

Bluetooth SIG - PTS User Manual

FCC Statement:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired
operation.

(3) FCC ID: FCC ID 2AECO-BTSIG15A

N O T E : T h i s e q u i p m e n t h a s b e e n t e s t e d a n d f o u n d t o c o m p l y w i t h t h e l i m i t s f o r a C l a s s B d i g i t a l d e v i c e ,
p u r s u a n t t o p a r t 1 5 o f t h e F C C R u l e s . T h e s e l i m i t s a r e d e s i g n e d t o p r o v i d e r e a s o n a b l e p r o t e c t i o n a g a i n s t
h a r m f u l i n t e r f e r e n c e i n a r e s i d e n t i a l i n s t a l l a t i o n .

T h i s e q u i p m e n t g e n e r a t e s , u s e s a n d c a n r a d i a t e r a d i o f r e q u e n c y e n e r g y a n d , i f n o t i n s t a l l e d a n d u s e d i n
a c c o r d a n c e w i t h t h e i n s t r u c t i o n s , m a y c a u s e h a r m f u l i n t e r f e r e n c e t o r a d i o c o m m u n i c a t i o n s . H o w e v e r , t h e r e
i s n o g u a r a n t e e t h a t i n t e r f e r e n c e w i l l n o t o c c u r i n a p a r t i c u l a r i n s t a l l a t i o n .

I f t h i s e q u i p m e n t d o e s c a u s e h a r m f u l i n t e r f e r e n c e t o r a d i o o r t e l e v i s i o n r e c e p t i o n , w h i c h c a n b e d e t e r m i n e d
b y t u r n i n g t h e e q u i p m e n t o f f a n d o n , t h e u s e r i s e n c o u r a g e d t o t r y t o c o r r e c t t h e i n t e r f e r e n c e b y o n e o r m o r e
o f t h e f o l l o w i n g m e a s u r e s :

—
R e o r i e n t o r r e l o c a t e t h e r e c e i v i n g a n t e n n a .

—
I n c r e a s e t h e s e p a r a t i o n b e t w e e n t h e e q u i p m e n t a n d r e c e i v e r .

—
C o n n e c t t h e e q u i p m e n t i n t o a n o u t l e t o n a c i r c u i t d i f f e r e n t f r o m t h a t t o w h i c h t h e r e c e i v e r i s c o n n e c t e d .

—
C o n s u l t t h e d e a l e r o r a n e x p e r i e n c e d r a d i o / T V t e c h n i c i a n f o r h e l p .

Changes or modifications not expressly approved by the party responsible for compliance could void the
user’s authority to operate the equipment.

.

iii

Table of Contents

1. Workspaces and Projects ___________________________ __ 1
Creating a new workspace 1
Opening an existing workspace 5
Adding a project to a workspace. 7
Deleting a workspace 8
Removing a project from a workspace 8
PTS Terminology 9
Using the Test Suite Selector 9

Using the Test Suite Selector 9
Primary windows 10
Editing the list of test suites for inclusion in the workspace 12
Filtering the “Test Suite(s)” window 16

Projects 25
Projects 25
Editing the project ICS 28
Editing the project IXIT settings 33

Test Cases 38
Displaying the purpose of a test case 38
Executing a single test case 39
Aborting test case execution 42

Link Keys and PTS Endpoint Information 42
Endpoint information 42
Deleting the current Link Key 43

PTS Program Settings 44
PTS Program Settings 44
Application settings 44
Project Settings 47

2. Automating __ __ 51
Automating PTS 51
"Operator-less Operation" 51
Automation test platforms 53
PTS test case operation 53
Implicit Send DLLs 54

Basic Information 54
Implicit Send functions 55
Message tags 59
MMI styles 61
Software build requirements 64

Activating a Custom Implicit Send DLL 64
Activating a custom Implicit Send DLL 64
Usage Notes 66

Technical Tidbits 66
Automatic dismissal of Implicit Send requests 66
ImplicitSend() function 67
TSPX_use_implicit_send 67
Sample Source Code 67
One DLL or many DLLs? 67
Hybrid environments 67

3. Extended Automating _______________________________ ___ 69
Automating PTS 69
"Fully Automated Operation" 69

Printed Documentation

iv

PTS and the PTS Control API 70
General Usage 70
Functions in the PTS Control API 71

Opening/Creating a Workspace 71
Working with Projects 72
Working with Test Cases 74
Working with ICS and IXIT data 78
Logging and unattended operation 80
General information functions 89

Sample Program - PTSControlClient 90
Sample Program - PTSControlClient 90
Preparing to use PTSControlClient 90
Running the Test Script 91

API Error Codes 91
Other error codes 93

4. Report Generator __________________________________ ___ 95
Introduction 95
Qualification test evidence 95
Development checkpoints 95
Contents of a report 95
Creating a PTS Report 96

1. Select a workspace 96
2. Start the report generator 97
3. First time use of the report generator 97
4. Select the device description 99
5. Selecting the test case results to be used in the report 100
8. Including test execution logs in the report 103
9. Generating the report 104

Adding and Deleting Device Descriptions 105
Adding a device description 105
Deleting a device description 106

Reviewing and Editing the Test History 108
Reviewing and Editing the Test History 108
Viewing a test case execution log 109
Selecting individual test case results to be deleted 110
Selecting older test results for deletion 110
Deleting test case results 111

5. Scripting ___ __ 113
Automating PTS 113
“Scripted Operation” 113
Creating an initial Test Script 113
Adding Test Cases to the Test Script 115
Executing a Test Script 116

Stopping Test Script execution 117
Editing a Test Script 117

Editing a Test Script 117
Removing a Test Case from the Test Script 117
Changing the order of execution 120
Adding a Test Case to the Test Script 122

6. Logging ___ _______________________________________ 123
Introduction 123
Output Window 123
Test Case History Tool Window 124

Table of Contents

v

Test Execution Log 125
Test Execution Log 125
Format of the execution log 126
Interesting events 127
Selecting the events to be logged 130
“Run-time” vs. deferred logging 132

PTS Protocol Viewer 133
PTS Protocol Viewer 133
The Protocol Viewer "stack" 133
Starting the PTS Protocol Viewer 135
Saving and viewing protocol traces 135

Verdict Determination 135
Verdict Determination 135

7. Verdict Determination _____________________________ __ 137

8. Index ___ _______________________________________ 139

1

Workspaces and Projects

Creating a new workspace
The first step in creating a new workspace is to the select the “New Workspace” item on the PTS “File” menu. A wizard
consisting of three dialogs will start when “New Workspace” is selected.

Selecting the Implementation Under Test

The first dialog is used to select the device to be tested. There are three ways to specify the device:

• If the device appears in the list at the left hand side of the dialog, it may be selected by clicking on its entry.

• If the device is currently discoverable, a search for it may be started by clicking the “Search” button. When the
device appears in the list, it may be selected by clicking on its entry.

• The Bluetooth Device Address (BD_ADDR) may be entered directly in the box labeled “IUT Device Address”.

After the device has been selected using one of the above methods, click the “Next >” button to proceed to the next step.

• The device to be tested can be specified at a later time if this is needed. To do this, enter a dummy BD_ADDR
such as “000000000000” and click “Next >”. The BD_ADDR for the device is a IXIT item and can be edited
before testing is started.

• The list at the left hand side of the dialog may be cleared by click the “Clear Search Results” button.

• When the “Search” button is clicked, the label on the button changes to “Stop Searching”. The search operation
will continue until either the “Next >” or “Stop Searching” button is clicked.

Printed Documentation

2

• The devices found during the search operation may be filtered by selecting an appropriate Major Device Class
and/or Service Class using the radio buttons in the lower right hand corner. This will not remove any devices
that are already in the list, it will simply discard devices found during the search operation that do not match the
selected criteria.

The selection of devices to be filtered is based on the Class Of Device value that each device reports in its response to
the Inquiry Request sent by the PTS.

“Import ICS from TPG”

An important part of preparing to test a given device is to select the profiles and protocols it supports, and to edit the ICS
information for each of those items. This process can be simplified if a declaration of the device’s features and functions
already exists.

One of the steps in getting a device ready for qualification is to declare the profiles and protocols it supports using the
online Test Plan Generator (TPG). One of the steps in completing this declaration is to edit the ICS information for the
device.

The ICS information stored in the TPG may be exported to a file on your computer. That file may then be imported to PTS
clicking the “Import ICS from TPG” button.

The ICS information for previously qualified devices that were qualified using PRD 2.0 or later may also be exported from
the Design/Product Listings area of Bluetooth.org for later import into PTS.

Clicking the “Import ICS from TPG” button will open the “Import Test Plan” dialog. This is a normal file selection dialog
which may be used to locate and select the file containing the ICS information exported from the TPG or a Qualified
Device Listing.

The “Import ICS from TPG” function may also be used at later time to update the ICS used by PTS when the declaration
for the device is updated in the TPG. See Adding a project to a workspace for more information

Workspaces and Projects

3

.

Naming the workspace

Each workspace is given a name. The name can be anything that is meaningful to you, such as the product name of the
device, the internal codename for the device, the software version found in the device or some combination of the above.
There are two restrictions on the name of the workspace. First, the name needs to be different than the names of other
workspaces that you have created. Additionally, the characters used in the name of the workspace are limited to those
that may be used in a disk file or folder name. (The collection of data representing the workspace is stored in a disk file
folder whose name is the name of the workspace.)

The name of the workspace is entered in the box labeled “Name”. By default, the name of the workspace will be the
“Device Name” shown in the previous dialog.

Please note that importing ICS information as described above will change the workspace name to the name found in the
imported data. It’s a good idea to execute “Import ICS from TPG” before entering the name of the workspace.

Normally, the folder and data files for a workspace are created in a subfolder of your PTS installation. The usual location
for workspaces is:

Printed Documentation

4

C:\Program Files\Bluetooth SIG\Bluetooth PTS\My Workspaces

An alternate location may be specified in the box labeled “Location”. The “…” button will initiate a folder browse operation
which may be used to select an alternate location for the workspace.

After the profile and protocol declaration for the device has been selected, if desired, and the workspace has been given a
name (and possible alternate storage location), click the “Next >” button.

Selecting profiles and protocols

The final step in creating a new workspace is to select the profiles and protocols to be tested. If the “Import ICS from TPG”
function was used in the previous step, the profiles and protocols supported by the device will already be selected.

The list of selected profiles and protocols may be changed before the workspace is created. See Using the Test Suite
Selector for more information.

Additional profile or protocol projects may be added to the workspace at a later time. Adding a project to a workspace
describes this process.

After you have selected the profiles and protocols that you wish to test, click “Finish” to create the workspace. The
creation of the workspace may take a little time, so be patient.

Workspaces and Projects

5

Opening an existing workspace
An existing workspace may be opened in one of two ways. The first method is to select “Open Workspace…” from the
“File” menu.

Printed Documentation

6

PTS also keeps a list of recently used workspaces. This list may be accessed by selecting “Recent Workspaces” on the
“File” menu.

Please note that opening a workspace may take a little time, so be patient.

In addition to opening a PTS Workspace, you can also open a Legacy PTS Workspace by selecting Legacy PTS
Workspace in the File name drop down menu.

Workspaces and Projects

7

Adding a project to a workspace.
Additional projects – profiles or protocols – may be added to a workspace at any time by selecting the “Project” item on
the “Insert” menu. The “Test Suite Selector” dialog will appear allowing additional projects to be selected. (See Using the
Test Suite Selector).

Profiles that are already present in the workspace will appear “greyed out” in the “Your Suite(s)” window and cannot be
removed.

The “Import ICS from TPG” function may also be used at this time. If you have updated your device declaration in the
TPG by changing the ICS settings or adding additional profiles or protocols, the updated declaration may be imported to
synchronize your settings in PTS to match the settings you are using in the TPG.

Printed Documentation

8

Deleting a workspace
A workspace may be deleted using the following procedure:

1. Exit the PTS application.

2. Using Windows Explorer, locate the folder that contains the various data files used to represent the project.

3. Right click on the folder and select “Delete” from the popup menu.

Removing a project from a workspace
At the present time there is no supported mechanism for deleting a project from a workspace.

Workspaces and Projects

9

PTS Terminology
IUT (Implementation Under Test): The device, component or subsystem to be tested.

Workspace: A group of profile and protocol test suites to be tested against the Implementation Under Test. A workspace
may be thought of as representing a particular device, component or subsystem.

Project: A profile or protocol test suite and its associated data files. One or more projects may be present in a workspace.
Each project represents a profile or protocol supported by the IUT.

ICS (Profile Implementation Conformance Statement): Official declaration of the profile or protocol features and functions
that are supported by the IUT. Each item in the ICS selects one or more tests that must be executed in order to
demonstrate proper implementation.

IXIT (Profile Implementation Extra Information for Testing): Data items, such as the Bluetooth Device Address
(BD_ADDR), that are specific to a particular IUT. In general, IXIT items represent data that cannot be specified in advance
by the programmer who created a test case or test suite.

ETS (Executable Test Suite): Each profile or protocol specified for use in Bluetooth wireless technology has an
accompanying test specification. An ETS is a programmatic representation of the test purposes found in a particular test
specification. Test cases in an ETS are executed under the control of the Profile Tuning Suite.

Test Purposes vs. Test Cases: A test specification defines a number of test purposes which describe the environment that
must be present to perform a test of a particular feature or function, the proper procedure to perform a test, and the
expected outcome of a test.

A test case is specific implementation of a test purpose, for example, a test case found in a PTS Executable Test Suite.

Test Case Naming: Each test purpose defined in a test specification is identified by a name which is created according to
a standard policy. The name identifies which groups of tests a particular test belongs to along with the nature of the test.
Test purpose names are in a format similar to TP/ABC/BV-01-I

In the PTS, the naming format is modified slightly to change the “/” and “-“ characters to “_” characters. In addition, since a
particular test purpose may be defined for more than one operational “role”, the role for a specific test case is inserted into
the name. A PTS test case name corresponding to the example test purpose above might be TC_CLIENT_ABC_BV_01_I

(“TC” replacing “TP” since PTS implements test cases not test purposes.)

Using the Test Suite Selector

Using the Test Suite Selector

There are currently over three dozen Bluetooth profiles and protocols available to be tested by PTS. The

task of determining which of the available test suites that should be used can be a little daunting. To

make things easier, the Test Suite Selector has been created.

The Test Suite Selector dialog displays all of the profile and protocol test suites available in PTS. The list

may be filtered in a number of ways to simplify the process of locating the test suites of interest.

The Test Suite Selector will appear in two different scenarios:

Printed Documentation

10

1. As the last step when creating a new workspace;

2. When adding a project to an existing workspace.

Primary windows

There are two primary windows in the Test Suite Selector dialog: “Test Suite(s)” on the left and “Your Suite(s)” on the
right.

“Test Suite(s)” window

The “Test Suite(s)” window contains a list of the profile and protocol test suites that are available to be added to a
workspace. When the “Your Suite(s)” window is empty, this list will contain all of the test suites that are available in the
current installation of PTS.

Workspaces and Projects

11

Test suites that are currently present in the workspace, or that have been selected for addition to the workspace will
appear in the “Your Suite(s)” window and not in the list of available test suites.

Each test suite shown in the list is identified by its full name and common acronym.

Some test suites are considered to be in a “beta test” state. These test suites are generally new, or contain test cases
which only a few (or maybe no) Bluetooth devices are available. Test suites in “beta test” are indicated by “(Beta)”
following the profile or protocol name.

“Your Suite(s)” window

This window contains a list of test suites that are already present in the current workspace, or are waiting to be added to
the workspace. Items that are “greyed out” are already present; items in normal text have been selected for addition to the
workspace. In the picture on the previous page

• The OPP test suite has been selected for addition;
• A2DP, AVRCP, HFP15 and PBAP are already present in the workspace.

Test suite description

The “Description of Selection” window at the bottom of the Test Suite Selector will display descriptive information about
the item that is currently selected in either the “Test Suite(s)” or “Your Suite(s)” window.

The description may include the profile or protocol version supported by the test suite, the applicable test specification
version, and any special notes about usage or test case coverage.

Note that no description will be shown if more than one item is selected in either window.

Printed Documentation

12

Editing the list of test suites for inclusion in th e workspace

Adding test suites to “Your Suite(s)”

There are two ways to select test suites for inclusion in the workspace. The first, and possibly the easiest method, is to
locate a desired test suite in the “Test Suite(s)” window and double-click on it. Doing this will immediately move the
selected suite to the “Your Suite(s)” window.

Sometimes, it may be desirable to choose a set of test suites and select them all at once. To do this,

• Control–click on each of the test suite names of interest;

• Choose a contiguous block of suites by clicking on the first test suite name, followed by a shift-click on the last
name.

The “Select all” checkbox may be used as a convenient shortcut if all of the available test suites are to be selected.

Workspaces and Projects

13

Note that control-clicking on a selected item in the “Test Suite(s)” window will un-select it.

After a set of selections has been made, the “>>” button between the two windows will be active. Press the “>” button to
copy the selections to the “Your Suite(s)” window.

Before pressing “>>”:

After pressing “>”:

Printed Documentation

14

Notice that “DUN” and “FTP” moved from the “Test Suite(s)” window to the “Your Suites(s)” window after the selection
was executed.

Additional selections may be made until the desired set of test suites appears in the “Your Suite(s)” window.

Test suites that are not available selection

At times some of the test suites listed in the “Test Suite(s)” window will be “greyed out” and cannot be selected.

Removing a test suite from “Your Suite(s)”

The “Your Suite(s)” window behaves identically to the “Test Suite(s) window. Items in this window can be easily moved
back to the “Test Suite(s)” window by double-clicking on them.

Otherwise, the set selection functions described above may be used:

• To select an item for removal, control-click on its name;
• To select a contiguous group of test suites for removal, click on the first name in the group and then click on the

last name while holding down the “Shift” key (shift-click);

• To select all of the suites shown in “Your Suite(s)”, place a checkmark in the “Select All” checkbox.

After a set of selection selections have been made in the “Your Suite(s)” window, the “Remove” button will become active.
Press this button to move the selected items back to the “Test Suite(s)” window.

As noted above, items which are “greyed out” are currently a part of the workspace and cannot be removed.

Items that would be hidden by the filtering functions in the “Test Suite(s)” window will not appear after they have been
removed. They have been moved back to “Test Suite(s)”, they just will not be seen until the filtering condition has been
removed.

Workspaces and Projects

15

Completing the process

Once the desired set of profile and protocol test suites have been selected, and are appearing in the “Your Suite(s)”
window, press the “Finish” button to create or update the workspace.

Printed Documentation

16

Filtering the “Test Suite(s)” window

There are four ways to reduce (filter) the number of test suites displayed in the “Test Suite(s)” window. These methods
may be used in combination with each other to in order to “fine tune” the list displayed.

Filter by test group

The various test suites have been grouped together in order to quickly locate profiles and protocols that are commonly
used together. The upper left hand selection box contains a list of those groups.

Click on the small arrow at the right of the list and select the group of interest.

Filter by layer

PTS supports the testing of application profiles along with many of the protocol layers used to transport profile data. The
“Profile & Protocol” selection box may be used to hide one or the other.

Workspaces and Projects

17

• “Profile” includes all Bluetooth application profiles along with GATT-based profiles and their associated
services;

• “Protocol” includes the various transport layers such as L2CAP;

• “Profile & Protocol” includes all Bluetooth application profiles, GATT-based profiles and services, and the
various transport layers.

Click on the small arrow at the right of the list and select the item of interest.

Printed Documentation

18

Filter by technology

Bluetooth technology currently defines three different technologies for connecting one device to another:

• “BR” – Basic Rate plus Enhanced Data Rate (often referred to as “BR/EDR”);

• “HS” – High Speed communications over a high speed data link such as IEEE 802.11;

• “LE” – Low power consumption links using Bluetooth Low Energy.

Three check boxes are present on the Test Suite Selector dialog, each representing one of the technologies.

A check in one of the boxes indicates that protocols and profiles relevant to that technology should be displayed. An
empty check box will hide those protocols and profiles that are not relevant.

Workspaces and Projects

19

Some profiles and protocols – such as L2CAP – are used with more than one technology. This will cause them to appear
in multiple technology selections.

Filter by text

The text search filter can be used to locate test suites that contain a specific string of text in the full name or the acronym
of the suite. The search is a simple search – if “acronym – name” contains the specified text it is included. The search is
not case sensitive.

The text search filter can be used anytime the magnifying glass icon appears next to the box marked “Search…”.

Printed Documentation

20

The search process is dynamic and executes as text is entered or removed from the “Search…” box.

Workspaces and Projects

21

Printed Documentation

22

Workspaces and Projects

23

Note that as text is being entered, and the text search filter is active, the magnifying glass icon changes to a button
labeled “X”.

Clearing a text filter

The text search filter can be cleared by either erasing all of the characters in the “Search…” box.

Combining Filters

As mentioned earlier, the four filtering methods may be used in combination in order to arrive at a list of test suites that
match multiple criteria.

Printed Documentation

24

Starting over

The “Default Settings” button may be used to reset the filter criteria.

• The test group filter will be reset to “All Groups”;

• The layer filter will be reset to “Profile & Protocol”;

• All three Bluetooth technologies will be selected;
• The text search string (and result) will be cleared.

Before “Default Settings”:

Workspaces and Projects

25

After “Default Settings”:

Projects

Projects

After a workspace is opened, a list of projects (profiles and protocols) that are available is displayed in the “Workspace
Tool Window.”

Printed Documentation

26

The “Test Case View” is organized as a tree where the top level items are the projects. The tree can be expanded as
needed until the lowest level items – the test cases – are displayed.

An icon next to each test case name shows the current status of that test case.

• A check mark with a green box indicates that the last run of the test case resulted in a verdict of PASS.
• A red “X” along with a red box indicates that the last run of the test case FAILed.

• An exclamation point (“!”) with a yellow box shows test cases whose last run ended in a verdict of
INCONClusive.

• Blue boxes with no marker in front of them are used to indicate test cases that have not been run.

Workspaces and Projects

27

Depending on the functions and features that a device supports, some test cases may not be necessary to execute in
order to qualify the device. In many cases, such test cases are not likely to PASS since they exercise features that are not
present in the IUT.

Test cases, or even entire groups of test cases, which are not suitable for the device to be tested are indicated by a
padlock symbol next to the name of the test case or test group.

Printed Documentation

28

Editing the project ICS

During qualification, it is very important to be using the proper ICS settings for the Implementation Under Test. Failure to
do so can result in test cases that must be executed using PTS against the IUT to be skipped.

Additionally, incorrect ICS settings can make available test cases that exercise features or functions that are not present
on the device. In many cases such test cases have no chance of reaching a verdict of PASS and executing them is a
waste of time.

It is also important that the ICS settings used in PTS are the same as those given in the device declaration in the Test
Plan Generator. When testing evidence is submitted during qualification the list of test cases that must have been
executed is based on the ICS settings in the TPG. Having different ICS settings in PTS can result in not having testing
evidence for some test cases.

Generally, the best thing to do is to keep PTS in sync with the TPG by clicking the “Import ICS from TPG” feature
described above. (Creating a new workspace and Adding a project to a workspace)

It is sometimes desirable however to change the ICS settings. This is especially true during the development of a device
before the final set of features and functions have been determined.

Opening the ICS in the ICS\IXIT Tool Window

To open the ICS editor in the ICS\IXIT Tool Window, click the “ICS” button in the toolbar.

Workspaces and Projects

29

Alternatively, the ICS editor may be opened for any project in the workspace by clicking on the ICS tab on the ICS\IXIT
Tool Window.

Printed Documentation

30

To open the ICS editor for a project, select the project from the Profile drop down menu.

Workspaces and Projects

31

Using the ICS editor

The ICS editor displays a table consisting of three columns. Each row in the display corresponds to an item found in the
ICS Proforma document that is a part of every Bluetooth profile or protocol specification.

The first column, “Name” contains the names of the ICS items. The names are based on the table and row in the ICS
Proforma document where the item is defined.

For example, TSPC_HFP15_2_3 is found in table 2, row 3 of the ICS.

Printed Documentation

32

Proforma document for Handsfree Profile (HFP) version 1.5.

The “Description” column is used to describe the ICS items. A number of informational “cues” are used in these
descriptions to make the items easier to work with.

Workspaces and Projects

33

A description ending in “(M)” represents a feature or function that a device must support. These “mandatory” items should
always be selected (set to “True”).

