Bluetooth SIG - PTS User Manual

FCC Statement:
This device complies with part 15 of the FCC Ruf@peration is subject to the following two conditso
(1) This device may not cause harmful interfereacs,

(2) this device must accept any interference reckiincluding interference that may cause undesired
operation.

(3) FCC ID: FCCID 2AECO-BTSIG15A
NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device,
pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against

harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in
accordance with the instructions, may cause harmful interference to radio communications. However, there

is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined
by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more

of the following measures:

Reorient or relocate the receiving antenna.

Increase the separation between the equipment and receiver.

Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

Consult the dealer or an experienced radio/TV technician for help.

Changes or modifications not expressly approved by the party responsible for compliance could void the
user’'s authority to operate the equipment.

Table of Contents

1. Workspaces and Projects

Creating a new workspace
Opening an existing workspace
Adding a project to a workspace.
Deleting a workspace
Removing a project from a workspace
PTS Terminology
Using the Test Suite Selector
Using the Test Suite Selector
Primary windows

Editing the list of test suites for inclusion in the workspace

Filtering the “Test Suite(s)” window
Projects
Projects
Editing the project ICS
Editing the project IXIT settings
Test Cases
Displaying the purpose of a test case
Executing a single test case
Aborting test case execution
Link Keys and PTS Endpoint Information
Endpoint information
Deleting the current Link Key
PTS Program Settings
PTS Program Settings
Application settings
Project Settings

2. Automating

Automating PTS
"Operator-less Operation"
Automation test platforms
PTS test case operation
Implicit Send DLLs
Basic Information
Implicit Send functions
Message tags
MMI styles
Software build requirements
Activating a Custom Implicit Send DLL
Activating a custom Implicit Send DLL
Usage Notes
Technical Tidbits
Automatic dismissal of Implicit Send requests
ImplicitSend() function
TSPX_use_implicit_send
Sample Source Code
One DLL or many DLLs?
Hybrid environments

3. Extended Automating

Automating PTS
"Fully Automated Operation”

© © © 00 ~N g L

B DA D DDDBDBDAEDNWWWWDNNNEREREIRLERE
N A DA DM WNMDNMDNOO®©OOOWWOoOoU oo O

51
51
51
53
53
54
54
55
59
61
64
64
64
66
66
66
67
67
67
67
67

69
69
69

Printed Documentation

PTS and the PTS Control API 70
General Usage 70
Functions in the PTS Control API 71
Opening/Creating a Workspace 71
Working with Projects 72
Working with Test Cases 74
Working with ICS and IXIT data 78
Logging and unattended operation 80
General information functions 89
Sample Program - PTSControlClient 90
Sample Program - PTSControlClient 90
Preparing to use PTSControlClient 90
Running the Test Script 91
API Error Codes 91
Other error codes 93
4, Report Generator 95
Introduction 95
Qualification test evidence 95
Development checkpoints 95
Contents of a report 95
Creating a PTS Report 96
1. Select a workspace 96

2. Start the report generator 97
3. First time use of the report generator 97
4. Select the device description 99

5. Selecting the test case results to be used in the report 100
8. Including test execution logs in the report 103
9. Generating the report 104
Adding and Deleting Device Descriptions 105
Adding a device description 105
Deleting a device description 106
Reviewing and Editing the Test History 108
Reviewing and Editing the Test History 108
Viewing a test case execution log 109
Selecting individual test case results to be deleted 110
Selecting older test results for deletion 110
Deleting test case results 111
5. Scripting 113
Automating PTS 113
“Scripted Operation” 113
Creating an initial Test Script 113
Adding Test Cases to the Test Script 115
Executing a Test Script 116
Stopping Test Script execution 117
Editing a Test Script 117
Editing a Test Script 117
Removing a Test Case from the Test Script 117
Changing the order of execution 120
Adding a Test Case to the Test Script 122
6. Logging 123
Introduction 123
Output Window 123
Test Case History Tool Window 124

Table of Contents

Test Execution Log 125
Test Execution Log 125
Format of the execution log 126
Interesting events 127
Selecting the events to be logged 130
“Run-time” vs. deferred logging 132

PTS Protocol Viewer 133
PTS Protocol Viewer 133
The Protocol Viewer "stack" 133
Starting the PTS Protocol Viewer 135
Saving and viewing protocol traces 135

Verdict Determination 135
Verdict Determination 135

7. Verdict Determination 137
8. Index 139

Workspaces and Projects

Creating a new workspace

The first step in creating a new workspace is to the select the “New Workspace” item on the PTS “File” menu. A wizard
consisting of three dialogs will start when “New Workspace” is selected.

‘ Mew Workspace... Ctrl + N
& Open Workspace... Ctd + O
Recent Workspaces 3

L3} Application Settings..

E3 Exit Alt + F4

Selecting the Implementation Under Test

The first dialog is used to select the device to be tested. There are three ways to specify the device:

d If the device appears in the list at the left hand side of the dialog, it may be selected by clicking on its entry.

d If the device is currently discoverable, a search for it may be started by clicking the “Search” button. When the
device appears in the list, it may be selected by clicking on its entry.

* The Bluetooth Device Address (BD_ADDR) may be entered directly in the box labeled “IUT Device Address”.

After the device has been selected using one of the above methods, click the “Next >" button to proceed to the next step.

* The device to be tested can be specified at a later time if this is needed. To do this, enter a dummy BD_ADDR
such as “000000000000” and click “Next >". The BD_ADDR for the device is a IXIT item and can be edited
before testing is started.

d The list at the left hand side of the dialog may be cleared by click the “Clear Search Results” button.

* When the “Search” button is clicked, the label on the button changes to “Stop Searching”. The search operation
will continue until either the “Next >” or “Stop Searching” button is clicked.

Printed Documentation

d The devices found during the search operation may be filtered by selecting an appropriate Major Device Class
and/or Service Class using the radio buttons in the lower right hand corner. This will not remove any devices
that are already in the list, it will simply discard devices found during the search operation that do not match the
selected criteria.

The selection of devices to be filtered is based on the Class Of Device value that each device reports in its response to
the Inquiry Request sent by the PTS.

“Import ICS from TPG”

An important part of preparing to test a given device is to select the profiles and protocols it supports, and to edit the ICS
information for each of those items. This process can be simplified if a declaration of the device’s features and functions
already exists.

One of the steps in getting a device ready for qualification is to declare the profiles and protocols it supports using the
online Test Plan Generator (TPG). One of the steps in completing this declaration is to edit the ICS information for the
device.

The ICS information stored in the TPG may be exported to a file on your computer. That file may then be imported to PTS
clicking the “Import ICS from TPG” button.

The ICS information for previously qualified devices that were qualified using PRD 2.0 or later may also be exported from
the Design/Product Listings area of Bluetooth.org for later import into PTS.

Clicking the “Import ICS from TPG” button will open the “Import Test Plan” dialog. This is a normal file selection dialog
which may be used to locate and select the file containing the ICS information exported from the TPG or a Qualified
Device Listing.

The “Import ICS from TPG” function may also be used at later time to update the ICS used by PTS when the declaration
for the device is updated in the TPG. See Adding a project to a workspace for more information

Workspaces and Projects

Name/Import
A workspace is a container for your testing projects, In most cases you will have one workspace for each device
you are testing,

MName: myPhone

Location: CAProgram Files\Bluetooth SIG\Bluetooth PTS 3 Debug |

If you have exported PICS from a Test Plan Generator project, click “ITmport PICS from TPG" to import the settings.
More infomration about TPG can be found at hitp://www.bluetooth.org/tpa

Import PICS from TPG

Help | Cancel || < Back I Next}NJ
I ™

Naming the workspace

Each workspace is given a name. The name can be anything that is meaningful to you, such as the product name of the
device, the internal codename for the device, the software version found in the device or some combination of the above.
There are two restrictions on the name of the workspace. First, the name needs to be different than the names of other
workspaces that you have created. Additionally, the characters used in the name of the workspace are limited to those
that may be used in a disk file or folder name. (The collection of data representing the workspace is stored in a disk file
folder whose name is the name of the workspace.)

The name of the workspace is entered in the box labeled “Name”. By default, the name of the workspace will be the
“Device Name” shown in the previous dialog.

Please note that importing ICS information as described above will change the workspace name to the name found in the
imported data. It's a good idea to execute “Import ICS from TPG” before entering the name of the workspace.

Normally, the folder and data files for a workspace are created in a subfolder of your PTS installation. The usual location
for workspaces is:

Printed Documentation

C:\Program Files\Bluetooth SIG\Bluetooth PTS\My Workspaces

An alternate location may be specified in the box labeled “Location”. The “...” button will initiate a folder browse operation
which may be used to select an alternate location for the workspace.

After the profile and protocol declaration for the device has been selected, if desired, and the workspace has been given a
name (and possible alternate storage location), click the “Next >" button.

Selecting profiles and protocols

The final step in creating a new workspace is to select the profiles and protocols to be tested. If the “Import ICS from TPG”
function was used in the previous step, the profiles and protocols supported by the device will already be selected.

The list of selected profiles and protocols may be changed before the workspace is created. See Using the Test Suite
Selector for more information.

Additional profile or protocol projects may be added to the workspace at a later time. Adding a project to a workspace
describes this process.

After you have selected the profiles and protocols that you wish to test, click “Finish” to create the workspace. The
creation of the workspace may take a little time, so be patient.

Workspaces and Projects

Select Test Suite(s)

Filter Test Suites by

|Ni Groups '] l£|
| Profile & Protocol ~| [@ler [¥1Hs [¥ILE |Default Settings
D Test Suite |:| Test Suite
O] azop Advanced Audio Distribution Profile . O azpp
[l 42ME AMP Manager Protocol E Cl azmp
[C] ane Alert Notification Profile O] ane
] ans Alart Notification Service >> | O] ans

[C] averp AudioNideo Remote Control Profile —
] AVDTP Audio/Video Distribution Transport Proto: i)
[C] avece Audio/\deo Remote Control Profile

[Tl gas Battery Service
i Basic Imaging Profile
[l Bp Blood Pressure Profile Y

Description of Selection

VIDP -- Video Distnbution Profile (Version: 1.0)

This test suite contains all the test cases defined in VDP test specification version 1.2.0 except for TR/VS/BV-02-1,
TP/HC/BY-01-C and TP/HC/BV-02-C.

Help | | Cancel][<Back | wexi> |[Finish

Opening an existing workspace

An existing workspace may be opened in one of two ways. The first method is to select “Open Workspace...” from the
“File” menu.

Printed Documentation

‘i MNew Workspace... Ctel + N
& Open Workspace... l} Ctd + O
Close
Close Workspace
W Save Workspace Cirl + 5
= Print Cirl + P
Recent Workspaces J

£} Application Settings...

E Exit Alt = F4

PTS also keeps a list of recently used workspaces. This list may be accessed by selecting “Recent Workspaces” on the
“File” menu.

‘i New Workspace.. Cird + N IT ML Ics X

Start Page X
@l Open Workspace.. Ctl+ O :
9 - - .
o €3 Bluetooth Profile Tuning Suite
Close Workspace SPECIAL INTERAST GROUP
. A Home [Release Notes @ Abstract Test Suite ﬁ PTS He
Save Workspace Cird + 5
& I:. h -- - _
Recent Workspaces k CAProgram Files\Bluetooth 5IG\Bluetooth PTS 3 Debug\myPhonemyPhone.pqwb %
Ch\Userslsigguest\Documents\Profile Tuning Suite\Unknown\Unknown.pgwt
L} Application Settings...
Ed Exit Alt = F4
F

Please note that opening a workspace may take a little time, so be patient.

In addition to opening a PTS Workspace, you can also open a Legacy PTS Workspace by selecting Legacy PTS
Workspace in the File name drop down menu.

Workspaces and Projects

2)

f —

Organize MNew folder S | @
[Y Favorites % Name = Date medified Type Size

M Desktop Ly A2pp 11/24/2014 2:12 AM - File folder

& Downloads W GATT 10/28/2014 1:08 PM File folder

"] Recent Places 1 logfiles 11/24/2014 3:12 AN File folder

| Unknown.pgwé 11/24/2014 1108 ... PQWE File 68 KB

i Libraries

E Documents

J’ Music E

(=] Pictures

B videos

L] Computer
(il WindowsT_0S (C
%} Lenovo_Recovery

“! Metwork -

File name: ~. |BE5

PTS Workspace
Legacy PTS Workspace kJ

Adding a project to a workspace.

Additional projects — profiles or protocols — may be added to a workspace at any time by selecting the “Project” item on
the “Insert” menu. The “Test Suite Selector” dialog will appear allowing additional projects to be selected. (See Using the
Test Suite Selector).

FILE VIEW |INSERTH REPORT HELP

N prLSerct... Ctrl + 1 T MLl Ics IXT

Profiles that are already present in the workspace will appear “greyed out” in the “Your Suite(s)” window and cannot be
removed.

The “Import ICS from TPG” function may also be used at this time. If you have updated your device declaration in the
TPG by changing the ICS settings or adding additional profiles or protocols, the updated declaration may be imported to
synchronize your settings in PTS to match the settings you are using in the TPG.

Printed Documentation

Filter Test Suites by:

| IA.-H Qroups

)

| Profile & Protocol

| Mer FHs [@Le |Default Settings|

[#]

[C] Test Suite [Test Suite

O] ans Alert Notification Service . u
C avcre Audio/Video Remote Control Profile [] LI azmp

[C] avDrp Audio/Video Distribution Transpart Prota E|] awnp

[l avecp Audio/Video Remote Control Profile [| ANS

[C] Bas Battery Service 3 |

[l e Basic Imaging Profile

[C] BLP Blood Pressure Profile

[gis Blood Pressure Service i

Description of Selection

If you have exported PICS from a Test Plan Generator project, click “Import ICS from TPG" to import the settings.
More infomration about TPG can be found at hitp://www.bluetooth.org/tpg

Irnpaort ICS from TPG

| ok LJI Cancel

Deleting a workspace

A workspace may be deleted using the following procedure:

1. Exit the PTS application.

2. Using Windows Explorer, locate the folder that contains the various data files used to represent the project.

3. Right click on the folder and select “Delete” from the popup menu.

Removing a project from a workspace

At the present time there is no supported mechanism for deleting a project from a workspace.

Workspaces and Projects

PTS Terminology

IUT (Implementation Under Test): The device, component or subsystem to be tested.

Workspace: A group of profile and protocol test suites to be tested against the Implementation Under Test. A workspace
may be thought of as representing a particular device, component or subsystem.

Project: A profile or protocol test suite and its associated data files. One or more projects may be present in a workspace.
Each project represents a profile or protocol supported by the IUT.

ICS (Profile Implementation Conformance Statement): Official declaration of the profile or protocol features and functions
that are supported by the IUT. Each item in the ICS selects one or more tests that must be executed in order to
demonstrate proper implementation.

IXIT (Profile Implementation Extra Information for Testing): Data items, such as the Bluetooth Device Address
(BD_ADDR), that are specific to a particular IUT. In general, IXIT items represent data that cannot be specified in advance
by the programmer who created a test case or test suite.

ETS (Executable Test Suite): Each profile or protocol specified for use in Bluetooth wireless technology has an
accompanying test specification. An ETS is a programmatic representation of the test purposes found in a particular test
specification. Test cases in an ETS are executed under the control of the Profile Tuning Suite.

Test Purposes vs. Test Cases: A test specification defines a number of test purposes which describe the environment that
must be present to perform a test of a particular feature or function, the proper procedure to perform a test, and the
expected outcome of a test.

A test case is specific implementation of a test purpose, for example, a test case found in a PTS Executable Test Suite.

Test Case Naming: Each test purpose defined in a test specification is identified by a name which is created according to
a standard policy. The name identifies which groups of tests a particular test belongs to along with the nature of the test.
Test purpose names are in a format similar to TP/ABC/BV-01-1

In the PTS, the naming format is modified slightly to change the “/” and “-* characters to “_" characters. In addition, since a
particular test purpose may be defined for more than one operational “role”, the role for a specific test case is inserted into
the name. A PTS test case name corresponding to the example test purpose above might be TC_CLIENT_ABC_BV_01_1

(“TC" replacing “TP” since PTS implements test cases not test purposes.)

Using the Test Suite Selector

Using the Test Suite Selector
There are currently over three dozen Bluetooth profiles and protocols available to be tested by PTS. The
task of determining which of the available test suites that should be used can be a little daunting. To

make things easier, the Test Suite Selector has been created.

The Test Suite Selector dialog displays all of the profile and protocol test suites available in PTS. The list

may be filtered in a number of ways to simplify the process of locating the test suites of interest.

The Test Suite Selector will appear in two different scenarios:

Printed Documentation

1. As the last step when creating a new workspace;

2. When adding a project to an existing workspace.

Primary windows

There are two primary windows in the Test Suite Selector dialog: “Test Suite(s)” on the left and “Your Suite(s)” on the
right.

Filter Test Suites by:

| IA.-H Qroups 'J [El
| Profile & Protocol | Mer Fns FLE [Default Settings|
[l Test Suite [[] Test Suite
1 ans Alert Notification Service . LI
C avcre Audio/Video Remote Control Profile [] LI azmp
[C] avDrp Audic/Video Distribution Transport Proto e | | ANP
[avecp Audio/Video Remote Control Profile [| ANS
[C] Bas Battery Service 3 |
[l e Basic Imaging Profile
[l BLp Blood Pressure Profile
[gis Blood Pressure Service i

Description of Selection

If you have exported PICS from a Test Plan Generator project, click “Import ICS from TPG" to import the settings.
More infomration about TPG can be found at hitp://www.bluetooth.org/tpg

Irnport PICS from TPG

| ok LJI Cancel

“Test Suite(s)” window

The “Test Suite(s)” window contains a list of the profile and protocol test suites that are available to be added to a
workspace. When the “Your Suite(s)” window is empty, this list will contain all of the test suites that are available in the
current installation of PTS.

10

Workspaces and Projects

Test suites that are currently present in the workspace, or that have been selected for addition to the workspace will
appear in the “Your Suite(s)” window and not in the list of available test suites.

Each test suite shown in the list is identified by its full name and common acronym.

Some test suites are considered to be in a “beta test” state. These test suites are generally new, or contain test cases
which only a few (or maybe no) Bluetooth devices are available. Test suites in “beta test” are indicated by “(Beta)”
following the profile or protocol name.

| Profile & Protocal »| [#1BR ¥ HS [¥]LE |Default Settings|

Test Suite
ANS Alert Notification Service . |
AVCTP Audio/Video Remote Control Profile |:|
AVDTP Audio/Video Distribution Transport Proto E'
AVRCP Audio/Video Remote Contrel Profile

BAS Battery Service == |

EIP Basic Imaging Profile
BLF Blood Pressure Profile
BLS Blood Pressure Service

1 e v

“Your Suite(s)” window

This window contains a list of test suites that are already present in the current workspace, or are waiting to be added to
the workspace. Items that are “greyed out” are already present; items in normal text have been selected for addition to the
workspace. In the picture on the previous page

* The OPP test suite has been selected for addition;
* A2DP, AVRCP, HFP15 and PBAP are already present in the workspace.

Test suite description

The “Description of Selection” window at the bottom of the Test Suite Selector will display descriptive information about
the item that is currently selected in either the “Test Suite(s)” or “Your Suite(s)” window.

The description may include the profile or protocol version supported by the test suite, the applicable test specification
version, and any special notes about usage or test case coverage.

Note that no description will be shown if more than one item is selected in either window.

11

Printed Documentation

Filter Test Suites by: -
| |AJJ Groups & | E|
| Profile & Protocol | 18R [HS [¥ILE |Default Settings
[C] Test Suite [C] Test Suite
TP Message Acces P : L —
[E] mcap Multi-Channe! Adaptation Protacol | AZMmp
1 mps Multi Profile :ﬂ ANP
[E] nNDcs Mext D5T Change Service ANS
[@ |oPP |Object Push Profile <<
] pan Personal Area Metwork Profile
[C] pasp Phone Alert Status Profile
[pass Phone Alert Status Service .
Description of Selection
OPP -- Object Push Profile (Version: 1.1}
This test suite contains test cases for the Object Push Profile as defined in test specification version 1.1 and the
QPP Test Specification Addendum. All of the defined test cases are available, I

Editing the list of test suites for inclusion in th e workspace

Adding test suites to “Your Suite(s)”

There are two ways to select test suites for inclusion in the workspace. The first, and possibly the easiest method, is to
locate a desired test suite in the “Test Suite(s)” window and double-click on it. Doing this will immediately move the
selected suite to the “Your Suite(s)” window.

Sometimes, it may be desirable to choose a set of test suites and select them all at once. To do this,

* Control—click on each of the test suite names of interest;
* Choose a contiguous block of suites by clicking on the first test suite name, followed by a shift-click on the last
name.

The “Select all” checkbox may be used as a convenient shortcut if all of the available test suites are to be selected.

12

Workspaces and Projects

Test Suite
AEDP
AZMP
AMNP

ANS
AVCTP
AVDTP
AVRCP
BAS

IHEEEEEE

Advanced Audic Distribution Profile
AMP Manager Protocol

Alert Motification Profile

Alert Motification Service

Audio/Video Remote Contrel Profile
Audio/Video Distribution Transport Proto
Audio/Video Remote Contrel Profile
Battery Service

Note that control-clicking on a selected item in the “Test Suite(s)” window will un-select it.

After a set of selections has been made, the “>>" button between the two windows will be active. Press the “>" button to

copy the selections to the “Your Suite(s)” window.

Before pressing “>>":

Filter Test Suites by:

[NI Groups

)

| Profile & Protocol

[[] Test Suite
[C] cscs

O crs

[C] pip

O ois

DUN

Ol Fup

FTP

s

GAP

Cycling Speed and Cadence Service -
Current Time Service

Device ID Profile D
Device Information Service

Dial Up Networking

Find e Profile

File Transfer Profile

Generic Access Profile

After pressing “>":

[#

| @IBR WIHS FILE |Default Settings

[E] Test Suite

13

Printed Documentation

[C] Test Suite [C] Test Suite
[C] cscs Cycling Speed and Cadence Senvice = [C] pun
[l cTs Current Time Service O Frp
[C] oo Device ID Profile
[C] pis Device Information Service D
] puw Dial Up Metworking
[C] Fmp Find Me Profile
B i Trnsirpolle
[C] Gap Generic Access Profile -

Notice that “DUN” and “FTP” moved from the “Test Suite(s)” window to the “Your Suites(s)” window after the selection
was executed.

Additional selections may be made until the desired set of test suites appears in the “Your Suite(s)” window.

Test suites that are not available selection
At times some of the test suites listed in the “Test Suite(s)” window will be “greyed out” and cannot be selected.
Removing a test suite from “Your Suite(s)”

The “Your Suite(s)” window behaves identically to the “Test Suite(s) window. Items in this window can be easily moved
back to the “Test Suite(s)” window by double-clicking on them.

Otherwise, the set selection functions described above may be used:

d To select an item for removal, control-click on its name;

d To select a contiguous group of test suites for removal, click on the first name in the group and then click on the
last name while holding down the “Shift” key (shift-click);

* To select all of the suites shown in “Your Suite(s)”, place a checkmark in the “Select All” checkbox.

After a set of selection selections have been made in the “Your Suite(s)” window, the “Remove” button will become active.
Press this button to move the selected items back to the “Test Suite(s)” window.

As noted above, items which are “greyed out” are currently a part of the workspace and cannot be removed.

Items that would be hidden by the filtering functions in the “Test Suite(s)” window will not appear after they have been
removed. They have been moved back to “Test Suite(s)”, they just will not be seen until the filtering condition has been
removed.

14

Workspaces and Projects

O] Test Suite
DUN

Completing the process

Once the desired set of profile and protocol test suites have been selected, and are appearing in the “Your Suite(s)”
window, press the “Finish” button to create or update the workspace.

Filter Test Suites by:)
| lA.-Ii Groups 'J [El

| Profile & Protocol | MerR [FIHs [¥ILE [Default Settings
[l Test Suite [Test Suite
[cscs Cycling Speed and Cadence Service - [pun
[l ems Current Time Service O Fre
[oo Device ID Profile ad
] pis Device Information Service
] pun Dial Up Metworking €<
] Fmp Find Me Profile

u File Transfer Profile
O] gap Generic &ccess Profile

Descnption of Selection

FTP -- File Transfer Profile (Version: 1.2}

This test suite contains test cases for the File Transfer Profile as defined in test specification wersion 1.2, All of the
defined test cases are available.

If you have exported PICS from a Test Plan Generator project, click "Import ICS from TPG" to import the settings,
More infomration about TPG can be found at hitp:/fwww.blustooth.org/tog

Import PICS from TPG

| ok [}_H Cancel

15

Printed Documentation

Filtering the “Test Suite(s)” window

There are four ways to reduce (filter) the number of test suites displayed in the “Test Suite(s)” window. These methods
may be used in combination with each other to in order to “fine tune” the list displayed.

Filter by test group

The various test suites have been grouped together in order to quickly locate profiles and protocols that are commonly
used together. The upper left hand selection box contains a list of those groups.

Click on the small arrow at the right of the list and select the group of interest.

£ MNew Workspace | ER |

| Select Test Suite(s)

Filter Test Suites by:

| Audio & Video — 2|
L
| Prafile & Protacol | [WIBR [¥]HS [¥]LE |Default Settings|
[E] « Test Suite [Test Suite
Ol azop Advanced Audio Distribution Profile
[C] pomp AMP Manager Protocol
O avcre Audio/Video RBemote Control Profile
IO avore Audio/Video Distribution Transport Protocel | = |
[C] avrecp Audio/Videa Remote Confrol Profile I
[] GAVDP Generic Audio/Video Distribution Profile =
[mps Multi Profile
[C] vop Video Distribution Profile

Descrption of Selection

Help | Cancel || < Back t Finish

Filter by layer

PTS supports the testing of application profiles along with many of the protocol layers used to transport profile data. The
“Profile & Protocol” selection box may be used to hide one or the other.

16

Workspaces and Projects

* “Profile” includes all Bluetooth application profiles along with GATT-based profiles and their associated
services;

. “Protocol” includes the various transport layers such as L2CAP;

* “Profile & Protocol” includes all Bluetooth application profiles, GATT-based profiles and services, and the
various transport layers.

Click on the small arrow at the right of the list and select the item of interest.

Filter Test Suites by:
Audio & Video v Bl

Profile & Protocol - BR (¥ HS [¥|LE |Default Settings

Profile & Protocol
Profile [

otoco istribution Profile
] azmp AMP Manager Protocol
] avcTp Audio/NVideo Remote Control Profile

17

Printed Documentation

[

I Select Test Suite(s) II

Filter Test Suites by:

[Audio & Video =5 (£
’Pmtqcni Nr" BR HS [¥]LE |Default Settings
L

[C] Test Suite O] Test Suite
] azmp AMP Manager Protocol
Ol avore Audio/Video Distribution Transport Protocol

<

.
=]

Description of Selection

Filter by technology

Bluetooth technology currently defines three different technologies for connecting one device to another:

* “BR”-Basic Rate plus Enhanced Data Rate (often referred to as “BR/EDR");
* “HS” - High Speed communications over a high speed data link such as IEEE 802.11;
. “LE” — Low power consumption links using Bluetooth Low Energy.

Three check boxes are present on the Test Suite Selector dialog, each representing one of the technologies.

A check in one of the boxes indicates that protocols and profiles relevant to that technology should be displayed. An
empty check box will hide those protocols and profiles that are not relevant.

18

Workspaces and Projects

0 newwororce S =

Select Test Suite(s)
Filter Test Suites by L
[NI Groups '] ‘_ﬁl
| Profile & Protocol ~| [Cler s [C1LE [Default Settings
%
[Test Suite [l Test Suite
O] azmp AMP Manager Protocol
[Cl L2cap Link Layer Channel Adaptation Protocol
ES
<<
Description of Selection
Help | Cancel || <Back \[Finish |

Some profiles and protocols — such as L2CAP — are used with more than one technology. This will cause them to appear

in multiple technology selections.

Filter by text

The text search filter can be used to locate test suites that contain a specific string of text in the full name or the acronym

of the suite. The search is a simple search — if “acronym — name” contains the specified text it is included. The search is

not case sensitive.

The text search filter can be used anytime the magnifying glass icon appears next to the box marked “Search...”.

19

Printed Documentation

10 New worcroc- S .

Select Test Suite(s)

| Filter Test Suites by

[NI Groups '] | I @

| Profile & Protocol ~| WBR [¥l#s [V LE [Default Settings
[E] « Test Suite [Test Suite
[aopp Advanced Audio Distribution Profile *
Ol pomp AMP Manager Protocol E
O] awnp Alert Notification Profile
ANS Alert Motification Service [Zl

[C] averp AudioNideo Remote Control Profile
[C] avote Audio/Video Distribution Transpoit Protos [Zl
[C] avece Audio/\deo Remote Control Profile

[Tl gas Battery Service
i Basic Imaging Profile
] eip Blood Pressure Profile x

Description of Selection

Help Cancel || <Back vest> | [Finish

The search process is dynamic and executes as text is entered or removed from the “Search...” box.

20

Workspaces and Projects

Select Test Suite(s)

Filter Test Suites by

[Test Suite

[Ni Groups '] b|
| Profile & Protocol ~| ¥R WIHS [¥]LE |Default Settings
Test Suite
[sas Battery Service
BIP Basic Imaging Profile
BLP Blood Pressure Profile
BLS Blood Pressure Service
[Z] gpp Basic Printing Profile
[C] peap Phone Baok Access Profile

Al v
A w

Description of Selection

i

Finish

21

Printed Documentation

=

Select Test Suite(s)

| Filter Test Suites by:

[NI Groups "] ba @

| Profile & Protocol ~| WIBR WHS [¥ILE |Default Settings
Test Suite Test Suite
[sas Battery Service
PRAP Phane Baok Access Profile

Description of Selection

Help Cancel || <Back west > | [Finish]

22

Workspaces and Projects

9 e worispc- S .

Select Test Suite(s)

| Filter Test Suites by

[NI Groups '] bas @

| Profile & Protocol ~| WeR [¥l#s [¥]LE |Default Settings
O] Test Suite [l TestSuite
[Bas Battery Service

Description of Selection

Cancel || <Back | wew- || Finish |

Note that as text is being entered, and the text search filter is active, the magnifying glass icon changes to a button

labeled “X”.

Clearing a text filter

The text search filter can be cleared by either erasing all of the characters in the “Search...” box.

Combining Filters

As mentioned earlier, the four filtering methods may be used in combination in order to arrive at a list of test suites that

match multiple criteria.

23

Printed Documentation

9 e worispc- S .

Select Test Suite(s)

| Filter Test Suites by

| GATT-Based =] csc 2|

| Profile ~| [CeR [(#s [¥ILE [Default Settings
] Test Suite [l Test Suite
E csce Cycling Speed and Cadence Profile
O] cscs Cychng Speed and Cadence Service

Description of Selection

Help Cancel || <Back vest> | [Finish

Starting over

The “Default Settings” button may be used to reset the filter criteria.

. The test group filter will be reset to “All Groups”;
* The layer filter will be reset to “Profile & Protocol”;
* All three Bluetooth technologies will be selected;
* The text search string (and result) will be cleared.

Before “Default Settings™:

24

Workspaces and Projects

Filter Test Suites by:

| GATT-Based | csc (P

| Profile ~| [JiE# [CHs [FILE |Default Settings
[C] Test Suite [C] Test Suite
O csce Cycling Speed and Cadence Profile
O cscs Cycling Speed and Cadence Service %

After “Default Settings”:

Filter Test Suites by:

[AJJGroups "] @

| Profile & Protocol | Mer M HS ¥ILE [Default Settings

[C] Test Suite [C] Test Suite
[C] azpp Advanced Audic Distribution Profile

[C] azmp AMP Manager Protocol =

] anp Alert Notification Profile

[T ans Alert Notification Service

O] avcre Audio/Video Remote Control Profile
Ol avDre Audio/Video Distribution Transport Protos
[C] avrcp Audio/Video Remote Control Profile

[C] eas Battery Service

s Basic Imaging Profile

] BLp Blood Pressure Profile N
Projects
Projects

After a workspace is opened, a list of projects (profiles and protocols) that are available is displayed in the “Workspace
Tool Window.”

25

Printed Documentation

Workspace Tool Window

The “Test Case View” is organized as a tree where the top level items are the projects. The tree can be expanded as
needed until the lowest level items — the test cases — are displayed.

