

FCC 47 CFR PART 15 SUBPART C: 2013 ANSI C63.10: 2009

TEST REPORT

For

Wireless PIR Sensor

Model : PIR1301

Brand : MivaTek

Issued to

MivaTek Limited

5/F, SPA Centre 53-55 Lockhart Road Wanchai, Hong Kong

Issued by

Compliance Certification Services Inc.

Tainan Lab.

No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

TEL: (06) 580-2201

FAX: (06) 580-2202

Issued Date: July 07, 2015

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

REVISION HISTORY

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	July 07, 2015	Initial Issue	ALL	Sunny Chang

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION	4
2. EUT DESCRIPTION.....	5
3. TEST METHODOLOGY.....	6
3.1 EUT CONFIGURATION	6
3.2 EUT EXERCISE	6
3.3 GENERAL TEST PROCEDURES	6
3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	7
3.5 DESCRIPTION OF TEST MODES.....	7
4. INSTRUMENT CALIBRATION	8
4.1 MEASURING INSTRUMENT CALIBRATION	8
4.2 MEASUREMENT EQUIPMENT USED	8
4.3 MEASUREMENT UNCERTAINTY	9
5. FACILITIES AND ACCREDITATIONS.....	10
5.1 FACILITIES	10
5.2 EQUIPMENT	10
5.3 TABLE OF ACCREDITATIONS AND LISTINGS.....	10
5.4 TABLE OF ACCREDITATIONS AND LISTINGS.....	10
6. SETUP OF EQUIPMENT UNDER TEST	11
6.1 SETUP CONFIGURATION OF EUT	11
6.2 SUPPORT EQUIPMENT	11
7. FCC PART 15.231 REQUIREMENTS	12
7.1 20 DB BANDWIDTH.....	12
7.2 LIMIT OF TRANSMISSION TIME.....	14
7.3 DUTY CYCLE.....	16
7.4 RADIATED EMISSIONS	19
7.5 POWERLINE CONDUCTED EMISSIONS	25
8. APPENDIX 1 PHOTOGRAPHS OF TEST SETUP	26

1. TEST RESULT CERTIFICATION

Product: Wireless PIR Sensor

Model: PIR1301

Brand Name: MivaTek

Applicant: MivaTek Limited

5/F, SPA Centre 53-55 Lockhart Road Wanchai, Hong Kong

Manufacturer: Vision Automobile Electronics Industrial Co., Ltd.

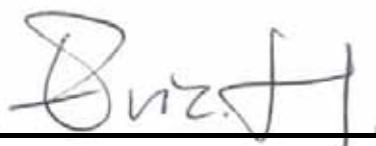
No. 78, Gongye 3rd Rd., Technology Industrial Park, Tainan
70955, Taiwan

Tested: August 22, 2012

APPLICABLE STANDARDS	
STANDARD	TEST RESULT
FCC 47 CFR Part 15 Subpart C: 2013 ANSI C63.10 : 2009	No non-compliance noted

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2009 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.207, 15.209 and Part 15.231.


The test results of this report relate only to the tested sample identified in this report.

Approved by:

Jeter Wu
Assistant Manager

Reviewed by:

Eric Huang
Assistant Section Manager

2. EUT DESCRIPTION

Product	Wireless PIR Sensor
Model Number	PIR1301
Brand Name	MivaTek
Received Date	August 17, 2012
Operating Frequency	433.88MHz
Operating Range	433.92MHz ± 150kHz
Number of Channels	1 Channel
Type of Modulation	ASK
Power Supply	Powered from battery , 3Vdc
Antenna Type	Wire antenna Gain: -10 dBi
Temperature Range	-15°C ~ +60°C

Remark:

1. Client consigns only one model sample to test (Model Number: **PIR1301**). Therefore, the testing Lab. just guarantees the unit, which has been tested.
2. This submittal(s) (test report) is intended for FCC ID: **2AE59PIR02** filing to comply with Section 15.207, 15.209 and 15.231 of the FCC Part 15, Subpart C Rules.
3. For more details, please refer to the User's manual of the EUT.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10 (2009) and FCC CFR 47 15.207, 15.209 and 15.231.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.10. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.10.

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

- (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

- (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (Model: PIR1301) had been tested under engineering test mode condition and the EUT staying in continuous transmitting mode.

