	1850.2	24.34	-9	15.34
EGPRS1900 (1 Slot)	1880	24.31	-9	15.31
(1 3101)	1909.8	24.22	-9	15.22
ECDD04000	1850.2	23.31	-6	17.31
EGPRS1900 (2 Slot)	1880	23.26	-6	17.26
(2 0101)	1909.8	23.22	-6	17.22
EODD04000	1850.2	21.42	-4.26	17.16
EGPRS1900 (3 Slot)	1880	21.37	-4.26	17.11
(3 300)	1909.8	21.34	-4.26	17.08
EGPRS1900 (4 Slot)	1850.2	20.41	-3	17.41
	1880	20.35	-3	17.35
(4 0101)	1909.8	20.32	-3	17.32
Maximum Power <2>				
GSM850	824.2	30.75	-9	21.75
PCS1900	1850.2	27.71	-9	18.71

Note 1:

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) - 9 dB

Frame Power = Max burst power (2 Up Slot) – 6 dB Frame Power = Max burst power (3 Up Slot) – 4.26 dB

Frame Power = Max burst power (4 Up Slot) - 3 dB

Page 33 of 144

UMTS BAND HSDPA Setup Configuration:

- •The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- •The RF path losses were compensated into the measurements.
- ·A call was established between EUT and Based Station with following setting:
- (1) Set Gain Factors(βc and βd) parameters set according to each
- (2) Set RMC 12.2Kbps+HSDPA mode.
- (3) Set Cell Power=-86dBm
- (4) Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
- (5) Select HSDPA Uplink Parameters
- (6) Set Delta ACK, Delta NACK and Delta CQI=8
- (7) Set Ack Nack Repetition Factor to 3
- (8) Set CQI Feedback Cycle (k) to 4ms
- (9) Set CQI Repetition Factor to 2
- (10) Power Ctrl Mode=All Up bits
- •The transmitted maximum output power was recorded.

Table C.10.2.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βс	0.4	βd βc/βd		βHS	CM (dB)	MPR (dB)
Sub-lest	(Note5)	βd	(SF)		(Note1, Note 2)	(Note 3)	(Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15(Note	15/15(Note	64	12/15(Note 4)	24/15	1.0	0.0
2	4)	4)	04	12/13(11016-4)	24/13	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β_{hs} = 30/15 * β_c .

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK

and $\triangle NACK = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$, and $\triangle CQI = 24/15$ with $\beta_{hs} = 24/15 * \beta_c$.

Note 3: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the c/d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 11/15 and d = 15/15.

Page 34 of 144

HSUPA Setup Configuration:

- · The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- · A call was established between EUT and Base Station with following setting *:
- (1) Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
- (2) Set the Gain Factors (βc and βd) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
- (3) Set Cell Power = -86 dBm
- (4) Set Channel Type = 12.2k + HSPA
- (5) Set UE Target Power
- (6) Power Ctrl Mode= Alternating bits
- (7) Set and observe the E-TFCI
- (8) Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- · The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub-t est	βс	βd	βd (SF)	βc/βd	βHS (Note1)	βес	βed (Note 4) (Note 5)	βed (SF)	βed (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E-TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/225	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	βed1: 47/15 βed2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	-	-	5/15	5/15	47/15	4	1	1.0	0.0	12	67

Note 1: For sub-test 1 to 4, \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, \triangle ACK, \triangle NACK and \triangle CQI = 5/15 with β_{hs} = 5/15 * β_c .

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the c/d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 10/15 and d = 15/15.

Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 5: βed cannot be set directly; it is set by Absolute Grant Value.

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

Page 35 of 144

UMTS BAND II

Mada	Frequency	Avg. Burst Power		
Mode	(MHz)	(dBm)		
MCDMA 1000	1852.4	21.42		
WCDMA 1900	1880	21.38		
RMC	1907.6	21.32		
WODMA 4000	1852.4	21.14		
WCDMA 1900	1880	21.12		
AMR	1907.6	21.09		
HODDA	1852.4	20.37		
HSDPA	1880	20.34		
Subtest 1	1907.6	20.31		
LICDDA	1852.4	20.43		
HSDPA	1880	20.38		
Subtest 2	1907.6	20.32		
LICDDA	1852.4	20.38		
HSDPA	1880	20.34		
Subtest 3	1907.6	20.31		
LICDDA	1852.4	20.44		
HSDPA Subtest 4	1880	20.41		
Sublest 4	1907.6	20.36		
HSUPA	1852.4	20.37		
Subtest 1	1880	20.35		
Sublest 1	1907.6	20.34		
HSUPA	1852.4	20.32		
Subtest 2	1880	20.31		
Sublest 2	1907.6	20.26		
HSUPA	1852.4	20.28		
Subtest 3	1880	20.23		
Sublest 3	1907.6	20.18		
HSUPA	1852.4	20.34		
Subtest 4	1880	20.36		
Sublest 4	1907.6	20.33		
HSUPA	1852.4	20.35		
Subtest 5	1880	20.29		
Sublest 3	1907.6	20.25		

Page 36 of 144

UMTS BAND V

Mode	Frequency	Avg. Burst Power		
Wode	(MHz)	(dBm)		
WCDMA 950	826.4	21.38		
WCDMA 850	836.6	21.35		
RMC	846.6	21.27		
MODMA OFO	826.4	21.14		
WCDMA 850	836.6	21.11		
AMR	846.6	21.09		
LICDDA	826.4	20.32		
HSDPA	836.6	20.29		
Subtest 1	846.6	20.24		
LICDDA	826.4	20.33		
HSDPA	836.6	20.31		
Subtest 2	846.6	20.28		
LICDDA	826.4	20.41		
HSDPA	836.6	20.36		
Subtest 3	846.6	20.34		
LICDDA	826.4	20.36		
HSDPA	836.6	20.33		
Subtest 4	846.6	20.31		
LICLIDA	826.4	20.28		
HSUPA	836.6	20.24		
Subtest 1	846.6	20.23		
LICLIDA	826.4	20.36		
HSUPA	836.6	20.31		
Subtest 2	846.6	20.27		
LICLIDA	826.4	20.38		
HSUPA	836.6	20.36		
Subtest 3	846.6	20.31		
LICLIDA	826.4	20.38		
HSUPA	836.6	20.39		
Subtest 4	846.6	20.36		
LICLIDA	826.4	20.32		
HSUPA	836.6	20.27		
Subtest 5	846.6	20.24		

Page 37 of 144

WIFI

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Avg. Burst Power(dBm)
		01	2412	10.48
802.11b	1	06	2437	10.43
		11	2462	10.39
		01	2412	8.53
802.11g	6	06	2437	8.44
		11	2462	8.39
		01	2412	8.25
802.11n(20)	6.5	06	2437	8.18
		11	2462	8.14
		03	2422	6.73
802.11n(40)	13.5	06	2437	6.66
		09	2452	6.63

Bluetooth_V3.0

Modulation	Channel	Frequency(MHz)	Average Power (dBm)
	0	2402	2.76
GFSK	39	2441	3.25
	78	2480	3.41
	0	2402	1.92
π /4-DQPSK	39	2441	2.42
	78	2480	2.83
	0	2402	1.95
8-DPSK	39	2441	2.4
	78	2480	2.6

Bluetooth_V4.0

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	0	2402	-2.96
GFSK	19	2440	-2.81
	39	2480	-2.97

Page 38 of 144

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)					
For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)					
Note: CM=1 for β $_{o}/\beta$ $_{d}$ =12/15, β $_{hs}/\beta$ $_{c}$ =24/15.For all other combinations of DPDCH, DPCCH, HS-DPCCH,							
E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.							

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Page 39 of 144

12. TEST RESULTS

12.1. SAR Test Results Summary

12.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2003, and Body SAR was performed with the device 10mm from the phantom.

12.1.2. Operation Mode

- According to KDB 447498 D01 v05r02 ,for each exposure position, if the highest 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional.
- Per KDB 865664 D01 v01r03,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
- (1) When the original highest measured SAR is ≥ 0.8 W/Kg, repeat that measurement once.
- (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is ≥1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
- (3) Perform a third repeated measurement only if the original, first and second repeated measurement is \geq 1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is \geq 1.20.
- Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- According to KDB 648474 D04 v01r02, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- According to 941225 D06 v02, when the overall device length and width are >9cm×5cm, Hotspot mode with a test separation distance of 10mm. For device with form factors smaller than 9cm×5cm, Hotspot mode with a test separation distance of 5mm. Body SAR was also performed with the headset attached and without.
- According to 248227 D01 v01r02, SAR is not required for 802.11g channels when the maximum average output power is less than 1/4dB higher than measured on the corresponding 802.11b channels.
- •Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:
- Maximum Scaling SAR =tested SAR (Max.) \times [maximum turn-up power (mw)/ maximum measurement output power(mw)]

Page 40 of 144

12.1.3. Test Result

SAR MEASURE	EMENT								
Product: GSM/V	VCDMA Mobile	Phone		Relative H	Humidity (%	6): 54			
Test Mode: GSN	M850 with GMS	K modulat	ion						
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2)	SAR (1g) (W/kg)	Max. Turn-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg
SIM 1 Card									
Left Cheek	voice	190	836.6	-0.04	0.057	32	31.27	0.067	1.6
Left Tilt	voice	190	836.6	-0.17	0.032	32	31.27	0.038	1.6
Right Cheek	voice	190	836.6	-0.12	0.109	32	31.27	0.129	1.6
Right Tilt	voice	190	836.6	-0.14	0.053	32	31.27	0.063	1.6
Body back	voice	190	836.6	0.09	0.178	32	31.27	0.211	1.6
Body front	voice	190	836.6	0.08	0.100	32	31.27	0.118	1.6
Left Cheek	GPRS-2 slot	190	836.6	-0.12	0.102	29	28.32	0.119	1.6
Left Tilt	GPRS-2 slot	190	836.6	0.07	0.061	29	28.32	0.071	1.6
Right Cheek	GPRS-2 slot	190	836.6	-0.03	0.115	29	28.32	0.134	1.6
Right Tilt	GPRS-2 slot	190	836.6	-0.16	0.062	29	28.32	0.073	1.6
Body back	GPRS-2 slot	190	836.6	0.04	0.346	29	28.32	0.405	1.6
Body front	GPRS-2 slot	190	836.6	0.05	0.179	29	28.32	0.209	1.6
Edge 1 (Top)	GPRS-2 slot	190	836.6	0.13	0.035	29	28.32	0.041	1.6
Edge 2(Right)	GPRS-2 slot	190	836.6	0.08	0.169	29	28.32	0.198	1.6
Edge 3(Bottom)	GPRS-2 slot	190	836.6	0.02	0.096	29	28.32	0.112	1.6
Edge 4(Left)	GPRS-2 slot	190	836.6	-0.01	0.182	29	28.32	0.213	1.6
SIM 2 Card									
Right Cheek	GPRS-2 slot	190	836.6	0.03	0.100	32	30.75	0.133	1.6

<sup>When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
The test separation for body is 10mm of all above table.</sup>

Page 41 of 144

SAR MEASURE	EMENT									
Product: GSM/V	VCDMA Mobile	Phone		Relative I	Humidity (%	6): 53				
Test Mode: PCS	S1900 with GMS	SK modul	ation							
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2)	SAR (1g) (W/kg)	Max. Turn-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg	
SIM 1 Card										
Left Cheek	voice	661	1880.0	-0.08	0.311	29	28.18	0.376	1.6	
Left Tilt	voice	661	1880.0	0.14	0.100	29	28.18	0.121	1.6	
Right Cheek	voice	661	1880.0	-0.02	0.564	29	28.18	0.681	1.6	
Right Tilt	voice	661	1880.0	0.11	0.119	29	28.18	0.144	1.6	
Body back	voice	661	1880.0	-0.03	0.591	29	28.18	0.714	1.6	
Body front	voice	661	1880.0	0.09	0.345	29	28.18	0.417	1.6	
Left Cheek	GPRS-4 slot	512	1850.2	0.16	0.705	23	22.34	0.821	1.6	
Left Cheek	GPRS-4 slot	661	1880.0	0.18	0.722	23	22.29	0.850	1.6	
Left Cheek	GPRS-4 slot	810	1909.8	0.06	0.710	23	22.23	0.848	1.6	
Left Tilt	GPRS-4 slot	661	1880.0	0.18	0.186	23	22.29	0.219	1.6	
Right Cheek	GPRS-4 slot	512	1850.2	0.07	1.01	23	22.34	1.176	1.6	
Right Cheek	GPRS-4 slot	661	1880.0	0.11	0.943	23	22.29	1.110	1.6	
Right Cheek	GPRS-4 slot	810	1909.8	0.09	0.867	23	22.23	1.035	1.6	
Right Tilt	GPRS-4 slot	661	1880.0	0.16	0.201	23	22.29	0.237	1.6	
Body back	GPRS-4 slot	512	1850.2	0.02	0.911	23	22.34	1.061	1.6	
Body back	GPRS-4 slot	661	1880.0	-0.13	0.915	23	22.29	1.078	1.6	
Body back	GPRS-4 slot	810	1909.8	-0.03	0.793	23	22.23	0.947	1.6	
Body front	GPRS-4 slot	661	1880.0	0.13	0.455	23	22.29	0.536	1.6	
Edge 1 (Top)	GPRS-4 slot	661	1880.0	0.03	0.117	23	22.29	0.138	1.6	
Edge 2(Right)	GPRS-4 slot	661	1880.0	0.02	0.486	23	22.29	0.572	1.6	
Edge 3(Bottom)	GPRS-4 slot	512	1850.2	0.03	0.776	23	22.34	0.903	1.6	
Edge 3(Bottom)	GPRS-4 slot	661	1880.0	0.02	0.872	23	22.29	1.027	1.6	
Edge 3(Bottom)	GPRS-4 slot	810	1909.8	-0.03	0.725	23	22.23	0.866	1.6	
Edge 4(Left)	GPRS-4 slot	661	1880.0	0.04	0.175	23	22.29	0.206	1.6	
SIM 2 Card										
Right Cheek	GPRS-4 slot	512	1850.2	0.12	0.805	29	27.71	1.083	1.6	

When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
 The test separation for body is 10mm of all above table.