An icon next to each test case name shows the current status of that test case.

* Acheck mark with a green box indicates that the last run of the test case resulted in a verdict of PASS.
* Ared“X"along with a red box indicates that the last run of the test case FAILed.

* Anexclamation point (“I") with a yellow box shows test cases whose last run ended in a verdict of
INCONClusive.

. Blue boxes with no marker in front of them are used to indicate test cases that have not been run.

26

Workspaces and Projects

Workspace Tool Window

4 @ AP
4 % SRC
4 % SRC_CC

¥§ TC_SRC_CC_ BV 091
% TC_SRC_CC_BV_ 101
4 % SRC_REL
¥ TC_SRC_REL_BV 011
& TC_SRC_REL_BV_02.1
I % SRC_SET
I 6% SRC_SUS
4 % SRC_SDP
¥ TC_SRC_SDP BV 011
I % sRCAS ‘ [y
I % SNK
I % helper

Depending on the functions and features that a device supports, some test cases may not be necessary to execute in
order to qualify the device. In many cases, such test cases are not likely to PASS since they exercise features that are not
present in the IUT.

Test cases, or even entire groups of test cases, which are not suitable for the device to be tested are indicated by a
padlock symbol next to the name of the test case or test group.

27

Printed Documentation

7~ o
FILE EDIT VIEW INSERT REPORT HELP
"a W ® @0 X7 o=

At

Workspace Tool Window

4 § Axpp
4 % SRC
I % SRC.CC
I % SRC_REL
I % sRC_sET
| 8% SrRC_sUs %
I % SRC_SDP
I % SRC_AS
I % SNK
I % helper
4 § AZMP
] I % PROT
I 8% PHY
I % HELPER

Editing the project ICS

During qualification, it is very important to be using the proper ICS settings for the Implementation Under Test. Failure to
do so can result in test cases that must be executed using PTS against the IUT to be skipped.

Additionally, incorrect ICS settings can make available test cases that exercise features or functions that are not present
on the device. In many cases such test cases have no chance of reaching a verdict of PASS and executing them is a
waste of time.

It is also important that the ICS settings used in PTS are the same as those given in the device declaration in the Test
Plan Generator. When testing evidence is submitted during qualification the list of test cases that must have been
executed is based on the ICS settings in the TPG. Having different ICS settings in PTS can result in not having testing
evidence for some test cases.

Generally, the best thing to do is to keep PTS in sync with the TPG by clicking the “Import ICS from TPG” feature
described above. (Creating a new workspace and Adding a project to a workspace)

It is sometimes desirable however to change the ICS settings. This is especially true during the development of a device
before the final set of features and functions have been determined.

Opening the ICS in the ICS\IXIT Tool Window

To open the ICS editor in the ICS\IXIT Tool Window, click the “ICS” button in the toolbar.

28

Workspaces and Projects

| FILE VIEW INSERT REPORT HELP

| g W = L7 - u O e = A RIS (60)

Alternatively, the ICS editor may be opened for any project in the workspace by clicking on the ICS tab on the ICS\IXIT
Tool Window.

29

Printed Documentation

ICS/TXIT Tool Window - A2MP
Profile: AZMP * | Search:

MNarme Description True/False

TSPC A2MP 11 |AMP ManagerProtocc] [|

TSPC_AZMP 1 2 AMP Manager Protoce O]
TSPC_ALL Turn on test cases for B

TSPC_AZMP_11

AMP Manager Protocol initiator, (O)

ICs [ED{IT |
LT AR Rl BT T [N Soript Tool Window - AZ...

To open the ICS editor for a project, select the project from the Profile drop down menu.

30

Workspaces and Projects

ICS/TXIT Tool Window - AZDP - !

Profile: |AZDP |' Search:
AZDP

Mame Ji D tion True/False
TSPC_A| ANP urce (SRC)
TsPC_ALANS Bk (SNK)
TSPC_AZDP 2 1 SRC: Initiate connes
TSPC_A2DP 2 2 SRC: Accept connet

Using the ICS editor

The ICS editor displays a table consisting of three columns. Each row in the display corresponds to an item found in the
ICS Proforma document that is a part of every Bluetooth profile or protocol specification.

The first column, “Name” contains the names of the ICS items. The names are based on the table and row in the ICS
Proforma document where the item is defined.

For example, TSPC_HFP15_2_3is found in table 2, row 3 of the ICS.

31

Printed Documentation

ICS/TAIT Tool Window - AZDP - 0 x
Profile: AJDP = Search:
MName Description True/False

TSPC_AZDP 11 Role: Source (SRC)

TSPC_AZDP 1 2 Role: Sink (SNK)

TSPC_AZDP_2 1 SRC: Initiate connection establishment (M)
TSPC A2DP 2 2 SRC: Accept connection establishment (M)
TSPC_AZDP 2 3 SRC Initiate start streaming (M)

TSPC_ A2DP 2 4 SRC: Accept start streaming (M)
TSPC_AZDP 2 5 SRC: Send audio stream (M)

TSPC_AZDP 2 6 SRC: Initiate connection release (M)
TSPC_AZ2DP 2 7 SRC Accept connection release (M)
TSPC_AZDP 2 8 SRC Initiate suspend (Q)

TSPC_AZDP 2 9 SRC: Accept suspend (O)

TS5PC_AZDP 2 10 SRC: SBC encoder (M)

TSPC_AZDP_2 10z 5RC; Encode Audio Stream (09
TSPC_A2DP 2 11 SRC: SBC Configurations in 16 KHz sampling (O}
TSPC_AZDP 2 12 SRC: SBC Configurations in 32 KHz sampling (O}
TSPC_A2DP 2 13 SRC: SBC Configurations in 44,1 KHz sampling (0.2)
TSPC_AZ2DP 2 14 SRC: SBC Configurations in 48 KHz sampling (0.2)
TSPC AZDP 31 SRC: SBC encoder Codec (M)

TSPC_AZDP 3 2 SRC: Addihional encoder Codec (O)

TSPC AZDP 41 SNK: Initiate connection establishment (O}
TSPC_AZDP 4 2 SMK: Accept connection establishrment (M)
TSPC A2DP 4 3 SMK: Initiate start streaming (C)

TSRO GADE 4.4 SN focentshart cprazeniog A
TSPC_AZDP 4 2

m

=7

EDEOEEEO00FEED O < < < € € =

SMEK: Accept connection establishment (M)

 cs [oar |

TR AV T RV T L LITR il Soript Tool Window - AZMP

Proforma document for Handsfree Profile (HFP) version 1.5.

The “Description” column is used to describe the ICS items. A number of informational “cues” are used in these
descriptions to make the items easier to work with.

32

Workspaces and Projects

A description ending in “(M)” represents a feature or function that a device must support. These “mandatory” items should
always be selected (set to “True”).

A description that ends with an “(O)” is for an optional feature or function that will be set to “True” or “False” depending on
whether or not the device supports it.

The operational “role” that a ICS item applies to is often indicated at the beginning of a description. In the picture above,
“AG:" is for ICS items that are applicable to a Handsfree device in the Audio Gateway (AG) role.

In the "True/False" column, check the checkbox to set the item as True, and uncheck the checkbox to set the item as
False.

Enabling all test cases regardless of ICS settings

Sometimes, especially during the development of a device, it is useful to make all of the test cases available for execution.
Some test cases are complements of other test cases. It may be that selecting a given ICS item enables one test case
and disables another. Not selecting that item may reverse the test case selection. This often occurs in cases where it is
necessary to confirm that a device responds properly when it does not support a feature or function.

TSPC_AZDP 4 13 SMK: 5BC Configurations in 44.1 KHz sampling (M)
TSPC_AZDP 4 14 SMK: 5BC Configurations in 48 KHz sampling (M)
TSPC_AZDP 51 SMK: SBC decoder Codec (M)

TSPC_AZ2DP 5 2 SNE: Additional decoder Coded ()

TSPC_ALL Enable all test cases when set to TRUE.

HEEEE

TSPC_A2DP_4 12
SME: SBC Configurations in 32 KHz sampling (O)

ICS | DT

LT AN ELTe Rt BTl A Soript Tool Window - AZMP

The last row in the ICS editor usually contains a PTS specific item named TSPC_ALL. Selecting this item will cause all of
the test cases in the project to be available to be executed.

Editing the project IXIT settings

The IXIT table for a project contains entries for data elements that the test cases need in order to do their job, but that
cannot be determined in advance. IXIT items are generally specific to a particular tester — such as the PTS — and are not
found in any specification.

The most commonly edited IXIT item is TSPX_bd_addr_iut. This item contains the Bluetooth Device address for the
device being tested. Changing this value allows a different instance of the same device to be tested.

33

Printed Documentation

The IXIT editor works almost the same as the ICS editor, the difference being in the columns that are available.

Opening the IXIT editor

To open the IXIT editor in the ICS\IXIT Tool Window, click the “ICS” button in the toolbar.

FILE VIEW [INSERT REPORT HELP

f‘ﬁi‘ﬂﬂ@ﬂmﬂxfﬁ'{:ﬂm@lcs g

Alternatively, the IXIT editor may be opened for any project in the workspace by clicking on the IXIT tab on the ICS\IXIT
Tool Window.

34

Workspaces and Projects

ICS/TXIT Tool Window - AZ2DP » 0 X
Profile: AZDP -

MNarme Type Value
TSP¥_security_enabled BOOLEAN FALSE -
TSPX_bd_addr_iut OCTETSTRING 60360DDELAB
TSPX_SRC_class_of device QCTETSTRIMNG 0B0418
TSPX_SME_class_of device QOCTETSTRING 04041
T5PX_pin_code [ASSTRIMNG 0000

TSPX _delete_link_key BOOLEAN FALSE v
T5PX_tirme_guard IMTEGER 300000
TSPX_use_implicit_send BOOLEAN TRUE v
TSP¥_media_directory IASSTRING CAPROGRAM F
TSPX_no_avrcp BOOLEAN TRUE -
T5P¥_auth_password IASSTRING 0000

TSP _auth_user_id IASSTRING PTS

TSP _rfcomm_channel IMTEGER &
TSPX_12cap_psm CQCTETSTRING 1011
TSP¥_no_confirmations BOOLEANM FALSE -
TSPX_cover_art_uuid QCTETSTRING 3IEEE

IC5 AT,

LT AN EL BTt ISRl N ol Script Tool Window - A2ZMP

To open the IXIT editor for a project, select the project from the Profile drop down menu.

35

Printed Documentation

ICS/IXIT Tool Window - AZMP

Type
TSPX_be ANP OCTETS
TSPX AN e OCTETS
TSP¥ _server_class_of_device OCTETS
TSPX_security_enabled BOOLES
TSP¥_delete_link_key BOOLEL

Using the IXIT editor
The IXIT editor displays a table consisting of three columns.

The first column, “Parameter Name” contains the names of the IXIT items. The names should be self explanatory. (See
below.)

The “Type” column is used to indicate the data type of the item that is to be entered in the “Value” column.

* “BOOLEAN’ items are either “TRUE” or “FALSE".

* “INTEGER” items are decimal integer values.

d “IASSTRING” items are used for strings of textual data.

d “OCTETSTRING” items are binary values entered in hexadecimal notation.

36

Workspaces and Projects

ICS/TXIT Tool Window - AZMP ~ 3 X
Profile: AZMP -
Marne Type Value
T5PX_bd_addr_jut OCTETSTRING 6036DDDELABD |~ |
TSPX_client_class_of_device COCTETSTRING 100104
TSPX_server_class_of device COCTETSTRING 100104
TSPX_security_enabled BOOLEAN TRUE -
TSPX _delete_link_key BOOLEAN TRUE -
TSPX_pin_code IASSTRING 0000
T5P¥_flushto CCTETSTRING FFFF
TSPX_inmitu OCTETSTRING 0240
TSPX_outmtu OCTETSTRING 0240
TSPX_tester_role_optional IASSTRING L2CAP ROLE INITIATOR
TSPX_psm OCTETSTRING 0003 3
TSPX_time_guard INTEGER 180000
TSP¥_timer_rtx IMNTEGER 10000
TSPX_timer_rix_max INTEGER B0000
TSPX_timer_rtx_min INTEGER 1000
T5P¥_rfc_mode_tx_window_size QOCTETSTRIMG 08
T5P¥_rfc_mode_max_transmit OCTETSTRIMG 03
TSPX_rfc_mode_retransmission_timeout OCTETSTRING o700
TSPX_rfc_mode_monitor_timeout QCTETSTRIMNG 2EED
TSPE_rfc_mode_maximum_pdu_size OCTETSTRIMNG 02A0
TSPX_use_implicit_send BOOLEAN TRUE - B
TSPX_use_dynamic_pin BOOLEAN FALSE -

L TSDY it &NII ciza in hutac TRITCACD aaa

TSPX_server_class_of_device

The indicated capabilities of PTS in server role (Default: 100104)

ICS/TXIT Tool Window - AZMP Rla L=l R Tyl [aTUR vl F |

IXIT documentation

The ATS documents may be accessed from the PTS “Start Page” by selecting the “Abstract Test Suites” item.

Each test suite implemented in PTS is accompanied by an Abstract Test Suite (ATS) document that describes the test
suite implementation. Among other things in an ATS document is a list of the IXIT items for that test suite along with their
descriptions.

37

Printed Documentation

€3 Bluetooth Profile Tuning Suite (PTS)

w Herma .‘_\' fimimain Foles '.'T\":' Ansrnisd Teat Rille J" PTE Meip

About Sbsiract Test Sustes [ATH]

ADsirall Task SuRes el Row Bueiooi enabisd Gevies shoukd imterach win Ihe PTS There e an aTS dodumant in POF foem o aach Prodie
el Prodecol inchited B e PTS v ATS, voul wil 8nd deladad Fieematon aboul eaen Teot Casd ndeaing Weaeage Saquante Craeln
MAREEgE 10 he TCRL T Foemaion and 186 paiposes

ATE decuments har prodile ane fredossl tesl suites! ATS daci far GATT- pfalas and seryice

L&Al Siibes;
IR 4] HCRP FAAR [u)

ANP CECS HCHER LK RSCS
(T [110 HOP MCap = F

AnE TS HEE LLS RATYS
ACTR i HFFP MFS SR

a (1] HES WS i

AYOTR AR HO e S

iy Fldp HTP PSR SePS
AT GATT HaP AR s

LS =P HTS PRES TP
ae GAVOR KT FE&F

R] (L1 P RS
arPe GHES L2CAZ BFCOMM

RS HOS [RSCE LEE

e

Test Cases

Displaying the purpose of a test case

Each test case described in a profile or protocol test specification begins with a short summary stating its purpose. For
convenience, the purpose the selected test is displayed in the bottom pane of the Workspace Tool Window.

38

Workspaces and Projects

,r' FILE. VIEW INSERT REPORT HELP
WEM B 08, X#£ EL

Workspace Tool Window - 1 X

I @ AZDP :
4 B AZMP
4 % pROT

12 7C ROT BV.01.C|
&% TC_PROT BV 02 C
&% TC_PROT BV 03.C
&% TC_PROT BV 05.C
&% TC_PROT BV 05.C
&% TC_PROT BV 07.C
&% TC_PROT BV 08 C
&% TC_PROT BV 09 C
&% TC_PROT BV 10 C i

TC_PROT BV 01.C

{11}

Verify that the IUT sends a properly formed
AMP Command Reject packet with Reason set
to "Command Mot recognized” when sent an
AMP Command packet with an illegal
command. An illegal command is one with
whose value is "reserved”.

TSPC_AZMP 1 I OR TSPC ALL

Workspace | Information

Executing a single test case

There are three ways to start the execution of a particular test case. The first way is to right click on the name of a test
case and select “Run” from the popup menu.

39

Printed Documentation

Woerkspace Tocl Window = I X) Start Page X
4 ﬂ AZDP Start
“ % SRC Mew Project...
| I & SRC.CC :
i | % SRC_REL Cpen Project...
I % SRC_SET
I % SRC_SUS Recent
I % SRC_SDP
a % SRCAS rmyPhone
' TC_S-F‘.{:_ ..: Mo e | Vi drsm mpa e
b % SNK a0 R
i % helper Y& Run (Debug Logs)
L8 AZMP
B ANP Activate Log Window
I @ ANS
Send to Script
B Expand
B Colipass
Report PTS Issue [TCSRC_AS BV 0111
£} Project Settings [A2DP] ...

The second method is also to right click on the name of a test case, but instead select 'Run (Debug Logs)" from the popup
menu.

40

Workspaces and Projects

HLE WVIEW INSERT REPORT HELP
| @M = @8 X EODDICS XTI

Workspace Tool Window + I X} Start Page X
W[« e nor Start
l ‘ % i Mew Project...
| I % sRc.cC _
| I % SRC_REL Open Project...
| % SRC_SET
I % SRC_SUS Recent
| % SRC_SDP D
4 % SRC.AS myPhane
& TC_SRC_AS | I b
N
I % SNK
% helper @] Run (Debug Logs) I:{}
I & AZMP
I @ ANP Activate Log Window
I @ ANS
Send to Scrnipt
B Expand
B Colipase
Report PTS Issue [TCSRC_AS_BV_01.1]
£} Project Settings [AZDF] ..

The final method is to locate the name of the test case in the tree and double click on its name.

Run” versus “Run (Debug Logs)”

Test cases produce a number of output logs as they are executing. The amount of information in each log can vary
depending on the logging level and other settings. (See Logging.)

Generally the “Standard” logging level is sufficient for most users. That level will log basic communications between PTS
and the Implementation Under Test, along with various status messages at key points during the test execution.

41

Printed Documentation

Sometimes, the “Standard” logging level does not contain sufficient information to diagnose a problem with either PTS or
the IUT. Before version 4.5.3 of PTS, it was necessary to manually set “Full” logging and to locate the additional log files
that are used in tracking down an issue. For some of the log files, manually editing the program configuration file was
needed to achieve the most comprehensive output.

After collecting all of the relevant information, the operator would then want to set the logging level back to “Standard” and
undo the changes made to the configuration file.

“Run (Debug Logs)” simplifies the process of gathering all of the relevant logs by placing the test case execution log, and
other important log files in a folder after a test case executes. This mode also temporarily overrides all of the logging
settings and sets them to their maximum (most comprehensive) values.

After the test case has finished execution, the logging settings are automatically restored to their previous values.

It should be noted that when reporting a problem for particular test case to the PTS Development Team, “Run (Debug
Logs)” should be used and the contents of the resulting folder should be attached to the problem report.

Aborting test case execution

When a test case is running a red “X” will be enabled in the toolbar. Clicking this button will cause the current test case
execution to terminate.

Note that this only terminates the currently executing test case. If a group of test cases are being executed — as described
in the previous section — the next case will be started.

B ——
£} PTS - 001EDCO73461 - myPhone

FILE EDIT VIEW INSERT REPORT HELP
“EA W e 00 |[x# =000 T

Link Keys and PTS Endpoint Information

Endpoint information

The Workspace Tool Window contains two tabs. The first tab, labeled “Workspace”, is the view of the current workspace
that has been shown throughout this document.

The second tab — “Information” — contains information about the PTS Endpoint device. When no workspace is open, the
“Information” section lists the Bluetooth Device Address (BD_ADDR) of the PTS Endpoint. This can be very useful when
you need to locate PTS using its BD_ADDR.

42

Workspaces and Projects

Workspace Tool Window

Dongle Address: 001BDCO73461
Link Key:
4 Total Testcase Count: 133
AZDE: 37
AZMP: 46
ANP: 22
ANS: 28

Information &

When a workspace is active, the “Information” section will still list the Endpoint address, but it will also list the Link Key
that is shared between PTS and the IUT if the devices have been bonded. This information is important for two reasons:

1. It indicates that PTS thinks that there is a trusted relationship between itself and the IUT. The absence of a Link Key
shows that the two devices are not bonded.

2. “Air sniffing” protocol analyzers often need the current Link Key to be entered manually in order to decrypt the data
flowing between the two devices. The value shown in the “Information” section can be entered into the “Air Sniffer” to
allow packets to be decrypted successfully.

Deleting the current Link Key

At times it may be necessary to remove the trusted (bonded) relationship between the PTS and the IUT. The “Delete Link
Key” button on the PTS toolbar can be used for this purpose.

D PTS - 0018DCO73461 - myPh
FILE VIEW INSERT REPORT HELP
TaW e 08, xX|£

Workspace Tool Window

=T MO ICs IKT

Uelete Link Key B

i

ge AZDP Log X

Once the “Delete Link Key” button has been pressed, the devices are no longer bonded.

43

Printed Documentation

PTS Program Settings
PTS Program Settings

There are two sets of user settings in the Profile Tuning Suite. The first set — referred to as “application

settings” — affects the main PTS application.

The other group of settings affects the operation of the test suites and is referred to as “project settings”.

Application settings

There are two sets of user settings in the Profile Tuning Suite. The first set — referred to as “application settings” — affects
the main PTS application.

The other group of settings affects the operation of the test suites and is referred to as “project settings”.

The application settings are accessed using the “Application Settings” item on the “File” menu.

| PTS - 001BDC073461 - myPhone ." a

FILE | VIEW INSERT REPORT HELP
‘W New Workspace... Ctd+N E
& Open Workspace.., Ctl+0 [
Close
Close Workspace
I Save Workspace Ctrl + 5
Recent Workspaces |
L} Application Settings... L}
E3 Exit Alt = F4
General
Updates

PTS can be configured to check for updated software whenever it is launched. You can also set PTS to notify you if
updates are available. The “Updates” section in the General Application Settings tab is used to enable or disable this
functionality.

44

Workspaces and Projects

Auto save

You set PTS to save a project automatically, or to only save manually.

L5
© PTS Settings

General

Logging
Statistics

Logging

Updates
How would you like PTS to behave when a new update is available

Update Motification

@ Check for updates during startup and install the latest
update automatically

2 Check for updates during startup and notify me for
selection

2 Do nat check for updates

Auto Save
Do you wish PTS to save working project automatically?

@ Yes
) No

The “Logging” option is used to control the amount of detail that is present in the execution log. The amount of detail can
be selected from very little information up to highly detailed information about the inner workings of test cases.

. The “Standard” setting adds communication messages and information used to determine the final verdict of
the test case to the information displayed when “Minimal” is selected.

* “Full” causes highly detailed information about the inner workings of a test case to be included in the execution
log. This is a lot of information and may be overwhelming to most users.

45

Printed Documentation

_ B PTS Settings. u

G I - ; |
i While executing test cases, you can control the amount of
Logging

Statictice informaticn that is logged. Select logging level below.

Logging Level

i@ Standard
@ Full %

As mentioned in Executing a single test case (“Run” versus “Run (Debug Logs)”), changes to the log level may never be
needed. The “Run (Debug Logs)” feature is a much better way to produce highly detailed logs for problem analysis or
archival purposes.

For more information on the various logging capabilities of PTS, please refer to Logging.

Statistics

case is executed. This information can be sent to the PTS Development Team on a periodic basis to help determine
which test suites and test cases are being used the most.

This information is always sent anonymously.

There are three settings which determine how the information is sent to the Development Team:

. Share silently”: Send the information on a periodic basis without prompting for permission to do so.
. Prompt before sharing”: Send the information on a periodic basis, but ask for permission before doing so.
. “Do not share”: Never send the usage information automatically.

46

Workspaces and Projects

General

Logging
Statistics

@ Share
) Do not share

Project Settings

s

Do you wish to share usage statistics with Bluetooth Sig? All
infomration will be sent to Bluetooth 5IG and is used to improve

s Brafl B

The project settings are accessed by right clicking on a project name at the top level of the “Test Case View” followed by

the selection of “Settings...” from the popup menu.

47

Printed Documentation

.75 oancorsei v SR

FILE. VIEW INSERT REPORT HELP
a8 O, X#, EOm
| Workspace Tool Window - 1 X :
« @ AZDP
% SRe
| % SN *& Run
f % he Run (Debug Logs)
I8 AZMP
I & AMP Activate Log Window
I8 ANS
Send to Script
E Expand
O Collpase
L} Project Settings [A2DP] ... l}l

General settings

The settings on this tab control the type of output produced by the test suites and the amount of detail that is included.
The selections on this tab are global and affect all projects in the workspace.

The “Enable run-time logging” option determines whether or not the log is created while a test case is executing.
Sometimes, in cases where the creation of the log is impacting the performance of the test case, it may be useful to delay
the creation of the log until after a test case has ended.

User Defined Implicit Send DLL

An alternate Windows DLL may be used to handle “implicit send” messages that occur during a test case. The use of
alternate “Implicit Send DLLs” is uncommon, so this item should generally be left unchecked.

Users needing to do automated testing may find that the creation of a custom Implicit Send DLL is needed. Please see
the “Automating Test Execution” reference document for more information.

48

Workspaces and Projects

General

["| Enable run-time logging

User Defined Implicit Send DLL
[Use

49

Automating
Automating PTS

The Profile Tuning Suite (PTS) offers three features which can be used in automated testing:

1. “Operator-less Operation” allows the interactive prompts that appear during the execution of a test case to be
processed by user written software which can inspect each message and take appropriate action.

2. This feature can be used with either of the following program control features and is described in this document.

3. “Scripted Operation” where a set of test cases can be selected and run as a group. The group can be executed
as needed, or scheduled for execution at a later time.

4. The “Scripting” reference document describes this feature.

5. “Fully Automated Operation” — PTS provides an Application Programming Interface (API) which allows complete
control of the software. User written programs can take advantage of the API in order to open Workspaces,
select Projects, execute Test Cases, and many other functions.

“Fully Automated Operation” is described in the “Extended Automating” reference document.

"Operator-less Operation”

Many, if not most, of the Bluetooth qualification tests are designed around the idea that a human test
operator is part of test environment — operating the tester and performing manual operations on the

Implementation Under Test (IUT). This can be seen in the various test specifications in comments like

d Expected Outcome

Pass verdict:
The Object Push operation is processed correctly and completed corresponding to the
settings and user actions.

Client:

- The Object Push function is initiated by user action and not automatically.

51

Printed Documentation

Part of the reason for this is that the Bluetooth Special Interest Group (SIG) does not specify the ways in
which users are to interact with Bluetooth enabled devices. This can also be seen in the test

specifications

d Test Procedure

Server:

- (Depending on the architecture that is to use the object push feature the steps how an item

is pushed may vary

In its default configuration, the Profile Tuning Suite (PTS) presents the test operator with various popup

dialogs during the execution of a test case. These dialogs may be used to

* Ask the test operator to perform a function on the IUT;

User Action Reguired

Using the Implementation Under Test (IUT), send a connection

89 requestto the PTS.

Cancel

* Ask the test operator to confirm that a file transfer or other operation completed successfully;

52

Automating

v o e I

. Please confirm that a new entry named 'OPHBV03' has been
created in the address book or contact list on the Implementation
Under Test (IUT).

Press the YES button ifthe item is present

Press the MO button ifthe item is not present.

Mo

* Ask the test operator to enter data needed for the test.

. Enter the value displayed on the IUT.

| BR-549

OK Cancel

Automation test platforms

Having a test operator involved in the testing process can be very time consuming. Additionally, regression testing
becomes somewhat difficult since a test operator needs to “babysit” the testing process. For this reason, many
organizations create automation test platforms to be used in the testing of their devices. These platforms may have the
ability to press buttons, recognize prompts and messages on the display, or access the storage on the device for contact
items, pictures, or other files. These operations are controlled by software running on a computer that is connected to the
test platform.

PTS has the ability to work with automation test platforms by providing a user defined mechanism that can be used to
replace the popup dialogs mentioned above. Instead of sending the various messages to the display, PTS can be
configured to send them to user written replacement functions that in turn can interact directly with the device being
tested.

PTS test case operation

As mentioned above, there are various points during test case execution where PTS needs to interact with the test
operator or an automation platform. When this occurs

53

Printed Documentation

The part of the test case that needs outside assistance sends a request to the “MMI Handler”. PTS test cases
are implemented using a Main Test Component (MTC) and some number of Parallel Test Components (PTCs).
The PTCs provide various support functions and operate concurrently with the main body of the test. PTCs are
often used to implement a protocol layer in the Bluetooth stack or to serve as the “knowledgeable authority” for
the details of a Bluetooth profile.

The MTC and the various PTCs interact with one another to process commands, responses and the transfer of
data between themselves and the Implementation Under Test (IUT).

The MMI PTC handles the interaction with the outside environment. Since it operates in parallel with the other
parts of the test, test case execution is not held up while waiting for a response from the test operator.

After receiving a request, the MMI PTC passes it on to a support library known as an “Implicit Send DLL".

The Implicit Send DLL performs whatever steps are needed to execute the request and waits for a response.

The response is sent back up the chain to the MMI PTC, and from there to whatever Test Component is
expecting it.

Implicit Send DLLs

Basic Information

PTS provides a default version of the Implicit Send DLL. It is this DLL that provides the popup dialogs that

one normally sees when using the PTS.

In order to integrate PTS with an automation test platform, a custom Implicit Send DLL needs to be

developed.

54

Implicit Send DLLs are standard Windows Dynamic Link Libraries.
Implicit Send DLLs are written in C++.
The interface between the PTS and an Implicit Send DLL uses the std::string class from the Standard
Template Library (STL), and the “bool” data type. No other C++ features are used, so someone
knowledgeable in the C programming language should not have too much trouble.
An Implicit Send DLL provides five functions:
0 InitimplicitSend()

0 ImplicitSendStyle()

Automating

0 ImplicitSendPinCode()
0 ImplicitStartTestCase()
0 ImplicitTestCaseFinished()

All five functions must be provided. If any one of the functions is missing, or has an incorrect name,
PTS will be unable to load the DLL. The functions are described in the following section (3.2, “Implicit

Send functions”).

d Implicit Send DLLs are loaded dynamically. They are standalone entities that do not need special
names or folder locations in order for PTS to locate them. (A configuration setting tells PTS where to

find the DLL.)

Implicit Send functions

Conventions
Each of the function definitions contains the following two declarations. These declarations must be used

in order for the interface between PTS and an Implicit Send DLL to work correctly.

* extern “C" — This declaration tells the C++ compiler that the symbol name for a function is not to be

decorated in any way. The C++ language allows multiple functions with the same name, as long as
they have different parameter lists and/or return types. This is accomplished by changing — or
“decorating” — the function names behind the scenes, resulting in each function actually having a

different name.

PTS expects the functions in an Implicit Send DLL to have plain, undecorated names.

* WINAPI - This declaration tells the C++ compiler that the function calling convention is the same as

functions defined in the Windows API. This primarily has an impact on parameter handling during the

calls from PTS to the Implicit Send functions.

InitimplicitSend()

Declaration: extern "C" bool WINAPI InitimplicitSend(void);

55

Printed Documentation

Parameters: None

Return values: “true” if successful

“false” if not successful

This function is called during the initialization of an Executable Test Suite (ETS), just after the Implicit Send DLL has been
loaded into memory.

It can be used to perform any initialization that might be needed before executing test cases.

If no initialization is required, the function can simply return a value of “true”.

If the initializations failed, which would lead to the DLL not being usable, a “false” value should be returned. In this case,
the ETS will be disabled.

ImplicitStartTestCase()

Declaration: extern "C" void WINAPI ImplicitStartTestCase(std::string& strTestCaseName);
Parameters: A character string containing the name of the current test case
Return values: None

ImplicitStartTestCase() is called at the start of each test case execution. It provides the name of the test case that is
starting.

This function can be used to perform initializations that are needed at the start of every test case. The test case name
allows the initialization process to be customized to specific test cases.

ImplicitSendStyle()

Declaration: extern "C" char* WINAPI ImplicitSendStyle(std::string& strMmiText,UINT mmiStyle);

strMmiText — Information about the MMI (Implicit Send) request being made
Parameters:
mmiStyle — A value describing the type of request and the expected values

56

Automating

A pointer to a character string containing the information to be returned
Return values:
A NULL pointer if the request cannot be processed or no information is to be returned

This is the main routine for handling Implicit Send requests; the majority of interactions with the test operator or automated
test environment will be handled by this function.

strMmiText will consist of two pieces

* A message “tag” that uniquely identifies the message (see Message tags).

d Message text that would normally be displayed to the test operator.

In the default Implicit Send DLL used by PTS, the mmiStyle parameter is used to select the style of dialog box that is to be
displayed. Custom DLLs can use this information to determine how to process the strMmiText, the type of request that is
being made, and the expected return values.

