

NORTHWEST EMC

DarCEO Inc.
Drivetrain Health Monitoring System- Gateway
FCC 15.207:2015
FCC 15.247:2015

Report # DARC0001.3

NVLAP Lab Code: 201049-0

CERTIFICATE OF TEST

Last Date of Test: April 24, 2015

DarCEO Inc.

Model: Drivetrain Health Monitoring System- Gateway

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2015	ANSI C63.10:2009
FCC 15.247:2015	ANSI C63.10:2009

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.7	Band Edge Compliance	Yes	Pass	
6.7	Spurious Conducted Emissions	Yes	Pass	Radiated Method
6.9.1	Occupied Bandwidth	Yes	Pass	
6.10.2	Output Power	Yes	Pass	
6.11.2	Power Spectral Density	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission - Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

<http://www.nwemc.com/accreditations/>

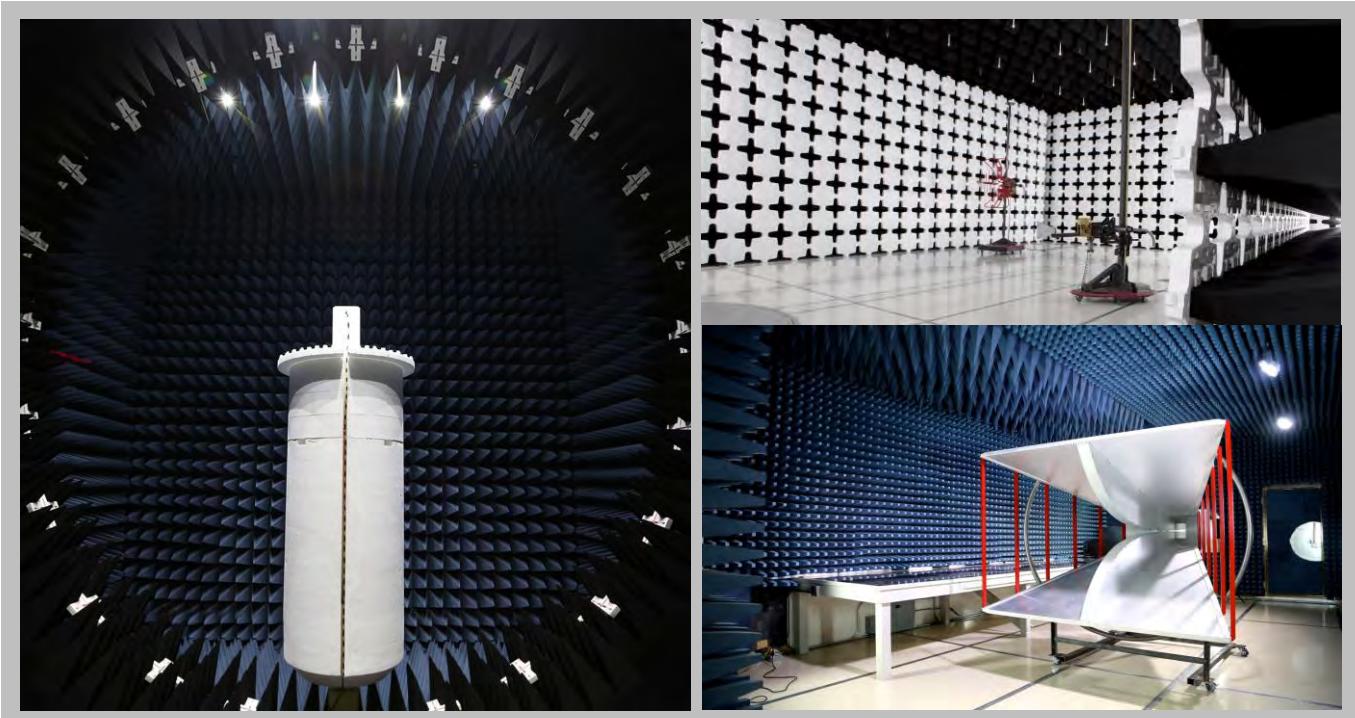
<http://gsi.nist.gov/global/docs/cabs/designations.html>

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.


The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	4.7 dB	-4.7 dB
AC Powerline Conducted Emissions (dB)	2.9 dB	-2.9 dB

FACILITIES

California	Minnesota	New York	Oregon	Texas	Washington
Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Labs NC01-05 19201 120 th Ave NE Bothell, WA 9801 (425)984-6600
NVLAP					
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code: 201049-0	NVLAP Lab Code: 200629-0
Industry Canada					
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1
BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
VCCI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	DarCEO Inc.
Address:	1675 Samco Road
City, State, Zip:	Rapid City, SD 57702
Test Requested By:	Brian Hemmelman
Model:	Drivetrain Health Monitoring System- Gateway
First Date of Test:	April 23, 2015
Last Date of Test:	April 24, 2015
Receipt Date of Samples:	April 21, 2015
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The sensor takes capacitance, temperature, accelerometer, etc. data readings periodically and communicates them to the gateway if it is in range. An operator can also get in close proximity to the sensor and trigger readings from it with a handheld RFID unit. The units are designed to go on locomotives. RFID in the sensor is passive.

Testing Objective:

To demonstrate compliance of the 2.4 GHz ISM radios in the Sensor and the Gateway to FCC 15.247 requirements.

CONFIGURATIONS

Configuration DARC0001- 4

Software/Firmware Running during test	
Description	Version
DHMS UHF Sensor Configuration	1.0.8.0

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Gateway	GE	84A237140P1	211504015

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Sensor 1	GE	84A234628P1	201512001
Sensor 2	GE	84A234628P1	201512006
Sensor 3	GE	84A234628P1	201512008
Antenna for Gateway	Linx Technologies	ANT-2.4-WRT-MON-RPS	None

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
BNC Coaxial Cable	Yes	1.2m	No	DC Power	Gateway

Configuration DARC0001- 5

Software/Firmware Running during test	
Description	Version
DHMS UHF Sensor Configuration	1.0.8.0

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Gateway	GE	84A237140P1	211504008

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Antenna for Gateway	Linx Technologies	ANT-2.4-WRT-MON-RPS	None

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
BNC Coaxial Cable	Yes	1.2m	No	DC Power	Gateway

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	4/23/2015	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	4/24/2015	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	4/24/2015	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	4/24/2015	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	4/24/2015	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	4/24/2015	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
7	4/24/2015	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
8	4/24/2015	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

AC POWERLINE CONDUCTED EMISSIONS

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESCI	ARF	5/27/2014	05/27/2015
High Pass Filter	TTE	H97-100K-50-720B	HHZ	9/13/2014	09/13/2015
Attenuator	Fairview Microwave	SA6B10W-20	TQR	9/13/2014	09/13/2015
Cable, Standard LISN	Northwest EMC	CE 9kHz-108MHz	TXA	9/14/2014	09/14/2015
LISN	Solar Electronics	9252-50-R-24-BNC	LJK	9/14/2014	09/14/2015
LISN	Solar Electronics	9252-50-R-24-BNC	LJL	9/14/2014	09/14/2015

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

DARC0001-4

MODES INVESTIGATED

Transmitting OQPSK at High Channel, 2480.078MHz
Transmitting OQPSK at Low Channel, 2424.7MHz
Transmitting OQPSK at Mid Channel, 2450.195MHz
Typical Standby Mode - No Transmission

AC POWERLINE CONDUCTED EMISSIONS

EUT:	Drivetrain Health Monitoring System- Gateway	Work Order:	DARC0001
Serial Number:	211504015	Date:	04/23/2015
Customer:	DarCEO Inc.	Temperature:	24.2°C
Attendees:	Brian Hemmelman	Relative Humidity:	48.1%
Customer Project:	None	Bar. Pressure:	1016 mb
Tested By:	Frank Sun	Job Site:	TX01
Power:	10.5 VDC	Configuration:	DARC0001-4

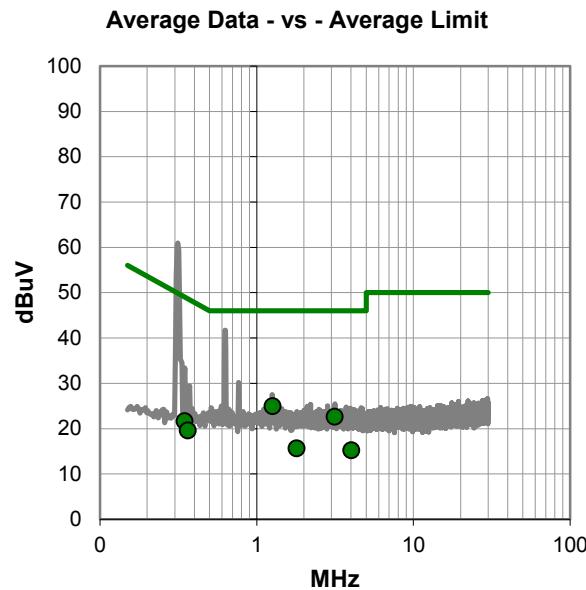
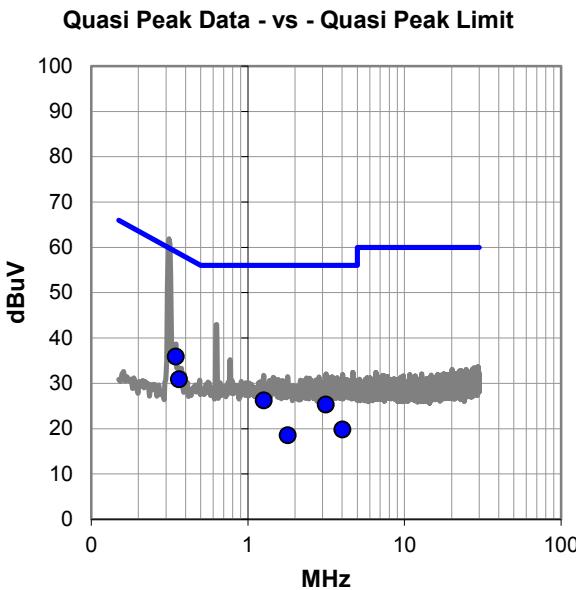
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2009

TEST PARAMETERS

Run #:	12	Line:	High Line	Ext. Attenuation (dB):	20
--------	----	-------	-----------	------------------------	----

COMMENTS



Gateway with Low CH Sensor, Compare to Run 8. Sensor needed to be within range of Gateway as firmware was still in development to operate Gateway standalone. The Sensor was not able to be reconfigured to different channels. Therefore, 3 electrically identical units were used at Low, Mid, and High Channels to force Gateway to the correct channel.

