

FCC PART 15, SUBPART C
ISED C RSS-247, ISSUE 2, FEBRUARY 2017
TEST AND MEASUREMENT REPORT

For

ROOST, Inc.

1250 Borregas Ave., Sunnyvale, CA 94089, USA

**FCC ID: 2AE5A-TRTN
IC: 20891-TRTN**

Report Type: Original Report	Product Type: Radio Module
Prepared By: <u>Matthew Riego de Dios</u>	
Report Number <u>R1906282-247 DSS</u>	
Report Issue Date: <u>2020-02-14</u>	
Reviewed By: <u>RF Lead</u>	
Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: +1 (408) 732-9162 Fax: +1(408) 732-9164	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA*, NIST, or any agency of the Federal Government.

* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk “*” (Rev.2)

TABLE OF CONTENTS

1 General Description.....	5
1.1 Product Description for Equipment Under Test (EUT)	5
1.2 Mechanical Description of EUT	5
1.3 Objective.....	5
1.4 Related Submittal(s)/Grant(s)	5
1.5 Test Methodology	5
1.6 Measurement Uncertainty	5
1.7 Test Facility Accreditations	6
2 System Test Configuration.....	8
2.1 Justification.....	8
2.2 EUT Exercise Software.....	8
2.3 Duty Cycle Correction Factor.....	8
2.4 Equipment Modifications.....	12
2.5 Local Support Equipment	12
2.6 Support Equipment	12
2.7 Interface Ports and Cabling.....	13
3 Summary of Test Results	14
4 FCC §15.203 & ISEDC RSS-Gen §6.8 - Antenna Requirements	15
4.1 Applicable Standards	15
4.2 Antenna Description	15
5 FCC §2.1091, §15.247(i) & ISEDC RSS-102- RF Exposure.....	16
5.1 Applicable Standards	16
5.2 MPE Prediction.....	17
5.3 MPE Results	17
5.4 RF exposure evaluation exemption for IC	17
6 FCC §15.207, §15.212 & ISEDC RSS-Gen §8.8 - AC Line Conducted Emissions.....	18
6.1 Applicable Standards	18
6.2 Test Setup	18
6.3 Test Procedure	19
6.4 Corrected Amplitude & Margin Calculation.....	19
6.5 Test Setup Block Diagram.....	19
6.6 Test Equipment List and Details	20
6.7 Test Environmental Conditions	20
6.8 Summary of Test Results	20
6.9 Conducted Emissions Test Plots and Data.....	21
7 FCC §15.209, §15.247(d) & ISEDC RSS-247 §5.5, RSS-Gen §8.9, §8.10 - Spurious Radiated Emissions.....	23
7.1 Applicable Standards	23
7.2 Test Setup	25
7.3 Test Procedure	25
7.4 Corrected Amplitude & Margin Calculation.....	25
7.5 Test Equipment List and Details	26
7.6 Test Environmental Conditions	26
7.7 Summary of Test Results	26
7.8 Radiated Emissions Test Results	27
8 FCC §15.247(a) (1)(i) & ISEDC RSS-247 §5.1, RSS-Gen §6.6- Emission Bandwidth.....	31
8.1 Applicable Standards	31
8.2 Measurement Procedure.....	31
8.3 Test Equipment List and Details	31
8.4 Test Environmental Conditions	31
8.5 Test Results.....	32

9 FCC §15.247(b) (2) & ISEDC RSS-247 §5.4 - Output Power	34
9.1 Applicable Standards	34
9.2 Measurement Procedure.....	34
9.3 Test Equipment List and Details.....	34
9.4 Test Environmental Conditions	34
9.5 Test Results.....	35
10 FCC §15.247(d) & ISEDC RSS-247 §5.5 - 100 kHz Bandwidth of Band Edges.....	37
10.1 Applicable Standards	37
10.2 Measurement Procedure.....	37
10.3 Test Equipment List and Details	37
10.4 Test Environmental Conditions	38
10.5 Test Results.....	38
11 FCC §15.247(a) (1) (i) & ISEDC RSS-247 §5.1(c) - Dwell Time.....	40
11.1 Applicable Standards	40
11.2 Measurement Procedure.....	40
11.3 Test Equipment List and Details	41
11.4 Test Environmental Conditions	41
11.5 Test Results.....	41
12 FCC §15.247(a)(1)(i) & ISEDC RSS-247 §5.1(c) - Number of Hopping Channels.....	43
12.1 Applicable Standards	43
12.2 Test Procedure	43
12.3 Test Equipment List and Details	43
12.4 Test Environmental Conditions	43
12.5 Test Results.....	43
13 FCC §15.247(a) (1) & ISEDC RSS-247 §5.1(c) - Hopping Channel Separation	45
13.1 Applicable Standards	45
13.2 Test Procedure	45
13.3 Test Equipment List and Details	45
13.4 Test Environmental Conditions	45
13.5 Test Results.....	46
14 FCC §15.247(d) & ISEDC RSS-247 §5.5 - Spurious Emissions at Antenna Terminals	48
14.1 Applicable Standards	48
14.2 Test Procedure	48
14.3 Test Equipment List and Details	48
14.4 Test Environmental Conditions	48
14.5 Test Results.....	49
15 Annex A - Test Setup Photographs	51
16 Annex B - EUT Photographs	52
17 Annex C (Normative) - A2LA Electrical Testing Certificate.....	53

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1906282-247 DSS	Original Report	2020-02-14

1 General Description

1.1 Product Description for Equipment Under Test (EUT)

This test and measurement report was prepared on behalf of *Roost, Inc* and their product model: *TRTN*, FCC ID: 2AE5A-TRTN; IC: 20891-TRTN or the “EUT” as referred to in this report. It is a 900 MHz radio modular.

1.2 Mechanical Description of EUT

The EUT measures approximately 0.531 in (L), 0.94 in (W), 0.20 in (H) and weigh 1 oz.

The test data gathered are from typical production sample, serial number: R1906282-1 assigned by BACL

1.3 Objective

This report is prepared on behalf of *Roost, Inc*, in accordance with Part 2, Subpart J, and Part 15, Subparts B and C of the Federal Communication Commission’s rules and ISEDC RSS-247 Issue 2, February 2017.

The objective is to determine compliance with FCC Part 15.247 and ISEDC RSS-247 for Output Power, Antenna Requirements, 20 dB Bandwidth, 100 kHz Bandwidth of Band Edges Measurement, Conducted and Radiated Spurious Emissions, Number of Hopping Channels, Dwell Time, and Hopping Channel Separation.

1.4 Related Submittal(s)/Grant(s)

N/A

1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR16-4-2:2011, The Treatment of Uncertainty in EMC Measurements, the values ranging from ± 2.0 dB for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

1.7 Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3297.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report..

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.03) to certify

- For the USA (Federal Communications Commission):

- 1- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4;
- 2- All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
- 3- All Telephone Terminal Equipment within FCC Scope C.

- For the Canada (Industry Canada):

- 1 All Scope 1-Licence-Exempt Radio Frequency Devices;
- 2 All Scope 2-Licensed Personal Mobile Radio Services;
- 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
- 4 All Scope 4-Licensed Maritime & Aviation Radio Services;
- 5 All Scope 5-Licensed Fixed Microwave Radio Services
- 6 All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.

- For Singapore (Info-Communications Development Authority (IDA)):

- 1 All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment – Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment – Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2

- For the Hong Kong Special Administrative Region:

- 1 All Radio Equipment, per KHCA 10XX-series Specifications;
- 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
- 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.

- For Japan:

- 1 MIC Telecommunication Business Law (Terminal Equipment):
 - All Scope A1 - Terminal Equipment for the Purpose of Calls;
 - All Scope A2 - Other Terminal Equipment
- 2 Radio Law (Radio Equipment):
 - All Scope B1 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes & Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)
 - for Imaging Equipment (ver. 2.0)
 - for Computer Servers (ver. 2.0)
- 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)
 - for Commercial Refrigerators and Freezers
- 3 Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
 - For Water Coolers (ver. 3.0)

D. A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) – APEC Tel MRA -Phase I;
- Canada: (Industry Canada - IC) Foreign Certification Body – FCB – APEC Tel MRA -Phase I & Phase II;
- Chinese Taipei (Republic of China – Taiwan):
 - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
 - o NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
 - o EMC Directive 2014/30/EC US-EU EMC & Telecom MRA CAB
 - o Radio & Teleterminal Equipment (R&TTE) Directive 1995/5/EC
US -EU EMC & Telecom MRA CAB

Hong Kong Special Administrative Region: (Office of the Telecommunications Authority – OFTA)
APEC Tel MRA -Phase I & Phase II

- Israel – US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications - Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Development Authority - IDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI - Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter-
US:
 - o ENERGY STAR Recognized Test Laboratory – US EPA
 - o Telecommunications Certification Body (TCB) – US FCC;

Vietnam: APEC Tel MRA -Phase I

2 System Test Configuration

2.1 Justification

The EUT was configured for testing in accordance to ANSI C63.10.

The worst-case data rates are determined by measuring the peak power across all data rates.

2.2 EUT Exercise Software

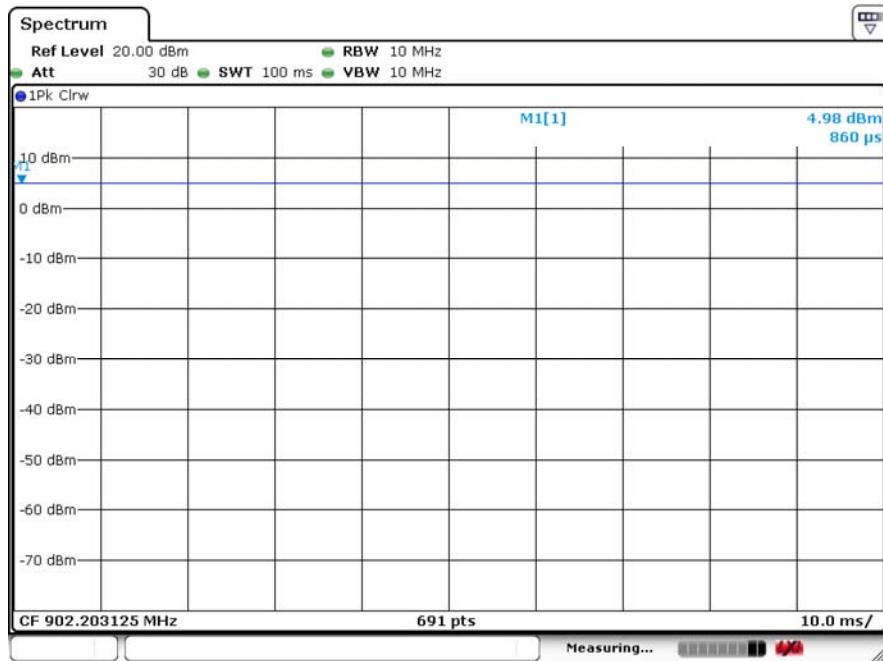
The test utility used was SmartRF Studio 7; the software was verified by *Matthew Riego de Dios* to comply with the standard requirements being tested against.

2.3 Duty Cycle Correction Factor

According to KDB 558074 D01 DTS Meas Guidance v05r02 section 6.0:

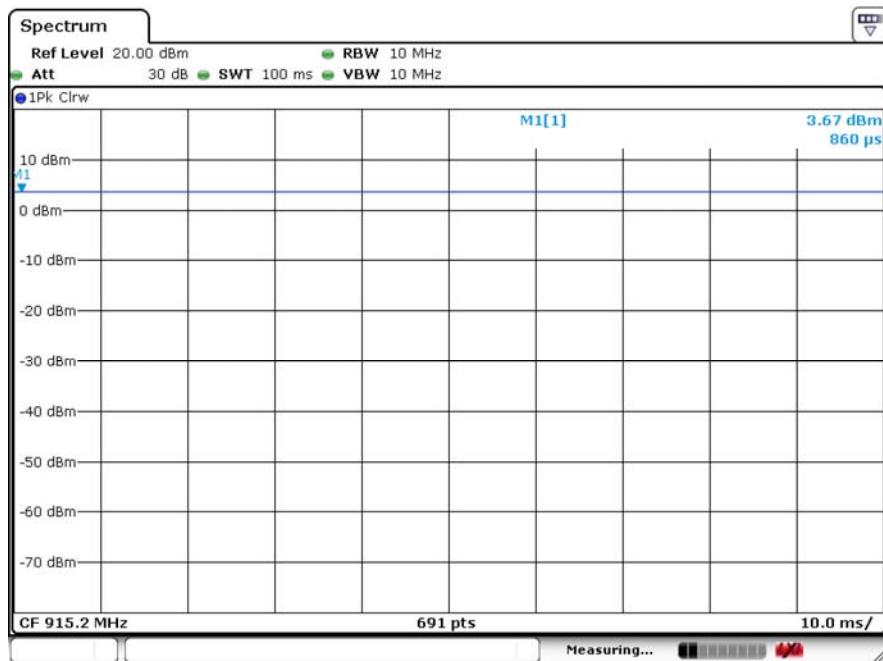
Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be utilized to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed T at any time that data is being acquired (i.e., no transmitter off-time is to be considered).