In most cases, the return value will be a pointer to a string containing the word “OK”. Some requests, such as those using
MMI_Style_Editl expect a string of data — for example, a PIN code or a file name — as the return value.

The MMI_Style_Edit2 style provides a list of items in the strMmiText and expects one of those items to be returned.
For more information, see MMI styles.
Scope of the return value

It is important to note that the character string that is pointed at by the ImplicitSendStyle() return value must not go “out of
scope”. For example, std::string values that are created during the execution of a function are likely to be destroyed when
the function exits. The returned pointer may continue to point at valid text, but there is a good chance that the memory
space used by the string could be reused.

One way to avoid this type of issue is to create the string to be returned in dynamic memory (using malloc() or “new”). The
string would then be added to a list or variable sized array (such as a std::vector).

All of strings returned during the execution of the test case would remain until the end of the test, at which time they could
be destroyed.

For an example of one way to do this, look in sample source code (see Sample source code) at the PersistentText C++
class (PersistentText.cpp/.h) and how the class is used in ImplicitSend.cpp. In this example, the most recently returned
string is “persistent” and is deleted when the Implicit Send DLL is unloaded.

ImplicitSendPinCode()

Declaration: extern "C" char* WINAPI ImplicitSendPinCode(void);

57

Printed Documentation

Parameters: None

A pointer to a character string containing a PIN code to be returned
Return values:
A NULL pointer if the request cannot be processed or no PIN code is to be returned

This is a special case function that is only used when a dynamic PIN code is needed.

It is not currently used in PTS, but it might be used in the future. One way to implement this function in order to be
prepared for future use is

extern "C" char* WINAPI ImplicitSendPinCode(void)

{

std::string strPrompt = "Please enter a PIN Code:";
return(ImplicitSendstyle(strPrompt,MMI_Style_Editl));

}

Please refer to Implicit Send functions for details regarding the return value from this function.

ImplicitTestCaseFinished()

Declaration: extern "C" void WINAPI ImplicitTestCaseFinished(void);
Parameters: None
Return values: None

ImplicitTestCaseFinished() is called at the end of test case execution. It may be used to perform any cleanup that is
needed, or to undo operations that were performed during ImplicitStartTestCase().

Final cleanup

The Implicit Send API does not provide a final cleanup function. Generally such a function is not needed because the
unloading of the DLL or the termination of the main PTS executable causes resources such as open files to be closed and
dynamic memory to be released.

Should some form of final cleanup be required, the following is suggested:

1. Create a C++ class that contains the various objects that need to be cleaned up when the DLL is unloaded.

58

Automating

2. Declare an instance of the class at module level scope and make sure that the class is visible to all functions
that need to access the data within. Variables declared at “module level scope” are those that are declared
somewhere in a source file, but outside the boundary of all of the functions in the file.

3. Place the necessary cleanup code in the class destructor. When a DLL (or executable program) is about to be
unloaded from memory, the C++ runtime support invokes the destructor for each instance of a class that is
defined at module level scope. Placing the cleanup code in the destructor ensures that it executes at the proper
time.

4. Note that the standard C++ “singleton pattern” should not be used here. The standard singleton pattern uses a
pointer to an instance of a class. The runtime support cleanup code will NOT call the destructor for an object
that is accessed indirectly via a pointer.

As mentioned in Implicit Send functions, the sample source code for the default Implicit Send DLL uses this mechanism to
address the ImplicitSendStyle() return value “persistency” issue.

Another possibility is to use a DIIMain() function and perform the cleanup work when it is called with a reason code of
DLL_PROCESS_DETACH. Note however that the use of DIIMain() is no longer recommended by Microsoft. When using
current versions of the Microsoft development tools, DIIMain() isn’t even required — the language runtime support provides
its own.

Message tags

As mentioned in Implicit Send functions, the strMmiText parameter passed to ImplicitSendStyle() is a string consisting of
two parts. One of those parts is a message tag that uniquely identifies the message.

The purpose of the message tags is that they will always be the same regardless of the informational text that may be
displayed to a test operator. This means that custom Implicit Send DLLs do not need to process the informational text —
they only need to process the tag in order to know what request is being made.

The message is at the beginning of the strMmiText string and is in the following format

{<message number>,<test case name>,<test suite name>}

where

* <message number> identifies a message within a given test suite;
* <test case name> identifies the executing test case;

d <test suite name> identifies the Executable Test Suite than contains the currently executing test case.

The combination of <message number> and <test suite name> uniquely identifies a message across all Executable Test
Suites. For example

{999,<any test case name>,0PP}

{999,<any test case name>,FTP}

are different messages even though they have the same <message number>.

59

Printed Documentation

The <test case name> helps to identify the usage of the message. For example, in the Object Push Profile (OPP) test
suite <message number> 47 is used in every test case where the test operator (or automated test platform) needs to
confirm that an object transfer occurred successfully. In test case TC_SERVER_OPH_BV_03_| the operator needs to
confirm that a new contact entry with the name “OPHBV03" is on the IUT. In TC_SERVER_OPH_BV_07_1I, a new
calendar entry titled “OPHBVO07” should have been created.

An automated test platform can distinguish between the two uses of <message number> 47 by looking at the <test case
name>

{47 ,TC_SERVER_OPH_BV_03_1I,0PP}Please check that ..

{47 ,TC_SERVER_OPH_BV_07_1I,0PP}Please check that ..
Finding the tags

The default Implicit Send DLL provided with PTS removes the tags before sending the message text to the popup dialog.
In other words, in normal operation PTS does not display the message tags.

There are three ways to determine the tag associated with a given message:

1. Have the default Implicit Send DLL display thet ag

Starting with version 4.5.3 of PTS, the default Implicit Send DLL has the option to display both the style of each message
along with its tag. This functionality is enabled by adding the following lines to PTS.ini, normally found in C:\Program
Files\Bluetooth SIG\Bluetooth PTS\bin.

[ImpTicitSend]

showTag=1

For the example above, this setting will cause the dialog to look something like this:

. Please checkthat ...

Style: Yes_Nol, Tag: {47 TC_SERVER_OPH_BV_03_|.OPF}

Mo

60

Automating

2. Consult implicit_send_log.txt

The default Implicit Send DLL creates a log containing all of the Implicit Send requests that have been made since the
workspace was created. The file is named implicit_send_log.txt and may be found in the workspace folder.

For example, if the workspace for the test that was executed above is named “OPP Profile”, the workspace folder might
be

C:\Program Files\Bluetooth SIG\My Workspaces\OPP Profile

Looking in the implicit_send_log.txt file for the above message would find this entry

Style: Yes_Nol, Tag: {47,TC_SERVER_OPH_BV_03_I,0PP}

Please check that ...

3. Consult the ATS document

Each test suite has an accompanying Abstract Test Suite (ATS) document that describes the details of the suite and its
environment. In each ATS document there is a section on Implicit Send that includes a table listing each of the messages
including their tags.

For example:

"{47,%s,0PP}Please check that <what to check for>
This test case will <what test does>
Press OK when you are ready to continue.

TSC_MMI_Confirm_
Preparation_Template Press CANCEL if you want to terminate this test case."

The “%s” in the message tag is replaced with the name of the currently executing test case at runtime.

MMI styles

The mmiStyle parameter to ImplicitSendStyle() provides direction about the contents of the strMmiText parameter along
with an indication of the expected return value. When used with the default PTS Implicit Send DLL, the mmiStyle value
selects the type of dialog box that will be displayed along with the buttons that will appear.

61

Printed Documentation

Buttons Displayed by the default

mmiStyle name Value Message Type | jicit Send DLL

OK, Cancel
MMI_Style_Ok_Cancell 0x11041 Simple prompt
Default: OK

MMI_Style_Ok_Cancel2 0x11141 Simple prompt Cancel

MMI_Style_Ok 0x11040 Simple prompt OK

Yes, No
MMI_Style_Yes_Nol 0x11044 Simple prompt

Default: Yes

Yes, No, Cancel
MMI_Style_Yes_No_Cancell |0x11043 |Simple prompt
Default: Yes

Abort, Retry, Ignore
MMI_Style_Abort_Retryl 0x11042 |Simple prompt
Default: Abort

R tfor dat OK, Cancel
MMI_Style_Edit1 0x12040 ineﬁi‘es or data
P Default: OK
Select item f OK, Cancel
MMI_Style_Edit2 0x12140 ”; ectitem from a

Default:OK

“Simple prompt” message type

All of these MM styles are used to instruct the test operator or automation test platform to take an action. The action may
be to make a connection from the IUT to the PTS, press a button on the IUT, etc.

For these messages the strMmiText contains instructions about the action that is needed.

If the action can be successfully completed, the return value from ImplicitSendStyle() should be a pointer to a character
string such as “OK”. The actual contents of the string don’t matter. Please be sure to take a look at Implicit Send functions
for important information about the “scope” of the string that is returned.

Successful completion is indicated in the default Implicit Send DLL when the user presses the OK, Yes, Retry or Ignore
buttons.

If the operation cannot be completed, or the proper response to an action is to indicate that it did not happen,
ImplicitSendStyle() should return a NULL pointer.

“Request for data input” message type

This message style is used when information is needed from the test environment, and that information is not available
until after the test case begins execution. For example, the Passkey Entry association model in Secure Simple Pairing
requires that one device display a six digit number. The number must be entered on the other device to complete the

association process. The number itself is random and is not generated until the Secure Simple Pairing process begins.

62

Automating

strMmiText describes the information that is being requested.

The return value from ImplicitSendStyle() should be a pointer to a character string containing the requested data, if the
data is available. If the requested data is not available, or an error occurs, a NULL pointer should be returned.

As has been noted above, the string pointed at by the return value should not be allowed to go out of scope. (Implicit
Send functions.)

“Select item from a list” message type

For this message strMmiText contains a list of strings separated by newline characters. (C/C++: \n’, ASCII code 0x0A.)
The first string in the list contains the instructions to the user. The rest of the strings provide a list values for selection. The
list is ended by an empty line.

For example, strMmiText may contain the following information
“{<message tag>}Please select a device.\nmyPhone\nmyLaptop\nmyPda\n\n”

The first item in the list (“Please select a device.”) indicates that a list of devices follows and that one of the devices should
be selected. There are three devices in the list: "'myPhone”, “myLaptop”, and "myPda”.

The items in the list are separated by newline characters, indicated as '\n’ above. The extra '\n’ at the end of the string
marks the end of the list.

IUserAcﬁun Required . -
. Please select a device.

myPda
myPhone

Ok Cancel | |

The expected return value is a pointer to a string containing one of the values from the list. A NULL pointer should be
returned in case of error or if none of the values are appropriate at that point in the test.

63

Printed Documentation

The string to be returned will need to be a copy of one of the items in the list. Returning a pointer to the first character of
one of the items in the list will not work since there is additional information (new lines and other items) following the
selection. The copy is subject to the data scoping concerns mentioned in Implicit Send functions.

Software build requirements

It was mentioned earlier (Basic information) that Implicit Send DLLs must be written in C++. A few additional requirements
need to be considered when starting the development of an Implicit Send DLL.

d Microsoft Visual C++ must be used. C++ objects such as std::string are not guaranteed to be implemented the
same way in every compiler. Mixing definitions is a recipe for trouble.

d Microsoft Visual C++ 2008/Visual Studio 2008 must be used for development of a custom Implicit Send DLL.
Subtle runtime issues can occur when mixing different versions of the Visual C++ runtime environment.

In particular, Visual C++ 2010 has been found to produce an Implicit Send DLL that does not work with PTS.

d The PTS Team suggests that custom DLLs be built in the “Release” configuration. Data structures and
dynamically allocated memory may be laid out differently between “Debug” and “Release” configurations. (The
“Debug” versions may contain extra elements to assist in the debugging process.) It is rarely a good idea to mix
“Release” and “Debug”.

Note that it is possible to use the Visual Studio Debugger on executables and DLLs that are built in the “Release”
configuration. A few small changes may be needed to the Visual Studio project configuration to enable this functionality.
Please contact PTS Technical Support for more information.

The requirements above are a result of the development environment used by the PTS Team. The Team uses Microsoft
Visual C++ 2008 and the PTS executables and DLLs are built in the “Release” configuration.

Activating a Custom Implicit Send DLL

Activating a custom Implicit Send DLL

Once a custom Implicit Send DLL has been created, it is a fairly simple matter to start using it with PTS. The DLL may be
attached to a test suite selected by a PTS project via the Project Settings dialog.

Begin the process by selecting the desired project (test suite) in the Workspace Tool Window. Right click on the top level
node of the project and select “Settings” from the menu that appears.

64

Automating

Workspace Tool Window « 1 XS
| & Az0D |
4@ 4& Ru
b | N8 Run (Debug Logs)
| | d
I Activate Log Window
O
L8 Send to Scrip
E Expand
B Colipase

At the bottom of the Project Settings menu is a section labeled “User Defined Implicit Send DLL”". Normally the box
labeled “Use” is unchecked. When this box is unchecked the test suite will use the default Implicit Send DLL provided by
PTS.

General

["] Enable run-time logging

User Defined Implicit Send DLL

O] Use I:?

Place a check mark in the “Use” box. This will cause the text box and browse button to become active. Enter the path to
the custom Implicit Send DLL in the text box or browse button (“...”) to locate the DLL. After the DLL has been selected,
press the OK button to record the change.

65

Printed Documentation

General

[Z] Enable run-time logging

User Defined Implicit Send DLL
[¥] Use

CAMyDLL\ImplicitSend.dIl (]

I 3k I T
o o

oK || Cancel

The custom Implicit Send DLL will be used starting with the next test case that is executed in the project.

Usage Notes

* The custom Implicit Send DLL may be disabled at any time by returning to the Project Settings page and
removing the checkmark from the box labeled “Use”.

* The procedure above attaches a custom DLL to one and only project in a single workspace. The process must
be repeated to use the DLL with other projects in the same workspace, or, with the same test suite (project) in a
different workspace.

Technical Tidbits

Automatic dismissal of Implicit Send requests

At various points during the execution of a test, the test case implementation can detect that an action requested via
Implicit Send has occurred. When this happens, the test case may attempt to complete the ImplicitSendStyle() or
ImplicitSendPinCode() operation that is in progress.

This most commonly occurs with messages using MMI_Style_Ok_Cancel2. These messages tend to be “transient”, for
example, “Using the IUT, make a connection to the PTS”. For these types of actions, there is no need to require operator
interaction with PTS. The operator can simply take whatever steps are necessary on the IUT to cause the connection to
happen; the test case can then detect the connection and take down the dialog.

The mechanism used to do this is to send simulated button presses to a dialog whose title is “User Action Required”. This
works very well with the default Implicit Send DLL because all of the dialogs it displays are titled “User Action Required”.

This however may not work very well with custom Implicit Send DLLs — especially ones that have no need to create popup
dialogs. The test case will send the simulated button presses, but no one — most specifically the functions in the custom
DLL — will be listening.

This situation may not be as bad as it seems. In all likelihood the IUT also knows that the requested action has taken
place and would normally notify the user of the device. When the user of the device is replaced with an automation test
platform, the platform can detect the situation and notify the custom Implicit Send DLL.

If it turns out that a custom DLL needs to know when the simulated button presses occur, it could create a hidden window
whose title is “User Action Requested”. This would allow the delivery of the simulated button presses to the custom
Implicit Send DLL.

66

Automating

For more information about the simulated button presses, please contact PTS technical support.

ImplicitSend() function

Earlier versions of PTS used a function called ImplicitSend(). This function has been replaced by ImplicitSendStyle() and
is no longer used by the PTS.

TSPX_use_implicit_send

Most test suites have a IXIT value named TSPX_use_implicit_send which is used to enable or disable the Implicit Send
functionality. Normally the value of this item is TRUE indicating that Implicit Send is to be used.

Setting the value to FALSE will disable Implicit Send for both user developed DLLs and the PTS default DLL.

The value of TSPX_use_implicit_send should be checked whenever it appears that the Implicit Send functionality is not
working at all.

Sample Source Code

The PTS installation has a folder containing source code that may be used as a reference during development of a
custom Implicit Send DLL. The source code itself is the complete source for the default Implicit Send DLL that is normally
used by PTS. A Visual Studio project is included making it possible to build and execute the sample.

Of particular interest is implicit_send.cpp. In addition to the functions it provides, there are notes for an alternate
implementation that connects to an automated test platform via TCP/IP.

The sample may be found under custom\implicit_send in the PTS installation folder. The default path to this location is

C:\Program Files\Bluetooth SIG\Bluetooth PTS\Custom\implicit_send

One DLL or many DLLs?

The tag data in the Implicit Send messages makes it possible to use the same DLL for more than one profile since each
message is uniquely identified by <message number>, <currently executing test case>, and <currently active test suite>.

(Message Tags)

It may be convenient to develop one Implicit Send DLL for all uses and use the test suite name in the message tag to
know which profile is requesting assistance. On the other hand, a single DLL may be more complicated to construct and
maintain, suggesting that a custom DLL for each test suite might be more appropriate.

The point to keep in mind is that PTS can support either design decision — developers of custom Implicit Send DLLs are
not locked into one way or the other.

Hybrid environments

It may be desirable to replace some, but not all, of PTS’s default Implicit Send handling. This is possible by doing the
following:

* Create a custom Implicit Send DLL.

d In the custom DLL, InitimplicitSend() could dynamically load the default DLL using the Windows LoadLibrary()
and GetProcAddress() API functions.

* When a message arrives at ImplicitSendStyle() in the custom DLL, the function could look at the message tag
and decide whether or not it wants to handle the message. If the custom ImplicitSendStyle() does not want to
handle the message, it could call ImplicitSendStyle() in the default DLL using the same parameters.

67

Printed Documentation

The return value from the default DLL would then become the return value for the custom DLL.

68

Extended Automating
Automating PTS

The Profile Tuning Suite (PTS) offers three features which can be used in automated testing:

1. “Operator-less Operation” allows the interactive prompts that appear during the execution of a test case to be
processed by user written software which can inspect each message and take appropriate action.

2. This feature can be used with either of the following program control features and is described in the
“Automating — Using Implicit Send” reference document.

3. “Scripted Operation” where a set of test cases can be selected and run as a group. The group can be executed
as needed, or scheduled for execution at a later time.

4. The "Scripting" reference document describes this feature.
5. “Fully Automated Operation” — PTS provides an Application Programming Interface (API) which allows complete
control of the software. User written programs can take advantage of the API in order to open Workspaces,

select Projects, execute Test Cases, and many other functions.

This document describes “Fully Automated Operation”.

"Fully Automated Operation"

Completely unattended operation of PTS can be achieved by using the PTS Control API. There are three parts to “Fully
Automated Operation”:

1. PTS.exe: The main application program for the Profile Tuning Suite. It accepts calls from user written programs
that use the PTS Control API and takes the appropriate action;

2. Client Application: An application program written by a PTS user that makes use of the PTS Control API in
order to have PTS carry out various functions. The PTS Control API portion of a Client Application may be part
of a larger program that interfaces to a test system platform that has the capability of also controlling the
Bluetooth device that is being tested;

3. PTSControl.dll: A Windows Dynamic Link Library (DLL) that provides the PTS Control API interface and data
type information to the Component Object Model (COM) manager. This information is normally registered with
COM during the installation of PTS.

The PTS Control APl is implemented using Microsoft's Component Object Model (COM) which means that any Windows
based programming language that supports COM can be used to develop the Client Application. Some test system
platforms also support the use of COM directly, eliminating the need to create a separate Client Application program.

A C/C++ header file (PTSControl.h) is provided for developers using Microsoft's Visual C or Visual C++. The information
in the file can be used as a guideline for developing the proper COM interface declarations for other programming
languages or COM enabled applications.

A sample Client Application — PTSControlClient — is also provided as part of the PTS installation. This application, written
in Visual C++, exercises many of the functions available in the API. It can be a valuable reference when developing your
own Client Applications.

The source code for PTSControlClient, the PTSControl.h file, and Visual Studio (2008) build files are located in the
C:\Program Files\Bluetooth SIG\Bluetooth PTS\Custom\PTSControlClient

folder in the PTS installation.

69

Printed Documentation

PTS and the PTS Control API

PTS needs to be started in COM Server mode in order to allow Client Applications access to the PTS Control API. A
normal execution of PTS is not in COM Server mode and will likely cause the Client Application to fail when it attempts to
connect to the Server.

When PTS is started in COM Server mode the User Interface will appear. Users should pretend that it is not there as
interactions with the User Interface can interfere with the PTS Control API.

There are two ways to start PTS in COM Server mode:

1.

Do nothing.

After the Component Object Model has been initialized (via Colnitialize() or ColnitializeEx()) the Client Application
needs to create an instance of the IPTSControl COM object by calling the Windows API function
CoCreatelnstance().

The call to CoCreatelnstance() will start PTS in COM Server mode (as long as PTS is not currently running.)

If PTS is currently running and is in COM Server Mode, the call to CoCreatelnstance() will simply connect to the
running instance.

Start PTS manually.

PTS can be started in COM Server mode from a command prompt by adding the flag “-autotest” to the end of the
command line.

“C:\Program Files\Bluetooth SIG\Bluetooth PTS\bin\PTS.exe” —autotest

General Usage

The following points should be kept in mind while using the PTS Control API:

70

C and C++ programs should include “PTSControl.h” to get the interface definitions, error codes and other
information.

The Windows API function Colnitialize() (or ColnitializeEx()) must be called before using any functions from the
API.

All functions return an HRESULT value. Data that may be returned from a particular function will be returned via
the function’s parameter list.

All text string parameters used by the API are in the wide character (Unicode UTF-16) format. The Client
Application should generally be built using wide character strings. When this is not possible, Windows API
routines such as MultiByteToWideChar() and WideCharToMultiByte() should be used to convert strings being
sent to or received from the API to the wide character format.

All string parameters are assumed to “C-style”, that is, terminated with a NUL character (ASCII value 0x0000).

There are no data values being passed over the API that are allocated in one context (such as PTS.exe) and
deallocated in the other (the Client Application)Additionally, there are no C++ objects used by the interface.

This means that it is safe to use a Debug configuration build of a Client Application with the PTS Control API.
(PTS.exe, which contains the PTS Control AP, is built using the Release configuration.)

Extended Automating

Functions in the PTS Control API

Opening/Creating a Workspace

The first step in using the PTS Control APl is to open or create a Workspace. An open workspace is needed for all of the
Project and Test Case related functions in the API.

CreateWorkspace()

Declaration:

Parameters:

Return
values:

HRESULT CreateWorkspace(ULONGLONG ullBthAddr, LPCWSTR pszPathOfPtsFile, LPCWSTR
pszWorkspaceName, LPCWSTR pszWorkspacePath);

ullBthAddr: A 64 bit unsigned integer that contains the Bluetooth Device Address (BDADDR) of the
Implementation Under Test (IUT).

Note that a 64 bit value is used even though a BDADDR is only 48 bits in length. The BDADDR is located in
the least significant 48 bits (six bytes) and the upper two bytes must have a value of 0x0000.

pszPathOfPtsFile: A Unicode character string that contains the path to a ICS file describing the features of
the IUT that was previously exported from the Test Plan Generator (TPG)/Qualified Listing Interface (QLI).

The use of a full file path is recommended since the name is processed by the running instance of PTS. The
instance of PTS may have a different current working directory than the Client Application.

pszWorkspaceName: A Unicode character string containing the name of the Workspace to be created. This
is just the name of the Workspace, not a file path to the intended Workspace location.

pszWorkspacePath: A Unicode character string containing the path to the folder where the new Workspace
should be created. The new Workspace will be created in a subfolder of this location, with the name of the
subfolder coming from the pszZWorkspaceName parameter

The folder path must exist before making this call, PTS will not create any folders that are missing from the
path specification.

The use of a full path to the folder is recommended since it is processed by the running instance of PTS.
The instance of PTS may have a different current working directory than the Client Application.

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see section
7 (“API Error Codes”).

71

Printed Documentation

Use this function to create a new Workspace from a set of ICS values exported from the TPG/QLI. The exported file
contains all of the ICS items declared for a given device, some of which may not be applicable to PTS.

A Project will be created in the Workspace for each Profile or Protocol available in the current installation of PTS. Any
Profile or Protocol not available in the current installation will be ignored.

The BDADDR of the IUT may not be known at the time the workspace is created. In this case, use any convenient value
and update it later using the UpdatelXITParam() function.

OpenWorkspace()

Declaration HRESULT OpenWorkspace(LPCWSTR pszPathOfWorkspace);

pszPathOfWorkspace: A Unicode character string containing the path to the Workspace to be opened. The

Parameters: name of the Workspace file will be “<workspace name>.pgw” in the “root” of the Workspace folder.
The use of a full path for the Workspace file is recommended since it is processed by the running instance
of PTS. The instance of PTS may have a different current working directory than the Client Application.
Return .
values A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control API see section
7 (“API Error Codes”).

Use OpenWorkspace() to open an existing Workspace and load all of the Projects found therein.

Working with Projects

Once a Workspace has been opened, the following functions may be used to obtain information about the available
Projects.

GetProjectCount()

Declaration: HRESULT GetProjectCount(UINT* pcProjects);

pcProjects: A pointer to a 32 bit unsigned value that will receive the number of Projects (Test Suites) that

Parameters h .
are available in the current Workspace.
Return .
values A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control APl see API

72

Extended Automating

Error Codes.

This function returns the number of Projects that are available in the current Workspace. This count can be used as the
upper boundary when using GetProjectName() in a loop to acquire the names of the available Projects.

GetProjectName()

Declaration HRESULT GetProjectName(UINT iProject, LPWSTR* ppszProjectName);

Parameters iProject: The zero based index to a Project in the currently open Workspace.

ppszProjectName: A pointer to a Unicode string pointer that will receive the address of the name of the
selected Project.

The actual pointer should be initialized to NULL before making this call.

Return

A value greater than or equal to zero if successful.
Values

A value less than zero if not successful. For a list of error codes specific to the PTS Control APl see API|
Error Codes.

GetProjectName() returns a pointer to the name of a selected Project in the current Workspace. The Project is selected by
the iProject value which must be less than the value returned by GetProjectCount().

ppszProjectName is a pointer to a Unicode character string and should be initialized to NULL before calling
GetProjectName(). The pointer is filled in by GetProjectName() with the address of the string containing the Project name.
The contents of the string pointed at by ppszProjectName should not be modified.

Example:
LPWSTR pszProjectName;
pszProjectname = NULL;
<interface pointer>->GetProjectName(0, &pszProjectName);
Upon return from GetProjectName(), pszProjectName will point at the name of the selected Project and can be used as
wprintf(L”The Project name 1is %s\n”, pszProjectName);
GetProjectVersion()

Declaration: HRESULT GetProjectVersion(LPCWSTR pszProjectName, DWORD* pProjVersion);

73

Printed Documentation

pszProjectName: A Unicode character string that contains the name of a Project that is available in the

Parameters current Workspace.
The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.
pPTSVersion: A pointer to a 32 bit unsigned integer that receives the version number of the specified
Project.
A value greater than or equal to zero if successful.

Return A value less than zero if not successful.

values

For a list of error codes specific to the PTS Control API see API Error Codes.

Returns the version of a named Project (Test Suite) as a four byte value packed into a 32 bit unsigned integer. Each byte
represents one piece of a standard Windows version number:

d Byte 3: Major version number
d Byte 2: Minor version number
d Byte 1: Update release number

d Byte 0: Build sequence number

For example, for a Test Suite whose version number is 7.5, update 0, build number 4 (7.5.0.4), the value returned from
GetProjectVersion() would be 0x07050004.

Working with Test Cases

After a Workspace has been opened, information about the Test Cases available in a given Project can be obtained, and
Test Cases may be executed using these functions.

GetTestCaseCount()

Declaration: HRESULT GetTestCaseCount(LPCWSTR pszProjectName, UINT* pcTestCases);

pszProjectName: A Unicode character string that contains the name of a project that is available in the

Parameters:
current Workspace.

The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

pcProjects: A pointer to a 32 bit unsigned value that will receive the number of Test Cases that are
available in the selected Project.

74

Extended Automating

A value greater than or equal to zero if successful.

Return

values: A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function returns the number of Test Cases that are available in the specified Project. This count can be used as the
upper boundary when using GetTestCaseName() and GetTestCaseDescription() in a loop to acquire the nhames and
descriptions of the available Test Cases.

GetTestCaseName()
HRESULT GetTestCaseName(LPCWSTR pszProjectName, UINT iTestCase,

Declaration:
LPWSTR* ppszTestCaseName);

pszProjectName: A Unicode character string that contains the name of a Project that is available in the

Parameters:
current Workspace.

The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

iTestCase: The zero based index to a Test Case in the selected Project.

ppszTestCaseName: A pointer to a Unicode string pointer that will receive the address of the name of the
selected Test Case.

The actual pointer should be initialized to NULL before making this call.

A value greater than or equal to zero if successful.

Return

values: A value less than zero if not successful. For a list of error codes specific to the PTS Control APl see API
Error Codes.

GetTestCaseName() returns a pointer to the name of a selected Test Case in a given Project. The Test Case is selected
by the iTestCase value which must be less than the value returned by GetTestCaseCount().

ppszTestCaseName is a pointer to a Unicode character string and should be initialized to NULL before calling
GetTestCaseName(). The pointer is filled in by GetTestCaseName() with the address of the string containing the Test
Case name. The contents of the string pointed at by ppszTestCaseName should not be modified.

Example:
LPCWSTR pszProjectName = L”IOPT”:
LPWSTR pszTestCaseName;

pszTestCaseName = NULL;

75

Printed Documentation

<interface pointer>->GetTestCaseName(pszProjectName, 0, &pszTestCaseName);

Upon return from GetTestCaseName(), pszTestCaseName will point at the name of the selected Test Case and can be
used as

wprintf(L“The Test Case at index %u in Project %s 1is s\n”,

0, pszProjectName, pszTestCaseName);

GetTestCaseDescription()
HRESULT GetTestCaseDescription(LPCWSTR pszProjectName, UINT iTestCase,

Declaration
LPWSTR* ppszTestCaseDesc);

pszProjectName: A Unicode character string that contains the name of a Project that is available in the

Parameters
current Workspace.

The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

iTestCase: The zero based index to a Test Case in the selected Project.

ppszTestCaseDesc: A pointer to a Unicode string pointer that will receive the address of the description of
the selected Test Case.

The actual pointer should be initialized to NULL before making this call.

A value greater than or equal to zero if successful.

Return

values: A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

GetTestCaseDescription() returns a pointer to the description of a selected Test Case in a given Project. The description
is the same information that is returned by the PTS User Interface when right-clicking on a Test Case and selecting “Show
Purpose”. It is usually the first paragraph or so from the definition of the corresponding Test Purpose in the applicable test
specification.

The Test Case is selected by the iTestCase value which must be less than the value returned by GetTestCaseCounty().

ppszTestCaseDesc is a pointer to a Unicode character string and should be initialized to NULL before calling
GetTestCaseDescription(). The pointer is filled in by GetTestCaseDescription() with the address of the string containing
the Test Case description. The contents of the string pointed at by ppszTestCaseDesc should not be modified.

Example:
LPCWSTR pszProjectName = L”IOPT”:
LPWSTR pszTestCaseDesc;

pszTestCaseName = NULL;

76

Extended Automating

<interface pointer>->GetTestCaseDescription(pszProjectName, 0,
&pszTestCaseDesc) ;

Upon return from GetTestCaseDescription(), pszTestCaseDesc will point at the name of the selected Test Case and can
be used as

wprintf(L“The description for the Test Case at index %u in Project %s is s\n”,

0, pszProjectName, pszTestCaseDesc);

IsActiveTestCase()

HRESULT IsActiveTestCase(LPCWSTR pszProjectName, LPCWSTR pszTestCase,
Declaration:
BOOL* pblsActive);

pszProjectName: A Unicode character string that contains the name of a Project that is available in the

Parameters:
current Workspace

The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface

pszTestCase: A Unicode character string that contains the name of a TestCase in the specified Project.

The Test Case name is case sensitive and must match the name shown in the “TestCaseView” window of
the PTS User Interface

pblsActive: A pointer to BOOL value that will receive the state of the Test Case

A value greater than or equal to zero if successful.

Return

values: A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function returns TRUE via pblsActive if the selected Test Case is active (enabled) in the specified Project. False is
returned via pblsActive if the Test Case is not active (disabled).

RunTestCase()

Parameters: HRESULT RunTestCase(LPCWSTR pszProjectName, LPCWSTR pszTestCase);

pszProjectName: A Unicode character string that contains the name of a Project that is available in the

Declarations:
current Workspace.