EUT OPERATING MODES

Transmitting OQPSK at Low Channel, 2424.7MHz

DEVIATIONS FROM TEST STANDARD

None

AC POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #12

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.347	15.9	20.0	35.9	59.0	-23.1
0.364	10.9	20.0	30.9	58.6	-27.7
1.262	6.2	20.0	26.2	56.0	-29.8
3.156	5.1	20.2	25.3	56.0	-30.7
4.021	-0.5	20.3	19.8	56.0	-36.2
1.799	-1.6	20.1	18.5	56.0	-37.5

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
1.262	4.9	20.0	24.9	46.0	-21.1
3.156	2.4	20.2	22.6	46.0	-23.4
0.347	1.6	20.0	21.6	49.0	-27.4
0.364	-0.4	20.0	19.6	48.6	-29.0
1.799	-4.5	20.1	15.6	46.0	-30.4
4.021	-5.1	20.3	15.2	46.0	-30.8

CONCLUSION

Pass

Tested By

AC POWERLINE CONDUCTED EMISSIONS

EUT:	Drivetrain Health Monitoring System- Gateway	Work Order:	DARC0001
Serial Number:	211504015	Date:	04/23/2015
Customer:	DarCEO Inc.	Temperature:	24.2°C
Attendees:	Brian Hemmelman	Relative Humidity:	48.1%
Customer Project:	None	Bar. Pressure:	1016 mb
Tested By:	Frank Sun	Job Site:	TX01
Power:	10.5 VDC	Configuration:	DARC0001-4

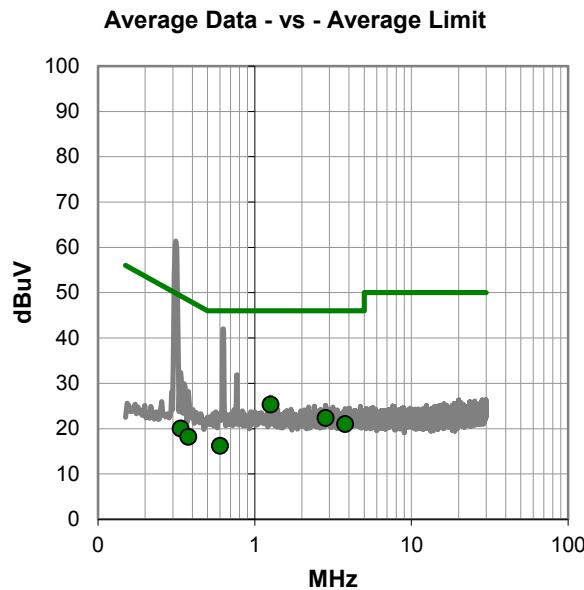
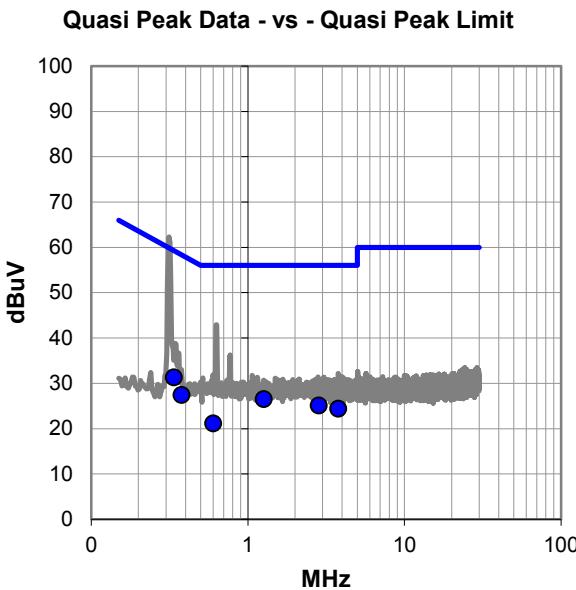
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2009

TEST PARAMETERS

Run #:	13	Line:	Neutral	Ext. Attenuation (dB):	20
--------	----	-------	---------	------------------------	----

COMMENTS



Gateway with Low CH Sensor, Compare to Run 9. Sensor needed to be within range of Gateway as firmware was still in development to operate Gateway standalone. The Sensor was not able to be reconfigured to different channels. Therefore, 3 electrically identical units were used at Low, Mid, and High Channels to force Gateway to the correct channel.

EUT OPERATING MODES

Transmitting OQPSK at Low Channel, 2424.7MHz

DEVIATIONS FROM TEST STANDARD

None

AC POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #13

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.338	11.3	20.0	31.3	59.3	-28.0
1.262	6.5	20.0	26.5	56.0	-29.5
2.839	4.9	20.2	25.1	56.0	-30.9
0.378	7.4	20.0	27.4	58.3	-30.9
3.787	4.1	20.3	24.4	56.0	-31.6
0.601	1.1	20.0	21.1	56.0	-34.9

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
1.262	5.3	20.0	25.3	46.0	-20.7
2.839	2.1	20.2	22.3	46.0	-23.7
3.787	0.7	20.3	21.0	46.0	-25.0
0.338	0.0	20.0	20.0	49.3	-29.3
0.601	-3.8	20.0	16.2	46.0	-29.8
0.378	-1.8	20.0	18.2	48.3	-30.1

CONCLUSION

Pass

Tested By

AC POWERLINE CONDUCTED EMISSIONS

EUT:	Drivetrain Health Monitoring System- Gateway	Work Order:	DARC0001
Serial Number:	211504015	Date:	04/23/2015
Customer:	DarCEO Inc.	Temperature:	24.2°C
Attendees:	Brian Hemmelman	Relative Humidity:	48.1%
Customer Project:	None	Bar. Pressure:	1016 mb
Tested By:	Frank Sun	Job Site:	TX01
Power:	10.5 VDC	Configuration:	DARC0001-4

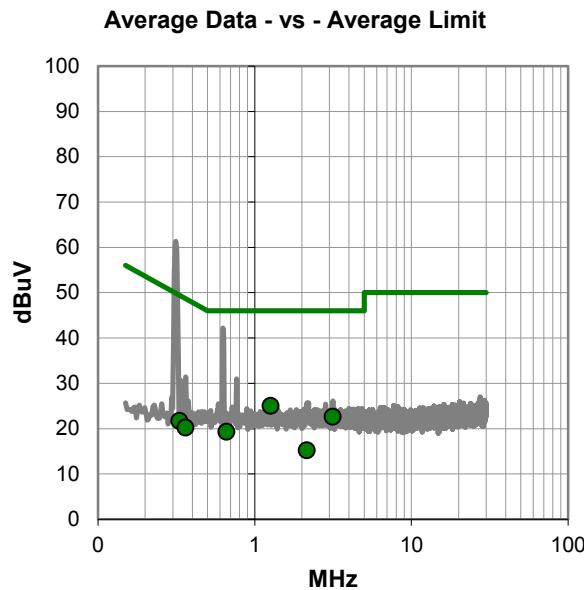
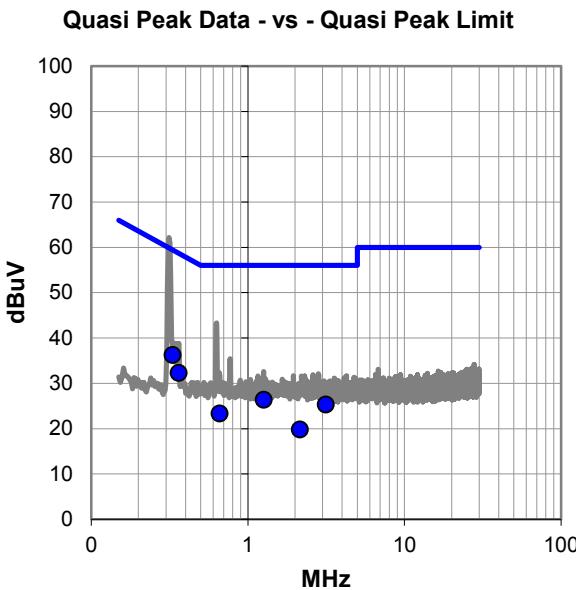
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2009

TEST PARAMETERS

Run #:	14	Line:	High Line	Ext. Attenuation (dB):	20
--------	----	-------	-----------	------------------------	----

COMMENTS



Gateway with Mid CH Sensor, Compare to Run 8. Sensor needed to be within range of Gateway as firmware was still in development to operate Gateway standalone. The Sensor was not able to be reconfigured to different channels. Therefore, 3 electrically identical units were used at Low, Mid, and High Channels to force Gateway to the correct channel.

EUT OPERATING MODES

Transmitting OQPSK at Mid Channel, 2450.195MHz

DEVIATIONS FROM TEST STANDARD

None

AC POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #14

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.331	16.2	20.0	36.2	59.4	-23.2
0.362	12.3	20.0	32.3	58.7	-26.4
1.262	6.3	20.0	26.3	56.0	-29.7
3.157	5.1	20.2	25.3	56.0	-30.7
0.660	3.3	20.0	23.3	56.0	-32.7
2.152	-0.4	20.2	19.8	56.0	-36.2

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
1.262	5.0	20.0	25.0	46.0	-21.0
3.157	2.4	20.2	22.6	46.0	-23.4
0.660	-0.7	20.0	19.3	46.0	-26.7
0.331	1.7	20.0	21.7	49.4	-27.7
0.362	0.2	20.0	20.2	48.7	-28.5
2.152	-5.0	20.2	15.2	46.0	-30.8

CONCLUSION

Pass

Tested By

AC POWERLINE CONDUCTED EMISSIONS

EUT:	Drivetrain Health Monitoring System- Gateway	Work Order:	DARC0001
Serial Number:	211504015	Date:	04/23/2015
Customer:	DarCEO Inc.	Temperature:	24.2°C
Attendees:	Brian Hemmelman	Relative Humidity:	48.1%
Customer Project:	None	Bar. Pressure:	1016 mb
Tested By:	Frank Sun	Job Site:	TX01
Power:	10.5 VDC	Configuration:	DARC0001-4

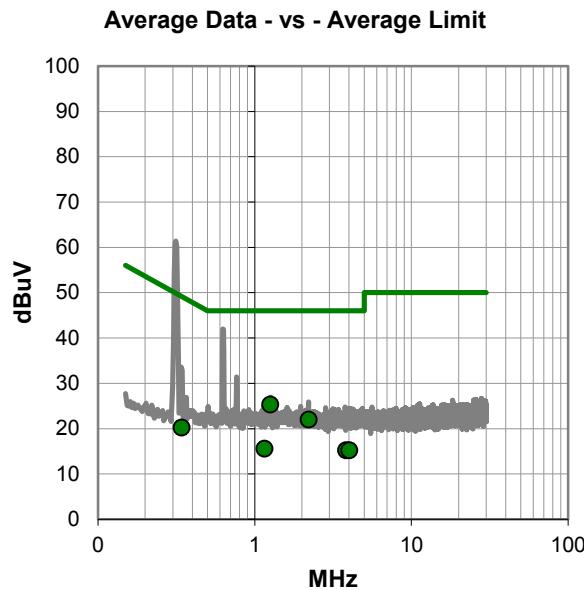
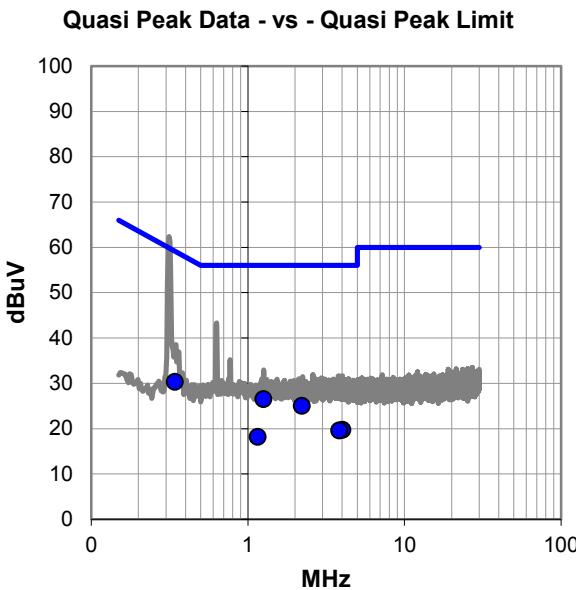
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2009

TEST PARAMETERS

Run #:	15	Line:	Neutral	Ext. Attenuation (dB):	20
--------	----	-------	---------	------------------------	----

COMMENTS



Gateway with Mid CH Sensor, Compare to Run 9. Sensor needed to be within range of Gateway as firmware was still in development to operate Gateway standalone. The Sensor was not able to be reconfigured to different channels. Therefore, 3 electrically identical units were used at Low, Mid, and High Channels to force Gateway to the correct channel.