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Open Area Test Site # 6				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
TYPE N COAXIAL CABLE	SUHNER	CHA9513	6	NOV. 15, 2012
BI-LOG Antenna	Sunol	JB1	A070506-2	OCT. 03, 2012
LOOP ANTENNA	EMCO	6502	8905-2356	JUN. 10, 2013
Pre-Amplifier	HP	8447F	2944A03817	NOV. 23, 2012
EMI Receiver	R&S	ESVS10	833206/012	MAY. 31, 2013
RF Cable	SUHNER	SUCOFLEX104PEA	20520/4PEA	NOV. 10, 2012
Horn Antenna	Com-Power	AH-118	071032	DEC. 04, 2012
Spectrum Analyzer	R&S	FSEK 30	835253/002	SEP. 29, 2012
Spectrum Analyzer	R&S	FSU	200789	SEP. 29, 2012
Pre-Amplifier	MITEQ	AFS44-00108650-42-10P-44	1205908	NOV. 23, 2012
3116 Double Ridge Antenna (40G)	ETS-LINDGREN	EMCO-003	00078	NOV. 14, 2012
Turn Table	Yo Chen	001	-----	N.C.R.
Antenna Tower	AR	TP1000A	309874	N.C.R.
Controller	CT	SC101	-----	N.C.R.
RF Swicth	E-INSTRUMENT TELH LTD	ERS-180A	EC1204141	N.C.R
Power Meter	Anritsu	ML2487A	6K00003888	MAY. 30, 2013
Power Sensor	Anritsu	MA2491A	33265	MAY. 30, 2013
Temp./Humidity Chamber	K.SON	THS-M1	242	AUG. 09, 2013
Signal Generator	HP	8673C	2938A00663	SEP. 12, 2012
DC Power Source	LOKO	DSP-5050	L1507009282	N.C.R

Remark: Each piece of equipment is scheduled for calibration once a year.

4.3 MEASUREMENT UNCERTAINTY

Parameter	Uncertainty
Radiated Emission, 30 to 200 MHz Test Site : OATS-6	±3.38dB
Radiated Emission, 200 to 1000 MHz Test Site : OATS-6	±3.04dB
Radiated Emission, 1 to 26.5 GHz	± 2.38 dB
Power Line Conducted Emission	±2.01dB
Band Width	136.49kHz
Peak Output Power MU	±1.904dB
Band Edge MU	±0.302dBuV
Channel Separation MU	361.69Hz
Duty Cycle MU	0.064ms
Frequency Stability MU	0.223kHz

Uncertainty figures are valid to a confidence level of 95%, k=2

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.7:1992, ANSI C63.10 : 2009 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: TW-1037).

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan	TAF
Canada	Industry Canada
Germany	TUV NORD
Taiwan	BSMI
USA	FCC

Copies of granted accreditation certificates are available for downloading from our web site, <http://www.ccsrf.com>

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	N/A	-----	-----	-----	-----

No.	Signal cable description
A	N/A

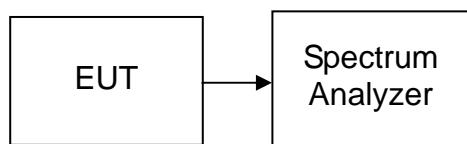
Remark:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 15.231 REQUIREMENTS

7.1 20 DB BANDWIDTH

LIMIT


The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

MEASUREMENT EQUIPMENT USED

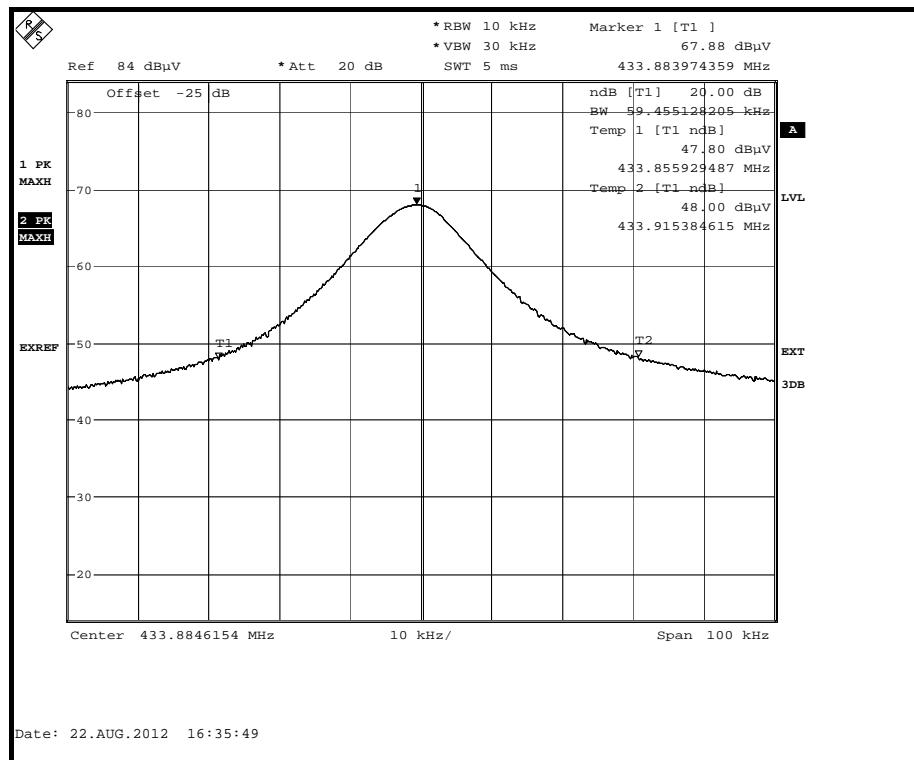
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	R&S	FSU	200789	SEP. 29, 2012