7

Printed Documentation

The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

pszTestCase: A Unicode character string that contains the name of a TestCase in the specified Project
that is to be executed.

The Test Case name is case sensitive and must match the name shown in the “TestCaseView” window of
the PTS User Interface.

A value greater than or equal to zero if successful.

Return

values: A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

RunTestCase() executes the specified Test Case. The return value is the status of the RunTestCase() function call itself
and not the final verdict from the Test Case.

To get the final verdict of the Test Case, along with the other execution log information, a logging function must be
connected to the PTS Control API. See Logging and unattended operation for more information.

StopTestCase()

Declaration: HRESULT StopTestCase();

Parameters: None.

Return value: PTSCONTROL_E_FUNCTION_NOT_IMPLEMENTED

StopTestCase() is not currently implemented and calls to it will always return the status code above.

Working with ICS and IXIT data
UpdatelCS()

HRESULT UpdatelCS(LPCWSTR pszProjectName, LPCWSTR pszEntryName,
Declaration:
BOOL bValue);

pszProjectName: A Unicode character string that contains the name of a Project that is available in the

Parameters:
current Workspace.

The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

78

Extended Automating

Return
values:

pszEntryName: A Unicode character string that contains the name of a ICS item defined in the specified
Project that is to be updated.

The ICS item name is case sensitive and must match the name shown in the ICS editor dialog of the PTS
User Interface.

bValue: The new value for the ICS item.

A value greater than or equal to zero if successful.

A value less than zero if not successful. For a list of error codes specific to the PTS Control APl see API
Error Codes.

This function updates the value of a ICS item for the selected Project. The value may be set to TRUE or FALSE as

appropriate.

UpdatelXITParam()

Declaration:

Parameters:

HRESULT UpdatelXITParam(LPCWSTR pszProjectName, LPCWSTR pszParamName,

LPCWSTR pszNewParamValue);

pszProjectName: A Unicode character string that contains the name of a Project that is available in the
current Workspace.

The Project name is case sensitive and must match the name shown in the “TestCaseView” window of the
PTS User Interface.

pszEntryName: A Unicode character string that contains the name of a IXIT item defined in the specified
Project that is to be updated.

The IXIT item name is case sensitive and must match the name shown in the IXIT editor dialog of the PTS
User Interface.

pszNewParamValue: A Unicode character string that contains the new value to be assigned to the
specified IXIT item.

See the table below for restrictions on the contents of this string.

79

Printed Documentation

Return values: A value greater than or equal to zero if successful.

Return

values: A value less than zero if not successful. For a list of error codes specific to the PTS Control APl see API|
Error Codes.

This function updates the value of a IXIT item for the selected Project. IXIT items have data types associated with them.
This means that the pszNewParamValue string must only contain characters that are appropriate for the associated data

type.

Data Type Legal Characters For The New Value
BITSTRING 0,1

BOOLEAN The words TRUE or FALSE (case sensitive)
IASSTRING No restrictions

INTEGER Decimal digits 0 to 9

Hexadecimal “digits” 0 to 9 and A to F (“A” to “F” must be

OCTETSTRING
upper case)

Logging and unattended operation

During normal operation PTS sends informational output to the Test Case execution log in the upper right hand corner of
the PTS User Interface. Client Application programs may take over this functionality and divert the log output to a function
within the application.

Additionally, at various points during the execution of a Test Case, PTS will display dialog boxes prompting the test
operator to take an action. There are two ways to remove the test operator and replace them with user written code:

1. Develop a custom Implicit Send DLL as described in the “Automating — Using Implicit Send” reference
document.

2. Use the functions provided in the PTS Control API to divert the operator prompts to the Client Application.

Logging

There are two steps necessary to divert the test case execution log to a Client Application application. The first is to create
a COM based object derived from IPTSControlClientLogger. The object needs to implement the following functions that
are needed by the Component Object Model:

e AddRef()

80

Extended Automating

d Release()

* Querylnterface()

In addition, the object needs to implement a function called Log() which will be called every time that PTS would normally
send something to the Test Case execution log window.

The second step to diverting the execution log is to provide an instance of the IPTSControlClientLogger derived object to
the PTS Control API via the SetControlClientLoggerCallback() function.

IPTSControlClientLogger::Log()
HRESULT Log(PTS_LOGTYPE logType, LPCWSTR szLogType, LPCWSTR szTime,

Declaration:
LPCWSTR pszMessage);

Parameters: logType: The type of the logging event. See the table below.

szLogType: A Unicode character string that contains the name of the Test Case event being logged.

szTime: A Unicode character string that contains the time of the event being logged. The time is a value in
milliseconds from the start of the Test Case execution.

pszMessage: A Unicode character string that contains the information about the event that is being logged.

Return The user implementation of this function should return a value greater than or equal to zero if successful.

values:
The user implementation of this function should return a value less than zero if not successful.

The three character strings passed to the Log() function contain the three pieces of information that are normally shown in
the Test Case execution log window in the PTS User Interface. These strings may be used to create log output that looks
just like the information displayed in the Test Case execution window. For example, the following event might be
displayed in the Test Case execution log window:

+3666 ms
Receive event:
:[3]HCI?HCI_READ_LOCAL_VERSION_INFORMATION_COMPLETE_EVENT=PDU:{
status:HCI_OK,
hciversion:4,
hciRevision:5360,
Impversion:4,
manufacturerName:10,

TmpSubversion: 5360

81

Printed Documentation

}

The corresponding character strings passed to the Log() function would be:
szTime

szLogType: pszMessage

The szTime string starts with a blank line that is used in the User Interface to provide a visual break between logged
events.

pszMessage includes leading spaces for each line after the first one. This is used to provide the indentation of the
message information in the PTS User Interface.

The values for the logType parameter are found in PTSControl.h and are listed here:
logType Value Usage

This type is used for log messages from the PTS Control API that normally

PTS_LOGTYPE_INFRASTRUCTURE would not appear in the Test Case Execution log.

The "Start Test Case" event that is logged when a Test Case begins

PTS_LOGTYPE_START_TEST .
— — - executing.

The "Test Case ended” event that is logged when a Test Case has

PTS_LOGTYPE_END_TEST ;
- — - completed execution.

Not currently used in PTS. The value however is used in the

PTS_LOGTYPE_IMPLICIT_SEND PTSControlClient sample program.

PTS LOGTYPE ERROR _An Error” event logged when an executing Test Case has encountered an
- = internal problem.

“Send event’s are used to log data being sent from the PTS to the

PTS_LOGTYPE_SEND_EVENT Implementation Under Test (IUT) or to an internal component of the currently

executing Test Case.

"Receive event"s are used to log data received from the Implementation
PTS_LOGTYPE_RECEIVE_EVENT Under Test (IUT) or from an internal component of the currently executing
Test Case.

The “Final Verdict” of the Test Case execution. The result of the Test Case
PTS_LOGTYPE_FINAL_VERDICT execution — PASS, FAIL, etc — can be found in the pszMessage string.
At various points during Test Case execution, a Test Case will issue a
“Preliminary Verdict”. The most negative verdict issued becomes the “Final
Verdict” of the Test Case.

PTS_LOGTYPE_PRELIMINARY_VERDICT

“Preliminary Verdict” messages can be used to determine at what point
during execution that a Test Case failed.

At various points during Test Case execution, a Test Case will issue a

“Verdict Description” that is placed in the both the execution log and Output

window in the lower left hand corner of the PTS User Interface.
PTS_LOGTYPE_EVENT_SUMMARY

PTS_LOGTYPE_EVENT_SUMMARY is used to indicate those messages.

This type is used for any log data that is not covered by one of the above.

PTS_LOGTYPE_MESSAGE This is the majority of the output in the Test Case execution log.

82

Extended Automating

SetControlClientLoggerCallback()

Declaration: HRESULT SetControlClientLoggercallback(IPTSControlClientLogger* pLogger);

Parameters: plLogger: A pointer to an instance of an IPTSControlClientLogger based COM object as described above.

A value greater than or equal to zero if successful.

Return

values: A value less than zero if not successful. For a list of error codes specific to the PTS Control APl see API
Error Codes.

This function hooks the “logger” object to the PTS Control API. After this function has been called, Test Case execution
log data will be sent to the Log() function instead of the PTS User Interface.

Unattended operation

Most Test Cases in PTS assume that a test operator is available to perform various actions on the IUT and to confirm that
events have occurred. “Unattended operation” allows the test operator to be replaced by user written software.

The prompts to the test operator are referred to as “MMI”s in the PTS documentation. The feature that presents the MMIs
to the operator is commonly referred to as “Implicit Send”.

As mentioned earlier, there are two forms of unattended or “Operator-less Operation”. One such method is to create a
custom Implicit Send DLL to replace the one normally supplied with PTS. This is discussed in the "Automating - Using
Implicit Send" reference document.

An alternative is to use the Implicit Send support provided by the PTS Control API. This support allows the Client
Application to process the various MMis.

There are three steps necessary to divert the various MMIs to the Client Application.
1. Create a COM based object derived from either IPTSImplicitSendCallbackEx or IPTSImplicitSendCallback.

The IPTSImplicitSendCallbackEx object was added in PTS version 4.6 to address some limitations with in the
IPTSImplicitSendCallback object. New Client Applications should use the IPTSImplicitSendCallbackEx object.

The IPTSImplicitSendCallback object is provided for backwards compatibility with existing Client Applications,
though it is highly recommended that existing Applications be upgraded to use IPTSImplicitSendCallbackEx.

2. Implement a callback function that PTS Control API will invoke whenever an MMI occurs.
3. Register the callback function with PTS Control API.

IPTSImplicitSendCallbackEx object

The IPTSImplicitSendCallbackEx object needs to implement the following functions that are needed by the Component
Object Model:

* AddRef()
d Release()

* Querylnterface()

In addition, the object needs to implement a function called OnimplicitSend() which will be called every time that PTS
would normally use Implicit Send to popup a prompt message for the test operator.

83

Printed Documentation

Finally, an instance of the IPTSImplicitSendCallbackEx derived object needs to be registered with the PTS Control API via
the RegisterimplicitSendCallbackEx() function.

IPTSImplicitSendCallbackEx::OnImplicitSend()
HRESULT OnimplicitSend(LPCWSTR pszProjectName, WORD wID,
Declaration: LPCWSTR pszTestCase,LPCWSTR pszDescription, DWORD style,

LPWSTR pszResponse, DWORD responseSize, BOOL* pbResponselsPresent)

pszProjectName: A Unicode string containing the name of the Project that contains the currently executing

Parameters: Test Case.

wID: An unsigned 16 bit value that uniquely identifies the MMI in the Project.

pszTestCase: A Unicode character string that contains the name of the currently executing Test Case.

pszDescription: A Unicode character string that contains the prompt text that would normally be shown in a
popup dialog.

style: An unsigned 32 bit value the identifies the style of the MMI. (See below)

pszResponse: A Unicode string buffer of size responseSize. The implementation of OnimplicitSend() will
copy the response text to be sent to the executing test case into this buffer.

responseSize: The size of the pszReponse buffer.

pbResponselsPresent: A pointer to a Win32 BOOL that should be set to TRUE if response text has been
placed in the pszResponseBuffer, FALSE if no response text is being returned.

Return The user implementation of this function should return a value greater than or equal to zero if successful.

values:
The user implementation of this function should return a value less than zero if not successful.

Every MMI used in the PTS Test Suites (Projects) contains a unique tag that identifies it. The actual text of the prompt
may change over time, but the unique tag (generally) will not. Client Applications can use the tag to identify a particular
MMI rather than counting on the contents of the prompt.

There are three parts to the unique tag:

1. wID: The MMI identifier.

84

Extended Automating

2. pszProjectName: wiD values may be used for the different MMIs in different Projects. The combination of
(pszProjectName,wID) uniquely identifies the MMI for a specific project.

3. pszTestCaseName: At times, the response to a particular MMI may depend on the currently executing Test
Case. pszTestCaseName allows the same MMI to be used by different Test Cases within a given Project.

The style parameter to OnlmplicitSend() provides direction about the contents of the first three parameters (wiD,
pszProjectName, pszTestCaseName) along with an indication of the expected return value.

Style Name Value Message Type Buttons Displayed by the default Implicit Send DLL
OK, Cancel
MMI_Style_Ok_Cancell 0x11041 Simple prompt
Default: OK
MMI_Style_Ok_Cancel2 0x11141 Simple prompt Cancel
MMI_Style_Ok 0x11040 Simple prompt OK
Yes, No
MMI_Style_Yes_Nol 0x11044 Simple prompt
Default: Yes

Yes, No, Cancel
MMI_Style_Yes_No_Cancell |0x11043 Simple prompt
Default: Yes

Abort, Retry, Ignore

MMI_Style_Abort_Retryl 0x11042 Simple prompt
Default: Abort
OK, Cancel
MMI_Style_Editl 0x12040 | Request for data input
Default: OK
OK, Cancel
MMI_Style_Edit2 0x12140 | Select item from a list
Default: OK

MMI Styles contains a complete description of the various styles and the expected return values. “Automating — Using
Implicit Send” should be consulted for more information.

The data return mechanisms used by OnimplicitSend() differ slightly from the ImplicitSendStyle() API function described in
“Automating — Using Implicit Send”.

d Returning a “positive” response:
0 ImplicitSendStyle() returns a pointer to a character string.

0 For OnimplicitSend(), the character string is copied into the pszResponse buffer. No more than
(responseSize — 1) characters should be copied into the buffer. (The -1 leaves room for the NUL
character that must terminate the response.

0 Use of the wescpy_s() function is recommended to make sure that no more than the
maximum number of characters are copied to the buffer.

Additionally, setting pbResponselsPresent to TRUE will tell PTS that there is data in the
pszResponseBuffer.

For example, to return a value of “OK”:

85

Printed Documentation

wcscpy_s(pszResponse, responseSize,L"0K");
*pbResponseIsPresent = TRUE;
d Returning a “negative” response:
0 ImplicitSendStyle() returns a NULL pointer.

0 For OnimplicitSend(), a negative response is indicated by setting pbResponselsPresent to FALSE.
When pbResponselsPresentis FALSE, PTS will ignore the contents of the pszResponse buffer.

For example, to return a “negative” response:
*pbResponseIsPresent = FALSE;
RegisterimplicitSendCallbackEx()

Declaration: HRESULT RegisterimplicitSendCallbackEx(IPTSImplicitSendCallbackEx* pCallback

pCallback: A pointer to an instance of an IPTSImplicitSendCallbackEx based COM object as described

Parameters:
above.
A value greater than or equal to zero if successful.
Return
values A value less than zero if not successful. For a list of error codes specific to the PTS Control APl see API

Error Codes.

This function hooks the Implicit Send handler object to the PTS Control API. After this function has been called, MMIs will
be sent to the OnimplicitSend() function instead of the PTS User Interface.

UnregisterimplicitSendCallbackEx()

Declaration: HRESULT UnregisterimplicitSendCallbackEx(IPTSImplicitSendCallbackEx* pCallback);

pCallback: A pointer to an instance of an IPTSImplicitSendCallbackEx based COM object as described

Parameters:
above.
A value greater than or equal to zero if successful.
Return
values: A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API

Error Codes.

This function disconnects the Implicit Send handler object from the PTS Control API. After this function has been called,
MMiIs will once again be sent to the PTS User Interface.

IPTSImplicitSendCallback object

This object is provided for backwards compatibility with existing Client Applications and use of the
IPTSImplicitSendCallbackEx object is preferred.

86

Extended Automating

The IPTSImplicitSendCallback object needs to implement the following functions that are needed by the Component
Object Model.

* AddRef()
d Release()

d Querylinterface()

In addition, the object needs to implement a function called OnSend() which will be called every time that PTS would
normally use Implicit Send to popup a prompt message for the test operator.

Finally, an instance of the IPTSImplicitSendCallback derived object needs registered with the PTS Control API via the
RegisterimplicitSendCallback() function.

PTSImplicitSendCallback::OnSend()

HRESULT OnSend(LPCWSTR pszProjectName, WORD wID, LPCWSTR pszTestCase,

Declaration:
LPCWSTR pszDescription);
Parameters: pszProjectName: A Unicode string containing the name of the Project that contains the currently executing
* Test Case.
wlID: An unsigned 16 bit value that uniquely identifies the MMI in the Project.
pszTestCase: A Unicode character string that contains the name of the currently executing Test Case.
pszDescription: A Unicode character string that contains the prompt text that would normally be shown in a
popup dialog.
Return The user implementation of this function should return a value greater than or equal to zero if successful.
values:

The user implementation of this function should return a value less than zero if not successful.

The four parameters for the OnSend() function are identical to the first four parameters of the OnimplicitSend() function
described above. Please refer to IPTSImplicitSendCallbackEx::OnImplicitSend() for more information about these
parameters.

Limitations with IPTS mplicitSendCallback:: OnSend()
IPTSImplicitSendCallback::OnSend() has a few limitations that have been addressed by
IPTSImplicitSendCallbackEx::OnlmplicitSend().

The Implicit Send feature uses an additional value that describes the presentation style of the MMI. The presentations
styles determine if the MMI should be presented with

87

Printed Documentation

* OKand Cancel buttons
* Only a Cancel button

* Yes and No buttons

* Adatainput dialog

* Alist of choices from which one item may be selected

In addition, the MMI style defines the expected return value from the Implicit Send handler.
d The test operator’s choice of OK or Cancel, Yes or No.
* The test operator pressed the Cancel button for MMI styles that only include a Cancel button.
d Input typed into a dialog by the test operator.

. The item selected from the list of choices.

The MMI style is NOT passed to OnSend(). This means that a Client Application will not be presented with any of the
information listed above. The MMI style is supplied to OnimplicitSend().

OnSend() does not provide a mechanism to return a value other than “the OK button was pressed”. OnimplicitSend()
supports all of the expected return values noted above.

The return status from OnSend() should be greater than or equal to zero if the function completes successfully. A return
status less than zero indicates to the PTS Control API that the OnSend() function was not able to complete successfully.

In other words, the status value returned from OnSend() only indicates whether or not the function was successful, not a
particular value that should be returned from the list of possibilities given above.

RegisterimplicitSendCallback()

Declaration: HRESULT RegisterimplicitSendCallback(IPTSImplicitSendCallback* pCallback);

pCallback: A pointer to an instance of an IPTSImplicitSendCallback based COM object as described

Parameters:
above.
A value greater than or equal to zero if successful.
Return
values: A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API|

Error Codes.

This function hooks the Implicit Send handler object to the PTS Control API. After this function has been called, MMIs will
be sent to the OnSend() function instead of the PTS User Interface.

UnregisterimplicitSendCallback()

Declaration: HRESULT UnregisterimplicitSendCallback(IPTSImplicitSendCallback* pCallback);

88

Extended Automating

Parameters: pCallback: A pointer to an instance of an IPTSImplicitSendCallback based COM object as described

above.
A value greater than or equal to zero if successful.
Return
values: A value less than zero if not successful. For a list of error codes specific to the PTS Control APl see API

Error Codes.

This function disconnects the Implicit Send handler object from the PTS Control API. After this function has been called,
MMiIs will once again be sent to the PTS User Interface.

General information functions
GetPTSBluetoothAddress()

Declaration: HRESULT GetPTSBluetoothAddress(ULONGLONG* pullBdAddr);

Parameters: pullBdAddr: A pointer to a 64 bit unsigned integer that receives the BDADDR of the PTS endpoint device.

A value greater than or equal to zero if successful.

Return

values: A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

This function retrieves the Bluetooth Device Address (BDADDR) of the endpoint device that is being used by PTS.

A 64 bit value is returned even though a BDADDR is only 48 bits in length. The BDADDR is located in the least significant
48 bits (six bytes) and the upper two bytes will have a value of 0x0000.

It should be noted that the Bluetooth Device Address may not be immediately available after PTS is started. During PTS
startup, a number of different things happen including communicating with the endpoint device to determine its BDADDR.
GetPTSBIluetoothAddress() will return a status of PTSCONTROL_E_BLUETOOTH_ADDRESS_NOT_FOUND if it is
called too early.

The clientShowBdAddress() function in the PTSControlClient sample program demonstrates a way to handle this situation
by waiting up to 15 seconds for the BDADDR to become available.

GetPTSVersion()

Declaration: HRESULT GetPTSVersion(DWORD* pPTSVersion);

Parameters: pPTSVersion: A pointer to a 32 bit unsigned integer that receives the version number of PTS.exe.

A value greater than or equal to zero if successful.

Return

values: A value less than zero if not successful. For a list of error codes specific to the PTS Control API see API
Error Codes.

89

Printed Documentation

Returns the version of PTS as a four byte value packed into a 32 bit unsigned integer. Each byte represents one piece of
a standard Windows version number:

d Byte 3: Major version number
d Byte 2: Minor version number
d Byte 1: Update release number

d Byte 0: Build sequence number

For example, for PTS version 4.5, update 2, build number 6 (4.5.2.6), the value returned from GetPTSVersion() would be
0x04050206.

Sample Program - PTSControlClient

Sample Program - PTSControlClient

PTSControlClient is provided as a part of PTS to serve as an example of using the PTS Control API. It is provided in both
source code form and as a ready to run executable.

The source code is found in
C:\Program Files\Bluetooth SIG\Bluetooth PTS\Custom\PTSControlClient
and the executable can be found at

C:\Program Files\Bluetooth SIG\Bluetooth PTS\bin\PTSControlClient.exe

Preparing to use PTSControlClient

There are two steps that need to be performed before using the PTSControlClient.

1. Creating a Workspace

The PTSControlClient does not demonstrate the CreateWorkspace() function. Instead, it needs a pre-existing Workspace.

To create the Workspace run PTS in the normal way and create a new workspace as usual. Or, if a suitable Workspace
already exists it can be used.

When the Workspace to be used is configured as needed, exit PTS so that PTSControlClient can launch it in COM Server
mode.

2. Create a Test Script

Note: The Test Script referred to here is specific to the PTSControlClient and should not be confused with the PTS Test
Scripting feature described in the "Scripting" reference document.

Test Scripts for the PTS Control Client are disk files formatted in XML. Any convenient method can be used to create a
Test Script — Notepad, an XML editor such as XML Notepad, Excel or any other mechanism that can be used to create a
text file in the XML format.

An example of a plain text PTSControlClient Test Script can be found at
C:\Program Files\Bluetooth SIG\Bluetooth PTS\Documentation\Automation\TestScriptSample.xml

For applications such as Excel, the Test Script can be edited and exported as XML data. As a starting point, open

90

Extended Automating

C:\Program Files\Bluetooth SIG\Bluetooth PTS\Documentation\Automation\TestScriptTemplate.xlsx

and follow the instructions.

Test Script format
d The contents of the script are enclosed in an “<AUTOMATION>", “</AUTOMATION>" tag pair.
d The Test Script must be given a name that is enclosed in a “<Name>", “</Name>" tag pair.

* The file path to the Workspace to be used is enclosed in a “<Workspace>", “</Workspace>" tag pair. A full file
path should be used for the Workspace.

* Only one Workspace may be specified. If more than is present, only the first one is used.
* The name of a Project from the workspace is enclosed in a “<Testsuite>", “</TestSuite>" tag pair.
d Only one Project may be specified. If more than is present, only the first one is used.

* Other tag pairs that may exist in the file are ignored. Specifically, the sample Test Scripts mentioned above
include a “<Version>", “</Version>" tag pair but it is not currently used.

* Any number of Test Cases from the selected Project are enclosed in a “<Testcase>", “</Testcase>" tag pair,
one for each Test Case. The Test Cases will be executed in order in which they appear in the file.

For example, script.xml may contain
<AUTOMATION>
<Name>SampTleTest</Name>

<wWorkspace>C:\Program Files\Bluetooth SIG\My
workspaces\Sample\Sample.pgw</Workspace>

<Testsuite>IOPT</Testsuite>
<Testcase>TC_COD_BV_01_I</Testcase>
<Testcase>TC_COD_BV_01_2</Testcase>

</AUTOMATION>

Running the Test Script

Once the Test Script is ready, it can be executed by running PTSControlClient, giving the name of the Test Script as a
command line parameter. The path to the Test Script does not need to be a full path since the file is only processed by the
PTSControlClient application.

“C:\Program Files\Bluetooth SIG\Bluetooth PTS\bin\PTSControlClient.exe” script.xml

API Error Codes

PTSCONTROL_E_GUI_UPDATE_FAILED (0x849C0001)

ICS and/or IXIT changes that result from calling UpdatelCS() or UpdatelXITParam() need to be communicated to the
appropriate Executable Test Suite DLLs. This error occurs when the update process fails.

PTSCONTROL_E_PTS_FILE_FAILED_TO_INITIALIZE (0x849CO 002)

91

Printed Documentation

This error will be returned by CreateWorkspace() if the ICS file specified in the pszPathOfPtsFile is invalid or cannot be
found.

PTSCONTROL_E_FAILED_TO_CREATE_WORKSPACE (0x849C0003)
CreateWorkspace() will return this error code if there is a problem creating the Workspace.
PTSCONTROL_E_CLIENT_LOG_NOT_EXPECTED_TO_FAIL (0x849 C0004)

This error can be returned from RunTestCase() when a call to the “logger” function (IPTSControlClientLogger::Log())
returns a failure status.

PTSCONTROL_E_FAILED_TO_OPEN_WORKSPACE (0x849C0005)

OpenWorkspace() will return this status code when it is unable to open the Workspace specified in the
pszPathOfWorkspace parameter.

PTSCONTROL_E_PROJECT_NOT_FOUND (0x849C0010)

PTSCONTROL_E_PROJECT_NOT_FOUND is returned when the Project index value to GetProjectName() is out of
range, or by GetProjectVersion(), the Test Case functions, and the ICS/IXIT update functions when the named Project is
not in the Workspace.

PTSCONTROL_E_TESTCASE_NOT_FOUND (0x849C0011)

This value is returned when the Test Case index value to GetTestCaseName() or GetTestCaseDescription() is out of
range, or, when the Test Case name supplied to IsActiveTestCase() does not exist.

PTSCONTROL_E_TESTCASE_NOT_STARTED (0x849C0012)
Returned by RunTestCase() when it encounters a problem trying to start the execution of the specified Test Case.
PTSCONTROL_E_INVALID_TEST_SUITE (0x849C0013)

This value is returned from RunTestCase() or IsActiveTestCase() if the data for the selected Project is invalid in some
way.

PTSCONTROL_E_PTS_VERSION_NOT_FOUND (0x849C0014)

Returned by GetPTSVersion() when it is unable to determine the version of PTS.exe.
PTSCONTROL_E_PROJECT_VERSION_NOT_FOUND (0x849C0015)

Returned by GetProjectVersion() when the selected project is not present in the current Workspace.
PTSCONTROL_E_TESTCASE_NOT_ACTIVE (0x849C0016)

This value is returned from RunTestCase() when the selected Test Case is not active (disabled) in the selected Project.
PTSCONTROL_E_INVALID_IXIT_PARAM_VALUE (0x849C0020)

This value is returned from UpdatelXITParam() when the character string containing the new parameter value contains
characters that are not valid for the IXIT item data type.

This value is also returned for OCTETSTRING values that contain only hexadecimal characters, but are not of an even
length. (OCTETSTRINGS require two characters for each byte of data.)

PTSCONTROL_E_IXIT_PARAM_NOT_CHANGED (0x849C0021)
UpdatelXITParam() can return this error status when there is a problem updating a IXIT value.

PTSCONTROL_E_IXIT_PARAM_UPDATE_FAILED (0x849C0022)

92

Extended Automating

UpdatelXITParam() can return this error status when there is a problem updating a IXIT value.
PTSCONTROL_E_TEST_SUITE_PARAM_UPDATE_FAILED (0x849C 0022)

UpdatelCS() or UpdatelXITParam() can return this error status when there is a problem updating a ICS or IXIT value.
PTSCONTROL_E_IXIT_PARAM_NOT_FOUND (0x849C0023)

UpdatelXITParam() returns this value when the specified IXIT item is not defined for the selected Project.
PTSCONTROL_E_ICS_ENTRY_UPDATE_FAILED (0x849C0030)

UpdatelCS() can return this error status when there is a problem updating a ICS value.
PTSCONTROL_E_ICS_ENTRY_NOT_FOUND (0x849C0031)

UpdatelCS() returns this value when the specified ICS item is not defined for the selected Project.
PTSCONTROL_E_ICS_ENTRY_NOT_CHANGED (0x849C0032)

UpdatelCS() can return this error status when there is a problem updating a ICS value.
PTSCONTROL_E_IMPLICIT_SEND_CALLBACK_NOT_REGISTERED (0x849C0040)

This value is returned from UnregisterimplicitSendCallback() when no callback is currently registered.
PTSCONTROL_E_IMPLICIT_SEND_CALLBACK_ALREADY_REGISTE RED (0x849C0041)

This value is returned from RegisterimplicitSendCallback() when a callback is currently registered.
PTSCONTROL_E_IMPLICIT_SEND_CALLBACK_NOT_EXPECTED_TO _FAIL (0x849C0042)

This error can be returned from RunTestCase() when a call to the Implicit Send handler
(IPTSImplicitSendCallback::OnSend()) returns a failure status.

PTSCONTROL_E_BLUETOOTH_ADDRESS_NOT_FOUND (0x849C004 3)

GetPTSBIluetoothAddress() will return this error if it is unable to determine the Bluetooth Device Address of the PTS
endpoint device. This usually means that the endpoint device is not connected to the computer or has the wrong device
driver attached to it.

On some occasions, this error may indicate that the call to GetPTSBIluetoothAddress() occurred while PTS was still
initializing. In this case, wait about 10 to 15 seconds after starting PTS manually or via CoCreatelnstance() before calling
GetPTSBIluetoothAddress().

PTSCONTROL_E_INTERNAL_ERROR (0x849C0044)

This status value represents a general unspecified failure during a call to one of the PTS Control API functions.
Currently, only GetPTSBIluetoothAddress() may returned this value, but other functions could use it in the future.
PTSCONTROL_E_FUNCTION_NOT_IMPLEMENTED (0x849C0099)

This status value is used by functions that are defined in the PTS Control API, and are available to be called, but have not
actually been implemented.

Currently, StopTestCase() is the only function the can be called but has no implementation.

Other error codes

E_NOINTERFACE (0x80004002)

93

Printed Documentation

This error is likely to be returned from CoCreatelnstance() and probably indicates that the PTS Control API has not been
registered with the Component Object Module manager. To correct this error

1. Open a command prompt;

2. Set the current working directory to the program directory for PTS. In a normal installation this is
C:\Program Files\Bluetooth SIG\Bluetooth PTS\bin

3. Enter the following command
Regsvr32 PTSControl.dll

4. If a message box like the one at the right appears then the PTS Control API has been successfully registered with
COM.

If a different message appears, please contact PTS Technical support for additional assistance.
CO_E_SERVER_EXEC_FAILURE (0x80080005)

CoCreatelnstance() is likely to return this error when PTS is currently running but was not started in COM server mode.
Exit the active instance of PTS and try the function again.

94

Report Generator

Introduction

The Profile Tuning Suite (PTS) can be used throughout the lifecycle of a Bluetooth enabled product. If a Bluetooth product
makes use of application profiles, then PTS must be used during the qualification of the product.

Many Bluetooth SIG members also use the PTS during initial software development and subsequent updates to a
product. Use of the PTS during development can ensure that the Bluetooth functionality is operating correctly as features
are added. The PTS is also useful in establishing baseline functionality that may be referred to later during regression
testing when the product software is modified or enhanced.

A series of tests for a device will produce a lot of information. After the tests are complete, the question becomes “What to
do with all of this data?”

PTS provides a report generator that can be used to consolidate the most useful information into a concise report.

Qualification test evidence

[The qualification process for a Bluetooth device consists of a number of steps. Some of these steps are

d Using the Test Plan Generator (TPG) and the Qualification Listing Interface (QLI), describe the Bluetooth
features and functions that will be used by the device.

d Using the TPG, create a test plan that will be used to direct the testing of the device in order to demonstrate that
it properly supports each Bluetooth feature and function that is used.

d Execute the test plan to collect proof that the device complies which the Bluetooth specifications, and report the
results to the Bluetooth SIG using the QLI.

The reports produced by the PTS are in a format (XML) that can be processed by the QLI. The report generator in the
PTS knows what information must be included when reporting test results and what information can be left out. This
makes the use of the report generator quite convenient when it comes time to report the results of testing on a device.

