Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079

Http://www.chinattl.cn E-mail: cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1

ASY system configuration, as far as	not given on page 1.	
DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

ameters and calculations were applied.

ne following parameters and calculations were	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.88 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.8 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.13 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.6 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

le following parameters and salesanders	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	1.56 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		—

SAR result with Body TSL

result with body 13L		The second secon
SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.5 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.30 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.9 mW /g ± 20.4 % (k=2)

Page 3 of 8 Certificate No: Z14-97098

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079

Http://www.chinattl.cn E-mail: cttl@chinattl.com

Appendix

Antenna Parameters with Head TSL

Electrical Delay (one direction)

mpedance, transformed to feed point	50.1Ω+ 3.93jΩ
Return Loss	- 28.1dB
enna Parameters with Body TSL	49 20+ 4 62(0
mpedance, transformed to feed point	48.3Ω+ 4.62jΩ
Return Loss	- 26.0dB
neral Antenna Parameters and Design	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

1.091 ns

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Wallard add by	

Certificate No: Z14-97098

Date: 18.09.2014

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d179

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.383$ S/m; $\varepsilon_r = 40.14$; $\rho = 1000$ kg/m³

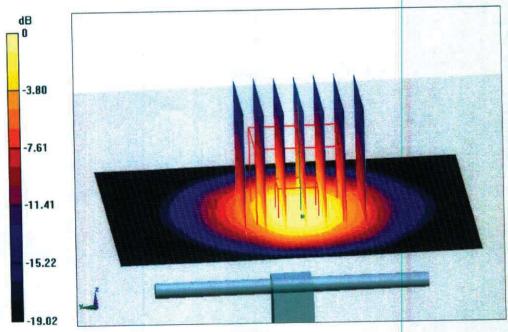
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3142; ConvF(5.05, 5.05, 5.05); Calibrated: 2014-09-01;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (8x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

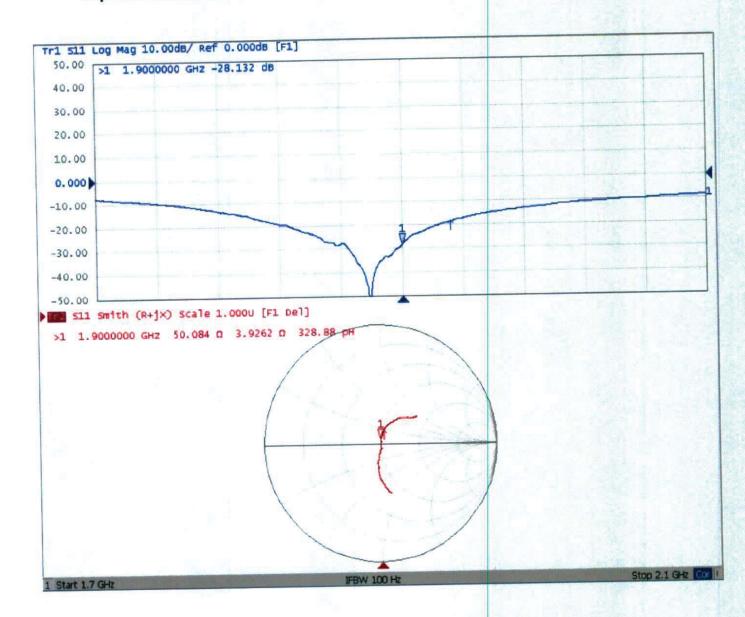
Reference Value = 96.16 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 9.88 W/kg; SAR(10 g) = 5.13 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg


Certificate No: Z14-97098

Page 5 of 8

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Http://www.chinattl.cn

Date: 18.09.2014

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d179

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.562$ S/m; $\varepsilon_r = 51.92$; $\rho = 1000$ kg/m³