50 kbps, 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode

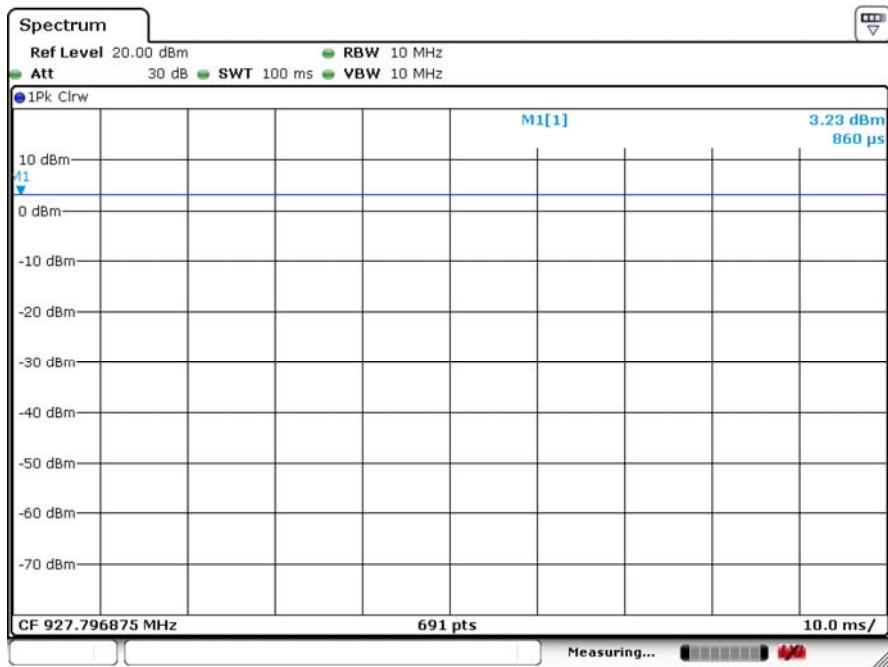

Radio frequency (MHz)	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
902.203125	-	-	100	0
915.2	-	-	100	0
927.796875	-	-	100	0

Duty Cycle = On Time (ms) / Period (ms)

Duty Cycle Correction Factor (dB) = $10 \log(1/\text{Duty Cycle})$


Please refer to the following plots.

902.203125 MHz


Date: 13.FEB.2020 15:30:59

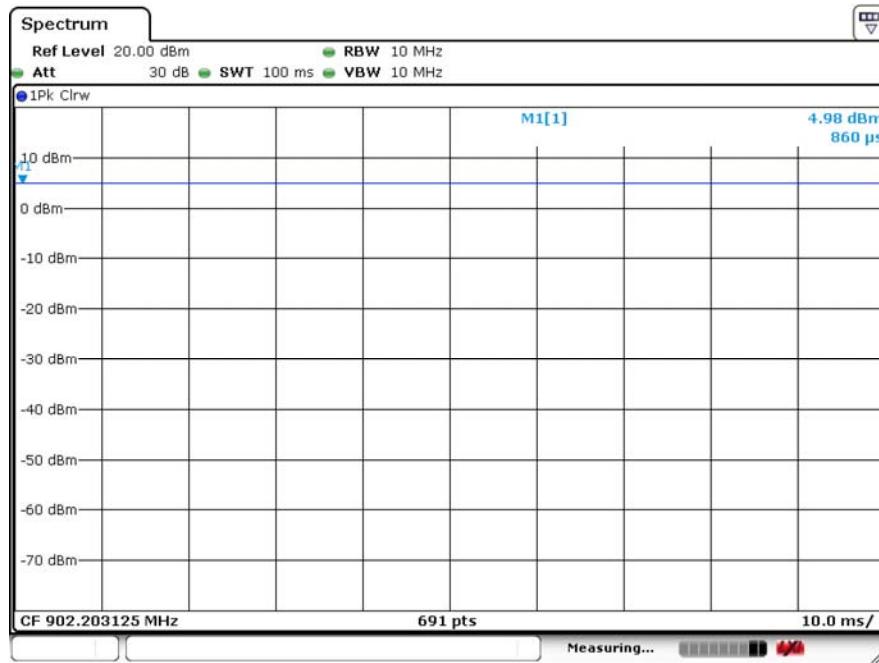
915.2 MHz

Date: 13.FEB.2020 15:31:44

927.796875 MHz

Date: 13.FEB.2020 15:32:21

5 kbps, SimpleLink Long Range (20 kchip/s, 2-GFSK, conv. FEC r=1/2 K=7 DSSS SF=2, Tx dev: 5 kHz, RX BW: 49 kHz)

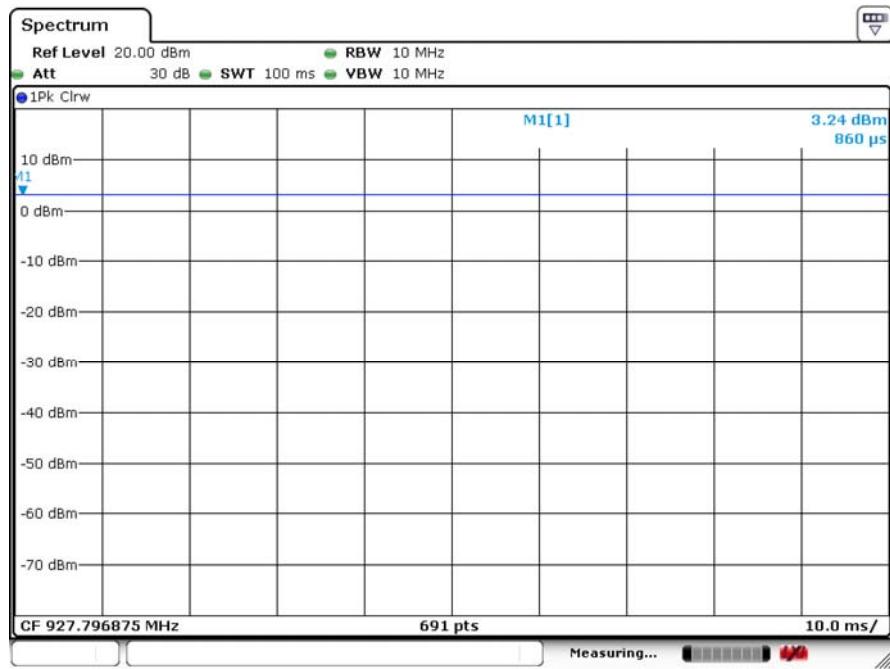

Radio frequency (MHz)	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
902.203125	-	-	100	0
915.2	-	-	100	0
927.796875	-	-	100	0

Duty Cycle = On Time (ms) / Period (ms)

Duty Cycle Correction Factor (dB) = $10 \log(1/\text{Duty Cycle})$


Please refer to the following plots.

902.203125 MHz


Date: 13.FEB.2020 15:29:30

915.2 MHz

Date: 13.FEB.2020 15:28:50

927.796875 MHz

Date: 13.FEB.2020 15:28:12

2.4 Equipment Modifications

N/A

2.5 Local Support Equipment

Manufacturer	Description	Model
Dell	Laptop	Latitude E6410

2.6 Support Equipment

Manufacturer	Description	Model
Texas Instruments IC	Control Board	CC1310

2.7 Interface Ports and Cabling

Cable Description	Length (m)	To	From
USB Cable	< 1 m	Laptop	Control Board
SMA Cable	< 1 m	EUT	PSA
Jumper Wires	< 1 m	DC Power Supply	EUT Host Board
Ribbon Cable	< 1 m	EUT Host Board	Control Board

3 Summary of Test Results

Results reported relate only to the product tested.

FCC & ISEDC Rules	Description of Test	Results
FCC §15.203 ISEDC RSS-Gen §6.8	Antenna Requirement	Compliant
FCC §15.207, §15.212 ISEDC RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
FCC §2.1091, §15.247(i) ISEDC RSS-102	RF Exposure	Compliant
FCC §2.1051, §15.247 (d) ISEDC RSS-247 §5.5	Spurious Emissions at Antenna Port	Compliant
FCC §2.1053, §15.205, §15.209, §15.247(d) ISEDC RSS-247 §5.5 ISEDC RSS-Gen §8.9, §8.10	Radiated Spurious Emissions	Compliant
FCC §15.247(a)(1)(i) ISEDC RSS-247 §5.1 ISEDC RSS-Gen §6.6	20 dB & 99% Emission Bandwidth	Compliant
FCC §15.247(b)(2) ISEDC RSS-247 §5.4	Maximum Peak Output Power	Compliant
FCC §15.247(d) ISEDC RSS-247 §5.5	100 kHz Bandwidth of Frequency Band Edge	Compliant
FCC §15.247(a)(1)(i) ISEDC RSS-247 §5.1(c)	Number of Hopping Channels	Compliant
FCC §15.247(a)(1) ISEDC RSS-247 §5.1(c)	Hopping Channel Separation	Compliant
FCC §15.247(a)(1)(i) ISEDC RSS-247 §5.1(c)	Dwell Time	Compliant

4 FCC §15.203 & ISED RSS-Gen §6.8 - Antenna Requirements

4.1 Applicable Standards

According to FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC §15.247 (b) (4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to ISED RSS-Gen §6.8: Transmitter Antenna

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

4.2 Antenna Description

The antennas used by the EUT have unique coupling to the intentional radiator.

Antenna usage	Frequency Range (MHz)	Antenna Type	Maximum Antenna Gain (dBi)
900MHz ISM Band	902-928	Chip Antenna	-1.2

5 FCC §2.1091, §15.247(i) & ISED RSS-102- RF Exposure

5.1 Applicable Standards

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	* (100)	30
1.34-30	824/f	2.19/f	* (180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

According to ISED RSS-102 Issue 5:

2.5.2 Exemption Limits for Routine Evaluation – RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz⁶ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4.49/f^{0.5}$ W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

5.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

5.3 MPE Results

<u>Maximum peak output power at antenna input terminal (dBm):</u>	<u>6</u>
<u>Maximum peak output power at antenna input terminal (mW):</u>	<u>3.98</u>
<u>Prediction distance (cm):</u>	<u>20</u>
<u>Prediction frequency (MHz):</u>	<u>902.203125</u>
<u>Maximum Antenna Gain, typical (dBi):</u>	<u>-1.2</u>
<u>Maximum Antenna Gain (numeric):</u>	<u>0.75858</u>
<u>Power density of prediction frequency at 20.0 cm (mW/cm²):</u>	<u>0.0006</u>
<u>FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm²):</u>	<u>0.60</u>

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 20 cm is 0.0006 mW/cm². Limit is 0.60 mW/cm².

5.4 RF exposure evaluation exemption for IC

Maximum EIRP power = 6dBm – 1.2 dBi = 4.8 dBm which is lesser than $1.31 \times 10^{-2} f^{0.6834} = 1.3706$ W = 31.37 dBm

The RF exposure evaluation is compliant.

6 FCC §15.207, §15.212 & ISEDC RSS-Gen §8.8 - AC Line Conducted Emissions

6.1 Applicable Standards

As per FCC §15.212 (a)(v):

(a) Single modular transmitters consist of a completely self-contained radiofrequency transmitter device that is typically incorporated into another product, host or device. Split modular transmitters consist of two components: a radio front end with antenna (or radio devices) and a transmitter control element (or specific hardware on which the software that controls the radio operation resides). All single or split modular transmitters are approved with an antenna. All of the following requirements apply, except as provided in paragraph (b) of this section.

(v) The modular transmitter must be tested in a stand-alone configuration, i.e., the module must not be inside another device during testing for compliance with part 15 requirements. Unless the transmitter module will be battery powered, it must comply with the AC line conducted requirements found in §15.207. AC or DC power lines and data input/output lines connected to the module must not contain ferrites, unless they will be marketed with the module (see §15.27(a)). The length of these lines shall be the length typical of actual use or, if that length is unknown, at least 10 centimeters to insure that there is no coupling between the case of the module and supporting equipment. Any accessories, peripherals, or support equipment connected to the module during testing shall be unmodified and commercially available (see §15.31(i)).

As per FCC §15.207 and IC RSS-Gen §8.8 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-Peak	Average
0.15-0.5	66 to 56 ^{Note1}	56 to 46 ^{Note2}
0.5-5	56	46
5-30	60	50

Note1: Decreases with the logarithm of the frequency.

Note2: A linear average detector is required

6.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.10-2013 measurement procedure. The specification used were FCC §15.207, §15.212 and IC RSS-Gen §8.8 limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The AC/DC power adapter of the EUT was connected with LISN-1 which provided 120 V / 60 Hz AC power.