A description that ends with an “(O)” is for an optional feature or function that will be set to “True” or “False” depending on
whether or not the device supports it.

The operational “role” that a ICS item applies to is often indicated at the beginning of a description. In the picture above,
“AG:” is for ICS items that are applicable to a Handsfree device in the Audio Gateway (AG) role.

In the "True/False" column, check the checkbox to set the item as True, and uncheck the checkbox to set the item as
False.

Enabling all test cases regardless of ICS settings

Sometimes, especially during the development of a device, it is useful to make all of the test cases available for execution.
Some test cases are complements of other test cases. It may be that selecting a given ICS item enables one test case
and disables another. Not selecting that item may reverse the test case selection. This often occurs in cases where it is
necessary to confirm that a device responds properly when it does not support a feature or function.

The last row in the ICS editor usually contains a PTS specific item named TSPC_ALL. Selecting this item will cause all of
the test cases in the project to be available to be executed.

Editing the project IXIT settings

The IXIT table for a project contains entries for data elements that the test cases need in order to do their job, but that
cannot be determined in advance. IXIT items are generally specific to a particular tester – such as the PTS – and are not
found in any specification.

The most commonly edited IXIT item is TSPX_bd_addr_iut. This item contains the Bluetooth Device address for the
device being tested. Changing this value allows a different instance of the same device to be tested.

Printed Documentation

34

The IXIT editor works almost the same as the ICS editor, the difference being in the columns that are available.

Opening the IXIT editor

To open the IXIT editor in the ICS\IXIT Tool Window, click the “ICS” button in the toolbar.

Alternatively, the IXIT editor may be opened for any project in the workspace by clicking on the IXIT tab on the ICS\IXIT
Tool Window.

Workspaces and Projects

35

To open the IXIT editor for a project, select the project from the Profile drop down menu.

Printed Documentation

36

Using the IXIT editor

The IXIT editor displays a table consisting of three columns.

The first column, “Parameter Name” contains the names of the IXIT items. The names should be self explanatory. (See
below.)

The “Type” column is used to indicate the data type of the item that is to be entered in the “Value” column.

• “BOOLEAN” items are either “TRUE” or “FALSE”.

• “INTEGER” items are decimal integer values.

• “IA5STRING” items are used for strings of textual data.

• “OCTETSTRING” items are binary values entered in hexadecimal notation.

Workspaces and Projects

37

IXIT documentation

Each test suite implemented in PTS is accompanied by an Abstract Test Suite (ATS) document that describes the test
suite implementation. Among other things in an ATS document is a list of the IXIT items for that test suite along with their
descriptions.

The ATS documents may be accessed from the PTS “Start Page” by selecting the “Abstract Test Suites” item.

Printed Documentation

38

Test Cases

Displaying the purpose of a test case

Each test case described in a profile or protocol test specification begins with a short summary stating its purpose. For
convenience, the purpose the selected test is displayed in the bottom pane of the Workspace Tool Window.

Workspaces and Projects

39

Executing a single test case

There are three ways to start the execution of a particular test case. The first way is to right click on the name of a test
case and select “Run” from the popup menu.

Printed Documentation

40

The second method is also to right click on the name of a test case, but instead select 'Run (Debug Logs)" from the popup
menu.

Workspaces and Projects

41

The final method is to locate the name of the test case in the tree and double click on its name.

Run” versus “Run (Debug Logs)”

Test cases produce a number of output logs as they are executing. The amount of information in each log can vary
depending on the logging level and other settings. (See Logging.)

Generally the “Standard” logging level is sufficient for most users. That level will log basic communications between PTS
and the Implementation Under Test, along with various status messages at key points during the test execution.

Printed Documentation

42

Sometimes, the “Standard” logging level does not contain sufficient information to diagnose a problem with either PTS or
the IUT. Before version 4.5.3 of PTS, it was necessary to manually set “Full” logging and to locate the additional log files
that are used in tracking down an issue. For some of the log files, manually editing the program configuration file was
needed to achieve the most comprehensive output.

After collecting all of the relevant information, the operator would then want to set the logging level back to “Standard” and
undo the changes made to the configuration file.

“Run (Debug Logs)” simplifies the process of gathering all of the relevant logs by placing the test case execution log, and
other important log files in a folder after a test case executes. This mode also temporarily overrides all of the logging
settings and sets them to their maximum (most comprehensive) values.

After the test case has finished execution, the logging settings are automatically restored to their previous values.

It should be noted that when reporting a problem for particular test case to the PTS Development Team, “Run (Debug
Logs)” should be used and the contents of the resulting folder should be attached to the problem report.

Aborting test case execution

When a test case is running a red “X” will be enabled in the toolbar. Clicking this button will cause the current test case
execution to terminate.

Note that this only terminates the currently executing test case. If a group of test cases are being executed – as described
in the previous section – the next case will be started.

Link Keys and PTS Endpoint Information

Endpoint information

The Workspace Tool Window contains two tabs. The first tab, labeled “Workspace”, is the view of the current workspace
that has been shown throughout this document.

The second tab – “Information” – contains information about the PTS Endpoint device. When no workspace is open, the
“Information” section lists the Bluetooth Device Address (BD_ADDR) of the PTS Endpoint. This can be very useful when
you need to locate PTS using its BD_ADDR.

Workspaces and Projects

43

When a workspace is active, the “Information” section will still list the Endpoint address, but it will also list the Link Key
that is shared between PTS and the IUT if the devices have been bonded. This information is important for two reasons:

1. It indicates that PTS thinks that there is a trusted relationship between itself and the IUT. The absence of a Link Key
shows that the two devices are not bonded.

2. “Air sniffing” protocol analyzers often need the current Link Key to be entered manually in order to decrypt the data
flowing between the two devices. The value shown in the “Information” section can be entered into the “Air Sniffer” to
allow packets to be decrypted successfully.

Deleting the current Link Key

At times it may be necessary to remove the trusted (bonded) relationship between the PTS and the IUT. The “Delete Link
Key” button on the PTS toolbar can be used for this purpose.

Once the “Delete Link Key” button has been pressed, the devices are no longer bonded.

Printed Documentation

44

PTS Program Settings

PTS Program Settings

There are two sets of user settings in the Profile Tuning Suite. The first set – referred to as “application

settings” – affects the main PTS application.

The other group of settings affects the operation of the test suites and is referred to as “project settings”.

Application settings

There are two sets of user settings in the Profile Tuning Suite. The first set – referred to as “application settings” – affects
the main PTS application.

The other group of settings affects the operation of the test suites and is referred to as “project settings”.

The application settings are accessed using the “Application Settings” item on the “File” menu.

General

Updates

PTS can be configured to check for updated software whenever it is launched. You can also set PTS to notify you if
updates are available. The “Updates” section in the General Application Settings tab is used to enable or disable this
functionality.

Workspaces and Projects

45

Auto save

You set PTS to save a project automatically, or to only save manually.

Logging

The “Logging” option is used to control the amount of detail that is present in the execution log. The amount of detail can
be selected from very little information up to highly detailed information about the inner workings of test cases.

• The “Standard” setting adds communication messages and information used to determine the final verdict of
the test case to the information displayed when “Minimal” is selected.

• “Full” causes highly detailed information about the inner workings of a test case to be included in the execution
log. This is a lot of information and may be overwhelming to most users.

Printed Documentation

46

As mentioned in Executing a single test case (“Run” versus “Run (Debug Logs)”), changes to the log level may never be
needed. The “Run (Debug Logs)” feature is a much better way to produce highly detailed logs for problem analysis or
archival purposes.

For more information on the various logging capabilities of PTS, please refer to Logging.

Statistics

case is executed. This information can be sent to the PTS Development Team on a periodic basis to help determine
which test suites and test cases are being used the most.

This information is always sent anonymously.

There are three settings which determine how the information is sent to the Development Team:

• Share silently”: Send the information on a periodic basis without prompting for permission to do so.
• Prompt before sharing”: Send the information on a periodic basis, but ask for permission before doing so.

• “Do not share”: Never send the usage information automatically.

Workspaces and Projects

47

Project Settings

The project settings are accessed by right clicking on a project name at the top level of the “Test Case View” followed by
the selection of “Settings…” from the popup menu.

Printed Documentation

48

General settings

The settings on this tab control the type of output produced by the test suites and the amount of detail that is included.
The selections on this tab are global and affect all projects in the workspace.

The “Enable run-time logging” option determines whether or not the log is created while a test case is executing.
Sometimes, in cases where the creation of the log is impacting the performance of the test case, it may be useful to delay
the creation of the log until after a test case has ended.

User Defined Implicit Send DLL

An alternate Windows DLL may be used to handle “implicit send” messages that occur during a test case. The use of
alternate “Implicit Send DLLs” is uncommon, so this item should generally be left unchecked.

Users needing to do automated testing may find that the creation of a custom Implicit Send DLL is needed. Please see
the “Automating Test Execution” reference document for more information.

Workspaces and Projects

49

51

Automating

Automating PTS
The Profile Tuning Suite (PTS) offers three features which can be used in automated testing:

1. “Operator-less Operation” allows the interactive prompts that appear during the execution of a test case to be
processed by user written software which can inspect each message and take appropriate action.

2. This feature can be used with either of the following program control features and is described in this document.

3. “Scripted Operation” where a set of test cases can be selected and run as a group. The group can be executed
as needed, or scheduled for execution at a later time.

4. The “Scripting” reference document describes this feature.

5. “Fully Automated Operation” – PTS provides an Application Programming Interface (API) which allows complete
control of the software. User written programs can take advantage of the API in order to open Workspaces,
select Projects, execute Test Cases, and many other functions.

“Fully Automated Operation” is described in the “Extended Automating” reference document.

"Operator-less Operation"
Many, if not most, of the Bluetooth qualification tests are designed around the idea that a human test

operator is part of test environment – operating the tester and performing manual operations on the

Implementation Under Test (IUT). This can be seen in the various test specifications in comments like

• Expected Outcome

Pass verdict:

The Object Push operation is processed correctly and completed corresponding to the

settings and user actions.

Client:

- The Object Push function is initiated by user action and not automatically.

Printed Documentation

52

Part of the reason for this is that the Bluetooth Special Interest Group (SIG) does not specify the ways in

which users are to interact with Bluetooth enabled devices. This can also be seen in the test

specifications

• Test Procedure

…

Server:

…

- (Depending on the architecture that is to use the object push feature the steps how an item

is pushed may vary

In its default configuration, the Profile Tuning Suite (PTS) presents the test operator with various popup

dialogs during the execution of a test case. These dialogs may be used to

• Ask the test operator to perform a function on the IUT;

• Ask the test operator to confirm that a file transfer or other operation completed successfully;

Automating

53

• Ask the test operator to enter data needed for the test.

Automation test platforms
Having a test operator involved in the testing process can be very time consuming. Additionally, regression testing
becomes somewhat difficult since a test operator needs to “babysit” the testing process. For this reason, many
organizations create automation test platforms to be used in the testing of their devices. These platforms may have the
ability to press buttons, recognize prompts and messages on the display, or access the storage on the device for contact
items, pictures, or other files. These operations are controlled by software running on a computer that is connected to the
test platform.

PTS has the ability to work with automation test platforms by providing a user defined mechanism that can be used to
replace the popup dialogs mentioned above. Instead of sending the various messages to the display, PTS can be
configured to send them to user written replacement functions that in turn can interact directly with the device being
tested.

PTS test case operation
As mentioned above, there are various points during test case execution where PTS needs to interact with the test
operator or an automation platform. When this occurs

Printed Documentation

54

1. The part of the test case that needs outside assistance sends a request to the “MMI Handler”. PTS test cases
are implemented using a Main Test Component (MTC) and some number of Parallel Test Components (PTCs).
The PTCs provide various support functions and operate concurrently with the main body of the test. PTCs are
often used to implement a protocol layer in the Bluetooth stack or to serve as the “knowledgeable authority” for
the details of a Bluetooth profile.

The MTC and the various PTCs interact with one another to process commands, responses and the transfer of
data between themselves and the Implementation Under Test (IUT).

The MMI PTC handles the interaction with the outside environment. Since it operates in parallel with the other
parts of the test, test case execution is not held up while waiting for a response from the test operator.

2. After receiving a request, the MMI PTC passes it on to a support library known as an “Implicit Send DLL”.

3. The Implicit Send DLL performs whatever steps are needed to execute the request and waits for a response.

4. The response is sent back up the chain to the MMI PTC, and from there to whatever Test Component is
expecting it.

Implicit Send DLLs

Basic Information

PTS provides a default version of the Implicit Send DLL. It is this DLL that provides the popup dialogs that

one normally sees when using the PTS.

In order to integrate PTS with an automation test platform, a custom Implicit Send DLL needs to be

developed.

• Implicit Send DLLs are standard Windows Dynamic Link Libraries.

• Implicit Send DLLs are written in C++.

The interface between the PTS and an Implicit Send DLL uses the std::string class from the Standard

Template Library (STL), and the “bool” data type. No other C++ features are used, so someone

knowledgeable in the C programming language should not have too much trouble.

• An Implicit Send DLL provides five functions:

o InitImplicitSend()

o ImplicitSendStyle()

Automating

55

o ImplicitSendPinCode()

o ImplicitStartTestCase()

o ImplicitTestCaseFinished()

All five functions must be provided. If any one of the functions is missing, or has an incorrect name,

PTS will be unable to load the DLL. The functions are described in the following section (3.2, “Implicit

Send functions”).

• Implicit Send DLLs are loaded dynamically. They are standalone entities that do not need special

names or folder locations in order for PTS to locate them. (A configuration setting tells PTS where to

find the DLL.)

Implicit Send functions

Conventions

Each of the function definitions contains the following two declarations. These declarations must be used

in order for the interface between PTS and an Implicit Send DLL to work correctly.

• extern “C” – This declaration tells the C++ compiler that the symbol name for a function is not to be

decorated in any way. The C++ language allows multiple functions with the same name, as long as

they have different parameter lists and/or return types. This is accomplished by changing – or

“decorating” – the function names behind the scenes, resulting in each function actually having a

different name.

PTS expects the functions in an Implicit Send DLL to have plain, undecorated names.

• WINAPI – This declaration tells the C++ compiler that the function calling convention is the same as

functions defined in the Windows API. This primarily has an impact on parameter handling during the

calls from PTS to the Implicit Send functions.

InitImplicitSend()

Declaration: extern "C" bool WINAPI InitImplicitSend(void);

Printed Documentation

56

Parameters: None

Return values: “true” if successful

 “false” if not successful

This function is called during the initialization of an Executable Test Suite (ETS), just after the Implicit Send DLL has been
loaded into memory.

It can be used to perform any initialization that might be needed before executing test cases.

If no initialization is required, the function can simply return a value of “true”.

If the initializations failed, which would lead to the DLL not being usable, a “false” value should be returned. In this case,
the ETS will be disabled.

ImplicitStartTestCase()

Declaration: extern "C" void WINAPI ImplicitStartTestCase(std::string& strTestCaseName);

Parameters: A character string containing the name of the current test case

Return values: None

ImplicitStartTestCase() is called at the start of each test case execution. It provides the name of the test case that is
starting.

This function can be used to perform initializations that are needed at the start of every test case. The test case name
allows the initialization process to be customized to specific test cases.

ImplicitSendStyle()

Declaration: extern "C" char* WINAPI ImplicitSendStyle(std::string& strMmiText,UINT mmiStyle);

Parameters:
strMmiText – Information about the MMI (Implicit Send) request being made

mmiStyle – A value describing the type of request and the expected values

Automating

57

Return values:
A pointer to a character string containing the information to be returned

A NULL pointer if the request cannot be processed or no information is to be returned

This is the main routine for handling Implicit Send requests; the majority of interactions with the test operator or automated
test environment will be handled by this function.

strMmiText will consist of two pieces

• A message “tag” that uniquely identifies the message (see Message tags).

• Message text that would normally be displayed to the test operator.

In the default Implicit Send DLL used by PTS, the mmiStyle parameter is used to select the style of dialog box that is to be
displayed. Custom DLLs can use this information to determine how to process the strMmiText, the type of request that is
being made, and the expected return values.

In most cases, the return value will be a pointer to a string containing the word “OK”. Some requests, such as those using
MMI_Style_Edit1 expect a string of data – for example, a PIN code or a file name – as the return value.

The MMI_Style_Edit2 style provides a list of items in the strMmiText and expects one of those items to be returned.

For more information, see MMI styles.

Scope of the return value

It is important to note that the character string that is pointed at by the ImplicitSendStyle() return value must not go “out of
scope”. For example, std::string values that are created during the execution of a function are likely to be destroyed when
the function exits. The returned pointer may continue to point at valid text, but there is a good chance that the memory
space used by the string could be reused.

One way to avoid this type of issue is to create the string to be returned in dynamic memory (using malloc() or “new”). The
string would then be added to a list or variable sized array (such as a std::vector).

All of strings returned during the execution of the test case would remain until the end of the test, at which time they could
be destroyed.

For an example of one way to do this, look in sample source code (see Sample source code) at the PersistentText C++
class (PersistentText.cpp/.h) and how the class is used in ImplicitSend.cpp. In this example, the most recently returned
string is “persistent” and is deleted when the Implicit Send DLL is unloaded.

ImplicitSendPinCode()

Declaration: extern "C" char* WINAPI ImplicitSendPinCode(void);

Printed Documentation

58

Parameters: None

Return values:
A pointer to a character string containing a PIN code to be returned

A NULL pointer if the request cannot be processed or no PIN code is to be returned

This is a special case function that is only used when a dynamic PIN code is needed.

It is not currently used in PTS, but it might be used in the future. One way to implement this function in order to be
prepared for future use is

extern "C" char* WINAPI ImplicitSendPinCode(void)

{

std::string strPrompt = "Please enter a PIN Code:";

return(ImplicitSendStyle(strPrompt,MMI_Style_Edit1));

}

Please refer to Implicit Send functions for details regarding the return value from this function.

ImplicitTestCaseFinished()

Declaration: extern "C" void WINAPI ImplicitTestCaseFinished(void);

Parameters: None

Return values: None

ImplicitTestCaseFinished() is called at the end of test case execution. It may be used to perform any cleanup that is
needed, or to undo operations that were performed during ImplicitStartTestCase().

Final cleanup

The Implicit Send API does not provide a final cleanup function. Generally such a function is not needed because the
unloading of the DLL or the termination of the main PTS executable causes resources such as open files to be closed and
dynamic memory to be released.

Should some form of final cleanup be required, the following is suggested:

1. Create a C++ class that contains the various objects that need to be cleaned up when the DLL is unloaded.

Automating

59

2. Declare an instance of the class at module level scope and make sure that the class is visible to all functions
that need to access the data within. Variables declared at “module level scope” are those that are declared
somewhere in a source file, but outside the boundary of all of the functions in the file.

3. Place the necessary cleanup code in the class destructor. When a DLL (or executable program) is about to be
unloaded from memory, the C++ runtime support invokes the destructor for each instance of a class that is
defined at module level scope. Placing the cleanup code in the destructor ensures that it executes at the proper
time.

4. Note that the standard C++ “singleton pattern” should not be used here. The standard singleton pattern uses a
pointer to an instance of a class. The runtime support cleanup code will NOT call the destructor for an object
that is accessed indirectly via a pointer.

As mentioned in Implicit Send functions, the sample source code for the default Implicit Send DLL uses this mechanism to
address the ImplicitSendStyle() return value “persistency” issue.

Another possibility is to use a DllMain() function and perform the cleanup work when it is called with a reason code of
DLL_PROCESS_DETACH. Note however that the use of DllMain() is no longer recommended by Microsoft. When using
current versions of the Microsoft development tools, DllMain() isn’t even required – the language runtime support provides
its own.

Message tags

As mentioned in Implicit Send functions, the strMmiText parameter passed to ImplicitSendStyle() is a string consisting of
two parts. One of those parts is a message tag that uniquely identifies the message.

The purpose of the message tags is that they will always be the same regardless of the informational text that may be
displayed to a test operator. This means that custom Implicit Send DLLs do not need to process the informational text –
they only need to process the tag in order to know what request is being made.

The message is at the beginning of the strMmiText string and is in the following format

{<message number>,<test case name>,<test suite name>}

where

• <message number> identifies a message within a given test suite;

• <test case name> identifies the executing test case;

• <test suite name> identifies the Executable Test Suite than contains the currently executing test case.

The combination of <message number> and <test suite name> uniquely identifies a message across all Executable Test
Suites. For example

{999,<any test case name>,OPP}

{999,<any test case name>,FTP}

are different messages even though they have the same <message number>.

Printed Documentation

60

The <test case name> helps to identify the usage of the message. For example, in the Object Push Profile (OPP) test
suite <message number> 47 is used in every test case where the test operator (or automated test platform) needs to
confirm that an object transfer occurred successfully. In test case TC_SERVER_OPH_BV_03_I the operator needs to
confirm that a new contact entry with the name “OPHBV03” is on the IUT. In TC_SERVER_OPH_BV_07_I, a new
calendar entry titled “OPHBV07” should have been created.

An automated test platform can distinguish between the two uses of <message number> 47 by looking at the <test case
name>

{47,TC_SERVER_OPH_BV_03_I,OPP}Please check that …

{47,TC_SERVER_OPH_BV_07_I,OPP}Please check that …

Finding the tags

The default Implicit Send DLL provided with PTS removes the tags before sending the message text to the popup dialog.
In other words, in normal operation PTS does not display the message tags.

There are three ways to determine the tag associated with a given message:

1. Have the default Implicit Send DLL display the t ag

Starting with version 4.5.3 of PTS, the default Implicit Send DLL has the option to display both the style of each message
along with its tag. This functionality is enabled by adding the following lines to PTS.ini, normally found in C:\Program
Files\Bluetooth SIG\Bluetooth PTS\bin.

[ImplicitSend]

showTag=1

For the example above, this setting will cause the dialog to look something like this:

Automating

61

2. Consult implicit_send_log.txt

The default Implicit Send DLL creates a log containing all of the Implicit Send requests that have been made since the
workspace was created. The file is named implicit_send_log.txt and may be found in the workspace folder.

For example, if the workspace for the test that was executed above is named “OPP Profile”, the workspace folder might
be

C:\Program Files\Bluetooth SIG\My Workspaces\OPP Profile

Looking in the implicit_send_log.txt file for the above message would find this entry

--

Style: Yes_No1, Tag: {47,TC_SERVER_OPH_BV_03_I,OPP}

Please check that ...

3. Consult the ATS document

Each test suite has an accompanying Abstract Test Suite (ATS) document that describes the details of the suite and its
environment. In each ATS document there is a section on Implicit Send that includes a table listing each of the messages
including their tags.

For example:

The “%s” in the message tag is replaced with the name of the currently executing test case at runtime.

MMI styles

The mmiStyle parameter to ImplicitSendStyle() provides direction about the contents of the strMmiText parameter along
with an indication of the expected return value. When used with the default PTS Implicit Send DLL, the mmiStyle value
selects the type of dialog box that will be displayed along with the buttons that will appear.

Printed Documentation

62

mmiStyle name Value Message Type Buttons Displayed by the default
Implicit Send DLL

MMI_Style_Ok_Cancel1 0x11041 Simple prompt
OK, Cancel

Default: OK

MMI_Style_Ok_Cancel2 0x11141 Simple prompt Cancel

MMI_Style_Ok 0x11040 Simple prompt OK

MMI_Style_Yes_No1 0x11044 Simple prompt
Yes, No

Default: Yes

MMI_Style_Yes_No_Cancel1 0x11043 Simple prompt
Yes, No, Cancel

Default: Yes

MMI_Style_Abort_Retry1 0x11042 Simple prompt
Abort, Retry, Ignore

Default: Abort

MMI_Style_Edit1 0x12040 Request for data
input

OK, Cancel

Default: OK

MMI_Style_Edit2 0x12140 Select item from a
list

OK, Cancel

Default:OK

“Simple prompt” message type

All of these MMI styles are used to instruct the test operator or automation test platform to take an action. The action may
be to make a connection from the IUT to the PTS, press a button on the IUT, etc.

For these messages the strMmiText contains instructions about the action that is needed.

If the action can be successfully completed, the return value from ImplicitSendStyle() should be a pointer to a character
string such as “OK”. The actual contents of the string don’t matter. Please be sure to take a look at Implicit Send functions
for important information about the “scope” of the string that is returned.

Successful completion is indicated in the default Implicit Send DLL when the user presses the OK, Yes, Retry or Ignore
buttons.