EUT OPERATING MODES

Transmitting OQPSK at Mid Channel, 2450.195MHz

DEVIATIONS FROM TEST STANDARD

None

AC POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #15

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.342	10.3	20.0	30.3	59.2	-28.9
1.262	6.5	20.0	26.5	56.0	-29.5
2.210	4.8	20.2	25.0	56.0	-31.0
4.023	-0.6	20.3	19.7	56.0	-36.3
3.845	-0.7	20.3	19.6	56.0	-36.4
1.157	-1.9	20.0	18.1	56.0	-37.9

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
1.262	5.3	20.0	25.3	46.0	-20.7
2.210	1.8	20.2	22.0	46.0	-24.0
0.342	0.2	20.0	20.2	49.2	-29.0
1.157	-4.5	20.0	15.5	46.0	-30.5
3.845	-5.1	20.3	15.2	46.0	-30.8
4.023	-5.1	20.3	15.2	46.0	-30.8

CONCLUSION

Pass

Tested By

AC POWERLINE CONDUCTED EMISSIONS

EUT:	Drivetrain Health Monitoring System- Gateway	Work Order:	DARC0001
Serial Number:	211504015	Date:	04/23/2015
Customer:	DarCEO Inc.	Temperature:	24.2°C
Attendees:	Brian Hemmelman	Relative Humidity:	48.1%
Customer Project:	None	Bar. Pressure:	1016 mb
Tested By:	Frank Sun	Job Site:	TX01
Power:	10.5 VDC	Configuration:	DARC0001-4

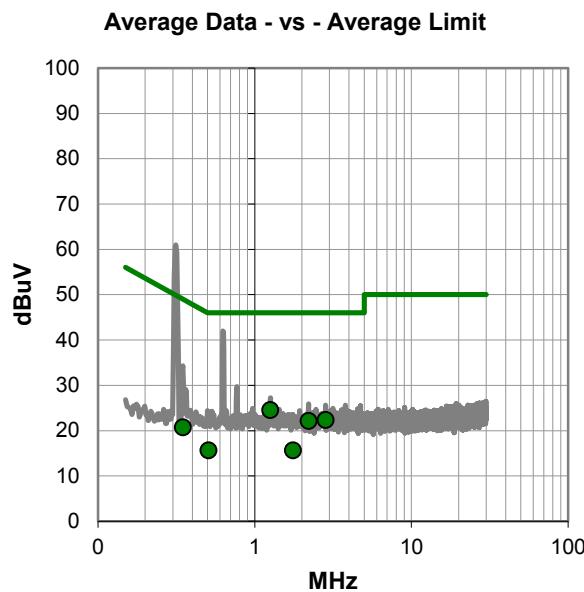
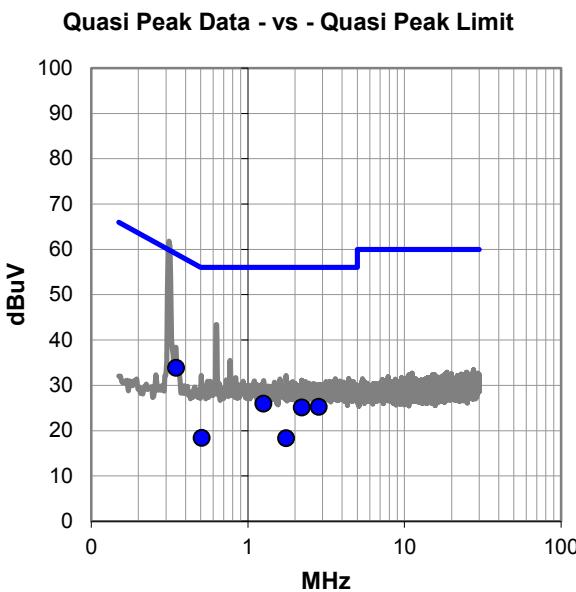
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2009

TEST PARAMETERS

Run #:	17	Line:	High Line	Ext. Attenuation (dB):	20
--------	----	-------	-----------	------------------------	----

COMMENTS



Gateway with High CH Sensor, Compare to Run 8. Sensor needed to be within range of Gateway as firmware was still in development to operate Gateway standalone. The Sensor was not able to be reconfigured to different channels. Therefore, 3 electrically identical units were used at Low, Mid, and High Channels to force Gateway to the correct channel.

EUT OPERATING MODES

Transmitting OQPSK at High Channel, 2480.078MHz

DEVIATIONS FROM TEST STANDARD

None

AC POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #17

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.349	13.8	20.0	33.8	59.0	-25.2
1.261	5.9	20.0	25.9	56.0	-30.1
2.840	5.0	20.2	25.2	56.0	-30.8
2.209	4.9	20.2	25.1	56.0	-30.9
0.509	-1.6	20.0	18.4	56.0	-37.6
1.759	-1.8	20.1	18.3	56.0	-37.7

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
1.261	4.5	20.0	24.5	46.0	-21.5
2.840	2.1	20.2	22.3	46.0	-23.7
2.209	1.9	20.2	22.1	46.0	-23.9
0.349	0.7	20.0	20.7	49.0	-28.3
0.509	-4.4	20.0	15.6	46.0	-30.4
1.759	-4.5	20.1	15.6	46.0	-30.4

CONCLUSION

Pass

Tested By

AC POWERLINE CONDUCTED EMISSIONS

EUT:	Drivetrain Health Monitoring System- Gateway	Work Order:	DARC0001
Serial Number:	211504015	Date:	04/23/2015
Customer:	DarCEO Inc.	Temperature:	24.2°C
Attendees:	Brian Hemmelman	Relative Humidity:	48.1%
Customer Project:	None	Bar. Pressure:	1016 mb
Tested By:	Frank Sun	Job Site:	TX01
Power:	10.5 VDC	Configuration:	DARC0001-4

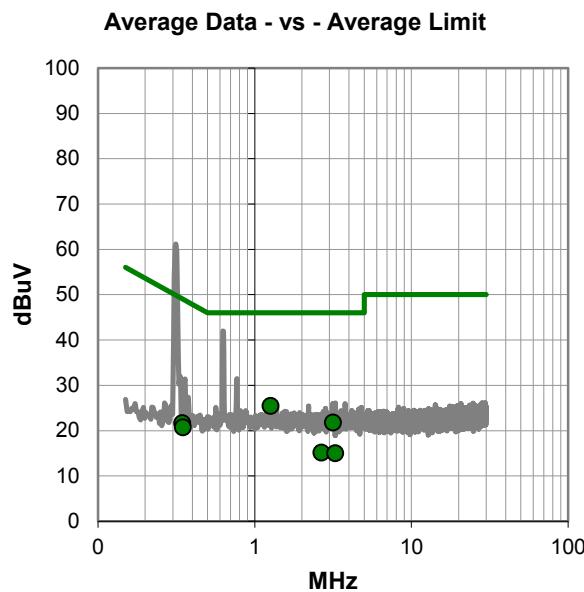
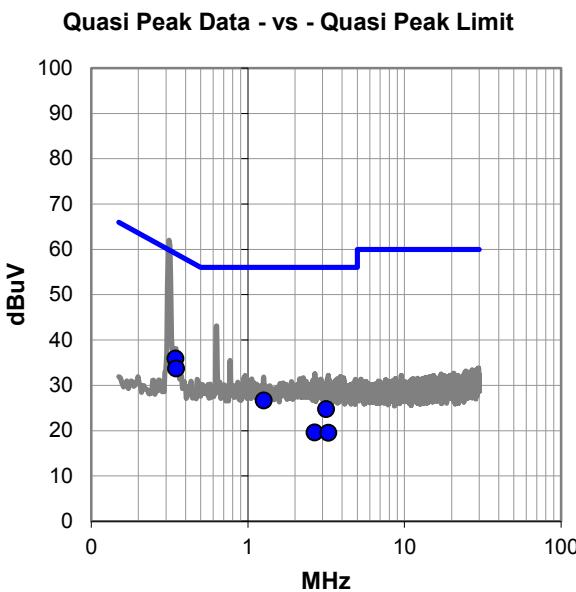
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2009

TEST PARAMETERS

Run #:	18	Line:	Neutral	Ext. Attenuation (dB):	20
--------	----	-------	---------	------------------------	----

COMMENTS



Gateway with High CH Sensor, Compare to Run 9. Sensor needed to be within range of Gateway as firmware was still in development to operate Gateway standalone. The Sensor was not able to be reconfigured to different channels. Therefore, 3 electrically identical units were used at Low, Mid, and High Channels to force Gateway to the correct channel.

EUT OPERATING MODES

Transmitting OQPSK at High Channel, 2480.078MHz

DEVIATIONS FROM TEST STANDARD

None

AC POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #18

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.346	15.9	20.0	35.9	59.1	-23.2
0.349	13.7	20.0	33.7	59.0	-25.3
1.263	6.6	20.0	26.6	56.0	-29.4
3.157	4.5	20.2	24.7	56.0	-31.3
2.667	-0.6	20.2	19.6	56.0	-36.4
3.274	-0.7	20.2	19.5	56.0	-36.5

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
1.263	5.4	20.0	25.4	46.0	-20.6
3.157	1.6	20.2	21.8	46.0	-24.2
0.346	1.6	20.0	21.6	49.1	-27.5
0.349	0.7	20.0	20.7	49.0	-28.3
2.667	-5.1	20.2	15.1	46.0	-30.9
3.274	-5.2	20.2	15.0	46.0	-31.0

CONCLUSION

Pass

Tested By

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting OQPSK at Low, Mid, High Channel @ 2424.7, 2450.195, 2480.078 MHz.