Page 42 of 144

SAR MEASURE				D 1 "		(0/) =0			
	VCDMA Mobile Pho			Relative Humidity (%): 53					
Test Mode: WC	DMA Band II with Q	PSK modu	lation	ı	ı				
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2)	SAR (1g) (W/kg)	Max. Turn-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg
SIM 1 Card									
Left Cheek	RMC 12.2kbps	9262	1852.4	0.07	0.801	22	21.38	0.924	1.6
Left Cheek	RMC 12.2kbps	9400	1880	0.18	1.02	22	21.38	1.177	1.6
Left Cheek	RMC 12.2kbps	9538	1907.6	0.06	0.825	22	21.38	0.952	1.6
Left Tilt	RMC 12.2kbps	9400	1880	0.04	0.156	22	21.38	0.180	1.6
Right Cheek	RMC 12.2kbps	9262	1852.4	0.11	0.938	22	21.38	1.082	1.6
Right Cheek	RMC 12.2kbps	9400	1880	0.04	1.28	22	21.38	1.476	1.6
Right Cheek	RMC 12.2kbps	9538	1907.6	0.08	0.968	22	21.38	1.117	1.6
Right Tilt	RMC 12.2kbps	9400	1880	0.14	0.171	22	21.38	0.197	1.6
Body back	RMC 12.2kbps	9262	1852.4	-0.02	0.684	22	21.38	0.789	1.6
Body back	RMC 12.2kbps	9400	1880	-0.01	0.890	22	21.38	1.027	1.6
Body back	RMC 12.2kbps	9538	1907.6	-0.04	0.731	22	21.38	0.843	1.6
Body front	RMC 12.2kbps	9400	1880	0.09	0.389	22	21.38	0.449	1.6
Edge 1 (Top)	RMC 12.2kbps	9400	1880	0.13	0.062	22	21.38	0.072	1.6
Edge 2(Right)	RMC 12.2kbps	9400	1880	-0.03	0.670	22	21.38	0.773	1.6
Edge 3(Bottom)	RMC 12.2kbps	9262	1852.4	-0.07	0.587	22	21.38	0.677	1.6
Edge 3(Bottom)	RMC 12.2kbps	9400	1880	-0.02	0.753	22	21.38	0.869	1.6
Edge 3(Bottom)	RMC 12.2kbps	9538	1907.6	-0.05	0.610	22	21.38	0.704	1.6
Edge 4(Left)	RMC 12.2kbps	9400	1880	0.04	0.159	22	21.38	0.183	1.6

[•] When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

[•]The test separation for body is 10mm of all above table.

Page 43 of 144

SAR MEASURE	MENT										
Product: GSM/V	VCDMA Mobile Phor	ne		Relative Humidity (%):54							
Test Mode: WC	DMA Band V with Q	PSK modu	ılation								
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2)	SAR (1g) (W/kg)	Max. Turn-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg		
SIM 1 Card	SIM 1 Card										
Left Cheek	RMC 12.2kbps	4183	836.6	0.02	0.070	22	21.35	0.081	1.6		
Left Tilt	RMC 12.2kbps	4183	836.6	0.15	0.042	22	21.35	0.049	1.6		
Right Cheek	RMC 12.2kbps	4183	836.6	-0.07	0.069	22	21.35	0.080	1.6		
Right Tilt	RMC 12.2kbps	4183	836.6	0.13	0.039	22	21.35	0.045	1.6		
Body back	RMC 12.2kbps	4183	836.6	0.09	0.198	22	21.35	0.230	1.6		
Body front	RMC 12.2kbps	4183	836.6	0.10	0.108	22	21.35	0.125	1.6		
Edge 1 (Top)	RMC 12.2kbps	4183	836.6	0.07	0.028	22	21.35	0.033	1.6		
Edge 2(Right)	RMC 12.2kbps	4183	836.6	0.06	0.105	22	21.35	0.122	1.6		
Edge 3(Bottom)	RMC 12.2kbps	4183	836.6	-0.02	0.045	22	21.35	0.052	1.6		
Edge 4(Left)	RMC 12.2kbps	4183	836.6	-0.03	0.119	22	21.35	0.138	1.6		

[•] When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

[•]The test separation for body is 10mm of all above table.

Page 44 of 144

SAR MEASUR	SAR MEASUREMENT										
Product: GSM/\	WCDMA Mobile Phor	ne		Relative Humidity (%):53							
Test Mode:802	.11b										
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2)	SAR (1g) (W/kg)	Max. Turn-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg		
SIM 1 Card											
Left Cheek	DTS	6	2437	0.17	0.081	11	10.43	0.092	1.6		
Left Tilt	DTS	6	2437	0.09	0.020	11	10.43	0.023	1.6		
Right Cheek	DTS	6	2437	-0.09	0.046	11	10.43	0.052	1.6		
Right Tilt	DTS	6	2437	0.11	0.020	11	10.43	0.023	1.6		
Body back	DTS	6	2437	0.12	0.031	11	10.43	0.035	1.6		
Body front	DTS	6	2437	0.10	0.029	11	10.43	0.033	1.6		
Edge 1 (Top)	DTS	6	2437	0.04	0.016	11	10.43	0.018	1.6		
Edge 2(Right)	DTS	6	2437	0.13	0.050	11	10.43	0.057	1.6		
Edge 4(Left)	DTS	6	2437	0.12	0.028	11	10.43	0.032	1.6		

- According to KDB248227, SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels.
- All of above "DTS" means data transmitters.
- The test separation of all above table for body part is 10mm.

Repeated SA	Repeated SAR								
Product: GSN	Product: GSM/WCDMA Mobile Phone								
Test Mode: F	CS1900 & WCDMA B	and II wi	th QPSK n	nodulation					
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2)	Once SAR (1g) (W/kg)	Power Drift (<±0.2)	Twice SAR (1g) (W/kg)	Limit W/kg	
Right Cheek	GPRS-4 slot	512	1850.2	0.08	0.867			1.6	
Body back	GPRS-4 slot	661	1880.0	-0.05	0.899			1.6	
Right Cheek	RMC 12.2kbps	9400	1880	0.09	1.04	0.11	0.886	1.6	
Body back	RMC 12.2kbps	9400	1880					1.6	

Page 45 of 144

Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

No.	Simultaneous state	ı	Portable Hands	et	Note
NO.	Simulaneous state	Head	Body-worn	Hotspot	Note
1	GSM(voice)+WLAN 2.4GHz (data)	Yes	Yes	-	-
2	WCDMA(voice)+WLAN 2.4GHz (data)	Yes	Yes	-	-
3	GSM(voice)+Bluetooth(data)	Yes	Yes	-	-
4	WCDMA(voice)+Bluetooth(data)	Yes	Yes	-	-
5	GPRS/EGDE(Data) + Bluetooth(data)	Yes	Yes	Yes	2.4GHz Hotspot
6	GPRS/EGDE(Data) + WLAN 2.4GHz (data)	Yes	Yes	Yes	2.4GHz Hotspot
7	WCDMA (Data) + Bluetooth(data)	Yes	Yes	Yes	2.4GHz Hotspot
8	WCDMA (Data) + WLAN 2.4GHz (data)	Yes	Yes	Yes	2.4GHz Hotspot

NOTE:

- 1. WLAN and BT share the same antenna, and cannot transmit simultaneously.
- 2. Simultaneous with every transmitter must be the same test position.
- 3. KDB 447498 D01, BT SAR is excluded as below table.
- 4. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR and 10mm for body-worn SAR.
- 5. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 6. According to KDB447497 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4) When the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]· $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

7. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Estimated SAR		Max Power inc Toler	luding Tune-up ance	Separation Distance (mm)	Estimated SAR (W/kg)	
		dBm	mW	Distance (IIIII)	(vv/kg)	
ВТ	Head	4	2.512	0	0.105	
ы	Body	4	2.312	10	0.053	

Maximum test results (WWAN) with BT SAR:

BT: Head (0 cm gap): 0.105 W/kg and Body (1.0cm gap): 0.053 W/kg

Page 46 of 144

Sum of the SAR for GSM 850 &Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario			Σ1-g SAR	SPLSR
		GSM 850 Band	WI-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	0.067	0.092		0.159	No
	Left Tilt	0.038	0.023		0.061	No
	Right Touch	0.129	0.052		0.181	No
Head	Right Tilt	0.063	0.023		0.086	No
(voice)	Left Touch	0.067		0.105	0.172	No
	Left Tilt	0.038		0.105	0.143	No
	Right Touch	0.129		0.105	0.234	No
	Right Tilt	0.063		0.105	0.168	No
	Rear	0.211	0.035		0.246	No
Body-worn	Front	0.118	0.033		0.151	No
Body-worn	Rear	0.211		0.053	0.264	No
	Front	0.118		0.053	0.171	No
	Left Touch	0.119	0.092		0.211	No
	Left Tilt	0.071	0.023		0.094	No
	Right Touch	0.134	0.052		0.186	No
Head (Data)	Right Tilt	0.073	0.023		0.096	No
(Data)	Left Touch	0.119		0.105	0.224	No
	Left Tilt	0.071		0.105	0.176	No
	Right Touch	0.134		0.105	0.239	No
	Right Tilt	0.073		0.105	0.178	No
	Rear	0.405	0.035		0.440	No
	Front	0.209	0.033		0.242	No
	Edge 1	0.041	0.018		0.059	No
	Edge 2	0.198	0.057		0.255	No
Hotspot	Edge 4	0.213	0.032		0.245	No
	Rear	0.405		0.053	0.458	No
	Front	0.209		0.053	0.262	No
	Edge 1	0.041		0.053	0.094	No
	Edge 2	0.198		0.053	0.251	No
	Edge 3	0.112		0.053	0.165	No
	Edge 4	0.213		0.053	0.266	No

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 47 of 144

Sum of the SAR for GSM 1900 &Wi-Fi & BT:

	Test Position	Simultaneous Transmission Scenario			54 ~ CAD	CDI CD
RF Exposure Conditions		GSM1900 Band	WI-Fi DTS Band	Bluetooth	Σ1-g SAR (W/Kg)	SPLSR (Yes/No)
Head	Left Touch	0.376	0.092		0.468	No
	Left Tilt	0.121	0.023		0.144	No
	Right Touch	0.681	0.052		0.733	No
	Right Tilt	0.144	0.023		0.167	No
(voice)	Left Touch	0.376		0.105	0.481	No
	Left Tilt	0.121		0.105	0.226	No
	Right Touch	0.681		0.105	0.786	No
	Right Tilt	0.144		0.105	0.249	No
	Rear	0.714	0.035		0.749	No
Body-worn	Front	0.417	0.033		0.450	No
Body-worn	Rear	0.714		0.053	0.767	No
	Front	0.417		0.053	0.470	No
	Left Touch	0.850	0.092		0.942	No
	Left Tilt	0.219	0.023		0.242	No
	Right Touch	1.176	0.052		1.228	No
Head	Right Tilt	0.237	0.023		0.260	No
(Data)	Left Touch	0.850		0.105	0.955	No
	Left Tilt	0.219		0.105	0.324	No
	Right Touch	1.176		0.105	1.281	No
	Right Tilt	0.237		0.105	0.342	No
	Rear	1.078	0.035		1.113	No
	Front	0.536	0.033		0.569	No
Hotspot	Edge 1	0.138	0.018		0.156	No
	Edge 2	0.572	0.057		0.629	No
	Edge 4	0.206	0.032		0.238	No
	Rear	1.078		0.053	1.131	No
	Front	0.536		0.053	0.589	No
	Edge 1	0.138		0.053	0.191	No
	Edge 2	0.572		0.053	0.625	No
	Edge 3	1.027		0.053	1.080	No
	Edge 4	0.206		0.053	0.259	No

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 48 of 144

Sum of the SAR for WCDMA Band II &Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario			Σ1-g SAR	SPLSR
		Band II Band	WI-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	1.177	0.092		1.269	No
	Left Tilt	0.180	0.023		0.203	No
	Right Touch	1.476	0.052		1.528	No
Head	Right Tilt	0.197	0.023		0.220	No
	Left Touch	1.177		0.105	1.282	No
	Left Tilt	0.180		0.105	0.285	No
	Right Touch	1.476		0.105	1.581	No
	Right Tilt	0.197		0.105	0.302	No
	Rear	1.027	0.035		1.062	No
	Front	0.449	0.033		0.482	No
	Edge 1	0.072	0.018		0.090	No
	Edge 2	0.773	0.057		0.830	No
	Edge 4	0.183	0.032		0.215	No
Body-worn	Rear	1.027		0.053	1.080	No
	Front	0.449		0.053	0.502	No
	Edge 1	0.072		0.053	0.125	No
	Edge 2	0.773		0.053	0.826	No
	Edge 3	0.869		0.053	0.922	No
	Edge 4	0.183		0.053	0.236	No