If the operation cannot be completed, or the proper response to an action is to indicate that it did not happen,
ImplicitSendStyle() should return a NULL pointer.

“Request for data input” message type

This message style is used when information is needed from the test environment, and that information is not available
until after the test case begins execution. For example, the Passkey Entry association model in Secure Simple Pairing
requires that one device display a six digit number. The number must be entered on the other device to complete the
association process. The number itself is random and is not generated until the Secure Simple Pairing process begins.

Automating

63

strMmiText describes the information that is being requested.

The return value from ImplicitSendStyle() should be a pointer to a character string containing the requested data, if the
data is available. If the requested data is not available, or an error occurs, a NULL pointer should be returned.

As has been noted above, the string pointed at by the return value should not be allowed to go out of scope. (Implicit
Send functions.)

“Select item from a list” message type

For this message strMmiText contains a list of strings separated by newline characters. (C/C++: ‘\n’, ASCII code 0x0A.)
The first string in the list contains the instructions to the user. The rest of the strings provide a list values for selection. The
list is ended by an empty line.

For example, strMmiText may contain the following information

“{<message tag>}Please select a device.\nmyPhone\nmyLaptop\nmyPda\n\n”

The first item in the list (“Please select a device.”) indicates that a list of devices follows and that one of the devices should
be selected. There are three devices in the list: ”myPhone”, “myLaptop”, and ”myPda”.

The items in the list are separated by newline characters, indicated as ’\n’ above. The extra ’\n’ at the end of the string
marks the end of the list.

The expected return value is a pointer to a string containing one of the values from the list. A NULL pointer should be
returned in case of error or if none of the values are appropriate at that point in the test.

Printed Documentation

64

The string to be returned will need to be a copy of one of the items in the list. Returning a pointer to the first character of
one of the items in the list will not work since there is additional information (new lines and other items) following the
selection. The copy is subject to the data scoping concerns mentioned in Implicit Send functions.

Software build requirements

It was mentioned earlier (Basic information) that Implicit Send DLLs must be written in C++. A few additional requirements
need to be considered when starting the development of an Implicit Send DLL.

• Microsoft Visual C++ must be used. C++ objects such as std::string are not guaranteed to be implemented the
same way in every compiler. Mixing definitions is a recipe for trouble.

• Microsoft Visual C++ 2008/Visual Studio 2008 must be used for development of a custom Implicit Send DLL.
Subtle runtime issues can occur when mixing different versions of the Visual C++ runtime environment.

In particular, Visual C++ 2010 has been found to produce an Implicit Send DLL that does not work with PTS.

• The PTS Team suggests that custom DLLs be built in the “Release” configuration. Data structures and
dynamically allocated memory may be laid out differently between “Debug” and “Release” configurations. (The
“Debug” versions may contain extra elements to assist in the debugging process.) It is rarely a good idea to mix
“Release” and “Debug”.

Note that it is possible to use the Visual Studio Debugger on executables and DLLs that are built in the “Release”
configuration. A few small changes may be needed to the Visual Studio project configuration to enable this functionality.
Please contact PTS Technical Support for more information.

The requirements above are a result of the development environment used by the PTS Team. The Team uses Microsoft
Visual C++ 2008 and the PTS executables and DLLs are built in the “Release” configuration.

Activating a Custom Implicit Send DLL

Activating a custom Implicit Send DLL

Once a custom Implicit Send DLL has been created, it is a fairly simple matter to start using it with PTS. The DLL may be
attached to a test suite selected by a PTS project via the Project Settings dialog.

Begin the process by selecting the desired project (test suite) in the Workspace Tool Window. Right click on the top level
node of the project and select “Settings” from the menu that appears.

Automating

65

At the bottom of the Project Settings menu is a section labeled “User Defined Implicit Send DLL”. Normally the box
labeled “Use” is unchecked. When this box is unchecked the test suite will use the default Implicit Send DLL provided by
PTS.

Place a check mark in the “Use” box. This will cause the text box and browse button to become active. Enter the path to
the custom Implicit Send DLL in the text box or browse button (“…”) to locate the DLL. After the DLL has been selected,
press the OK button to record the change.

Printed Documentation

66

The custom Implicit Send DLL will be used starting with the next test case that is executed in the project.

Usage Notes

• The custom Implicit Send DLL may be disabled at any time by returning to the Project Settings page and
removing the checkmark from the box labeled “Use”.

• The procedure above attaches a custom DLL to one and only project in a single workspace. The process must
be repeated to use the DLL with other projects in the same workspace, or, with the same test suite (project) in a
different workspace.

Technical Tidbits

Automatic dismissal of Implicit Send requests

At various points during the execution of a test, the test case implementation can detect that an action requested via
Implicit Send has occurred. When this happens, the test case may attempt to complete the ImplicitSendStyle() or
ImplicitSendPinCode() operation that is in progress.

This most commonly occurs with messages using MMI_Style_Ok_Cancel2. These messages tend to be “transient”, for
example, “Using the IUT, make a connection to the PTS”. For these types of actions, there is no need to require operator
interaction with PTS. The operator can simply take whatever steps are necessary on the IUT to cause the connection to
happen; the test case can then detect the connection and take down the dialog.

The mechanism used to do this is to send simulated button presses to a dialog whose title is “User Action Required”. This
works very well with the default Implicit Send DLL because all of the dialogs it displays are titled “User Action Required”.

This however may not work very well with custom Implicit Send DLLs – especially ones that have no need to create popup
dialogs. The test case will send the simulated button presses, but no one – most specifically the functions in the custom
DLL – will be listening.

This situation may not be as bad as it seems. In all likelihood the IUT also knows that the requested action has taken
place and would normally notify the user of the device. When the user of the device is replaced with an automation test
platform, the platform can detect the situation and notify the custom Implicit Send DLL.

If it turns out that a custom DLL needs to know when the simulated button presses occur, it could create a hidden window
whose title is “User Action Requested”. This would allow the delivery of the simulated button presses to the custom
Implicit Send DLL.

Automating

67

For more information about the simulated button presses, please contact PTS technical support.

ImplicitSend() function

Earlier versions of PTS used a function called ImplicitSend(). This function has been replaced by ImplicitSendStyle() and
is no longer used by the PTS.

TSPX_use_implicit_send

Most test suites have a IXIT value named TSPX_use_implicit_send which is used to enable or disable the Implicit Send
functionality. Normally the value of this item is TRUE indicating that Implicit Send is to be used.

Setting the value to FALSE will disable Implicit Send for both user developed DLLs and the PTS default DLL.

The value of TSPX_use_implicit_send should be checked whenever it appears that the Implicit Send functionality is not
working at all.

Sample Source Code

The PTS installation has a folder containing source code that may be used as a reference during development of a
custom Implicit Send DLL. The source code itself is the complete source for the default Implicit Send DLL that is normally
used by PTS. A Visual Studio project is included making it possible to build and execute the sample.

Of particular interest is implicit_send.cpp. In addition to the functions it provides, there are notes for an alternate
implementation that connects to an automated test platform via TCP/IP.

The sample may be found under custom\implicit_send in the PTS installation folder. The default path to this location is

C:\Program Files\Bluetooth SIG\Bluetooth PTS\Custom\implicit_send

One DLL or many DLLs?

The tag data in the Implicit Send messages makes it possible to use the same DLL for more than one profile since each
message is uniquely identified by <message number>, <currently executing test case>, and <currently active test suite>.
(Message Tags)

It may be convenient to develop one Implicit Send DLL for all uses and use the test suite name in the message tag to
know which profile is requesting assistance. On the other hand, a single DLL may be more complicated to construct and
maintain, suggesting that a custom DLL for each test suite might be more appropriate.

The point to keep in mind is that PTS can support either design decision – developers of custom Implicit Send DLLs are
not locked into one way or the other.

Hybrid environments

It may be desirable to replace some, but not all, of PTS’s default Implicit Send handling. This is possible by doing the
following:

• Create a custom Implicit Send DLL.

• In the custom DLL, InitImplicitSend() could dynamically load the default DLL using the Windows LoadLibrary()
and GetProcAddress() API functions.

• When a message arrives at ImplicitSendStyle() in the custom DLL, the function could look at the message tag
and decide whether or not it wants to handle the message. If the custom ImplicitSendStyle() does not want to
handle the message, it could call ImplicitSendStyle() in the default DLL using the same parameters.

Printed Documentation

68

The return value from the default DLL would then become the return value for the custom DLL.

69

Extended Automating

Automating PTS
The Profile Tuning Suite (PTS) offers three features which can be used in automated testing:

1. “Operator-less Operation” allows the interactive prompts that appear during the execution of a test case to be
processed by user written software which can inspect each message and take appropriate action.

2. This feature can be used with either of the following program control features and is described in the
“Automating – Using Implicit Send” reference document.

3. “Scripted Operation” where a set of test cases can be selected and run as a group. The group can be executed
as needed, or scheduled for execution at a later time.

4. The "Scripting" reference document describes this feature.

5. “Fully Automated Operation” – PTS provides an Application Programming Interface (API) which allows complete
control of the software. User written programs can take advantage of the API in order to open Workspaces,
select Projects, execute Test Cases, and many other functions.

This document describes “Fully Automated Operation”.

"Fully Automated Operation"
Completely unattended operation of PTS can be achieved by using the PTS Control API. There are three parts to “Fully
Automated Operation”:

1. PTS.exe: The main application program for the Profile Tuning Suite. It accepts calls from user written programs
that use the PTS Control API and takes the appropriate action;

2. Client Application: An application program written by a PTS user that makes use of the PTS Control API in
order to have PTS carry out various functions. The PTS Control API portion of a Client Application may be part
of a larger program that interfaces to a test system platform that has the capability of also controlling the
Bluetooth device that is being tested;

3. PTSControl.dll: A Windows Dynamic Link Library (DLL) that provides the PTS Control API interface and data
type information to the Component Object Model (COM) manager. This information is normally registered with
COM during the installation of PTS.

The PTS Control API is implemented using Microsoft’s Component Object Model (COM) which means that any Windows
based programming language that supports COM can be used to develop the Client Application. Some test system
platforms also support the use of COM directly, eliminating the need to create a separate Client Application program.

A C/C++ header file (PTSControl.h) is provided for developers using Microsoft’s Visual C or Visual C++. The information
in the file can be used as a guideline for developing the proper COM interface declarations for other programming
languages or COM enabled applications.

A sample Client Application – PTSControlClient – is also provided as part of the PTS installation. This application, written
in Visual C++, exercises many of the functions available in the API. It can be a valuable reference when developing your
own Client Applications.

The source code for PTSControlClient, the PTSControl.h file, and Visual Studio (2008) build files are located in the

C:\Program Files\Bluetooth SIG\Bluetooth PTS\Custom\PTSControlClient

folder in the PTS installation.

Printed Documentation

70

PTS and the PTS Control API
PTS needs to be started in COM Server mode in order to allow Client Applications access to the PTS Control API. A
normal execution of PTS is not in COM Server mode and will likely cause the Client Application to fail when it attempts to
connect to the Server.

When PTS is started in COM Server mode the User Interface will appear. Users should pretend that it is not there as
interactions with the User Interface can interfere with the PTS Control API.

There are two ways to start PTS in COM Server mode:

1. Do nothing.

After the Component Object Model has been initialized (via CoInitialize() or CoInitializeEx()) the Client Application
needs to create an instance of the IPTSControl COM object by calling the Windows API function
CoCreateInstance().

The call to CoCreateInstance() will start PTS in COM Server mode (as long as PTS is not currently running.)

If PTS is currently running and is in COM Server Mode, the call to CoCreateInstance() will simply connect to the
running instance.

2. Start PTS manually.

PTS can be started in COM Server mode from a command prompt by adding the flag “-autotest” to the end of the
command line.

“C:\Program Files\Bluetooth SIG\Bluetooth PTS\bin\PTS.exe” –autotest

General Usage
The following points should be kept in mind while using the PTS Control API:

• C and C++ programs should include “PTSControl.h” to get the interface definitions, error codes and other
information.

• The Windows API function CoInitialize() (or CoInitializeEx()) must be called before using any functions from the
API.

• All functions return an HRESULT value. Data that may be returned from a particular function will be returned via
the function’s parameter list.

• All text string parameters used by the API are in the wide character (Unicode UTF-16) format. The Client
Application should generally be built using wide character strings. When this is not possible, Windows API
routines such as MultiByteToWideChar() and WideCharToMultiByte() should be used to convert strings being
sent to or received from the API to the wide character format.

All string parameters are assumed to “C-style”, that is, terminated with a NUL character (ASCII value 0x0000).

• There are no data values being passed over the API that are allocated in one context (such as PTS.exe) and
deallocated in the other (the Client Application)Additionally, there are no C++ objects used by the interface.

This means that it is safe to use a Debug configuration build of a Client Application with the PTS Control API.
(PTS.exe, which contains the PTS Control API, is built using the Release configuration.)

Extended Automating

71

Functions in the PTS Control API

Opening/Creating a Workspace

The first step in using the PTS Control API is to open or create a Workspace. An open workspace is needed for all of the
Project and Test Case related functions in the API.

CreateWorkspace()

Declaration: HRESULT CreateWorkspace(ULONGLONG ullBthAddr, LPCWSTR pszPathOfPtsFile, LPCWSTR
pszWorkspaceName, LPCWSTR pszWorkspacePath);

Parameters:
ullBthAddr: A 64 bit unsigned integer that contains the Bluetooth Device Address (BDADDR) of the
Implementation Under Test (IUT).

 Note that a 64 bit value is used even though a BDADDR is only 48 bits in length. The BDADDR is located in
the least significant 48 bits (six bytes) and the upper two bytes must have a value of 0x0000.

pszPathOfPtsFile: A Unicode character string that contains the path to a ICS file describing the features of
the IUT that was previously exported from the Test Plan Generator (TPG)/Qualified Listing Interface (QLI).

 The use of a full file path is recommended since the name is processed by the running instance of PTS. The
instance of PTS may have a different current working directory than the Client Application.

 pszWorkspaceName: A Unicode character string containing the name of the Workspace to be created. This
is just the name of the Workspace, not a file path to the intended Workspace location.

pszWorkspacePath: A Unicode character string containing the path to the folder where the new Workspace
should be created. The new Workspace will be created in a subfolder of this location, with the name of the
subfolder coming from the pszWorkspaceName parameter

 The folder path must exist before making this call, PTS will not create any folders that are missing from the
path specification.

The use of a full path to the folder is recommended since it is processed by the running instance of PTS.
The instance of PTS may have a different current working directory than the Client Application.

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see section
7 (“API Error Codes”).

Printed Documentation

72

Use this function to create a new Workspace from a set of ICS values exported from the TPG/QLI. The exported file
contains all of the ICS items declared for a given device, some of which may not be applicable to PTS.

A Project will be created in the Workspace for each Profile or Protocol available in the current installation of PTS. Any
Profile or Protocol not available in the current installation will be ignored.

The BDADDR of the IUT may not be known at the time the workspace is created. In this case, use any convenient value
and update it later using the UpdateIXITParam() function.

OpenWorkspace()

Declaration HRESULT OpenWorkspace(LPCWSTR pszPathOfWorkspace);

Parameters: pszPathOfWorkspace: A Unicode character string containing the path to the Workspace to be opened. The
name of the Workspace file will be “<workspace name>.pqw” in the “root” of the Workspace folder.

 The use of a full path for the Workspace file is recommended since it is processed by the running instance
of PTS. The instance of PTS may have a different current working directory than the Client Application.

Return
Values A value greater than or equal to zero if successful.

 A value less than zero if not successful. For a list of error codes specific to the PTS Control API see section
7 (“API Error Codes”).

Use OpenWorkspace() to open an existing Workspace and load all of the Projects found therein.

Working with Projects

Once a Workspace has been opened, the following functions may be used to obtain information about the available
Projects.

GetProjectCount()

Declaration: HRESULT GetProjectCount(UINT* pcProjects);

Parameters pcProjects: A pointer to a 32 bit unsigned value that will receive the number of Projects (Test Suites) that
are available in the current Workspace.

Return
Values

 A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API

Extended Automating

73

Error Codes.

This function returns the number of Projects that are available in the current Workspace. This count can be used as the
upper boundary when using GetProjectName() in a loop to acquire the names of the available Projects.

GetProjectName()

Declaration HRESULT GetProjectName(UINT iProject, LPWSTR* ppszProjectName);

Parameters iProject: The zero based index to a Project in the currently open Workspace.

ppszProjectName: A pointer to a Unicode string pointer that will receive the address of the name of the
selected Project.

 The actual pointer should be initialized to NULL before making this call.

Return
Values

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

GetProjectName() returns a pointer to the name of a selected Project in the current Workspace. The Project is selected by
the iProject value which must be less than the value returned by GetProjectCount().

ppszProjectName is a pointer to a Unicode character string and should be initialized to NULL before calling
GetProjectName(). The pointer is filled in by GetProjectName() with the address of the string containing the Project name.
The contents of the string pointed at by ppszProjectName should not be modified.

Example:

LPWSTR pszProjectName;

pszProjectname = NULL;

<interface pointer>->GetProjectName(0, &pszProjectName);

Upon return from GetProjectName(), pszProjectName will point at the name of the selected Project and can be used as

wprintf(L”The Project name is %s\n”, pszProjectName);

GetProjectVersion()

Declaration: HRESULT GetProjectVersion(LPCWSTR pszProjectName, DWORD* pProjVersion);

Printed Documentation

74

Parameters
pszProjectName: A Unicode character string that contains the name of a Project that is available in the
current Workspace.

 The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

 pPTSVersion: A pointer to a 32 bit unsigned integer that receives the version number of the specified
Project.

Return
values

A value greater than or equal to zero if successful.

A value less than zero if not successful.

 For a list of error codes specific to the PTS Control API see API Error Codes.

Returns the version of a named Project (Test Suite) as a four byte value packed into a 32 bit unsigned integer. Each byte
represents one piece of a standard Windows version number:

• Byte 3: Major version number

• Byte 2: Minor version number

• Byte 1: Update release number

• Byte 0: Build sequence number

For example, for a Test Suite whose version number is 7.5, update 0, build number 4 (7.5.0.4), the value returned from
GetProjectVersion() would be 0x07050004.

Working with Test Cases

After a Workspace has been opened, information about the Test Cases available in a given Project can be obtained, and
Test Cases may be executed using these functions.

GetTestCaseCount()

Declaration: HRESULT GetTestCaseCount(LPCWSTR pszProjectName, UINT* pcTestCases);

Parameters: pszProjectName: A Unicode character string that contains the name of a project that is available in the
current Workspace.

 The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

pcProjects: A pointer to a 32 bit unsigned value that will receive the number of Test Cases that are
available in the selected Project.

Extended Automating

75

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function returns the number of Test Cases that are available in the specified Project. This count can be used as the
upper boundary when using GetTestCaseName() and GetTestCaseDescription() in a loop to acquire the names and
descriptions of the available Test Cases.

GetTestCaseName()

Declaration:
HRESULT GetTestCaseName(LPCWSTR pszProjectName, UINT iTestCase,

LPWSTR* ppszTestCaseName);

Parameters:
pszProjectName: A Unicode character string that contains the name of a Project that is available in the
current Workspace.

 The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

 iTestCase: The zero based index to a Test Case in the selected Project.

 ppszTestCaseName: A pointer to a Unicode string pointer that will receive the address of the name of the
selected Test Case.

 The actual pointer should be initialized to NULL before making this call.

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

GetTestCaseName() returns a pointer to the name of a selected Test Case in a given Project. The Test Case is selected
by the iTestCase value which must be less than the value returned by GetTestCaseCount().

ppszTestCaseName is a pointer to a Unicode character string and should be initialized to NULL before calling
GetTestCaseName(). The pointer is filled in by GetTestCaseName() with the address of the string containing the Test
Case name. The contents of the string pointed at by ppszTestCaseName should not be modified.

Example:

LPCWSTR pszProjectName = L”IOPT”:

LPWSTR pszTestCaseName;

pszTestCaseName = NULL;

Printed Documentation

76

<interface pointer>->GetTestCaseName(pszProjectName, 0, &pszTestCaseName);

Upon return from GetTestCaseName(), pszTestCaseName will point at the name of the selected Test Case and can be
used as

wprintf(L“The Test Case at index %u in Project %s is s\n”,

0, pszProjectName, pszTestCaseName);

GetTestCaseDescription()

Declaration
HRESULT GetTestCaseDescription(LPCWSTR pszProjectName, UINT iTestCase,

LPWSTR* ppszTestCaseDesc);

Parameters pszProjectName: A Unicode character string that contains the name of a Project that is available in the
current Workspace.

The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

 iTestCase: The zero based index to a Test Case in the selected Project.

 ppszTestCaseDesc: A pointer to a Unicode string pointer that will receive the address of the description of
the selected Test Case.

 The actual pointer should be initialized to NULL before making this call.

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

GetTestCaseDescription() returns a pointer to the description of a selected Test Case in a given Project. The description
is the same information that is returned by the PTS User Interface when right-clicking on a Test Case and selecting “Show
Purpose”. It is usually the first paragraph or so from the definition of the corresponding Test Purpose in the applicable test
specification.

The Test Case is selected by the iTestCase value which must be less than the value returned by GetTestCaseCount().

ppszTestCaseDesc is a pointer to a Unicode character string and should be initialized to NULL before calling
GetTestCaseDescription(). The pointer is filled in by GetTestCaseDescription() with the address of the string containing
the Test Case description. The contents of the string pointed at by ppszTestCaseDesc should not be modified.

Example:

LPCWSTR pszProjectName = L”IOPT”:

LPWSTR pszTestCaseDesc;

pszTestCaseName = NULL;

Extended Automating

77

<interface pointer>->GetTestCaseDescription(pszProjectName, 0,

&pszTestCaseDesc);

Upon return from GetTestCaseDescription(), pszTestCaseDesc will point at the name of the selected Test Case and can
be used as

wprintf(L“The description for the Test Case at index %u in Project %s is s\n”,

0, pszProjectName, pszTestCaseDesc);

IsActiveTestCase()

Declaration:
HRESULT IsActiveTestCase(LPCWSTR pszProjectName, LPCWSTR pszTestCase,

BOOL* pbIsActive);

Parameters:
pszProjectName: A Unicode character string that contains the name of a Project that is available in the
current Workspace

 The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface

 pszTestCase: A Unicode character string that contains the name of a TestCase in the specified Project.

 The Test Case name is case sensitive and must match the name shown in the “TestCaseView” window of
the PTS User Interface

 pbIsActive: A pointer to BOOL value that will receive the state of the Test Case

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function returns TRUE via pbIsActive if the selected Test Case is active (enabled) in the specified Project. False is
returned via pbIsActive if the Test Case is not active (disabled).

RunTestCase()

Parameters: HRESULT RunTestCase(LPCWSTR pszProjectName, LPCWSTR pszTestCase);

Declarations:
pszProjectName: A Unicode character string that contains the name of a Project that is available in the
current Workspace.

Printed Documentation

78

The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

 pszTestCase: A Unicode character string that contains the name of a TestCase in the specified Project
that is to be executed.

 The Test Case name is case sensitive and must match the name shown in the “TestCaseView” window of
the PTS User Interface.

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

RunTestCase() executes the specified Test Case. The return value is the status of the RunTestCase() function call itself
and not the final verdict from the Test Case.

To get the final verdict of the Test Case, along with the other execution log information, a logging function must be
connected to the PTS Control API. See Logging and unattended operation for more information.

StopTestCase()

Declaration: HRESULT StopTestCase();

Parameters: None.

Return value: PTSCONTROL_E_FUNCTION_NOT_IMPLEMENTED

StopTestCase() is not currently implemented and calls to it will always return the status code above.

Working with ICS and IXIT data

UpdateICS()

Declaration:
HRESULT UpdateICS(LPCWSTR pszProjectName, LPCWSTR pszEntryName,

BOOL bValue);

Parameters:
pszProjectName: A Unicode character string that contains the name of a Project that is available in the
current Workspace.

 The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

Extended Automating

79

 pszEntryName: A Unicode character string that contains the name of a ICS item defined in the specified
Project that is to be updated.

The ICS item name is case sensitive and must match the name shown in the ICS editor dialog of the PTS
User Interface.

 bValue: The new value for the ICS item.

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function updates the value of a ICS item for the selected Project. The value may be set to TRUE or FALSE as
appropriate.