POWER SETTINGS INVESTIGATED

10.5VDC

CONFIGURATIONS INVESTIGATED

DARC0001 - 5

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 26000 MHz

SAMPLE CALCULATIONS

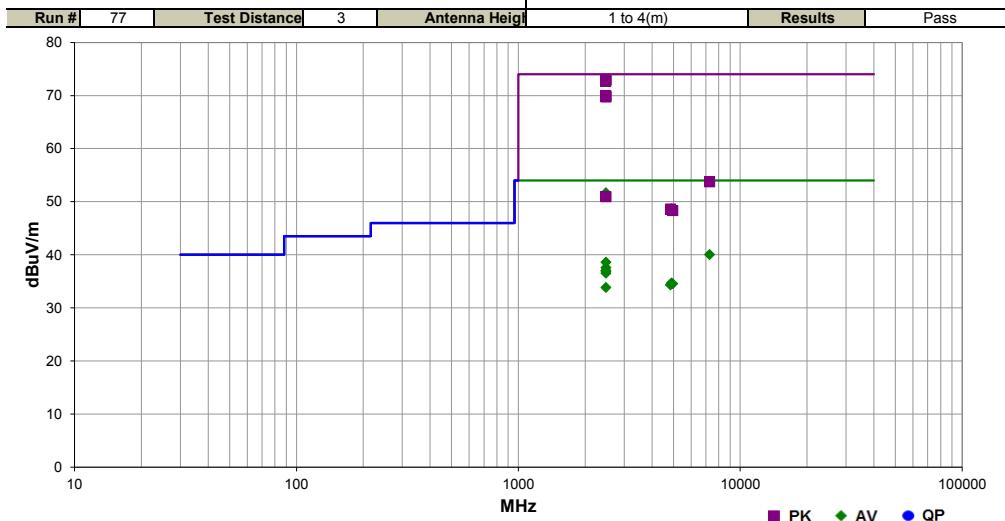
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Multimeter	Fluke	77-IV	MLT	9/25/2014	36 mo
DC Power Supply	Ametek Programmable Power, Inc.	Sorenson XEL30-3D	TQE	NCR	0 mo
Spectrum Analyzer	Agilent	N9010A	AFL	6/20/2014	12 mo
Antenna, Biconilog	ETS Lindgren	3143B	AYF	4/7/2014	24 mo
Attenuator, 20dB, 40 GHz	Fairview Microwave	SA4018-20	TQY	2/27/2015	12 mo
TX02 Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	9/22/2014	12 mo
Pre-Amplifier	Miteq	AM-1551	PAH	9/13/2014	12 mo
Antenna, Horn	ETS Lindgren	3115	AJL	9/15/2014	24 mo
TX02 Cable	Northwest EMC	1.8-2 GHz	TXC	9/22/2014	12 mo
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAJ	9/22/2014	12 mo
Antenna, Horn	ETS Lindgren	3160-07	AJF	NCR	0 mo
Antenna, Horn	ETS Lindgren	3160-08	AJG	NCR	0 mo
Antenna, Double Ridge Guide Horn	A.H. Systems, Inc.	SAS-574	AXW	4/23/2014	24 mo
Cable	Northwest EMC	18-40GHz	TXE	11/21/2014	12 mo
Pre-Amplifier	Miteq	JSDQK42-18004000-60-5P	PAM	11/21/2014	12 mo
TX02 Cable	Northwest EMC	8-18GHz	TXD	10/27/2014	12 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	PAL	10/27/2014	12 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	PAK	10/27/2014	12 mo
Low Pass Filter, 0 - 1000 MHz	Micro-Tronics	LPM50004	HHV	8/18/2014	12 mo
High Pass Filter, 2.8 - 18 GHz	Micro-Tronics	HPM50111	HHX	8/18/2014	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance (marker delta method was used where noted). While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

SPURIOUS RADIATED EMISSIONS

Work Order:	DARC0001	Date:	04/24/15		
Project:	None	Temperature:	24.2 °C		
Job Site:	TX02	Humidity:	49.3% RH		
Serial Number:	211504008	Barometric Pres.:	1008 mbar	Tested by:	Jonathan Kiefer
EUT:	Drivetrain Health Monitoring System- Gateway				
Configuration:	5				
Customer:	DarCEO Inc.				
Attendees:	Brian Hemmelman				
EUT Power:	10.5VDC				
Operating Mode:	Transmitting OQPSK at Low, Mid, High Channel @ 2424.7, 2450.195, 2480.078 MHz.				
Deviations:	None				
Comments:	Band edge measurements required marker delta verification method. Firmware was updated so the Sensor was not needed in range to transmit on the Gateway				

Test Specifications	Test Method
FCC 15.247:2015	ANSI C63.10:2009

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.500	67.7	-4.7	1.5	247.0	3.0	10.0	Vert	PK	0.0	73.0	74.0	-1.0	High Ch, EUT On Side.
2483.500	67.4	-4.7	1.0	196.9	3.0	10.0	Horz	PK	0.0	72.7	74.0	-1.3	High Ch, EUT Vertical.
2483.500	64.6	-4.7	1.0	256.9	3.0	10.0	Horz	PK	0.0	69.9	74.0	-4.1	High Ch, EUT Horizontal.
2483.500	64.4	-4.7	1.0	236.0	3.0	10.0	Horz	PK	0.0	69.7	74.0	-4.3	High Ch, EUT On Side.
7275.558	26.7	13.3	1.0	51.0	3.0	0.0	Horz	AV	0.0	40.0	54.0	-14.0	Low Ch, EUT Vertical.
2483.500	0.0	0.0	1.5	247.0	3.0	10.0	Vert	AV	0.0	38.6	54.0	-15.4	Average 82.6 + -47.017 dBc = 38.583
2483.500	0.0	0.0	1.0	236.0	3.0	10.0	Horz	AV	0.0	37.6	54.0	-16.4	Average 80.0 + -42.418 dBc = 37.582
2483.500	0.0	0.0	1.5	225.0	3.0	10.0	Vert	AV	0.0	37.0	54.0	-17.0	Average 81.6 + -44.604 dBc = 36.996
2483.500	0.0	0.0	1.0	256.9	3.0	10.0	Horz	AV	0.0	36.9	54.0	-17.1	Average 80.2 + -43.275 dBc = 36.925
2483.500	0.0	0.0	1.5	259.0	3.0	10.0	Vert	AV	0.0	36.5	54.0	-17.5	Average 81.2 + -44.661 dBc = 36.539
4899.825	26.6	8.1	1.0	232.9	3.0	0.0	Horz	AV	0.0	34.7	54.0	-19.3	Mid Ch, EUT Vertical
4962.275	26.3	8.2	1.0	184.9	3.0	0.0	Horz	AV	0.0	34.5	54.0	-19.5	High Ch, EUT Vertical
4846.575	26.4	7.9	1.0	136.9	3.0	0.0	Vert	AV	0.0	34.3	54.0	-19.7	Low Ch, EUT On Side
2483.500	0.0	0.0	1.0	196.8	3.0	10.0	Horz	AV	0.0	33.8	54.0	-20.2	Average 79.4 + -45.565 dBc = 33.835
7276.408	40.4	13.3	1.0	51.0	3.0	0.0	Horz	PK	0.0	53.7	74.0	-20.3	Low Ch, EUT Vertical
2483.500	0.0	0.0	1.5	225.0	3.0	10.0	Vert	PK	0.0	51.7	74.0	-22.3	Peak 96.3 + -44.604 dBc = 51.696
2483.500	0.0	0.0	1.5	259.0	3.0	10.0	Vert	PK	0.0	50.9	74.0	-23.1	Peak 95.6 + -44.661 dBc = 50.939
4898.933	40.6	8.1	1.0	232.9	3.0	0.0	Horz	PK	0.0	48.7	74.0	-25.3	Mid Ch, EUT Vertical
4848.433	40.7	7.9	1.0	136.9	3.0	0.0	Vert	PK	0.0	48.6	74.0	-25.4	Low Ch, EUT On Side
4961.242	40.1	8.2	1.0	184.9	3.0	0.0	Horz	PK	0.0	48.3	74.0	-25.7	High Ch, EUT Vertical
2479.930	77.3	-4.7	1.5	247.0	3.0	10.0	Vert	AV	0.0	82.6	N/A	N/A	High Ch, EUT On Side. Fundamental for marker-delta.
2479.980	74.7	-4.7	1.0	236.0	3.0	10.0	Horz	AV	0.0	80.0	N/A	N/A	High Ch, EUT On Side. Fundamental for marker-delta.
2479.955	76.3	-4.7	1.5	225.0	3.0	10.0	Vert	AV	0.0	81.6	N/A	N/A	High Ch, EUT Vertical. Fundamental measurement for Marker-Delta.
2479.967	75.9	-4.7	1.5	259.0	3.0	10.0	Vert	AV	0.0	81.2	N/A	N/A	High Ch, EUT Horizontal. Fundamental measurement for Marker-Delta.
2479.967	74.1	-4.7	1.0	196.8	3.0	10.0	Horz	AV	0.0	79.4	N/A	N/A	High Ch, EUT Vertical. Fundamental measurement for Marker-Delta.
2479.438	91.0	-4.7	1.5	225.0	3.0	10.0	Vert	PK	0.0	96.3	N/A	N/A	High Ch, EUT Vertical. Fundamental measurement for Marker-Delta.
2479.470	90.3	-4.7	1.5	259.0	3.0	10.0	Vert	PK	0.0	95.6	N/A	N/A	High Ch, EUT Horizontal. Fundamental measurement for Marker-Delta.

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

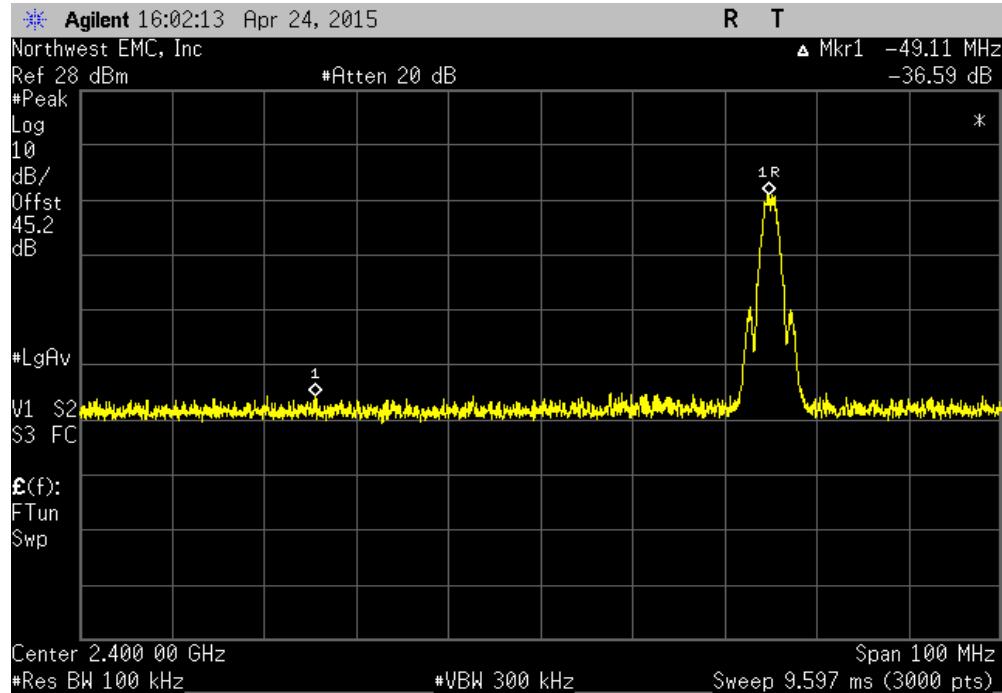
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval (mos)
Near Field Probe	ETS Lindgren	7405	IPS	NCR	0
DC Power Supply	Ametek Programmable Power, Inc.	Sorenson XEL30-3D	TQE	NCR	0
Multimeter	Fluke	77-IV	MLT	9/25/2014	36
Spectrum Analyzer	Agilent	E4440A	AFD	7/14/2014	12

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a radiated method via a near field probe. A reference level offset was used in the analyzer to match the actual radiated EIRP level. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.