6.3 Test Procedure

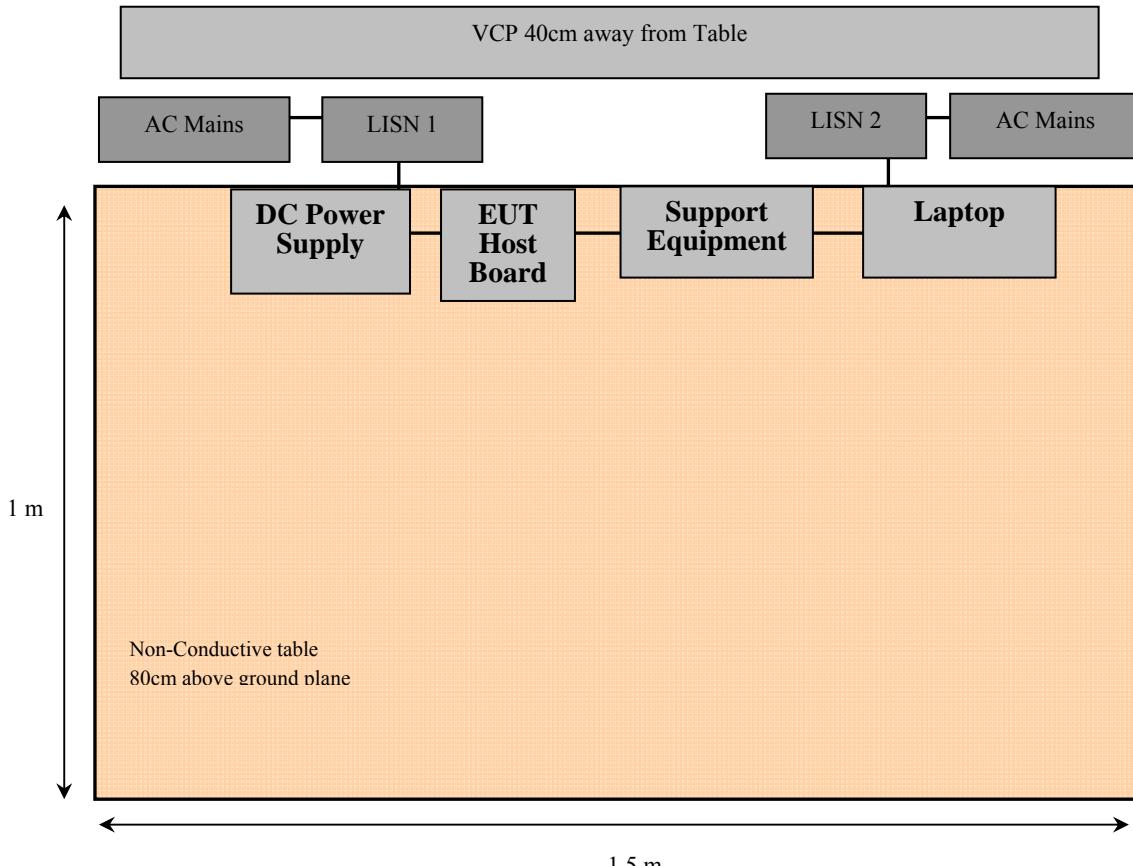
During the conducted emissions test, the EUT module was connected to a dc power supply that is connected to the mains outlet of the LISN-1 and the power cords of support equipment were connected to LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data were recorded in the peak, quasi-peak, and average detection mode. Quasi-Peak readings are distinguished with a “QP.” Average readings are distinguished with an “Ave”.

6.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Cable Loss (CL), the Attenuator Factor (Atten) to indicated Amplitude (Ai) reading. The basic equation is as follows:


$$CA = Ai + CL + Atten$$

For example, a corrected amplitude of 46.2 dBuV = Indicated Reading (32.5 dBuV) + Cable Loss (3.7 dB) + Attenuator (10 dB)

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corrected Amplitude} - \text{Limit}$$

6.5 Test Setup Block Diagram

6.6 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rohde & Schwarz	Receiver, EMI Test	ESCI 1166.5950K03	100044	2018-10-26	2 years
Rohde & Schwarz	Impulse Limiter	ESH3-Z2	101964	2019-07-31	1 year
Solar Electronics Company	High Pass Filter	Type 7930-100	7930150202	2019-02-25	1 year
BK Precision	Source, DC	1621A	D185052265	N/R	N/R
FCC	LISN	FCC-LISN-50-25-2-10-CISPR16	160129	2019-04-11	1 year

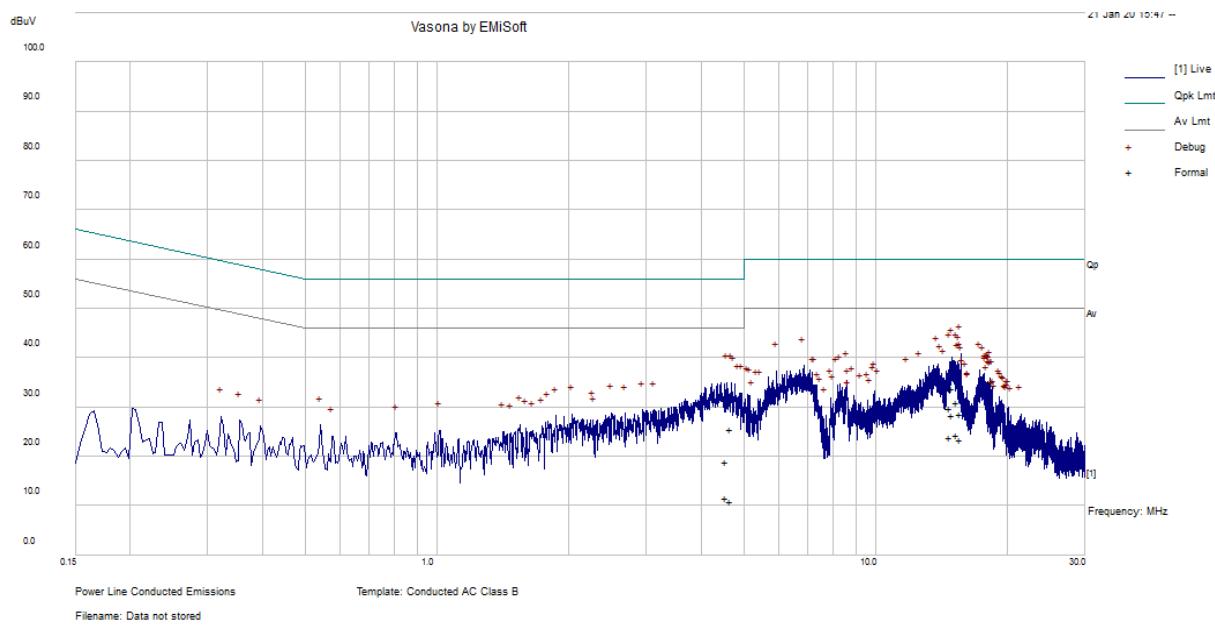
Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 02 October 2018) "A2LA Policy on Metrological Traceability".

6.7 Test Environmental Conditions

Temperature:	23° C
Relative Humidity:	44 %
ATM Pressure:	102.1 kPa

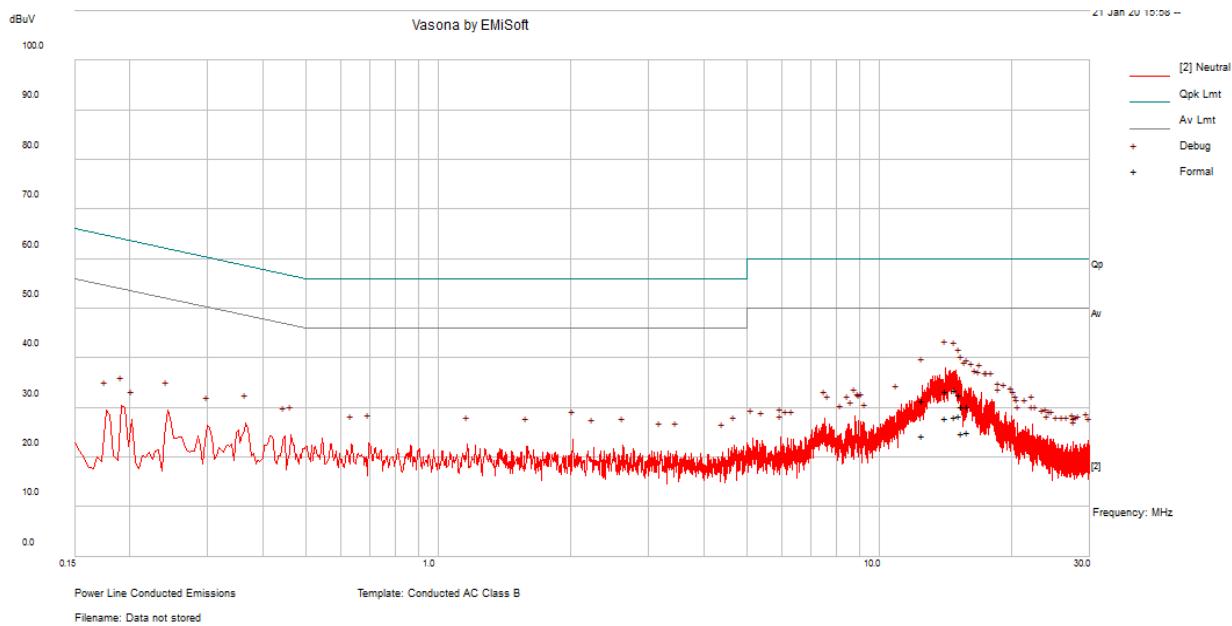
The testing was performed by Matthew Riego de Dios on 2020-01-21.

6.8 Summary of Test Results


According to the recorded data in following table, the EUT complied with the FCC 15C and IC RSS-Gen standard's conducted emissions limits, with the margin reading of:

Connection: EUT Host Board was connected to DC Source. The DC Source was connected to 120 V/60 Hz, AC			
Margin (dB)	Frequency (MHz)	Conductor Mode (Live/Neutral)	Range (MHz)
-21.64	14.90991	Live	0.15-30

6.9 Conducted Emissions Test Plots and Data


TRTN 50 kbps 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode 902.203125 MHz

120 V, 60 Hz – Line

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
15.62698	28.6	Line	60	-31.4	QP
14.90991	33.83	Line	60	-26.17	QP
15.325423	30.95	Line	60	-29.05	QP
14.745153	29.75	Line	60	-30.25	QP
4.679217	25.44	Line	56	-30.56	QP
4.561262	18.99	Line	56	-37.01	QP

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
15.62698	23.48	Line	50	-26.52	Ave.
14.90991	28.36	Line	50	-21.64	Ave.
15.32542	24.46	Line	50	-25.54	Ave.
14.74515	23.86	Line	50	-26.14	Ave.
4.679217	10.86	Line	46	-35.14	Ave.
4.561262	11.67	Line	46	-34.33	Ave.

120 V, 60 Hz – Neutral

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
14.11441	33.31	Neutral	60	-26.69	QP
14.86304	33.66	Neutral	60	-26.34	QP
15.18769	32.7	Neutral	60	-27.3	QP
15.35682	30.18	Neutral	60	-29.82	QP
12.52203	31.38	Neutral	60	-28.62	QP
15.91193	30.36	Neutral	60	-29.64	QP

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
14.11441	27.99	Neutral	50	-22.01	Ave.
14.86304	28.23	Neutral	50	-21.77	Ave.
15.18769	28.36	Neutral	50	-21.64	Ave.
15.35682	24.8	Neutral	50	-25.2	Ave.
12.52203	24.29	Neutral	50	-25.71	Ave.
15.91193	24.97	Neutral	50	-25.03	Ave.

7 FCC §15.209, §15.247(d) & ISEDC RSS-247 §5.5, RSS-Gen §8.9, §8.10 - Spurious Radiated Emissions

7.1 Applicable Standards

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As Per FCC §15.205(a) and RSS-Gen except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 – 0.110	16.42 – 16.423	960 – 1240	4.5 – 5.15
0.495 – 0.505	16.69475 – 16.69525	1300 – 1427	5.35 – 5.46
2.1735 – 2.1905	25.5 – 25.67	1435 – 1626.5	7.25 – 7.75
4.125 – 4.128	37.5 – 38.25	1645.5 – 1646.5	8.025 – 8.5
4.17725 – 4.17775	73 – 74.6	1660 – 1710	9.0 – 9.2
4.20725 – 4.20775	74.8 – 75.2	1718.8 – 1722.2	9.3 – 9.5
6.215 – 6.218	108 – 121.94	2200 – 2300	10.6 – 12.7
6.26775 – 6.26825	123 – 138	2310 – 2390	13.25 – 13.4
6.31175 – 6.31225	149.9 – 150.05	2483.5 – 2500	14.47 – 14.5
8.291 – 8.294	156.52475 – 156.52525	2690 – 2900	15.35 – 16.2
8.362 – 8.366	156.7 – 156.9	3260 – 3267	17.7 – 21.4
8.37625 – 8.38675	162.0125 – 167.17	3.332 – 3.339	22.01 – 23.12
8.41425 – 8.41475	167.72 – 173.2	3.3458 – 3.358	23.6 – 24.0
12.29 – 12.293	240 – 285	3.600 – 4.400	31.2 – 31.8
12.51975 – 12.52025	322 – 335.4		36.43 – 36.5
12.57675 – 12.57725	399.9 – 410		Above 38.6
13.36 – 13.41	608 – 614		

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

As per ISED RSS-Gen 8.9,

Except when the requirements applicable to a given device state otherwise, emission from licence-exempt transmitters shall comply with the field strength limits shown in the table below. Additional, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

General Field Strength Limits for Licence-Exemption Transmitters at Frequencies above 30 Mhz

Frequency (MHz)	Field Strength (μ V/m at 3 meters)
30-88	100
88-216	150
216-960	200
Above 960*	500

* Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

Note: Transmitting devices are not permitted in restricted frequency bands unless stated otherwise in the specific RSS.