UpdateIXITParam()

Declaration:
HRESULT UpdateIXITParam(LPCWSTR pszProjectName, LPCWSTR pszParamName,

LPCWSTR pszNewParamValue);

Parameters: pszProjectName: A Unicode character string that contains the name of a Project that is available in the
current Workspace.

 The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

pszEntryName: A Unicode character string that contains the name of a IXIT item defined in the specified
Project that is to be updated.

 The IXIT item name is case sensitive and must match the name shown in the IXIT editor dialog of the PTS
User Interface.

 pszNewParamValue: A Unicode character string that contains the new value to be assigned to the
specified IXIT item.

 See the table below for restrictions on the contents of this string.

Printed Documentation

80

Return
values:

Return values: A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function updates the value of a IXIT item for the selected Project. IXIT items have data types associated with them.
This means that the pszNewParamValue string must only contain characters that are appropriate for the associated data
type.

Data Type Legal Characters For The New Value

BITSTRING 0, 1

BOOLEAN The words TRUE or FALSE (case sensitive)

IA5STRING No restrictions

INTEGER Decimal digits 0 to 9

OCTETSTRING Hexadecimal “digits” 0 to 9 and A to F (“A” to “F” must be
upper case)

Logging and unattended operation

During normal operation PTS sends informational output to the Test Case execution log in the upper right hand corner of
the PTS User Interface. Client Application programs may take over this functionality and divert the log output to a function
within the application.

Additionally, at various points during the execution of a Test Case, PTS will display dialog boxes prompting the test
operator to take an action. There are two ways to remove the test operator and replace them with user written code:

1. Develop a custom Implicit Send DLL as described in the “Automating – Using Implicit Send” reference
document.

2. Use the functions provided in the PTS Control API to divert the operator prompts to the Client Application.

Logging

There are two steps necessary to divert the test case execution log to a Client Application application. The first is to create
a COM based object derived from IPTSControlClientLogger. The object needs to implement the following functions that
are needed by the Component Object Model:

• AddRef()

Extended Automating

81

• Release()

• QueryInterface()

In addition, the object needs to implement a function called Log() which will be called every time that PTS would normally
send something to the Test Case execution log window.

The second step to diverting the execution log is to provide an instance of the IPTSControlClientLogger derived object to
the PTS Control API via the SetControlClientLoggerCallback() function.

IPTSControlClientLogger::Log()

Declaration:
HRESULT Log(PTS_LOGTYPE logType, LPCWSTR szLogType, LPCWSTR szTime,

LPCWSTR pszMessage);

Parameters: logType: The type of the logging event. See the table below.

 szLogType: A Unicode character string that contains the name of the Test Case event being logged.

szTime: A Unicode character string that contains the time of the event being logged. The time is a value in
milliseconds from the start of the Test Case execution.

 pszMessage: A Unicode character string that contains the information about the event that is being logged.

Return
values:

The user implementation of this function should return a value greater than or equal to zero if successful.

The user implementation of this function should return a value less than zero if not successful.

The three character strings passed to the Log() function contain the three pieces of information that are normally shown in
the Test Case execution log window in the PTS User Interface. These strings may be used to create log output that looks
just like the information displayed in the Test Case execution window. For example, the following event might be
displayed in the Test Case execution log window:

+3666 ms

Receive event:

:[3]HCI?HCI_READ_LOCAL_VERSION_INFORMATION_COMPLETE_EVENT=PDU:{

status:HCI_OK,

hciVersion:4,

hciRevision:5360,

lmpVersion:4,

manufacturerName:10,

lmpSubversion:5360

Printed Documentation

82

}

The corresponding character strings passed to the Log() function would be:

szTime

szLogType: pszMessage

The szTime string starts with a blank line that is used in the User Interface to provide a visual break between logged
events.

pszMessage includes leading spaces for each line after the first one. This is used to provide the indentation of the
message information in the PTS User Interface.

The values for the logType parameter are found in PTSControl.h and are listed here:

logType Value Usage

PTS_LOGTYPE_INFRASTRUCTURE This type is used for log messages from the PTS Control API that normally
would not appear in the Test Case Execution log.

PTS_LOGTYPE_START_TEST The "Start Test Case" event that is logged when a Test Case begins
executing.

PTS_LOGTYPE_END_TEST The "Test Case ended” event that is logged when a Test Case has
completed execution.

PTS_LOGTYPE_IMPLICIT_SEND Not currently used in PTS. The value however is used in the
PTSControlClient sample program.

PTS_LOGTYPE_ERROR
An “Error” event logged when an executing Test Case has encountered an
internal problem.

PTS_LOGTYPE_SEND_EVENT
“Send event”s are used to log data being sent from the PTS to the
Implementation Under Test (IUT) or to an internal component of the currently
executing Test Case.

PTS_LOGTYPE_RECEIVE_EVENT
"Receive event"s are used to log data received from the Implementation
Under Test (IUT) or from an internal component of the currently executing
Test Case.

PTS_LOGTYPE_FINAL_VERDICT The “Final Verdict” of the Test Case execution. The result of the Test Case
execution – PASS, FAIL, etc – can be found in the pszMessage string.

PTS_LOGTYPE_PRELIMINARY_VERDICT

At various points during Test Case execution, a Test Case will issue a
“Preliminary Verdict”. The most negative verdict issued becomes the “Final
Verdict” of the Test Case.

“Preliminary Verdict” messages can be used to determine at what point
during execution that a Test Case failed.

PTS_LOGTYPE_EVENT_SUMMARY

At various points during Test Case execution, a Test Case will issue a
“Verdict Description” that is placed in the both the execution log and Output
window in the lower left hand corner of the PTS User Interface.

PTS_LOGTYPE_EVENT_SUMMARY is used to indicate those messages.

PTS_LOGTYPE_MESSAGE This type is used for any log data that is not covered by one of the above.
This is the majority of the output in the Test Case execution log.

Extended Automating

83

SetControlClientLoggerCallback()

Declaration: HRESULT SetControlClientLoggercallback(IPTSControlClientLogger* pLogger);

Parameters: pLogger: A pointer to an instance of an IPTSControlClientLogger based COM object as described above.

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function hooks the “logger” object to the PTS Control API. After this function has been called, Test Case execution
log data will be sent to the Log() function instead of the PTS User Interface.

Unattended operation

Most Test Cases in PTS assume that a test operator is available to perform various actions on the IUT and to confirm that
events have occurred. “Unattended operation” allows the test operator to be replaced by user written software.

The prompts to the test operator are referred to as “MMI”s in the PTS documentation. The feature that presents the MMIs
to the operator is commonly referred to as “Implicit Send”.

As mentioned earlier, there are two forms of unattended or “Operator-less Operation”. One such method is to create a
custom Implicit Send DLL to replace the one normally supplied with PTS. This is discussed in the "Automating - Using
Implicit Send" reference document.

An alternative is to use the Implicit Send support provided by the PTS Control API. This support allows the Client
Application to process the various MMIs.

There are three steps necessary to divert the various MMIs to the Client Application.

1. Create a COM based object derived from either IPTSImplicitSendCallbackEx or IPTSImplicitSendCallback.

The IPTSImplicitSendCallbackEx object was added in PTS version 4.6 to address some limitations with in the
IPTSImplicitSendCallback object. New Client Applications should use the IPTSImplicitSendCallbackEx object.

The IPTSImplicitSendCallback object is provided for backwards compatibility with existing Client Applications,
though it is highly recommended that existing Applications be upgraded to use IPTSImplicitSendCallbackEx.

2. Implement a callback function that PTS Control API will invoke whenever an MMI occurs.

3. Register the callback function with PTS Control API.

IPTSImplicitSendCallbackEx object

The IPTSImplicitSendCallbackEx object needs to implement the following functions that are needed by the Component
Object Model:

• AddRef()

• Release()

• QueryInterface()

In addition, the object needs to implement a function called OnImplicitSend() which will be called every time that PTS
would normally use Implicit Send to popup a prompt message for the test operator.

Printed Documentation

84

Finally, an instance of the IPTSImplicitSendCallbackEx derived object needs to be registered with the PTS Control API via
the RegisterImplicitSendCallbackEx() function.

IPTSImplicitSendCallbackEx::OnImplicitSend()

Declaration:

HRESULT OnImplicitSend(LPCWSTR pszProjectName, WORD wID,

LPCWSTR pszTestCase,LPCWSTR pszDescription, DWORD style,

LPWSTR pszResponse, DWORD responseSize, BOOL* pbResponseIsPresent)

Parameters: pszProjectName: A Unicode string containing the name of the Project that contains the currently executing
Test Case.

 wID: An unsigned 16 bit value that uniquely identifies the MMI in the Project.

 pszTestCase: A Unicode character string that contains the name of the currently executing Test Case.

 pszDescription: A Unicode character string that contains the prompt text that would normally be shown in a
popup dialog.

 style: An unsigned 32 bit value the identifies the style of the MMI. (See below)

pszResponse: A Unicode string buffer of size responseSize. The implementation of OnImplicitSend() will
copy the response text to be sent to the executing test case into this buffer.

 responseSize: The size of the pszReponse buffer.

 pbResponseIsPresent: A pointer to a Win32 BOOL that should be set to TRUE if response text has been
placed in the pszResponseBuffer, FALSE if no response text is being returned.

Return
values:

The user implementation of this function should return a value greater than or equal to zero if successful.

The user implementation of this function should return a value less than zero if not successful.

Every MMI used in the PTS Test Suites (Projects) contains a unique tag that identifies it. The actual text of the prompt
may change over time, but the unique tag (generally) will not. Client Applications can use the tag to identify a particular
MMI rather than counting on the contents of the prompt.

There are three parts to the unique tag:

1. wID: The MMI identifier.

Extended Automating

85

2. pszProjectName: wID values may be used for the different MMIs in different Projects. The combination of
(pszProjectName,wID) uniquely identifies the MMI for a specific project.

3. pszTestCaseName: At times, the response to a particular MMI may depend on the currently executing Test
Case. pszTestCaseName allows the same MMI to be used by different Test Cases within a given Project.

The style parameter to OnImplicitSend() provides direction about the contents of the first three parameters (wID,
pszProjectName, pszTestCaseName) along with an indication of the expected return value.

Style Name Value Message Type Buttons Displayed by the default Implicit Send DLL

MMI_Style_Ok_Cancel1 0x11041 Simple prompt
OK, Cancel

Default: OK

MMI_Style_Ok_Cancel2 0x11141 Simple prompt Cancel

MMI_Style_Ok 0x11040 Simple prompt OK

MMI_Style_Yes_No1 0x11044 Simple prompt
Yes, No

Default: Yes

MMI_Style_Yes_No_Cancel1 0x11043 Simple prompt
Yes, No, Cancel

Default: Yes

MMI_Style_Abort_Retry1 0x11042 Simple prompt
Abort, Retry, Ignore

Default: Abort

MMI_Style_Edit1 0x12040 Request for data input
OK, Cancel

Default: OK

MMI_Style_Edit2 0x12140 Select item from a list
OK, Cancel

Default: OK

MMI Styles contains a complete description of the various styles and the expected return values. “Automating – Using
Implicit Send” should be consulted for more information.

The data return mechanisms used by OnImplicitSend() differ slightly from the ImplicitSendStyle() API function described in
“Automating – Using Implicit Send”.

• Returning a “positive” response:

o ImplicitSendStyle() returns a pointer to a character string.

o For OnImplicitSend(), the character string is copied into the pszResponse buffer. No more than
(responseSize – 1) characters should be copied into the buffer. (The -1 leaves room for the NUL
character that must terminate the response.

o Use of the wcscpy_s() function is recommended to make sure that no more than the
maximum number of characters are copied to the buffer.

Additionally, setting pbResponseIsPresent to TRUE will tell PTS that there is data in the
pszResponseBuffer.

For example, to return a value of “OK”:

Printed Documentation

86

wcscpy_s(pszResponse,responseSize,L"OK");

*pbResponseIsPresent = TRUE;

• Returning a “negative” response:

o ImplicitSendStyle() returns a NULL pointer.

o For OnImplicitSend(), a negative response is indicated by setting pbResponseIsPresent to FALSE.
When pbResponseIsPresent is FALSE, PTS will ignore the contents of the pszResponse buffer.

For example, to return a “negative” response:

*pbResponseIsPresent = FALSE;

RegisterImplicitSendCallbackEx()

Declaration: HRESULT RegisterImplicitSendCallbackEx(IPTSImplicitSendCallbackEx* pCallback

Parameters: pCallback: A pointer to an instance of an IPTSImplicitSendCallbackEx based COM object as described
above.

Return
values

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function hooks the Implicit Send handler object to the PTS Control API. After this function has been called, MMIs will
be sent to the OnImplicitSend() function instead of the PTS User Interface.

UnregisterImplicitSendCallbackEx()

Declaration: HRESULT UnregisterImplicitSendCallbackEx(IPTSImplicitSendCallbackEx* pCallback);

Parameters:
pCallback: A pointer to an instance of an IPTSImplicitSendCallbackEx based COM object as described
above.

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function disconnects the Implicit Send handler object from the PTS Control API. After this function has been called,
MMIs will once again be sent to the PTS User Interface.

IPTSImplicitSendCallback object

This object is provided for backwards compatibility with existing Client Applications and use of the
IPTSImplicitSendCallbackEx object is preferred.

Extended Automating

87

The IPTSImplicitSendCallback object needs to implement the following functions that are needed by the Component
Object Model.

• AddRef()

• Release()

• QueryInterface()

In addition, the object needs to implement a function called OnSend() which will be called every time that PTS would
normally use Implicit Send to popup a prompt message for the test operator.

Finally, an instance of the IPTSImplicitSendCallback derived object needs registered with the PTS Control API via the
RegisterImplicitSendCallback() function.

PTSImplicitSendCallback::OnSend()

Declaration:
HRESULT OnSend(LPCWSTR pszProjectName, WORD wID, LPCWSTR pszTestCase,

LPCWSTR pszDescription);

Parameters:
pszProjectName: A Unicode string containing the name of the Project that contains the currently executing
Test Case.

 wID: An unsigned 16 bit value that uniquely identifies the MMI in the Project.

pszTestCase: A Unicode character string that contains the name of the currently executing Test Case.

pszDescription: A Unicode character string that contains the prompt text that would normally be shown in a
popup dialog.

Return
values:

The user implementation of this function should return a value greater than or equal to zero if successful.

The user implementation of this function should return a value less than zero if not successful.

The four parameters for the OnSend() function are identical to the first four parameters of the OnImplicitSend() function
described above. Please refer to IPTSImplicitSendCallbackEx::OnImplicitSend() for more information about these
parameters.

Limitations with IPTSImplicitSendCallback::OnSend()

IPTSImplicitSendCallback::OnSend() has a few limitations that have been addressed by
IPTSImplicitSendCallbackEx::OnImplicitSend().

The Implicit Send feature uses an additional value that describes the presentation style of the MMI. The presentations
styles determine if the MMI should be presented with

Printed Documentation

88

• OK and Cancel buttons

• Only a Cancel button

• Yes and No buttons

• A data input dialog

• A list of choices from which one item may be selected

In addition, the MMI style defines the expected return value from the Implicit Send handler.

• The test operator’s choice of OK or Cancel, Yes or No.

• The test operator pressed the Cancel button for MMI styles that only include a Cancel button.

• Input typed into a dialog by the test operator.

• The item selected from the list of choices.

The MMI style is NOT passed to OnSend(). This means that a Client Application will not be presented with any of the
information listed above. The MMI style is supplied to OnImplicitSend().

OnSend() does not provide a mechanism to return a value other than “the OK button was pressed”. OnImplicitSend()
supports all of the expected return values noted above.

The return status from OnSend() should be greater than or equal to zero if the function completes successfully. A return
status less than zero indicates to the PTS Control API that the OnSend() function was not able to complete successfully.

In other words, the status value returned from OnSend() only indicates whether or not the function was successful, not a
particular value that should be returned from the list of possibilities given above.

RegisterImplicitSendCallback()

Declaration: HRESULT RegisterImplicitSendCallback(IPTSImplicitSendCallback* pCallback);

Parameters: pCallback: A pointer to an instance of an IPTSImplicitSendCallback based COM object as described
above.

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function hooks the Implicit Send handler object to the PTS Control API. After this function has been called, MMIs will
be sent to the OnSend() function instead of the PTS User Interface.

UnregisterImplicitSendCallback()

Declaration: HRESULT UnregisterImplicitSendCallback(IPTSImplicitSendCallback* pCallback);

Extended Automating

89

Parameters:
pCallback: A pointer to an instance of an IPTSImplicitSendCallback based COM object as described
above.

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function disconnects the Implicit Send handler object from the PTS Control API. After this function has been called,
MMIs will once again be sent to the PTS User Interface.

General information functions

GetPTSBluetoothAddress()

Declaration: HRESULT GetPTSBluetoothAddress(ULONGLONG* pullBdAddr);

Parameters: pullBdAddr: A pointer to a 64 bit unsigned integer that receives the BDADDR of the PTS endpoint device.

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function retrieves the Bluetooth Device Address (BDADDR) of the endpoint device that is being used by PTS.

A 64 bit value is returned even though a BDADDR is only 48 bits in length. The BDADDR is located in the least significant
48 bits (six bytes) and the upper two bytes will have a value of 0x0000.

It should be noted that the Bluetooth Device Address may not be immediately available after PTS is started. During PTS
startup, a number of different things happen including communicating with the endpoint device to determine its BDADDR.
GetPTSBluetoothAddress() will return a status of PTSCONTROL_E_BLUETOOTH_ADDRESS_NOT_FOUND if it is
called too early.

The clientShowBdAddress() function in the PTSControlClient sample program demonstrates a way to handle this situation
by waiting up to 15 seconds for the BDADDR to become available.

GetPTSVersion()

Declaration: HRESULT GetPTSVersion(DWORD* pPTSVersion);

Parameters: pPTSVersion: A pointer to a 32 bit unsigned integer that receives the version number of PTS.exe.

Return
values:

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

Printed Documentation

90

Returns the version of PTS as a four byte value packed into a 32 bit unsigned integer. Each byte represents one piece of
a standard Windows version number:

• Byte 3: Major version number

• Byte 2: Minor version number

• Byte 1: Update release number

• Byte 0: Build sequence number

For example, for PTS version 4.5, update 2, build number 6 (4.5.2.6), the value returned from GetPTSVersion() would be
0x04050206.

Sample Program - PTSControlClient

Sample Program - PTSControlClient

PTSControlClient is provided as a part of PTS to serve as an example of using the PTS Control API. It is provided in both
source code form and as a ready to run executable.

The source code is found in

C:\Program Files\Bluetooth SIG\Bluetooth PTS\Custom\PTSControlClient

and the executable can be found at

C:\Program Files\Bluetooth SIG\Bluetooth PTS\bin\PTSControlClient.exe

Preparing to use PTSControlClient

There are two steps that need to be performed before using the PTSControlClient.

1. Creating a Workspace

The PTSControlClient does not demonstrate the CreateWorkspace() function. Instead, it needs a pre-existing Workspace.

To create the Workspace run PTS in the normal way and create a new workspace as usual. Or, if a suitable Workspace
already exists it can be used.

When the Workspace to be used is configured as needed, exit PTS so that PTSControlClient can launch it in COM Server
mode.

2. Create a Test Script

Note: The Test Script referred to here is specific to the PTSControlClient and should not be confused with the PTS Test
Scripting feature described in the "Scripting" reference document.

Test Scripts for the PTS Control Client are disk files formatted in XML. Any convenient method can be used to create a
Test Script – Notepad, an XML editor such as XML Notepad, Excel or any other mechanism that can be used to create a
text file in the XML format.

An example of a plain text PTSControlClient Test Script can be found at

C:\Program Files\Bluetooth SIG\Bluetooth PTS\Documentation\Automation\TestScriptSample.xml

For applications such as Excel, the Test Script can be edited and exported as XML data. As a starting point, open

Extended Automating

91

C:\Program Files\Bluetooth SIG\Bluetooth PTS\Documentation\Automation\TestScriptTemplate.xlsx

and follow the instructions.

Test Script format

• The contents of the script are enclosed in an “<AUTOMATION>”, “</AUTOMATION>” tag pair.

• The Test Script must be given a name that is enclosed in a “<Name>”, “</Name>” tag pair.

• The file path to the Workspace to be used is enclosed in a “<Workspace>”, “</Workspace>” tag pair. A full file
path should be used for the Workspace.

• Only one Workspace may be specified. If more than is present, only the first one is used.

• The name of a Project from the workspace is enclosed in a “<Testsuite>”, “</TestSuite>” tag pair.

• Only one Project may be specified. If more than is present, only the first one is used.

• Other tag pairs that may exist in the file are ignored. Specifically, the sample Test Scripts mentioned above
include a “<Version>”, “</Version>” tag pair but it is not currently used.

• Any number of Test Cases from the selected Project are enclosed in a “<Testcase>”, “</Testcase>” tag pair,
one for each Test Case. The Test Cases will be executed in order in which they appear in the file.

For example, script.xml may contain

<AUTOMATION>

<Name>SampleTest</Name>

<Workspace>C:\Program Files\Bluetooth SIG\My
Workspaces\Sample\Sample.pqw</Workspace>

<Testsuite>IOPT</Testsuite>

<Testcase>TC_COD_BV_01_I</Testcase>

<Testcase>TC_COD_BV_01_2</Testcase>

</AUTOMATION>

Running the Test Script

Once the Test Script is ready, it can be executed by running PTSControlClient, giving the name of the Test Script as a
command line parameter. The path to the Test Script does not need to be a full path since the file is only processed by the
PTSControlClient application.

“C:\Program Files\Bluetooth SIG\Bluetooth PTS\bin\PTSControlClient.exe” script.xml

API Error Codes
PTSCONTROL_E_GUI_UPDATE_FAILED (0x849C0001)

ICS and/or IXIT changes that result from calling UpdateICS() or UpdateIXITParam() need to be communicated to the
appropriate Executable Test Suite DLLs. This error occurs when the update process fails.

PTSCONTROL_E_PTS_FILE_FAILED_TO_INITIALIZE (0x849C0 002)

Printed Documentation

92

This error will be returned by CreateWorkspace() if the ICS file specified in the pszPathOfPtsFile is invalid or cannot be
found.

PTSCONTROL_E_FAILED_TO_CREATE_WORKSPACE (0x849C0003)

CreateWorkspace() will return this error code if there is a problem creating the Workspace.

PTSCONTROL_E_CLIENT_LOG_NOT_EXPECTED_TO_FAIL (0x849 C0004)

This error can be returned from RunTestCase() when a call to the “logger” function (IPTSControlClientLogger::Log())
returns a failure status.

PTSCONTROL_E_FAILED_TO_OPEN_WORKSPACE (0x849C0005)

OpenWorkspace() will return this status code when it is unable to open the Workspace specified in the
pszPathOfWorkspace parameter.

PTSCONTROL_E_PROJECT_NOT_FOUND (0x849C0010)

PTSCONTROL_E_PROJECT_NOT_FOUND is returned when the Project index value to GetProjectName() is out of
range, or by GetProjectVersion(), the Test Case functions, and the ICS/IXIT update functions when the named Project is
not in the Workspace.

PTSCONTROL_E_TESTCASE_NOT_FOUND (0x849C0011)

This value is returned when the Test Case index value to GetTestCaseName() or GetTestCaseDescription() is out of
range, or, when the Test Case name supplied to IsActiveTestCase() does not exist.

PTSCONTROL_E_TESTCASE_NOT_STARTED (0x849C0012)

Returned by RunTestCase() when it encounters a problem trying to start the execution of the specified Test Case.

PTSCONTROL_E_INVALID_TEST_SUITE (0x849C0013)

This value is returned from RunTestCase() or IsActiveTestCase() if the data for the selected Project is invalid in some
way.

PTSCONTROL_E_PTS_VERSION_NOT_FOUND (0x849C0014)

Returned by GetPTSVersion() when it is unable to determine the version of PTS.exe.

PTSCONTROL_E_PROJECT_VERSION_NOT_FOUND (0x849C0015)

Returned by GetProjectVersion() when the selected project is not present in the current Workspace.

PTSCONTROL_E_TESTCASE_NOT_ACTIVE (0x849C0016)

This value is returned from RunTestCase() when the selected Test Case is not active (disabled) in the selected Project.

PTSCONTROL_E_INVALID_IXIT_PARAM_VALUE (0x849C0020)

This value is returned from UpdateIXITParam() when the character string containing the new parameter value contains
characters that are not valid for the IXIT item data type.