BAND EDGE COMPLIANCE

EUT:	Drivetrain Health Monitoring System- Gateway		Work Order:	DARC0001		
Serial Number:	211504008		Date:	04/24/15		
Customer:	DarCEO Inc.		Temperature:	24.2°C		
Attendees:	Brian Hemmelman		Humidity:	49%		
Project:	None		Barometric Pres.:	1007 mbar		
Tested by:	Jonathan Kiefer	Power:	10.5 VDC	Job Site:	TX09	
TEST SPECIFICATIONS			Test Method			
FCC 15.247:2015			ANSI C63.10:2009			
COMMENTS						
None						
DEVIATIONS FROM TEST STANDARD						
None						
Configuration #	5	Signature		Value (dBc)	Limit ≤ (dBc)	Result
OOQPSK				-36.6	-20	Pass
				-35.8	-20	Pass
Low Channel, 2424.7 MHz High Channel, 2480.078 MHz						

BAND EDGE COMPLIANCE

OQPSK, Low Channel, 2424.7 MHz

Value (dBc)	Limit \leq (dBc)	Result
-36.6	-20	Pass

OQPSK, High Channel, 2480.078 MHz

Value (dBc)	Limit \leq (dBc)	Result
-35.8	-20	Pass

OCCUPIED BANDWIDTH

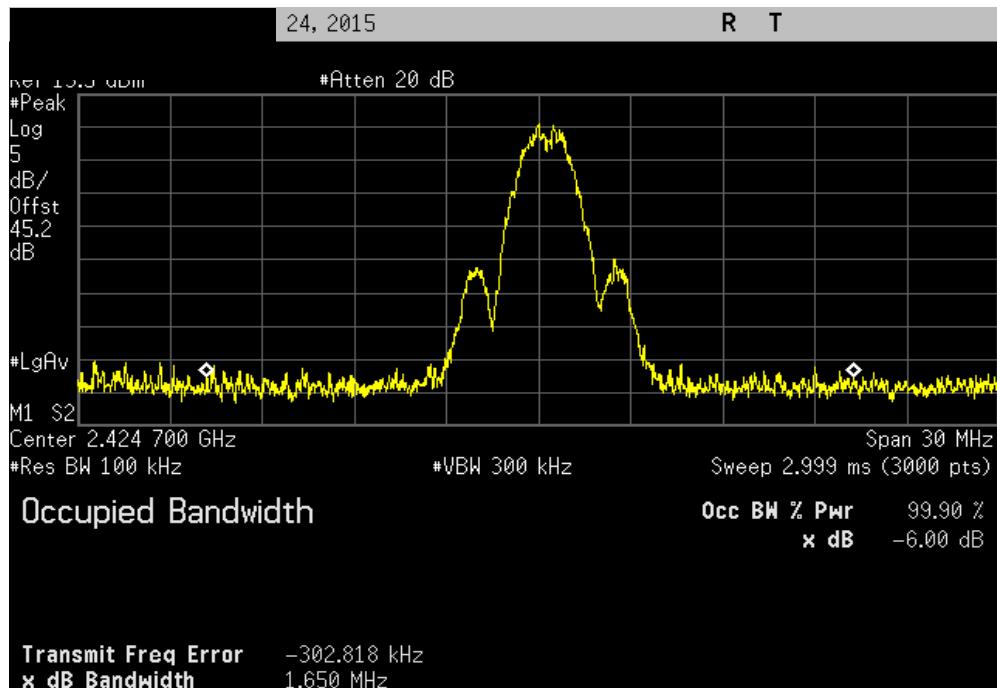
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

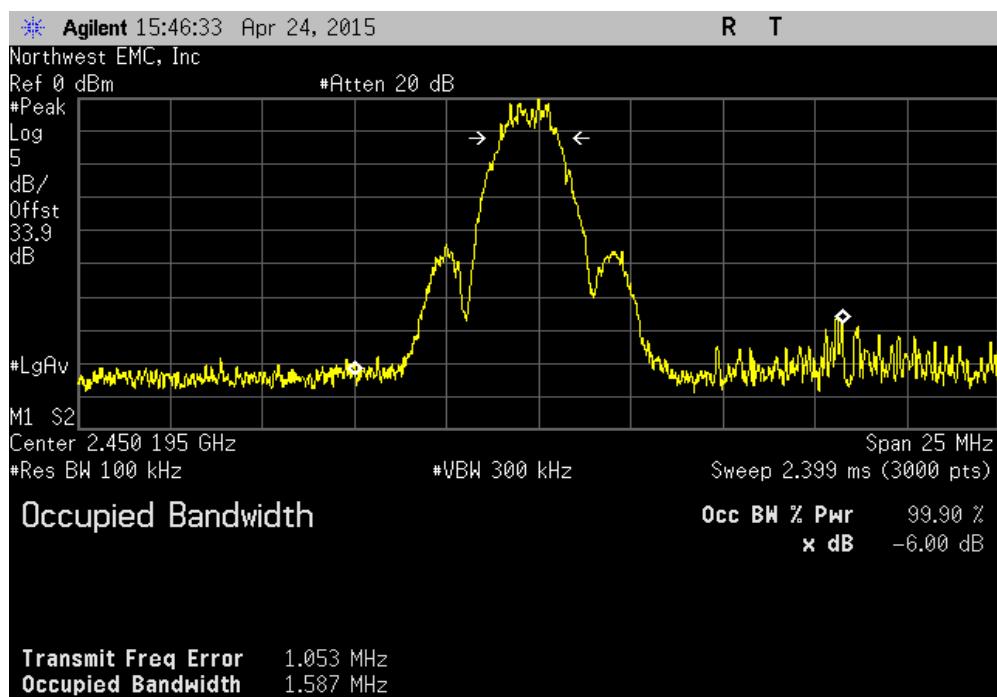
Description	Manufacturer	Model	ID	Last Cal.	Interval (mos)
Near Field Probe	ETS Lindgren	7405	IPS	NCR	0
Multimeter	Fluke	77-IV	MLT	9/25/2014	36
DC Power Supply	Ametek Programmable Power, Inc.	Sorenson XEL30-3D	TQE	NCR	0
Spectrum Analyzer	Agilent	E4440A	AFD	7/14/2014	12

TEST DESCRIPTION

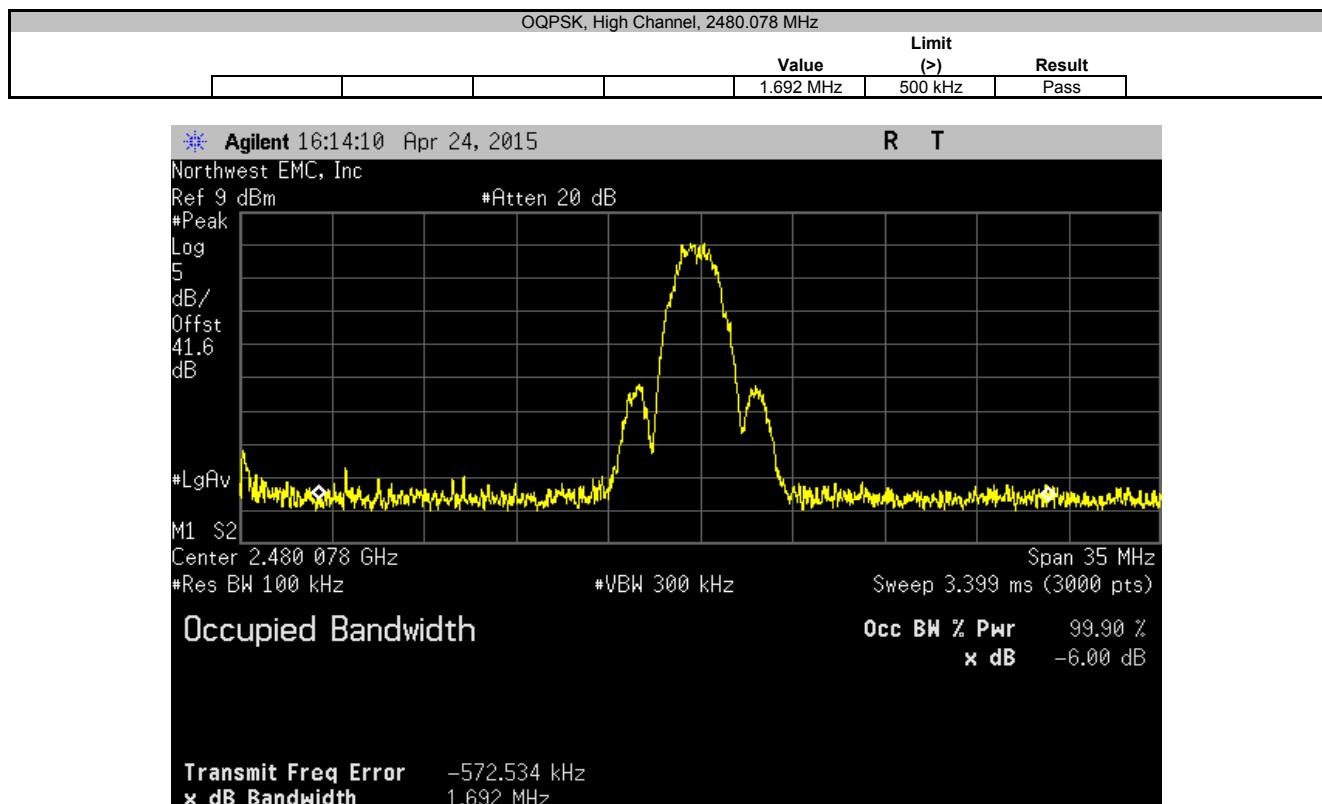
The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth.


The EUT was set to the channels and modes listed in the datasheet. The measurement was made using a radiated method via a near field probe. A reference level offset was used in the analyzer to match the actual radiated EIRP level.

OCCUPIED BANDWIDTH


EUT:	Drivetrain Health Monitoring System- Gateway		Work Order:	DARC0001	
Serial Number:	211504008		Date:	04/24/15	
Customer:	DarCEO Inc.		Temperature:	24.2°C	
Attendees:	Brian Hemmelman		Humidity:	49%	
Project:	None		Barometric Pres.:	1007 mbar	
Tested by:	Jonathan Kiefer	Power:	10.5 VDC	Job Site:	TX09
TEST SPECIFICATIONS			Test Method		
FCC 15.247:2015			ANSI C63.10:2009		
COMMENTS					
None					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration #	5	Signature		Value	Limit (>)
OOQPSK			1.65 MHz	500 kHz	Pass
			1.587 MHz	500 kHz	Pass
			1.692 MHz	500 kHz	Pass

OCCUPIED BANDWIDTH

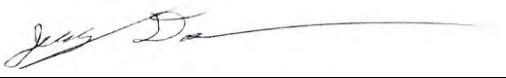

OQPSK, Low Channel, 2424.7 MHz			Value	Limit	Result
			1.65 MHz	(>) 500 kHz	Pass

OQPSK, Mid Channel, 2450.195 MHz			Value	Limit	Result
			1.587 MHz	(>) 500 kHz	Pass

OCCUPIED BANDWIDTH

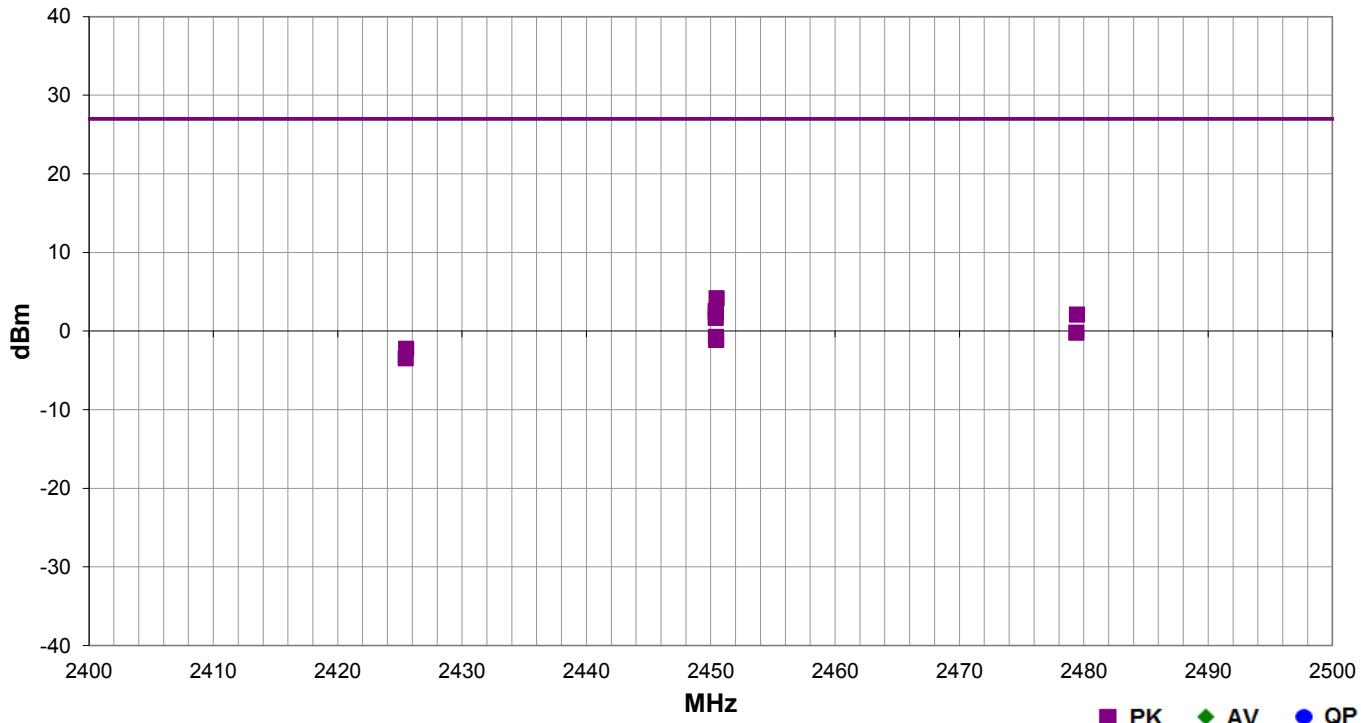
OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.


TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval (mos)
TX02 Cable	Northwest EMC	1-8.2 GHz	TXC	9/22/2014	12
Antenna, Horn	ETS	3115	AJN	9/15/2014	24
Spectrum Analyzer	Agilent	N9010A	AFL	6/20/2014	12

TEST DESCRIPTION



The peak output power was measured with the EUT set to low, medium and high transmit frequencies. A field strength measurement was made of the fundamental with the carrier fully maximized for its highest radiated power. The final data was converted from field strength to a radiated power value using equation 5 found in ANSI C63.10:2009

Work Order:	DARC0001	Date:	04/24/15	
Project:	None	Temperature:	24.2 °C	
Job Site:	TX02	Humidity:	49.3% RH	
Serial Number:	211504008	Barometric Pres.:	1013 mbar	
EUT:	Drivetrain Health Monitoring System- Gateway	Tested by:	Jonathan Kiefer	
Configuration:	5			
Customer:	DarCEO Inc.			
Attendees:	Brian Hemmelman			
EUT Power:	10.5 VDC			
Operating Mode:	Transmitting OQPSK at Low, Mid, High Channel @ 2424.7, 2450.195, 2480.078 MHz.			
Deviations:	None			
Comments:	None			

Test Specifications		Test Method	
FCC 15.247:2015		ANSI C63.10:2009	

Run #	63	Test Distance (m)	3	Antenna Height(s)	1 to 4(m)	Results	Pass

	Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
2450.467	1.9	267.9	Vert	PK	2.61E-03	4.2	36.0	-31.8	Mid Ch, EUT On Side	
2450.392	2.4	214.9	Vert	PK	1.81E-03	2.6	36.0	-33.4	Mid Ch, EUT Vertical	
2450.425	1.4	291.9	Vert	PK	1.72E-03	2.4	36.0	-33.6	Mid Ch, EUT Horizontal	
2479.447	1.0	270.0	Horz	PK	1.62E-03	2.1	36.0	-33.9	High Ch, EUT Horizontal	
2450.392	1.0	231.9	Horz	PK	1.47E-03	1.7	36.0	-34.3	Mid Ch, EUT Horizontal	
2479.405	1.2	225.0	Vert	PK	9.54E-04	-0.2	36.0	-36.2	High Ch, EUT On Side	
2450.425	1.0	243.0	Horz	PK	8.45E-04	-0.7	36.0	-36.7	Mid Ch, EUT On Side	
2450.433	1.0	199.0	Horz	PK	7.71E-04	-1.1	36.0	-37.1	Mid Ch, EUT Vertical	
2425.500	1.0	261.0	Horz	PK	5.95E-04	-2.3	36.0	-38.3	Low Ch, EUT Horizontal	
2425.467	1.2	296.0	Vert	PK	4.51E-04	-3.5	36.0	-39.5	Low Ch, EUT On Side	

POWER SPECTRAL DENSITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval (mos)
Near Field Probe	ETS Lindgren	7405	IPS	NCR	0
Multimeter	Fluke	77-IV	MLT	9/25/2014	36
DC Power Supply	Ametek Programmable Power, Inc.	Sorenson XEL30-3D	TQE	NCR	0
Spectrum Analyzer	Agilent	E4440A	AFD	7/14/2014	12

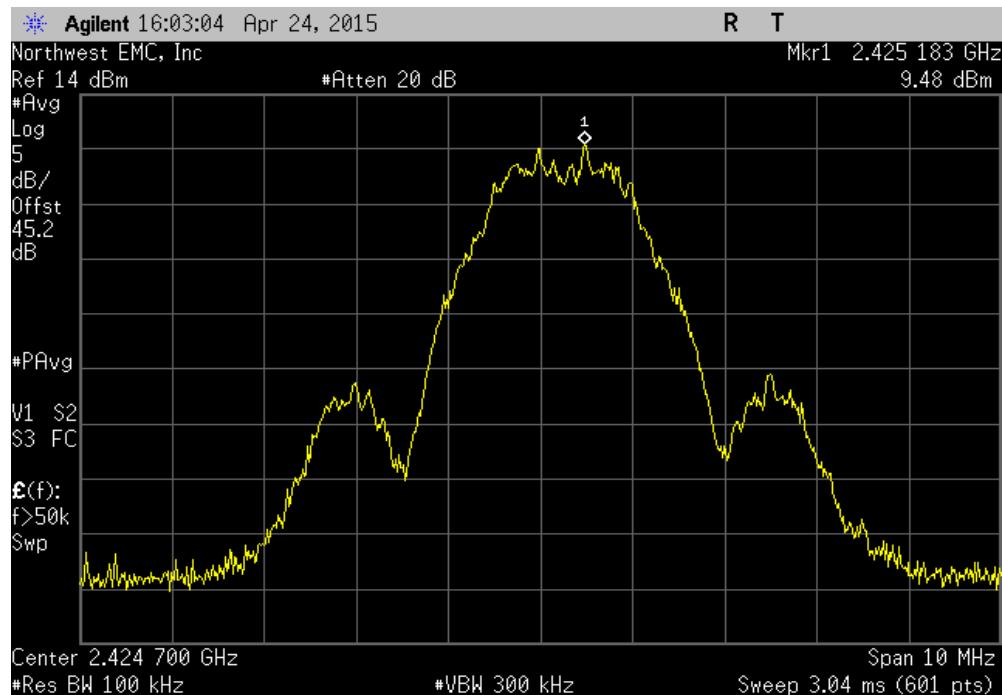
TEST DESCRIPTION

The maximum power spectral density measurements were measured with the EUT set to the required transmit frequencies in each band. The measurement was made using radiated method via a near field probe. A reference level offset was used in the analyzer to match the actual radiated EIRP level. The EUT was transmitting at the lowest, middle, and maximum data rate for each modulation type available.

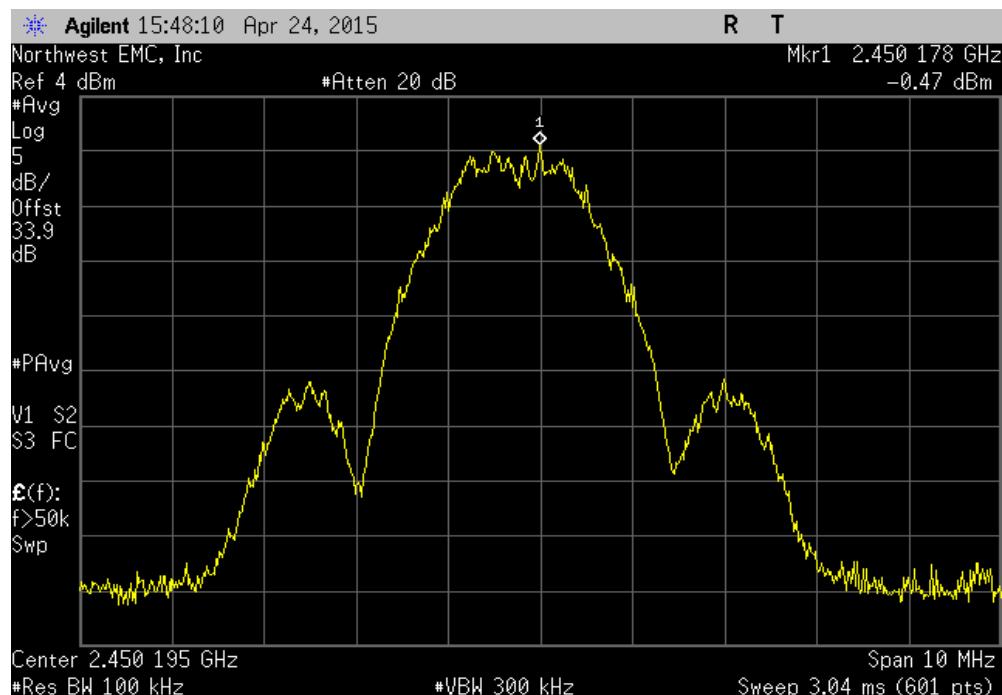
Per the procedure outlined in FCC KDB 558074 D01 DTS Measurement Section 10.3, the spectrum analyzer was used as follows:

- RBW = 100 kHz
- VBW = 300 kHz
- Detector = Average
- Trace = Max hold

The observed power level is then scaled to an equivalent value in 3 kHz by adding a Bandwidth Correction Factor (BWCF) where:


$$\text{BWCF} = 10 \cdot \text{LOG} (3 \text{ kHz} / 100 \text{ kHz}) = -15.2 \text{ dB}$$

POWER SPECTRAL DENSITY


EUT:	Drivetrain Health Monitoring System- Gateway		Work Order:	DARC0001				
Serial Number:	211504008		Date:	04/24/15				
Customer:	DarCEO Inc.		Temperature:	24.2°C				
Attendees:	Brian Hemmelman		Humidity:	49%				
Project:	None		Barometric Pres.:	1007 mbars				
Tested by:	Jonathan Kiefer	Power:	10.5 VDC	Job Site:	TX09			
TEST SPECIFICATIONS			Test Method					
FCC 15.247:2015			ANSI C63.10:2009					
COMMENTS								
None								
DEVIATIONS FROM TEST STANDARD								
None								
Configuration #	5	Signature		Value dBm/100kHz	dBm/100kHz To dBm/3kHz	Value dBm/3kHz	Limit dBm/3kHz	Results
OOQPSK			9.483	-15.2	-5.717	8	Pass	
			-0.469	-15.2	-15.669	8	Pass	
			5.148	-15.2	-10.052	8	Pass	

POWER SPECTRAL DENSITY

OQPSK, Low Channel, 2424.7 MHz					
Value dBm/100kHz	Value To dBm/3kHz	Value dBm/3kHz	Limit dBm/3kHz	Results	
9.483	-15.2	-5.717	8	Pass	

OQPSK, Mid Channel, 2450.195 MHz					
Value dBm/100kHz	Value To dBm/3kHz	Value dBm/3kHz	Limit dBm/3kHz	Results	
-0.469	-15.2	-15.669	8	Pass	