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The spectrum analyzer center frequency is set to the transmitter frequency. The RBW is set to 10 kHz and VBW is set 30kHz.


TEST RESULTS

No non-compliance noted.

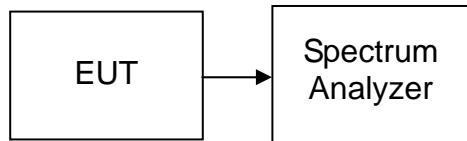
TEST DATA

Frequency (MHz)	20dB Bandwidth (KHz)	Limit (KHz)	Result
433.88	59.45512821	1084.7	PASS

Test Plot

7.2 LIMIT OF TRANSMISSION TIME

LIMIT


According to 15.231, a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

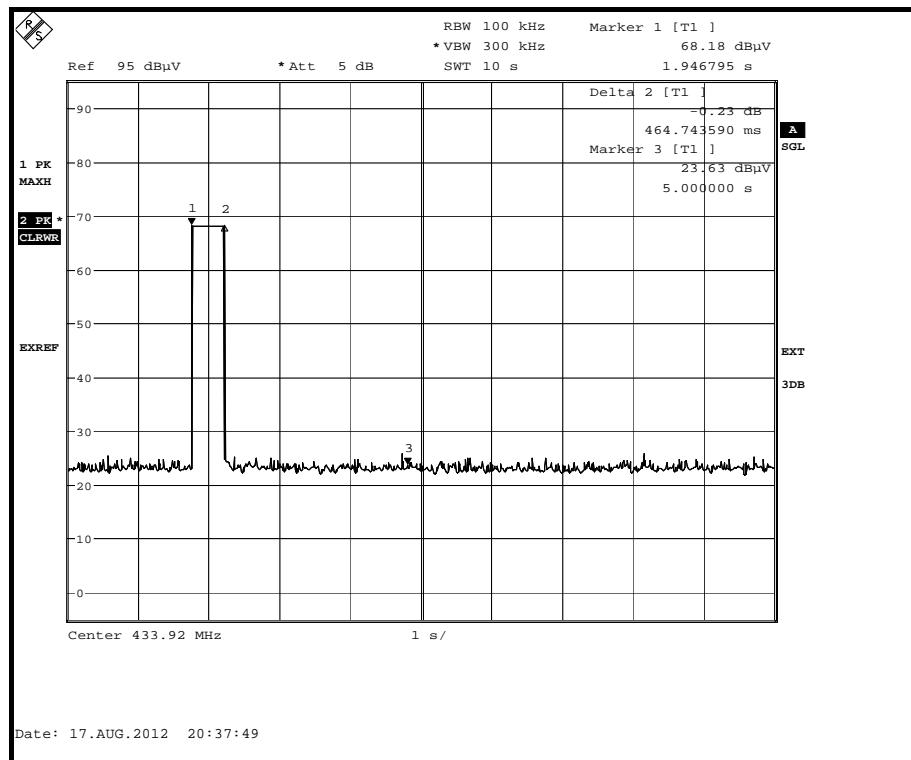
MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	R&S	FSU	200789	SEP. 29, 2012

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The spectrum analyzer center frequency is set to the transmitter frequency. The RBW = 100kHz and VBW = 100kHz.