This value is also returned for OCTETSTRING values that contain only hexadecimal characters, but are not of an even
length. (OCTETSTRINGs require two characters for each byte of data.)

PTSCONTROL_E_IXIT_PARAM_NOT_CHANGED (0x849C0021)

UpdateIXITParam() can return this error status when there is a problem updating a IXIT value.

PTSCONTROL_E_IXIT_PARAM_UPDATE_FAILED (0x849C0022)

Extended Automating

93

UpdateIXITParam() can return this error status when there is a problem updating a IXIT value.

PTSCONTROL_E_TEST_SUITE_PARAM_UPDATE_FAILED (0x849C 0022)

UpdateICS() or UpdateIXITParam() can return this error status when there is a problem updating a ICS or IXIT value.

PTSCONTROL_E_IXIT_PARAM_NOT_FOUND (0x849C0023)

UpdateIXITParam() returns this value when the specified IXIT item is not defined for the selected Project.

PTSCONTROL_E_ICS_ENTRY_UPDATE_FAILED (0x849C0030)

UpdateICS() can return this error status when there is a problem updating a ICS value.

PTSCONTROL_E_ICS_ENTRY_NOT_FOUND (0x849C0031)

UpdateICS() returns this value when the specified ICS item is not defined for the selected Project.

PTSCONTROL_E_ICS_ENTRY_NOT_CHANGED (0x849C0032)

UpdateICS() can return this error status when there is a problem updating a ICS value.

PTSCONTROL_E_IMPLICIT_SEND_CALLBACK_NOT_REGISTERED (0x849C0040)

This value is returned from UnregisterImplicitSendCallback() when no callback is currently registered.

PTSCONTROL_E_IMPLICIT_SEND_CALLBACK_ALREADY_REGISTE RED (0x849C0041)

This value is returned from RegisterImplicitSendCallback() when a callback is currently registered.

PTSCONTROL_E_IMPLICIT_SEND_CALLBACK_NOT_EXPECTED_TO _FAIL (0x849C0042)

This error can be returned from RunTestCase() when a call to the Implicit Send handler
(IPTSImplicitSendCallback::OnSend()) returns a failure status.

PTSCONTROL_E_BLUETOOTH_ADDRESS_NOT_FOUND (0x849C004 3)

GetPTSBluetoothAddress() will return this error if it is unable to determine the Bluetooth Device Address of the PTS
endpoint device. This usually means that the endpoint device is not connected to the computer or has the wrong device
driver attached to it.

On some occasions, this error may indicate that the call to GetPTSBluetoothAddress() occurred while PTS was still
initializing. In this case, wait about 10 to 15 seconds after starting PTS manually or via CoCreateInstance() before calling
GetPTSBluetoothAddress().

PTSCONTROL_E_INTERNAL_ERROR (0x849C0044)

This status value represents a general unspecified failure during a call to one of the PTS Control API functions.

Currently, only GetPTSBluetoothAddress() may returned this value, but other functions could use it in the future.

PTSCONTROL_E_FUNCTION_NOT_IMPLEMENTED (0x849C0099)

This status value is used by functions that are defined in the PTS Control API, and are available to be called, but have not
actually been implemented.

Currently, StopTestCase() is the only function the can be called but has no implementation.

Other error codes

E_NOINTERFACE (0x80004002)

Printed Documentation

94

This error is likely to be returned from CoCreateInstance() and probably indicates that the PTS Control API has not been
registered with the Component Object Module manager. To correct this error

1. Open a command prompt;

2. Set the current working directory to the program directory for PTS. In a normal installation this is

C:\Program Files\Bluetooth SIG\Bluetooth PTS\bin

3. Enter the following command

Regsvr32 PTSControl.dll

4. If a message box like the one at the right appears then the PTS Control API has been successfully registered with
COM.

If a different message appears, please contact PTS Technical support for additional assistance.

CO_E_SERVER_EXEC_FAILURE (0x80080005)

CoCreateInstance() is likely to return this error when PTS is currently running but was not started in COM server mode.
Exit the active instance of PTS and try the function again.

95

Report Generator

Introduction
The Profile Tuning Suite (PTS) can be used throughout the lifecycle of a Bluetooth enabled product. If a Bluetooth product
makes use of application profiles, then PTS must be used during the qualification of the product.

Many Bluetooth SIG members also use the PTS during initial software development and subsequent updates to a
product. Use of the PTS during development can ensure that the Bluetooth functionality is operating correctly as features
are added. The PTS is also useful in establishing baseline functionality that may be referred to later during regression
testing when the product software is modified or enhanced.

A series of tests for a device will produce a lot of information. After the tests are complete, the question becomes “What to
do with all of this data?”

PTS provides a report generator that can be used to consolidate the most useful information into a concise report.

Qualification test evidence

∗The qualification process for a Bluetooth device consists of a number of steps. Some of these steps are

• Using the Test Plan Generator (TPG) and the Qualification Listing Interface (QLI), describe the Bluetooth
features and functions that will be used by the device.

• Using the TPG, create a test plan that will be used to direct the testing of the device in order to demonstrate that
it properly supports each Bluetooth feature and function that is used.

• Execute the test plan to collect proof that the device complies which the Bluetooth specifications, and report the
results to the Bluetooth SIG using the QLI.

The reports produced by the PTS are in a format (XML) that can be processed by the QLI. The report generator in the
PTS knows what information must be included when reporting test results and what information can be left out. This
makes the use of the report generator quite convenient when it comes time to report the results of testing on a device.

In fact, because of this, results of qualification testing using the PTS must be submitted via a report created by the PTS
report generator.

Development checkpoints
There are various points in the development of a product where it is useful to exercise the functionality. Use of the PTS at
these times can ensure that the software in the device is tested the same way every time. In addition, the comparison of a
set of test results with a previous set of test results can highlight problems that may have been introduced as development
progressed.

Once again, the fact that the reports produced by the PTS report generator are in a computer readable format can be very
helpful. The XML formatted information in the report can be imported into a database for convenient manipulation,
analysis, and comparison.

Contents of a report
Each report produced by the PTS report generator contains test results for one project (“profile”). Multiple reports will need
to be created when a device supports more than one profile, as indicated by the presence of multiple projects in the PTS
workspace for the device.

Each report begins with the following information:

• The location where testing was performed and information about the person who performed the testing (referred
to as “user information”);

Printed Documentation

96

• A description of the device that was tested (referred to as a “device description”);

• An overview of the test environment.

(This last item is often required in reports to regulatory agencies or compliance management organizations.)

The next part of the report contains:

• A summary of each of the test cases that were executed;

• A listing of the ICS and IXIT settings that were used while the device was being tested.

The remainder of the report consists of test results. This may be in one or two sections:

• For each test execution included the report, the first section of test case results lists

o The test case name;

o When the test was performed;

o The result of the test execution (“verdict”);

o The version number of the test suite executable that was used;

o A summary of the test execution;

o Data referred to as the “Encrypted Verdict”.

The “Encrypted Verdict” is a summation of the above information that has been encrypted for reporting
purposes. Since this information cannot be changed, it is the primary evidence that a test case execution
concluded successfully.

• A second section of test results may be present. This section contains the detailed test execution log for each of
the test cases being reported on.

The inclusion the detailed logs is optional and is selected during the process of generating the report.

Creating a PTS Report
Once a series of tests have been run for a device, the process of creating a report is straightforward. The following steps
are used to create a test report.

1. Select a workspace

Select the PTS workspace that contains the test results for the device. This is done in the normal way using the “Open
Workspace…” or “Recent Workspaces” items on the “File” menu.

It is not necessary to select a project after selecting the workspace. The project to be used for the report will be selected
from the “Report” menu.

Report Generator

97

2. Start the report generator

In the Report menu, click Generate or press Ctrl + R.

3. First time use of the report generator

PTS will store information about the last person who created a report using the report generator. In addition, the
descriptions of devices for which reports have been created will also be stored.

When PTS is first installed on a new computer none of this information is present. The first time that the report generator
is used after a fresh installation of PTS, the software will ask for information about the person creating the report and the
description of the first device. This information can be edited later using features of the report generator main dialog.

Entering the initial user information

When using the report generator for the first time,fill out the information in the Report tab as completely as possible.

Printed Documentation

98

After entering the information, you can select a product from the Product drop down menu, or select the Products tab to
enter information about the product.

Entering the description of the first device

The report generator needs at least one device description in order to generate a report. After entering the initial user
information as described in the previous section, click the Products tab.

Enter the “Name” of the device and any other information as needed. When finished, click the “Save” button.

Only the “Name” item is required. The other items can be used to distinguish the device being described from similar
devices that have been tested. All of the information entered in the “Product Details” dialog for a given device will appear
in the report.

Report Generator

99

It may be convenient to set the “Name” or the “Shortcut” to the name of the PTS workspace. This can make it easier to
determine which workspace goes with which report.

After entering the description of the device, click the “Save” button. This will save the information and start the main dialog
of the report generator.

4. Select the device description

The “Product” section at the top of the report generator dialog contains a dropdown list of showing the names of the
stored device descriptions. The small downward facing arrow at the right of the list may be used to display that list.

Click on the device description of interest in order to select it.

If the description of the current device has not yet been entered, it may be created by clicking the “Add Product” button.
(See Adding and deleting device descriptions)

Printed Documentation

100

5. Selecting the test case results to be used in th e report

A series of tests is likely to contain many executions of the same test case. A test case may have been executed more
than once in order to exercise different settings of the ICS or IXIT data, or to retest various test cases after an updated
software build. The next step in the report generation process is to select the test case results that should be included in
the report.

The “Select Test Cases” button will open a display listing all of the test case runs for which result data is available. The list
may not include all of the test case executions that have been run for the current project -- some test results may have
been deleted using the test case history editor. (See Reviewing and Editing the Test History.)

The list of test cases will be in the order in which they were executed. When first opening the display, none of the test
case results will be selected.

Report Generator

101

To choose the results to be included in the report, place a checkmark next to the entries that are of interest. You can
either click on the checkbox or the item description.

The checkbox next to Testcase will select all the test cases. Unchecking the checkbox will clear the selections.

Printed Documentation

102

The “Select Latest” button may be used to select the most recent results for each test case. In many cases this will be the
desired set of results.

Once the set of test cases to be included in the report have been selected, click the Generate in the Report tab.

Report Generator

103

It should be noted that the set of selected test cases is not “sticky”. The set of test cases to be included in the report must
be selected on every use of the report generator.

Which results to choose?

Generally, the most recent successful execution of each test case (ones with a “PASS” verdict) should be chosen for the
report. These results indicate that the device was able to successfully execute the tests with the most recent ICS and IXIT
settings.

On some occasions it may be desirable to include unsuccessful results in the report. Use of the Profile Tuning Suite is
mandated for many of the profile level test cases. An issue in a test specification, or a software problem in the PTS may
make it impossible for a given test case to result in a “PASS” verdict. When this happens, it needs to be shown that
execution of the test case using the PTS was attempted. Inclusion of the unsuccessful result in the report will call attention
to the failed attempt.

The inclusion of such results in the report can be used to help indicate that all of tests listed in the test plan created by the
Test Plan Generator were attempted.

8. Including test execution logs in the report

The report created by the report generator may optionally include the detailed test execution log for each of the selected
test cases. Inclusion of this information is not required for creating a report to be submitted as testing evidence via the
Qualification Listing Interface.

Printed Documentation

104

If a report is to be used for internal documentation, or in the case that a test execution cannot result in a “PASS” verdict, it
may be helpful to include the detailed logs in the report. Placing a checkmark in the box labeled “Generate Report with
Text logging” will cause the test execution log for each of the selected test cases to be included in the report. Placing a
checkmark in the box labeled Upload Report requires a valid QDID in order for the report to be uploaded.

9. Generating the report

Once the test cases to be included in the report have been selected, and the user information and device description have
been verified, it is time to create the report. The “Generate” button is used to start the creation of the report.

After clicking the “Generate” button, a dialog will appear asking where the file containing the report should be saved.
Browse to the location where the report file should be stored.

The default name of the report file is “TestReport.xml”, but this can be changed as needed. The default file extension of
“.XML” should be left as is.

Once the location for the file has been selected and the file name has been specified, click the “Save” button to start the
creation of the report.

As the report is being created, a progress bar will show the current status of the process.

After the report is finished, the report generator will ask if the report should be viewed. Clicking “Yes” button will cause
PTS to launch the application currently associated with the “.XML” file type. On many Windows® systems this application
will be Internet Explorer®.

Report generation with text logging

The “Generating Detailed Log” phase can take quite a long time to complete when “Generate report with text logging” is
selected. It may appear that the report generator has stopped running during this phase.

Report Generator

105

The number of test cases that have been selected for the report, and the size of the test execution logs for each of those
test cases has a direct impact on the time it takes “Generating Detailed Log” to complete.

It may be the case that the report generator should be run overnight depending on the above criteria. A future release of
PTS will provide better status information during this phase of the

Adding and Deleting Device Descriptions
As mentioned earlier (Creating a PTS Report), PTS can store descriptions for more than one device. The list of stored
descriptions is managed using two additional buttons in the Products tab of the Report Generator menu.

Adding a device description

Clicking the "New" button will clear the text fields and allow you to enter a new device description

After entering the details for the new device, click the “Save” button to store the information, or the"New" button to cancel
the operation.

Printed Documentation

106

Note that the report generator will allow the creation of more than one device description with the same “Name”. Doing
this may be useful, but it does require that care be used when selecting the right device description for creating the report.

Deleting a device description

Any of the device descriptions may be removed from the stored list. There are four steps to this process:

Report Generator

107

1. In the Products tab, select the device description that is to be removed.

2. It is probably a good idea to review the description to make sure that it is the one that needs to be removed.
This is especially true if more than one device description uses the same “Name”.

3. Next, click the “Delete” button.

4. Finally, confirm that the selected description should be deleted by clicking “OK”. Click “Cancel” to keep the
selected device description.

Printed Documentation

108

Reviewing and Editing the Test History

Reviewing and Editing the Test History

The complete history of test case executions may be somewhat overwhelming. It might be difficult to separate the results
that are needed for a report from the test results that are not. The test history editor can be used to remove results that
are no longer of interest.

It should be noted that removing entries from the test history is a permanent operation. Items that have been removed
cannot be added to the list later. If a result for a test run is accidentally deleted, then the corresponding test case may
need to be executed again in order to have results present for generating a report.

The Test Case History Tool Window displays the test case history for the selected project.

Use the drop down menu to select a project:

Report Generator

109

The “Test Case History” dialog will display a list of all of the test case executions for which results data are available. Each
item has a checkbox to its left; when the list is first opened, none of the items will be selected.

Viewing a test case execution log

For each test case shown, the detailed test execution log may be reviewed. Highlight an item in the list by clicking on its
entry. Double click the test case to display the test case log.

Care needs to be taken when selecting an item for the purpose of viewing its test execution log. Clicking in the checkbox
for an item will display its log, and will also change the selection state (checked or unchecked) for the item. This can result
in an item accidentally being marked for deletion.

Printed Documentation

110

Selecting individual test case results to be delete d

Specific test case results can be selected for deletion by placing a checkmark in the corresponding checkboxes.

Delete the selected test cases by clicking the Removed Checked Items button.

It may be useful to select all of the items in the list, and then remove the selection from the items that are to be kept. The
“Select All” checkbox may be used to select all of the items.

Selecting older test results for deletion

When multiple results are present for one or more test cases, the Select Duplicates button may be used to select the
oldest results for each test case.

It should be noted that using Select Duplicates may inadvertently select test case results that need to be kept. As can be
seen in the picture to the right, the use of Select Duplicates resulted in a “FAILED” test case run being unselected, that is,
to be kept; while the previous successful execution (“PASS”) was marked for deletion. This situation is similar to that
which can result when using the “Select Latest” button while selecting test case results to be included in a report. (See
section 3.7, “Selecting the test case results to be used in the report”.)

Report Generator

111

To view older test cases, sort the test cases by date.

Deleting test case results

Once test cases have been selected for deletion, click the Remove Checked Items button.

Note that there is no confirmation for this operation.

113

Scripting

Automating PTS
The Profile Tuning Suite (PTS) offers three features which can be used in automated testing:

1. “Operator-less Operation” allows the interactive prompts that appear during the execution of a test case to be
processed by user written software which can inspect each message and take appropriate action.

This feature can be used with either of the following program control features and is described in the “Automating
– Using Implicit Send” reference document.

2. “Scripted Operation” where a set of test cases can be selected and run as a group. The group can be executed
as needed, or scheduled for execution at a later time.

This document describes “Scripted Operation”.

3. “Fully Automated Operation” – PTS provides an Application Programming Interface (API) which allows complete
control of the software. User written programs can take advantage of the API in order to open Workspaces,
select Projects, execute Test Cases, and many other functions.

“Fully Automated Operation” is described in the “Extended Automating” reference document.

“Scripted Operation”
Each Project (Test Suite) in a PTS Workspace has a “Test Script” associated with it. The Test Script contains names of
Test Cases from the Project in the order in which they should be executed. The Test Cases included in the script can be
in any order and can appear multiple times as needed.

To use Scripted Operation:

1. Open a pre-existing PTS Workspace (or, create a new one if needed);

2. Select one of the projects in the Workspace and make it the active project;

3. Select the Test Cases that will be included in the Test Script;

4. Confirm that the ICS and IXIT settings are correct;

5. Execute the script!

Once the Test Script is complete and ready to be used again in the future, it can be scheduled to automatically execute at
a later time. At that time the script can be run multiple times or until a certain amount of time has passed.

Often, you may want to have the script run unattended after normal hours. Combining “Scripted Operation” with
"Operator-less Operation", allows for such unattended operation.

Note that each Project only has one Test Script associated with it. In order to have more than one Test Script for a given
Project, create another Workspace that contains the desired Test Suite.

Creating an initial Test Script
To select the Script Tool Window, click the Script Tool Window icon on the toolbar.

Printed Documentation

114

Also, you can switch between the ICS/IXIT Tool Window and the Script Tool Window by clicking on the tab at the bottom
of the window.

The Test Script for each project is named "Profile Name” Script and will appear in the drop down menu in the Script Tool
Window.

In this document, the Test Script tab and/or window will be referred to as the Script Tool Window.

Scripting

115

Adding Test Cases to the Test Script
Choose a Test Case from the Test Case tree in the Workspace window and right click on it. Select “Send to Test Script”
and the Test Case will be added to the “Script Tool Window” for the selected Test Suite.

Repeat the process until all of the desired Test Cases appear in the "Script Tool Window". The Test Cases can be
selected in any order and may be selected as many times as needed.

Printed Documentation

116

Executing a Test Script
Once the desired set of Test Cases has been entered into the Test Script it is time to execute it.

To execute a script click the “Run Script” icon or “Run Script from selection” icon.

Scripting

117

The first two items in the “Script” menu control the execution of the script:

• “Run from Start” – Executes the Test Script starting at the first Test Case listed, proceeding in order through the
tests until the last Test Case is run.

• “Run from Selection” – If a Test Case is currently selected in the "Test Script Window", this item will be enabled.
Selecting "Run from Selection" will start the script at the selected Test Case, proceeding in order through the
tests until the last Test Case is run.

Stopping Test Script execution

When a Test Script is executing, the “Stop executing test script” button will be enabled in the Script Tool Window. When
pressed, the button will

1. Terminate the currently running Test Case;

2. Terminate the execution of the Test Script.

Editing a Test Script

Editing a Test Script

Once the desired list of Test Cases has been added to the Test Script, the script may be edited to remove

Test Cases or change the order in which the Test Cases are executed.

Removing a Test Case from the Test Script

In the Script Tool Window, highlight the Test Case that is to be removed and right click on it. Select the “Delete” item from
the popup menu and the Test Case will be removed from the script.

Printed Documentation

118

Scripting

119

Printed Documentation

120

Changing the order of execution

The Test Script is executed starting with the first Test Case in the script and proceeds sequentially until the last test has
been performed. The order of execution may be changed using the following steps:

1. Highlight a Test Case that should execute at a different place in the script in the "Test Script Window";

2. Right click on the test and select “Cut” from the popup menu;

3. Highlight the Test Case before position you want to move the “Cut” Test case to:

Scripting

121

4. Right click on this second test and select paste:

Printed Documentation

122

Adding a Test Case to the Test Script

There are two ways to add an additional Test Case to the script.

The first method is to select a Test Case and add it to the script using the "Send to Test Script" popup menu item
described above in Adding Test Cases to the Test Script. The Test Case will be added at the end of the script, at which
time it can moved to its desired execution point using the steps in the previous section (4.2, “Changing the order of
execution”).

The second method, if the Test Case is already in the script, is to follow the instructions in the previous section, but select
“Copy” instead of “Cut”.

123

Logging

Introduction
The Profile Tuning Suite (PTS) can produce three types of output during the execution of a test case:

• A log of the test case execution;

• A protocol trace via the PTS Protocol Viewer.

Each of these contains basically the same information. They vary in the way in which the information is presented and in
the amount of detail that may be present.

PTS contains test suites for both “traditional” Bluetooth BR/EDR and for Bluetooth Low Energy (LE). The two types have
different requirements at the application level, so their test suites are created using different development environments.

PTS BR/EDR test cases are developed using a test scripting language known as TTCN (Testing and Test Control
Notation1.) The TTCN operating environment provides logging support for over two dozen different events that may occur
during the execution of a test. PTS uses this logging support to create text case execution logs.

Bluetooth Low Energy profiles focus less on the messaging between devices and more on the XML based data that is
being exchanged. For this reason, the PTS LE test suites are written in C++. There is much less execution log information
available because there are a smaller number of unique events to be logged.

Low level capture of the communications between PTS and the Implementation Under Test can be achieved using the
PTS Protocol Viewer (PTSPV). A software “tap point” between the PTS software (Bluetooth Host) and the PTS endpoint
device (Bluetooth Controller) captures all of the communications between the devices and forwards the captured data to
the Protocol Viewer application.

Output Window
The Output window in the lower left hand corner of the PTS display contains a summary of test case executions for the
current session of PTS. During the execution of a test case, information and status messages known as “Verdict
Descriptions” are output to the test case execution log. Each “Verdict Description” that is output to the log will also appear
in the Output window along with the final verdict of the test case.

Printed Documentation

124

The Output window is the first place to look when there is a problem during the execution of a test. When a problem
occurs, a description of the problem will be output to the execution log along with the Output window.

The descriptive text is identical to the text in the test execution log. Searching for that text in the log output makes it
possible to quickly locate the area where the problem occurred.

The

The contents of the Output window are not saved when PTS is terminated. Information in the window can be highlighted
using the keyboard or mouse in the normal way. Once an area of text has been selected, it may be copied to the Windows
clipboard by right clicking in the Output window. The text may then be pasted into a word processor or text editor.

Test Case History Tool Window
The Test Case History window is in the lower right hand corner of PTS display. This window contains a

one line summary of each test case that has been executed in the currently open workspace. The

summary contains

Logging

125

• The name of the test suite.
• The name of the test case.

• The date and time that the test

• case was executed.

• The final verdict of the test case

• execution.

Left clicking on an entry in this window will cause the corresponding test case execution log to be displayed in the
logfile.log window.

Right clicking on an entry will display “Show in Explorer”. Selecting “Show in Explorer” will cause a Windows Explorer
window to be opened.

If the entry ends in a “[D]”, then the corresponding test execution was under the control of the “Run (Debug Logs)” feature
described in Executing a single test case. In this case the folder containing all of the relevant logfiles will be displayed.

If the entry does not end in a “[D]”, then the main folder for the project will be displayed with the test case execution log
selected.

Test Execution Log

Test Execution Log

The large window in the center of the PTS display contains tabs for a number of items. One of those items, the test case
execution log, is found on the tab labeled "Test Case" Log.

Printed Documentation

126

The log file tab contains only one test case execution log at a time. The contents of the log are cleared at the start of the
test case and only the events that occur during that run will be present in the display. A previous test case log may be
recalled at any time, see Test Case History Tool Window, for more information.

It should be noted that there may be more than one execution log tab shown in the display. If test cases are executed
from more than one project, then there will be an execution log for each project. The same holds true when reviewing
previous execution logs from more than one project.

Format of the execution log

The first line of the log, labeled “Test Case Started”, contains

• the name of the test suite;
• the version number for the test suite executable;

• the name of the test case being executed;

• the date and time at which the test began.

This information is followed by the list of ICS values used by the test suite and their settings. The IXIT values for the test
suite are listed next.