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 49 of 144

Sum of the SAR for WCDMA Band V &Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario			Σ1-g SAR	SPLSR
		WCDMA Band V	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	0.081	0.092		0.173	No
	Left Tilt	0.049	0.023		0.072	No
	Right Touch	0.080	0.052		0.132	No
Head	Right Tilt	0.045	0.023		0.068	No
	Left Touch	0.081		0.105	0.186	No
	Left Tilt	0.049		0.105	0.154	No
	Right Touch	0.080		0.105	0.185	No
	Right Tilt	0.045		0.105	0.150	No
	Rear	0.230	0.035		0.265	No
	Front	0.125	0.033		0.158	No
	Edge 1	0.033	0.018		0.051	No
	Edge 2	0.122	0.057		0.179	No
	Edge 4	0.138	0.032		0.170	No
Body-worn	Rear	0.230		0.053	0.283	No
	Front	0.125		0.053	0.178	No
	Edge 1	0.033		0.053	0.086	No
	Edge 2	0.122		0.053	0.175	No
	Edge 3	0.052		0.053	0.105	No
	Edge 4	0.138		0.053	0.191	No

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 50 of 144

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: Apr. 25,2015

System Check Head 835 MHz

DUT: Dipole 835MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1;

Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.88$ mho/m; $\epsilon r = 42.01$; $\rho = 1000$ kg/m³;

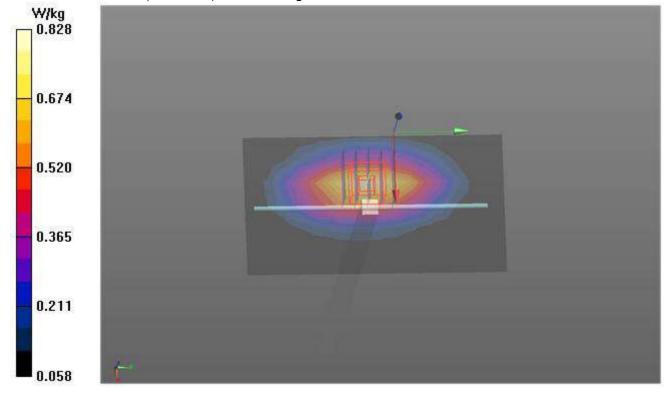
Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C): 22.5, Liquid temperature ($^{\circ}$ C): 22.1

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- · Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 835MHz Head/ Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.820 W/kg


Configuration/System Check 835MHz Head/Zoom Scan (5x5x7)/ Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 22.916 V/m; Power Drift =-0.08 dB

Peak SAR (extrapolated) = 0.980 W/kg

SAR(1 g) = 0.659 W/kg; SAR(10 g) = 0.430 W/kg Maximum value of SAR (measured) = 0.828 W/kg

Date: Apr. 25,2015

Page 51 of 144

Test Laboratory: AGC Lab System Check Body 835 MHz

DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1;

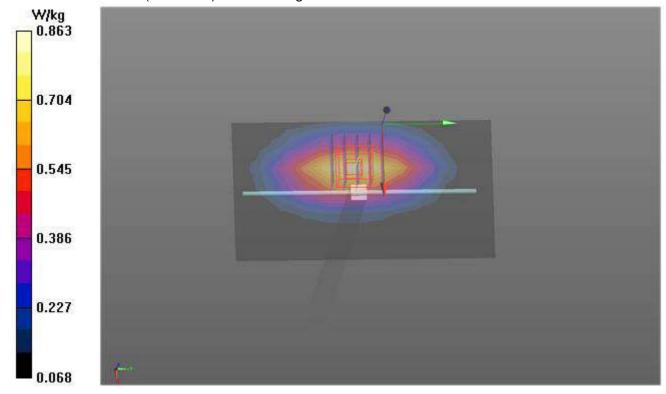
Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 55.43$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C): 22.5, Liquid temperature ($^{\circ}$ C): 22.3

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Configuration/System Check 835MHz Body/ Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.836 W/kg

Configuration/System Check 835MHz Body/Zoom Scan (5x5x7)/ Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.060 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.678 W/kg; SAR(10 g) = 0.443 W/kg Maximum value of SAR (measured) = 0.863 W/kg

Date: Apr. 22,2015

Page 52 of 144

Test Laboratory: AGC Lab System Check Head 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1;

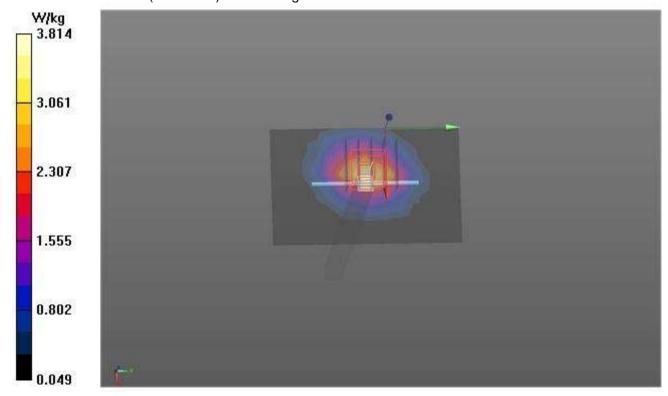
Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon r = 40.32$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):22.2, Liquid temperature ($^{\circ}$ C): 22

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Configuration/System Check 1900MHz Head /Area Scan (6x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.73 W/kg

Configuration/System Check 1900MHz Head /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.141 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) =5.04 W/kg

SAR(1 g) = 2.55 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 3.81 W/kg

Date: Apr. 22,2015

Page 53 of 144

Test Laboratory: AGC Lab System Check Body 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1;

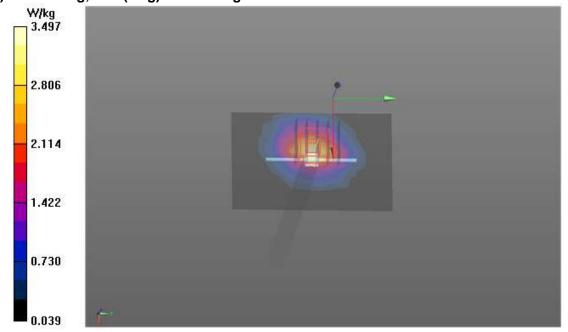
Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.53 \text{ mho/m}$; $\epsilon r = 52.79$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):22.2, Liquid temperature ($^{\circ}$ C): 21.7

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Configuration/System Check 1900MHz Body /Area Scan (6x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.50 W/kg

Configuration/System Check 1900MHz Body /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 44.363 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 4.62 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.26 W/kg

Date: Apr. 28,2015

Page 54 of 144

Test Laboratory: AGC Lab System Check Head 2450 MHz

DUT: Dipole 2450 MHz Type: SID 2450

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1;

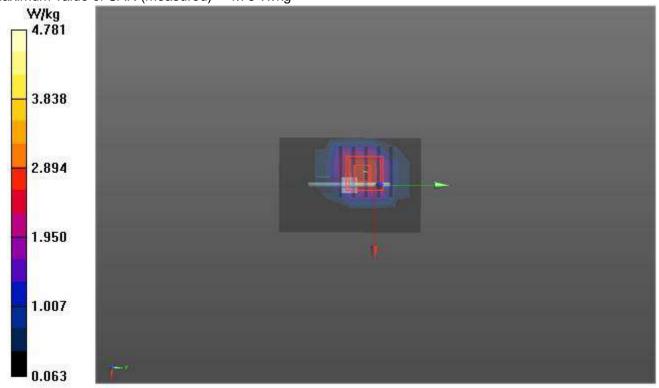
Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ mho/m; $\epsilon r = 39.65$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=10dBm

Ambient temperature (°C): 21.9, Liquid temperature (°C): 21.5

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Configuration/System Check 2450MHz Head /Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.66 W/kg

Configuration/System Check 2450MHz Head /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 34.423 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 6.26 W/kg

SAR(1 g) = 3.22 W/kg; SAR(10 g) = 1.66 W/kg Maximum value of SAR (measured) = 4.78 W/kg

Date: Apr. 28,2015

Page 55 of 144

Test Laboratory: AGC Lab System Check Body 2450 MHz

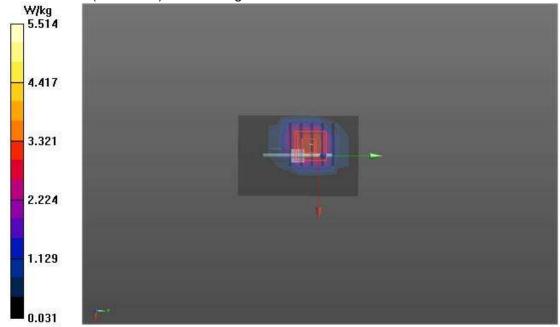
DUT: Dipole 2450 MHz Type: SID 2450

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.94 \text{ mho/m}$; $\epsilon r = 52.56$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=10dBm

Ambient temperature (°C): 21.9, Liquid temperature (°C): 21.8


DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 2450MHz Body / Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.27 W/kg

Configuration/System Check 2450MHz Body / Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 41.931 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 7.31 W/kg

SAR(1 g) = 3.50 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 5.51 W/kg

Page 56 of 144

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: Apr. 25,2015

GSM 850 Mid-Touch-Right <SIM 1>

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.2 – 848.8 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.90$ mho/m; $\epsilon r = 41.37$; $\rho = 1000$ kg/m³:

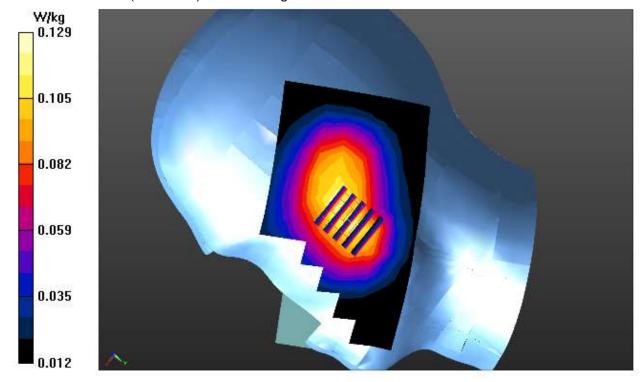
Phantom section: Right Section

Ambient temperature ($^{\circ}$ C):22.5, Liquid temperature ($^{\circ}$ C): 22.1

DASY Configuration:

• Probe: EX3DV4 - SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


RIGHT HEAD/R-C/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.123 W/kg

RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.071 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.109 W/kg; SAR(10 g) = 0.079 W/kg Maximum value of SAR (measured) = 0.129 W/kg

Page 57 of 144

Test Laboratory: AGC Lab Date: Apr. 25,2015

GSM 850 Mid- Body- Back

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.2 – 848.8 MHz); Duty Cycle: 1:8.3; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\epsilon r = 54.29$;

 ρ = 1000 kg/m³;

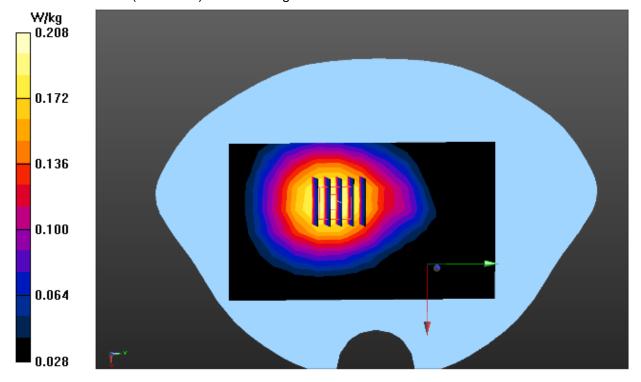
Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):22.5, Liquid temperature ($^{\circ}$ C): 22.3

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.201 W/kg

BODY/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.800 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.230 W/kg

SAR(1 g) = 0.178 W/kg; SAR(10 g) = 0.131 W/kg Maximum value of SAR (measured) = 0.208 W/kg

Page 58 of 144

Test Laboratory: AGC Lab Date: Apr. 25,2015

GPRS 850 Mid-Touch-Right (2up) <SIM 1>

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: GPRS -2 Slot; Communication System Band: GSM 850 (824.2 – 848.8 MHz); Duty Cycle:

1:4.2; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.90$ mho/m; $\epsilon r = 41.37$;

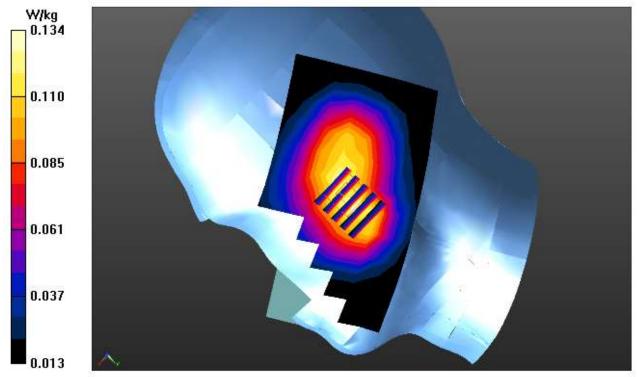
 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