TEST RESULTS

No non-compliance noted

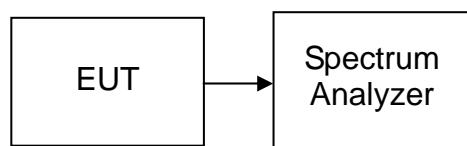
TEST DATA

Frequency (MHz)	Transmission Time (s)	Limit (Second)	Result
433.88	0.46474359	5	PASS

Test Plot

7.3 DUTY CYCLE

LIMIT


Nil (No dedicated limit specified in the Rules)

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	R&S	FSU	200789	SEP. 29, 2012

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

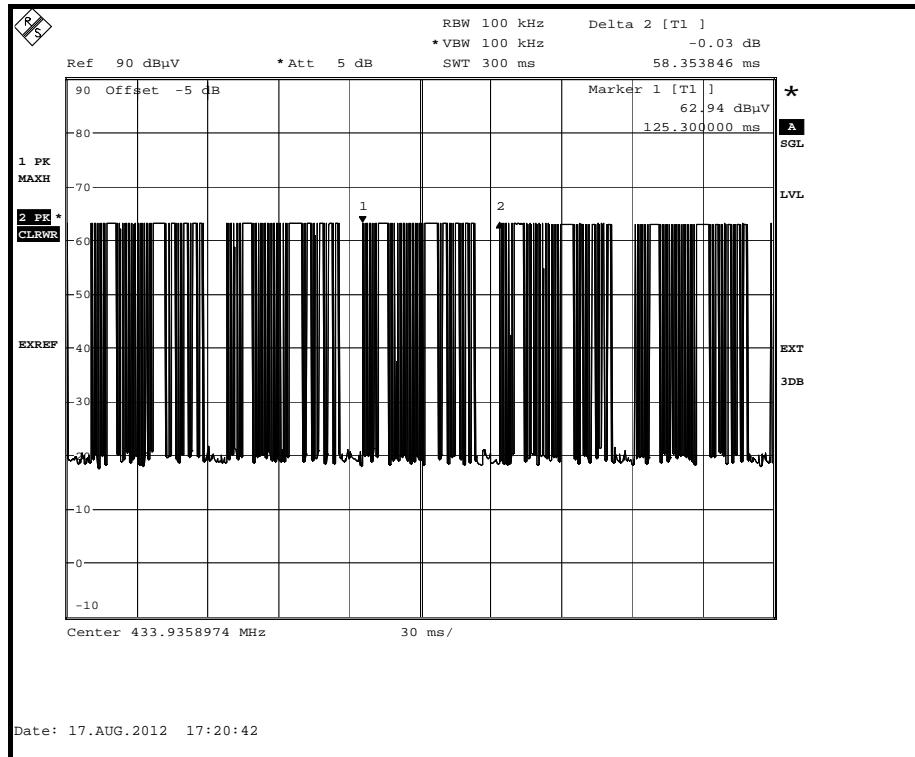
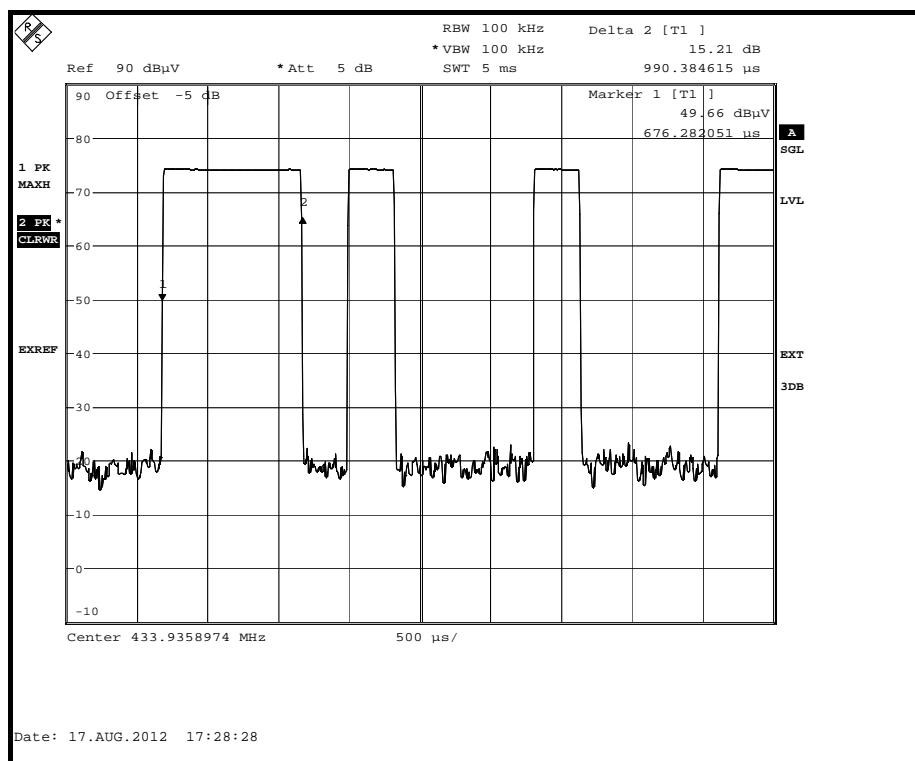
TEST PROCEDURE

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer = operating frequency.
4. Set the spectrum analyzer as RBW, VBW=100KHz, Span = 0Hz, a suitable Sweep Time.
5. Repeat above procedures until all frequency measured were complete.