Logging

127

Test case events are then added to the log as they occur. Each event is displayed in a two column format where the first
column contains a timestamp and the name of the event such as “Start Test Case”, “Verdict Description”, “Send event”,
etc. The timestamp is in milliseconds relative to the start time shown in the first line of the log.

The second column contains information about the event. In the case of a “Verdict Description” this will be the summary
text that is also sent to the Output window.

The information displayed for an event is particular to the event itself. For example, for events such as “Send event” and
“Receive event”, the second column will contain the name of the message that is being sent or received, along with the
parameters for the message.

Since there are over two dozen different events that may occur during the execution of a test case, the execution log may
be difficult to read. See Selecting the events to be logged, for ways to select the events that will be included in the log.

Interesting events

The following events are those that are of general interest to most PTS users.

Printed Documentation

128

“Start Test Case”

This event indicates that the execution of the TTCN test script has started.

The first line of the test case execution log shows the time that the test case itself started. Initialization of the test
environment, display of the ICS and IXIT values, and a slight delay occur before the TTCN test script actually begins.

“Test Case ended”

“Test Case ended” is the last entry in the execution log for a test case. All of the events that occur between “Start Test
Case” and “Test Case ended” are a part of the execution of the test script.

“Send event”/”Receive event”

“Send” and “Receive” events are used to display communication messages between PTS and an IUT. A “Send event”
indicates a protocol message sent from PTS to the IUT, while a “Receive event” shows a message sent from the IUT to
PTS.

Logging

129

These events contain three items of interest:

• The protocol layer being used for the message. This will be the indicated immediately to the left of the “!” (send)
or “?” (receive) characters. (“OBEX” in the example to the right.)

• The name of the message. (e.g. “OBEX_CONNECT_REQ”.)

• The parameters that were sent or received in the message.

The example shows an OBEX connection request being sent from the PTS to a Phone Book Access Profile (PBAP)
server on the IUT. The “Receive event” is the response from the server accepting the connection request.

“Verdict Description”

As mentioned above (Output Window), “Verdict Description” events are used to indicate status, test case state, or other
important information. The text for a “Verdict Description” event is always displayed in the Output Window.

The presence of “Verdict Description” events in the test case execution log cannot be disabled.

“Preliminary Verdict”

At various times during the execution of a test case a “Preliminary Verdict” may be issued. This allows the execution of
the test to be broken into segments, where each segment stands on its own. The “Preliminary verdict” may be used in
determining the final result of the test case.

Searching a test execution log for “Preliminary Verdict” events is another way (in addition to searching for “Verdict
Descriptions”) to identify where a problem may have occurred during a test.

For more information on “Preliminary Verdict”, see section 8 (“Verdict Determination”).

“Final Verdict”

The “Final Verdict” is the overall result of the test case execution.

Printed Documentation

130

A final verdict will always be displayed in the Output window, even if the “Final Verdict” event is not selected for display in
the execution log.

“Encrypted Verdict”

A summation of the test case execution is encrypted for reporting purposes and output to the test case execution log as
an “Encrypted Verdict”. The information cannot be changed, so it is used as the primary evidence that a test case
execution concluded successfully when reporting test results for qualification purposes.

The presence of “Encrypted Verdict” events in the test case execution log cannot be disabled.

Selecting the events to be logged

The types of events to be included in the test execution log are selected via the “Logging” page of the PTS application
settings. The application settings are accessed using the “Application Settings” item on the “File” menu.

Logging

131

As mentioned in Executing a single test case, changes to the log level may never be needed. The “Run (Debug Logs)”
features is a much better way to produce highly detailed logs for problem analysis or archival purposes.

The “Logging” page allows for the selection of one of two preset collections of events, or for a completely custom selection
of the events of interest.

• The “Standard” preset adds “Send event” and “Receive event” to the “Minimal” setting, along with other events
(such as “Preliminary verdict”) that can be used to determine the final verdict of the test case.

• “Full” causes highly detailed information about the inner workings of a test case to be included in the execution
log. This is a lot of information and may be overwhelming to most users.

Members of the PTS Technical Support or Development Teams may ask for “Full” logging when a problem occurs with a
test case. The highly detailed execution log, combined with the low level communications trace produced by the PTS
Protocol Viewer can be invaluable in attempting to determine why a test case is behaving in a certain way.

As mentioned in Introduction, Bluetooth Low Energy test suites have a much smaller number of events that can be logged
when compared to BR/EDR test suites. In fact, for the LE test suites, there is no difference between “Standard” and “Full”.

Printed Documentation

132

“Run-time” vs. deferred logging

Normally events are added to the test case execution log as they occur. Sometimes this “live” update can have a serious
impact on the performance of test execution. In some cases this may result in communication timing changes leading to
unexpected results.

If this happens, then the live or “run-time” logging should be disabled. When “run-time” logging is disabled, the information
to be displayed in the log is cached until the test case terminates. At that time, the information will be output to the display.

Enabling or disabling live update is selected on the “General” page of “Project Settings.” Right click on a project name at
the top level of the “Test Case View” followed by the selection of “Settings…” from the popup menu.

The checkbox labeled “Enable run-time logging” enables or disables the live update feature.

Logging

133

PTS Protocol Viewer

PTS Protocol Viewer

The PTS Protocol Viewer (PTSPV) is a companion application that is run concurrently with PTS. Its purpose is to capture
the communications between PTS and an Implementation Under Test at the Bluetooth protocol stack level. Each
message that passes between the two devices is then decoded in detail at each layer of the Bluetooth stack.

The Protocol Viewer "stack"

The packets sent from PTS to the Protocol Viewer are encapsulated in a small extension to the normal Bluetooth stack.
This extension allows for two types of information to be displayed by the Protocol Viewer.

The first layer in the extended stack is the “Virtual Sniffer” layer. The purpose of this layer is to identify whether the packet
contains captured communications data or PTS specific information. Packets that are tagged as PTS information are
forwarded to the “PTS” layer for decoding

Printed Documentation

134

Currently packets in the PTS layer consist of “Test Case Started”, “Test Case Ended”, and all “Verdict Description” events.
The presence of these packets provides a convenient way to correlate a Protocol Viewer “trace” with the information
displayed in the test case execution log.

Packets that are tagged as captured communications data are forwarded into the HCI protocol layer, and from there fully
decoded based on the packet contents. The “tap point” for capturing the messages between the devices is the Host
Controller Interface (HCI) between the PTS Application (Host) and the PTS Endpoint Device (Controller).

Logging

135

The data captured at the HCI “tap point” consists of

• HCI Commands from the PTS to the Endpoint Device;

• HCI Events generated in response to the various commands and asynchronous notifications that may occur
during a connection;

• ACL Data containing peer to peer messages based at the L2CAP layer of the Bluetooth stack.

Starting the PTS Protocol Viewer

PTS Protocol Viewer starts automatically with Bluetooth PTS.

Saving and viewing protocol traces

The data captured by the Protocol Viewer may be saved for future reference.

The saved “capture files” may be viewed using the Protocol Viewer in file view mode. A capture file, which has a .CFA
extension, may be opened by double clicking on it in Windows Explorer.

Alternatively, the “Capture File Viewer” shortcut found in the “Bluetooth PTS” folder in the Windows start menu may be
used to start the Profile Viewer in file view mode. Once started, the “Open Capture File…” item on the “File” menu may be
used to open a capture file.

Verdict Determination

Verdict Determination

Test cases have two mechanisms that are used to determine the final result of a test case execution. One method is to
simply set the final verdict when a final result can be determined. When the verdict is set in this way, the test case
terminates immediately.

It may be however that terminating a test case in the middle of its execution is not desired behavior. For these situations,
the “Preliminary verdict” mechanism is used. For this mechanism, “Preliminary verdict” events (Interesting events,
“Preliminary Verdict”) are issued at various points during the test:

Printed Documentation

136

• Any “Preliminary Verdict” of “FAIL” will result in a final verdict of “FAIL”.

• Any “Preliminary Verdict” of “INCONClusive” will result in a final verdict of “INCONClusive”, unless a
“Preliminary verdict” of “FAIL” was also issued during the test run.

• A final verdict of “PASS” will only occur when all “Preliminary verdicts” are “PASS”.

As an example, a test case may be broken into three segments: startup, the real work of the test, and termination. If the
startup segment executes successfully, it may be necessary to execute the termination segment regardless of whether or
not the real work of the test succeeds. It might be that the results of the segments are:

Segment Preliminary verdict

Startup (PASS)

Real work (FAIL)

Termination (PASS)

In this case, it may be necessary to execute the termination segment in order to cleanly disconnect from the IUT. The
termination segment succeeded, but the overall result of the test was a verdict of “FAIL”, because the middle segment set
a “Preliminary verdict” of “FAIL”.

A final verdict of “NONE” is issued to a test case when its execution is canceled by users or terminated before a
“Preliminary Verdict” is given.

137

Verdict Determination
Test cases have two mechanisms that are used to determine the final result of a test case execution. One method is to
simply set the final verdict when a final result can be determined. When the verdict is set in this way, the test case
terminates immediately.

It may be however that terminating a test case in the middle of its execution is not desired behavior. For these situations,
the “Preliminary verdict” mechanism is used. For this mechanism, “Preliminary verdict” events (Interesting events,
“Preliminary Verdict”) are issued at various points during the test:

• Any “Preliminary Verdict” of “FAIL” will result in a final verdict of “FAIL”.

• Any “Preliminary Verdict” of “INCONClusive” will result in a final verdict of “INCONClusive”, unless a
“Preliminary verdict” of “FAIL” was also issued during the test run.

• A final verdict of “PASS” will only occur when all “Preliminary verdicts” are “PASS”.

As an example, a test case may be broken into three segments: startup, the real work of the test, and termination. If the
startup segment executes successfully, it may be necessary to execute the termination segment regardless of whether or
not the real work of the test succeeds. It might be that the results of the segments are:

Segment Preliminary verdict

Startup (PASS)

Real work (FAIL)

Termination (PASS)

In this case, it may be necessary to execute the termination segment in order to cleanly disconnect from the IUT. The
termination segment succeeded, but the overall result of the test was a verdict of “FAIL”, because the middle segment set
a “Preliminary verdict” of “FAIL”.

A final verdict of “NONE” is issued to a test case when its execution is canceled by users or terminated before a
“Preliminary Verdict” is given.

139

Index

140

A
Abort, Retry .. 65, 86

Aborting ...44
test case execution ..44

About ... 10, 13, 44, 46, 58, 65, 70, 77, 79, 86, 101, 108,
109, 147

Abstract Test Suite ... 35, 62
accompanying ..62

Accompanying ...62
Abstract Test Suite ...62

ACL Data .. 155

ACL Data containing .. 155

Activating ...68
custom Implicit Send DLL ..68

Active project .. 131

Add Product ... 109, 121

Adding .. 7, 133, 137, 141
project ... 7
Test Case .. 141
Test Cases .. 133
Test Script ... 137

AddRef...86

Address .. 44, 58, 77, 79, 86
ImplicitSendStyle ..58

Adds communication ..46

After ...17

AG..30

Air Sniffer ...44

All Groups ..17

Allows 7, 35, 44, 53, 58, 65, 70, 73, 74, 86, 121, 131,
149, 155
Client Application ..86

Already be ... 1

Already be selected .. 1

Also be used at ... 1

Also be used at this time... 7

Also issued ... 158, 161

Always .. 46, 62, 79, 149

Always return ..79

API 53, 72, 73, 75, 86, 101, 131

API Error Codes ... 75, 101

Application Programming Interface 53, 73, 131

Application Settings 46, 152, 157

Applications .. 17, 46, 53, 73, 86, 99, 107, 109, 131, 143,
152, 155
existing ..86

ASCII ...75

ATS ... 35, 62
Consult ..62

Audio Gateway ..30

Automatic dismissal ..70
Implicit Send requests ..70

Automating ... 53, 73, 86, 131
PTS .. 53, 73, 131

Automating Test Execution .. 50

Automation 55, 56, 57, 65, 70, 99

Automation test platforms.......................... 55, 57, 65, 70

Autotest ... 74

AVRCP .. 10

B
Babysit .. 55

Back ... 13, 41, 56, 109, 121

Basic Information .. 57

Basic Rate ... 17

BD_ADDR ... 1, 9, 44
device is ... 1

BDADDR ... 75, 98
IUT .. 75
receives .. 98

Before .. 17

Beginning .. 62
strMmiText.. 62

Beta test suites ... 13

BITSTRING ... 84

Bluetooth 1, 9, 10, 17, 30, 35, 44, 53, 56, 62, 71, 73, 75,
98, 99, 101, 107, 143, 152, 155, 157
controlling ... 73
describe .. 107
details ... 56
layer .. 155
lifecycle ... 107

Bluetooth application .. 17

Bluetooth BR ... 143

Bluetooth Controller .. 143

Bluetooth Device... 1, 9, 10, 35, 44, 73, 75, 98, 101, 107
contains .. 35

Bluetooth Device Address 1, 9, 35, 44, 75, 98, 101
contains .. 75
determine ... 101
lists ... 44
retrieves .. 98

Bluetooth Host .. 143

Bluetooth Low Energy 17, 143, 152

Bluetooth PTS 1, 62, 71, 73, 99, 101, 157

Bluetooth SIG 1, 62, 71, 73, 99, 101, 107

Bluetooth Special Interest Group 53

Bool .. 57, 58, 79, 86

BOOL bValue .. 84

BOOL value .. 79

Bool WINAPI InitImplicitSend 58

BOOLEAN ... 35, 84

BR ... 17, 152
compared ... 152

Build ... 71, 73, 75, 77, 98, 109
Client Application ... 75

Button . 1, 13, 17, 30, 35, 44, 45, 55, 65, 68, 70, 86, 109,
121, 129, 135
PTS toolbar .. 45

Index

141

Button will open .. 1, 109

Buttons Displayed .. 65, 86

BV .. 9

BValue ...84

C
C/C ..65

Calling... 74, 77, 79, 101
CoCreateInstance ..74
GetProjectName ...77
GetPTSBluetoothAddress 101
GetTestCaseDescription ..79
GetTestCaseName ..79
Implicit Send .. 101
UpdatePics .. 101
Windows API ..74

Calling UpdateICS ... 101

Cancel .. 65, 86, 121, 158, 161

Cancel button ..86
include ..86
pressed ...86

Capture File Viewer ... 157

Case .. 17, 27, 30, 40, 41, 44, 46, 50, 58, 65, 75, 77, 79,
84, 99, 101, 109, 126, 129, 143, 145, 147, 153, 158,
161
PTS Development Team ..41

Case shown ... 126

Cause . 17, 30, 44, 46, 58, 62, 68, 70, 74, 109, 145, 152
Client Application ..74
Windows Explorer window 145

Center ... 146
PTS .. 146

CFA .. 157

Chain ...56
MMI PTC ...56

Change .. 1, 7, 9, 17, 30, 35, 41, 46, 58, 67, 68, 86, 108,
109, 126, 137, 139, 141, 149, 152, 153
order... 139
PICS... 7, 30

Check 17, 27, 30, 46, 62, 68, 71, 126
checkbox...30

Checkbox 13, 17, 30, 109, 124, 126, 127, 153
check...30
item .. 126
Unchecking .. 109

Checkboxes ... 17, 127
corresponding .. 127

Checkmark ... 13, 70, 109, 127
place .. 109, 127
removing ...70

Checkmarks ... 109

Choose ... 13, 109, 133
Test Case .. 133

Class ... 1, 57, 58
Device ... 1

Class Of Device .. 1

Clear Search Results .. 1

Clicking ... 30, 35, 79, 127

IXIT ... 35
PICS ... 30
PIXIT ... 35
Removed Checked Items button 127
Test Case ... 79

Client Application application 86
log ... 86

Client Applications 73, 74, 75, 86
allows .. 86
build .. 75
cause .. 74
existing ... 86
MMIs ... 86
prompts .. 86

ClientShowBdAddress .. 98

Close ... 58, 157

CO_E_SERVER_EXEC_FAILURE 101

CoCreateInstance ... 74, 101
call .. 74

Codename .. 1

CoInitialize .. 74, 75

CoInitializeEx .. 74, 75

COM ... 73, 74, 86, 99, 101
create .. 86

COM during ... 73

COM Server ... 74, 99, 101

COM Server Mode ... 74, 99, 101

Combining ... 17
Filters .. 17

Comes ... 75, 107

Compared ... 152
BR ... 152

Component Object Model................................ 73, 74, 86

Component Object Module .. 101

Connected 17, 55, 71, 74, 79, 101
PTS Control API ... 79

Consolidate ... 107
used .. 107

Consult .. 62, 86
ATS ... 62

Consult implicit_send_log... 62

Containing 1, 30, 35, 75, 77, 79, 109
Bluetooth Device .. 35
Bluetooth Device Address 75
dropdown list of .. 109
PICS ... 1
Project .. 77
PTS ... 30
Test Case ... 79

Contents .. 41, 65, 77, 79, 84, 86, 99, 108, 143, 146, 155
Output window ... 143
report .. 108
strMmiText.. 65

Control–click ... 13

Controlling ... 73
Bluetooth .. 73

Copied 13, 65, 86, 109, 141, 143
Windows ...109, 143

Printed Documentation

142

Copy Highlighted .. 109

Corner... 1, 86, 143, 145
PTS .. 143, 145
PTS User Interface ...86

Correlate ... 155
Protocol Viewer ... 155

Corresponding .. 79, 127
checkboxes .. 127
Test Purpose ..79

Coupled .. 157
PTS Protocol Viewer application 157

Cpp ... 58, 71

CreateWorkspace .. 75, 99, 101
demonstrate ..99

Creating 1, 75, 86, 99, 101, 109, 132
COM..86
initial Test Script .. 132
new workspace ... 1
PTS Report .. 109
Test Script ..99
time .. 109
used ... 86, 99, 109
Workspace ... 75, 99, 101

Current Link Key .. 44, 45
Deleting ...45

Currently associated .. 109

Currently, StopTestCase ... 101

Custom50, 57, 58, 62, 67, 68, 70, 71, 72, 73, 86, 99,
152

Custom DLLs ... 58, 67, 70, 72

Custom Implicit Send DLL 50, 57, 62, 67, 68, 70, 71, 72,
86
Activating ..68

Cut .. 139, 141

D
Data are .. 124, 155

Data is .. 65, 109

Data type .. 35, 57, 73, 84, 101
item that ..35

Deallocated ...75

Debug ...41, 46, 67, 75, 145, 152
use ..75

Debug Logs .. 41, 46, 145, 152

Default Settings ...17

Delete ... 8, 130

Delete Link Key ...45

Delete Product ... 121

Deleting 8, 9, 45, 58, 109, 121, 124, 127, 130, 137
current Link Key ...45
test case results .. 130
workspace .. 8

Deleting Device Descriptions..................................... 121

Deletion .. 126, 127, 129, 130

Demonstrate ... 9, 98, 99, 107
CreateWorkspace...99

Describe . 1, 9, 30, 35, 40, 44, 53, 57, 58, 62, 65, 73, 75,
86, 99, 107, 109, 131, 141, 145
Bluetooth .. 107

Describes this feature ... 53, 73

Description 10, 30, 35, 79, 86, 108, 109, 121, 143
Selection ... 10

Description ending .. 30

Design ... 1, 53, 72

Detail that is present ... 46

Details 46, 50, 56, 58, 62, 108, 109, 121, 126, 143, 152,
155
Bluetooth .. 56

Details regarding... 58

Determine .. 10, 30, 35, 46, 50, 58, 62, 86, 98, 101, 109,
149, 152, 158, 161
Bluetooth Device Address 101

Develop .. 57, 71, 72, 73, 86, 143
used .. 73

Development checkpoints .. 108

Development Teams .. 46, 152

Device 1, 7, 9, 17, 27, 30, 35, 44, 45, 53, 55, 65, 70, 75,
101, 107, 108, 109, 121, 143, 155
Class ... 1
of testing ... 107

Device description 108, 109, 121

Device display ... 65

Device is... 1, 70, 108, 155
BD_ADDR .. 1
IXIT item ... 1

Device is tested .. 108

Device Name .. 1

Dialog will appear ... 7, 109

Dialog will appear allowing ... 7

Dialog will appear asking .. 109

Dialog will display ... 124
list of ... 124

Direct ...107, 109
used .. 107

Disable 30, 46, 58, 70, 71, 79, 101, 149, 153
Implicit Send ... 71

Disable this functionality ... 46

Disconnects ... 86, 158, 161
Implicit Send ... 86

Displayed in 17, 27, 40, 86, 145, 147, 149, 153, 155
log ... 153

Displaying ... 40, 149
PICS ... 149
purpose .. 40

Distinguish .. 62, 109
used .. 109

DLL 57, 58, 67, 68, 70, 71, 72, 73, 101
find .. 57
lead ... 58
load ... 57
locate .. 68
unloading .. 58

DLL_PROCESS_DETACH .. 58

Index

143

DllMain...58
use ..58

Documentation ... 35, 86, 99, 109

Dropdown list ... 121
Using .. 121

Dropdown list of ... 109
contains ... 109

DUN ...13

During ... 53, 58, 73, 86, 98, 131
execution of ... 53, 73, 131
ImplicitStartTestCase ...58
PTS ...98
Test Case ...86

DWORD ... 77, 86, 98

DWORD responseSize ...86

E
E_NOINTERFACE ... 101

Each test 9, 10, 27, 35, 40, 58, 62, 72, 99, 108, 109,
126, 129, 145

Each test case 27, 40, 58, 99, 109, 126, 129, 145

Each test case shown .. 126

Edit Product .. 109, 121

Edit Tester .. 109

Edited before ... 1

Editing... 1, 30, 35, 124, 137
PICS.. 1
project PICS ...30
project PIXIT settings ...35
Test History ... 124
Test Script ... 137

EDR .. 17, 143, 152

Enable . 30, 44, 46, 50, 53, 62, 67, 71, 73, 79, 107, 135,
153
used ..71

Encrypted Verdict ... 108, 149

Endpoint ... 44, 98, 101, 155

Endpoint Device ... 98, 101, 155
PTS .. 155

Endpoint information ...44

Enhanced Data Rate ..17

Enter ... 1, 17, 35, 44, 53, 58, 65, 68, 101, 109, 121, 135
PIN Code ..58

Entry titled ...62

Error 65, 75, 77, 79, 84, 86, 98, 101

Error occurs .. 65, 101

ETS ... 9, 58

Event that is logged when a Test Case86

Events. 86, 143, 146, 147, 149, 152, 153, 155, 158, 161
information displayed .. 147
Interesting .. 149
Selecting .. 152

Every MMI ...86

Excel ..99

Exe ... 74, 75, 98, 99, 101

Executable Test Suite 9, 58, 62, 101
identifies ... 62

Executable Test Suite DLLs 101

Executables 9, 58, 62, 67, 99, 101, 108, 147

Executing ... 41, 62, 86, 135
single test case .. 41
test case ... 62, 86
Test Script .. 135

Execution30, 41, 46, 53, 58, 65, 70, 73, 74, 79, 86, 101,
108, 109, 124, 129, 131, 135, 139, 141, 143, 145,
146, 147, 149, 152, 153, 158, 161
order ... 139

Execution log 46, 79, 86, 143, 146, 147, 149, 152
Format .. 147

Execution of ... 41, 53, 58, 70, 73, 74, 86, 101, 109, 131,
135, 143, 147, 149
during ... 53, 73, 131

Existing ... 75, 86, 99, 131
Applications .. 86
Client Applications ... 86
PTS Workspace ... 131
Workspace ... 75, 99

Exit ... 8, 58, 99, 101, 157
PTS ... 157
PTS application .. 8

Expected .. 9, 53, 56, 58, 65, 86

Expected Outcome ... 9, 53

Expects one .. 58

Expects one of .. 58

Explorer ... 145

Export .. 1, 75, 99

Extended Automating ... 53, 131

F
FAIL .. 27, 86, 158, 161

FAILED .. 129

False .. 30, 58, 79
setting pbResponseIsPresent 86

FALSE if .. 86

File name ... 5, 58, 109

Filters ... 1, 10, 13, 17
Combining .. 17

Final verdict 46, 79, 86, 143, 145, 149, 152, 158, 161
Output window along with 143