As per ISED RSS-247 §5.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.10-2013. The specification used was the FCC 15 Subpart C and ISED RSS-247 limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

7.3 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT was set 3 meter away from the testing antenna, which was varied from 1-4 meter, and the EUT was placed on a turntable, which was 0.8 meter and 1.5 meter above the ground plane for below and above 1000 MHz measurements, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

$$\text{RBW} = 100 \text{ kHz} / \text{VBW} = 300 \text{ kHz} / \text{Sweep} = \text{Auto}$$

Above 1000 MHz:

- (1) Peak: $\text{RBW} = 1\text{MHz} / \text{VBW} = 1\text{MHz} / \text{Sweep} = \text{Auto}$
- (2) Average: $\text{RBW} = 1\text{MHz} / \text{VBW} = 10\text{Hz} / \text{Sweep} = \text{Auto}$

7.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$\text{CA} = \text{Ai} + \text{AF} + \text{CL} + \text{Atten} - \text{Ga}$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corrected Amplitude} - \text{Limit}$$

7.5 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100044	2018-10-26	2 years
Rhode & Schwarz	Signal Analyzer	FSV40	1321.3008K39-101203-UW	2019-08-06	1 year
Sunol Science Corp	System Controller	SC99V	011003-1	N/R	N/R
Sunol Sciences	Antenna, Biconi-Log	JB1	A013105-3	2018-02-26	2 years
Sunol Sciences	Antenna, Horn	DRH-118	A052704	2019-04-02	2 years
Insulated Wire Corp.	157 Series 2.92 SM (x2) Armored 33 ft. Cable	KPS-1571AN-3960-KPS	DC 1917	2019-05-08	1 year
-	SMA cable	-	-	Each time ¹	N/A
MDP Digital	Times Microwave LMR 400 UltraFlex Coaxial Cable 35\'	LMR400UF	BACL1904161	2019-04-16	1 year
Agilent	Amplifier, Pre	8447D	2944A10187	2019-04-11	1 year
A. H. Systems	Antenna, Horn	SAS-200/571	261	2019-06-07	2 years
HP	Pre-Amplifier	8449B	3008A01978	2019-09-27	1 year

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 02 October 2018) "A2LA Policy on Metrological Traceability".

7.6 Test Environmental Conditions

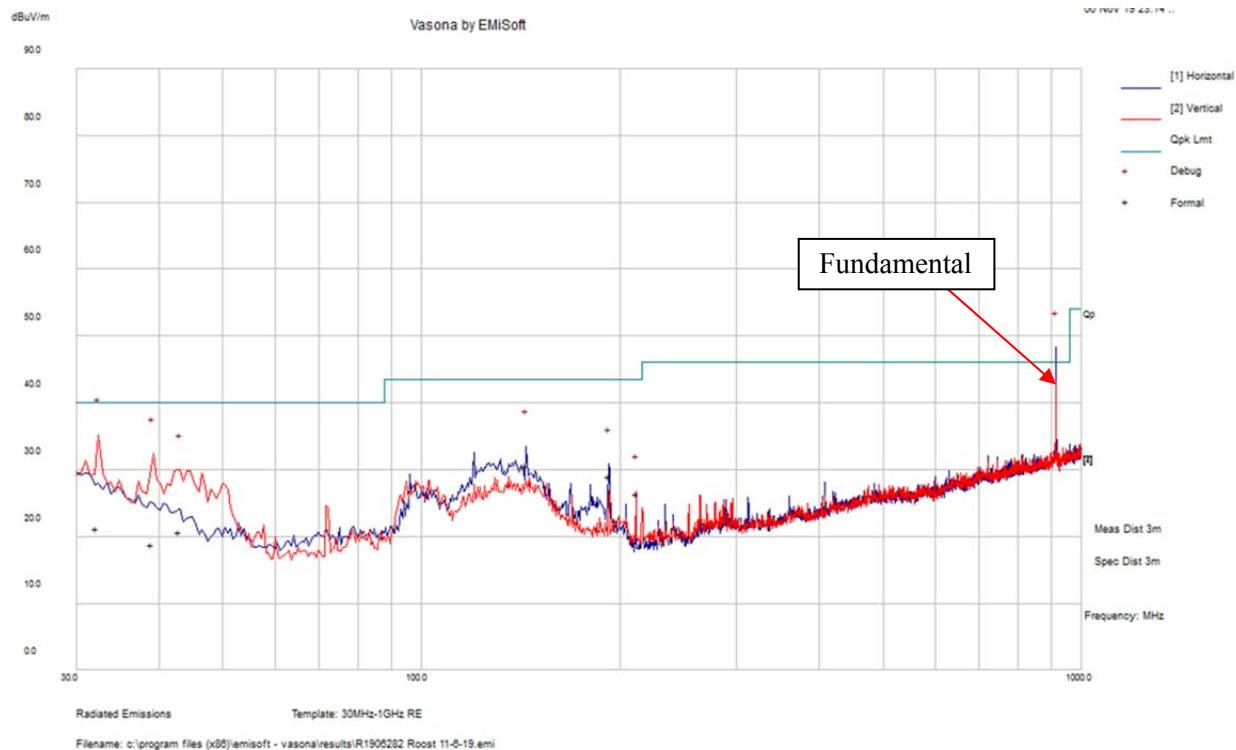
Temperature:	20-22 °C
Relative Humidity:	42-50 %
ATM Pressure:	102.7 kPa

The testing was performed by Matthew Riego de Dios from 2019-10-21 to 2019-11-07 in 5m chamber 3.

7.7 Summary of Test Results

According to the data hereinafter, the EUT complied with FCC Title 47, Part 15C standard's radiated emissions limits, and had the worst margin of:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Transmitting Channel
-0.03	2745.6	Horizontal	915.2 MHz


Please refer to the following table and plots for specific test result details.

7.8 Radiated Emissions Test Results

Note: The duty cycle correction factors are already added in the final result.

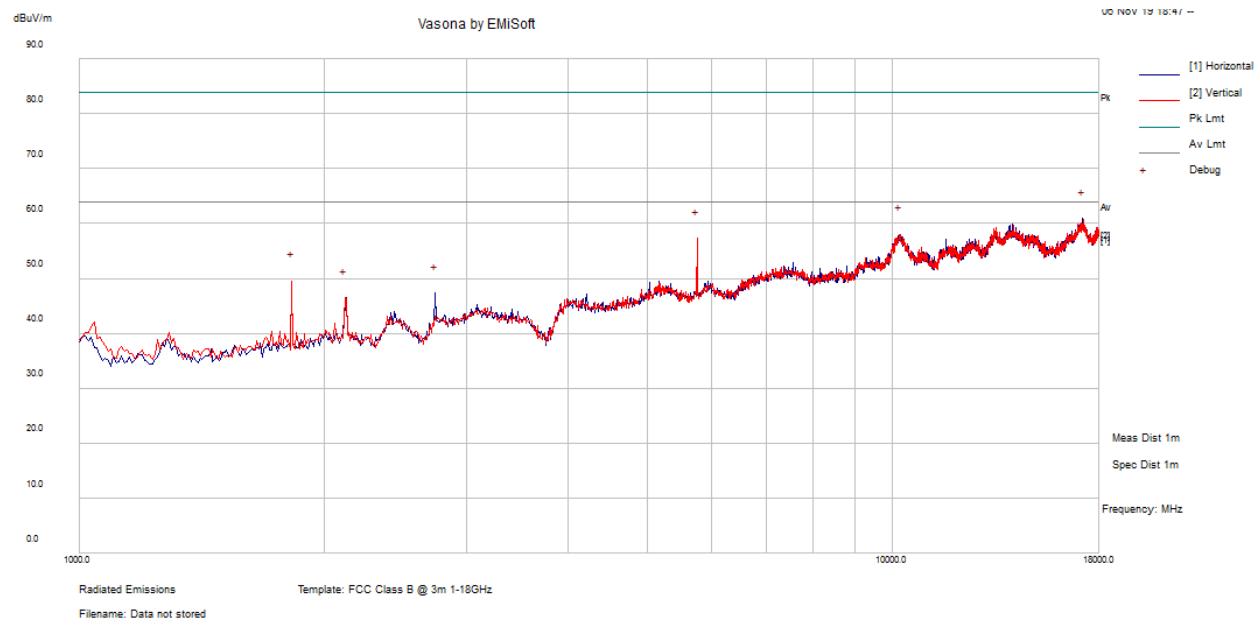
1) 30 MHz – 1 GHz Worst Case, Measured at 3 meters

Worst Case: TRTN 50 kbps 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode 915.2 MHz

Frequency (MHz)	Corrected Amplitude (dB μ V/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Comment
32.18675	21.32	233	V	103	40	-18.68	QP
38.974	18.83	150	V	75	40	-21.17	QP
144.1525	30.51	209	H	234	43.5	-12.99	QP
42.904	20.75	188	V	49	40	-19.25	QP
192.18425	29.03	169	H	295	43.5	-14.47	QP
211.484	26.5	241	V	133	43.5	-17	QP

2) 1–25 GHz Measured at 3 meters

50 kbps, 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode


Frequency (MHz)	S.A. Reading (dB μ V)	Turntable Azimuth (degrees)	Test Antenna			Cable Loss (dB)	Pre-Amp. (dB)	Cord. Reading (dB μ V/m)	FCC/ISEDC		Comments
			Height (cm)	Polarity (H/V)	Factor (dB/m)				Limit (dB μ V/m)	Margin (dB)	
Low Channel Frequency: 902.203125 MHz Power Setting: 8											
1804.41	48.14	0	100	H	27.21	4.51	36.42	43.44	68	-24.56	PK
1804.41	47.76	0	100	V	27.21	4.51	36.42	43.06	68	-24.94	PK
2706.61	57.55	302	150	H	29.07	5.50	36.26	55.86	74	-18.14	PK
2706.61	55.42	302	150	H	29.07	5.50	36.26	53.73	54	-0.27	AV
2706.61	55.26	23	100	V	29.07	5.50	36.26	53.57	74	-20.43	PK
2706.61	51.81	23	100	V	29.07	5.50	36.26	50.12	54	-3.88	AV
Middle Channel Frequency: 915.2 MHz Power Setting: 7											
1830.4	47.46	0	100	H	27.21	4.71	36.42	42.96	68	-25.04	PK
1830.4	48.21	0	100	V	27.21	4.71	36.42	43.71	68	-24.29	PK
2745.6	57.90	227	132	H	29.03	5.59	36.26	56.26	74	-17.74	PK
2745.6	55.61	227	132	H	29.03	5.59	36.26	53.97	54	-0.03	AV
2745.6	54.58	121	102	V	29.03	5.59	36.26	52.94	74	-21.06	PK
2745.6	50.45	121	102	V	29.03	5.59	36.26	48.81	54	-5.19	AV
High Channel Frequency: 927.796875 MHz Power Setting: 7											
1855.59	48.22	0	100	H	27.05	4.61	36.42	43.46	68	-24.54	PK
1855.59	49.14	0	100	V	27.05	4.61	36.42	44.38	68	-23.62	PK
2783.39	57.56	222	144	H	28.97	5.76	36.26	56.03	74	-17.97	PK
2783.39	54.25	222	144	H	28.97	5.76	36.26	52.72	54	-1.28	AV
2783.39	54.61	120	100	V	28.97	5.76	36.26	53.08	74	-20.92	PK
2783.39	50.58	120	100	V	28.97	5.76	36.26	49.05	54	-4.95	AV

5 kbps, SimpleLink Long Range (20 kchip/s, 2-GFSK, conv. FEC r=1/2 K=7 DSSS SF=2, Tx dev:5 kHz, RX BW: 49 kHz)

Frequency (MHz)	S.A. Reading (dB μ V)	Turntable Azimuth (degrees)	Test Antenna			Cable Loss (dB)	Pre-Amp. (dB)	Cord. Reading (dB μ V/m)	FCC/ISEDC		Comments
			Height (cm)	Polarity (H/V)	Factor (dB/m)				Limit (dB μ V/m)	Margin (dB)	
Low Channel Frequency: 902.203125 MHz Power Setting: 8											
1804.41	48.04	0	100	H	27.21	4.51	36.42	43.34	68	-24.66	PK
1804.41	47.83	0	100	V	27.21	4.51	36.42	43.13	68	-24.87	PK
2706.61	57.14	300	154	H	29.07	5.50	36.26	55.45	74	-18.55	PK
2706.61	54.89	300	154	H	29.07	5.50	36.26	53.20	54	-0.80	AV
2706.61	55.11	22	100	V	29.07	5.50	36.26	53.42	74	-20.58	PK
2706.61	51.66	22	100	V	29.07	5.50	36.26	49.97	54	-4.03	AV
Middle Channel Frequency: 915.2 MHz Power Setting: 7											
1830.4	47.42	0	100	H	27.21	4.71	36.42	42.92	68	-25.08	PK
1830.4	48.38	0	100	V	27.21	4.71	36.42	43.88	68	-24.12	PK
2745.6	57.59	228	133	H	29.03	5.59	36.26	55.95	74	-18.05	PK
2745.6	55.50	228	133	H	29.03	5.59	36.26	53.86	54	-0.14	AV
2745.6	54.30	122	100	V	29.03	5.59	36.26	52.66	74	-21.34	PK
2745.6	50.15	122	100	V	29.03	5.59	36.26	48.51	54	-5.49	AV
High Channel Frequency: 927.796875 MHz Power Setting: 7											
1855.59	49.40	0	100	H	27.05	4.61	36.42	44.64	68	-23.36	PK
1855.59	47.73	0	100	V	27.05	4.61	36.42	42.97	68	-25.03	PK
2783.39	57.16	190	293	H	28.97	5.76	36.26	55.63	74	-18.37	PK
2783.39	55.01	190	293	H	28.97	5.76	36.26	53.48	54	-0.52	AV
2783.39	54.77	18	300	V	28.97	5.76	36.26	53.24	74	-20.76	PK
2783.39	51.22	18	300	V	28.97	5.76	36.26	49.69	54	-4.31	AV

Worst Case: TRTN 50 kbps 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode 915.2 MHz

1 GHz – 18 GHz Worst Case, Measured at 1 meter

8 FCC §15.247(a) (1)(i) & ISEDC RSS-247 §5.1, RSS-Gen §6.6- Emission Bandwidth

8.1 Applicable Standards

According to FCC §15.247(a) (1) and ISEDC RSS-247 §5.1: the maximum 20 dB bandwidth of the hopping channel shall be presented.