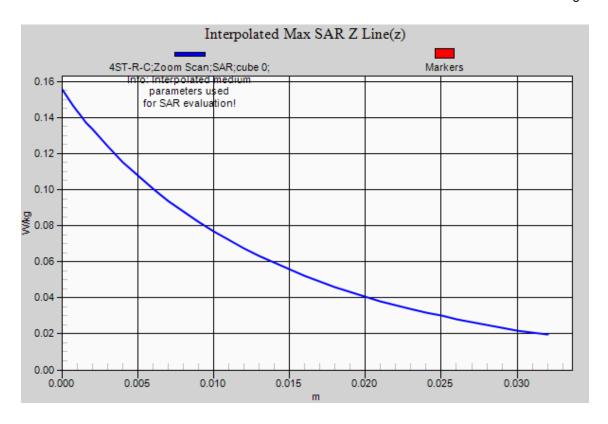
Ambient temperature (°C):22.5, Liquid temperature (°C): 22.1

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


RIGHT HEAD/2ST-R-C/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.135 W/kg

RIGHT HEAD/2ST-R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 9.298 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.155 W/kg

SAR(1 g) = 0.115 W/kg; SAR(10 g) = 0.082 W/kg Maximum value of SAR (measured) = 0.134 W/kg

Page 59 of 144

Page 60 of 144

Test Laboratory: AGC Lab Date: Apr. 25,2015

GPRS 850 Mid-Touch-Right (2up) <SIM 2>

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: GPRS -2 Slot; Communication System Band: GSM 850 (824.2 – 848.8 MHz); Duty Cycle: 1:4.2; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.90$ mho/m; $\epsilon r = 41.37$;

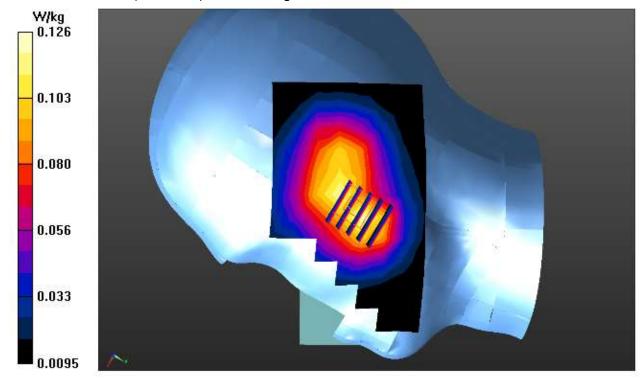
 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C):22.5, Liquid temperature (°C): 22.1

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


RIGHT HEAD/2ST-R-C 2/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.125 W/kg

RIGHT HEAD/2ST-R-C 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.321 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.147 W/kg

SAR(1 g) = 0.100 W/kg; SAR(10 g) = 0.075 W/kg Maximum value of SAR (measured) = 0.126 W/kg

Page 61 of 144

Test Laboratory: AGC Lab Date: Apr. 25,2015

GPRS 850 Mid- Body- Back (2up)

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: GPRS -2 Slot; Communication System Band: GSM 850 (824.2 – 848.8 MHz); Duty Cycle: 1:4.2; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\epsilon r = 54.29$;

 $\rho = 1000 \text{ kg/m}^3$;

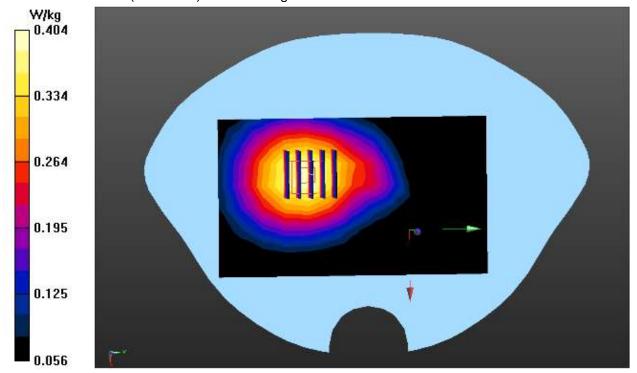
Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):22.5, Liquid temperature ($^{\circ}$ C): 22.3

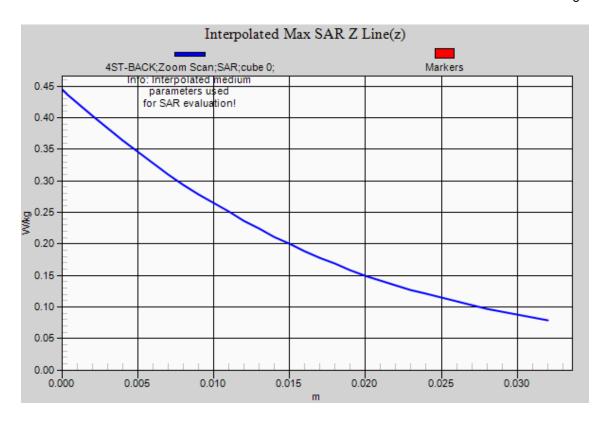
DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/2ST-BACK/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.398 W/kg

BODY/2ST-BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 14.799 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.445 W/kg

SAR(1 g) = 0.346 W/kg; SAR(10 g) = 0.255 W/kg Maximum value of SAR (measured) = 0.404 W/kg

Page 62 of 144

Page 63 of 144

Test Laboratory: AGC Lab Date: Apr. 22,2015

PCS 1900 Mid-Touch-Right <SIM 1>

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 40.77$;

 $\rho = 1000 \text{ kg/m}^3$;

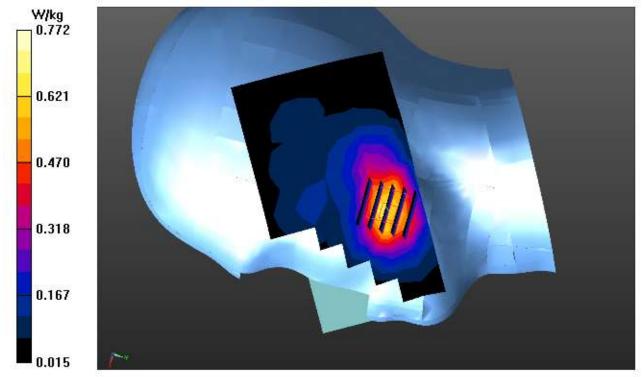
Phantom section: Right Section

Ambient temperature (°C):22.2, Liquid temperature (°C): 22

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.673 W/kg

RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.724 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.962 W/kg

SAR(1 g) = 0.564 W/kg; SAR(10 g) = 0.324 W/kg Maximum value of SAR (measured) = 0.772 W/kg

Page 64 of 144

Test Laboratory: AGC Lab Date: Apr. 22,2015

PCS 1900 Mid-Body- Back

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 53.17$;

 $\rho = 1000 \text{ kg/m}^3$;

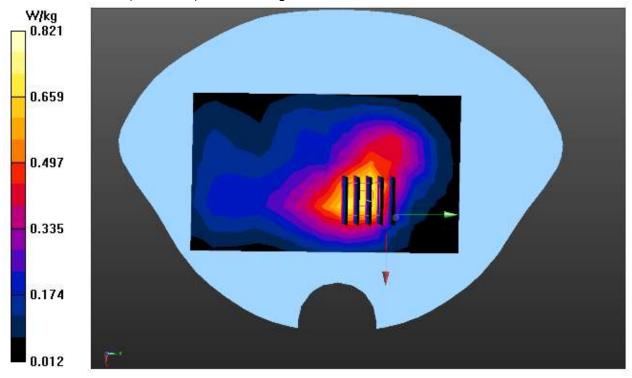
Phantom section: Flat Section

Ambient temperature (°C):22.2, Liquid temperature (°C): 21.7

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.749 W/kg

BODY/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.591 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.591 W/kg; SAR(10 g) = 0.339 W/kg Maximum value of SAR (measured) = 0.821 W/kg

Page 65 of 144

Test Laboratory: AGC Lab Date: Apr. 22,2015

GPRS 1900 Low-Touch-Right (4up) <SIM 1>

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: GPRS -4 Slot; Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle:

1:2.1; Frequency: 1850.2 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\epsilon r = 40.77$;

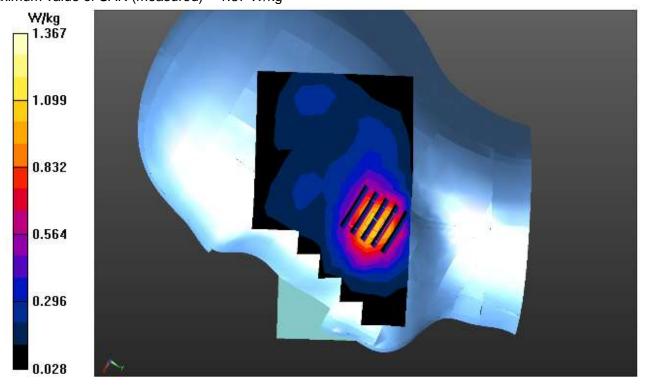
 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

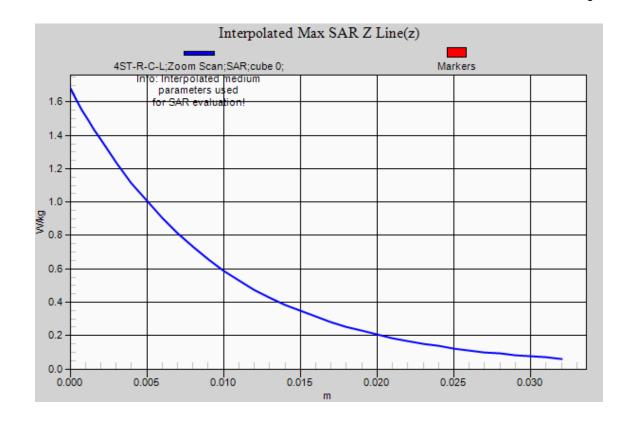
Ambient temperature (°C):22.2, Liquid temperature (°C): 22

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


RIGHT HEAD/4ST-R-C-L/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.13 W/kg

RIGHT HEAD/4ST-R-C-L/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 11.540 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.576 W/kg Maximum value of SAR (measured) = 1.37 W/kg

Report No.: AGC02866150301FH01 Page 66 of 144

Page 67 of 144

Test Laboratory: AGC Lab Date: Apr. 22,2015

GPRS 1900 Low-Touch-Right (4up) <SIM 2>

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: GPRS -4 Slot; Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle:

1:2.1; Frequency: 1850.2 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\epsilon r = 40.77$;

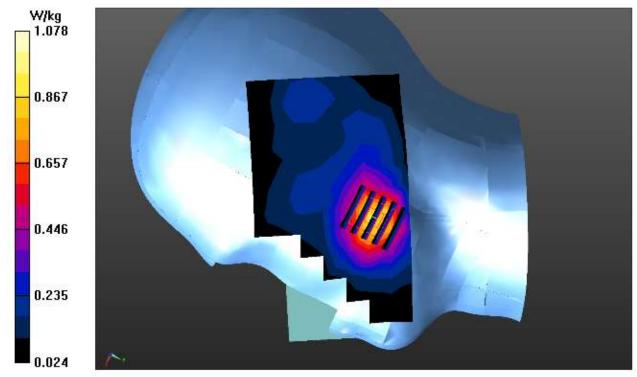
 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C):22.2, Liquid temperature (°C): 22

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


RIGHT HEAD/4ST-R-C-L 2/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.888 W/kg

RIGHT HEAD/4ST-R-C-L 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.489 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.805 W/kg; SAR(10 g) = 0.469 W/kg Maximum value of SAR (measured) = 1.08 W/kg

Page 68 of 144

Test Laboratory: AGC Lab

GPRS 1900 Mid-Body- Back (4up)

Date: Apr. 22,2015

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: GPRS -4 Slot; Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:2.1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 53.17$;

 $\rho = 1000 \text{ kg/m}^3$;

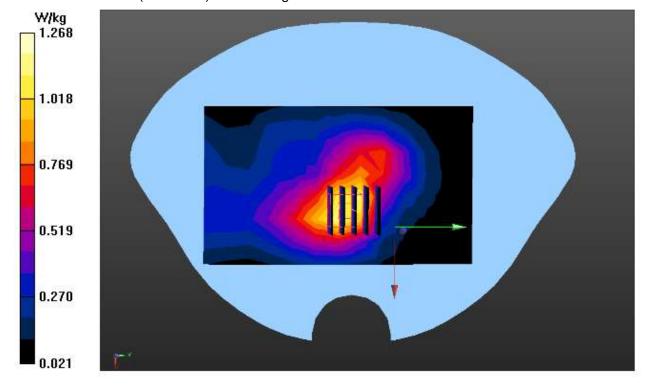
Phantom section: Flat Section

Ambient temperature (°C):22.2, Liquid temperature (°C): 21.7

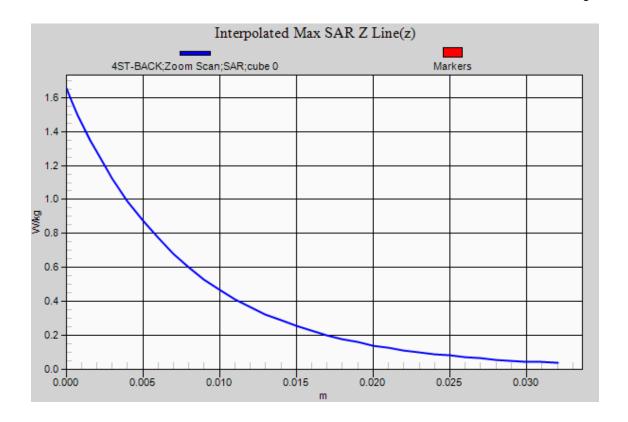
DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/4ST-BACK/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.18 W/kg