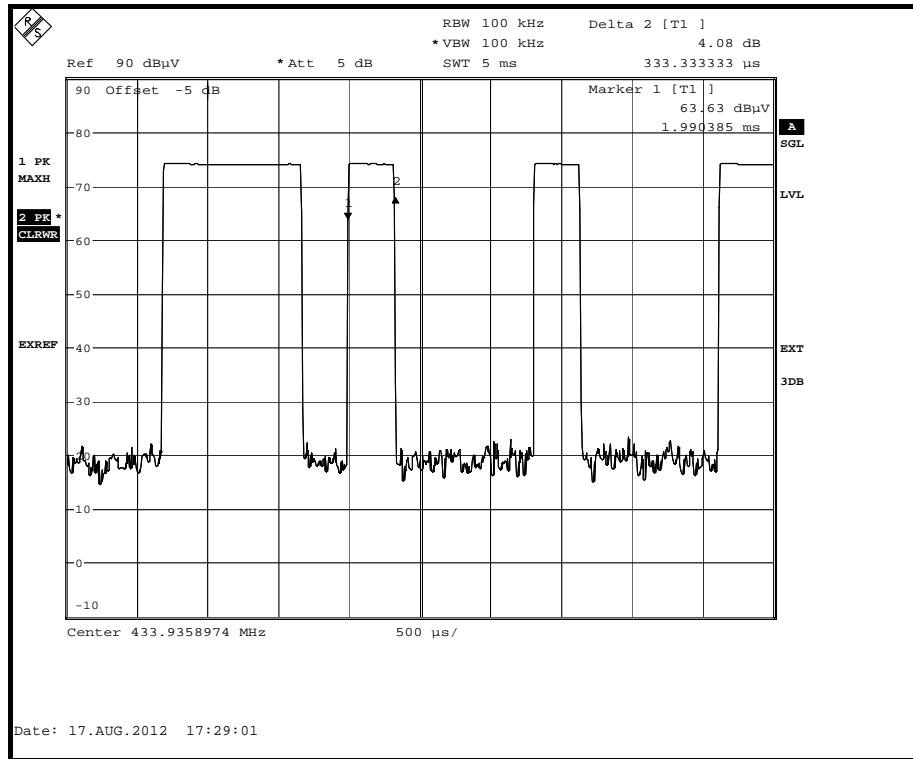
TEST RESULTS

No non-compliance noted.

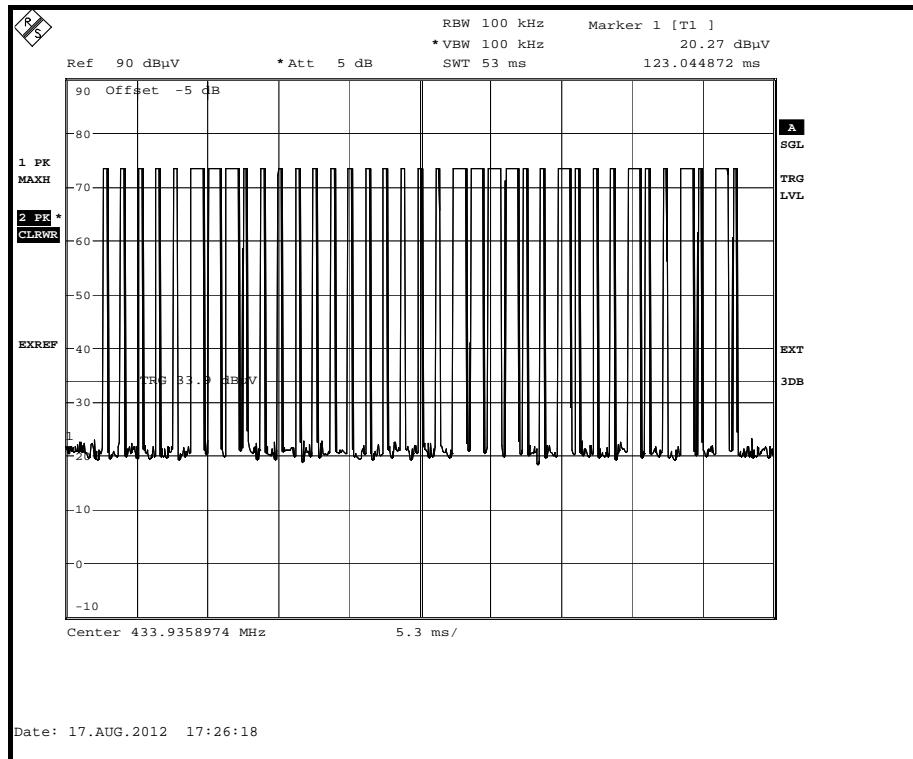
TEST DATA



	us	Times	Ton	Total Ton times(ms)
Ton1	990.384	22	21788.448	39.122
Ton2	333.333	52	17333.316	
Ton3		0	0.000	
Tp				100.000