Find .. 50, 57, 62
DLL ... 57

Finish .. 1, 13, 41, 109

Format 9, 62, 75, 99, 107, 108, 147
execution log .. 147

From 1, 5, 8, 9, 13, 17, 30, 35, 41, 46, 50, 56, 57, 58,
65, 68, 70, 72, 73, 74, 75, 77, 79, 86, 98, 99, 101,
109, 121, 124, 127, 131, 133, 135, 137, 139, 146,
149, 153, 155, 158, 161
pszWorkspaceName .. 75

From calling UpdateICS ... 101

From the ... 1, 5, 8, 13, 17, 30, 35, 41, 50, 56, 57, 65, 68,
70, 72, 75, 79, 86, 99, 109, 121, 124, 127, 131, 133,
137, 139, 149, 153, 155, 158, 161

Printed Documentation

144

From the Implementation Under Test86

From the pszWorkspaceName75

From the server .. 149

FTP ... 13, 62

Full 10, 17, 41, 46, 75, 99, 101, 152

Fully Automated Operation 53, 73, 131

G
GATT ...17

General 9, 46, 50, 75, 98, 101, 149, 153
value represents .. 101

General Application Settings ..46

General information functions98

General interest.. 149

General Usage ..75

Generate 65, 108, 109, 124, 155

Generate Report .. 109

Generate report with text logging 109

Generating Detailed Log .. 109

GetProcAddress ..72

GetProjectCount ...77

GetProjectName .. 77, 101
calling ..77
value .. 101

GetProjectVersion .. 77, 101

GetPTSBluetoothAddress 98, 101
call .. 101

GetPTSVersion .. 98, 101

GetTestCaseCount ...79

GetTestCaseDescription...................................... 79, 101
calling ..79

GetTestCaseName .. 79, 101
calling ..79
value .. 101

Good idea ... 1, 67, 121

Good idea to execute .. 1

Group 9, 13, 17, 27, 44, 46, 53, 73, 131

H
Handling ..58

Implicit Send ...58

Handsfree ..30

Handsfree Profile ..30

HandsFree Profile Test Specification 109

HCI ... 155

HCI Commands.. 155

HCI Events ... 155

HCI?HCI_READ_LOCAL_VERSION_INFORMATION_
COMPLETE_EVENT ...86

HCI_OK ...86

HciRevision ...86

HciVersion ...86

Help .. 46, 62, 109

HFP ... 30

HFP15 ... 10

High Speed ... 17

Highlight 108, 126, 137, 139, 143
Test Case ... 139

History ...109, 124

Host Controller Interface .. 155

HRESULT 75, 77, 79, 84, 86, 98
return .. 75

HRESULT CreateWorkspace 75

HRESULT GetProjectCount ... 77

HRESULT GetProjectName ... 77

HRESULT GetProjectVersion 77

HRESULT GetPTSBluetoothAddress 98

HRESULT GetPTSVersion .. 98

HRESULT GetTestCaseCount..................................... 79

HRESULT GetTestCaseDescription 79

HRESULT GetTestCaseName..................................... 79

HRESULT IsActiveTestCase 79

HRESULT Log .. 86

HRESULT OnImplicitSend ... 86

HRESULT OnSend ... 86

HRESULT OpenWorkspace ... 75

HRESULT RegisterImplicitSendCallback 86

HRESULT RegisterImplicitSendCallbackEx 86

HRESULT RunTestCase .. 79

HRESULT SetControlClientLoggercallback 86

HRESULT StopTestCase ... 79

HRESULT UnregisterImplicitSendCallback 86

HRESULT UnregisterImplicitSendCallbackEx 86

HRESULT UpdateICS .. 84

HRESULT UpdateIXITParam 84

HRESULT UpdatePics ... 84

HRESULT UpdatePixitParam 84

HS ... 17

Hybrid environments ... 72

I
IA5STRING ... 35, 84

ICS1, 7, 9, 30, 35, 75, 84, 101, 108, 109, 131, 132, 147,
149

ICS from TPG ... 1, 7, 30

ICS Proforma .. 30

ICS used by .. 1

Identifies 9, 10, 62, 72, 86, 149, 155
Executable Test Suite .. 62
MMI ... 86

Identifies the... 58, 62, 86

Identifies the executing ... 62

IEEE 802.11 .. 17

Index

145

If 1, 7, 10, 13, 17, 44, 46, 53, 57, 58, 62, 65, 70, 72,
74, 75, 77, 79, 84, 86, 98, 99, 101, 107, 109, 121,
124, 135, 141, 145, 146, 149, 153, 158, 161
Test Case .. 135

Ignore ... 65, 75, 86, 99

Implement 35, 56, 58, 67, 73, 79, 86, 101
used ..56

Implementation Under Test . 1, 9, 30, 41, 53, 56, 75, 86,
143, 155
PTS ...86
Selecting ... 1

Implemented ...56

Implicit50, 56, 57, 58, 62, 65, 67, 68, 70, 71, 72, 86,
101

Implicit Send ... 50, 56, 57, 58, 62, 65, 67, 68, 70, 71, 72,
86, 101
call .. 101
disable ..71
disconnects ...86
handling ..58
PTS ...58
use ..86

Implicit Send API ...58

Implicit Send DLL . 50, 56, 57, 58, 62, 65, 67, 68, 70, 71,
72, 86

Implicit Send DLL creates ...62
log ...62

Implicit Send DLL display ...62
tag ...62

Implicit Send functions ..58

Implicit Send handling ...72

Implicit Send requests 58, 62, 70
Automatic dismissal ...70

Implicit_send ...71

Implicit_send_log ..62

ImplicitSend .. 58, 62, 71

ImplicitSendPinCode 57, 58, 70

ImplicitSendStyle 57, 58, 62, 65, 70, 71, 72, 86
address ...58

ImplicitStartTestCase ... 57, 58
during ..58

ImplicitTestCaseFinished 57, 58

Import PICS .. 1, 30

Import PICS from TPG ... 1, 7

Import Test Plan .. 1

Imported ... 1, 7, 30, 108
PICS.. 1
PTS ... 1

Include . 10, 17, 46, 50, 62, 71, 75, 86, 98, 99, 107, 108,
109, 129, 131, 147, 152
Cancel button ...86

Included making ..71

Including communicating ..98

Inclusion ... 13, 108, 109
test suites..13

INCONClusive 27, 109, 158, 161

Indicates 10, 17, 27, 30, 35, 44, 65, 71, 86, 101, 108,
109, 149
PTS Control API ... 86
used .. 27, 86

Individual test case results ... 127
Selecting ... 127

Information . 1, 10, 13, 41, 44, 46, 50, 58, 65, 67, 70, 73,
75, 77, 79, 86, 107, 108, 109, 121, 143, 146, 147,
149, 152, 153, 155
of the test case ... 46

Information displayed 46, 86, 147, 155
event ... 147

Information during ... 109

Information that has been encrypted 108

Information used to ... 46

Ini 62

Initial Test Script ... 132
Creating .. 132

Initializations ... 58, 149

Initialized .. 74, 77, 79, 101
NULL .. 77, 79

InitImplicitSend .. 57, 58, 72

Inquiry Request ... 1

Insert ... 7, 9

Instruct .. 65
used .. 65

INTEGER .. 35, 84

Interesting ... 149
events ... 149

Internet .. 109

Internet Explorer ... 109

Introduction ...107, 143

IOPT .. 99

IP 71

IProject .. 77

IProject value .. 77

IPTSControl COM ... 74

IPTSControlClientLogger 86, 101

IPTSImplicitSendCallback 86, 101

IPTSImplicitSendCallbackEx .. 86
refer .. 86
use .. 86

IsActiveTestCase .. 79, 101

Item 1, 7, 9, 10, 13, 17, 27, 30, 35, 46, 50, 53, 55, 58,
65, 71, 75, 84, 86, 101, 108, 109, 124, 126, 127,
135, 137, 141, 146, 149, 152, 157
checkbox .. 126
PTS ... 1
when selecting ... 126

Item applies ... 30

Item contains .. 35

Item that ... 10, 13, 35
data type ... 35

Item will .. 30, 109, 124, 126, 135

Items declared .. 75

Printed Documentation

146

Items should always..30

Items that .. 10, 30, 124, 127

ITestCase ..79

ITestCase value ..79

Its own .. 58, 149

IUT ... 1, 9, 27, 30, 41, 44, 45, 53, 56, 62, 65, 70, 75, 86,
149, 158, 161
BDADDR...75
PTS ...65
Using ...70

IUT Device Address .. 1

IUT to PTS.. 149

IXIT ... 1, 9, 30, 35, 71, 84, 101, 108, 109, 131, 147, 149
clicking ..35
Opening ..35
updating ... 101

IXIT changes that ... 101

IXIT data ... 84, 109

IXIT documentation ...35

IXIT items ... 1, 9, 35, 84, 101
device is .. 1

IXIT settings ... 35, 108, 109, 131

IXIT table ...35
project ...35

IXIT Tool Window ... 30, 35, 132

IXIT value ... 71, 101, 147, 149

L
L 77, 79

L2CAP .. 17, 155

Layer ... 17, 56, 149, 155
Bluetooth.. 155

LE 17, 143, 152

Lead .. 58, 86, 153
DLL ...58

Legacy ... 5
selecting .. 5

Legal Characters For The New Value84

Less Operation ... 53, 86, 131

Lifecycle ... 107
Bluetooth.. 107

Lines 62, 65, 74, 86, 101, 145, 147, 149
PTS ...62

Link Key ...44

List of ... 5, 10, 17, 27, 35, 58, 65, 75, 77, 79, 84, 86, 98,
108, 124, 137
dialog will display ... 124

Listing ... 44, 108
Bluetooth Device Address ..44
PICS... 108

Ll 57

LmpSubversion ...86

LmpVersion ...86

Load .. 57, 58, 72, 75
DLL ...57

Locate ... 1, 8, 10, 13, 17, 41, 44, 57, 68, 73, 75, 98, 143
DLL ... 68

Location.. 1, 57, 71, 75, 108, 109

Log41, 46, 50, 62, 79, 86, 101, 108, 109, 126, 143, 145,
146, 147, 149, 152, 153
Client Application application................................... 86
displayed in .. 153
Implicit Send DLL creates .. 62

Log containing .. 62

Logfile .. 145

Logfiles .. 145

Logging support .. 143

LogType .. 86
values ... 86

LogType Value .. 86

Long time .. 109
take quite .. 109

Low ... 17, 143, 152

LPCWSTR pszDescription ... 86

LPCWSTR pszEntryName ... 84

LPCWSTR pszMessage ... 86

LPCWSTR pszNewParamValue 84

LPCWSTR pszParamName ... 84

LPCWSTR pszPathOfPtsFile 75

LPCWSTR pszPathOfWorkspace 75

LPCWSTR pszProjectName 77, 79, 84, 86

LPCWSTR pszTestCase .. 79, 86

LPCWSTR pszWorkspaceName 75

LPCWSTR pszWorkspacePath 75

LPCWSTR szLogType ... 86

LPCWSTR szTime ... 86

LPWSTR .. 77, 79, 86

LPWSTR pszProjectName ... 77

LPWSTR pszResponse .. 86

LPWSTR pszTestCaseDesc .. 79

LPWSTR pszTestCaseName 79

M
Main Test Component .. 56

using ... 56

Major Device Class ... 1

Malloc .. 58

ManufacturerName ... 86

Many Bluetooth SIG ... 107

Many DLLs .. 72

Menu contains .. 109

Menu may ... 157

Message tags .. 58, 62, 65, 72

Message Type .. 65, 86

Microsoft... 58, 67, 73

Microsoft Visual .. 67, 73

Microsoft's Component Object Model 73

Index

147

Minimal ... 46, 152

MMI ... 56, 58, 65, 86
Client Application ..86
identifies ..86
presents ..86
style ...86

MMI Handler ..56

MMI PTC ...56
chain ...56

MMI PTC handles ...56

MMI style defines ..86

MMI styles .. 65, 86

MMI_Style_Abort_Retry1 65, 86

MMI_Style_Edit1 .. 58, 65, 86

MMI_Style_Edit2 .. 58, 65, 86

MMI_Style_Ok .. 65, 86

MMI_Style_Ok_Cancel1 .. 65, 86

MMI_Style_Ok_Cancel2 65, 70, 86

MMI_Style_Yes_No_Cancel1 65, 86

MMI_Style_Yes_No1 ... 65, 86

MmiStyle ... 58, 65

MmiStyle name ...65

MmiStyle value ..65

More 1, 9, 10, 13, 17, 46, 50, 58, 67, 70, 72, 79, 86, 99,
108, 109, 121, 129, 131, 143, 146, 149

More complicated ..72

Most recent... 109

Most Test Cases ...86

Ms ..86

MTC ...56

MultiByteToWideChar ...75

My Workspaces.. 1, 62, 99

MyLaptop ...65

MyPda ...65

MyPhone ...65

N
N', ASCII ..65

Name . 1, 5, 9, 10, 13, 17, 27, 30, 35, 41, 50, 57, 58, 62,
65, 71, 72, 75, 77, 79, 84, 86, 99, 101, 108, 109,
121, 131, 132, 145, 147, 149, 153
PICS..30
PIXIT ...35
Project ...99
PTS .. 109
subfolder ...75
Test Cases .. 131
Test Script ... 101
Workspace ..75
Workspace file ..75

Name corresponding .. 9

Name of 1, 13, 27, 30, 35, 41, 58, 75, 77, 79, 84, 86, 99,
101, 109, 131, 145, 147, 149
with ..75

Name of the workspace ... 1, 75

Name>SampleTest ... 99

Needed. 1, 27, 35, 41, 44, 46, 50, 53, 55, 56, 57, 58, 62,
65, 67, 70, 73, 74, 75, 86, 99, 101, 108, 109, 121,
124, 126, 129, 131, 133, 152
Visual Studio .. 67

New 1, 10, 58, 62, 65, 75, 84, 86, 99, 101, 109, 121,
131

New Client Applications .. 86

New workspace .. 1, 75, 99
Creating .. 1

Newline ... 65

Next 1, 17, 27, 44, 68, 108, 109, 121, 147

NmyLaptop .. 65

NmyPda .. 65

NmyPhone .. 65

No buttons ... 86

NONE ..158, 161

NOT ... 58, 86

NOT call .. 58

Notepad... 99

NUL ... 75, 86
room for .. 86

NULL .. 58, 65, 77, 79, 86
initialized ... 77, 79
return .. 65
returns .. 86

Number 9, 10, 17, 30, 41, 56, 62, 65, 72, 77, 79, 86, 98,
99, 107, 108, 109, 143, 146, 147, 152
Parallel Test Components 56
PTS ... 98
Test Cases ... 99
Test cases produce.. 41

O
OBEX .. 149

shows ... 149

OBEX_CONNECT_REQ .. 149

Object 53, 58, 62, 67, 74, 75, 86
PTS Control API ... 86

Object Push .. 53, 62

Object Push Profile ... 62

OCTETSTRING ... 35, 84, 101
returned .. 101

Of 1, 5, 9, 10, 13, 17, 27, 30, 35, 40, 41, 44, 46, 50, 53,
55, 56, 57, 58, 62, 65, 67, 68, 70, 71, 72, 73, 74, 75,
77, 79, 84, 86, 98, 99, 101, 107, 108, 109, 121, 124,
126, 127, 129, 131, 132, 133, 135, 141, 143, 145,
146, 147, 149, 152, 153, 155, 158, 161
pszReponse ... 86
pszResponse ... 86
strMmiText.. 62, 65
test case 27, 50, 56, 79, 86, 108, 109, 143, 145, 146,
149, 152, 153
test case executions 86, 109, 143, 149
Test Case View .. 50, 153
Test Suite Selector will display 10

Of creating .. 109
report .. 109

Printed Documentation

148

Of gathering ..41

Of preparing .. 1

Of range ... 101

Of testing .. 9, 107
device .. 107

Of the 1, 9, 10, 13, 17, 27, 30, 35, 40, 41, 44, 46, 50, 53,
56, 57, 58, 62, 65, 67, 68, 70, 73, 74, 75, 77, 79, 84,
86, 98, 99, 101, 107, 108, 109, 121, 124, 127, 131,
132, 133, 141, 143, 145, 146, 147, 149, 152, 153,
155, 158, 161

Of the ...50

Of the .. 153

Of the corresponding ..79

Of the following .. 53, 73, 131

Of the item that..35

Of the IXIT items ...35

Of the pszReponse ...86

Of the pszResponse ...86

Of the resulting ..41

Of the string .. 65, 77, 79

Of the strMmiText .. 62, 65

Of the strMmiText string ...62

Of the test case 27, 30, 46, 50, 56, 79, 86, 108, 109,
124, 143, 145, 146, 149, 152, 153
information ..46

Of the Test Case execution 86, 149

Of the test case executions 86, 109, 124, 143
of the test case executions 124

Of the test case runs for .. 109

Of the test case to ...46
of the test case to ...46

Of the test cases available ...30
of the test cases available ..30

Of the test cases in ...30
of the test cases in ...30

Of the Test Suite Selector will display10

Of viewing ... 126

OK...58, 65, 68, 86, 109, 121
presses ...65

OK button ... 68, 86
press ...68

Older test results .. 129
Selecting .. 129

OnImplicitSend ..86

OnSend .. 86, 101

Open Capture File .. 157

Open File ...58

Open Workspace 5, 53, 73, 75, 77, 109, 131, 145

Opening .. 30, 35
IXIT ...35
PICS..30
PIXIT ...35

Opening/Creating ..75
Workspace ..75

OpenWorkspace ... 75, 101

Operation1, 46, 53, 55, 58, 62, 65, 70, 73, 86, 121, 124,
130, 131

Operation which may .. 1

Operator 41, 53, 55, 56, 58, 62, 65, 70, 73, 86, 131

OPHBV03 ... 62

OPHBV07 ... 62

OPP ... 10, 62

OPP Profile ... 62

Options ... 46, 50, 62

Or other .. 53, 55, 149

Order .. 9, 17, 27, 35, 44, 53, 57, 58, 62, 73, 74, 99, 107,
109, 124, 131, 133, 135, 137, 139, 158, 161
Changing .. 139
execution .. 139
PTS ... 57

Order of ...139, 141

Order of execution ..139, 141

Org .. 1

Output Window 86, 143, 147, 149
contents .. 143

Output window along with .. 143
final verdict ... 143

P
Page allows... 152

selection ... 152

Page of ... 152, 153, 157
PTS application .. 157

Parallel Test Components .. 56
number ... 56

Parameter Name .. 35

Part 1, 13, 30, 53, 56, 62, 73, 86, 99, 108, 149
PTS ... 73, 99

PASS27, 30, 86, 109, 129, 158, 161

Passkey Entry ... 65

PBAP ... 10, 149

PbIsActive ... 79

PbResponseIsPresent .. 86
setting ... 86

PCallback .. 86

PcProjects ... 77, 79

PcTestCases... 79

PDU ... 86

PersistentText ... 58

PersistentText.cpp/.h .. 58

Phone Book Access Profile .. 149
PTS ... 149

PICS 1, 7, 9, 30, 35, 75, 84, 101, 108, 109, 131, 132,
147, 149
change .. 7, 30
clicking .. 30
containing ... 1
display .. 149
edit .. 1

Index

149

importing ... 1
listing .. 108
names ...30
Opening ..30
set ...75
updating ... 101
Using ...30

PICS file ... 75, 101

PICS items ... 30, 84, 101
value ...84

PICS used ... 1

PIN ...58

PIN Code ...58
enter ..58

PIXIT 9, 35, 71, 84, 101, 108, 109, 131, 147, 149
clicking ..35
names ...35
Opening ..35
updating ... 101
Using ...35

PIXIT data ...84

PIXIT item ... 1, 35, 84, 101

PIXIT Tool Window .. 30, 35, 132

Place 13, 41, 58, 68, 70, 86, 109, 127, 139, 143
checkmark ... 109, 127

PLogger ...86

PProjVersion ...77

PpszProjectName ...77

PpszTestCaseDesc ..79

PpszTestCaseName ...79

PPTSVersion .. 77, 98

Pqw ... 75, 99

PRD 2.0 ... 1

Preliminary 86, 149, 152, 158, 161

Preliminary Verdicts 86, 149, 152, 158, 161

Preparing ...99
use PTSControlClient ...99

Presents ... 7, 9, 10, 17, 27, 30, 46, 53, 86, 99, 101, 108,
109, 124, 129, 143, 146
MMIs ...86

Press .. 13, 55, 65, 68, 109
OK button..68

Press Ctrl .. 109

Pressed .. 13, 45, 65, 70, 86, 135
Cancel button ...86
OK ...65

Primary windows ...10

Proceeding in ... 135

Proceeding in order.. 135

Process by selecting ...68

Processed by 53, 68, 73, 75, 101, 107, 131

Product ... 1, 107, 108, 109, 121

Product Details ... 109, 121

Product Listings... 1

Profile . 1, 7, 9, 10, 13, 17, 27, 30, 35, 40, 46, 53, 56, 72,
73, 75, 107, 108, 109, 131, 132, 143, 157
project represents .. 9

Profile & Protocol .. 17

Profile Implementation Conformance Statement 9

Profile Implementation Extra Information 9
Testing .. 9

Profile Name ... 132

Profile Tuning Suite 9, 46, 53, 73, 107, 109, 131, 143
Use ... 109

Profile Viewer .. 157

Program Files 1, 62, 71, 73, 99, 101

Project PICS ... 30
Editing... 30

Project PIXIT settings ... 35
Editing... 35

Project represents .. 9
profile .. 9

Project Settings 46, 50, 68, 70, 153
returning ... 70

Project Settings dialog .. 68

Project Settings menu .. 68

Projects 1, 7, 8, 9, 27, 30, 35, 46, 50, 53, 67, 68, 70, 71,
73, 75, 77, 79, 84, 86, 99, 101, 108, 109, 124, 131,
132, 145, 146, 153
Adding .. 7
containing ... 77
IXIT table .. 35
name ... 99
Removing ... 9
used to represent ... 8

Prompts 46, 53, 55, 65, 73, 74, 86, 101, 131
Client Application ... 86

Protocol .. 1, 7, 9, 10, 13, 17, 27, 30, 40, 44, 56, 75, 143,
149, 155, 157

Protocol specified ... 9
use .. 9

Protocol traces ..143, 157
viewing.. 157

Protocol Viewer .. 143, 155, 157
correlate ... 155
PTS ... 155
Running .. 157
starting .. 157
used to .. 157
using ... 157

Protocol Viewer application .. 143

Provides ... 53, 55, 56, 57, 58, 62, 65, 68, 71, 73, 86, 99,
107, 109, 131, 143, 155
PTS Control API ... 73
the User Interface .. 86

Provides its own .. 58

PszDescription .. 86

PszEntryName .. 84

PszMessage ... 86

PszNewParamValue ... 84

PszPathOfPtsFile.. 75, 101

PszPathOfWorkspace .. 75, 101

Printed Documentation

150

PszProjectname ... 77, 79, 84, 86

PszProjectName,wID ..86

PszReponse ..86
of ...86

PszResponse ..86
of ...86

PszResponse,responseSize,L86

PszResponseBuffer ..86

PszTestCase .. 79, 86

PszTestCaseDesc ..79

PszTestCaseName .. 79, 86

PszWorkspaceName ..75
from ...75

PszWorkspacePath...75

PTCs ..56

PTS .. 1, 5, 7, 8, 9, 10, 17, 30, 35, 41, 44, 45, 46, 53, 55,
56, 57, 58, 62, 65, 67, 68, 70, 71, 72, 73, 74, 75, 77,
79, 84, 86, 98, 99, 101, 107, 108, 109, 121, 131,
143, 145, 146, 149, 152, 155, 157
Automating .. 53, 73, 131
center ... 146
contains ..30
corner ... 143, 145
During ...98
Endpoint Device .. 155
exiting .. 157
Implementation Under Test......................................86
Implicit Send ...58
imported .. 1
item ... 1
IUT ..65
lines ...62
name .. 109
number ..98
order..57
part ... 73, 99
Phone Book Access Profile................................... 149
Protocol Viewer ... 155
release ... 109
Select ... 109
starting ... 101, 157
Use ... 107, 108
using .. 57, 107, 109

PTS Application................................ 8, 46, 152, 155, 157
Exit .. 8
page of ... 157

PTS BR .. 143

PTS clicking .. 1

PTS Control API .. 73, 74, 75, 77, 79, 84, 86, 98, 99, 101
connected ...79
indicates ..86
object ..86
provides ..73
use ..73
using .. 73, 75, 99