8.2 Measurement Procedure

Span = approximately 2 to 5 times the 99% occupied bandwidth, centered on a hopping channel

RBW = 1% to 5 % of the 99% occupied bandwidth

VBW = 3RBW

Sweep = auto

Detector function = peak

Trace = max hold

8.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	US44300386	2019-08-24	1 year
Agilent	Analyzer, Spectrum	E4440A	US45303156	2019-03-19	1 year
-	SMA cable	-	-	Each time ¹	N/A
-	10 dB attenuator	-	-	Each time ¹	N/A

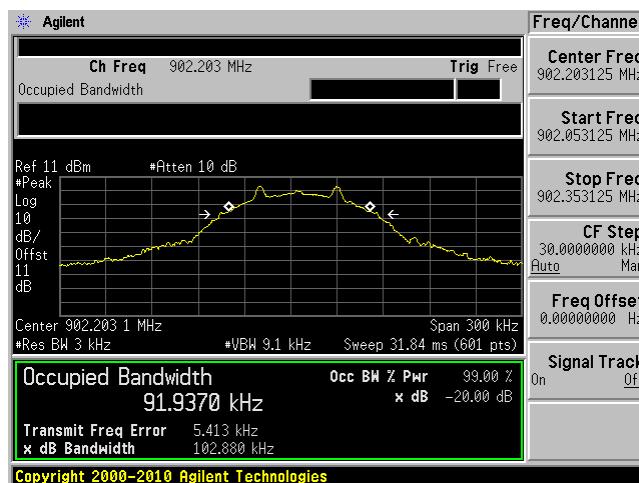
Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 02 October 2018) "A2LA Policy on Metrological Traceability".

8.4 Test Environmental Conditions

Temperature:	22° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa

The testing was performed by Matthew Riego de Dios on 2019-11-01 and 2020-02-12 in RF Bench.


8.5 Test Results

50 kbps, 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode

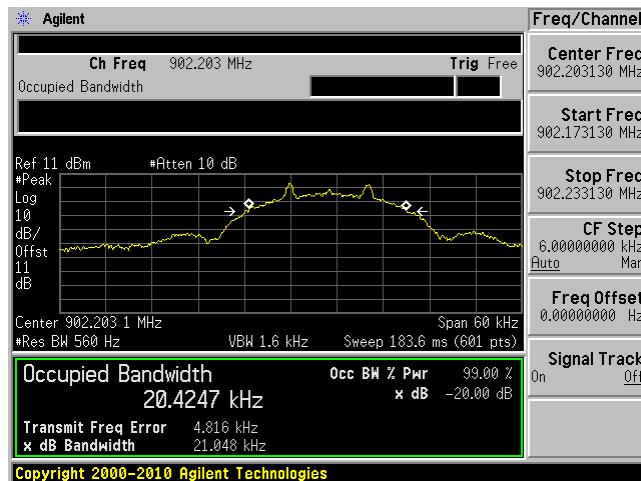
Channel	Frequency (MHz)	99% OBW (kHz)	20 dB OBW (kHz)
Low	902.203125	91.9370	102.880
Middle	915.2	93.6069	103.004
High	927.796875	92.5608	103.701

Please refer to the following plots for detailed test results.

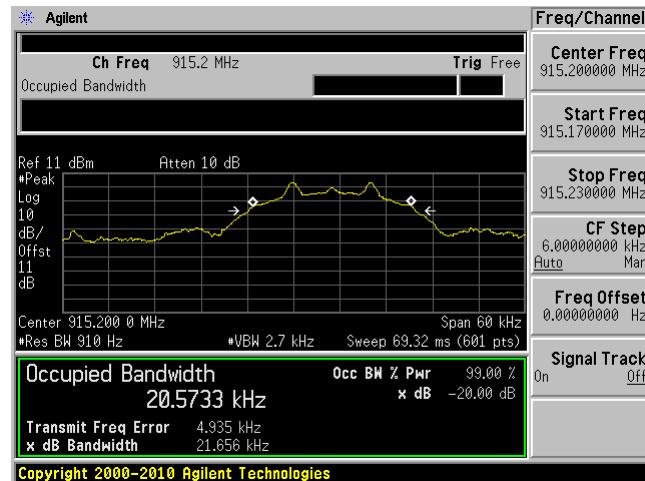

Low Channel 902.203125 MHz

Middle Channel 915.2 MHz

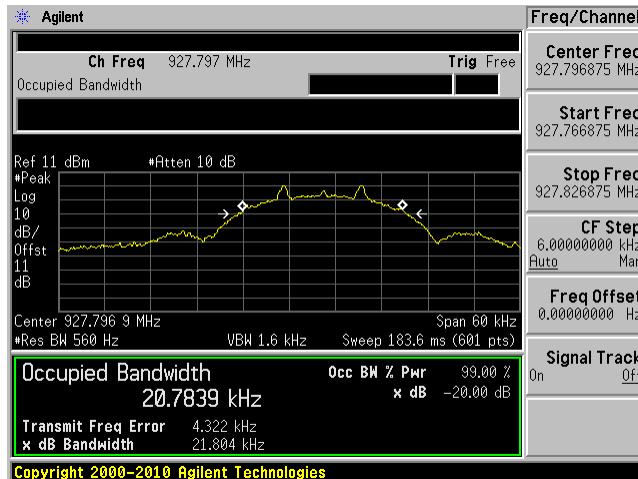
High Channel 927.796875 MHz



5 kbps, SimpleLink Long Range (20 kchip/s, 2-GFSK, conv. FEC r=1/2 K=7 DSSS SF=2, Tx dev:5 kHz, RX BW: 49 kHz)


Channel	Frequency (MHz)	99% OBW (kHz)	20 dB OBW (kHz)
Low	902.203125	20.4247	21.048
Middle	915.2	20.5733	21.656
High	927.796875	20.7839	21.804

Please refer to the following plots for detailed test results.


Low Channel 902.203125 MHz

Middle Channel 915.2 MHz

High Channel 927.796875 MHz

9 FCC §15.247(b) (2) & ISEDC RSS-247 §5.4 - Output Power

9.1 Applicable Standards

According to FCC §15.247(b) (2): For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

According to RSS-247 §5.4: For frequency hopping systems operating in the band 902-928 MHz, For FHSs operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W and the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

9.2 Measurement Procedure

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel
RBW > the 20 dB bandwidth of the emission being measured

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

9.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	US44300386	2019-08-24	1 year
Agilent	Analyzer, Spectrum	E4440A	US45303156	2019-03-19	1 year
-	SMA cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

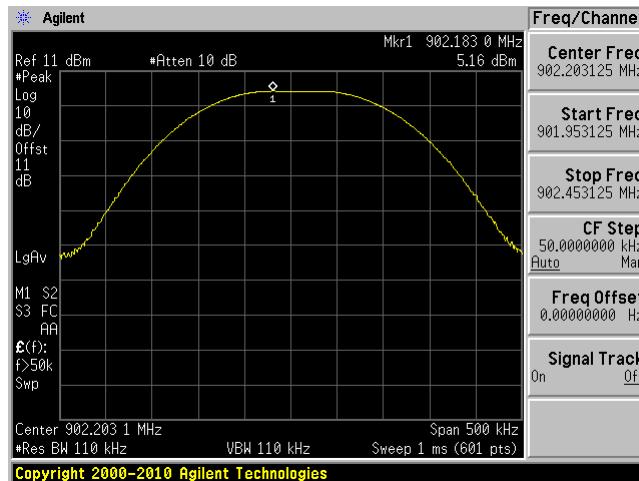
Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 02 October 2018) "A2LA Policy on Metrological Traceability".

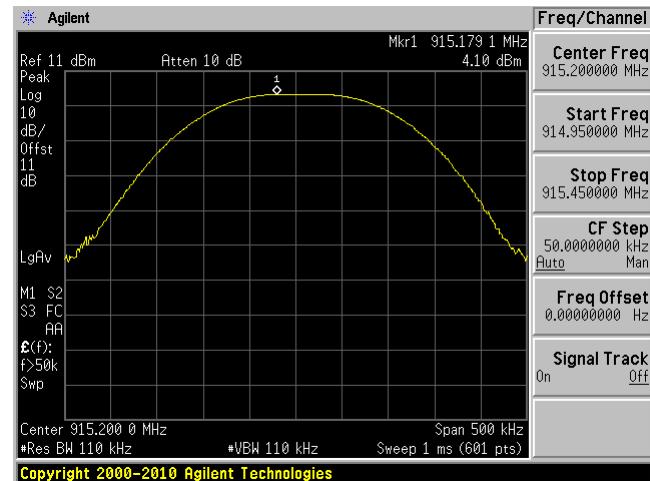
9.4 Test Environmental Conditions

Temperature:	22° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa

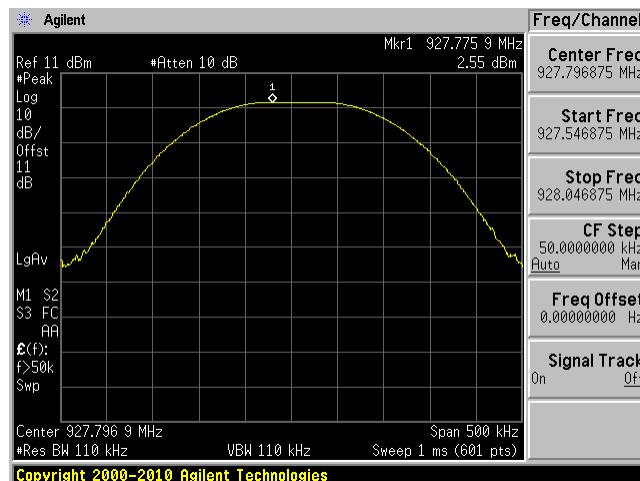
The testing was performed by Matthew Riego de Dios on 2019-11-01 and 2020-02-12 in RF Bench.


9.5 Test Results

50 kbps, 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode

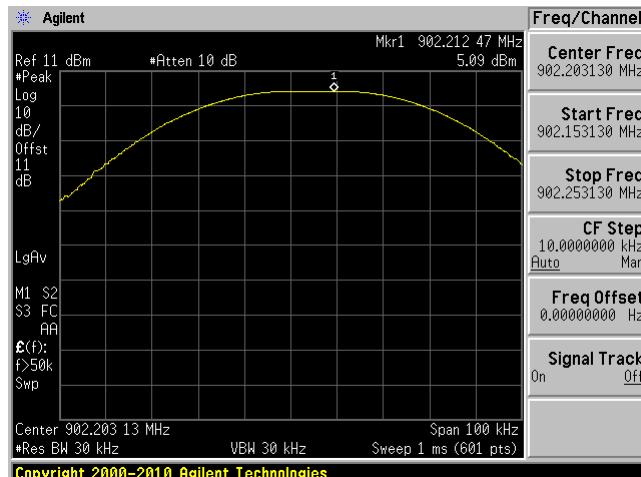

Channel	Frequency (MHz)	Conducted Output Power (dBm)	Limit (dBm)
Low	902.203125	5.16	30
Middle	915.2	4.10	30
High	927.796875	2.55	30

Please refer to the following plots for detailed test results.

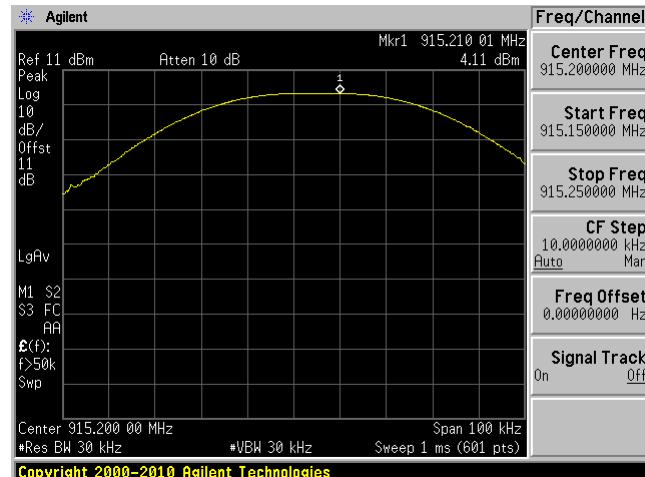

Low Channel 902.203125 MHz

Middle Channel 915.2 MHz

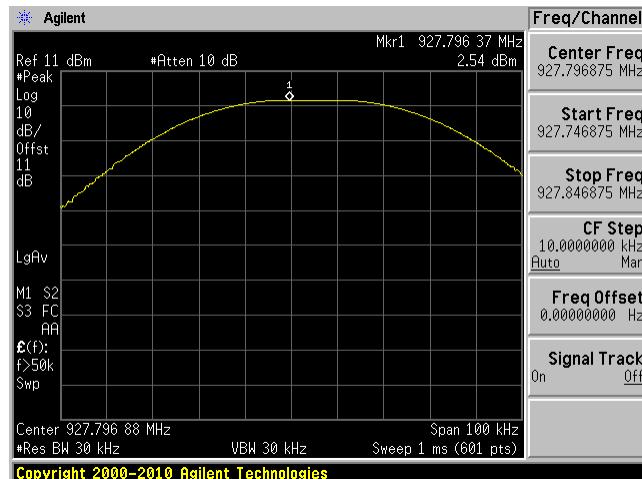
High Channel 927.796875 MHz



5 kbps, SimpleLink Long Range (20 kchip/s, 2-GFSK, conv. FEC r=1/2 K=7 DSSS SF=2, Tx dev:5 kHz, RX BW: 49 kHz)


Channel	Frequency (MHz)	Conducted Output Power (dBm)	Limit (dBm)
Low	902.203125	5.09	30
Middle	915.2	4.11	30
High	927.796875	2.54	30

Please refer to the following plots for detailed test results.