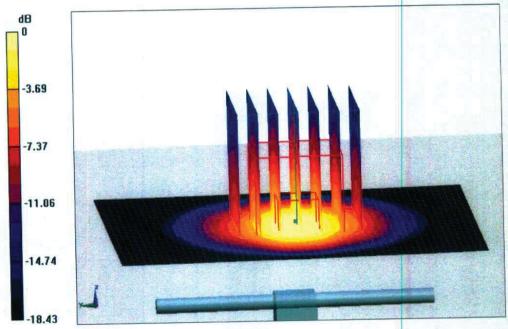
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3142; ConvF(4.69, 4.69, 4.69); Calibrated: 2014-09-01;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.84 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 18.0 W/kg

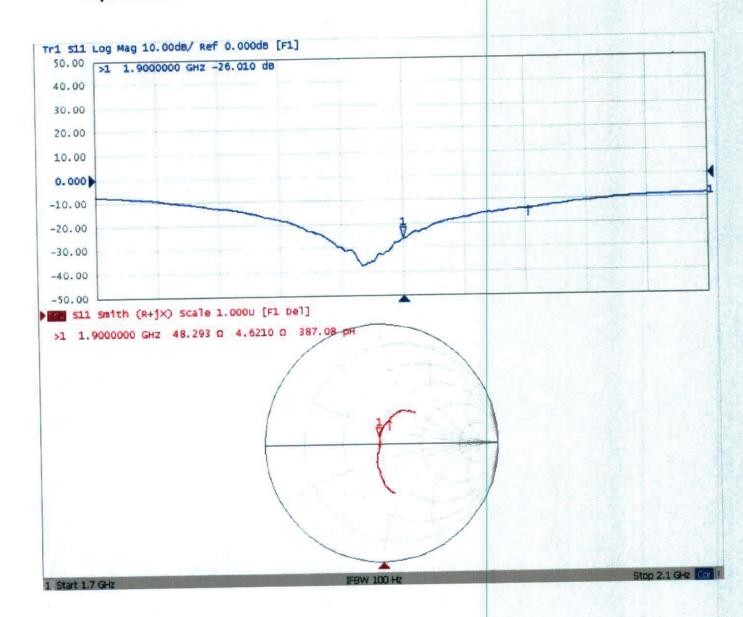
SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.3 W/kg

Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Certificate No: Z14-97098

Page 7 of 8



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079

Http://www.chinattl.cn E-mail: cttl@chinattl.com

Impedance Measurement Plot for Body TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com Http://www.chinattl.cn

Client

MIN

Certificate No: Z14-97097

CALIBRATION CER	RTIFICATE	
Object	D1750V2 - SN: 1101	
Calibration Procedure(s)	TMC-OS-E-02-194 Calibration procedure for dip	ole validation kits
Calibration date:	September 19, 2014	

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3DV3 DAE3 Signal Generator E4438 Network Analyzer E8362E	SN 536 C MY49070393	14-Mar-14 (CTTL, No.JZ 14-Mar-14 (CTTL, No. JZ 1- Sep-14 (CTTL-SPEAG 23-Jan-14 (SPEAG, DAE 13-Nov-13 (TMC, No.JZ 19-Oct-13 (TMC, No.JZ	Z14-896) G, No.JZ14-97079) E3-536_Jan14) 13-394)	Mar-15 Mar -15 Aug-15 Jan -15 Nov-14 Oct-14
	Name	Function	海原	ignature
Calibrated by:	Zhao Jing	SAR Test Engineer	TEN SE	复制
Reviewed by:	Qi Dianyuan	SAR Project Leader		03
Approved by:	Lu Bingsong	Deputy Director of the	laboratory	was tr
			Issued: Septemb	per 30, 20

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97097

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 Http://www.chinattl.cn E-mail: cttl@chinattl.com

Glossary:

tissue simulating liquid TSL

sensitivity in TSL / NORMx,y,z ConvF not applicable or not measured

N/A

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 2 of 8 Certificate No: Z14-97097