POWER SPECTRAL DENSITY

OQPSK, High Channel, 2480.078 MHz					
Value	dBm/100kHz	Value	Limit	Results	
dBm/100kHz	To dBm/3kHz	dBm/3kHz	dBm/3kHz		
	5.148	-15.2	-10.052	8	Pass

DUTY CYCLE

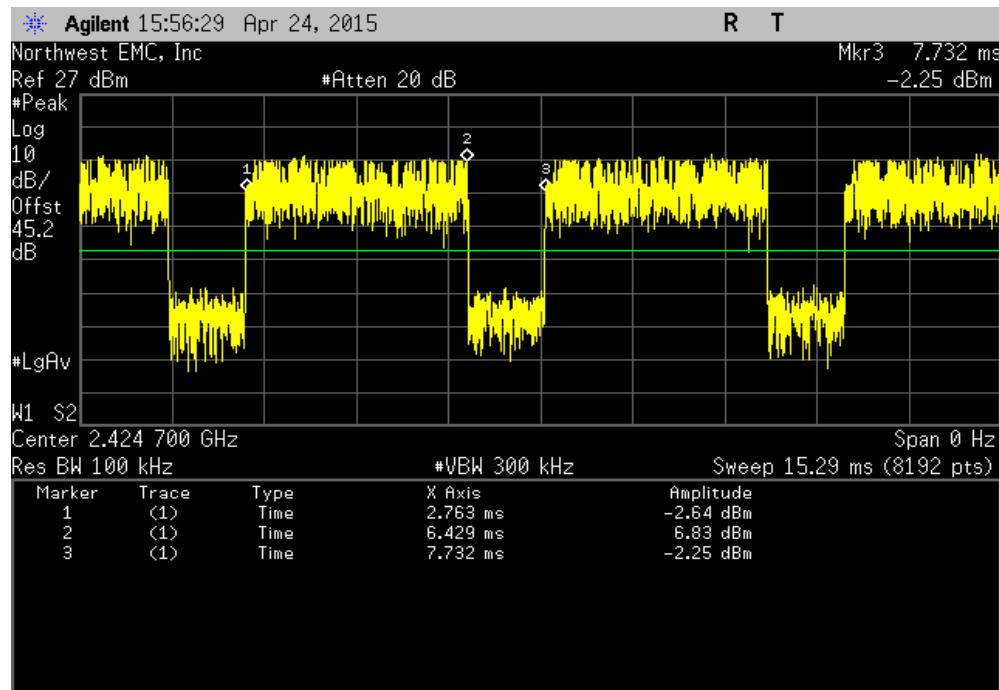
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

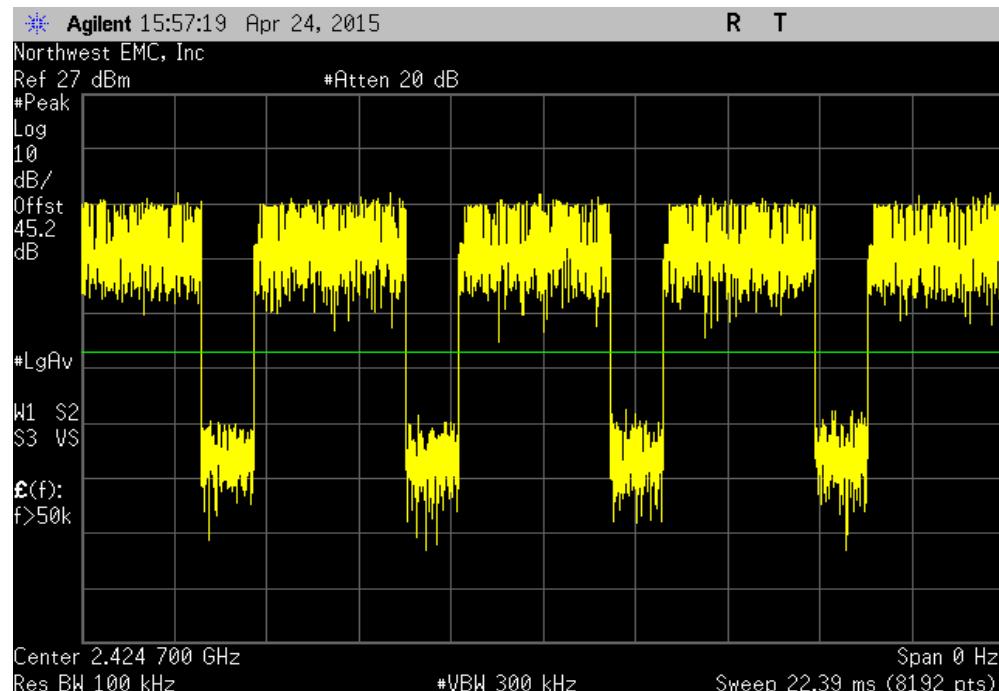
Description	Manufacturer	Model	ID	Last Cal.	Interval (mos)
Near Field Probe	ETS Lindgren	7405	IPS	NCR	0
Multimeter	Fluke	77-IV	MLT	9/25/2014	36
DC Power Supply	Ametek Programmable	Sorenson XEL30-3D	TQE	NCR	0
Spectrum Analyzer	Agilent	E4440A	AFD	7/14/2014	12

TEST DESCRIPTION

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

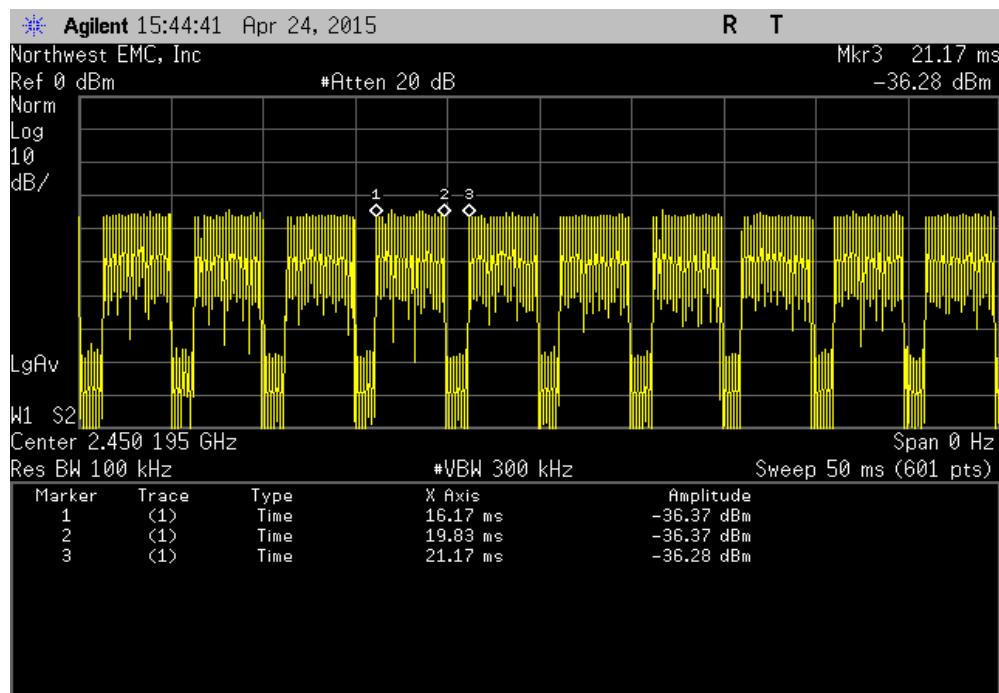

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. The duty cycle was measured radiated using a near field probe.

DUTY CYCLE

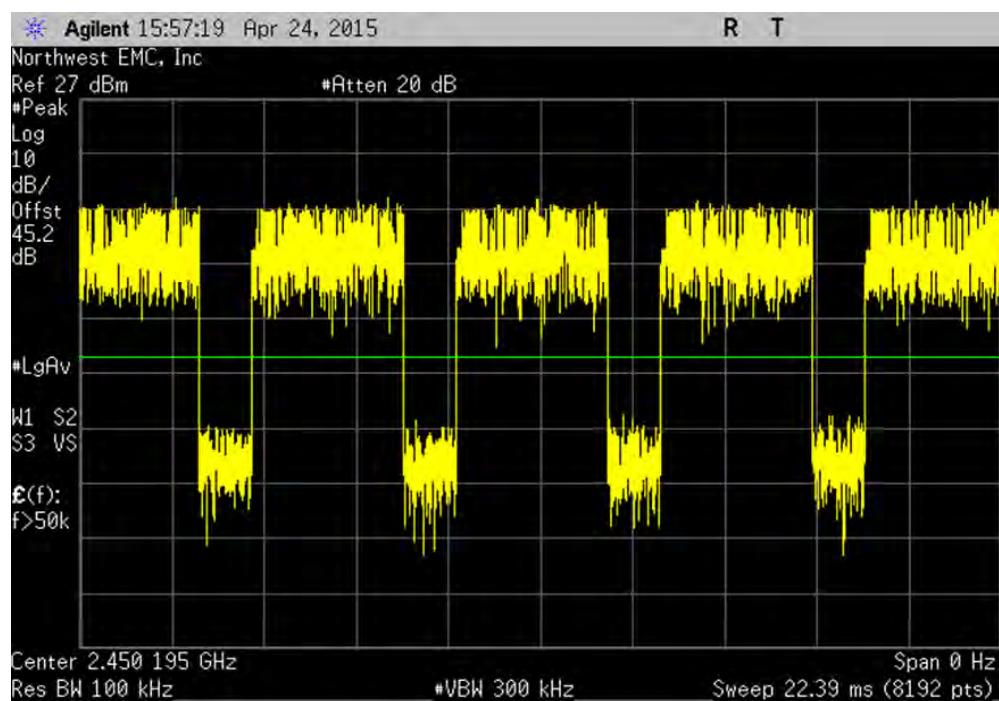

EUT:	Drivetrain Health Monitoring System- Gateway		Work Order:	DARC0001	
Serial Number:	211504008		Date:	04/24/15	
Customer:	DarCEO Inc.		Temperature:	24.2°C	
Attendees:	Brian Hemmelman		Humidity:	49%	
Project:	None		Barometric Pres.:	1007 mbar	
Tested by:	Jonathan Kiefer	Power:	10.5 VDC	Job Site:	TX09
TEST SPECIFICATIONS			Test Method		
FCC 15.247:2015			ANSI C63.10:2009		
COMMENTS					
None					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration #	5	Signature			
OOQPSK			Pulse Width	Period	Number of Pulses
Low Channel, 2424.7 MHz			3.67 ms	4.982 ms	1
Low Channel, 2424.7 MHz			N/A	N/A	6
Mid Channel, 2450.195 MHz			3.66 ms	5 ms	1
Mid Channel, 2450.195 MHz			N/A	N/A	6
High Channel, 2480.078 MHz			3.67 ms	4.982 ms	1
High Channel, 2480.078 MHz			N/A	N/A	6
					Value (%)
					Limit (%)
					Results

DUTY CYCLE

OQPSK, Low Channel, 2424.7 MHz					
Pulse Width	Period	Number of Pulses	Value (%)	Limit (%)	Results
3.67 ms	4.982 ms	1	73.7	N/A	N/A