Low Channel 902.203125 MHz

Middle Channel 915.2 MHz

High Channel 927.797 MHz

10 FCC §15.247(d) & ISEDC RSS-247 §5.5 - 100 kHz Bandwidth of Band Edges

10.1 Applicable Standards

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c).

According to ISEDC RSS-247 §5.5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

10.2 Measurement Procedure

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation

RBW = 100 kHz

VBW = 300 kHz

Sweep = coupled

Detector function = peak

Trace = max hold

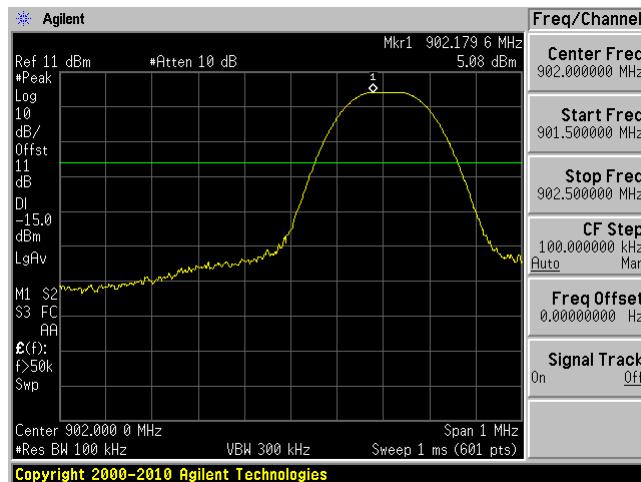
10.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	US44300386	2019-08-24	1 year
-	SMA cable	-	-	Each time ¹	N/A
-	10 dB attenuator	-	-	Each time ¹	N/A

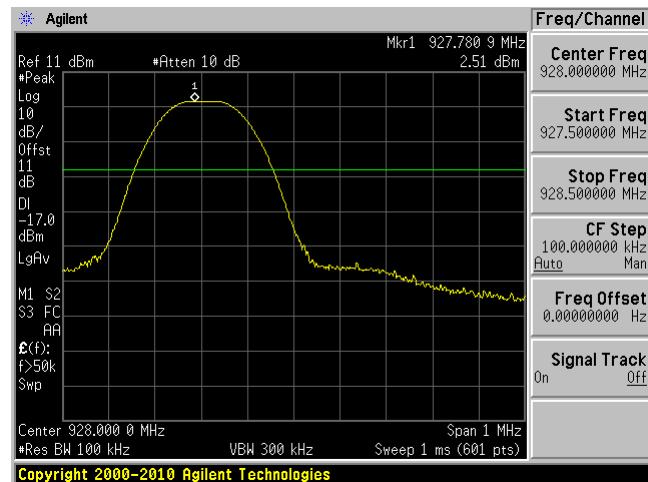
Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 02 October 2018) "A2LA Policy on Metrological Traceability".

10.4 Test Environmental Conditions

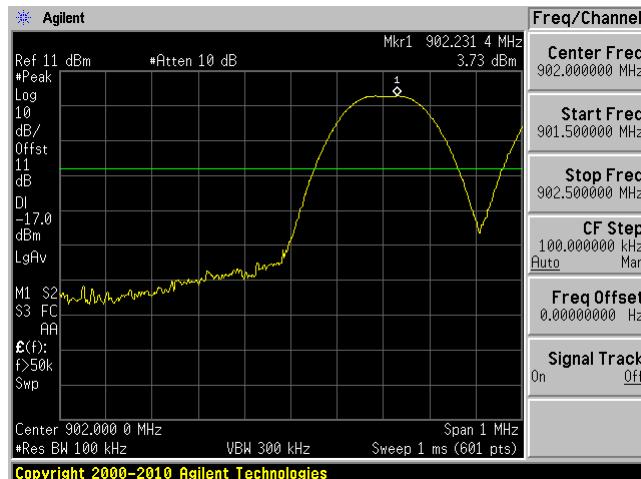

Temperature:	22° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa

The testing was performed by Matthew Riego de Dios on 2019-11-01 in RF Bench.

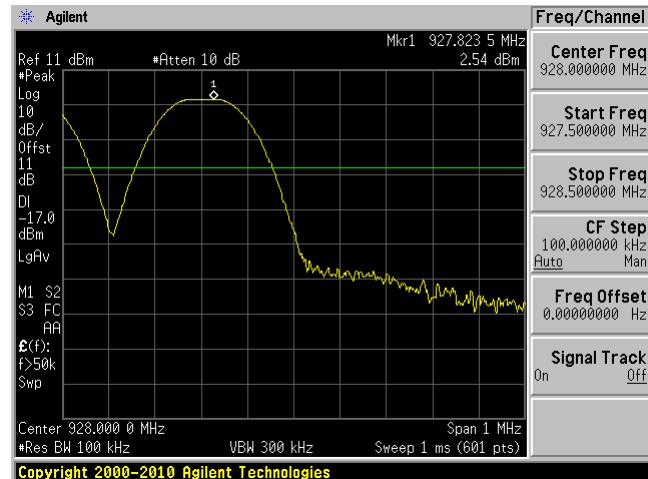

10.5 Test Results

50 kbps, 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode (Single Channel Mode)

Low Channel 902.203125 MHz

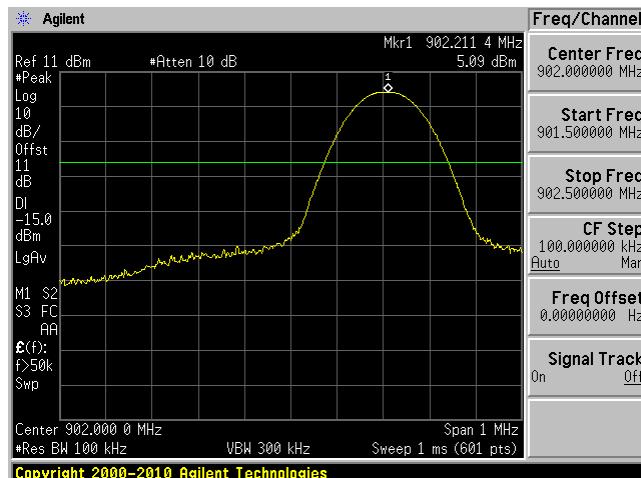


High Channel 927.796875 MHz

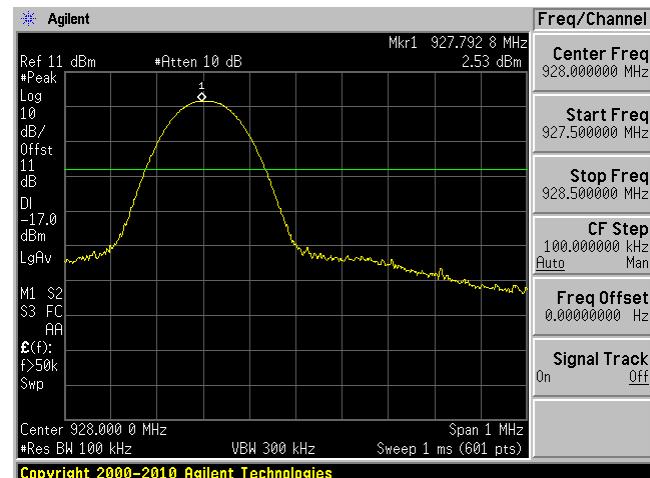


50 kbps, 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode (Hopping Mode)

Low Channel 902.203125 MHz

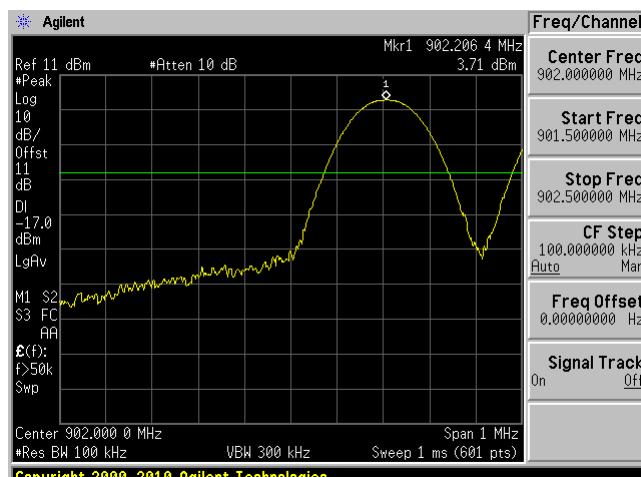


High Channel 927.796875 MHz

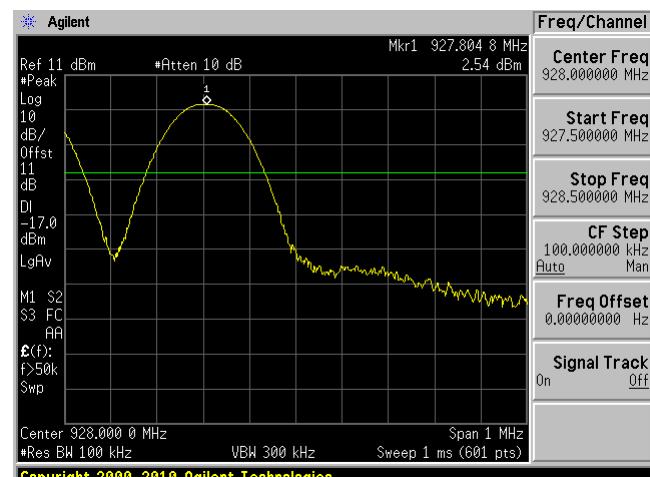


5 kbps, SimpleLink Long Range (20 kchip/s, 2-GFSK, conv. FEC r=1/2 K=7 DSSS SF=2, Tx dev:5 kHz, RX BW: 49 kHz) (Single Channel Mode)

Low Channel 902.203125 MHz



High Channel 927.796875 MHz



5 kbps, SimpleLink Long Range (20 kchip/s, 2-GFSK, conv. FEC r=1/2 K=7 DSSS SF=2, Tx dev:5 kHz, RX BW: 49 kHz) (Hopping Mode)

Low Channel 902.203125 MHz

High Channel 927.796875 MHz

11 FCC §15.247(a) (1) (i) & ISEDC RSS-247 §5.1(c) - Dwell Time

11.1 Applicable Standards

According to FCC §15.247(a) (1) (i) and RSS-247 §5.1(c): For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

11.2 Measurement Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW \leq channel spacing and where possible RBW should be set $\gg 1/T$, where T is the expected dwell time per channel

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) =
(number of hops on spectrum analyzer) x (period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

11.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rhode & Schwarz	Signal Analyzer	FSV40	1321.3008K3 9-101203-UW	2019-08-06	1 year
Sunol Sciences	Antenna, Horn	DRH-118	A052704	2019-04-02	2 years
IW Microwave	150 Series 2.92mm Cable	KPS1501AN-3780-KPS	DC 1925	2019-09-11	1 year

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 02 October 2018) "A2LA Policy on Metrological Traceability".

11.4 Test Environmental Conditions

Temperature:	22° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa

The testing was performed by Matthew Riego de Dios from 2020-02-07 to 2020-02-12 in 5-meter Chamber 3.