In fact, because of this, results of qualification testing using the PTS must be submitted via a report created by the PTS
report generator.

Development checkpoints

There are various points in the development of a product where it is useful to exercise the functionality. Use of the PTS at

these times can ensure that the software in the device is tested the same way every time. In addition, the comparison of a
set of test results with a previous set of test results can highlight problems that may have been introduced as development
progressed.

Once again, the fact that the reports produced by the PTS report generator are in a computer readable format can be very
helpful. The XML formatted information in the report can be imported into a database for convenient manipulation,
analysis, and comparison.

Contents of a report

Each report produced by the PTS report generator contains test results for one project (“profile”). Multiple reports will need
to be created when a device supports more than one profile, as indicated by the presence of multiple projects in the PTS
workspace for the device.

Each report begins with the following information:

d The location where testing was performed and information about the person who performed the testing (referred
to as “user information”);

95

Printed Documentation

* Adescription of the device that was tested (referred to as a “device description”);
* Anoverview of the test environment.
(This last item is often required in reports to regulatory agencies or compliance management organizations.)
The next part of the report contains:
* Asummary of each of the test cases that were executed;

* Alisting of the ICS and IXIT settings that were used while the device was being tested.
The remainder of the report consists of test results. This may be in one or two sections:
d For each test execution included the report, the first section of test case results lists
O The test case name;
0 When the test was performed;
0 The result of the test execution (“verdict”);
O The version number of the test suite executable that was used;
0 Asummary of the test execution;
O Data referred to as the “Encrypted Verdict”.

The “Encrypted Verdict” is a summation of the above information that has been encrypted for reporting
purposes. Since this information cannot be changed, it is the primary evidence that a test case execution
concluded successfully.

* Asecond section of test results may be present. This section contains the detailed test execution log for each of
the test cases being reported on.

The inclusion the detailed logs is optional and is selected during the process of generating the report.

Creating a PTS Report

Once a series of tests have been run for a device, the process of creating a report is straightforward. The following steps
are used to create a test report.

1. Select a workspace

Select the PTS workspace that contains the test results for the device. This is done in the normal way using the “Open
Workspace...” or “Recent Workspaces” items on the “File” menu.

It is not necessary to select a project after selecting the workspace. The project to be used for the report will be selected
from the “Report” menu.

96

Report Generator

5 PTS - OﬂlﬂDG_I].???-lﬁI'

FiLE] VIEW INSERT REPORT HELP

‘i MNew Workspace... Cid + N IT MLl Ics 1IXIT
Start Page X
& Open Workspace.., Ctld + O = 7
@ -
&3 Bluetooth Profile
Clase Workspace SPECIAL INTEREST GROUP
. A Home (I Release Notes @ Abstract Test Suite ﬁ PTS
ld Save Workspace Ctrl + S
ﬁ - o _
Recent Warkspaces 3 | C\Users\sigguest\DocumentshProfile Tuning Suite\Unknown\Unknown.pgwt
£} Application Settings... =
B Eat Alt + F4
| o
SRC Overview

Congratulations on using PTS! The Bluetooth™ Profile Tuning Suite (PTS)
powerful, software-based black-box testing tool that automates protocol an
[BEPEAZREIE O SHE AL || profile interoperability testing. reducing Bluetooth SIG members' costs and

Workspace | Information 4] |

2. Start the report generator

In the Report menu, click Generate or press Ctrl + R.

fa PTS - 001BDC073461 - Unkn
|| FILE VIEW INSERT REPORT | HELFP
= ﬂ| Generate..,

Workspace Tool Window » 1 X ESeh@nhEd APDF Log

ICS IXIT

3. First time use of the report generator

PTS will store information about the last person who created a report using the report generator. In addition, the
descriptions of devices for which reports have been created will also be stored.

When PTS is first installed on a new computer none of this information is present. The first time that the report generator
is used after a fresh installation of PTS, the software will ask for information about the person creating the report and the
description of the first device. This information can be edited later using features of the report generator main dialog.

Entering the initial user information

When using the report generator for the first timefill out the information in the Report tab as completely as possible.

97

Printed Documentation

Report | Producis | Test Cases

Product

|Sig Product x|

Tester Information
Company Bluetooth SIG, Inc.
User Mame ! SIS Yser
Address :
Phone ;

Email :

Options
Include Text Logging : O
Upload Report ;
QoID :

Generate I [Cancel

LS

After entering the information, you can select a product from the Product drop down menu, or select the Products tab to
enter information about the product.

Entering the description of the first device

The report generator needs at least one device description in order to generate a report. After entering the initial user
information as described in the previous section, click the Products tab.

Enter the “Name” of the device and any other information as needed. When finished, click the “Save” button.

Only the “Name” item is required. The other items can be used to distinguish the device being described from similar
devices that have been tested. All of the information entered in the “Product Details” dialog for a given device will appear
in the report.

98

Report Generator

Test Cases

Shortcut Type Designation

1 device new

*Mame : myPhone

*Shortcut: 1

*T}rpe . l;iE'u'iCE‘

*Designation: new

*Ctmtue + unknown

* [tems must be filled out.

| New | [Detete | | save |

It may be convenient to set the “Name” or the “Shortcut” to the name of the PTS workspace. This can make it easier to
determine which workspace goes with which report.

After entering the description of the device, click the “Save” button. This will save the information and start the main dialog
of the report generator.

4. Select the device description

The “Product” section at the top of the report generator dialog contains a dropdown list of showing the names of the
stored device descriptions. The small downward facing arrow at the right of the list may be used to display that list.

Click on the device description of interest in order to select it.

If the description of the current device has not yet been entered, it may be created by clicking the “Add Product” button.
(See Adding and deleting device descriptions)

99

Printed Documentation

e - -y
Report | Products | Test Cases
Product
Toaster
Company ; 5IG Training Fake Company
User Name : testuser
Address : 123 Anywhere 5t Anytown, USA 98000
Phone : 000-000-0000
Email ; john_doe@email.com
Options
Include Text Logging : O
Upload Report : [+
QDID ;
l Generate] [Cancel

5. Selecting the test case results to be used inth e report

A series of tests is likely to contain many executions of the same test case. A test case may have been executed more
than once in order to exercise different settings of the ICS or IXIT data, or to retest various test cases after an updated
software build. The next step in the report generation process is to select the test case results that should be included in
the report.

The “Select Test Cases” button will open a display listing all of the test case runs for which result data is available. The list
may not include all of the test case executions that have been run for the current project -- some test results may have
been deleted using the test case history editor. (See Reviewing and Editing the Test History.)

The list of test cases will be in the order in which they were executed. When first opening the display, none of the test
case results will be selected.

100

Report Generator

d Report Ge PESIE=D X
‘ Report | Pmdud5| Test Cases
A2DP [F] Testcase Date Verdict
GATT
[C] TC SRC CC BY 101 112472014 9:12:04 AM INCONC
[C] TC SRC.CC BV 09.1 112472014 9:11:54 AM INCONC
[TC SRC.CC BV 091 10/28/2014 4:08:54 PM INCONC
[C] TE SRC €C BV 091 1072872014 1:09:02 PM INCONC
Select Latest

To choose the results to be included in the report, place a checkmark next to the entries that are of interest. You can
either click on the checkbox or the item description.

The checkbox next to Testcase will select all the test cases. Unchecking the checkbox will clear the selections.

101

Printed Documentation

| Report | Pmduct5| Test Cases [

AZDP [C] Testcase Date Verdict
GATT TE SRC €C_BY 101 11/24/2014 9:12:04 AM INCONC
[C] TC_SRC_CC_BV_09.1 10/28/2014 4:00:54 PM INCOMC
] %C_SRC_CC_BV_UQ_I 10/28/2014 1:09:02 PM INCONC

Select Latest

The “Select Latest” button may be used to select the most recent results for each test case. In many cases this will be the
desired set of results.

Once the set of test cases to be included in the report have been selected, click the Generate in the Report tab.

102

Report Generator

Report | Products | Test Cases
Product
| l'!’mrF'hone P
Tester Information

Company : SIG Training Fake Company

User Mame ; test user
I Address : 123 Anywhere 5t Anytown, USA 98000
| Phone : 000-000-0000

Email ; john_dece@email.com

Options

Include Text Logging : [

Upload Report : [¥]
QDID ;

It should be noted that the set of selected test cases is not “sticky”. The set of test cases to be included in the report must
be selected on every use of the report generator.

Which results to choose?

Generally, the most recent successful execution of each test case (ones with a “PASS” verdict) should be chosen for the
report. These results indicate that the device was able to successfully execute the tests with the most recent ICS and IXIT
settings.

On some occasions it may be desirable to include unsuccessful results in the report. Use of the Profile Tuning Suite is
mandated for many of the profile level test cases. An issue in a test specification, or a software problem in the PTS may
make it impossible for a given test case to result in a “PASS” verdict. When this happens, it needs to be shown that
execution of the test case using the PTS was attempted. Inclusion of the unsuccessful result in the report will call attention
to the failed attempt.

The inclusion of such results in the report can be used to help indicate that all of tests listed in the test plan created by the
Test Plan Generator were attempted.

8. Including test execution logs in the report

The report created by the report generator may optionally include the detailed test execution log for each of the selected
test cases. Inclusion of this information is not required for creating a report to be submitted as testing evidence via the
Qualification Listing Interface.

103

Printed Documentation

Options
Include Text Logging :

Upload Report : E’%
QUID :

If a report is to be used for internal documentation, or in the case that a test execution cannot result in a “PASS” verdict, it
may be helpful to include the detailed logs in the report. Placing a checkmark in the box labeled “Generate Report with
Text logging” will cause the test execution log for each of the selected test cases to be included in the report. Placing a
checkmark in the box labeled Upload Report requires a valid QDID in order for the report to be uploaded.

9. Generating the report

Once the test cases to be included in the report have been selected, and the user information and device description have
been verified, it is time to create the report. The “Generate” button is used to start the creation of the report.

After clicking the “Generate” button, a dialog will appear asking where the file containing the report should be saved.
Browse to the location where the report file should be stored.

The default name of the report file is “TestReport.xml”, but this can be changed as needed. The default file extension of
“XML" should be left as is.

Once the location for the file has been selected and the file name has been specified, click the “Save” button to start the
creation of the report.

Organize » New folder

4 Eavorites Mame I Item type Date modified
B Desktop I 4 Libraries
. Bluetooth PTS | A Harald

,& Downloads 7% Computer

= Recent Places | c\g Network

: Recycle Bin

4 Libraries
b :~j Documents

B J‘r Music

> i) Pictures

a (8 Computer

Filename: TestReportxml

Save as type: | XML Files

4 Hide Folders

As the report is being created, a progress bar will show the current status of the process.

After the report is finished, the report generator will ask if the report should be viewed. Clicking “Yes” button will cause
PTS to launch the application currently associated with the “.XML” file type. On many Windows® systems this application
will be Internet Explorer®.

Report generation with text logging

The “Generating Detailed Log” phase can take quite a long time to complete when “Generate report with text logging” is
selected. It may appear that the report generator has stopped running during this phase.

104

Report Generator

The number of test cases that have been selected for the report, and the size of the test execution logs for each of those
test cases has a direct impact on the time it takes “Generating Detailed Log” to complete.

It may be the case that the report generator should be run overnight depending on the above criteria. A future release of
PTS will provide better status information during this phase of the

)

& CAUsers\Harald\Desktop\TestReportami - Windows

File Edit View Favorites Tools Help

<[4] x

Q U [2] CAUsers\Harald\Desktop\TestReport.xm
. = Y
.y Favorites | @ Ci\Users\Harald\Deskiop\TestReportaml - v [dm v Page~ Safety~ Tools+ @+

Test Report

IOPT

General Information
1. Facility

Bluetooth SIG, Inc.

Street: 5209 Lake Washington Blvd NE, Suite 330

City: Kirldand

State: WA

Zip_Code: 93033

Country: USA

Phone: +1.425 6913535

FAX:

eMail: harald blatand@bletooth com L
Date -

< i] v

{8 Computer | Protected Mode: Off v ®100% -

Done
=

Adding and Deleting Device Descriptions

As mentioned earlier (Creating a PTS Report), PTS can store descriptions for more than one device. The list of stored
descriptions is managed using two additional buttons in the Products tab of the Report Generator menu.

Adding a device description
Clicking the "New" button will clear the text fields and allow you to enter a new device description

After entering the details for the new device, click the “Save” button to store the information, or the"New" button to cancel
the operation.

105

Printed Documentation

| Product

Shortcut Type Designation

device new

*Mame : myPhone

*Shortcut: 1

*T}rpe . l;iE'u'iCE

*Designation: new

*Ctmtue + unknown

* [tems must be filled out.

[New | [Delete] [save |

Note that the report generator will allow the creation of more than one device description with the same “Name”. Doing
this may be useful, but it does require that care be used when selecting the right device description for creating the report.

Deleting a device description

Any of the device descriptions may be removed from the stored list. There are four steps to this process:

106

Report Generator

1. Inthe Products tab, select the device description that is to be removed.

([Report | Products | Test Cases

Mame Shortcut
myPhone

M____

Type Designation Status

device unknown

*MWame: Toaster

*Shortcut §

*Type:

*Designation :

*Status :

* Items must be filled out

[New | [Delete] [save |

It is probably a good idea to review the description to make sure that it is the one that needs to be removed.

This is especially true if more than one device description uses the same “Name”.

3. Next, click the “Delete” button.

selected device description.

Finally, confirm that the selected description should be deleted by clicking “OK”. Click “Cancel” to keep the

8] l Cancel

107

Printed Documentation

Reviewing and Editing the Test History

Reviewing and Editing the Test History

The complete history of test case executions may be somewhat overwhelming. It might be difficult to separate the results
that are needed for a report from the test results that are not. The test history editor can be used to remove results that
are no longer of interest.

It should be noted that removing entries from the test history is a permanent operation. Items that have been removed
cannot be added to the list later. If a result for a test run is accidentally deleted, then the corresponding test case may
need to be executed again in order to have results present for generating a report.

The Test Case History Tool Window displays the test case history for the selected project.

Test Case History Tool Window - A2DP ~ L3
Profile: A2DP -mE [y
[C] Testcase Date Verdict Debug
[E Tc_srRc cc BV 101 11/17/2014 8:39:41 PM INCONC False *
[E] Tc sRc ce BV 001 11/17/2014 8:39:33 PM INCONC False
[E] TC SRC SET BV 021 11/17/2014 8:35:16 PM INCONC False
[F] Tc SRE SET BV 021 11/17/2014 8:39:06 PM INCONC False
[E] TC_SRC_SET.BV.0L1 11/17/2014 8:38:41 PM INCONC False
[C] TC SRC REL BV 021 11/17/2014 8:38:31 PM INCONC False
[C] TC_sRC_REL BV 011 11/17/2014 8:38:04 PM INCONC False
[C1 Tc sRc cC BV 101 11/17/2014 8:37:53 PM INCONC False
[E] TC_SRC €C BV 091 11/17/2014 8:37:42 PM INCONC False |&
[E] TC SRC.CC BV.091 11/17/2014 6:56:46 PM INCONC False
[E] Tc srRc_cc BV 091 11/17/2014 6:56:26 PM INCONC False
[F] Tc srRC SET BV 051 11/17/2014 12:29:14 PM INCONC False
[E] Tc_sRC_SETBV 041 11/17/2014 12:29:07 PM INCONC False
[E] TC SRC_SET BY.031 11/17/2014 12:29:01 PM INCONC False
[E] TC SRC SET BV 021 11/17/2014 12:28:54 PM INCONC False
[C] TC SRC SET BV 0L I 11/17/2014 12:28:48 PM INCONC False
[C1 Tc_SRC_REL BV 021 11/17/2014 12:28:41 PM INCONC False —
[Tl Tc sRC_REL BV 011 11/17/2014 12:78:26 PM INCONC False
[E] TC SRC_CC BV 101 11/17/2014 12:28:18 PM INCONC False
[F] Tc src cc BV 091 11/17/2014 12:28:11 PM INCONC False

Use the drop down menu to select a project:

108

Report Generator

Test Case History Tool Window - A2DP -~ 1

Profile: [42DP [= =

D Tes Date Verdict Debug
[11/17/2014 8:3%:41 PM INCONC False
[11/17/2014 8:3933 PM INCONC False
[l TC_SRC_SET_BV_ 031 11/17/2014 8:39:16 PM INCONC False
[C] 7€ SRC SET BV 021 11/17/2014 8:39:06 PM INCONC False
[T] TC SRC SET BV 011 11/17/2014 8:38:41 PM INCONC False
[C] TC_SRCREL BV 021 11/17/2014 8:38:31 PM INCONC False
[E] TC_SRC_REL BV 011 1171772014 8:38:04 PM INCONC False
[T 71C SRc_cc BV 101 11/17/2014 B:37:53 PM INCONC False
[C] TC_SRC.CC_BY 091 11/17/2014 8:37:42 PM INCONC False
[C] TC srRc.cc BV 091 11/17/2014 £:56:46 PM INCONC False
[l TC_SRC.CC BV 091 11/17/2014 6:56:26 PM INCONC False
[C] 7c SRC SET BV 051 11/17/2014 12:29:14 PM INCONC False
[E] TC_SRCSET BV 041 11/17/2014 12:29:07 PM INCONC False
[F] TC SRC SET BV 031 11/17/2014 12:28:01 PM INCONC False
[E] TC_SRC_SET_BV 021 11/17/2014 12:28:54 PM INCONC False
[C] 7C SRC SET BV 011 11/17/2014 12:28:48 PM INCONC False
[F] 7C_SRC_REL BV 021 11/17/2014 12:28:41 PM INCONC False
[C] TC SRC_REL BV 011 11/17/2014 12:28:26 PM INCONC False
[E] 7C_SRC.CC BV 101 11/17/2014 12:25:18 PM INCONC False
[F] TE_SRC_CC BV 09.1 11/17/2014 12:28:11 PM INCONC False
prn

The “Test Case History” dialog will display a list of all of the test case executions for which results data are available. Each
item has a checkbox to its left; when the list is first opened, none of the items will be selected.

Viewing a test case execution log

For each test case shown, the detailed test execution log may be reviewed. Highlight an item in the list by clicking on its
entry. Double click the test case to display the test case log.

Py F—— T ———r .

el 2T -n
g s P

e T il B B

W v 1 g o -
oA] LI DL o

S o) il Pl i

o B i] Bl @
T I [T+ T v 1T

g UL Rt Belli By

Care needs to be taken when selecting an item for the purpose of viewing its test execution log. Clicking in the checkbox
for an item will display its log, and will also change the selection state (checked or unchecked) for the item. This can result
in an item accidentally being marked for deletion.

109

Printed Documentation

Selecting individual test case results to be delete

Specific test case results can be selected for deletion by placing a checkmark in the corresponding checkboxes.

Test Case History Tool Window - AZDP -~ 1 x
Profile; AZDP - |
[F] Testcase Date Verdict Debug

[TC_SRC_CC BV 101
[¥] Tc sRC_cC BV 091
C_SRC_SET BV.03.1

11/17/2014 8:39:41 PM INCONC False
11/17/2014 8:39:33 PM INCONC False

/7720 83036 INCONG] Fae |

[F] TC SRC SET.BV 021 11/17/2014 8:39:06 PM INCONC False
[¥] TC_SRC_SET BV 011 11/17/2014 8:38:41 PM INCOMNC False
[T TC SRC_REL BV 021 11/17/2014 8:38:31 PM INCONC False
[C] TC_SRC_REL BV 011 11/17/2014 8:38:04 PM INCONC False
[¥] TCc_sRC_CC BV 101 11/17/2014 8:37:53 PM INCONC False
[E T SRC.CC BV.09T 11/17/2014 8:37:42 PM INCONC False
[Tl Te srec_cc Bv 09l 11/17/2014 6:56:46 PM INCONC False
[F] T SR cC BV 091 11/17/2014 6:56:26 PM INCONC False
[E] TC SRC SET BV 051 11/17/2014 12:29:14 PM INCONC False
[¥] TC_SRC_SET BV 04 1 11/17/2014 12:29:07 PM INCONC False
[C] TC SRC SET_BV. 031 11/17/2014 12:29:01 PM INCONC False

Delete the selected test cases by clicking the Removed Checked Items button.

Test Case History Tool Window - AZDP

Profile: AZDP e[l
lag
| Remove chacked item(s)

¥ Testcase

@ T e croBuInT

It may be useful to select all of the items in the list, and then remove the selection from the items that are to be kept. The
“Select All” checkbox may be used to select all of the items.

Test Caze History Tool Window - AZDP > 0 x
Profile: A2DP v E B
¥ Testease Date Verdict Debug

WSTC_SRC_CC_BW_ 101 11/17/2014 §:39:41 PM INCONC False
[¥] Tc_src_cc BV 09l 11/17/2014 8§:39:33 PM INCONC False
[¥] TC SRC_SET_BV_03.I 11/17/2014 §:39:16 PM INCONC False
[¥] TC_SRC_SET BV 021 11/17/2014 8:39:06 PM INCONC False
[¥] TC_SRC_SET_BV_ 011 11/17/2014 §:38:41 PM INCONC False
[¥] TC_SRC_REL BV 021 11/17/2014 §:38:31 PM INCONC False
[¥] TC_SRC_REL_EV 011 11/17/2014 §:38:04 PM INCONC False
¥l TC sRC.CC BV 101 11/17/2014 8:37:53 PM INCONC False

Selecting older test results for deletion

When multiple results are present for one or more test cases, the Select Duplicates button may be used to select the
oldest results for each test case.

It should be noted that using Select Duplicates may inadvertently select test case results that need to be kept. As can be
seen in the picture to the right, the use of Select Duplicates resulted in a “FAILED” test case run being unselected, that is,
to be kept; while the previous successful execution (“PASS”) was marked for deletion. This situation is similar to that
which can result when using the “Select Latest” button while selecting test case results to be included in a report. (See
section 3.7, “Selecting the test case results to be used in the report”.)

110

Report Generator

Test Caze History Tool Window - AZDP > 2 %
Profile: AZDP - §
O] Testease |m Date ' Verdict Debug
[¥] TC_SRC_CC BV 091 11/17/2014 12:14:48 PM INCONC False
[¥] T¢ SRC CC BV 101 11/17/2014 12:15:19 PM INCONC True
[¥] TC_SRC_REL BV 011 1/17/2014 12:15:35 PM INCONC False
[E] Tc_SRC SDP.BV 01 1 11/17/2014 12:20:5% PM INCONC False
[¥] TC SRC_CC BV 091 11/17/2014 122811 PM INCONC False
[¥] TC_SRC_CC BV 101 11/17/2014 12:28:18 PM INCONC False
[¥] TC SRC_REL BV 011 11/17/2014 12:28:26 PM INCONC False
[¥] TC SRCREL BV 021 11/17/2014 12:28:41 PM INCONC False
[¥] TC_SRC_SET_BV 011 11/17/2014 12:28:48 PM INCONC False
[¥] TC SRC_SET BV 021 11/17/2014 12:28:54 PM INCONC False
[¥] TC SRC_SET BV 031 1/17/2014 12:29:01 PM INCONC False
[C] TC_SRC SET BV 041 11/17/2014 12:29:07 PM INCONC False
[F] TC SRC_SET BV 051 11/17/2014 12:29:14 PM INCONC False
[¥] TC_SRC_CC BV 091 11/17/2014 6:56:26 PM INCONC False
[¥] TC_SRC_CC BV 091 11/17/2014 6:56:46 PM INCONC ~ False
[¥] T€ SRC CC BV 091 11/17/2014 83742 PM INCONC False
[¥] TC_SRC_CC_BV_101 11/17/2014 8:37:53 PM INCONC False
[C] TC SRCREL BV 011 11/17/2014 8:38:04 PM INCONC False
[E] TC SRC_REL BV 021 1/17/2014 83831 PM INCONC False
[C] TC_SRC SET BV 011 11/17/2014 B:3841 PM INCONC False
[F] TC SRC_SET BV 021 11/17/2014 83206 PM INCONC False
[C] 7€ SRC_SET BV 031 11/17/2014 83916 PM INCONC False
[E] TC_SRC_CC BV 09.1 11/17/2014 8:39:33 PM INCONC False

To view older test cases, sort the test cases by date.

Test Case History Tool Window - A2DP -~ B x
Profile: AZDP - E

Testcase Date ’ I} Verdict Debug
TC_SRC_CC_BV_09.1 11/17/2014 12:14:48 PM INCONC ~ False
TC_SRC_CC BV_101 11/17/2014 12:15:19 PM INCONC True

Deleting test case results
Once test cases have been selected for deletion, click the Remove Checked Items button.

Note that there is no confirmation for this operation.

Test Case History Tool Window - AZDP

]

Profile: AZDP

¥ Testcase

| Remove checked itemi(s)
[# Trcee repuv ARt

111

Scripting
Automating PTS

The Profile Tuning Suite (PTS) offers three features which can be used in automated testing:

1. “Operator-less Operation” allows the interactive prompts that appear during the execution of a test case to be
processed by user written software which can inspect each message and take appropriate action.

This feature can be used with either of the following program control features and is described in the “Automating
— Using Implicit Send” reference document.

2. “Scripted Operation” where a set of test cases can be selected and run as a group. The group can be executed
as needed, or scheduled for execution at a later time.

This document describes “Scripted Operation”.

3. “Fully Automated Operation” — PTS provides an Application Programming Interface (API) which allows complete
control of the software. User written programs can take advantage of the API in order to open Workspaces,
select Projects, execute Test Cases, and many other functions.

“Fully Automated Operation” is described in the “Extended Automating” reference document.

“Scripted Operation”

Each Project (Test Suite) in a PTS Workspace has a “Test Script” associated with it. The Test Script contains names of
Test Cases from the Project in the order in which they should be executed. The Test Cases included in the script can be
in any order and can appear multiple times as needed.

To use Scripted Operation:
1. Open a pre-existing PTS Workspace (or, create a new one if needed);
2. Select one of the projects in the Workspace and make it the active project;
3. Select the Test Cases that will be included in the Test Script;
4. Confirm that the ICS and IXIT settings are correct;
5. Execute the script!

Once the Test Script is complete and ready to be used again in the future, it can be scheduled to automatically execute at
a later time. At that time the script can be run multiple times or until a certain amount of time has passed.

Often, you may want to have the script run unattended after normal hours. Combining “Scripted Operation” with
"Operator-less Operation”, allows for such unattended operation.

Note that each Project only has one Test Script associated with it. In order to have more than one Test Script for a given
Project, create another Workspace that contains the desired Test Suite.

Creating an initial Test Script

To select the Script Tool Window, click the Script Tool Window icon on the toolbar.

113

Printed Documentation

Also, you can switch between the ICS/IXIT Tool Window and the Script Tool Window by clicking on the tab at the bottom
of the window.

Profile: AZDP

Test Case Mumber of Runs

UTY AN Rl WOT T TNl Y ol Script Tool Window - AZDP h‘

The Test Script for each project is named "Profile Name” Script and will appear in the drop down menu in the Script Tool
Window.

Script Toal Window - AZDP > 0 x
Profile: |A2DP | ?S = &=
Test (EE-'IFI: Mumber of Runs
ANS

IR L P script Tool Window - AZDP _

In this document, the Test Script tab and/or window will be referred to as the Script Tool Window.

114

Scripting

Adding Test Cases to the Test Script

Choose a Test Case from the Test Case tree in the Workspace window and right click on it. Select “Send to Test Script”
and the Test Case will be added to the “Script Tool Window” for the selected Test Suite.

Werkspace Tool Window - 1 X § Start |

I @ A2DP

4 B AmP
I % PROT
o &Y% PHY
I % HELPER

4 B ANP
L% A
L% AN
| %AN YT Run (Debug Logs)

L% AN

I % AN Activate Log Window

L% AN

'L Run

L& ANS Send to Script L\}
ANPD B Expand
B Colipase

il

Workspace l:

m £} Project Settings [ANP] ...
[= el LA

Repeat the process until all of the desired Test Cases appear in the "Script Tool Window". The Test Cases can be
selected in any order and may be selected as many times as needed.

115

Printed Documentation

Seript Tool Window - ANP

Profile: |ANP N =

13
Test Case Mumber of Runs

TC_ANPD_ANPC_BV 021
TC_ANPD_ANPC_BV 031
TC_ANPD_ANPC_BV_ 04 1
TC_ANPD_ANPC_BV_05_1
TC_ANPD_ANPC_BV_ 061
TC_ANPD_ANPC_BV 07 1

TC_ANPD_ANPC_BV 081
TC_ANPD_ANPC_BV 09 I

LTIl T T TR Il Script Tool Window - ANP

Executing a Test Script
Once the desired set of Test Cases has been entered into the Test Script it is time to execute it.

To execute a script click the “Run Script” icon or “Run Script from selection” icon.

Script Tool Window - AMP > 1 X
Profile: ANP - =
Test Case Run Script from Start MNumber of Runs
| |Tc_anpD_ANPC BV 021 1|
TC_ANPD_ANPC_BV 03 1 1
TC_ANPD_ANPC_BV_04 1 1

Seript Tool Window - ANP

Profile: ANP - | *% §
g

Test Case - - Mumber of Runs
| Run Script from Selection i

TC_ANPD_ANPC_BV 021 1

TC_ANPD_ANPC BV 03 1 1

116

Scripting

The first two items in the “Script” menu control the execution of the script:

. “Run from Start” — Executes the Test Script starting at the first Test Case listed, proceeding in order through the
tests until the last Test Case is run.

* “Run from Selection” — If a Test Case is currently selected in the "Test Script Window", this item will be enabled.
Selecting "Run from Selection" will start the script at the selected Test Case, proceeding in order through the
tests until the last Test Case is run.

Stopping Test Script execution

When a Test Script is executing, the “Stop executing test script” button will be enabled in the Script Tool Window. When
pressed, the button will

1. Terminate the currently running Test Case;

2. Terminate the execution of the Test Script.

Seript Tool Window - ANP > 0 x
Profile: |ANP = \13

L2 K

Test Case MNumber of Runs

| Stop Executing Test Script i

= TC_ANPD_ANPC_BV 021
TC_ANPD_ANPC_BV 031
TC_ANPD_ANPC_BV_ 04 1
TC_ANPD_ANPC_BV_05_1
TC_ANPD_ANPC_BV_06_1
TC_ANPD_ANPC_BV 07 1
TC_ANPD_ANPC_BV_08_1
TC_ANPD_ANPC_BV 09 1

I R Y

R R L NN Script Tool Window - ANP _

Editing a Test Script

Editing a Test Script
Once the desired list of Test Cases has been added to the Test Script, the script may be edited to remove

Test Cases or change the order in which the Test Cases are executed.

Removing a Test Case from the Test Script

In the Script Tool Window, highlight the Test Case that is to be removed and right click on it. Select the “Delete” item from
the popup menu and the Test Case will be removed from the script.

117

Printed Documentation

118

Scripting

Script Tool Window - ANP > 1 X
Profile: ANP A == = =
Test Case Mumber of Runs

. TC_ANPD_ANPC_BV 02 1
TC_ANPD_ANPC_BV 04 1
TC_ANPD_ANPC_BV_ 031
TC_ANPD_ANPC_BV_05.1
TC_ANPD_ANPC_BV_06_1
TC_ANPD_ANPC_BV_ 081
TC_ANPD_ANPC_BV 07 1

LS I ETe T TR Vol Script Tool Window - ANP

Script Tool Window - ANP > 0 x
Profile: ANP 7= .

e
I

Test Case Mumber of Runs
TC_AMPD_ANPC_BVY_03_1 1
TC_ANPD_AMPC_BY 051 1
TC_ANPD_AMPC_BY_06 I 1
TC_ANPD_AMPC_BY 081 1
TC_ANPD_AMPC_BY 07 I 1

ST RN LT T TR ol Script Tool Window - ANP

119

Printed Documentation

Changing the order of execution

The Test Script is executed starting with the first Test Case in the script and proceeds sequentially until the last test has
been performed. The order of execution may be changed using the following steps:

1. Highlight a Test Case that should execute at a different place in the script in the "Test Script Window";

2. Right click on the test and select “Cut” from the popup menu;

Script Tool Window - ANP
Profile: ANP

Test Case Mumber of Runs

TC_ANPD_ANPC_BV 02 1

TC_ANPD_ANPC_BV_03 1
| [1c_anpD_anpc B
TC_ANPD_ANPC_B
TC_ANPD_ANPC_Bf O!
TC_ANPD_ANPC_B| o]

LT AR Wt R ol Script Tool Window - ANP

3. Highlight the Test Case before position you want to move the “Cut” Test case to:

120

Scripting

Script Tool Window - ANP
Profile: ANP = =

e
I

Test Case
| |tc_anpD_anpc BV 021

TC_ANPD_ANPC BV 031 | &b Cut
TC_ANPD_ANPCBV 041 | (1 Copy
TC_ANPD_ANPC BV 051 | & Paste N

TC_ANPD_ANPC_BV_06_1
TC_ANPD_ANPC_BV 08 I
TC_ANPD_ANPC_BV 07 1

Delete

LT LA I T R T LR Rl Script Tool Window - ANP

4. Right click on this second test and select paste:

121

Printed Documentation

Script Tool Window - ANP > 1 X
Profile: ANP == — v
Test Case Mumber of Runs

TC_ANPD_ANPC_BV 04 I % 1
TC_ANPD_ANPC_BV 031 1
TC_ANPD_ANPC_BV 051 1
TC_ANPD_ANPC_BV 061 1
TC_ANPD_ANPC_BV 08 I 1
TC_ANPD_ANPC_BV 071 1

LT A LT T TR Vol Script Tool Window - ANP

Adding a Test Case to the Test Script

There are two ways to add an additional Test Case to the script.