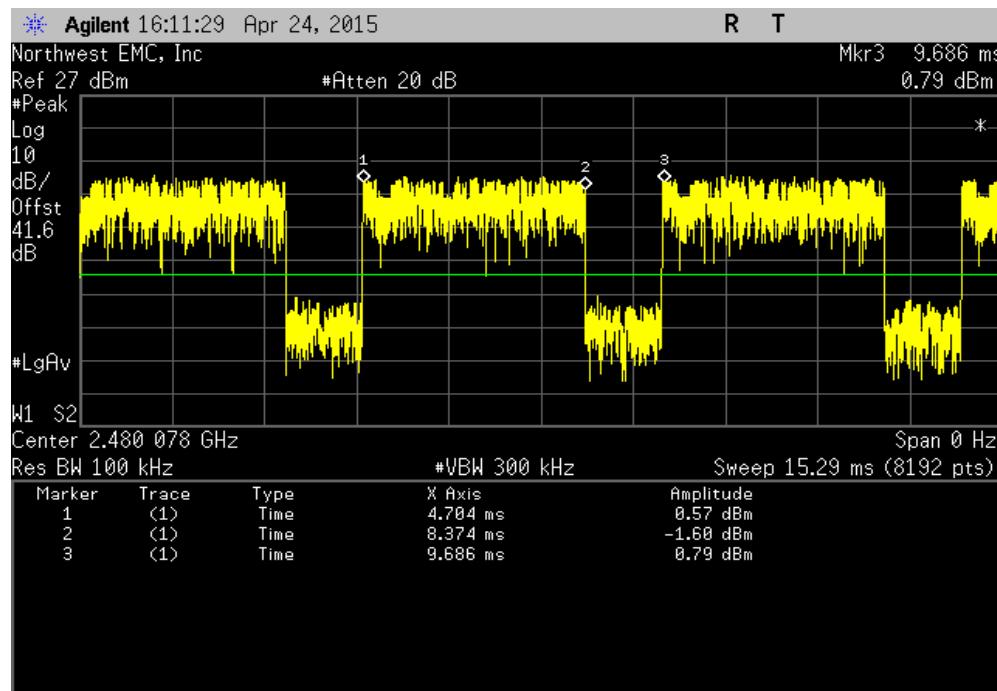


OQPSK, Low Channel, 2424.7 MHz					
Pulse Width	Period	Number of Pulses	Value (%)	Limit (%)	Results
N/A	N/A	6	N/A	N/A	N/A

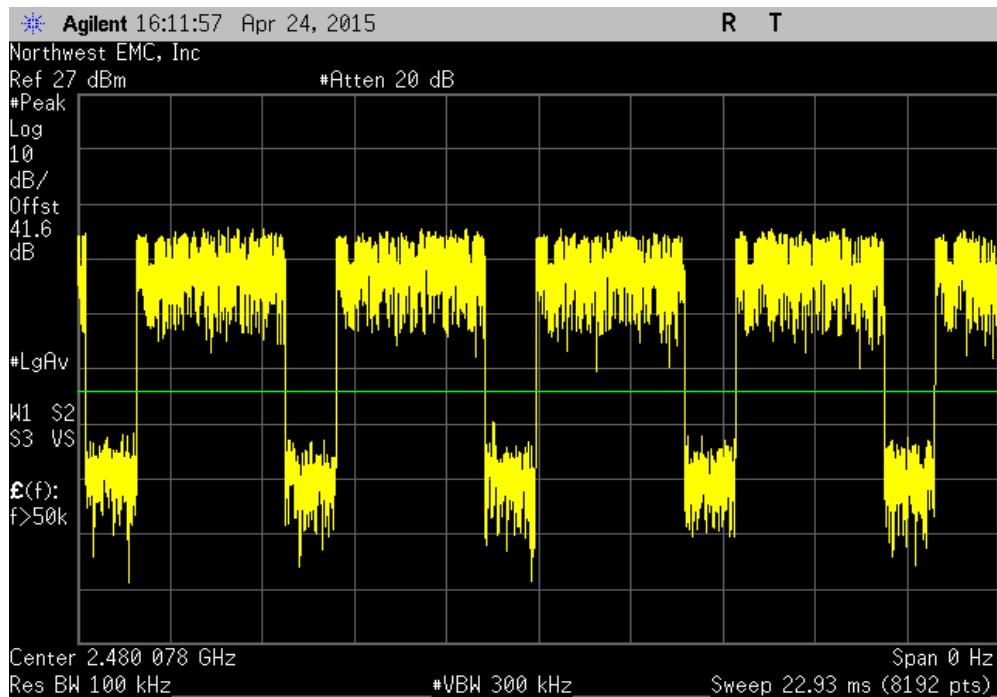


DUTY CYCLE

OQPSK, Mid Channel, 2450.195 MHz					
Pulse Width	Period	Number of Pulses	Value (%)	Limit (%)	Results
3.66 ms	5 ms	1	73.2	N/A	N/A



OQPSK, Mid Channel, 2450.195 MHz					
Pulse Width	Period	Number of Pulses	Value (%)	Limit (%)	Results
N/A	N/A	6	N/A	N/A	N/A



DUTY CYCLE

OQPSK, High Channel, 2480.078 MHz					
Pulse Width	Period	Number of Pulses	Value (%)	Limit (%)	Results
3.67 ms	4.982 ms	1	73.7	N/A	N/A

OQPSK, High Channel, 2480.078 MHz					
Pulse Width	Period	Number of Pulses	Value (%)	Limit (%)	Results
N/A	N/A	6	N/A	N/A	N/A

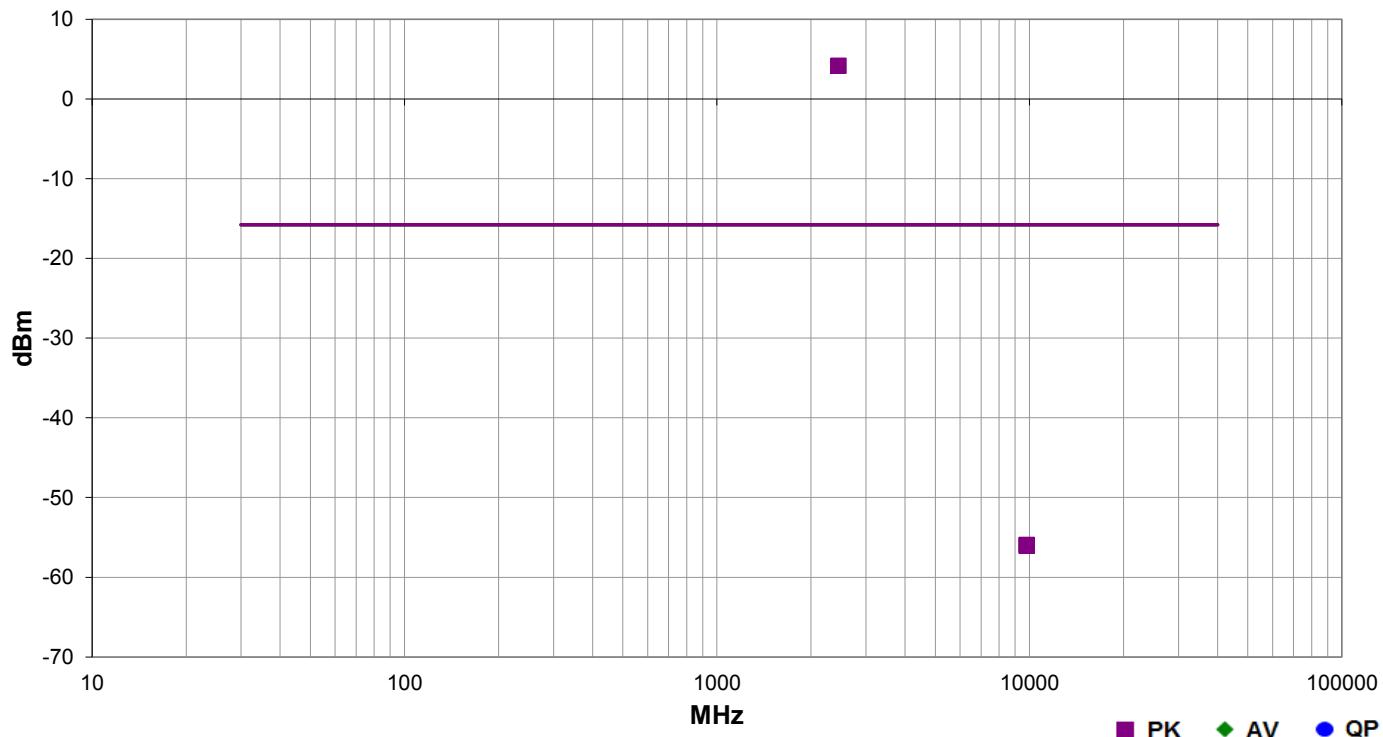
OUT OF BAND EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
High Pass Filter	Micro-Tronics	HPM50111	HHX	8/18/2014	12 mo
Low Pass Filter	Micro-Tronics	LPM50004	HHV	8/18/2014	12 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	PAK	10/27/2014	12 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	PAL	10/27/2014	12 mo
TX02 Cable	NWEMC	8-18GHz	TXD	10/27/2014	12mo
Pre-Amplifier	Miteq	JSDQK42-18004000-60-5P	PAM	11/21/2014	12 mo
Cable	NWEMC	18-40GHz	TXE	11/21/2014	12 mo
Antenna, Double Ridge Guide Horn	A.H. Systems, Inc.	SAS-574	AXW	4/23/2014	36 mo
Antenna, Horn	ETS Lindgren	3160-08	AJG	NCR	0 mo
Antenna, Horn	ETS Lindgren	3160-07	AJF	NCR	0 mo
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAJ	9/22/2014	12 mo
TX02 Cable	NWEMC	1-8.2 GHz	TXC	9/22/2014	12 mo
Antenna, Horn	ETS Lindgren	3115	AJL	9/15/2014	24 mo
Pre-Amplifier	Miteq	AM-1551	PAH	9/13/2014	12 mo
TX02 Cable	N/A	RE 9kHz - 1GHz	TXB	9/22/2014	12 mo
Antenna, Biconilog	ETS Lindgren	3143B	AYF	4/7/2014	36 mo
Spectrum Analyzer	Agilent	N9010A	AFL	6/20/2014	12 mo

TEST DESCRIPTION


The spurious RF emissions were measured with the EUT set to low, medium and high transmit frequencies. The measurements were made using a radiated setup using an antenna and spectrum analyze with various filters and preamps to sustain an adequate sensitivity and accuracy because the EUT has an integral antenna that doesn't allow direct connection. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range. Out of band emissions were measured where applicable and compared to the -20 dBc limit in reference to the highest fundamental reading.

OUT OF BAND EMISSIONS

Work Order:	DARC0001	Date:	04/24/15	
Project:	None	Temperature:	24.2 °C	
Job Site:	TX02	Humidity:	49.3% RH	
Serial Number:	211504008	Barometric Pres.:	1013 mbar	Tested by: Jonathan Kiefer
EUT:	Drivetrain Health Monitoring System- Gateway			
Configuration:	5			
Customer:	DarCEO Inc.			
Attendees:	Brian Hemmelman			
EUT Power:	10.5 VDC			
Operating Mode:	Transmitting OQPSK at Low, Mid, High Channel @ 2424.7, 2450.195, 2480.078 MHz.			
Deviations:	None			
Comments:	None			

Test Specifications	Test Method
FCC 15.247:2014	ANSI C63.10:2009

Run #	9	Test Distance (m)	3	Antenna Height(s)	1 to 4(m)	Results	Pass

	Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
9801.868	1.9	265.0	Vert	PK	2.55E-09	-55.9	-15.8	-40.1	Low Channel, 1MHz RBW	
9801.868	1.9	270.0	Horz	PK	2.50E-09	-56.0	-15.8	-40.2	Low Channel, 1MHz RBW	
2450.467	1.9	268.0	Vert	PK	2.61E-03	4.2	N/A	N/A	Fundamental Reference	

All other Out of Band frequencies greater than -40 dBc from fundamental