BODY/4ST-BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 25.588 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.915 W/kg; SAR(10 g) = 0.524 W/kg Maximum value of SAR (measured) = 1.27 W/kg

Report No.: AGC02866150301FH01 Page 69 of 144

Page 70 of 144

Test Laboratory: AGC Lab Date: Apr. 22,2015

WCDMA Band II Mid-Touch-Right

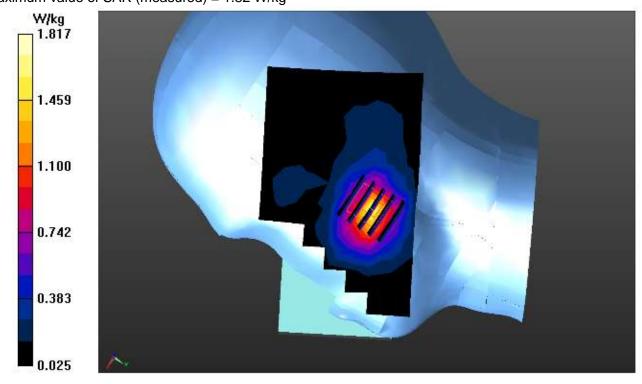
DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Phantom section: Right Section

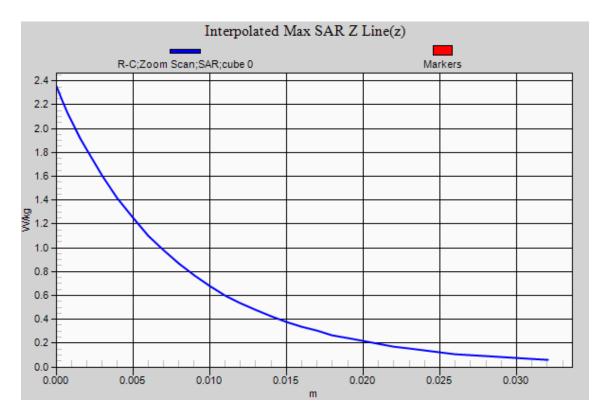
Ambient temperature (°C):22.2, Liquid temperature (°C): 22

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


RIGHT HEAD/R-C/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.73 W/kg

RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 10.727 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.35 W/kg

SAR(1 g) = 1.28 W/kg; SAR(10 g) = 0.679 W/kg Maximum value of SAR (measured) = 1.82 W/kg

Page 71 of 144

Page 72 of 144

Test Laboratory: AGC Lab Date: Apr. 22,2015

WCDMA Band II Mid-Body-Towards Grounds DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band \mbox{II} UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ =1.50 mho/m; ϵ r =53.17; ρ = 1000 kg/m³;

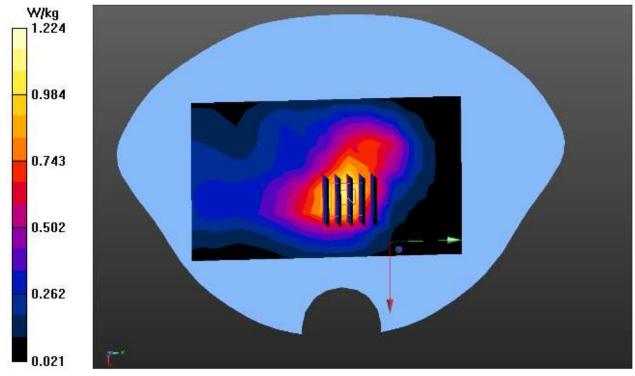
Phantom section: Flat Section

Ambient temperature (°C):22.2, Liquid temperature (°C): 21.7

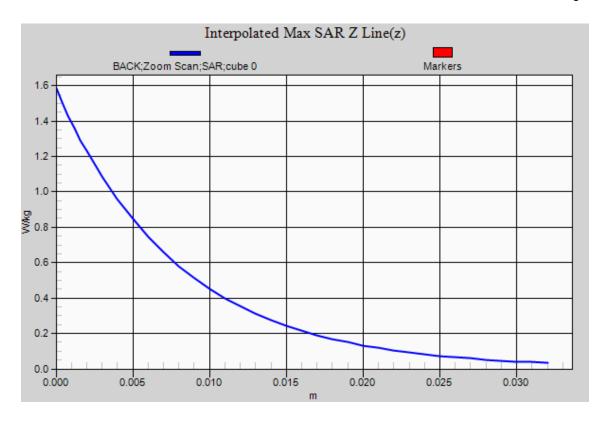
DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.21 W/kg

BODY/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 25.028 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.890 W/kg; SAR(10 g) = 0.511 W/kg Maximum value of SAR (measured) = 1.22 W/kg

Report No.: AGC02866150301FH01 Page 73 of 144

Page 74 of 144

Test Laboratory: AGC Lab Date: Apr. 25,2015

WCDMA Band V Mid-Touch-Left

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND $\,\mathrm{V}\,$ UTRA/FDD; Duty Cycle:1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\,\sigma$ =0.90 mho/m; $\,\epsilon$ r =41.37

 $\rho = 1000 \text{ kg/m}^3$;

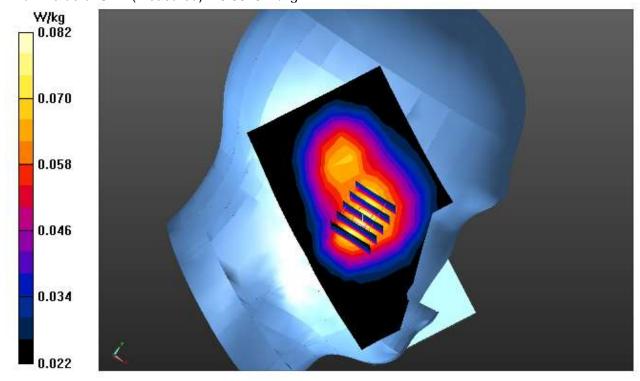
Phantom section: Left Section

Ambient temperature ($^{\circ}$ C):22.5, Liquid temperature ($^{\circ}$ C): 22.1

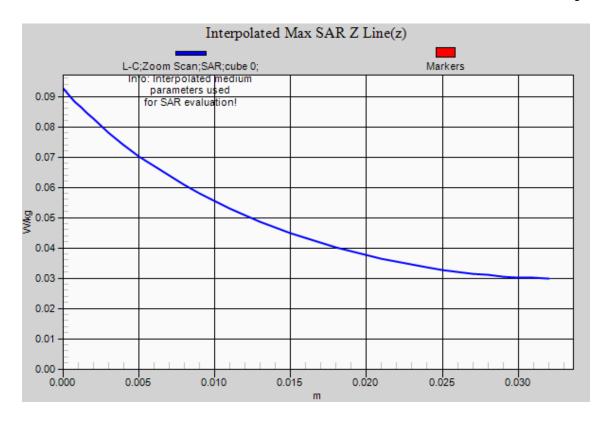
DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.12, 10.12, 10.12); Calibrated:11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.0826 W/kg


LEFT HEAD/L-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.355 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 0.0930 W/kg

SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.053 W/kg

Maximum value of SAR (measured) = 0.0825 W/kg

Page 75 of 144

Page 76 of 144

Test Laboratory: AGC Lab Date: Apr. 25,2015

WCDMA Band V Mid-Body-Towards Grounds
DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND $\rm V$ UTRA/FDD; Duty Cycle:1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ =0.98 mho/m; σ =54.29;

 $\rho = 1000 \text{ kg/m}^3$;

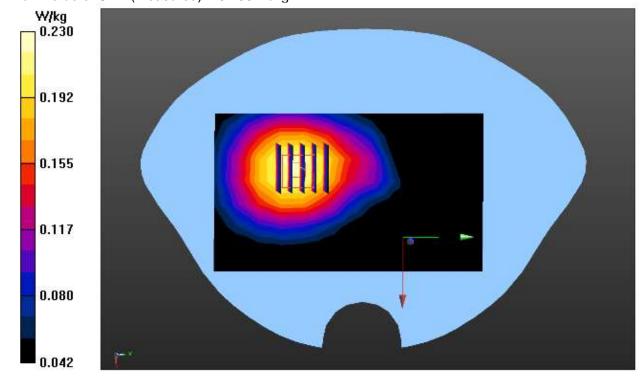
Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):22.5, Liquid temperature ($^{\circ}$ C): 22.3

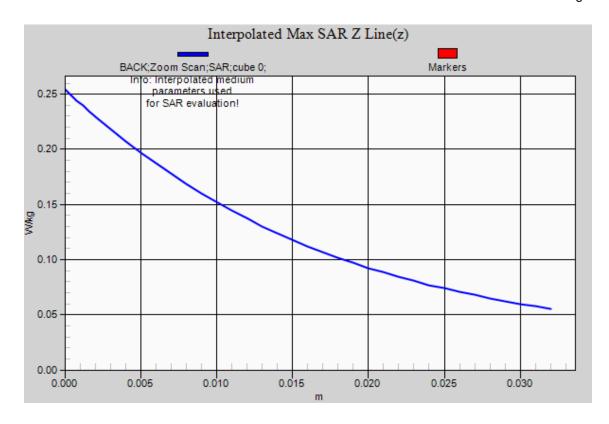
DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/BACK/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.223 W/kg


BODY/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.427 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 0.254 W/kg

SAR(1 g) = 0.198 W/kg; SAR(10 g) = 0.149 W/kg

Maximum value of SAR (measured) = 0.230 W/kg

Page 77 of 144

Page 78 of 144

WIFI MODE

Test Laboratory: AGC Lab Date: Apr. 28,2015

802.11b Mid-Touch-Left

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: UID 0, WiFi 802.11b (0); Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.80$ mho/m; $\epsilon r = 40.24; \rho = 1000$ kg/m³;

Phantom section: Left Section

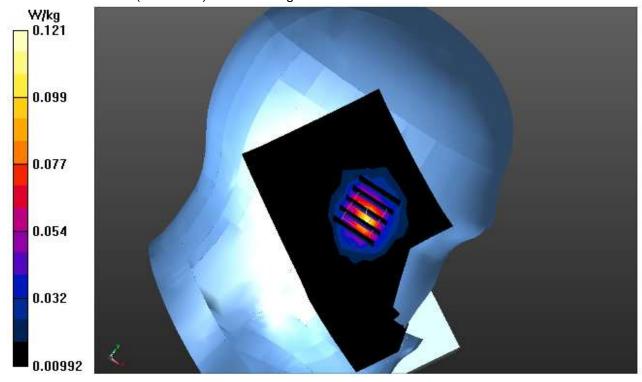
Ambient temperature ($^{\circ}$ C): 21.9, Liquid temperature ($^{\circ}$ C): 21.5

DASY Configuration:

• Probe: EX3DV4 - SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- · Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

LEFT HEAD/L-C/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.112 W/kg

LEFT HEAD/L-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.743 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.175 W/kg

SAR(1 g) = 0.081 W/kg; SAR(10 g) = 0.042 W/kg Maximum value of SAR (measured) = 0.121 W/kg

Page 79 of 144

Test Laboratory: AGC Lab Date: TTDD

802.11b Mid- Edge 3 (DTS)

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: UID 0, WiFi 802.11b (0); Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = \sigma F$ mho/m; $\epsilon r = 53.15$;; $\rho = 1000$ kg/m³;

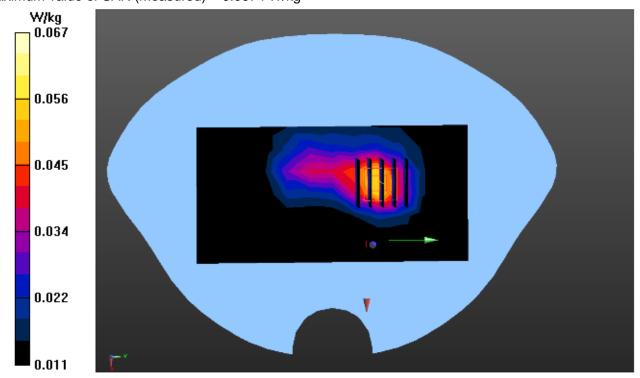
Phantom section: Flat Section

Ambient temperature (°C): 21.9, Liquid temperature (°C): 21.8

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(10.08,10.08, 10.08); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BDOY/2/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.0561 W/kg

BDOY/2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.242 V/m; Power Drift = 0.30 dB

Peak SAR (extrapolated) = 0.0860 W/kg

SAR(1 g) = 0.050 W/kg; SAR(10 g) = 0.030 W/kg Maximum value of SAR (measured) = 0.0674 W/kg

Page 80 of 144

Repeated SAR (Once)