PTS Control Client ..99
Test Scripts ...99

PTS Development Team 41, 46
case ..41

PTS during ... 107

PTS Endpoint 44, 98, 101, 143, 155

PTS Endpoint Device 44, 98, 101, 143, 155

PTS Executable Test Suite .. 9

PTS executables... 9, 58, 67

PTS Implicit Send DLL ... 65

PTS LE .. 143

PTS Program Settings .. 46

PTS Protocol Viewer 143, 152, 155, 157
Starting ... 157
using ... 143

PTS Protocol Viewer application 157
coupled ... 157

PTS removes .. 62
tags ... 62

PTS Report .. 107, 108, 109
Creating .. 109

PTS supports .. 17

PTS Team ... 67

PTS Technical 67, 70, 101, 152

PTS Technical Support 67, 70, 101, 152

PTS Terminology .. 9

PTS test case operation ... 56

PTS Test Scripting .. 99

PTS Test Suites .. 86

PTS to the IUT .. 149

PTS toolbar ... 45
button .. 45

PTS User Interface 77, 79, 84, 86
corner ... 86
window... 77, 79, 84

PTS when the ... 1

PTS Workspace 5, 108, 109, 131
existing ... 131

PTS.exe .. 73

PTS_LOGTYPE logType .. 86

PTS_LOGTYPE_END_TEST 86

PTS_LOGTYPE_ERROR .. 86

PTS_LOGTYPE_EVENT_SUMMARY 86

PTS_LOGTYPE_FINAL_VERDICT 86

PTS_LOGTYPE_IMPLICIT_SEND 86

PTS_LOGTYPE_INFRASTRUCTURE 86

PTS_LOGTYPE_MESSAGE 86

PTS_LOGTYPE_PRELIMINARY_VERDICT 86

PTS_LOGTYPE_RECEIVE_EVENT 86

PTS_LOGTYPE_SEND_EVENT 86

PTS_LOGTYPE_START_TEST 86

PTSControl .. 73, 75, 86

PTSControl.dll ... 73

PTSControl.h .. 73

PTSCONTROL_E_BLUETOOTH_ADDRESS_NOT_FO
UND .. 98, 101

PTSCONTROL_E_CLIENT_LOG_NOT_EXPECTED_T
O_FAIL ... 101

Index

151

PTSCONTROL_E_FAILED_TO_CREATE_WORKSPA
CE .. 101

PTSCONTROL_E_FAILED_TO_OPEN_WORKSPACE
 ... 101

PTSCONTROL_E_FUNCTION_NOT_IMPLEMENTED
 ... 79, 101

PTSCONTROL_E_GUI_UPDATE_FAILED 101

PTSCONTROL_E_ICS_ENTRY_NOT_CHANGED . 101

PTSCONTROL_E_ICS_ENTRY_NOT_FOUND 101

PTSCONTROL_E_ICS_ENTRY_UPDATE_FAILED 101

PTSCONTROL_E_IMPLICIT_SEND_CALLBACK_ALR
EADY_REGISTERED ... 101

PTSCONTROL_E_IMPLICIT_SEND_CALLBACK_NOT
_EXPECTED_TO_FAIL .. 101

PTSCONTROL_E_IMPLICIT_SEND_CALLBACK_NOT
_REGISTERED ... 101

PTSCONTROL_E_INTERNAL_ERROR 101

PTSCONTROL_E_INVALID_IXIT_PARAM_VALUE 101

PTSCONTROL_E_INVALID_PIXIT_PARAM_VALUE
 ... 101

PTSCONTROL_E_INVALID_TEST_SUITE 101

PTSCONTROL_E_IXIT_PARAM_NOT_CHANGED 101

PTSCONTROL_E_IXIT_PARAM_NOT_FOUND 101

PTSCONTROL_E_IXIT_PARAM_UPDATE_FAILED
 ... 101

PTSCONTROL_E_PICS_ENTRY_NOT_CHANGED
 ... 101

PTSCONTROL_E_PICS_ENTRY_NOT_FOUND 101

PTSCONTROL_E_PICS_ENTRY_UPDATE_FAILED
 ... 101

PTSCONTROL_E_PIXIT_PARAM_NOT_CHANGED
 ... 101

PTSCONTROL_E_PIXIT_PARAM_NOT_FOUND .. 101

PTSCONTROL_E_PIXIT_PARAM_UPDATE_FAILED
 ... 101

PTSCONTROL_E_PROJECT_NOT_FOUND.......... 101

PTSCONTROL_E_PROJECT_VERSION_NOT_FOUN
D... 101

PTSCONTROL_E_PTS_FILE_FAILED_TO_INITIALIZE
 ... 101

PTSCONTROL_E_PTS_VERSION_NOT_FOUND . 101

PTSCONTROL_E_TEST_SUITE_PARAM_UPDATE_F
AILED .. 101

PTSCONTROL_E_TESTCASE_NOT_ACTIVE 101

PTSCONTROL_E_TESTCASE_NOT_FOUND 101

PTSCONTROL_E_TESTCASE_NOT_STARTED ... 101

PTSControlClient 73, 86, 98, 99, 101
running ... 101
using ...99

PTSControlClient application..................................... 101

PTSControlClient Test Script..99

PTSImplicitSendCallback ...86

PTSPV .. 143, 155

PullBdAddr ..98

Purchased ... 13

Purpose 9, 40, 46, 62, 108, 126, 149, 152, 155
Displaying ... 40

Q
QDID ... 109

QLI ... 75, 107

Qualification Listing Interface107, 109

Qualification test evidence ... 107

Qualified Device Listing .. 1

Qualified Listing Interface ... 75

QueryInterface .. 86

R
Receives 56, 75, 77, 79, 86, 98, 147, 149, 152

BDADDR .. 98

Recent Workspaces ... 5, 109

Refer 13, 17, 46, 58, 86, 99, 107, 108, 132
IPTSImplicitSendCallbackEx 86

RegisterImplicitSendCallback 86, 101

RegisterImplicitSendCallbackEx 86

Regsvr32 PTSControl... 101

Release .. 58, 67, 77, 86, 98, 109
PTS ... 109

Remove Checked Items button127, 130
clicking .. 127

Removing ... 9, 13, 70, 137
checkmark .. 70
project ... 9
Test Case ... 137

Replace .. 55, 62, 70, 71, 72, 86
used .. 55

Replaced with the name of ... 62

Report 1, 41, 107, 108, 109, 121, 124, 129, 149
Contents ... 108
of creating ... 109
time to create ... 109

Report Generator menu ... 121

Represent 1, 8, 9, 17, 30, 77, 98
used .. 8

ResponseSize ... 86

Retrieves ... 98
Bluetooth Device Address 98

Retry .. 65

Return Values 58, 65, 72, 75, 77, 79, 84, 86, 98

Returning ... 65, 70, 75, 86, 101
HRESULT ... 75
NULL .. 65, 86
OCTETSTRING ... 101
Project Settings .. 70

Right 1, 8, 10, 17, 41, 50, 68, 79, 86, 101, 109, 121,
129, 133, 137, 139, 143, 145, 149, 153

Right clicking .. 50, 143, 145

Room for ... 86
NUL .. 86

Printed Documentation

152

Run 27, 41, 44, 46, 50, 53, 55, 73, 74, 75, 99, 101, 109,
129, 131, 135, 145, 146, 152, 153, 155, 157
Protocol Viewer ... 157
PTSControlClient ... 101
Test Case .. 135
Test Script ... 101

Run Script ... 135

Running during ... 109

RunTestCase ... 79, 101

S
S is s/n ...79

S/n .. 77, 79

Sample ... 58, 71, 73, 86, 98, 99

Sample Program .. 86, 98, 99

Sample Source Code ... 58, 71

Save ... 46, 109, 121, 143, 157

Scoping ...65

Script 53, 73, 99, 131, 132, 133, 135, 137, 139, 141

Script Tool Window 132, 133, 135, 137
select.. 132

Script Tool Window icon .. 132
toolbar .. 132

Scripted Operation ... 53, 73, 131

Scripting ... 53, 73, 99, 132, 135

Search .. 1, 17, 143, 149

Search string ...17

Secure Simple Pairing ..65

Segment Preliminary ... 158, 161

Select1, 5, 7, 8, 9, 10, 13, 17, 30, 35, 40, 41, 46, 53, 58,
65, 68, 73, 77, 79, 84, 86, 99, 101, 108, 109, 121,
124, 126, 127, 129, 130, 131, 132, 133, 135, 137,
139, 141, 143, 145, 147, 149, 152, 153
used ... 1, 58, 129

Select .. 133

Select .. 133

Select .. 157

Select All .. 13, 109, 127

Select Duplicates ... 129
use ... 129

Select Duplicates button .. 129

Select Latest .. 109, 129

Select Test Cases 79, 101, 109, 127, 129, 135

Selected device description 121

Selected during .. 108

Selecting1, 5, 13, 58, 109, 127, 129, 131, 132, 141, 152
events .. 152
Implementation Under Test.. 1
individual test case results 127
Legacy .. 5
older test results .. 129
PTS .. 109
Script Tool Window ... 132
Test Case .. 141
Test Cases .. 131

Selection .. 1, 10, 13, 17, 30, 50, 65, 109, 126, 127, 135,
152, 153
Description ... 10
page allows .. 152

Send ... 55, 56, 57, 62, 70, 141

Send event ... 86, 147, 149, 152

Sending .. 46, 86, 141, 147, 149
Test Script .. 141

Server ... 53, 74, 149

Service Class .. 1

Set 13, 30, 41, 46, 53, 57, 62, 71, 73, 75, 84, 86, 101,
108, 109, 131, 135, 152, 158, 161
pbResponseIsPresent ... 86
PICS ... 75
Test Cases ... 135
TRUE .. 84, 86

SetControlClientLoggerCallback 86

Setting adds communication .. 46

Setting pbResponseIsPresent...................................... 86
FALSE .. 86
TRUE .. 86

Settings 7, 30, 35, 41, 46, 50, 53, 68, 108, 109, 131,
147, 152, 153

Settings affects ... 46

Shift ... 13

Shortcut .. 13, 109, 157

Should always ... 30

Show .. 27, 44, 79, 109, 145, 149
OBEX .. 149

Show Purpose .. 79

ShowTag ... 62

SIG .. 53

Single test case .. 41
Executing .. 41

Software build requirements .. 67

Stack ... 56, 155

Standard 9, 41, 46, 57, 58, 77, 98, 152

Start 1, 17, 35, 41, 44, 58, 62, 67, 68, 74, 86, 98, 99,
101, 109, 135, 139, 146, 147, 149, 157
Protocol Viewer .. 157
PTS ...101, 157
PTS Protocol Viewer .. 157
Test Case ... 86

Start Page ... 35

Start PTS .. 74, 101

Start Test Case .. 86, 147, 149

Std .. 57, 58, 67

STL .. 57

Stop .. 1, 109, 135

Stop executing .. 135

Stop Searching ... 1

Stopping .. 135
Test Script .. 135

StopTestCase ... 79

Straightforward ... 109

Index

153

String ...58
strPrompt ..58

StrMmiText ... 58, 62, 65
beginning ..62
contents ..65
of .. 62, 65

StrPrompt ..58
string ...58

StrPrompt,MMI_Style_Edit1 ...58

StrTestCaseName ..58

Style .. 58, 62, 65, 75, 86
MMI ...86
used to select ...58

Style Name ..86

Subfolder .. 1, 75
name ...75

Suite ... 10, 13, 17, 35, 62, 72

SzLogType ..86

SzTime ..86

T
Tag ... 62, 72, 86, 99, 155

Implicit Send DLL display ...62
PTS removes ..62

Take quite ... 109
long time .. 109

TC_CLIENT_ABC_BV_01_I ... 9

TC_COD_BV_01_2 ..99

TC_COD_BV_01_I ...99

TC_SERVER_OPH_BV_03_I62

TC_SERVER_OPH_BV_07_I62

TCP ...71

Team ...67

Template Library ...57

Test case 9, 10, 27, 30, 35, 40, 41, 44, 46, 50, 53, 56,
58, 62, 65, 68, 70, 72, 73, 75, 79, 86, 99, 101, 108,
109, 124, 126, 127, 129, 130, 131, 133, 135, 137,
139, 141, 143, 145, 146, 147, 149, 152, 153, 155,
158, 161
Adding .. 133, 141
Choose .. 133
clicking ..79
containing ...79
during ..86
executing ... 62, 86
Highlight ... 139
If ... 135
names .. 131
number ..99
of ... 27, 50, 56, 79, 86, 108, 109, 143, 145, 146, 149,
152, 153
Removing... 137
running ... 135
select.. 131, 141
set .. 135
start ...86
When...44

Test Case Ended ... 149, 155

Test case execution ... 41, 44, 56, 58, 86, 108, 109, 124,
126, 143, 145, 146, 149, 153, 155, 158, 161

Aborting .. 44
of .. 86, 109, 143, 149

Test case execution log 41, 86, 126, 143, 145, 146, 149,
153, 155
Viewing ... 126

Test Case has encountered ... 86

Test Case History 109, 124, 145

Test Case History Tool Window124, 145

Test Case History Tool Window displays 124

Test Case History window .. 145

Test Case Naming .. 9

Test case results.................. 27, 108, 109, 127, 129, 130
Deleting .. 130

Test case runs for ... 109

Test Case Started ...147, 155

Test Case View .. 27, 50, 153
of ... 50, 153

Test cases produce .. 41
number ... 41

Test Component ... 56

Test Control Notation1 ... 143

Test Execution Log ... 108, 109, 126, 143, 146, 149, 152

Test History ... 124
Editing... 124

Test history editor ... 124

Test Plan Generator 1, 30, 75, 107, 109
Using .. 107

Test Plan Generator's list ... 109

Test Procedure ... 53

Test Purpose .. 9, 79
corresponding .. 79

Test Purposes vs .. 9

Test run .. 124, 158, 161

Test Script .. 99, 101, 131, 132, 133, 135, 137, 139, 141,
143, 149
added .. 137
Create ... 99
Editing... 137
Executing .. 135
name ... 101
PTS Control Client ... 99
Running .. 101
Select .. 133
Send ... 141
Stopping ... 135

Test Script Window ...135, 139

Test Suite ... 9, 10, 13, 17, 35, 46, 50, 62, 68, 70, 71, 72,
77, 108, 131, 133, 143, 145, 147, 152
inclusion ... 13

Test Suite Selector ... 7, 10, 17
Using .. 10

Test Suite Selector dialog 10, 17

Test Suite Selector will display..................................... 10
of ... 10

Testcase... 79, 99, 109

TestCaseView .. 77, 79, 84

Printed Documentation

154

Tester Information .. 109

Testing .. 9, 139
Profile Implementation Extra Information 9

TestReport.. 109

TestScriptSample ..99

TestScriptTemplate ...99

Testsuite ..99

Text .. 10, 17, 58, 62, 68, 75, 86, 99, 109, 121, 143, 147,
149

Text file ..99
used to create ...99

Text string ..75

That has been encrypted ... 108

That is .. 1, 30, 44, 46, 50, 53, 55, 58, 65, 68, 70, 71, 73,
75, 77, 79, 84, 86, 98, 99, 107, 121, 129, 137, 143,
147, 155

That must ... 9, 30, 86

The first ..1, 5, 13, 30, 35, 41, 44, 46, 65, 75, 79, 86, 99,
108, 109, 135, 139, 141, 143, 147, 149, 155

The instructions .. 65, 99, 141
the user ...65

The IUT9, 27, 30, 41, 44, 45, 53, 62, 65, 70, 86, 149

The language ..58

The list ... 1, 10, 13, 17, 30, 65, 109, 121, 124, 126, 127,
147

The TTCN ... 143, 149

The TTCN operating .. 143

The user ... 65, 70, 74, 86, 109
the instructions ...65

The User Interface ... 74, 86
provide ..86

This feature .. 53, 73, 131

This functionality .. 46, 62, 67, 86

Time 1, 5, 7, 9, 13, 30, 45, 53, 55, 58, 70, 73, 75, 86,
107, 108, 109, 131, 133, 135, 141, 145, 146, 147,
149, 153
create ... 109

Time consuming ..55

Time logging ..50

Time to.. 1, 107, 109, 135

Time to create .. 109
report.. 109

Times during .. 149

To execute..................................1, 27, 56, 135, 158, 161

To indicate .. 65, 149

Toolbar ... 30, 35, 44, 132
Script Tool Window icon 132

TP .. 9

TPG .. 1, 7, 30, 75, 107
Using .. 107

Tree where ..27

True .. 30, 58, 121, 146
set .. 84, 86
setting pbResponseIsPresent86

True during .. 30

TRUE if .. 86

TRUE indicating .. 71

TSPC_ALL .. 30

TSPC_HFP15_2_3 ... 30

TSPX_bd_addr_iut ... 35

TSPX_use_implicit_send ... 71
value ... 71

TTCN ...143, 149

Txt ... 62

Txt file .. 62

Type 35, 50, 58, 65, 70, 86, 109, 143, 152, 155

U
U in Project ... 79

UINT ... 58, 77, 79

UINT iProject... 77

UINT iTestCase .. 79

UINT mmiStyle .. 58

UllBthAddr ... 75

ULONGLONG ... 75, 98

ULONGLONG ullBthAddr ... 75

Un .. 13

Unattended operation 73, 86, 131

Uncheck the .. 30

Uncheck the checkbox ... 30

Unchecking ... 109
checkbox .. 109

Unicode .. 75, 77, 79, 84, 86

Unicode string .. 77, 79, 86

Unicode UTF ... 75

Unloading .. 58
DLL ... 58

UnregisterImplicitSendCallback 86, 101

UnregisterImplicitSendCallbackEx 86

UnSelect All .. 109

Unselected .. 129

Until the test .. 153

Until the test case ... 153

UpdateICS .. 84, 101

UpdateIXITParam .. 75, 84, 101

UpdatePics .. 84, 101
calling ... 101

UpdatePixitParam .. 75, 84, 101
using ... 75

Updating .. 46, 101
IXIT ... 101
PICS ... 101
PIXIT ... 101

Upload Report ... 109

Upload Report requires .. 109

Usage Notes ... 70

Index

155

Use 9, 50, 53, 57, 58, 62, 67, 68, 70, 72, 73, 75, 86, 99,
101, 107, 108, 109, 121, 124, 129, 131, 143
Debug ...75
DllMain ..58
Implicit Send ...86
IPTSImplicitSendCallbackEx86
Profile Tuning Suite ... 109
protocol specified ... 9
PTS .. 107, 108
PTS Control API ...73
Select Duplicates ... 129
Visual Studio Debugger ...67
wcscpy_s ..86

Use OpenWorkspace ..75

Use PTSControlClient ...99
Preparing ..99

Used .. 1, 5, 8, 10, 13, 17, 27, 30, 35, 41, 46, 50, 53, 55,
56, 57, 58, 62, 65, 67, 68, 70, 71, 73, 75, 77, 79, 86,
98, 99, 101, 107, 108, 109, 121, 124, 129, 131, 147,
149, 152, 157, 158, 161
consolidate .. 107
create ... 86, 99, 109
develop ...73
direct .. 107
distinguish .. 109
enable ...71
implement ...56
indicate .. 27, 86
instruct ..65
replace ..55
represent... 8
select.. 1, 58, 129
Workspace ..99

Used as .. 13, 71, 73, 77, 79, 149

Used during .. 107

Used for this purpose ... 45, 109

Used in .. 1, 17, 30, 41, 53, 55, 58, 62, 73, 86, 109, 129,
131, 149

Used in tracking ..41

Used to ...1, 8, 17, 27, 30, 35, 46, 50, 53, 55, 56, 58, 65,
70, 71, 73, 75, 77, 86, 99, 107, 109, 124, 127, 129,
149, 152, 157, 158, 161
Protocol Viewer ... 157

Used to consolidate ... 107

Used to create .. 86, 99, 109
text file ..99

Used to develop ..73

Used to direct ... 107

Used to distinguish ... 109

Used to enable ... 46, 71

Used to hide one ...17

Used to implement ..56

Used to indicate ... 27, 86, 149

Used to instruct ...65

Used to replace ...55

Used to represent ... 8
project ... 8

Used to select .. 1, 58, 129
style ...58

User Action Requested ...70

User Action Required ... 70

User Defined Implicit Send DLL 50, 68

User Interface ... 74, 86

Using .. 1, 7, 8, 10, 30, 35, 44, 46, 56, 57, 58, 68, 70, 72,
73, 75, 77, 79, 86, 99, 107, 109, 121, 129, 131, 139,
141, 143, 152, 157
dropdown list .. 121
IUT .. 70
Main Test Component ... 56
PICS ... 30
PIXIT ... 35
Protocol Viewer .. 157
PTS .. 57, 107, 109
PTS Control API .. 73, 75, 99
PTS Protocol Viewer .. 143
PTSControlClient ... 99
Test Plan Generator... 107
Test Suite Selector ... 10
TPG .. 107
UpdatePixitParam .. 75

Using Implicit Send .. 73, 86, 131

Using PTS ... 30, 157

Using Windows Explorer .. 8

V
Value 1, 35, 41, 44, 58, 65, 71, 75, 77, 79, 84, 86, 98,

101, 147, 149
0x0000 .. 75, 98
GetProjectName .. 101
GetTestCaseName .. 101
logType ... 86
PICS item ... 84
TSPX_use_implicit_send ... 71

Value represents... 101
general.. 101

Verdict Description 86, 143, 147, 149, 155

Verdict Determination 149, 158, 161

Version . 1, 10, 30, 41, 57, 58, 62, 67, 71, 77, 86, 98, 99,
101, 108, 147

Viewing ..126, 157
protocol traces .. 157
test case execution log .. 126

Virtual Sniffer .. 155

Visual ... 67, 71, 73, 86

Visual Studio .. 67, 71, 73
needed.. 67

Visual Studio 2008 .. 67

Visual Studio Debugger .. 67
use .. 67

W
Wcscpy_s .. 86

Use ... 86

When 1, 10, 30, 41, 44, 56, 57, 58, 65, 67, 68, 70, 72,
73, 74, 75, 77, 79, 86, 99, 101, 107, 108, 109, 121,
124, 126, 129, 135, 143, 146, 149, 152, 153, 158,
161
test case ... 44

When a Test Case .. 44, 86

When developing .. 73

Printed Documentation

156

When mixing ...67

When pbResponseIsPresent ..86

When reviewing.. 146

When selecting... 121, 126
item .. 126

When testing ...30

Which may.. 1, 75

WID ..86

WID values ..86

WideCharToMultiByte ...75

Will initiate ... 1

Will result .. 158, 161

Win32 BOOL ...86

WINAPI ..58

WINAPI ImplicitSendPinCode58

WINAPI ImplicitSendStyle ..58

WINAPI ImplicitStartTestCase58

WINAPI ImplicitTestCaseFinished58

Window
PTS User Interface 77, 79, 84

Window contains .. 10, 145

Windows 7, 10, 13, 17, 30, 35, 50, 57, 58, 70, 72, 73,
74, 75, 77, 79, 84, 86, 98, 109, 132, 143, 145, 146,
157
copied .. 109, 143

Windows API .. 58, 74, 75
calling ..74

Windows DLL ..50

Windows Dynamic Link Libraries 57, 73

Windows Explorer .. 145, 157

Windows Explorer window ... 145
cause ... 145

Windows LoadLibrary ... 72

With 9, 17, 27, 30, 35, 40, 41, 53, 55, 56, 57, 58, 62, 65,
67, 68, 70, 73, 74, 75, 77, 79, 84, 86, 98, 99, 101,
107, 108, 109, 121, 131, 139, 143, 145, 147, 152,
155, 157
name of .. 75

With existing.. 86

With other .. 70, 152

With other events .. 152

With text .. 109

With the name of... 62, 75

WORD wID ... 86

Workspace ... 1, 5, 7, 8, 9, 10, 13, 27, 30, 35, 40, 44, 50,
53, 62, 68, 70, 73, 75, 77, 79, 84, 99, 101, 109, 131,
133
create .. 75, 101
Creating .. 99
Deleting .. 8
existing ... 75, 99
name ... 75
Opening/Creating ... 75
used .. 99

Workspace file .. 75
name ... 75

Workspace Tool Window 27, 40, 44, 68

Workspace window ... 133

Wprintf ... 77, 79

X
Xlsx.. 99

XML 99, 101, 107, 108, 109, 143

XML Notepad .. 99

Y
Your Suite ... 7, 10, 13