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

ASY system configuration, as far as	not given on page 1.	The second secon
ASY Version DASY52		52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

ne following parameters and calculations were	Temperature	Pe	rmittivity	Conductivity
Nominal Head TSL parameters	22.0 °C		40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	4	1.2 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C			

SAR result with Head TSL

Condition	
250 mW input power	9.11 mW / g
normalized to 1W	36.1 mW /g ± 20.8 % (k=2)
Condition	
250 mW input power	4.91 mW / g
normalized to 1W	19.5 mW /g ± 20.4 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

Body TSL parameters

The following parameters and calculations were applied.

ne following parameters and calculations were	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.45 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

result with Body 13L			
SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition		
SAR measured	250 mW input p	ower	9.34 mW / g
SAR for nominal Body TSL parameters	normalized to	1W	37.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition		
SAR measured	250 mW input p	oower	5.10 mW / g
SAR for nominal Body TSL parameters	normalized to	1W	20.6 mW /g ± 20.4 % (k=2)
SUTURNIES. T. L. MALE L. M. L. S. L.		I De la So	

Page 3 of 8 Certificate No: Z14-97097

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.0Ω- 1.47jΩ
Return Loss	- 34.9dB
tenna Parameters with Body TSL	
tenna Parameters with Body TSL Impedance, transformed to feed point	47.0Ω- 2.09jΩ

General Antenna Parameters and Design

Electrical Delay (one direction)	1.111 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Trial later and any	

Certificate No: Z14-97097 Page 4 of 8

Date: 19.09.2014

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1101

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.402$ S/m; $\varepsilon_r = 41.22$; $\rho = 1000$ kg/m³

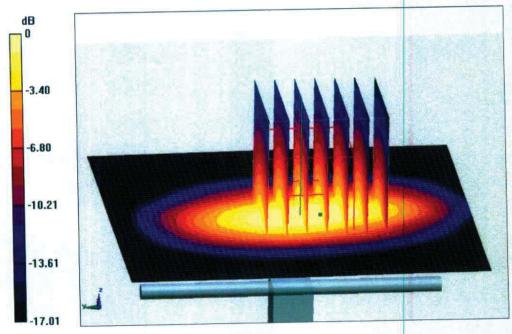
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3142; ConvF(5.24, 5.24, 5.24); Calibrated: 2014-09-01;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (8x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

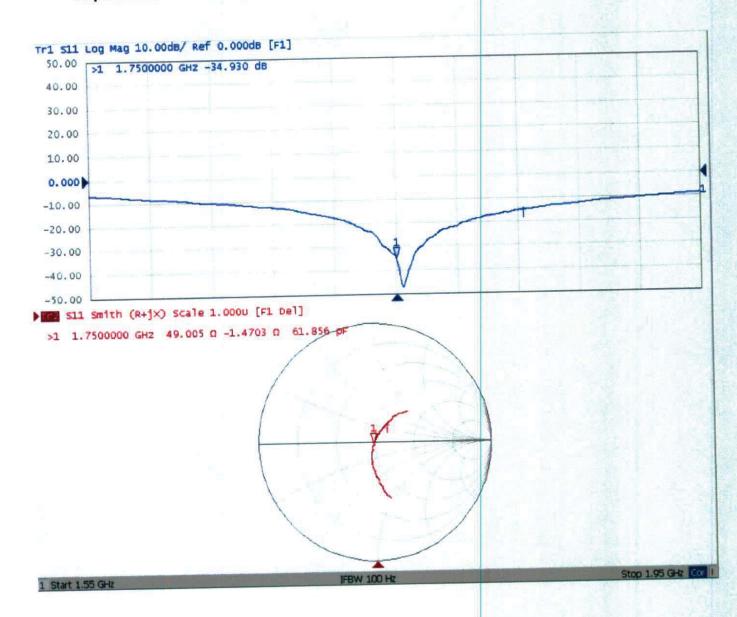
Reference Value = 89.92 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.1 W/kg

SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.91 W/kg

Maximum value of SAR (measured) = 11.5 W/kg

0 dB = 11.5 W/kg = 10.61 dBW/kg


Certificate No: Z14-97097

Page 5 of 8

Impedance Measurement Plot for Head TSL

CNAS CALIBRATION No. L0570

Date: 19.09.2014

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1101

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.452$ S/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

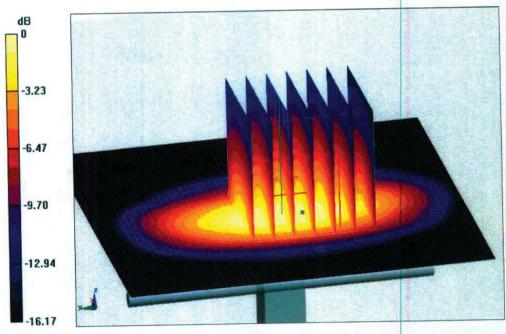
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3142; ConvF(5.03, 5.03, 5.03); Calibrated: 2014-09-01;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.12 V/m; Power Drift = -0.03 dB

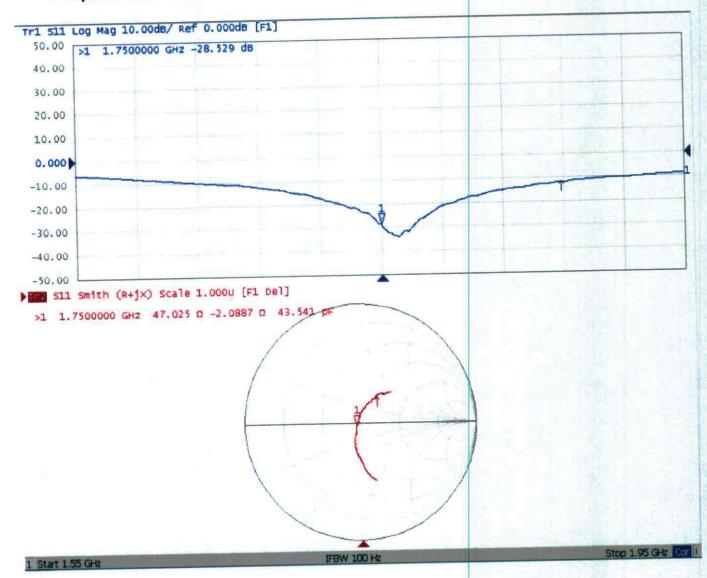
Peak SAR (extrapolated) = 15.7 W/kg

SAR(1 g) = 9.34 W/kg; SAR(10 g) = 5.1 W/kg

Maximum value of SAR (measured) = 11.6 W/kg

Page 7 of 8

0 dB = 11.6 W/kg = 10.64 dBW/kg


Certificate No: Z14-97097

E-mail: cttl@chinattl.com

Impedance Measurement Plot for Body TSL

Client

MIN

Certificate No: Z14-97101

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 919

Calibration Procedure(s)

TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date:

Primary Standards

September 17, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#

Timary Standards	<i>"</i> " • • • • • • • • • • • • • • • • • •	(03	
Power Meter NRVD	102196	14-Mar-14 (CTTL, No.JZ14-896)	Mar-15
Power sensor NRV-Z5	100596	14-Mar-14 (CTTL, No. JZ14-896)	Mar -15
Reference Probe ES3DV3	SN 3142	1- Sep-14 (CTTL-SPEAG, No.JZ14-97079)	Aug-15
DAE3	SN 536	23-Jan-14 (SPEAG, DAE3-536_Jan14)	Jan -15
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

Cal Date(Calibrated by, Certificate No.)