Test Laboratory: AGC Lab Date: Apr. 22,2015

GPRS 1900 Low-Touch-Right (4up) <SIM 1>

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: GPRS -4 Slot; Communication System Band: PCS 1900 (1850.2 – 1909.8 MHz); Duty Cycle: 1:2.1; Frequency: 1850.2 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 40.77$;

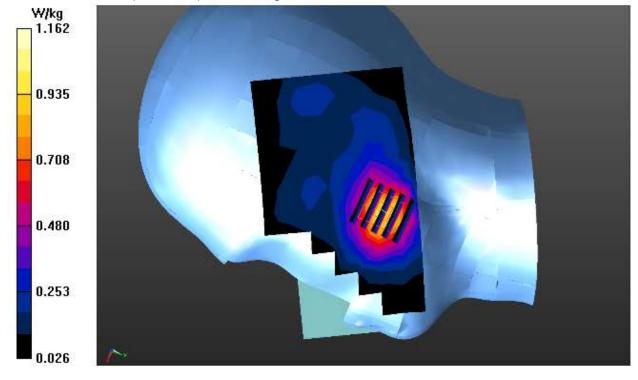
 ρ = 1000 kg/m³;

Phantom section: Right Section

Ambient temperature (°C):22.2, Liquid temperature (°C): 22

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


RIGHT HEAD/REPEATED-4ST-R-C-L /Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.956 W/kg

RIGHT HEAD/REPEATED-4ST-R-C-L /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.703 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.867 W/kg; SAR(10 g) = 0.501 W/kg Maximum value of SAR (measured) = 1.16 W/kg

Page 81 of 144

Test Laboratory: AGC Lab

Date: Apr. 22,2015

GPRS 1900 Mid-Body- Back (4up)

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: GPRS -4 Slot; Communication System Band: PCS 1900 (1850.2 - 1909.8 MHz); Duty

Cycle: 1:2.1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 53.17$;

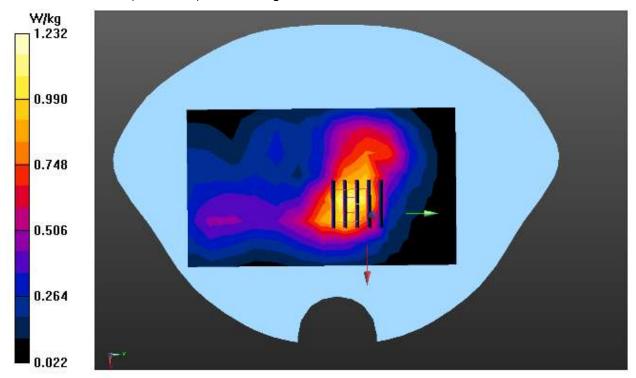
 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):22.2, Liquid temperature (°C): 21.7

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


BODY/REPEATED-4ST-BACK/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.17 W/kg

BODY/REPEATED-4ST-BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.351 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 0.899 W/kg; SAR(10 g) = 0.515 W/kg Maximum value of SAR (measured) = 1.23 W/kg

Page 82 of 144

Test Laboratory: AGC Lab Date: Apr. 22,2015

WCDMA Band II Mid-Touch-Right

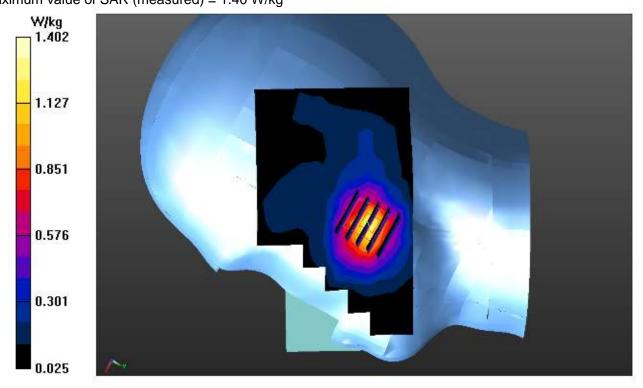
DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band $\:$ II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 40.77$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C):22.2, Liquid temperature (°C): 22

DASY Configuration:


- Probe: EX3DV4 SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- · Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/REPEATED-R-C/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.37 W/kg

RIGHT HEAD/REPEATED-R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.614 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.583 W/kg Maximum value of SAR (measured) = 1.40 W/kg

Page 83 of 144

Test Laboratory: AGC Lab Date: Apr. 22,2015

WCDMA Band $\ II$ Mid-Body-Towards Grounds DUT: GSM/WCDMA Mobile Phone; Type: Freedom

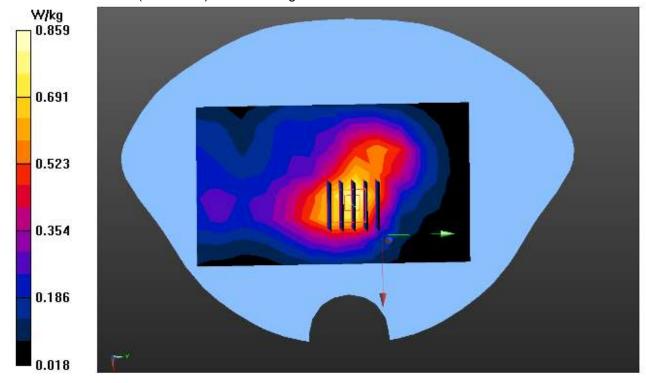
Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band: II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 53.17$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):22.2, Liquid temperature (°C): 21.7

DASY Configuration:

- Probe: EX3DV4 SN3953; ConvF(7.79,7.79,7.79); Calibrated: 11/06/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- · Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


BODY/REPEATED-BACK/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.846 W/kg

BODY/REPEATED-BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.411 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.631 W/kg; SAR(10 g) = 0.371 W/kg Maximum value of SAR (measured) = 0.859 W/kg

Date: Apr. 22,2015

Page 84 of 144

Repeated SAR (Twice) Test Laboratory: AGC Lab

WCDMA Band II Mid-Touch-Right

DUT: GSM/WCDMA Mobile Phone; Type: Freedom

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band $\:$ II UTRA/FDD; Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 40.77$; $\rho = 1000$ kg/m³:

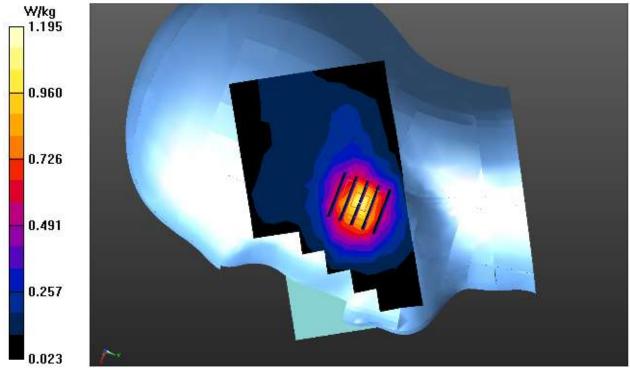
Phantom section: Right Section

Ambient temperature ($^{\circ}$ C):22.2, Liquid temperature ($^{\circ}$ C): 22

DASY Configuration:

• Probe: EX3DV4 - SN3953; ConvF(7.89, 7.89, 7.89); Calibrated: 11/06/2014;

- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- · Electronics: DAE4 Sn1398; Calibrated: 03/11/2015
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


RIGHT HEAD/REPEATED-R-C 2/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.15 W/kg

RIGHT HEAD/REPEATED-R-C 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.239 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.46 W/kg

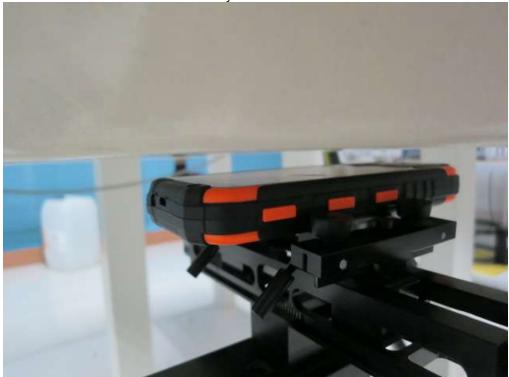
SAR(1 g) = 0.886 W/kg; SAR(10 g) = 0.505 W/kg Maximum value of SAR (measured) = 1.19 W/kg

Page 85 of 144

APPENDIX C. TEST SETUP PHOTOGRAPHS & EUT PHOTOGRAPHS

Test Setup Photographs
LEFT-CHECK TOUCH

Report No.: AGC02866150301FH01 Page 86 of 144

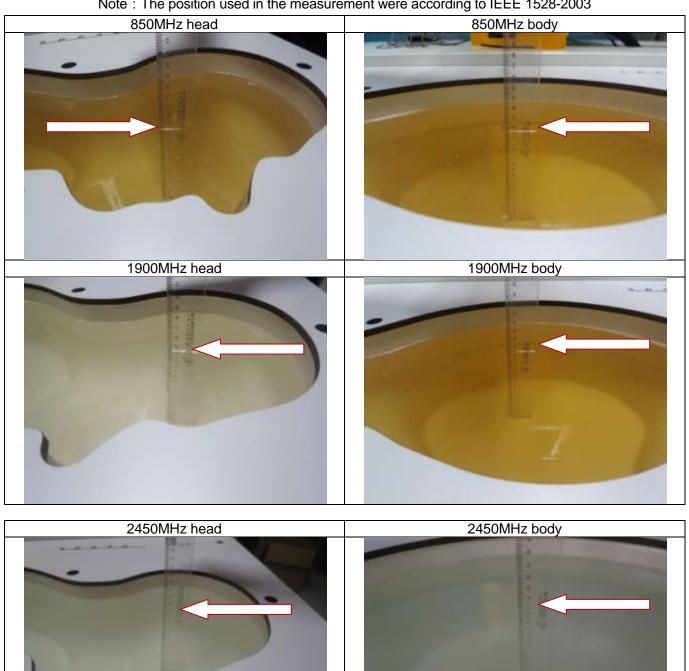


Report No.: AGC02866150301FH01 Page 87 of 144

Edge 1(Top)

Edge 2(Right)

Edge 3(Bottom)


Edge 4(Left)

Report No.: AGC02866150301FH01 Page 90 of 144

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note: The position used in the measurement were according to IEEE 1528-2003

Page 91 of 144

EUT PHOTOGRAPHS

All VIEW OF EUT

TOP VIEW OF EUT

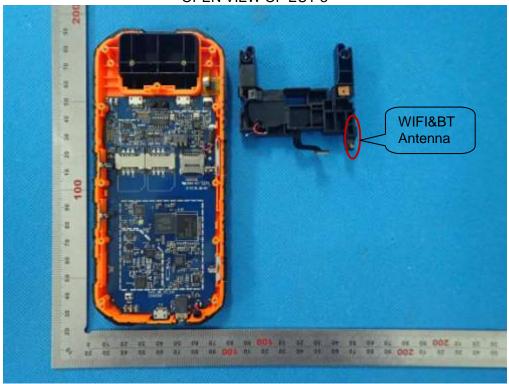
Report No.: AGC02866150301FH01 Page 92 of 144

Report No.: AGC02866150301FH01 Page 93 of 144

Report No.: AGC02866150301FH01 Page 94 of 144

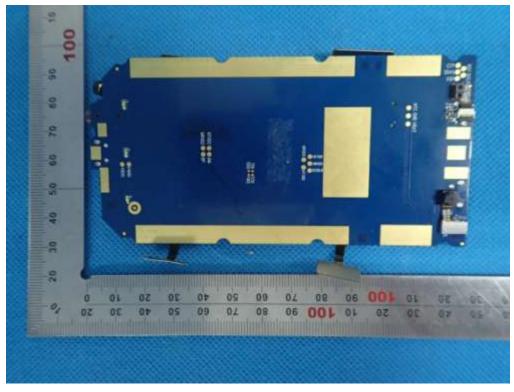


OPEN VIEW OF EUT-1



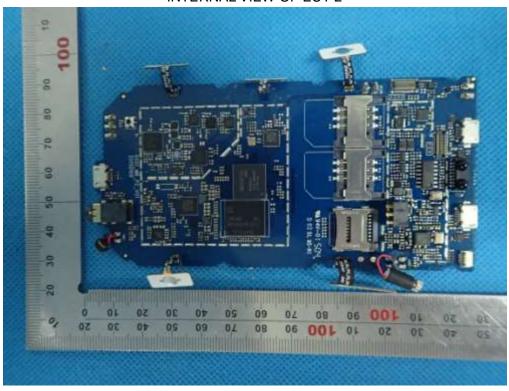
Report No.: AGC02866150301FH01 Page 95 of 144

OPEN VIEW OF EUT-3



Report No.: AGC02866150301FH01 Page 96 of 144

OPEN VIEW OF EUT-4



INTERNAL VIEW OF EUT-1

Report No.: AGC02866150301FH01 Page 97 of 144

INTERNAL VIEW OF EUT-2

Page 98 of 144

APPENDIX D. CALIBRATION DATA PROBE CALIBRATION DATA

age-cert(鑫字环) Certificate No: Z14-97116 Client CALIBRATION CERTIFICATE Object EX3DV4 - SN:3953 Calibration Procedure(s) TMC-OS-E-02-195 Calibration Procedures for Dosimetric E-field Probes Calibration date: November 06, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRP2 101919 01-Jul-14 (CTTL, No.J14X02146) Jun-15 01-Jul-14 (CTTL, No.J14X02146) Power sensor NRP-Z91 101547 Jun-15 Power sensor NRP-Z91 101548 01-Jul-14 (CTTL, No.J14X02146) Jun-15 Reference10dBAttenuator BT0520 12-Dec-12(TMC,No.JZ12-867) Dec-14 Reference20dBAttenuator BT0267 12-Dec-12(TMC, No. JZ12-866) Dec-14 Reference Probe EX3DV4 SN 3617 28-Aug-14(SPEAG,No.EX3-3617_Aug14) Aug-15 DAE4 SN 1331 23-Jan-14 (SPEAG, DAE4-1331 Jan14) Jan -15 Secondary Standards Cal Date(Calibrated by, Certificate No.) Scheduled Calibration SignalGeneratorMG3700A 01-Jul-14 (CTTL, No.J14X02145) 6201052605 Jun-15 Network Analyzer E5071C MY46110673 15-Feb-14 (TMC, No.JZ14-781) Feb-15 Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: November 07, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97116

Page 99 of 144

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
frequency response is included in the stated uncertainty of ConvF.

 DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.

Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diode.

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.

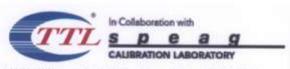
 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
probe tip (on probe axis). No tolerance required.

 Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Report No.: AGC02866150301FH01 Page 100 of 144

Probe EX3DV4


SN: 3953

Calibrated: November 06, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Page 101 of 144

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY - Parameters of Probe: EX3DV4 - SN: 3953

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.53	0.54	0.48	±10.8%
DCP(mV) ^B	101.6	101.2	100.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
o cw	CW	X	0.0	0.0	1.0	0.00	192.6	±2.5%
		Y	0.0	0.0	1.0		191.5	
		Z	0.0	0.0	1.0		179.1	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

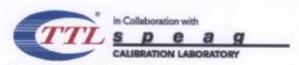
A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuun Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY - Parameters of Probe: EX3DV4 - SN: 3953


Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
835	41.5	0.90	10.12	10.12	10.12	0.14	1.25	±12%
900	41.5	0.97	9.70	9.70	9.70	0.23	1.04	±12%
1810	40.0	1.40	8.00	8.00	8.00	0.17	1.34	±12%
1900	40.0	1.40	7.89	7.89	7.89	0.22	1.17	±12%
2100	39.8	1.49	8.05	8.05	8.05	0.16	1.42	±12%
2450	39.2	1.80	7.32	7.32	7.32	0.63	0.66	±12%
3500	37.9	2.91	7.35	7.35	7.35	0.50	0.88	±13%
3700	37.7	3.12	7.03	7.03	7.03	0.45	1.02	±13%
5200	36.0	4.66	5.64	5.64	5.64	0.29	1.53	±13%
5300	35.9	4.76	5.32	5.32	5.32	0.45	0.77	±13%
5500	35.6	4.96	4.78	4.78	4.78	0.36	0.90	±13%
5600	35.5	5.07	4.60	4.60	4.60	0.34	0.96	±13%
5800	35.3	5.27	4.40	4.40	4.40	0.32	0.84	±13%

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Page 103 of 144

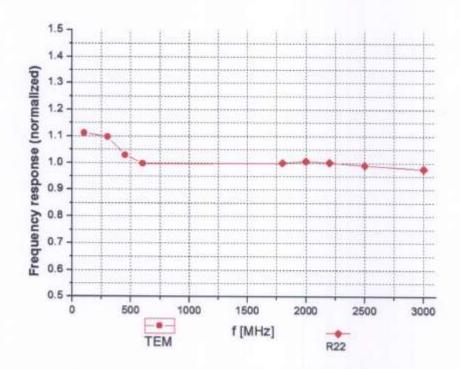
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY - Parameters of Probe: EX3DV4 - SN: 3953

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
835	55.2	0.97	10.08	10.08	10.08	0.19	1.27	±12%
900	55.0	1.05	9.84	9.84	9.84	0.25	1.11	±12%
1810	53.3	1.52	7.93	7.93	7.93	0.16	1.63	±12%
1900	53.3	1.52	7.79	7.79	7.79	0.20	1.24	±12%
2100	53.2	1.62	8.10	8.10	8.10	0.16	1.71	±12%
2450	52.7	1.95	7.48	7.48	7.48	0.48	0.84	±12%
3500	51.3	3.31	6.70	6.70	6.70	0.53	0.90	±13%
3700	51.0	3.55	6.73	6.73	6.73	0.48	0.97	±13%
5200	49.0	5.30	4.92	4.92	4.92	0.43	1.17	±13%
5300	48.9	5.42	4.74	4.74	4.74	0.42	1.20	±13%
5500	48.6	5.65	4.33	4.33	4.33	0.42	1.45	±13%
5600	48.5	5.77	4.23	4.23	4.23	0.43	1.56	±13%
5800	48.2	6.00	4.32	4.32	4.32	0.45	1.69	±13%

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

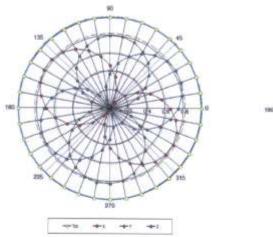
Report No.: AGC02866150301FH01 Page 104 of 144

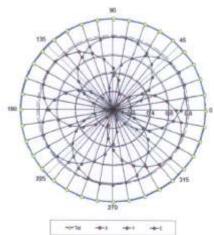
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

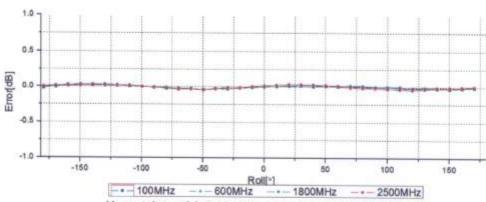
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Report No.: AGC02866150301FH01 Page 105 of 144

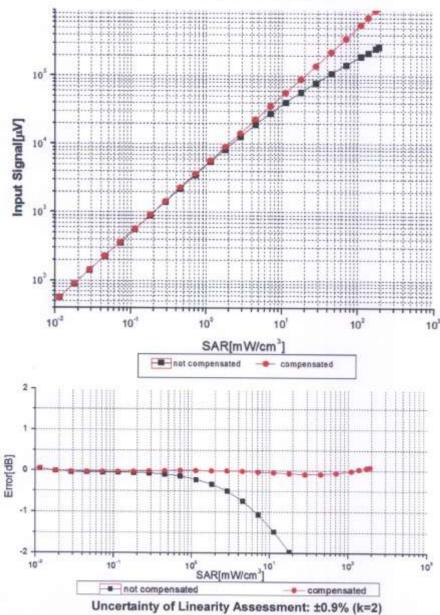



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

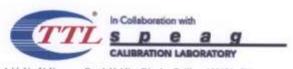

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

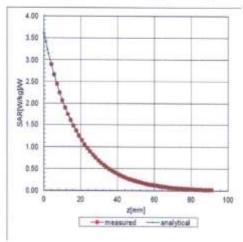


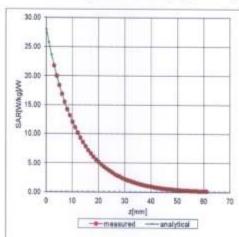
Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2)


Report No.: AGC02866150301FH01 Page 106 of 144

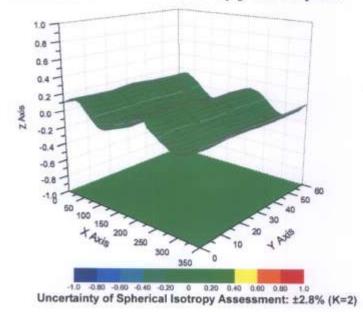
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Report No.: AGC02866150301FH01 Page 107 of 144




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Conversion Factor Assessment


f=900 MHz, WGLS R9(H_convF)

f=1810 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Page 108 of 144

DASY - Parameters of Probe: EX3DV4 - SN: 3953

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	32
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	2mm

Report No.: AGC02866150301FH01

Page 109 of 144

DAE CALIBRATION DATA

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

AGC-CERT (Auden)		Certific	ate No: DAE4-1398_Mar15
CALIBRATION C	ERTIFICATE		
Object	DAE4 - SD 000 D	04 BM - SN: 1398	
Calibration procedure(s)	QA CAL-06.v29 Calibration proced	lure for the data acquisition	electronics (DAE)
Calibration date:	March 11, 2015		
The measurements and the unce	rtainties with confidence pro	nal standards, which realize the phys obability are given on the following pa r facility: environment temperature (2:	iges and are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-14 (No:15573)	Oct-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001 SE UMS 006 AA 1002		In house check: Jan-16 In house check: Jan-16
	Name	Franctica	Classifica
Calibrated by:	Name R.Mayoraz	Function Technician	Signature J. Mayerry
Calibrated by: Approved by:			F. Muzery

Certificate No: DAE4-1398_Mar15

Page 1 of 5

Report No.: AGC02866150301FH01 Page 110 of 144

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Report No.: AGC02866150301FH01

Page 111 of 144

DC Voltage Measurement A/D - Converter Resolution nominal

High Range: Low Range: $\begin{array}{lll} 6.1 \mu V \; , & \quad \text{full range} = & -100...+300 \; \text{mV} \\ 61 \text{nV} \; , & \quad \text{full range} = & -1......+3 \text{mV} \end{array}$ 1LSB = $6.1 \mu V$, 1LSB =

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	404.177 ± 0.02% (k=2)	404.159 ± 0.02% (k=2)	403.623 ± 0.02% (k=2)
Low Range	3.97359 ± 1.50% (k=2)	3.99241 ± 1.50% (k=2)	3.96904 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	195.5 ° ± 1 °
---	---------------

Report No.: AGC02866150301FH01 Page 112 of 144

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199993.58	-1.10	-0.00
Channel X + Input	20001.61	1,19	0.01
Channel X - Input	-19998.75	2.61	-0.01
Channel Y + Input	199994.17	-0.06	-0.00
Channel Y + Input	19999.73	-0.66	-0.00
Channel Y - Input	-20002.27	-0.74	0.00
Channel Z + Input	199994.39	-0.01	-0.00
Channel Z + Input	19999.60	-0.65	-0.00
Channel Z - Input	-20002.37	-0.85	0.00

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X + In	put	2000.37	-0.22	-0.01
Channel X + Ir	put	201.03	-0.14	-0.07
Channel X - In	put	-198.68	0.01	-0.00
Channel Y + Ir	put	2000.16	-0.39	-0.02
Channel Y + Ir	put	199.64	-1.42	-0.71
Channel Y - In	put	-200.57	-1.84	0.93
Channel Z + Ir	put	2000.33	-0.14	-0.01
Channel Z + Ir	put	199.88	-1.17	-0.58
Channel Z - In	put	-200.01	-1.12	0.56

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-13.00	-14.85
	- 200	16.87	14.74
Channel Y	200	8.85	8.14
	- 200	-11.30	-11.41
Channel Z	200	7.15	7.52
	- 200	-9.35	-9.51

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200		-3.68	-0.69
Channel Y	200	5.01	18.1	-0.86
Channel Z	200	8.26	0.74	

Report No.: AGC02866150301FH01

Page 113 of 144

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15958	16128
Channel Y	15964	17962
Channel Z	15846	14478

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.22	-1.08	0.72	0.33
Channel Y	-1.19	-1.94	-0.30	0.32
Channel Z	-1.46	-2.11	0.01	0.32

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Report No.: AGC02866150301FH01

Page 114 of 144

DIPOLE CALIBRATION DATA

SAR Reference Dipole Calibration Report

Ref: ACR.318.10.13.SATU.A

ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

1&2F, NO.2 BUILDING, HUAFENG NO.1 INDUSTRIAL PARK, GUSHU COMMUNITY XIXIANG STREET BAOAN DISTRICT, SHENZHEN, P.R. CHINA SATIMO COMOSAR REFERENCE DIPOLE

> FREQUENCY: 835 MHZ SERIAL NO.: SN 46/11 DIP 0G835-190

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

10/02/2014

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Report No.: AGC02866150301FH01 Page 115 of 144

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref : ACR.318.10.13.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/02/2014	JS
Checked by :	Jérôme LUC	Product Manager	10/02/2014	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	10/02/2014	Hem thatthough

	Customer Name
Distribution:	ATTESTATION
	OF GLOBAL
	COMPLIANCE
	CO. LTD.