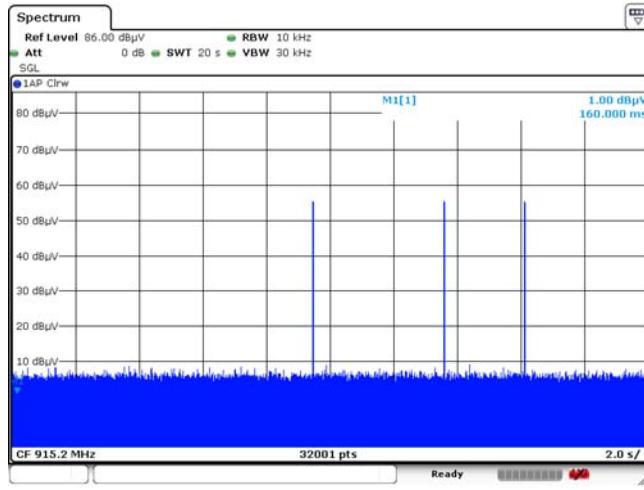
11.5 Test Results

50 kbps, 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode

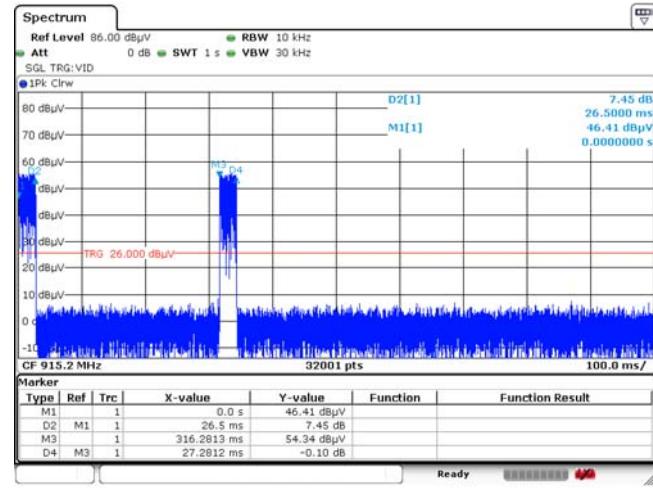
Channel	Frequency	No. of Pulses (per 20 sec)	Pulse Width (ms)	Total Dwell Time (sec)	Limit (sec)	Results
Middle	915.2	3	53.78	0.161	0.400	COMPLIANT

5 kbps, SimpleLink Long Range (20 kchip/s, 2-GFSK, conv. FEC r=1/2 K=7 DSSS SF=2, Tx dev:5 kHz, RX BW: 49 kHz)

Channel	Frequency	No. of Pulses (per 20 sec)	Pulse Width (ms)	Total Dwell Time (sec)	Limit (sec)	Results
Middle	915.2	4	95.38	0.382	0.400	COMPLIANT

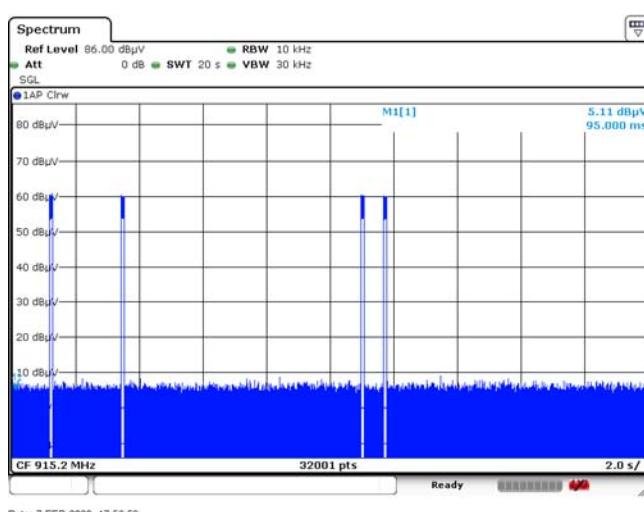

Total Dwell Time (sec) = (Number of Pulses per 20 seconds x Pulse Width (ms))/1000

Please refer to the following plots for detailed test results.

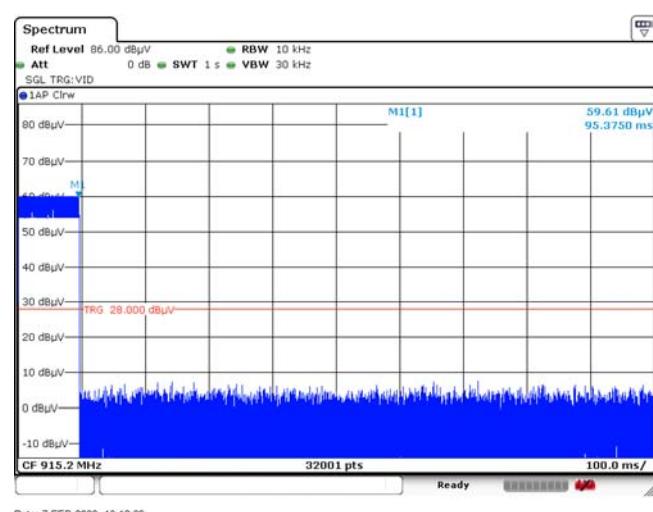

50 kbps, 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode

915.2 MHz

Number of Pulses



Pulse Duration


5 kbps, SimpleLink Long Range (20 kchip/s, 2-GFSK, conv. FEC r=1/2 K=7 DSSS SF=2, Tx dev:5 kHz, RX BW: 49 kHz)

915.2 MHz

Number of Pulses

Pulse Duration

12 FCC §15.247(a)(1)(i) & ISEDC RSS-247 §5.1(c) - Number of Hopping Channels

12.1 Applicable Standards

According to FCC §15.247(a) (1) (i) and ISEDC RSS-247 §5.1(c)-: For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

12.2 Test Procedure

Span = the frequency band of operation

$RBW < 30\%$ of the channel spacing or the 20 dB bandwidth, whichever is smaller

$VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

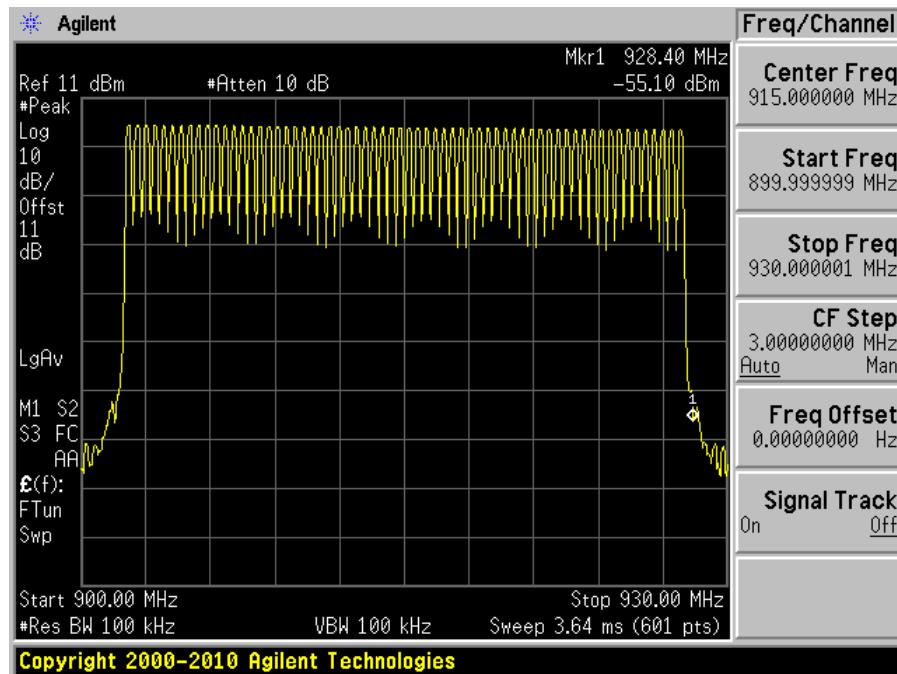
12.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	US44300386	2019-08-24	1 year
-	SMA cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

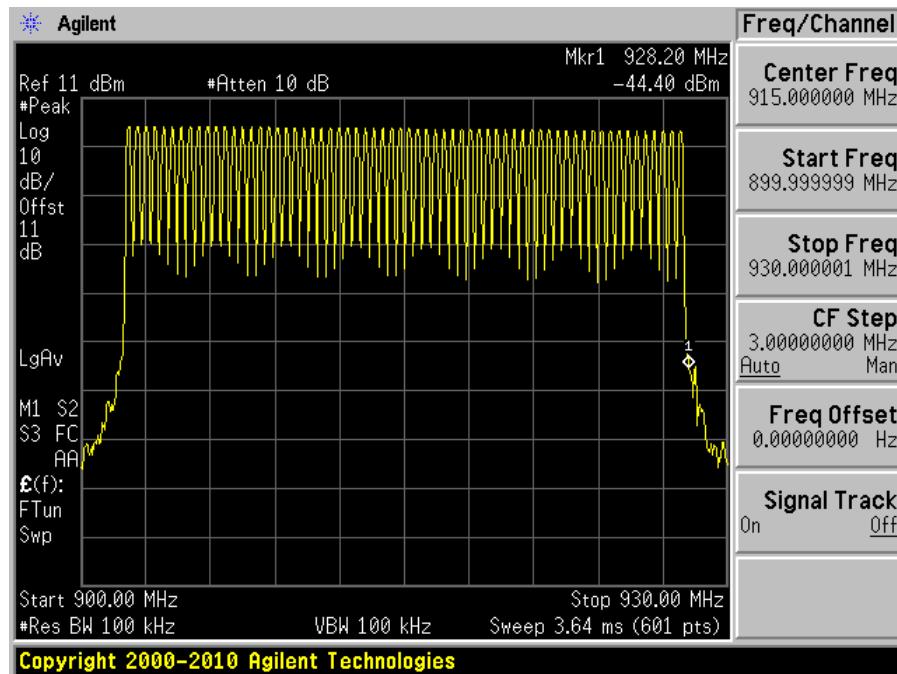
Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: *BACL Corp.* attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 02 October 2018) "A2LA Policy on Metrological Traceability".

12.4 Test Environmental Conditions


Temperature:	22° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa

The testing was performed by Matthew Riego de Dios on 2019-11-01 in RF Bench.


12.5 Test Results

Total 64 channels; please refer to the plots hereinafter.

50 kbps, 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode

5 kbps, SimpleLink Long Range (20 kchip/s, 2-GFSK, conv. FEC r=1/2 K=7 DSSS SF=2, Tx dev:5 kHz, RX BW: 49 kHz)

13 FCC §15.247(a) (1) & ISEDC RSS-247 §5.1(c) - Hopping Channel Separation

13.1 Applicable Standards

According to FCC §15.247(a) (1) : Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

According to FCC §15.247(a) (1) (i) and ISEDC RSS-247 §5.1(c): For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

13.2 Test Procedure

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) \approx 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel

Video (or Average) Bandwidth (VBW) \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

13.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	US44300386	2019-08-24	1 year
Agilent	Analyzer, Spectrum	E4440A	US45303156	2019-03-19	1 year
-	SMA cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

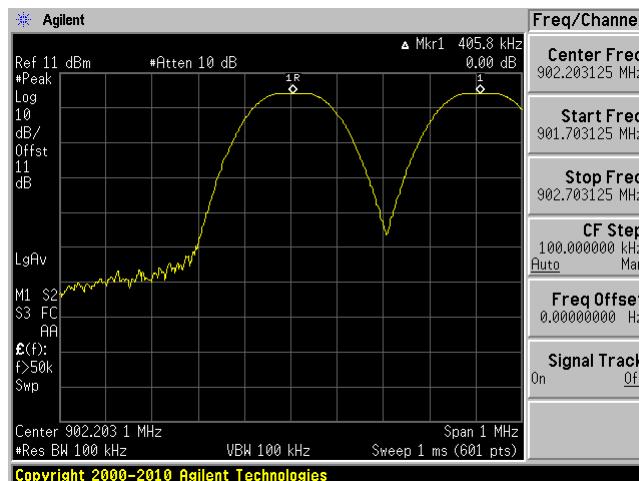
Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 02 October 2018) "A2LA Policy on Metrological Traceability".

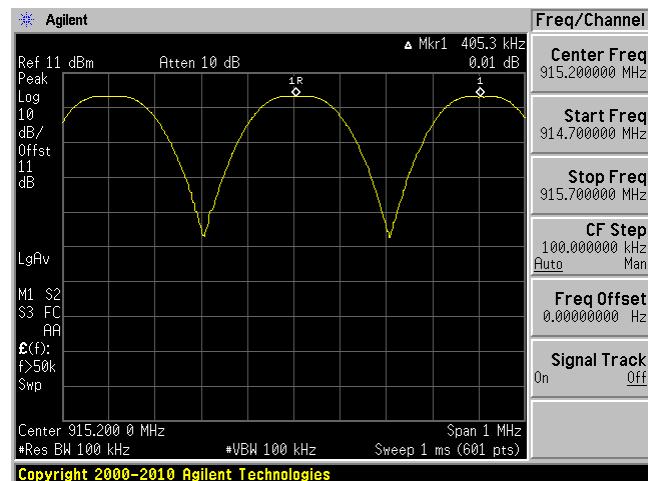
13.4 Test Environmental Conditions

Temperature:	22° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa

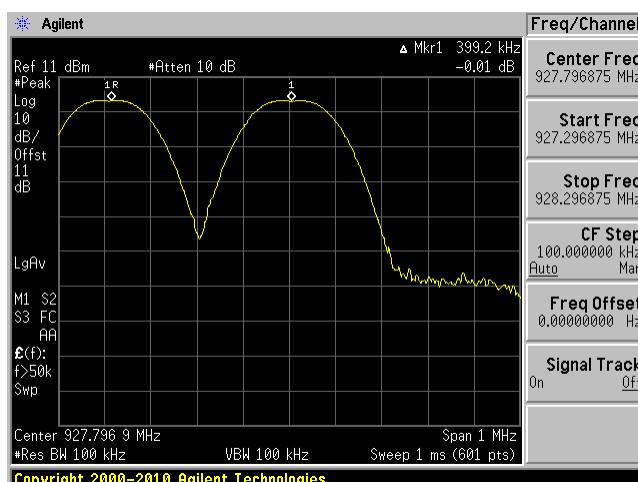
The testing was performed by Matthew Riego de Dios on 2019-11-01 and 2020-02-12 in RF Bench.


13.5 Test Results

50 kbps, 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode

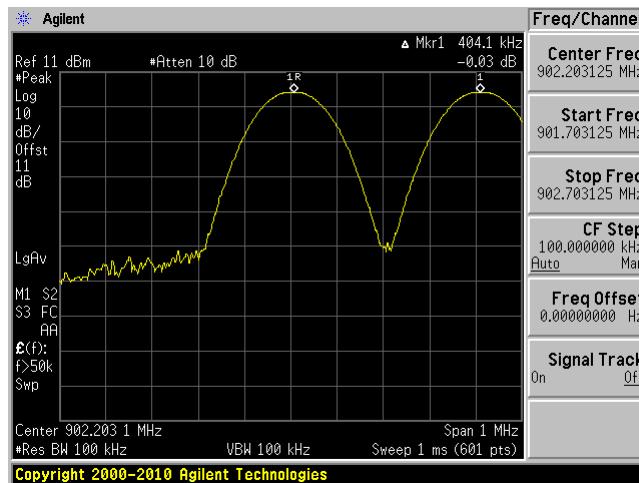

Channel	Frequency (MHz)	Channel Separation (kHz)	Limit > 20 dB OBW (kHz)
Low	902.203125	405.8	102.880
Middle	915.2	405.3	103.004
High	927.796875	399.2	103.701

Please refer to following plots.