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	宣出企业
Reviewed by:	Qi Dianyuan	SAR Project Leader	IN SOR
Approved by:	Lu Bingsong	Deputy Director of the la	boratory notific

Issued: September 30, 2014

Scheduled Calibration

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97101

Page 1 of 8

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the
 end of the certificate. All figures stated in the certificate are valid at the frequency
 indicated.
- Antenna Parameters with TSL: The dipole is mounted with point exactly below the center marking of the flat phantom oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the
 dipole positioned under the liquid filled phantom. The impedance stated is transformed
 from the measurement at the SMA connector to the feed point. The Return Loss
 ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97101 Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	51.5 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.03 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.0 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

*	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.2 ± 6 %	1.97 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.7 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	# 12 / 12 / 12
SAR measured	250 mW input power	6.02 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.9 mW /g ± 20.4 % (k=2)

Certificate No: Z14-97101

Appendix

Return Loss

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.6Ω- 0.44jΩ
Return Loss	- 24.1dB
Intenna Parameters with Body TSL	
Impedance, transformed to feed point	56.2Ω+ 2.77jΩ

General Antenna Parameters	and	Design

Electrical Delay (one direction)	1.117 ns

- 23.9dB

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z14-97101 Page 4 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com Http://www.chinattl.cn

Date: 17.09.2014

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 919

Communication System: UID 0, CW; Frequency: 2450 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.852$ S/m; $\varepsilon_r = 39.76$; $\rho = 1000$ kg/m³

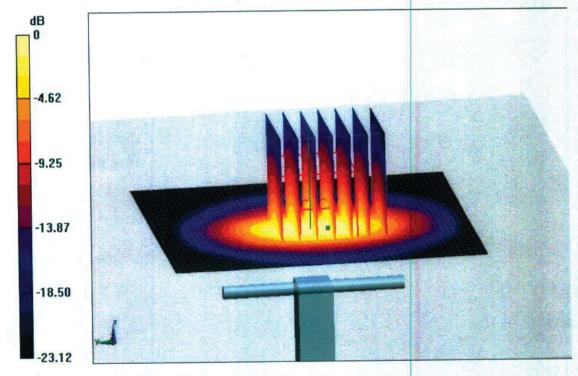
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3142; ConvF(4.58, 4.58, 4.58); Calibrated: 2014-09-01;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check /d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 98.50 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 27.8 W/kg

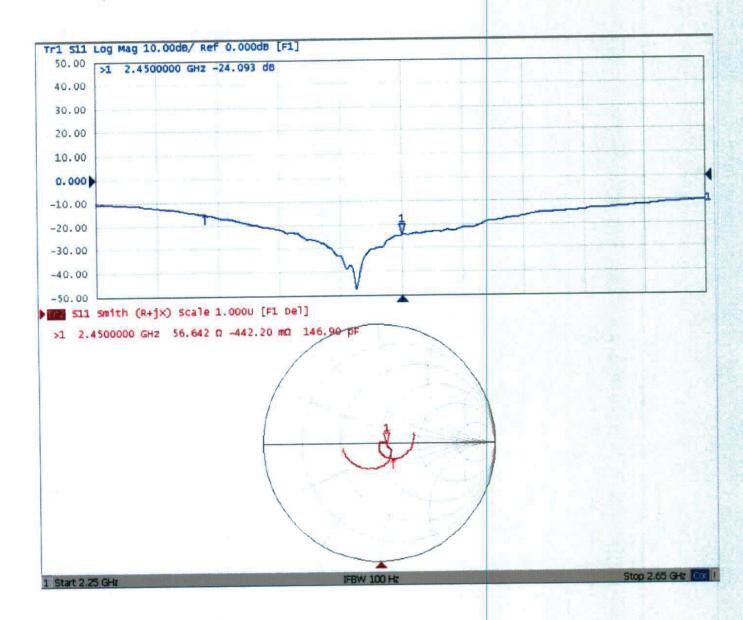
SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg

Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg

Certificate No: Z14-97101

Page 5 of 8



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