Issue	Date	Modifications	
A	10/02/2014	Initial release	

Ref : ACR.318.10.13.SATU.A

TABLE OF CONTENTS

1	Int	roduction 4	
2	De	vice Under Test	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Ca	libration Measurement Results 6	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	9
8	Lis	t of Equipment	

Ref: ACR.318.10.13.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
COMOSAR 835 MHz REFERENCE DIPOLE			
Satimo			
SID835			
SN 46/11 DIP 0G835-190			
New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEVIEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

Ref: ACR.318.10.13.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Los		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length	
3 - 300	0.05 mm	

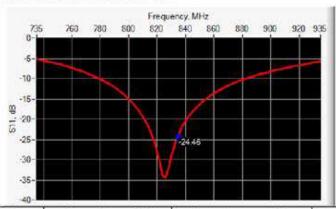
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

Report No.: AGC02866150301FH01 Page 119 of 144



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.318.10.13.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-24.46	-20	$55.4 \Omega + 2.4 j\Omega$

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm h mm		d r	nm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.	E.	51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.	ń i	45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.	0	32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.	3	26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

Ref: ACR.318.10.13.SATU.A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

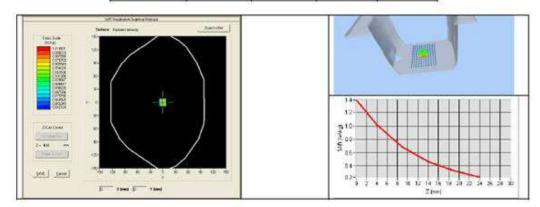
7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ε,′)	Conductiv	ity (a) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 42.3 sigma: 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm


Page: 7/11

Ref: ACR.318.10.13.SATU.A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	835 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
V	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.60 (0.96)	6.22	6.20 (0.62)
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/11

Report No.: AGC02866150301FH01 Page 122 of 144

SAR REFERENCE DIPOLE CALIBRATION REPORT

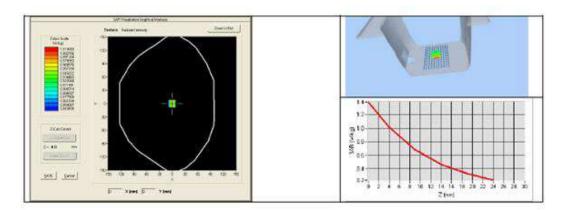
Ref : ACR.318.10.13.SATU.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s,')		Conductiv	ty (σ) S/m
1022324	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	/-
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	į.
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2,73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	2
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	i i

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps'; 54.1 sigma: 0.97
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


Report No.: AGC02866150301FH01 Page 123 of 144

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.318.10.13.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	9.90 (0.99)	6.39 (0.64)

Report No.: AGC02866150301FH01

Page 124 of 144

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref : ACR.318.10.13.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

Report No.: AGC02866150301FH01

Page 125 of 144

SAR Reference Dipole Calibration Report

Ref: ACR.318.7.13.SATU.A

ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

1&2F, NO.2 BUILDING, HUAFENG NO.1 INDUSTRIAL PARK, GUSHU COMMUNITY XIXIANG STREET BAOAN DISTRICT, SHENZHEN, P.R. CHINA SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 1900 MHZ

SERIAL NO.: SN 46/11 DIP 1G900-187

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

11/14/13

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Report No.: AGC02866150301FH01 Page 126 of 144

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR 318.7.13 SATU A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	11/14/2013	25
Checked by :	Jérôme LUC	Product Manager	11/14/2013	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	11/14/2013	Aim Authorish

	Customer Name
	ATTESTATION
D 4 1	OF GLOBAL
Distribution:	COMPLIANCE
	CO. LTD.

Issue	Date	Modifications	
A	11/14/2013	Initial release	

Ref: ACR 318 7 13 SATU A

TABLE OF CONTENTS

1	Intr	oduction4	
2	De	vice Under Test4	
3		duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	libration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Val	lidation measurement	
	7.1	Measurement Condition	7
	7.2	Head Liquid Measurement	7
	7.3	Measurement Result	
	7.4	Body Measurement Result	
8	Lis	t of Equipment10	

Ref. ACR 318.7.13 SATU A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID1900	
Serial Number	SN 46/11 DIP 1G900-187	
Product Condition (new / used) Used		

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/10

Page 129 of 144

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR 318 7 13 SATU A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

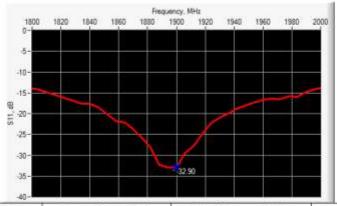
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %


Page: 5/10

Ref. ACR 3187.13 SATU A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

1	Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
	1900	-32.90	-20	$48.9 \Omega + 2.3 j\Omega$

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h m	m	d r	mm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6,35 ±1 %.	
450	290.0 ±1 %.		166.7±1%		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	09.1 ±1 %.		51.7±1%		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %,		45.7±1%		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %		41.7±1%.		3.6 ±1 %.	
1900	68.0 ±1 %.	PASS	39.5 ±1 %.	PASS	3.6 ±1 %.	PASS
1950	66.3 ±1 %		38.5 ±1 %.		3.6 ±1 %.	
2800	64.5 ±1 %		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7±1 %		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51,5 ±1 %.		30.4±1%		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4±1%.		3.6 ±1 %.	
3700	34.7±1 %.		26.4±1 %.		3.6 ±1 %.	

Page: 6/10

Ref. ACR 318.7.13.SATU A

7 VALIDATION MEASUREMENT

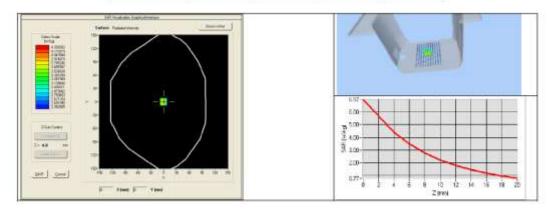
The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 MEASUREMENT CONDITION

OPENSAR V4
SN 20/09 SAM71
SN 18/11 EPG122
Head Liquid Values: eps' : 39.8 sigma : 1.43
10.0 mm
dx=8mm/dy=8mm
dx=8mm/dy=8m/dz=5mm
1900 MHz
20 dBm
21 °C
21 °C
.45%

7.2 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (e,')	Conductiv	ity (ø) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87±5%	
450	43.5 ±5 %		0.87±5%	
750	41.9 25 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97±5%	
1.450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40,1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67±5%	
2450	35.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2,40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	


Page: 7/10

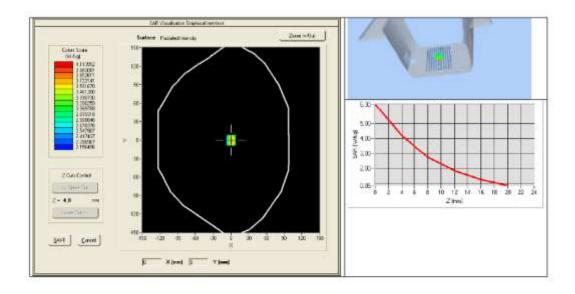
Ref: ACR 318.7.13.3 ATU.A

7.3 MEASUREMENT RESULT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
7.5.7.41	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8,49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7	39.65 (3.96)	20.5	20.24 (2.02)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63,8		25.7	
3500	67.1		25	

Page: 8/10



Ref ACR 318 7 13 SATU A

7.4 BODY MEASUREMENT RESULT

Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Body Liquid Values: eps' : 52.5 sigma : 1.50	
Distance between dipole center and liquid	10.0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	1900 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1900	40.74 (4.07)	21.43 (2.14)

Report No.: AGC02866150301FH01 Page 134 of 144

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.318.7.13 SATU.A

8 LIST OF EQUIPMENT

	Equi	pment Summary S	Sheet	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated, No cal required	Validated. No ca required
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Сапега	CALIPER-01	12/2010	12/2013
Reference Probe	Satimo	EPG122 SN 18/11	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Multimeter	Keithley 2000	1188656	11/2010	11/2013
Signal Generator	Agilent E4438C	MY49070581	12/2010	12/2013
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	11/2010	11/2013
Power Sensor	HP ECP-E26A	US37181460	11/2010	11/2013
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	3/2012	3/2014

Report No.: AGC02866150301FH01

Page 135 of 144

SAR Reference Dipole Calibration Report

Ref: ACR.318.9.13.SATU.A

ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

1&2F, NO.2 BUILDING, HUAFENG NO.1 INDUSTRIAL PARK, GUSHU COMMUNITY XIXIANG STREET BAOAN DISTRICT, SHENZHEN, P.R. CHINA SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 46/11 DIP 2G450-189

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

11/14/13

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Report No.: AGC02866150301FH01 Page 136 of 144

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR 318.9.13 SATU A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	11/14/2013	JES
Checked by :	Jérôme LUC	Product Manager	11/14/2013	25
Approved by :	Kim RUTKOWSKI	Quality Manager	11/14/2013	ALM ALETRANATI

	Customer Name
	ATTESTATION
B 1 27 1	OF GLOBAL
Distribution:	COMPLIANCE
	CO. LTD.

Issue	Date	Modifications
A	11/14/2013	Initial release

Ref. ACR.318.9.13.SATU.A

TABLE OF CONTENTS

1	Intr	oduction4	
2	De	vice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Measurement Condition	7
	7.2	Head Liquid Measurement	7
	7.3	Measurement Result	8
	7.4	Body Measurement Result	9
8	Lis	of Equipment 10	

Ref. ACR 318.9 13.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
COMOSAR 2450 MHz REFERENCE DIPOLE				
Satimo				
SID2450				
SN 46/11 DIP 2G450-189				
Used				

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/10

Ref. ACR.318.9.13.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Los		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

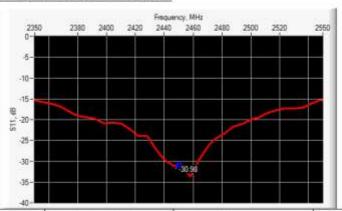
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Exp anded Uncertainty
1 g	20.3 %
10 g	20.1 %


Page: 5/10

Ref. ACR.318.9.13.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-30.98	-20	47.3 Ω + 0.1 jΩ

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	hmm		d r	d mm	
	required	measured	required	measured	required	measure	
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.		
450	290.0 ±1 %.		166.7±1%.		6.35 ±1 %.		
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.		
835	161.0 ±1 %.		89.8 ±1 %		3.6 ±1 %.		
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.		
1450	89.1 ±1 %.		51.7±1%		3.6 ±1 %.		
1500	90.5 ±1 %.		50.0 ±1 %		3.6 ±1 %.		
1640	79.0 ±1 %		45.7 ±1 %.		3.6 ±1 %.		
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.		
1800	72.0 ±1 %.		41.7±1%		3.6 ±1 %.		
1900	69.0 ±1 %.		39.5 ±1 %		3.6 ±1 %.		
1950	66.3 ±1 %		38.5 ±1 %.		3.6 ±1 %.		
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.		
2100	61.0 ±1 %.		35.7±1%		3.6 ±1 %.		
2300	55.5 ±1 %.		32.6 ±1 %		3.6 ±1 %.		
2450	51.5 ±1 %.	PASS	30.4±1%.	PASS	3.6 ±1 %.	PASS	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.		
3000	41.5 ±1 %		25.0 ±1 %.		3.6 ±1 %.		
3500	37.0±1 %,		26.4±1%		3.6 ±1 %.		
3700	34.7±1 %.		26.4±1%		3.6 ±1 %.		

Page: 6/10

Report No.: AGC02866150301FH01 Page 141 of 144

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR 318.9.13 SATU A

7 VALIDATION MEASUREMENT

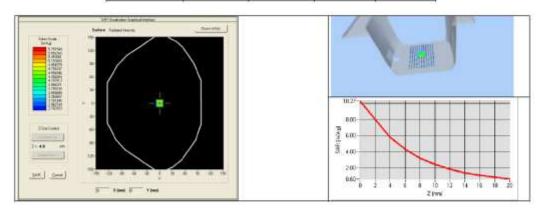
The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 MEASUREMENT CONDITION

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps' 38.6 sigma 1.82		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	2450 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Hurnidity	45%		

7.2 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (e,')	Conductiv	ity (ø) S/m
2.54MB	required	measured	required	measured
300	45.3 ±5 %		0.87±5%	
450	43.5 ±5 %		0.87±5%	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97±5%	
1.450	40.5 ±5 %		1.20 ±5 %	
1500	40.4±5%		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37±5%	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	99.8 ±5 %		1,49 ±5 %	
2300	39.5 ±5 %		1.67±5%	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	


Page: 7/10

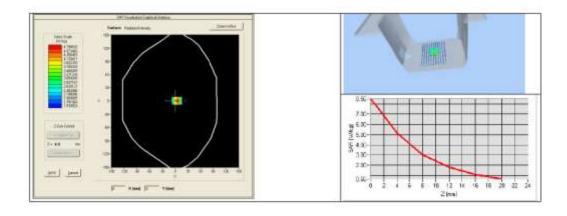
Ref. ACR 318.9.13 SATU.A

7.3 MEASUREMENT RESULT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	54.40 (5.44)	2.4	23.75 (2.38
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	Ĭ.

Page: 8/10



Ref: ACR 318.9.13.SATU A

7.4 BODY MEASUREMENT RESULT

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 52.0 sigma : 1.94
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45%

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
2450	54.19 (5.42)	24.96 (2.50)	

Report No.: AGC02866150301FH01 Page 144 of 144

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.318.9.13.SATU A

8 LIST OF EQUIPMENT

1244 144 (444) 144 (444)	erania en			Next Calibration Date	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date		
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated, No cal required,	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2010	12/2013	
Reference Probe	Satimo	EPG122 SN 18/11	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Multimeter	Keithley 2000	1188656	11/2010	11/2013	
Signal Generator	Agilent E4438C	MY49070581	12/2010	12/2013	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required	Characterized prior to test. No cal required	
Power Meter	HP E4418A	US38261498	11/2010	11/2013	
Power Sensor	HP ECP-E26A	US37181460	11/2018	11/2013	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	3/2012	3/2014	