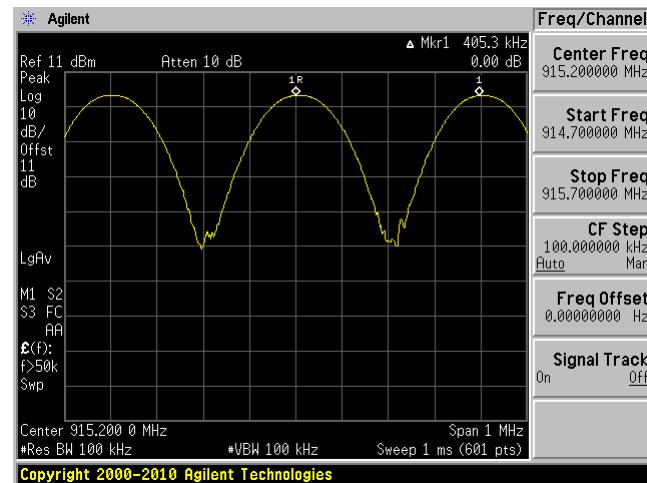

Low Channel 902.203125 MHz

Middle Channel 915.2 MHz

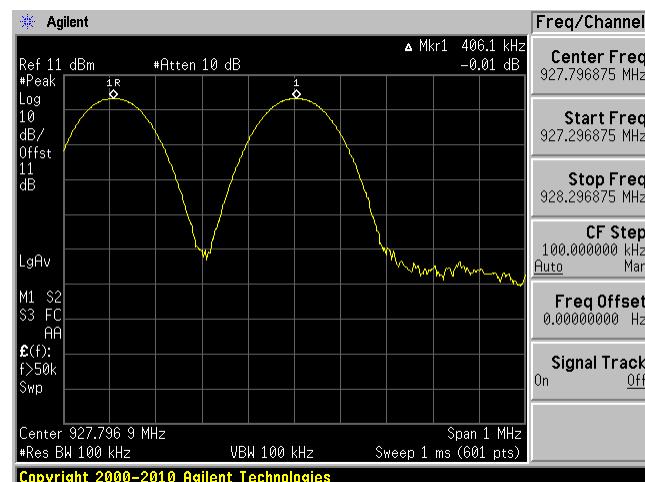
High Channel 927.796875 MHz



5 kbps, SimpleLink Long Range (20 kchip/s, 2-GFSK, conv. FEC r=1/2 K=7 DSSS SF=2, Tx dev:5 kHz, RX BW: 49 kHz)


Channel	Frequency (MHz)	Channel Separation (kHz)	Limit > 20 dB OBW (kHz)
Low	902.203125	404.1	25
Middle	915.2	405.3	25
High	927.796875	406.1	25

Please refer to following plots.


Low Channel 902.203125 MHz

Middle Channel 915.2 MHz

High Channel 927.796875 MHz

14 FCC §15.247(d) & ISEDC RSS-247 §5.5 - Spurious Emissions at Antenna Terminals

14.1 Applicable Standards

For FCC §15.247(d) and ISEDC RSS-247 §5.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

14.2 Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

14.3 Test Equipment List and Details

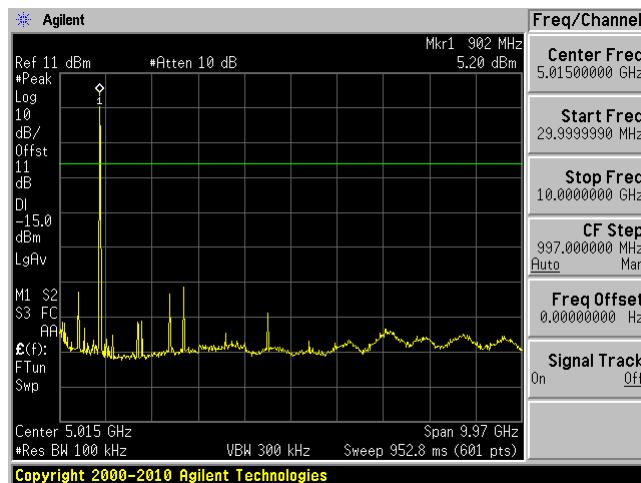
Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	US44300386	2019-08-24	1 year
Agilent	Analyzer, Spectrum	E4440A	US45303156	2019-03-19	1 year
-	SMA cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

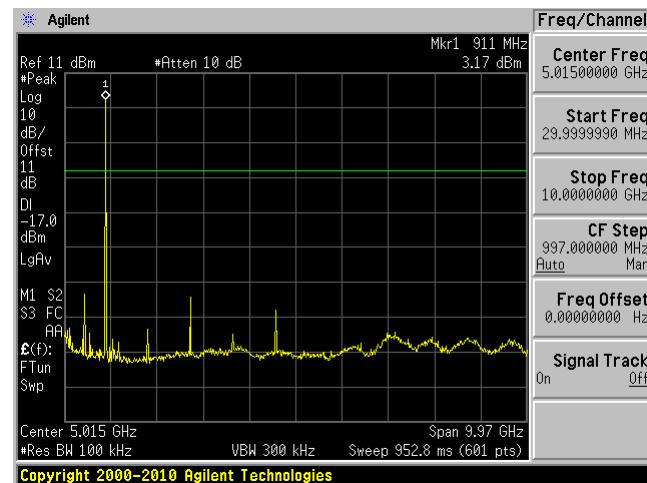
Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 02 October 2018) "A2LA Policy on Metrological Traceability".

14.4 Test Environmental Conditions

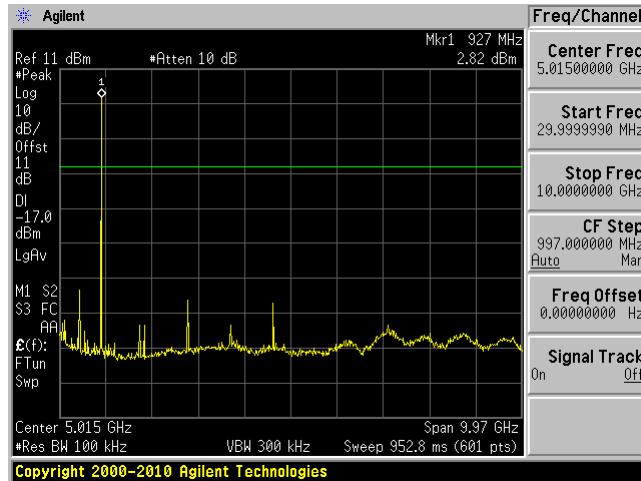
Temperature:	22° C
Relative Humidity:	42 %
ATM Pressure:	102.7 KPa

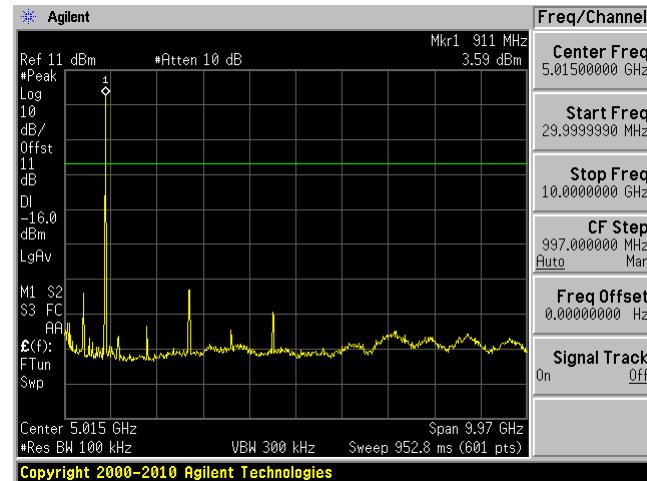

The testing was performed by Matthew Riego de Dios on 2019-11-01 and 2020-02-12 in RF Bench.

14.5 Test Results

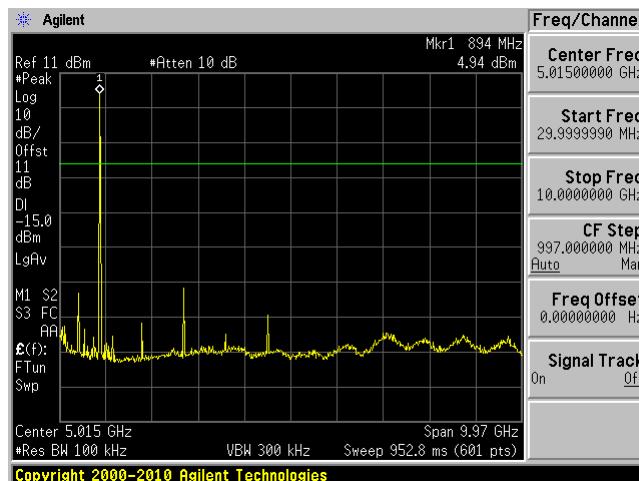

Please refer to following plots.

50 kbps, 2-GFSK, 25 kHz deviation, IEEE 802.15.4g MR-FSK PHY mode

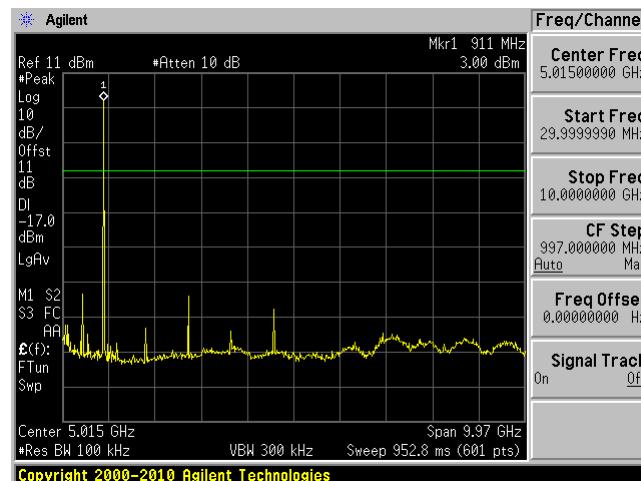

Low Channel


Middle Channel

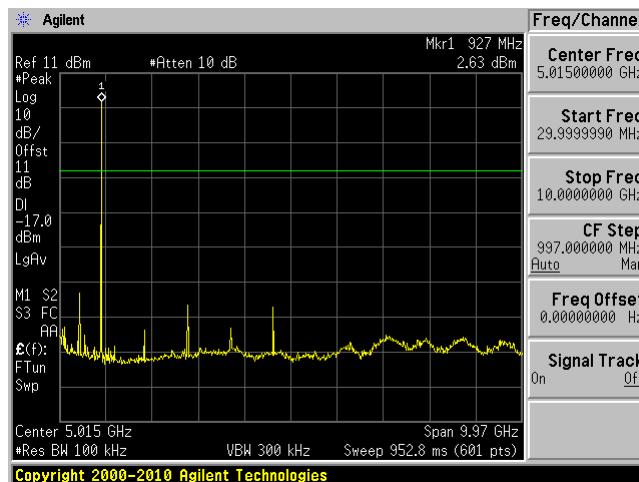
High Channel

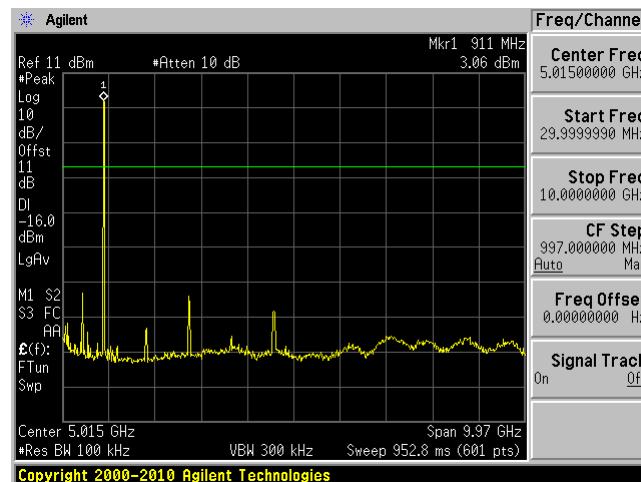


Hopping Mode



5 kbps, SimpleLink Long Range (20 kchip/s, 2-GFSK, conv. FEC r=1/2 K=7 DSSS SF=2, Tx dev:5 kHz, RX BW: 49 kHz)


Low Channel


Middle Channel

High Channel

Hopping Mode

15 Annex A - Test Setup Photographs

Please refer to attachment.

16 Annex B - EUT Photographs

Please refer to attachment.

17 Annex C (Normative) - A2LA Electrical Testing Certificate

Accredited Laboratory

A2LA has accredited

BAY AREA COMPLIANCE LABORATORIES CORP.

Sunnyvale, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This laboratory also meets A2LA R222 - Specific Requirements EPA ENERGY STAR Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 2nd day of October 2018.

A handwritten signature in blue ink, appearing to read "John Doe".

Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 3297.02
Valid to September 30, 2020
Revised June 5, 2019

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Please follow the web link below for a full ISO 17025 scope

<https://www.a2la.org/scopepdf/3297-02.pdf>

--- END OF REPORT ---