Ton	39.122
Tp(Ton+Toff)	100.000
Duty Cycle	0.391
Duty Factor	-8.152


39.121764 %

Test Plot


Tp

Ton-1

Ton-2

Ton-3

7.4 RADIATED EMISSIONS

LIMIT

1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Field Strength (dB μ V/m at 3-meter)	Measurement Distance (m)
30-88	100*	40	3
88-216	150*	43.5	3
216-960	200*	46	3
Above 960	500	54	3

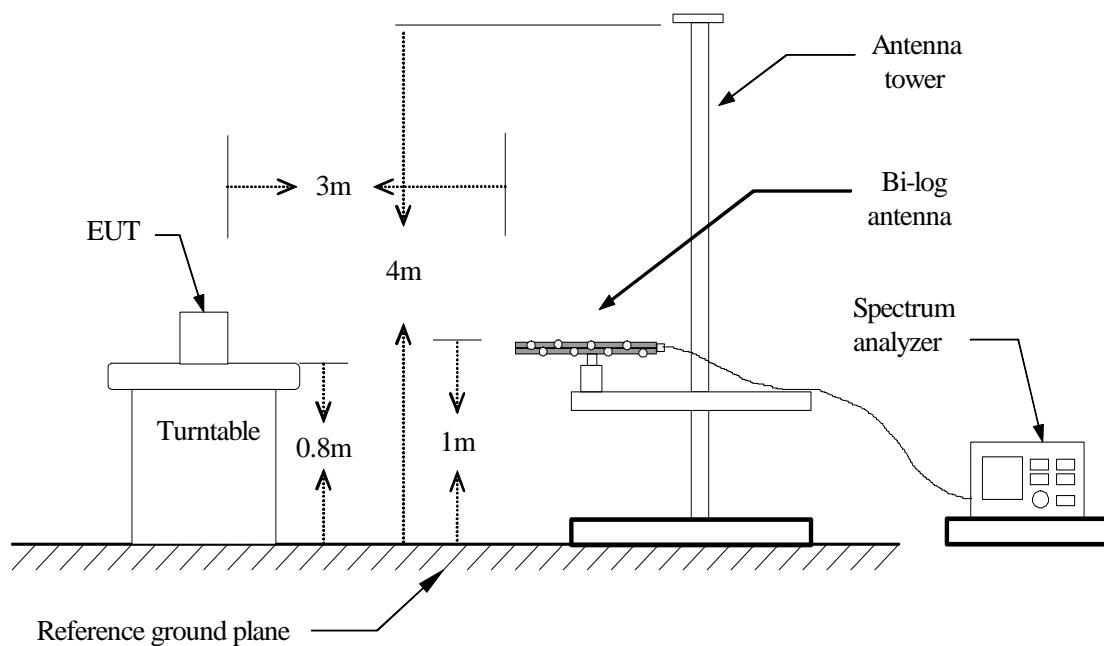
Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. For intentional device, according to § 15.231, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following table.