The first method is to select a Test Case and add it to the script using the "Send to Test Script" popup menu item
described above in Adding Test Cases to the Test Script. The Test Case will be added at the end of the script, at which
time it can moved to its desired execution point using the steps in the previous section (4.2, “Changing the order of
execution”).

The second method, if the Test Case is already in the script, is to follow the instructions in the previous section, but select
“Copy” instead of “Cut”.

122

Logging
Introduction

The Profile Tuning Suite (PTS) can produce three types of output during the execution of a test case:

* Alog of the test case execution;
* Anprotocol trace via the PTS Protocol Viewer.

Each of these contains basically the same information. They vary in the way in which the information is presented and in
the amount of detail that may be present.

PTS contains test suites for both “traditional” Bluetooth BR/EDR and for Bluetooth Low Energy (LE). The two types have
different requirements at the application level, so their test suites are created using different development environments.

PTS BR/EDR test cases are developed using a test scripting language known as TTCN (Testing and Test Control
Notationl.) The TTCN operating environment provides logging support for over two dozen different events that may occur
during the execution of a test. PTS uses this logging support to create text case execution logs.

Bluetooth Low Energy profiles focus less on the messaging between devices and more on the XML based data that is
being exchanged. For this reason, the PTS LE test suites are written in C++. There is much less execution log information
available because there are a smaller number of unique events to be logged.

Low level capture of the communications between PTS and the Implementation Under Test can be achieved using the
PTS Protocol Viewer (PTSPV). A software “tap point” between the PTS software (Bluetooth Host) and the PTS endpoint
device (Bluetooth Controller) captures all of the communications between the devices and forwards the captured data to
the Protocol Viewer application.

Output Window

The Output window in the lower left hand corner of the PTS display contains a summary of test case executions for the
current session of PTS. During the execution of a test case, information and status messages known as “Verdict
Descriptions” are output to the test case execution log. Each “Verdict Description” that is output to the log will also appear
in the Output window along with the final verdict of the test case.

Output x|
Test case : TC_SDAS BY 03 I started A
— Hand free AG wersion 1.5 — Handatory attributes successfully verified
— AZDP Source - MHandatory attributes successfully werified

m

— AVRCP Target — Handatory attributes succes=fully werified
— PAN HAP - Mandatory attributes successfully wverified
— PEAF — PSE - Handatory attributes successfully werified
— Service attribute checlk complete
Final Verdict : Pa=s=

Test case : TC_COD BV_01_1 =started
— Beginning device discowvery (general inguiry) h

123

Printed Documentation

The Output window is the first place to look when there is a problem during the execution of a test. When a problem
occurs, a description of the problem will be output to the execution log along with the Output window.

The descriptive text is identical to the text in the test execution log. Searching for that text in the log output makes it
possible to quickly locate the area where the problem occurred.

The

Output 7| x|

Test casze : TC COD BV 01 I started

— Beginning device diszcowvery (general inquiry)

— Device was not discovered during general inguiry. Check that
lusetooth i= turned on and the device is dis=coverable.
inal Verdict | lnoconclusive

Test ca=ze : TC _SDAS BV 03 1 started
— Hand free AG wersion 1.5 — Mandatory attributes succes=fully verified
— Serial Port Device B Attribute railure — Expected =ervice clas=sies)

SerialPort (0x1101). found Unknown UUID (0=0000) .

The mandatory =ervice class SerialPort (0x1101% was not found.

m

— AZDP Source - Mandatory attributes successfully verified
— AWVRCP Target — Mandatory attributesz succes=sfully verified
— FAN HAP - MHandatory attributes successfully wverified
— FBAFP - PSE — Mandatory attributesz succes=sfully werified
— Service attribute check complete

Final Verdict : Fail A

The contents of the Output window are not saved when PTS is terminated. Information in the window can be highlighted
using the keyboard or mouse in the normal way. Once an area of text has been selected, it may be copied to the Windows
clipboard by right clicking in the Output window. The text may then be pasted into a word processor or text editor.

Copy

Test case : TC_COD_BV_01_I started seled.a
— Beginning device discovery (general ingquiry)

Test Case History Tool Window

The Test Case History window is in the lower right hand corner of PTS display. This window contains a
one line summary of each test case that has been executed in the currently open workspace. The

summary contains

124

Logging

. The name of the test suite.

. The name of the test case.

. The date and time that the test
* case was executed.

. The final verdict of the test case
. execution.

Test Case History

DID | TC_SDILBV 1_1 |
DID | TC_SDI_BV_1_1 |
DID | TC_SDIL BV 1_1 |

Date: Tuesday, August 21, 2012 21:03:45 | Verdict : PASS | [D]
Date: Tuesday, August 21, 2012 21:03:05 | Verdict: FAIL
Date: Tuesday, August 21, 2012 21:02:25 | Verdict: FAIL

IOPT | TC_SDSS BY 02 | | Date: Tuesday, August 21, 2012 21:10:53 | Verdict: PASS | [D]
IOPT | TC_SDSS BV 02 | | Date: Tuesday, August 21, 2012 21:05:03 | Verdict : FAIL
IOPT | TC COD BV 01 | . . August 21, 2012 21:04:12 | Verdict: PASS

Left clicking on an entry in this window will cause the corresponding test case execution log to be displayed in the
logfile.log window.

Right clicking on an entry will display “Show in Explorer”. Selecting “Show in Explorer” will cause a Windows Explorer
window to be opened.

Test Case History

DID | TC_SDI_BY_
DID | TC SDI BY

_I'| Date: Tuesday, August 21, 2012 21:03:4%

Date: Tuesday, August 21, 2012 21:03.0¢ Show in Explorer

IOPT | TC_SDSS BV 02_| | Date: Tuesday, August 21, 2012 21:18:53 | Verdict : PASS | [D]
IOPT | TC_SDSS_BY 02_| | Date: Tuesday, August 21, 2012 21:05:03 | Verdict: FAIL | [D]
IOPT | TC_COD_BV_D1_1 | Date: Tuesday, August 21, 2012 21:04:12 | Verdict : PASS

If the entry ends in a “[D]”, then the corresponding test execution was under the control of the “Run (Debug Logs)” feature
described in Executing a single test case. In this case the folder containing all of the relevant logfiles will be displayed.

If the entry does not end in a “[D]”, then the main folder for the project will be displayed with the test case execution log
selected.

Test Execution Log

Test Execution Log

The large window in the center of the PTS display contains tabs for a number of items. One of those items, the test case
execution log, is found on the tab labeled "Test Case" Log.

125

Printed Documentation

IT ML) ICs X

Workspace Tool Window

The log file tab contains only one test case execution log at a time. The contents of the log are cleared at the start of the
test case and only the events that occur during that run will be present in the display. A previous test case log may be
recalled at any time, see Test Case History Tool Window, for more information.

It should be noted that there may be more than one execution log tab shown in the display. If test cases are executed
from more than one project, then there will be an execution log for each project. The same holds true when reviewing
previous execution logs from more than one project.

1015 - 0038007561 -y W

FILE EDIT VIEW INSERT REPORT HELP
Il ﬂmu X :,'8_!_ DML Cs IXIT

Workspace Tool Window . Start Page ANP Log

Format of the execution log

The first line of the log, labeled “Test Case Started”, contains

. the name of the test suite;

. the version number for the test suite executable;
* the name of the test case being executed;

* the date and time at which the test began.

This information is followed by the list of ICS values used by the test suite and their settings. The IXIT values for the test
suite are listed next.

126

Logging

Start Page | IOPT Script IOPTang |

Test Case Started: IOPT w. 7.0.0.12, TC_COD_BV 01 I started at Friday.
PICS VALUES

TSPC_support_AdvancedAudicDistributionProfile Sink FALSE
TSPC_support_AdvancedAudicDistributionProfile Source TRUE
TSPC_=support_AVRemnoteControlProfile CT TRUE
TSPC_support_AVRemnoteControlProfile TG TRUE
TSPC_support_BasicImagingProfile CLIENT FALSE

PIXIT VALUES

TSP _=ecurity_enabled FALSE

TSP _delete link key FALSE

TSP _bd_addr_iut 00236CEERC2E

TSP _class of device pt=s 200404

TSPE _clas=s of device test_pts initiator TRUE

+3011 m=
Start Test Case: TC_COD_EV 01 I
+3073 ms
Send event : ([7]HCIIHCI_WRITE _SCAN_EWABLE=FDIU: {
=canEnable: '03'0
¥
+3167 m=
Receive ewvent: ([F]HCIYHCI_WRITE_SCAN_EWABLE COMPLETE _EVENT=PDIU: {
status:HCI 0K
¥
+4337 n=
Verdict Description: Beginning device discovery (general inguiry)
+24102 m=
Te=st Case ended: TC_COD_EV 01_I

2010 17:50:20

Test case events are then added to the log as they occur. Each event is displayed in a two column format where the first
column contains a timestamp and the name of the event such as “Start Test Case”, “Verdict Description”, “Send event”,

etc. The timestamp is in milliseconds relative to the start time shown in the first line of the log.

The second column contains information about the event. In the case of a “Verdict Description” this will be the summary

text that is also sent to the Output window.

The information displayed for an event is particular to the event itself. For example, for events such as “Send event” and
“Receive event”, the second column will contain the name of the message that is being sent or received, along with the

parameters for the message.

Since there are over two dozen different events that may occur during the execution of a test case, the execution log may
be difficult to read. See Selecting the events to be logged, for ways to select the events that will be included in the log.

Interesting events

The following events are those that are of general interest to most PTS users.

127

Printed Documentation

“Start Test Case”

This event indicates that the execution of the TTCN test script has started.

+3011 m=
Start Test Case: TC_COD_EBEV 01T

The first line of the test case execution log shows the time that the test case itself started. Initialization of the test
environment, display of the ICS and IXIT values, and a slight delay occur before the TTCN test script actually begins.

“Test Case ended”

“Test Case ended” is the last entry in the execution log for a test case. All of the events that occur between “Start Test
Case” and “Test Case ended” are a part of the execution of the test script.

+24102 m=
Test Case ended: TC_COD_EV 01T

“Send event”/"Receive event”

“Send” and “Receive” events are used to display communication messages between PTS and an IUT. A “Send event”

indicates a protocol message sent from PTS to the IUT, while a “Receive event” shows a message sent from the IUT to
PTS.

+10639 ms

Send ewvent: . [7]OBEX |OBEX_CONNECT _REQ=FDU: {
bdAddyr: ' 7777777777770,
rfcomm_channel 113,
cbex_connection_id: '00000000'0Q,
version_number: OHIT.
flag=:0MIT.
nax_packet_length:COHIT,
headers: [

{
hi:OBEX_TARGET e.
hw:

ﬁarget:'?96135FDFDC511D8096608002DDC9A66'0
1
H
1
}

+11716 m=

Receive event: :[61]OBEXEYCBEX_CONNECT _RSP=FDU: {
obex_connection_id: 'E0CDE10D'O,
bdaddr: 7777777777770,
resp_code:OBEX SUCCESS FINAL e,
version_number: '10'0,
flags:'00'0,
mnax_packet_length: '0FAD'C,
headers: [

i
hi:OBEX_CONHECTION_ID e,
hv: [
connection_id: '00155F68'0
]
T,

i
hi:OBEX_WHO =,
hv: [
who!'796135F0F0CE11DE09660800200C3466 "0
]
H
]

¥

128

Logging

These events contain three items of interest:

d The protocol layer being used for the message. This will be the indicated immediately to the left of the “I” (send)
or “?" (receive) characters. (“OBEX” in the example to the right.)

* The name of the message. (e.g. “OBEX_CONNECT_REQ".)
* The parameters that were sent or received in the message.

The example shows an OBEX connection request being sent from the PTS to a Phone Book Access Profile (PBAP)
server on the IUT. The “Receive event” is the response from the server accepting the connection request.

“Verdict Description”

As mentioned above (Output Window), “Verdict Description” events are used to indicate status, test case state, or other
important information. The text for a “Verdict Description” event is always displayed in the Output Window.

+4337 ns
Verdict Description: Beginning device discovervy (general ingquiry)

The presence of “Verdict Description” events in the test case execution log cannot be disabled.

“Preliminary Verdict”

At various times during the execution of a test case a “Preliminary Verdict” may be issued. This allows the execution of
the test to be broken into segments, where each segment stands on its own. The “Preliminary verdict” may be used in
determining the final result of the test case.

+3183 m=
Prelininary verdict: o [3] (PASS)

Searching a test execution log for “Preliminary Verdict” events is another way (in addition to searching for “Verdict
Descriptions”) to identify where a problem may have occurred during a test.

For more information on “Preliminary Verdict”, see section 8 (“Verdict Determination”).

“Final Verdict”

The “Final Verdict” is the overall result of the test case execution.

129

Printed Documentation

+24024 m=
Final werdict: B: [11] PASS

A final verdict will always be displayed in the Output window, even if the “Final Verdict” event is not selected for display in
the execution log.

“Encrypted Verdict”

A summation of the test case execution is encrypted for reporting purposes and output to the test case execution log as
an “Encrypted Verdict”. The information cannot be changed, so it is used as the primary evidence that a test case
execution concluded successfully when reporting test results for qualification purposes.

+24071 ms

Encrypted Verdict Al

HZUY4H=QEHDg 3HmQwN T I=0G0=H=0E Vi T 20DASH 2H= N OS ZDY 4NV OV o 2H=T= H 2 VRN TUy HTFhNGU 4 g1 T0NA==#p9c==F1nS0
[TI-fppwPoXPASgndil Tg2kkeV1 tpow-gEi+ead SCHu+n

The presence of “Encrypted Verdict” events in the test case execution log cannot be disabled.

Selecting the events to be logged

The types of events to be included in the test execution log are selected via the “Logging” page of the PTS application
settings. The application settings are accessed using the “Application Settings” item on the “File” menu.

G PT5 - DﬂIBDCﬂ?SAEI myPhunE. A ,.

FLE] VIEW INSERT REPORT HELP
‘W New Workspace... cri+N E
& Open Workspace.., Ctrl + O i_
Close
Close Workspace
I Save Workspace Ctrl + 5
aty
Recent Workspaces k :
L} Application Settings... L} I
E3 Exit Alt = F4

130

Logging

As mentioned in Executing a single test case, changes to the log level may never be needed. The “Run (Debug Logs)”
features is a much better way to produce highly detailed logs for problem analysis or archival purposes.

The “Logging” page allows for the selection of one of two preset collections of events, or for a completely custom selection
of the events of interest.

* The “Standard” preset adds “Send event” and “Receive event” to the “Minimal” setting, along with other events
(such as “Preliminary verdict”) that can be used to determine the final verdict of the test case.

. “Full” causes highly detailed information about the inner workings of a test case to be included in the execution
log. This is a lot of information and may be overwhelming to most users.

General |

Lo While executing test cases, you can control the amount of
Stag:-gtlilcgs informaticn that is logged. Select logging level below.

£ PTS Settings

Logging Level

i@ Standard
@ Full b

Members of the PTS Technical Support or Development Teams may ask for “Full” logging when a problem occurs with a
test case. The highly detailed execution log, combined with the low level communications trace produced by the PTS
Protocol Viewer can be invaluable in attempting to determine why a test case is behaving in a certain way.

As mentioned in Introduction, Bluetooth Low Energy test suites have a much smaller number of events that can be logged
when compared to BR/EDR test suites. In fact, for the LE test suites, there is no difference between “Standard” and “Full”.

131

Printed Documentation

“Run-time” vs. deferred logging

Normally events are added to the test case execution log as they occur. Sometimes this “live” update can have a serious
impact on the performance of test execution. In some cases this may result in communication timing changes leading to
unexpected results.

If this happens, then the live or “run-time” logging should be disabled. When “run-time” logging is disabled, the information
to be displayed in the log is cached until the test case terminates. At that time, the information will be output to the display.

Enabling or disabling live update is selected on the “General” page of “Project Settings.” Right click on a project name at
the top level of the “Test Case View” followed by the selection of “Settings...” from the popup menu.

.5 oancorsei v S

FILE VIEW INSERT REPORT HELP
“El 80T, X#£L oD
| Workspace Tool Window - 1 X :
« @ AZDP
I % sRe
L% s '& Run
O Run (Debug Logs)
I @ AZMP
I @ AMP Activate Log Window
I8 ANS
Send to Script
E Expand
B Collpase
L} Project Settings [A2DF] .. l}l

The checkbox labeled “Enable run-time logging” enables or disables the live update feature.

132

Logging

£) Project Settings [A2DP] s =l

General

["] Enable run-time logging

User Defined Implicit Send DLL

| [T Use

OK | l Cancel

PTS Protocol Viewer

PTS Protocol Viewer

The PTS Protocol Viewer (PTSPV) is a companion application that is run concurrently with PTS. Its purpose is to capture
the communications between PTS and an Implementation Under Test at the Bluetooth protocol stack level. Each
message that passes between the two devices is then decoded in detail at each layer of the Bluetooth stack.

The Protocol Viewer "stack"

The packets sent from PTS to the Protocol Viewer are encapsulated in a small extension to the normal Bluetooth stack.
This extension allows for two types of information to be displayed by the Protocol Viewer.

The first layer in the extended stack is the “Virtual Sniffer” layer. The purpose of this layer is to identify whether the packet
contains captured communications data or PTS specific information. Packets that are tagged as PTS information are
forwarded to the “PTS” layer for decoding

133

Printed Documentation

0 Frame ity - 15 P Vi

File Edit View Format Live Filter Bookmarks Options Window Help

@| ﬁ| O E # ‘ ﬁ | v w| gg E | ﬂﬂ ‘ G m u| 5 Filter: Include frames where the protocol "Virtual Sniffer” exists
Summary: | Virtual Sniffer ~ | Virtual Sniffer with Auto-traverse
EODRBCOOD|

| Unfiltered | Virtual Sniffer [PTS | HO [L2caP [SDP | Erors |

B.. Framef RS Times... Type Test Caze Werdict Fram... Delta Timestamp

@ 79 1] ACL Data 22 00:00:00.0... 11/5/2010 &:50:53 80200, .
@ a0 1] ACL Data aF 00:00:00.2.. 11/5/2010 &:50:54.07600...
@ o 1] HCI Event 7 00:00:000.. 11/5/2010 &50:54.08100...
@ gz 1] ACL Data 220 00:00:00.0... 11/5/2010 &:50:54.10100...
@ a3 1] PTS Message 2 00:00:00.2.. 11/5/2010 &:50:54. 44200, .
@ o4 1] ACL Data a1 00:00:002.. 11/5/2010 &:50:54 67700...
@ 85 1] HCI Event 7 00:00:00.0... 11/5/2010 &:50:54 68200, .
@ 86 1] ACL Data 22 00:00:00.0... 11/5/2010 &:50:54.70300...
@ 1] ACL Data aF 00:00:003.. 11/5/2010 &:50:55.01200...
@ a8 1] HCI Event 7 00:00:00.0... 11/5/2010 &:50:55.01700...
@ &9 1] ACL Data 150 00:00:00.0... 11/5/2010 &:50:55.04000...
@ a0 1] PTS Message 55 00:00:003.. 11/5/2010 &50:55.36000...
e 9 1] PTS Message 32 00:00:001.. 11/5/2010 &:50:55. 51500, .
e 92 1] Test Caze Ended TC_SDAS_BY 03 | PASS 15 00:00:02.2.. 11/5/2010 &:50:57 80000, .

Currently packets in the PTS layer consist of “Test Case Started”, “Test Case Ended”, and all “Verdict Description” events.
The presence of these packets provides a convenient way to correlate a Protocol Viewer “trace” with the information
displayed in the test case execution log.

0 Frasve Display - PTS PG

Fiz Fdi View Formet Lve H’l QOpbons ‘ndaow Halp
= :_*3 2 m ‘_J Y ﬁ@ﬁi ? ‘El 3 E m :ju E Filbar, Tk trsress whvave 1 poatocol TS skt
i=[mml [D[ﬁ.ﬂ la ﬂ ﬂ m Sumema 0TS irtyal ErafTer with Balo-Inseis

Unkiensd | Vatusl Ssiler | FI5 HEI [020AP | 508 | Enoe

B. Faretl FT3Te 1:m£'i" R esiage Weadd Fuges R [lelly Tomrlam

@ 15 1] Tl Cane Shariad TE_SDAS_ BV I5 01 15 11,521 0 S D00
a g2] FTE Meiems Harsd b A5 ey 19 - Mdainss shibabs) qmcesiily wyls] FRESE BB OEOOORTY.. TP 0 R] SR
2 d FTE HMnzags AZIP Somrw - ik warind Fegs 5 ORDONIE DU 11,5000 O SDNS 53500
8 % i PTE Mg SVFCP Taged - Madatog: stiibatss dcestily weibad FeaG W OEOOOEE. 1T 0 ST
a ¢ i FTE Marzage Pl R - W srcladorp atsbestes succarshuly vasimd (= - OO S - 11RO SS 44 200
a @ q FTE Mricas PRAF - PSE My stons st sty wu i) FGE OEOODLE. 1TA2I0 03 ST 0,
a @ q PTE Mmzage Service bt chadk conplrl Fess 2 ORDOGET. 110N D8 S S50
B 12] Toul CaseEvaded - TC_SHAS_BV_TEL| FRSE 15 OEOOIZ 2. 1IN 03 T B0

Packets that are tagged as captured communications data are forwarded into the HCI protocol layer, and from there fully
decoded based on the packet contents. The “tap point” for capturing the messages between the devices is the Host
Controller Interface (HCI) between the PTS Application (Host) and the PTS Endpoint Device (Controller).

134

Logging

File Edit View Format Live Filter Bookmarks Options Window Help

@ | g| O = [i -_‘E“é ‘ p | ? W 3;? % | ﬂﬂ ‘ G El [| 3 Filter: Include frames where the protocol HCI exists
E D D&a @ e o ®| Summary: |HCI Virtual Sniffer with Auto-traverse

| Unfiltered | Virtual Sniffer | PTS | HOl [1L.2CAP [SDP | Erors |

B.. Framef Tupe Opcode @:ode Command Ewent Statug Handle Credits FBF Length Fram..
@ 79 ACL Data 0x002e Available Control... First 18 22
@ a0 ACL Data 0:002e Available Host's .. First 23 2F
e o Event Number Of Completed Packets 0:002e Available Host's 5 7
@ a2 ACL Data 0x002e Available Control... First 216 220
@ o4 ACL Data 0:002e Available Host's .. First 17 21
@ 8 Event Number Of Completed Packets 0:002e Available Host's 5 7
@ &6 ACL Data 0x002e Available Control... First 18 22
@ ACL Data 0:002e Available Host's .. First 23 2F
@ a8 Event Number Of Completed Packets 0:002e Available Host's 5 7

@ o9 ACL Data 0x002e Available Control... First 146 180
@ 93 Command 0:0c03 Feset 1]]

@ 94 Ewent 0¢0c03 Resst Command Complete Success 4 E

@ 955 Command 041005 Read Buffer_Size 1} 3

@ 9% Ewent 0:1005 Read Buffer_Size Command Complete Success Imitial Host credit... 1 13

The data captured at the HCI “tap point” consists of

d HCI Commands from the PTS to the Endpoint Device;

d HCI Events generated in response to the various commands and asynchronous notifications that may occur
during a connection;

* ACL Data containing peer to peer messages based at the L2CAP layer of the Bluetooth stack.

Starting the PTS Protocol Viewer
PTS Protocol Viewer starts automatically with Bluetooth PTS.
Saving and viewing protocol traces

The data captured by the Protocol Viewer may be saved for future reference.

The saved “capture files” may be viewed using the Protocol Viewer in file view mode. A capture file, which has a .CFA
extension, may be opened by double clicking on it in Windows Explorer.

Alternatively, the “Capture File Viewer” shortcut found in the “Bluetooth PTS” folder in the Windows start menu may be
used to start the Profile Viewer in file view mode. Once started, the “Open Capture File...” item on the “File” menu may be
used to open a capture file.

Verdict Determination

Verdict Determination

Test cases have two mechanisms that are used to determine the final result of a test case execution. One method is to
simply set the final verdict when a final result can be determined. When the verdict is set in this way, the test case
terminates immediately.

It may be however that terminating a test case in the middle of its execution is not desired behavior. For these situations,
the “Preliminary verdict” mechanism is used. For this mechanism, “Preliminary verdict” events (Interesting events,
“Preliminary Verdict”) are issued at various points during the test:

135

Printed Documentation

* Any “Preliminary Verdict” of “FAIL” will result in a final verdict of “FAIL”".

* Any “Preliminary Verdict” of “lNCONCIusive” will result in a final verdict of “INCONCIlusive”, unless a
“Preliminary verdict” of “FAIL” was also issued during the test run.

* Afinal verdict of “PASS” will only occur when all “Preliminary verdicts” are “PASS”.

As an example, a test case may be broken into three segments: startup, the real work of the test, and termination. If the
startup segment executes successfully, it may be necessary to execute the termination segment regardless of whether or
not the real work of the test succeeds. It might be that the results of the segments are:

Segment Preliminary verdict
Startup (PASS)
Real work (FAIL)

Termination (PASS)

In this case, it may be necessary to execute the termination segment in order to cleanly disconnect from the IUT. The
termination segment succeeded, but the overall result of the test was a verdict of “FAIL", because the middle segment set
a “Preliminary verdict” of “FAIL".

A final verdict of “NONE” is issued to a test case when its execution is canceled by users or terminated before a
“Preliminary Verdict” is given.

136

Verdict Determination

Test cases have two mechanisms that are used to determine the final result of a test case execution. One method is to
simply set the final verdict when a final result can be determined. When the verdict is set in this way, the test case
terminates immediately.

It may be however that terminating a test case in the middle of its execution is not desired behavior. For these situations,
the “Preliminary verdict” mechanism is used. For this mechanism, “Preliminary verdict” events (Interesting events,
“Preliminary Verdict”) are issued at various points during the test:

* Any “Preliminary Verdict” of “FAIL” will result in a final verdict of “FAIL”".

* Any “Preliminary Verdict” of “lNCONCIusive” will result in a final verdict of “INCONCIlusive”, unless a
“Preliminary verdict” of “FAIL” was also issued during the test run.

* Afinal verdict of “PASS” will only occur when all “Preliminary verdicts” are “PASS”.

As an example, a test case may be broken into three segments: startup, the real work of the test, and termination. If the
startup segment executes successfully, it may be necessary to execute the termination segment regardless of whether or
not the real work of the test succeeds. It might be that the results of the segments are:

Segment Preliminary verdict
Startup (PASS)
Real work (FAIL)

Termination (PASS)

In this case, it may be necessary to execute the termination segment in order to cleanly disconnect from the IUT. The
termination segment succeeded, but the overall result of the test was a verdict of “FAIL", because the middle segment set
a “Preliminary verdict” of “FAIL".

A final verdict of “NONE” is issued to a test case when its execution is canceled by users or terminated before a
“Preliminary Verdict” is given.

137

Index

139

A

ADOIt, REIY ..o 65, 86

Y o To 4112 o PSSR 44
test case eXECULIONccvvvveeeeeeeeee e 44

About... 10, 13, 44, 46, 58, 65, 70, 77, 79, 86, 101, 108,
109, 147

AbStract Test SUIte........coveierini i 35, 62
ACCOMPANYING «eeevveeiieiieiieee e seeesreeeseeesreesrereeeenneeans 62

ACCOMPANYING....ciiitiiiiierierieeie e sbe e e seeens 62
Abstract Test SUItecccvvrererieie e 62

ACL Data...............

ACL Data contaiNiNgcccveevverrereeeieeeeneeneeeeeenns

ACHVALING -ttt e

custom Implicit Send DLL

ACHVE PrOJECT...eiiiie it
Add Productccooeeeeiiiine e

2o [0 [T TR
PrOJECT ..ttt e e
TESTCASE ..veiieeieceeee e
Test Cases
Test Script

AdARES ... 86

AdAreSSoooveeceee e 44,58,77,79, 86
IMplicitSeNdStyle........ccovviiiieee e 58

Adds COMMUNICALIONcceeviiiieiiie e 46

Air Sniffer .
P o U o LSS 17

Allows 7, 35, 44, 53, 58, 65, 70, 73, 74, 86, 121, 131,
149, 155
Client AppliCAtioN.........ccviiiiirieeie e 86

Already DEooieeeie et
Already be selected .

AlSO DE USEA AL ...

API Error Codes.
Application Programming Interface................ 53, 73,131
Application Settingsccocererieeiereniennens 46, 152, 157

Applications..17, 46, 53, 73, 86, 99, 107, 109, 131, 143,
152, 155
existing.

AUAIO GAIEWAY ..ottt 30
Automatic disSmissal..........cceveviiriiennie e

Implicit Send requests...

AULOMALING ..o
PTS e

Automating Test EXeCULiONccccvevveneieieeeniieneeenenn 50

Automation

Automation test platforms...........ccccvenene 55, 57, 65, 70
AULOTEST ... 74
AVRCP ..ottt 10
B

BaSiC RALE......coveeiie i 17
BD_ADDR.....octiiiieieieeeteie et 1,9,44
[0 Lo [od = 1
BDADDRcoiiiiieeieie et 75, 98
TUT et st 75
FECRIVES ..ottt ettt et nees 98
BEIOIE... et 17
Beginning62
SIMMITEXL. . 62

Beta teSt SUILES ...cvveivveciecie e 13
BITSTRING

Bluetooth 1, 9, 10, 17, 30, 35, 44, 53, 56, 62, 71, 73, 75,
98, 99, 101, 107, 143, 152, 155, 157
CONLFONING .t 73
describe...
details ...

layer...... ...155

FECYCIE . 107
Bluetooth applicationcccccvevverveniiniieeeeeeeen 17
BlUEtOOth BR.... .o

Bluetooth Controller

Bluetooth Device... 1, 9, 10, 35, 44, 73, 75, 98, 101, 107
[0]] - 11 L3RS 35

Bluetooth Device Address..
containscceceeeveenee
determine

Bluetooth Low Energyc.cccoeeevvreneennn. 17,143, 152
Bluetooth PTS.......ccccveniinne 1,62,71, 73,99, 101, 157
Bluetooth SIGcccceeenene 1,62,71, 73,99, 101, 107
Bluetooth Special Interest Group........ccoccvevvvervrnceennnens 53
BOO ...ttt 57,58, 79, 86
BOOL bValUe.......cocviiiiiiiieeieeeeeec e 84
BOOL VAIUE ..ottt 79
Bool WINAPI InitimplicitSend..........cccccevvvcveneencenennenn 58
BOOLEAN.......oiiiiiie ittt 35,84
BR ot 17,152

COMPATEA ..ottt 152
BUIlD ..o 71,73,75,77,98, 109

Client ApplICALIONc.ecveiiiiieeiesiee e 75

Button.1, 13, 17, 30, 35, 44, 45, 55, 65, 68, 70, 86, 109,
121,129, 135
PTS toolbarcccvveiieiieee e 45

140

Index

BUtton Will OPEN.......covviiiireeeee e
Buttons Displayed.

BV s 9

BVAIUE ...t 84

C

CIC et e 65

CalliNg....eveeeieeeeeeee e 74,77,79, 101
CoCreateINStanCeccccevvvvieiiiiee e 74
GetProjectName............ LT7

GetPTSBluetoothAddress
GetTestCaseDescription..

GetTestCaseName79
IMPICIt SENdeeeiie it 101
UPdAtEPICS ..o 101
WINAOWS APl ..ottt 74
Calling UpdatelCS
Cancelooovecieiieiieeeee
Cancel button.
include
[0 (=EST= T SRS
Capture File VIEWETccovievieeieeieesie e 157

Case.. 17, 27, 30, 40, 41, 44, 46, 50, 58, 65, 75, 77, 79,
84, 99, 101, 109, 126, 129, 143, 145, 147, 153, 158,
161

PTS Development Team.......cccccovevvereeniieenieeniieeeens 41
Case shown
Cause. 17, 30, 44, 46, 58, 62, 68, 70, 74, 109, 145, 152
Client AppliCatioN.........oovverieeieesie e 74
Windows Explorer window............cccoceverienienenans 145
CNLET ..ttt e 146
P TS e 146
CF A s 157
CRAIN . 56
MMIPTC. ..ttt 56

Change.. 1, 7,9, 17, 30, 35, 41, 46, 58, 67, 68, 86, 108,
109, 126, 137, 139, 141, 149, 152, 153

Class Of DEVICEcevvieiieriiesiie ettt see e 1
Clear Search RESUISccveeveeieeciiecie e 1
(0111 {3 Vo SRR 30, 35, 79, 127

PIXIT oot .35
Removed Checked Items button. ..127
TESE CASE ..eiitieeiiit ettt eee et 79
Client Application applicationccccocveeiieienenieennn. 86
(oo S 86

(1017 o 114 oo PSS
COM Server

COM Server Mode........ccoooveveneninieieneenenns 74,99, 101
COMDBINING ...ttt 17

FIEEIS e 17

Consult implicit_send_log...

Containingcccevererieeienienene
Bluetooth DeVICE........cccveriiveieieeeeee e
Bluetooth Device Address. .75
dropdown list of 109
PICS....ccccue.. el
Project .. 77
PTS.......... 30
TESE CASE ...oiviee ittt 79
Contents..41, 65, 77, 79, 84, 86, 99, 108, 143, 146, 155
OULPUL WINAOW ..o 143
report.............. ...108
SIMMITEXL. ..t 65
(0]) (o] o 1o -GPSR 13
CONTOMING ...eeeeie e e 73
2] 0= (oo] 1 [T 73
Copied......ccooeevininiree e 13, 65, 86, 109, 141, 143
WINAOWS ... 109, 143

141

Printed Documentation

Copy Highlighted........c.cooveiiiiiere e 109
Corner... 1, 86, 143, 145
P TS e 143, 145

PTS User Interface.........ccccovvverieeneneeesie e 86
COMTEIALE......eecteeet e e 155
Protocol VIEWETccoveveiirineiice e 155
CorresSPONdiNg........coeeververeneiieese e 79, 127
ChECKDOXES.......ecvieeiiveeec e 127
TESt PUIPOSE ...coeeiiiiiee ittt 79
Coupled 157
PTS Protocol Viewer applicationccccceevuene 157
CPP -ttt e
CreateWorkspace . .
AEMONSIIALe. ..ot
Creatingcccoocveveereeneennnnn
COM...ooiiiien
initial Test Script..
NEW WOFKSPACE.eeevieetieeiieeiieentiestieeeieeniee e seeseeens 1
PTS Report....... 109
Test Script . .99
HIME L 109
USEO .ot 86, 99, 109
WOTKSPACE......cuerieeiieiiiesiieee e 75, 99, 101
Current LiNK KeYcocvveiieiiesie et 44, 45
DeletiNg....ccuveiiie et 45
Currently associatedccocererererieereresiesee e 109
Currently, StOPTESICASEcovvereieeiieriiesiie e 101
Custom......50, 57, 58, 62, 67, 68, 70, 71, 72, 73, 86, 99,
152
CUStOM DLLS ..o 58, 67,70, 72

Custom Implicit Send DLL50, 57, 62, 67, 68, 70, 71, 72,
86

ACHVALING .ot 68
CUL e e 139, 141
D
Data are........cccooevieeiiieiece e
Data iS .eeuveeveeieeiee ettt
Data typeoevvvvieiiieeiiieceeeeeseee e

item that

Debug LOGS ...ccievveeiveie e 41, 46, 145, 152
Default SEttNGS......ccvervirieiereeierieee e e 17
DEIELE ..ot 8,130
Delete LiNK KYooviiiiieieeeieee e 45
Delete Productcceeueiereeieieierees e 121
Deleting 8,9, 45, 58, 109, 121, 124, 127, 130, 137

CUIrent LINK K@Yccviiieeiiiiieieee s 45

test case results .. 130

WOPKSPACE ...ttt 8
Deleting Device DeSCrptions..........ccceoervereeieerecnienns 121
Deletion ... 126, 127, 129, 130
DemONStrate.........cccovevveereeieeiie e 9, 98, 99, 107

CreateWOorkSpace.couevveeieeniie e e e see s 99

142

Describe. 1, 9, 30, 35, 40, 44, 53, 57, 58, 62, 65, 73, 75,
86, 99, 107, 109, 131, 141, 145

BIUETOOLN ... 107
Describes this feature...........ccooeeveinenieniniccienene 53,73
Description 10, 30, 35, 79, 86, 108, 109, 121, 143

SeIECHION. ...t 10
Description endingcccceevenireeiinneene e 30
DESIGN ...ttt e 1,53,72
Detail that is present........ccccocveveieeneniieceeeeeeen 46

Details 46, 50, 56, 58, 62, 108, 109, 121, 126, 143, 152,
155
2] 0= (oo] 1 [T 56

Details regarding.........coceeerreenenieeienee e e 58

Determine .. 10, 30, 35, 46, 50, 58, 62, 86, 98, 101, 109,
149, 152, 158, 161
Bluetooth Device Address

Develop.....ccocvveeve i
(UL To OSSP USUP TR

Development checkpoints ..
Development TEAMScccevevierreenienerieeie s

Device 1, 7,9, 17, 27, 30, 35, 44, 45, 53, 55, 65, 70, 75,
101, 107, 108, 109, 121, 143, 155

ClASS. ..ttt 1
Of tESHING .ee e 107
Device descCriptionccccoeeeerieeiienienienns 108, 109, 121
Device diSplay........ccccveveiiiiiree e 65
Device is....... .1,70, 108, 155
BD_ADDR ..ottt 1
IXIT IEEIM o 1
DeViCe iS tESEAcovervieiieiie et 108
DeViCe NAMEooveieriiceeree e 1
Dialog Will @PPEATc.cccerueiieiineeie e

Dialog will appear allowing.

Disablecccceue. 30, 46, 58, 70, 71, 79, 101, 149, 153
IMPIICIt SENG.......ooriiiiece e

Disable this functionality ..

DISCONNECLS ...
IMPIICIt SeNM......coiiiiiiiiie e

Displayed in 17, 27, 40, 86, 145, 147, 149, 153, 155
J0G et 153

DiISPlayiNg ...cceeeieeesieeeeee e 40, 149
PICS .
PUMPOSE .ottt sttt e 40

DIStiNQUISH ..o 62, 109
U1 To SO S TP 109

Index

()] 1LY = SR OR 58
USE 11ttt ietiee sttt e e tae e st e et ae e s stae s et ae e s bt e et ae e naae e raaas 58
Documentationcccceeveeiveeieeneesnens 35, 86, 99, 109
Dropdown liStceeeiieriiriereeieeee e 121
USING ittt 121
Dropdown it Ofcceiiiirinieee e 109
CONAINS ..ot 109
DUN ..ottt eree s 13
DUMNG e 53, 58, 73, 86, 98, 131

execution of

P S s
TESTCASE ..oeieiiiecee e e 86
DWORD ...coiiiiiii et 77, 86, 98
DWORD reSPONSESIZEc.vvevveiieieeieeneeeieeniee e 86
E
E_NOINTERFACE.......ccoi it 101
Each test 9, 10, 27, 35, 40, 58, 62, 72, 99, 108, 109,
126, 129, 145
Each test case........... 27,40, 58, 99, 109, 126, 129, 145

EDR ...ooiiii 17,143, 152
Enable . 30, 44, 46, 50, 53, 62, 67, 71, 73, 79, 107, 135,

USEA .o 71
Encrypted Verdict..........ccoeveniniiiinenieneeene 108, 149
ENdpointoooeviveiierccneee e 44,98, 101, 155
Endpoint DEVICEcccueueierrieniieieicrieeiieene 98, 101, 155

P TS e 155
Endpoint informationccceviiieiieieninece e 44
Enhanced Data Rateccccoeeeiiiiinciiiicce 17
Enter... 1, 17, 35, 44, 53, 58, 65, 68, 101, 109, 121, 135

PIN COE ..ot 58

Event that is logged when a Test Caseccoceeueene 86

Events. 86, 143, 146, 147, 149, 152, 153, 155, 158, 161
information displayedccoccviiiniiininiee. 147
INEEIrESHNG ..ot 149
SElECHING .o

Every MMI ...

Executable Test SUItecccccvevvirevniennns 9,58, 62,101
HAENIfiES .oovvieieiceee e 62
Executable Test Suite DLLS........ccceeevvievieireeeiieieenns 101
Executables 9, 58, 62, 67, 99, 101, 108, 147
Executing41, 62, 86, 135
SiNgle teSt CASEooveieeieiee e 41
test case......... 62, 86
JLICCES] SRS T 1 o SRR 135

Execution30, 41, 46, 53, 58, 65, 70, 73, 74, 79, 86, 101,
108, 109, 124, 129, 131, 135, 139, 141, 143, 145,
146, 147, 149, 152, 153, 158, 161

{010 1= SO USSR 139
Execution log 46, 79, 86, 143, 146, 147, 149, 152
FOrMat ...coooiieeiiie e 147

AUMNG. e 53,73,131

Existing... .75, 86, 99, 131
APPICALIONS ..ot 86
Client Applications ..86
PTS WOrKSPACEccvveiiiireieeieeeeee e 131
WOIKSPACE ..o 75, 99

Expects one ...
Expects one of
L o] 0] =Y TSP

setting ppbResponselsPresent .
FALSE if ..ot
File NAME ..o

Filters ..o,
COMDBINING ..t

Final verdict..... 46, 79, 86, 143, 145, 149, 152, 158, 161
Output window along With..........cccevevviieeieennn. 143

Finish..

Format
EXECULION 10Q ... et 147

From....1,5, 8,9, 13, 17, 30, 35, 41, 46, 50, 56, 57, 58,
65, 68, 70, 72, 73,74, 75, 77, 79, 86, 98, 99, 101,
109, 121, 124, 127, 131, 133, 135, 137, 139, 146,
149, 153, 155, 158, 161
PSZWorkspaceName.........ccceveerieeieerieenee e 75

From calling UpdatelCS .. .101

Fromthe...1, 5, 8, 13, 17, 30, 35, 41, 50, 56, 57, 65, 68,
70,72,75,79, 86,99, 109, 121, 124, 127, 131, 133,
137, 139, 149, 153, 155, 158, 161

143

Printed Documentation

From the Implementation Under Testcccccceevvveneen. 86
From the pszZWorkspaceName.
From the Server......... e

Full e 10, 17, 41, 46, 75, 99, 101, 152
Fully Automated Operation............cccceeevreeeene 53, 73,131

G
GATT....

General.........ccoooeeiennen.
ValUue rePreSENTS....c.uoiviiicieieeie e 101

General Application Settings....

General information functionscccocvoeeieniieiennn. 98
General INErest........ccoovevieiieerece e 149
General USAgecoeeieiiiiieiieieeie et 75
Generatecccocveeeieciiiieee 65, 108, 109, 124, 155
Generate REPOItccovviieiiiecieeie e 109
Generate report with text [0ggingcccccceevveeieenienne 109
Generating Detailed LOg..........cccooereeierrienenieee s 109
GetPrOCAUAIESS......c.eeveriiieiee e 72
GetProjeCtCOUNtccveitiieeieeieeie st et 77
GetProjectNamecocvvveeviesieee s 77,101
calling

GetTesStCaseCOUNTccveeiriieeiee e 79
GetTestCaseDescCription...........ccooeeveeevcresnennens 79, 101
[ox= 1|13V USRS 79
GetTestCaseNamecoccevveveeiiieeeniiie e 79,101
calling
VAIUE .

GO0 I0BA....ccvieteeeeiieie ettt 1,67,121
Good idea to execute...

H
HaNAlNG ...oveeie e 58
IMPICIt SENA......oiiieiicee e 58
HaNASTrEe ..o 30
Handsfree Profile ... 30
HandsFree Profile Test Specification............cccocceu... 109
HCI o 155
HCI COMMANGS......c.oeiiieieereeiieieiee e 155
HCIEVENLES .o 155
HCI?HCI_READ_LOCAL_VERSION_INFORMATION_
COMPLETE_EVENT ...ooiiiiiiieeiieeie e 86
HCI_OK .ttt 86
HCIREVISION ...t 86
HCIVEISION ..ot 86
HEIP oot 46, 62, 109

144

High SPeedcc.oiiiiiiiiiiee e
Highlightcooviiiiiiiree,

Test Case
HISTOIY et
Host Controller Interfaceccccvevvevieenieniinccencnens 155
HRESULT ..ot 75, 77,79, 84, 86, 98

FEEUMN o 75
HRESULT CreateWOorkspace..........coccoerereeieesiesneneens 75
HRESULT GetProjectCount........cccevvervenrieeneeneeenenn 77
HRESULT GetProjectName........ccccooevererieeieesenieneens 77
HRESULT GetProjectVersionccccceeveeveneenieennnenn
HRESULT GetPTSBIluetoothAddress.
HRESULT GetPTSVErsioncccccovererineeieenenneenns
HRESULT GetTestCaseCount..........cccvevervirneeaieennnens
HRESULT GetTestCaseDescription..........cccccevveveennen. 79
HRESULT GetTestCaseName.........c.ccecveevienvenieennnen. 79
HRESULT ISACtIVETESICASEcccvereerrerrireeie e 79
HRESULT LOJ ...ttt
HRESULT OnlmplicitSend .
HRESULT ONSeNd.......coiiiiiiiiiecineieciee e
HRESULT OpenWorkspace..........cccvererereeeerienneneens 75
HRESULT RegisterimplicitSendCallback.................... 86
HRESULT RegisterimplicitSendCallbackEx................
HRESULT RUNTeStCaSsEe..........ccoveeveiiiiieeeecreeeeeeen
HRESULT SetControlClientLoggercallback .
HRESULT StopTestCase.........ccuvevrveeiierenireeesiieenins
HRESULT UnregisterimplicitSendCallback.................
HRESULT UnregisterimplicitSendCallbackEx 86
HRESULT UpdatelCS.......coooiiiiiiereerie e 84
HRESULT UpdatelXITParam.........cccocevvvrreverernneeannens 84
HRESULT UpdatePicCscccoririeirreerieniereeee e

HRESULT UpdatePixitParam ...

Hybrid environments..........cccooeeeiinnene s 72
I
IABSTRING ...t 35, 84

ICS1, 7,9, 30, 35, 75, 84, 101, 108, 109, 131, 132, 147,
149

ICS from TPG ..o
ICS Proforma........cccccveeiiciiiiiece e
ICS used by

Identifies the eXecuting.........cccvecververieniieeceeecen 62
IEEE 802,11ttt 17

Index

If 1,7,10, 13,17, 44, 46, 53, 57, 58, 62, 65, 70, 72,
74,75,77, 79, 84, 86, 98, 99, 101, 107, 109, 121,
124, 135, 141, 145, 146, 149, 153, 158, 161
Test Case ..

IGNOTE .o

Implement
used

Implementation Under Test. 1, 9, 30, 41, 53, 56, 75, 86,
143, 155

IMPIEMENLEA ... 56

Implicit50, 56, 57, 58, 62, 65, 67, 68, 70, 71, 72, 86,
101

Implicit Send...50, 56, 57, 58, 62, 65, 67, 68, 70, 71, 72,
86, 101

PTS.....

IMpliCit SeNd APL.......ccoiiiiiiiiieee e 58

Implicit Send DLL.50, 56, 57, 58, 62, 65, 67, 68, 70, 71,
72, 86

Implicit Send DLL Creates.........ccueeereienenieeiieseerieeens 62
(oo 62
Implicit Send DLL diSplayccoceeeereeneninieeie e 62
L= 1o [PO U PSP TOPPPPPPN 62
Implicit Send functions..........cccoevveeveiiencieeseen 58
Implicit Send handling..........ccccoeveriineienieeee e 72
Implicit Send requestscccccvvvvevveneenieenenn 58, 62, 70
Automatic dismissalccoceieiiiiiinineciere e, 70
IMPlICIt_SEN ...t 71
IMPICit_SENd_lOQocvviireieeeeeee e 62
IMPliCItSeNd......c.coeeieiiieee e

ImplicitSendPinCode ..

ImplicitSendStyle
AAUAIESS .ot

ImplicitStartTestCase..

Include. 10, 17, 46, 50, 62, 71, 75, 86, 98, 99, 107, 108,
109, 129, 131, 147, 152

Cancel BUtton ... 86
Included Making........cccooevireiieninie e 71
Including communicatingcoccveevereeniieeneeneesee e 98
Inclusion

test suites
INCONCIUSIVE......oveevvieiieiie e 27,109, 158, 161

Indicates..... 10, 17, 27, 30, 35, 44, 65, 71, 86, 101, 108,
109, 149
PTS Control APL......cuvoiiiiece et 86
Individual test case resultSccocveevveeciveciecieeeineenns 127
1= Tod 1 o SR 127

Information.1, 10, 13, 41, 44, 46, 50, 58, 65, 67, 70, 73,
75,77, 79, 86, 107, 108, 109, 121, 143, 146, 147,
149, 152, 153, 155

Of the teSt CASE.....oiviiiereee e 46
Information displayedccccccceienene 46, 86, 147, 155
event............ .. 147
Information during..........ccoeveririeie e 109
Information that has been encryptedcccceeevene 108
Information USed t0.......ccooeiieeiiiieie e 46
Ini 62
INitial TESt SCHPL ...veeveee e 132
CrEatiNGeeveeiieieie sttt 132
INItIANIZALIONS ... 58, 149
Initialized ..o 74,77,79, 101
NULL <ot 77,79
INtIMPlCItSeNdcccvevveieieeeeeeen 57,58, 72
INQUINY REQUEST.....ccuviiiiiiiiieieece e 1

Insert..

INEEIESHING ..ot 149
BVEINES ..ttt 149

Internet

INternet EXPIOrervovveiveie et 109

INTTOAUCTION ... 107, 143

TOPT s 99

IP 71

L4 0] (o T

IProject value

IPTSCONrol COM.....oviiiieiieeerieeeee et 74

IPTSControlClientLoggerccccvvvvivreeeeireneens 86, 101

IPTSImplicitSendCallback..........cccoererieeieninenns 86, 101

IPTSImplicitSendCallbackEX.........cccccevvvvrivenierneeannenn 86
refer .
USE..oovenne.

IsActiveTestCase

Item....1,7,9, 10, 13, 17, 27, 30, 35, 46, 50, 53, 55, 58,
65, 71, 75, 84, 86, 101, 108, 109, 124, 126, 127,
135, 137, 141, 146, 149, 152, 157
ChECKDOX ...

Item applies..

[teM CONLAINS ..ot 35
ltem that ..o
data type..
ltem Will ..o
ltems declared ... 75

145

Printed Documentation

Iltems should always..........ccceeoverierieeiieneeeesee e 30
Items that

ITESICASE ...t 79
ITEStCASE VaAIUEoovveieiiecieceeee e 79
TS OWN i 58, 149

IUT... 1,9, 27, 30, 41, 44, 45, 53, 56, 62, 65, 70, 75, 86,
149, 158, 161

IUT 10 PTS it 149
IXIT... 1,9, 30, 35, 71, 84, 101, 108, 109, 131, 147, 149
(o (o1 o USSR

Opening ..

updating......... .
IXIT changes that ... 101
IXIT data....ccoveeiieeie e 84, 109
IXIT dOCUMENTALIONoeiieirieciieriee e 35
IXIT HEMS oo 1,9, 35, 84,101

ABVICE IS ot 1
IXIT SELHNGS «.eeeveeeeeeieeee e 35, 108, 109, 131
IXIT 1ADIE ... 35

PrOJECT .ttt b 35
IXIT Tool WINAOW.......cooevreiriieciienieecines 30, 35, 132
IXITVAlUE .o 71, 101, 147, 149
L

LIFECYCIE e 107
BIUETOOLN. ... 107

LINK K@Y ..ottt 44

List of... 5, 10, 17, 27, 35, 58, 65, 75, 77, 79, 84, 86, 98,
108, 124, 137
dialog Will diSplay.........cccvvevriiieeiieieinsee e 124

LiStiNg ..cooveeeeeecie e .44,108
Bluetooth Device AAress.......cccvvvveeeriveseeneesnen

146

Locate...1, 8, 10, 13, 17, 41, 44,57, 68, 73, 75, 98, 143

LoCation........ccovvceeiiriieieice e 1,57,71, 75, 108, 109

Log41, 46, 50, 62, 79, 86, 101, 108, 109, 126, 143, 145,
146, 147, 149, 152, 153

Client Application application............cccccevveeeieereennes 86
displayed incccceeues ...153
Implicit Send DLL Creates..........ccocevereeieseserneennn 62
LOQg CONLAINING «.veevveeieieeie e 62
Logdfile
LOGIlES .t 145
[IoToTo [TaTo TSN o] o Lo o SRR 143
LOGTYPE ot 86
VAIUES ..ot 86
LOgTYPE ValUE......ceuiiiiiiiiiieeeicee et e 86
LONG tIME .o 109
tAKE QUITE ... 109
LOW .ttt 17, 143, 152
LPCWSTR psSzDeSCriptioncceovverviniinieeneeneeenenn 86
LPCWSTR psSzENtryNamecccccovevvenviniineeeeeee
LPCWSTR PSZMESSAJE......eeeireiienrieeiiiieeniieeeseieenins
LPCWSTR pszNewParamValue..
LPCWSTR pszParamName...........ccccevvvveeiveeeniinnennnes
LPCWSTR pszPathOfPtsFile..........cocoooeiiniieiiieniene 75
LPCWSTR pszPathOfWorkspace..........cccoccvevvenvennen. 75
LPCWSTR pszProjectName..............cc......
LPCWSTR pSzZTestCase.......ccocvvevveeriieeenieeennins
LPCWSTR pszWorkspaceNamecccceeeeeeriennenens
LPCWSTR pszWorkspacePath ...
LPCWSTR SZLOGTYPE ..ooeeiieeiiiiieiie et
LPCWSTR SZTIME ...oviiiiiiiieieee et
LPWSTR ..ottt
LPWSTR psSzProjectName.........cccceverereneeienesieens 77
LPWSTR PSZRESPONSE......vveeiieiriiieeiieeeeiiee e
LPWSTR pszTestCaseDesc
LPWSTR pszTestCaseName..........ccccovvverniveeniienreninnes 79
M
Main Test COMPONENLccuveieereeiiineeeee e 56
UL oo PRSPPI 56
Major DeViCe ClasS.......cccocverveiieeieeeeneeeeee e 1
MAIOCt 58
ManufacturerName

Many DLLs...

MENU CONLAINS ...ttt e 109
MENU MAY ...veeiiiiiietiee sttt 157
MESSAQE tagSccvvervieiieiieie e 58, 62, 65, 72
MESSAGE TYPE ..eevievieeiiiiieeiieee st 65, 86
MICTOSOMt....cueiieieeie e e 58, 67,73
MiCrosoft Visualccocovverieeniniiiieicne e 67,73
Microsoft's Component Object Model.............cccccveneee 73

Index

Client AppliCatioN........c.covueiieeieesie e
identifies............

MMI PTC handles

MMI style defiNescoceiiririieiie e
MMI SEYIES .t
MMI_Style_Abort Retrylccooiiiiiieninicieene 65, 86
MMI_Style_EditL.......cccceovommieiiniieenerceiennns 58, 65, 86
MMI_Style_Edit2........cccovemrmiieniiiinncecinnns 58, 65, 86
MMI_StYle_OK.....cccovrirrereirrneiereree e 65, 86
MMI_Style_Ok_Cancell........cccceverireniniinnnens 65, 86
MMI_Style_ Ok_Cancel2.........cccccevvervvrnernnnenn 65, 70, 86
MMI_Style_Yes_No_Cancellccoceeevrvrinnnnne 65, 86
MMI_Style_ YES_NOL....cccccveiveiiiir e 65, 86
MMISEYIE... vt 58, 65
MMISLYIE NAME ..ot 65

MmiStyle value

More 1,9, 10, 13, 17, 46, 50, 58, 67, 70, 72, 79, 86, 99,
108, 109, 121, 129, 131, 143, 146, 149

More complicated
Most recent

N

N, ASClE o 65

Name. 1,5, 9, 10, 13, 17, 27, 30, 35, 41, 50, 57, 58, 62,
65, 71,72, 75,77, 79, 84, 86, 99, 101, 108, 109,
121, 131, 132, 145, 147, 149, 153

subfolder ...
Test Cases
Test Script

WOTKSPACE......ceeieieieiie ettt
WOrkspace fileccoeeiriiiiniie e

Name corresponding
Name of1, 13, 27, 30, 35, 41, 58, 75, 77, 79, 84, 86, 99,

Name>SampleTest.......ccccccvviiriieeeeeeee e 99
Needed.1, 27, 35, 41, 44, 46, 50, 53, 55, 56, 57, 58, 62,

65, 67, 70, 73, 74, 75, 86, 99, 101, 108, 109, 121,
124,126, 129, 131, 133, 152

Visual StUIO ..o 67
New......1, 10, 58, 62, 65, 75, 84, 86, 99, 101, 109, 121,
131
New Client Applications..........cccoceeverrrieninieeiesesieene 86
NEW WOIKSPACEccuveviiiiiiiie st 1, 75,99

CrEaLING ..ottt et 1
NEWIINE ..o 65
NeXt....ccorenirvenrennns 1,17, 27, 44, 68, 108, 109, 121, 147
NMYLAPLOP. ..ottt 65
NMYPAA ..o 65
NMYPRONE ...ttt e 65
NO BULLONS ... 86
NONEottt 158, 161
NOT e 58, 86
NOT Call ..ttt 58
[N\ 0] (= = Vo ST 99
NUL e 75, 86

FOOIM FOF ..t 86
NULL s 58, 65, 77, 79, 86

INILIANIZE. ... 77,79

return
(2] (0] 0 S U ORS PP 86

Number 9, 10, 17, 30, 41, 56, 62, 65, 72, 77, 79, 86, 98,
99, 107, 108, 109, 143, 146, 147, 152

ODbjJeCt PUSH ...t 53, 62
Object Push Profile.......ccoccvveviiiiiiiis e 62
OCTETSTRING

FELUMNEA ... s

0f1,5,9, 10, 13, 17, 27, 30, 35, 40, 41, 44, 46, 50, 53,
55, 56, 57, 58, 62, 65, 67, 68, 70, 71,72, 73, 74, 75,
77,79, 84, 86, 98, 99, 101, 107, 108, 109, 121, 124,
126, 127, 129, 131, 132, 133, 135, 141, 143, 145,
146, 147, 149, 152, 153, 155, 158, 161

PSZREPONSE ...cvieeiiei ettt 86
PSZRESPONSE ..ttt 86
SEMMITEXL. ... 62, 65

test case 27, 50, 56, 79, 86, 108, 109, 143, 145, 146,
149, 152, 153

test case executions
Test Case VieW.......cccceveevueenee.

147

Printed Documentation

[©] 10T 11 1 =T 1 o SRS

Of preparing ...
OFf FANGE -

Of testing
device

Of thel, 9, 10, 13, 17, 27, 30, 35, 40, 41, 44, 46, 50, 53,
56, 57, 58, 62, 65, 67, 68, 70, 73, 74,75, 77, 79, 84,
86, 98, 99, 101, 107, 108, 109, 121, 124, 127, 131,
132, 133, 141, 143, 145, 146, 147, 149, 152, 153,
155, 158, 161

Of the .o 50
Of the e 153
Of the correspondingcocevereeeienene e 79
Of the folloOWINGoovvveviieeieceeeeee e 53, 73,131
Of the item that..........ccoeeieiiiiiecee e 35
Of the IXIT IEeMS ..o 35
Of the PSZREPONSEoviiiriirieie et 86
Of the PSZRESPONSEocevveiieiieieeie e 86
Of the reSUItINGcc.eieiieee e 41
Of the StriNG..ccveeeeeece s 65, 77,79
Of the StrMMITEXtccovieiieiieieeeee e 62, 65
Of the StrMmMITEXt StHNG ..oecvveieereeieeee e 62
Of the test case...... 27, 30, 46, 50, 56, 79, 86, 108, 109,
124, 143, 145, 146, 149, 152, 153
INFOrMAtioNcocvieiiecicce e 46
Of the Test Case executionccceeeveeevneesnenns 86, 149
Of the test case executions.................. 86, 109, 124, 143
of the test case executionscccccceeveeevveveeenen. 124
Of the test case runs forcccccvvevvieviennin e, 109
Of the teSt CaSE 10.....ccviciecieceecee e 46
Of the teSt CaSE 10 ..cvvviiiiiie e 46
Of the test cases availablecccoeeveeiiiviiiienneens 30
of the test cases available............c.ccccevveeiiiiicnnes 30
Of the teSt CaSES IN ...ccvecveciececcee e 30
of the test CaseS iNcccoveevievieiceecee e 30
Of the Test Suite Selector will display..........ccccoeevereenns 10
OF VIBWING ..o et 126
[OSSR 58, 65, 68, 86, 109, 121
PIESSES ..vteiiiiiiiettie ittt ettt et 65
[o111 (o o IR 68, 86
PIESS .ttt 68
Older teSt reSUISeeveeeerieieeiee e 129
SEIECHNG ...eoeeve e s 129
[©] 0] 197 o] (131 65T s o RS 86
ONSEN ..o 86, 101
Open Capture File.......coeieeiiiieieesee e 157
OPEN Fl ...t e 58
Open Workspace........... 5,53, 73, 75,777,109, 131, 145
Opening
IXIT ..

PICS.

148

OPENWOIKSPACEcoeeeeeieieeieeeeeeee et 75, 101

Operationl, 46, 53, 55, 58, 62, 65, 70, 73, 86, 121, 124,
130, 131

Operation Which Mmay.........ccccce i 1
Operator........ 41, 53, 55, 56, 58, 62, 65, 70, 73, 86, 131
OPHBVO3 ..ottt 62
OPHBVOT ..ottt 62
OPP ettt e 10, 62
OPP Profilecccveiiiiiiiiiicce, 62
OPLONS ...ttt 46, 50, 62
OF Other ..., 53, 55, 149

Order..9, 17, 27, 35, 44, 53, 57, 58, 62, 73, 74, 99, 107,
109, 124, 131, 133, 135, 137, 139, 158, 161

ChangiNgccverinieireee e 139
[T U (o o ISR 139
P T S s 57
Order Of ...vicieciiece e 139, 141
Order of @XeCULIONcoevvveiieiiececee e 139, 141
(O] (o TP PPTOP RSP 1
Output WINAOWc.covvveiieiieiiieeenenn 86, 143, 147, 149
[o10] 01 1=T 0 T TP RR PR 143
Output window along Withccceeieeieeieeniieceeiene 143
final verdiCtc.cooueeiieiie e 143
F)
Page allows.........ooviiiiieeee e 152
SEIECHON ..o 152

PCPIOJECES ...ttt
PcTestCases
[5 L T
PersiStENtTEXL.....ccuveiiecie et 58
PersistentText.Cpp/.h......cocoiiiiiie e 58
Phone Book Access Profile.........cccevvveciiiieninninnnns 149
Pl S 149
PICS....1,7,9, 30, 35, 75, 84, 101, 108, 109, 131, 132,
147, 149
ChaNQe.....oeiieeee e 7,30
clicking..... ..30

containing
display .. 149
(=T 1L U U SRS TP 1

Index

L0 o1 (g To S 1
listing

Opening ..
updating ..