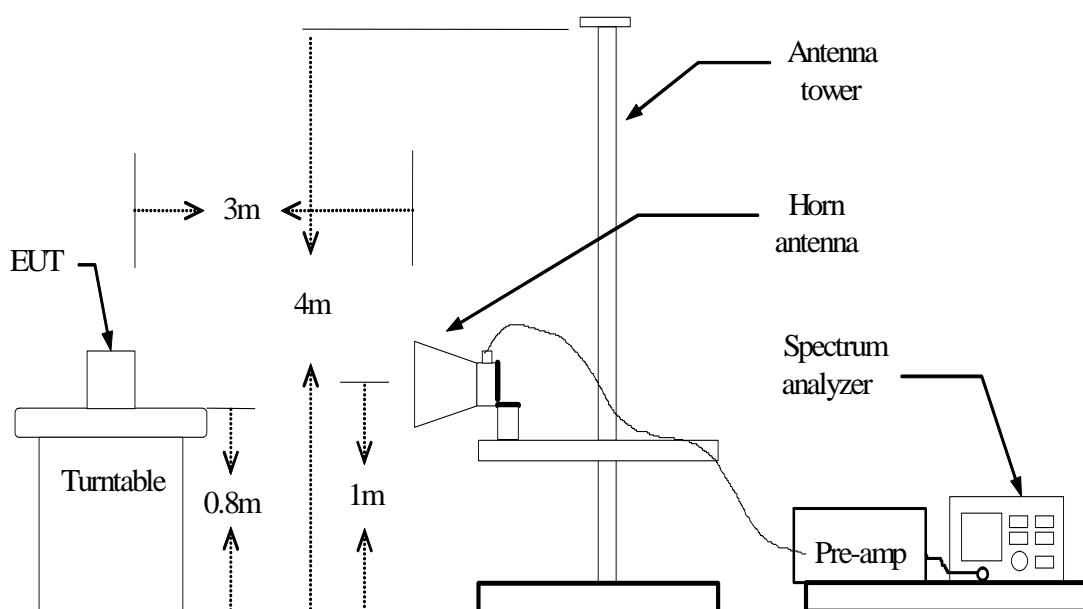
Fundamental Frequency (MHz)	Field Strength of Fundamental (μ V/M)	Field Strength of Spurious Emission
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750**	125 to 375**
174-260	3750	375
260-470	3750 to 12500**	375 to 1250**
Above 470	12500	1250

Note :

1. “ ” linear interpolations.
2. Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = $56.81818(F) - 6136.3636$; for the band 260-470 MHz, μ V/m at 3 meters = $41.6667(F) - 7083.3333$. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.


MEASUREMENT EQUIPMENT USED

Open Area Test Site # 6				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
TYPE N COAXIAL CABLE	SUHNER	CHA9513	6	NOV. 15, 2012
BI-LOG Antenna	Sunol	JB1	A070506-2	OCT. 03, 2012
LOOP ANTENNA	EMCO	6502	8905-2356	JUN. 10, 2013
Pre-Amplifier	HP	8447F	2944A03817	NOV. 23, 2012
EMI Receiver	R&S	ESVS10	833206/012	MAY. 31, 2013
RF Cable	SUHNER	SUCOFLEX104PEA	20520/4PEA	NOV. 10, 2012
Horn Antenna	Com-Power	AH-118	071032	DEC. 04, 2012
Spectrum Analyzer	R&S	FSEK 30	835253/002	SEP. 29, 2012
Spectrum Analyzer	R&S	FSU	200789	SEP. 29, 2012
Pre-Amplifier	MITEQ	AFS44-00108650-42-10P-44	1205908	NOV. 23, 2012
3116 Double Ridge Antenna (40G)	ETS-LINDGREN	EMCO-003	00078	NOV. 14, 2012
Turn Table	Yo Chen	001	-----	N.C.R.
Antenna Tower	AR	TP1000A	309874	N.C.R.
Controller	CT	SC101	-----	N.C.R.
RF Swicth	E-INSTRUMENT TELH LTD	ERS-180A	EC1204141	N.C.R
Power Meter	Anritsu	ML2487A	6K00003888	MAY. 30, 2013
Power Sensor	Anritsu	MA2491A	33265	MAY. 30, 2013
Temp./Humidity Chamber	K.SON	THS-M1	242	AUG. 09, 2013
Signal Generator	HP	8673C	2938A00663	SEP. 12, 2012
DC Power Source	LOKO	DSP-5050	L1507009282	N.C.R


Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Below 1 GHz

Above 1 GHz

TEST PROCEDURE

1. The EUT is placed on a turntable, which is 0.8m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

- (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
- (b) AVERAGE: PEAK + DUTY FACTOR

7. Repeat above procedures until the measurements for all frequencies are complete.
8. **No emission is found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)**

TEST RESULTS

Below 1 GHz

Operation Mode: TX / YMode **Test Date:** 2012/08/22
Temperature: 26.1 **Tested by:** Vision Chang
Humidity: 57 % RH **Polarity:** Ver. / Hor.