PIXIT ieM..iiiiii e, 1,35,84,101
PIXIT Tool WIiNdOwc.cccovveiveininciciiene 30, 35,132

Place.............. 13, 41, 58, 68, 70, 86, 109, 127, 139, 143
checkmarkcccooveeviiiiiici e, 109, 127

PLOGOET ...ttt 86
PProjVErsioNnccccvevieiieeeceese e 77
PPSzProjectNameccoeieeieninie e

PpszTestCaseDesc

PpszTestCaseNamMe........cccecveriiririeeeeeeee e
PPTSVErSION......ooiiieiiiceeee e 77,98
POW ettt eee e en s 75, 99
PRD 2.0 ...ttt e s 1
Preliminarycccccooveiiincnicnenne 86, 149, 152, 158, 161
Preliminary Verdicts...........ccccc.... 86, 149, 152, 158, 161
Preparingcccccoe e e 99
use PTSCOoNtrolClient...........ccvvvveeineiennecne s 99

Presents...7, 9, 10, 17, 27, 30, 46, 53, 86, 99, 101, 108,
109, 124, 129, 143, 146

Pressed......cccooveievieiiece s
Cancel button

Primary WiNdOWS..........ccccveiveiiiiinc e 10
Proceeding in ..o 135
Proceeding in OFder.........coccvevveiienii e 135
Process by selecting.........ccooeieiiiiiieieniee e 68
Processed byccccceueeee. 53, 68, 73, 75, 101, 107, 131
Productc.ooeeveveeirncccneenenas 1,107, 108, 109, 121

Product Details...

Product LIStINGS.......ccvviiriiieieieeree e 1

Profile.1, 7, 9, 10, 13, 17, 27, 30, 35, 40, 46, 53, 56, 72,
73, 75,107, 108, 109, 131, 132, 143, 157

ProjeCt FEPreSENtScvivvveiiiriciict st 9
Profile & ProtoCol...........ccoceveeriniiinicncseee e 17
Profile Implementation Conformance Statement 9
Profile Implementation Extra Information 9

TOSHNG . ccteeee ittt 9
Profile Name ... 132
Profile Tuning Suite.... 9, 46, 53, 73, 107, 109, 131, 143

USE e 109
Profile VIEWET ..o 157
Program Filescccccovvvivvecennnen. 1,62,71,73,99, 101
ProjeCt PICS ..ot 30

o 111 o ST 30
Project PIXIT SEHINGScoviierireeie e 35

o 111 o T 35
Project repreSentsccoocuvveeirciseneinn e 9

PrOfIE oo 9
Project Settings.........cccvevvvvveieeneennen. 46, 50, 68, 70, 153

FEEUMNING .ttt 70
Project Settings dialog.........cccovevvervenieniieieeeeeeenn 68
Project Settings MenUccooveeiiiiene s 68

Projects 1, 7, 8, 9, 27, 30, 35, 46, 50, 53, 67, 68, 70, 71,
73,75,77,79, 84, 86, 99, 101, 108, 109, 124, 131,
132, 145, 146, 153

2o [0 [T PRSPPI 7
containing 77
IXIT table . .35
name........ .99
Removing9
USEM t0 FEPIESENT ...c.eeieiieieciie et et 8
Prompts........cceeeee. 46, 53, 55, 65, 73, 74, 86, 101, 131
Client ApPlICALIONcoeeieiiiiieeie e 86

Protocol..1, 7,9, 10, 13, 17, 27, 30, 40, 44, 56, 75, 143,
149, 155, 157

Protocol specified ... 9
USE ittt e e e e 9
Protocol traces.ceveeeieinee s 143, 157
VIBWING .ttt vttt ettt 157

Protocol Viewer...

Running
L5322 L (1o S
used to..

Provides...53, 55, 56, 57, 58, 62, 65, 68, 71, 73, 86, 99,
107, 109, 131, 143, 155
PTS Control APL......coveiiieeeceeeece e
the User Interface

Provides itS OWN........ccvciiireeiieeee e

PszDescription.... ..86
PSZENTYNAME ..ot 84
PSZMESSAQE ..ottt 86
PszNewParamValue..........ccccoveviiinncnienenieceneeens 84
PszPathOfPtSFile........cccccoiiiiirieieece e 75, 101
PszPathOfWOrkspaceccccoveeveeiieeieeieenns 75, 101

149

Printed Documentation

PszProjectname.........ccocceveeveeiiveieeseenne.
PszProjectName,wID..

PSZREPONSE ...
OF

PszResponse.
Of e

PszResponse,responseSize,Lcccovvvvveveeniieniiennnenn
PszResponseBuffer
PSZTESICASEcoiviiieee e

FrOM e

PTS..1,5,7,8,9, 10, 17, 30, 35, 41, 44, 45, 46, 53, 55,
56, 57, 58, 62, 65, 67, 68, 70, 71, 72,73, 74, 75, 77,
79, 84, 86, 98, 99, 101, 107, 108, 109, 121, 131,
143, 145, 146, 149, 152, 155, 157

AUtOMALING ..o 53, 73,131
center

CONLAINS ettt b et 30
corner

During

ENdpoint DEVICEcceeieeiieeie e 155
(22111 o R 157
Implementation Under Test.. ...86
Implicit Send.........cccccue..e. ...58
IMPOIEA.....o ittt e 1

item

...57,107, 109
.8, 46, 152, 155, 157

PTS BR oottt
PTS clicking
PTS Control API..73, 74, 75, 77, 79, 84, 86, 98, 99, 101
[T 13 =T ox 1= USSR 79
indicates..... ...86
object....... ...86
provides .. .73
USE 1ttt ettt ettt ettt et n s 73
USING vttt 73,75, 99
PTS Control CleNntccoecverieniinceeeeeeeeeee e 99
TSt SCHPLS. .. ieeetieeeie ettt e 99
PTS Development T€amcccooeeeeveerienienieeneneens 41, 46
CASE 1eutteeiiet ettt e e st et et e et e et e e 41
PTS dUMNG oot 107
PTS Endpoint........ccceevvevveneenenne 44,98, 101, 143, 155

150

PTS Endpoint Device
PTS Executable Test Suite
PTS executables..........ccccouvevvieieeiie e

PTS Report..

Creatlng
PTS SUPPOIS ...ttt 17
PTS TEAM ...t 67
PTS Technicalcccooevvvveirrcceen 67,70, 101, 152
PTS Technical Supportccceeeieeene 67,70, 101, 152
PTS Terminologyccccveiverieiie e 9
PTS test case Operationcocceceeveerererieeseesieseeneens 56
PTS Test SCHPtiNG......oooveieiir e 99

PTS Test Suites

PTS t00IDAr.....ciiiciiiiie e
PTS User Interfaceccccoeeevevveencnnenns 77,79, 84, 86

(o101 0 1= S RO PTPPPTOPIIN 86

WINAOW.....eciriiciee et 77,79, 84
PTS When theccociiiiiiie e 1
PTS _N(_)rkspace

EXISHING +.vineieieie ettt
PTS.EXE oo
PTS_LOGTYPE logType
PTS_LOGTYPE_END_TEST ..ccoviiiieiiiiieciene e 86
PTS_LOGTYPE_ERRORcoooooeoeeceeeceeeeeeeeeree e 86
PTS_LOGTYPE_EVENT_SUMMARYccceovvrrnnne. 86
PTS_LOGTYPE_FINAL_VERDICTccceooevrrerrrerenne 86
PTS_LOGTYPE_IMPLICIT_SEND.......cccccerrirerrennnne 86
PTS_LOGTYPE_INFRASTRUCTURE.........ccoecvrnnen. 86
PTS_LOGTYPE_MESSAGE
PTS_LOGTYPE_PRELIMINARY_VERDICT 86
PTS_LOGTYPE_RECEIVE_EVENTccceoviiininne. 86
PTS_LOGTYPE_SEND_EVENT ...coovivereireeeereee e 86
PTS_LOGTYPE_START_TEST ...cctviiiiriiieinienree 86
PTSCONIOl ...
PTSControl.dll.

Index

PTSCONTROL_E_FAILED_TO_CREATE_WORKSPA

PTSCONTROL_E_GUI_UPDATE_FAILED............. 101
PTSCONTROL_E_ICS_ENTRY_NOT_CHANGED. 101
PTSCONTROL_E_ICS_ENTRY_NOT_FOUND...... 101
PTSCONTROL_E_ICS_ENTRY_UPDATE_FAILED 101
PTSCONTROL_E_IMPLICIT_SEND_CALLBACK_ALR

EADY_REGISTERED......mmeveeoeeeeomreeseeeeeesseenerons 101
PTSCONTROL_E_IMPLICIT_SEND_CALLBACK_NOT
_EXPECTED_TO_FAIL coommoveeeeeecoeeeeeeeeereeeeronns 101
PTSCONTROL_E_IMPLICIT_SEND_CALLBACK_NOT
REGISTERED ...oooovveeeeommereereeseeeseeeeeere e 101
PTSCONTROL_E_INTERNAL_ERROR.......ccooeo..... 101

PTSCONTROL_E_INVALID_IXIT_PARAM_VALUE 101
PTSCONTROL_E_INVALID_PIXIT_PARAM_VALUE

... 101
PTSCONTROL_E_INVALID_TEST_SUITE.............. 101
PTSCONTROL_E_IXIT_PARAM_NOT_CHANGED 101
PTSCONTROL_E_IXIT_PARAM_NOT_FOUND..... 101
PTSCONTROL_E_IXIT_PARAM_UPDATE_FAILED

... 101
PTSCONTROL_E_PICS_ENTRY_NOT_CHANGED

... 101

PTSCONTROL_E_PICS_ENTRY_NOT_FOUND.... 101

PTSCONTROL_E_PICS_ENTRY_UPDATE_FAILED
... 101

PTSCONTROL_E_PIXIT_PARAM_NOT_CHANGED
... 101

PTSCONTROL_E_PIXIT_PARAM_NOT_FOUND .. 101
PTSCONTROL_E_PIXIT_PARAM_UPDATE_FAILED

PTSCONTROL_E_PROJECT_NOT_FOUND
PTSCONTROL_E_PROJECT_VERSION_NOT_FOUN

Dot 101
PTSCONTROL_E_PTS_FILE_FAILED_TO_INITIALIZE
... 101

PTSCONTROL_E_PTS_VERSION_NOT_FOUND. 101
PTSCONTROL_E_TEST_SUITE_PARAM_UPDATE_F

AILED <o 101
PTSCONTROL_E_TESTCASE_NOT_ACTIVE....... 101
PTSCONTROL_E_TESTCASE_NOT_FOUND........ 101

PTSCONTROL_E_TESTCASE_NOT_STARTED ... 101

PTSControlClient Test Script .
PTSImplicitSendCallbackccoooeieniiiiiiiiics

PUrchased..........cocoeiiiiiiieneee e 13
Purpose

DISPIAYING . .eeiveeiiie et 40
Q
QDID ..t 109
QL e 75, 107
Qualification Listing Interface...........ccoceeeeeenenne 107, 109
Qualification test evidenceccccccoveeveeveeieeveeenen. 107
Qualified Device LiSting........cccooerieieninieie e 1

Refercccovvvvnenne 13,17, 46, 58, 86, 99, 107, 108, 132
IPTSImplicitSendCallbackEX..........cccooveieieiernennnn. 86
RegisterimplicitSendCallbackccccccveevennnne 86, 101
RegisterimplicitSendCallbackEXcccoeevevireriennne 86
Regsvr32 PTSCONLIOL.......cccovuveieieienee e 101
Release.......cccvvieninicieiiiees 58, 67, 77, 86, 98, 109
P S 109
Remove Checked ltems button............cccceeeenen. 127,130
ClICKING ettt 127
REMOVING ..ot 9,13, 70, 137
CheCKMArKccouiiiiiieie e 70
PrOJECT. ..ttt e 9
TESECASEoiiieiierie e 137
RepIACE.....cceiiiieeiee e

LU= S

Report
Contents
Of CreatiNg. ... eieeie ettt 109
tiIME 10 Create ..veveeveeeeeeee e 109

Report Generator MEeNUccovvvveeieeriieeeeieeen e 121

Represent
used.........

RESPONSESIZE......cveiiiieeeeeee et 86

REIHEVES ...t
Bluetooth Device Address .

OCTETSTRING
Project Settings

Right....... 1,8,10, 17, 41, 50, 68, 79, 86, 101, 109, 121,
129, 133, 137, 139, 143, 145, 149, 153

Right CliCKiNG......covvviireiciee e 50, 143, 145
ROOM fOF .o 86

151

Printed Documentation

Run 27, 41, 44, 46, 50, 53, 55, 73, 74, 75, 99, 101, 109,
129, 131, 135, 145, 146, 152, 153, 155, 157

Protocol VIEWETccoiieiiieiie e 157
PTSControlClient. ... 101
Test Case......... ... 135
TESE SCHPL vttt 101
RUN SCHPL..co e 135
RUNNING AUMNG ..ot 109
RUNTESICASE ... 79,101
S
S S SN 79
SIN e 77,79
Sample ..o 58, 71, 73, 86, 98, 99
Sample Programc.ccoeeeevineneneeie e 86, 98, 99
Sample Source Code
SaAVEe .o
Scoping
Script 53, 73, 99, 131, 132, 133, 135, 137, 139, 141
Script Tool Windowcccccoeveenenne. 132, 133, 135, 137
SEIBCT. ..ot 132
Script Tool WIindOow iCONccooeieieeieerieneciieee e 132
T00IDAN ... e 132
Scripted Operationccoccveveereeneesieesneenns 53, 73,131
SCHPLNG .o 53, 73,99, 132, 135
SEAMCH ..ot 1,17, 143, 149
SEArCh STHNQGoeiii et e 17
Secure Simple Pairingccoooeeeeiieiieneenee e 65

Segment Preliminary

Selectl, 5, 7, 8, 9, 10, 13, 17, 30, 35, 40, 41, 46, 53, 58,
65, 68, 73, 77, 79, 84, 86, 99, 101, 108, 109, 121,
124,126, 127, 129, 130, 131, 132, 133, 135, 137,
139, 141, 143, 145, 147, 149, 152, 153

used. 1,58, 129
SEIECT. ... 133
SEIBCT. ..t s 133
SEIECT. ... 157
SeleCt All ..o 13, 109, 127
Select DUPIICALEScvveeeeiiecie e 129

USE ettt bbb 129
Select Duplicates buttoncccceevveeevenenieienenene 129
SeleCt Latestoocvvveiieeiereeeee e

Select Test Cases

Selected device description..........cccccevvevieeieeieeniene 121
Selected dUMNGcooeveiiiiiiieee e 108
Selecting1, 5, 13, 58, 109, 127, 129, 131, 132, 141, 152
EVENES .. 152
Implementation Under TeSt........ccccovvvveivnieenieninenns 1
individual test case results.... 127

[I=To - Tos YOSV U RS PRUN 5
older test results ..

Script Tool Window

TESECASE ..ottt 141
TESE CASES .vvieeiiitieiiee st 131

152

Selection ..1, 10, 13, 17, 30, 50, 65, 109, 126, 127, 135,
152, 153
Description
page allows

Send eVent.......cccvvvveiecieeee

SeNdiNgcoeeveneiiiieee e
JLICCES] SRS T 1 o AR

SOIVE .ttt
SEIVICE ClaSS ...ccvieiieiieitiesiie sttt e 1

Set....13, 30, 41, 46, 53, 57, 62, 71, 73, 75, 84, 86, 101,
108, 109, 131, 135, 152, 158, 161

PbReSPONSEISPresentccooeeieneienieeiieeeie e 86
PICS ..o .75
Test Cases. ...135
TRUE ... 84, 86
SetControlClientLoggerCallback............cccecvererenennn. 86
Setting adds communiICationccccoveverienesenieenn. 46
Setting pbResponselsPresent...........cccceevveereeeieeneennns 86
FALSEcooiviiiiiieieeiee

TRUE....

Settings.......
147, 152, 153

ShOW PUIPOSE ..ottt 79

£ 210 1V Vo P 62

SIG et 53

Single test case .. .41
EXECULING....eeiuiciieieete st 41

Software build requirements

StacK oo

Standardcccocvveinenenne 9,41, 46, 57, 58, 77, 98, 152

Start......1, 17, 35, 41, 44, 58, 62, 67, 68, 74, 86, 98, 99,

101, 109, 135, 139, 146, 147, 149, 157
Protocol Viewer

StArt PAQE ..o
STt PTS s

135
StOP SEArChING ...ccveiiiieitieiee e 1

Stop executing....

3 (0]] o] 13T [PPSR
Test Script .. .

StOPTESICASEvveeieie ettt
Straightforward ... 109

Index

£S5 (1 o R 58
SEPIOMPL .t 58
SUMMITEXE et 58, 62, 65
beginning ...
CONENTS .ttt 65
OF e
StrPrompt.
SHING cnte ettt e

T
TAQG c e e 62, 72, 86, 99, 155
Implicit Send DLL display........c.cccoovvrrieniienieniennnenn 62
PTS remMOVES.......oiiiiitcit e 62
Take quite.......
long time
TC_CLIENT_ABC_BV_01_l..cocciiiiiiiiiieieieeie s 9
TC_COD_BV_01_2....
TC_COD_BV_01_| iciiiiiiiiiiieie e

Template Library

Test case....9, 10, 27, 30, 35, 40, 41, 44, 46, 50, 53, 56,
58, 62, 65, 68, 70, 72, 73, 75, 79, 86, 99, 101, 108,
109, 124, 126, 127, 129, 130, 131, 133, 135, 137,
139, 141, 143, 145, 146, 147, 149, 152, 153, 155,

158, 161

AAAING ..o 133, 141
ClICKING 1.ttt e 79
CONLAUNING -1ttt st s 79
[o 10T o PSSR 86

executing
Highlight..
| ... 135

of... 27, 50, 56, 79, 86, 108, 109, 143, 145, 146, 149,
152, 153

REMOVING ...ttt
running.
select....

Test case execution... 41, 44, 56, 58, 86, 108, 109, 124,
126, 143, 145, 146, 149, 153, 155, 158, 161

Test case execution log41, 86, 126, 143, 145, 146, 149,
153, 155

VIBWING .ottt 126
Test Case has encountered..........ccceevevvenneeninieeinenns 86
Test Case HiStoryocveeeeieienieeieniene. 109, 124, 145
Test Case History Tool Window.............cccceveeeee 124, 145
Test Case History Tool Window displays 124
Test Case History Window............cccerveieereeneenieneneens 145

Test Case Naming
Test case results..................

DEIBHING ..ottt
Test case runs for..
Test Case Started........cccceeveeeieccieeceecee e
TeSt Case VIEW.....coccvvveeveeiieeeiieseeeeee s
Of e
Test Cases ProdUCEcccevveeereerieeiiee e 41
number41
TesSt COMPONENTocciieeieit it 56
Test Control Notationccccceevvveiveevee e 143
Test Execution Log... 108, 109, 126, 143, 146, 149, 152
TeSt HISTOMY ..ot e 124
0o 111 o RO RTR 124
Test hisStory editorccevvevveeiieeiieiree e 124
Test Plan Generatorccccceveeunenn. 1, 30, 75, 107, 109
USING ettt 107
Test Plan Generator's list.........cccocevveevee e e, 109
TESEPIOCEAUIE ..ot 53
TESEPUIPOSE ..ottt 9,79
[T] t=E] T o L1V [, 79
TESt PUIPOSES VS ...eiiiiiieiiiiiiesiiiee sttt 9
TESLIUN ot 124, 158, 161
Test Script..99, 101, 131, 132, 133, 135, 137, 139, 141,
143, 149
AAdEd.......oi e 137
CrALE ... vie ittt 99
EditiNg. ..o oo 137
Executing. ...135

PTS Control Client ...
Running
Select....

Test Script Window...

Test Suite...9, 10, 13, 17, 35, 46, 50, 62, 68, 70, 71, 72,
77,108, 131, 133, 143, 145, 147, 152

INCIUSION L.t 13
Test Suite Selectorccvvvveerieereereeneereeseen 7,10, 17
USING ettt 10
Test Suite Selector dialogccovvevverieerieeiieeenenns 10, 17
Test Suite Selector will display..........ccceeererveiiiniieinnns 10
Lo) SR 10
TESICASE....eviieriee ittt 79, 99, 109
TESICASEVIEW....ceveeieeiieiee e 77,79, 84

153

Printed Documentation

Tester Information..........c.ccooeeveeiienniie e 109
TESHNG . ceeiee et .. 9,139
Profile Implementation Extra Information................... 9
TESIREPOI. ...t
TestScriptSample .
TestScriptTemplate........cccoovreieieieiieee s 99
TESESUILE ... e 99

Text.. 10, 17, 58, 62, 68, 75, 86, 99, 109, 121, 143, 147,
149

TEXEFIIE oot 99

used to create... .99
TEXE STHNG ...ttt 75
That has been encrypted.........cccoveeviiiieiiinvie v, 108

Thatis.. 1, 30, 44, 46, 50, 53, 55, 58, 65, 68, 70, 71, 73,
75,77, 79, 84, 86, 98, 99, 107, 121, 129, 137, 143,
147, 155

That MUSEoeeieeececeece e 9, 30, 86

The first ..1, 5, 13, 30, 35, 41, 44, 46, 65, 75, 79, 86, 99,
108, 109, 135, 139, 141, 143, 147, 149, 155

The INStrUCtioNS.....cccevieeieceeeeree e 65, 99, 141

TNE USEI .ttt 65
The IUT 9, 27, 30, 41, 44, 45, 53, 62, 65, 70, 86, 149
THe [AaNQUAGE ...ocvveeeeie e 58

The list... 1, 10, 13, 17, 30, 65, 109, 121, 124, 126, 127,
147

THe TTCN ..t e 143, 149
The TTCN 0peratingcccceveerreeireeneeseessee e seee e 143
THE USEr .o 65, 70, 74, 86, 109
the INSTIUCHIONS ..o 65
The User Interfacecccocevvevveineeiieiies e, 74, 86
provide.............
This featureccceveve e 53, 73,131
This functionalityccooeeveriiieienienee. 46, 62, 67, 86
Time..... 1,5,7,9, 13, 30, 45, 53, 55, 58, 70, 73, 75, 86,
107, 108, 109, 131, 133, 135, 141, 145, 146, 147,
149, 153
CIRALE ...eevieietteee ittt ettt 109
TiME CONSUMING...c.ueiuiiieiieniine et s 55

Time logging...

TIME 10t

Time to create
report

TiMES dUMNG ..veeiveiiiiie e s
TO EXECULE......evveevieiieiieee e
TOINAICALEecveeieeceeeecee e

setting pbResponselsPresent.

154

LI L0 L= 11 o RSP 30
TRUE if
TRUE INdIiCatiNG......ccviieirieniieie e 71
TSPC_ALL it 30
TSPC_HFP15 2 3o 30
TSPX_bd_addr_iUtccoooeiieeiieieieesee e 35
TSPX_use_implicit_sendccoceeoeneneiinieiieieies 71
VAIUE ..ot 71
TTCN e 143, 149
X et 62
TXEFIE e 62
Type ..cooeeuene 35, 50, 58, 65, 70, 86, 109, 143, 152, 155
U
U N PrOJECE .ot 79
UINT oo 58, 77,79
UINT IPFOJECE. ... ettt 77
UINT ITESLCASEeeieerecriceieerie e 79
UINT MMISTYIE ..o 58
UIBthAAAY ...t 75
ULONGLONGoitiieiieitine et 75, 98
ULONGLONG UlIBthAdA.......c.ccoieiierineeiee e 75
UN L b e e 13
Unattended operation...........ccccceeveeieeiieeniens 73, 86,131
Uncheck the
Uncheck the checkboXc.cooviiiiinineeeeeeen 30
UNCheckingoovveiiiiee e
checkbox.
UNICOUE ... 75,77,79, 84, 86
Unicode StriNgccoeeverierenieiere e 77,79, 86
UNIcode UTF ... 75
UNIOAAING ...t e 58
DLL ottt e 58
UnregisterimplicitSendCallbackc.ccccuune... 86, 101
UnregisterimplicitSendCallbackEX............ccccccoererennn. 86
UNSEIECE All ..o
Unselected...
UNtil the teSt ...
Until the teSt CASEeevveiieiieeie e 153
UPdALEICS ... e 84, 101
UpdatelXITParamccccoeeeeneiineneeneenienes 75, 84,101
UPdatePICS......oeeveiiiieceeeee e 84,101
CAllING oottt 101
UpdatePixitParam...........ccceceevvenieniesineenenns 75, 84,101
UL oo U PRSP 75
UPating ..ceveeeeeeeeeeee e 46, 101
DX e 101
PICS s 101
PIXIT et e 101
Upload REPOIt......c.ciieiiiiiie e 109
Upload Report reqUIresccveveerieeieeieenieeeieeninens 109
USAQgE NOLES ...t 70

Index

Use 9, 50, 53, 57, 58, 62, 67, 68, 70, 72, 73, 75, 86, 99,
101, 107, 108, 109, 121, 124, 129, 131, 143

DEDUQ ..t e 75
DlIMain....... .58
Implicit Send.........cccceevreeene ...86
IPTSImplicitSendCallbackEx86
Profile Tuning SUIte.........cccveiiiiiir e 109
protocol SPecifiedcoeviiiienie e 9
PTS .o ..107, 108
PTS Control APl ... 73
Select Duplicates........ 129
Visual Studio Debugger .67
WESCPY_S tutreeiieeetenrreesstntestreessnneeesnneeessnneessneessnneeens 86
Use OpenWOrKSPaCE........ccceerreriereeie et 75
Use PTSControlClient...........ccocvvieiiiiiiiiiciciee, 99
Preparing . ..o 99

Used.. 1,5, 8, 10, 13, 17, 27, 30, 35, 41, 46, 50, 53, 55,
56, 57, 58, 62, 65, 67, 68, 70, 71, 73,75, 77, 79, 86,
98, 99, 101, 107, 108, 109, 121, 124, 129, 131, 147,
149, 152, 157, 158, 161

CONSONAALE ..o 107
[0 (== LTRSS 86, 99, 109
AEVEIOP ..o 73
direct.......... 107

distinguish.. 109
enable........ .71
IMPIEMENE ...t 56

indicate ...
INSITUCT 1.t
FEPIACE .. e
represent.

USEd dUING vt e 107
Used for this purpose.........cccceveieneciinsicriesieens 45, 109

Usedin.. 1, 17, 30, 41, 53, 55, 58, 62, 73, 86, 109, 129,
131, 149

Used in traCkingcccouerireiirieenie e 41

Usedto...1, 8, 17, 27, 30, 35, 46, 50, 53, 55, 56, 58, 65,
70,71,73,75,77, 86, 99, 107, 109, 124, 127, 129,
149, 152, 157, 158, 161

Protocol VIEWETccviieiiiiie e 157
Used to consolidatecccoceeveienecieeseenecieee s 107
Used to create .

TEXE Il i
Used t0 deVelopccvevieiieciece e 73
USEd t0 dir€CToueeiieeiieeiie et 107
Used to distinguish...........ccccevveneniinniesece e 109
Used to enable ... 46, 71
Used to hide ONe........cccooveieiiieeiec e 17
Used to implement..........coceeirenenieie e 56
Used to indiCateccceevevierieereneeie e 27, 86, 149

Used to instruct

Used to replace

Used t0 rEPreSENTcocueiviiieie et 8
L (0] [= o) S 8

User Action Requested...

User Action Requiredcccceveenieiienieenee e
User Defined Implicit Send DLL...
USEr INErfaceccoceeieriiieciee e

Using..1, 7, 8, 10, 30, 35, 44, 46, 56, 57, 58, 68, 70, 72,
73,75,77,79, 86,99, 107, 109, 121, 129, 131, 139,
141, 143, 152, 157

PICS

Test Plan Generator.
Test Suite SeleCtor........ovvvvveeiieiiee e 10

TPG .o ..107

UpdatePixitParamcccceeveenienieerieeneesieeneenees 75
Using Implicit Send.........ccccovvveenienienieenens 73, 86,131
Using PTS30, 157
Using WiIiNndows EXPIOrerccooeevieiieeieeneenie e 8
\Y

Value....1, 35, 41, 44, 58, 65, 71, 75, 77, 79, 84, 86, 98,
101, 147, 149

0x0000............ ...75,98
GetProjectName101
GetTestCaseName.. ..101
[oTo 13 o 1= PRS 86
PICS IEM .. 84
TSPX_use_implicit_send..........cccoceeveeeviriienniennnns 71
Value rePreSeNtS.......ccvvvverierieriieee e e seeeeeeenes 101
[o =101 = | 101
Verdict Descriptionccoceeueee. 86, 143, 147, 149, 155
Verdict Determinationcccvceeveeveenen. 149, 158, 161

Version.1, 10, 30, 41, 57, 58, 62, 67, 71, 77, 86, 98, 99,
101, 108, 147

VIBWING ...ttt
protocol traces .
test case execution 10gcccceeeeerrereniniie e 126
Virtual Sniffer ... 155
ViSUAL ..o 67,71,73, 86
Visual StUdiocoeeieiiiiiiie e 67,71,73
NEEAERM.......oiiiiriiiiie e 67
Visual Studio 2008..........cccereeriireneeieeie s 67
Visual Studio DEDUGQET......cccovvviveiieieniieeeseeeeeen 67
USE ittt ettt 67
W
WWCSCPY Sttt sttt 86
USE s 86

When....1, 10, 30, 41, 44, 56, 57, 58, 65, 67, 68, 70, 72,
73,74,75,77,79, 86, 99, 101, 107, 108, 109, 121,
124,126, 129, 135, 143, 146, 149, 152, 153, 158,
161

TESE CASE .uviiii ittt 44
When a Test CaSe......cccceveeiveeviee e 44, 86
When developingccceveieeiineiiereese st 73

155

Printed Documentation

WHEN MIXING .eoveeieie i

When pbResponselsPresent

WhEN reVIEWING.....ccveiuiiii ettt
When selecting........cocvveviieiiiiice e

item
WhEN tESTING ..veieitieiieie ettt e 30
WHhICh MaY.....coiieiiicie e 1,75
WWID .ttt ettt 86
WID VAIUES ...ttt 86
WideCharTOMUItIBYecoceuiieirieeieeeeeeeee e 75
WIlLINIEALE ..o 1
WIll TESUI ... 158, 161
WIN32 BOOL ...t 86
WINAPL oo 58
WINAPI ImplicitSendPinCodeccovevivivennennens 58
WINAPI ImplicitSendStylecccooveieiinieeii e 58
WINAPI ImplicitStartTestCasecoccevvvererveneenenns
WINAPI ImplicitTestCaseFinished
Window

PTS User Interface........cccocooveeiiicicneennn. 77,79, 84
Window contains
Windows.....7, 10, 13, 17, 30, 35, 50, 57, 58, 70, 72, 73,

74,75,77,79, 84, 86, 98, 109, 132, 143, 145, 146,
157

COPIEA .ot 109, 143
WINAOWS APL.....oiuiiiiiiiiiiieie e e 58, 74,75
CAllING ..ot 74
WINAOWS DLL ...t 50
Windows Dynamic Link Librariescccccvcenueeee 57,73
WiINdOWS EXPIOTer.......cccuvevveiiiiiinieeieeneneeeene 145, 157
Windows EXplorer Window...........ccccooeieneneeieenicniens 145
CAUSE ..ot e 145

156

Windows LoadLibrary.........ccocceeveeoieiienieieneeneeeeeenenn 72

With 9, 17, 27, 30, 35, 40, 41, 53, 55, 56, 57, 58, 62, 65,
67, 68, 70, 73, 74, 75, 77, 79, 84, 86, 98, 99, 101,
107, 108, 109, 121, 131, 139, 143, 145, 147, 152,
155, 157
NAME OFf i

With existing.

With Other ...

With other eVents..........cccocvoiiiiiiinieniese e 152
WIth tEXE ..o 109
With the name of........ccooe i 62, 75
WORD WID ..ottt 86

Workspace...1, 5, 7, 8, 9, 10, 13, 27, 30, 35, 40, 44, 50,
53, 62, 68, 70, 73, 75, 77, 79, 84, 99, 101, 109, 131,
133
CIRALE......veieree et 75,101
(O3 (T 1] o PSS 99

DElEtING ..ottt 8
EXISHING vttt 75, 99
name
Opening/Creating.
used
Workspace file
name
Workspace Tool Window............cccccevenuenee 27, 40, 44, 68
WOrksSpace WiNAOW..........cccverrinienienenieiee e 133
WPIINEE e 77,79