Freq-Uency (MHz)	Antenna Factor	Cable Loss	Meter Reading at 3 m(dB μ V)		Limits (dB μ V/M)	Duty Cycle Factor	Emission Level at 3 m(dB μ V/m)		Margin		Detector Mode
			Horizontal	Vertical			Horizontal	Vertical	Horizontal	Vertical	
433.88	16.81	2.83	64.19	67.52	100.82	-8.15	83.83	87.16	-17.00	-13.67	PK
433.88	16.81	2.83	N/A	N/A	80.82	-8.15	75.67	79.00	-5.15	-1.82	AVG
867.82	22.41	4.39	20.66	25.18	80.82	-8.15	47.47	51.98	-33.36	-28.84	PK
867.82	22.41	4.39	N/A	N/A	60.82	-8.15	39.31	43.83	-21.51	-16.99	AVG
935.14	23.05	4.56	18.83	20.32	80.82	-8.15	46.44	47.93	-34.39	-32.90	PK
935.14	23.05	4.56	N/A	N/A	60.82	-8.15	38.29	39.78	-22.54	-21.05	AVG
N/A	----	----	----	----	----	----	----	----	----	----	----

Notes:

1. Measuring frequencies from 30 MHz to the 1GHz.
2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
3. Data of measurement within this frequency range shown “ --- ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
4. The if bandwidth of Spectrum Analyzer between 30MHz to 1GHz was 100kHz.
5. Remark “*”means the Restricted band.
6. Average level=Peak level +Duty factor.

Above 1 GHz

Operation Mode: TX / X Mode **Test Date:** 2012/08/22
Temperature: 26.4 **Tested by:** Vision Chang
Humidity: 53 % RH **Polarity:** Ver. / Hor.

Freq-Uency (MHz)	Antenn a	Cabl e	Meter Reading at 3 m(dB μ V)		Limits (dB μ V/m)	Duty Cycle	Emission Level at 3 m(dB μ V/m)		Margin		Detector Mode
	Factor	Loss	Horizontal	Vertical		Factor	(dB)	Horizontal	Vertical		
* 1301.47	25.82	1.88	13.70	18.02	74.00	-8.15	41.40	45.72	-32.60	-28.28	PK
* 1301.47	25.82	1.88	N/A	N/A	54.00	-8.15	33.25	37.57	-20.75	-16.43	AVG
1735.12	28.29	2.18	14.26	11.65	80.82	-8.15	44.73	42.12	-36.10	-38.71	PK
1735.12	28.29	2.18	N/A	N/A	60.82	-8.15	36.58	33.97	-24.25	-26.86	AVG
2169.11	30.20	2.33	16.85	17.25	80.82	-8.15	49.38	49.78	-31.44	-31.04	PK
2169.11	30.20	2.33	N/A	N/A	60.82	-8.15	41.23	41.63	-19.59	-19.19	AVG
2603.01	29.98	2.36	16.46	13.54	80.82	-8.15	48.80	45.88	-32.03	-34.95	PK
2603.01	29.98	2.36	N/A	N/A	60.82	-8.15	40.65	37.73	-20.18	-23.10	AVG
3036.84	29.92	2.49	17.85	14.93	80.82	-8.15	50.26	47.34	-30.56	-33.48	PK
3036.84	29.92	2.49	N/A	N/A	60.82	-8.15	42.11	39.19	-18.72	-21.64	AVG
3470.85	30.18	3.16	15.63	13.57	80.82	-8.15	48.98	46.92	-31.85	-33.91	PK
3470.85	30.18	3.16	N/A	N/A	60.82	-8.15	40.83	38.77	-20.00	-22.06	AVG
* 3905.04	30.77	3.35	13.44	11.60	74.00	-8.15	47.55	45.71	-26.45	-28.29	PK
* 3905.04	30.77	3.35	N/A	N/A	54.00	-8.15	39.40	37.56	-14.60	-16.44	AVG
* 4338.75	31.71	3.48	14.58	11.51	74.00	-8.15	49.77	46.70	-24.23	-27.30	PK
* 4338.75	31.71	3.48	N/A	N/A	54.00	-8.15	41.62	38.55	-12.38	-15.45	AVG
N/A	----	----	----	----	----	----	----	----	----	----	----

Notes:

1. Measuring frequencies from 30 MHz to the 1GHz.
2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
3. Data of measurement within this frequency range shown “ --- ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
4. The IF bandwidth of SPA between 1GHz to 4.5GHz was 1MHz.
5. Remark “*”means the Restricted band.
6. Average level=Peak level +Duty factor.

7.5 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED

Conducted Emission room #1				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N.	SCHWARZBECK	NNLK 8121	8121-308	SEP. 25, 2012
	Rohde & Schwarz	ESH 3-Z5	840062/021	AUG. 02, 2013
TEST RECEIVER	Rohde & Schwarz	ESCS 30	100348	JUL. 03, 2013
TYPE N COAXIAL CABLE	CCS	BNC50	11	OCT. 30, 2012
Test S/W		e-3 (5.04211c) R&S (2.27)		

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST RESULTS

Since the EUT is powered by DC source, this test item is not applicable.