

SID2600 Dipole Calibration Certificate

SAR Reference Dipole Calibration Report

Ref: ACR.224.1.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) SATIMO COMOSAR REFERENCE DIPOLE

> FREQUENCY: 2600 MHZ SERIAL NO.: SN 32/14 DIP2G600-338

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

08/12/14

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

CCIC-SET/T-I (00) Page 137 of 157

Ref: ACR.224.1.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/12/2014	Jes
Checked by:	Jérôme LUC	Product Manager	8/12/2014	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	8/12/2014	them Putthoush

	Customer Name
	CCIC SOUTHERN ELECTRONIC
Distribution	PRODUCT
Distribution:	TESTING
	(SHENZHEN) Co., Ltd

Issue	Date	Modifications	
A	8/12/2014	Initial release	
		3. 11% 0005 27 OVEC 102500	
	x/f_nn_arg	DEDUCTOR ASSOCIATION AND ADDRESS OF THE PARTY OF THE PART	

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 138 of 157

Ref: ACR.224.1.14.SATU.A

TABLE OF CONTENTS

1	Intr	oduction4	
2	Dev	vice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Mea	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	ibration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	
7	Val	idation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	t of Equipment11	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

Ref: ACR.224.1.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test					
Device Type	COMOSAR 2600 MHz REFERENCE DIPOLE				
Manufacturer	Satimo				
Model	SID2600				
Serial Number	SN 32/14 DIP2G600-338				
Product Condition (new / used)	New				

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 140 of 157

Ref: ACR.224.1.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Lo		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

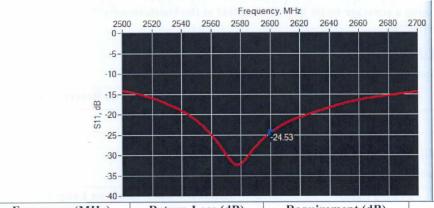
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 141 of 157


Ref: ACR.224.1.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

	Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
Ī	2600	-24.53	-20	$45.0 \Omega + 3.2 i\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h mm		d mm	
Suled to a got	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	reminenton.
450	290.0 ±1 %.	o panongra	166.7 ±1 %.	Altifara C. In	6.35 ±1 %.	
750	176.0 ±1 %.	EWS	100.0 ±1 %.	31.1	6.35 ±1 %.	
835	161.0 ±1 %.	Tar	89.8 ±1 %.		3.6 ±1 %.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 142 of 157

Ref: ACR.224.1.14.SATU.A

900	149.0 ±1 %.		83.3 ±1 %.	4	3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.	P FOTO F	50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.	17-1747	42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.	4 1 1 = 1	41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.	THE STREET	3.6 ±1 %.	
2000	64.5 ±1 %.	- Ir m Ir m	37.5 ±1 %.	111111	3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	-19 11-
2300	55.5 ±1 %.		32.6 ±1 %.	WHEN ALL T	3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.	PASS	28.8 ±1 %.	PASS	3.6 ±1 %.	PAS
3000	41.5 ±1 %.	111-7-2-1	25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ϵ_{r})	Conductivity (a) S/m		
	required	measured	required	measured	
300	45.3 ±5 %		0.87 ±5 %		
450	43.5 ±5 %		0.87 ±5 %		
750	41.9 ±5 %		0.89 ±5 %	1.7	
835	41.5 ±5 %		0.90 ±5 %	2011	
900	41.5 ±5 %		0.97 ±5 %		
1450	40.5 ±5 %		1.20 ±5 %	3111	
1500	40.4 ±5 %		1.23 ±5 %	=1	
1640	40.2 ±5 %		1.31 ±5 %	Tycolc I	
1750	40.1 ±5 %		1.37 ±5 %	24-	
1800	40.0 ±5 %		1.40 ±5 %	C41	
1900	40.0 ±5 %		1.40 ±5 %	0.5	
1950	40.0 ±5 %		1.40 ±5 %	60.13	
2000	40.0 ±5 %		1.40 ±5 %	ris-t	

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 143 of 157

Ref: ACR.224.1.14.SATU.A

	1.49 ±5 %		39.8 ±5 %	2100
-1-	1.67 ±5 %	1.7	39.5 ±5 %	2300
	1.80 ±5 %	14.0	39.2 ±5 %	2450
PASS	1.96 ±5 %	PASS	39.0 ±5 %	2600
11-1	2.40 ±5 %	12	38.5 ±5 %	3000
	2.91 ±5 %	- 7	37.9 ±5 %	3500

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

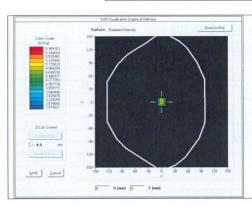
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

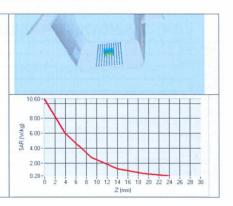
Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps': 39.0 sigma: 1.95		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	2600 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85	A ATTICAL PARTY	1.94	
450	4.58	French Primary	3.06	
750	8.49		5.55	
835	9.56		6.22	-,1
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	144
1750	36.4		19.3	LLL
1800	38.4		20.1	m
1900	39.7		20.5	Tage 1
1950	40.5		20.9	(AHI
2000	41.1		21.1	inimi.
2100	43.6		21.9	1::01
2300	48.7		23.3	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


CCIC-SET/T-I (00) Page 144 of 157



Ref: ACR.224.1.14.SATU.A

2450	52.4		24	PHES
2600	55.3	56.19 (5.62)	24.6	24.07 (2.41)
3000	63.8		25.7	146
3500	67.1		25	

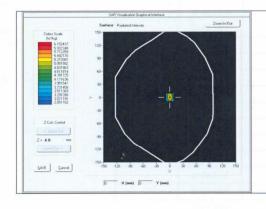
7.3 BODY LIQUID MEASUREMENT

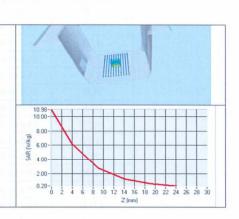
Frequency MHz	Relative peri	mittivity (ε_{r}')	Conductivi	ty (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %	PASS	2.16 ±5 %	PASS
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 145 of 157


Ref: ACR.224.1.14.SATU.A


5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 52.4 sigma: 2.22
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2600 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
or Eleganists	measured	measured
2600	57.55 (5.76)	24.86 (2.49)

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 146 of 157

Ref: ACR.224.1.14.SATU.A

8 LIST OF EQUIPMENT

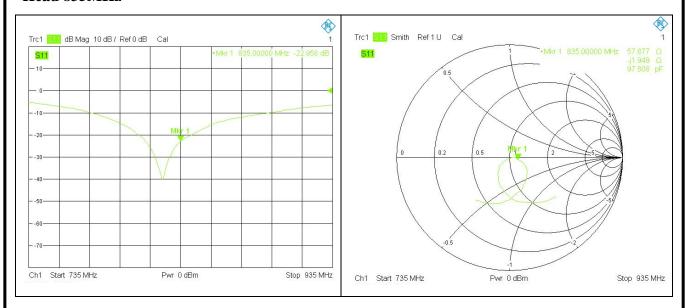
Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	Satimo	EPG122 SN 18/11	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 147 of 157

<Justification of the extended calibration>

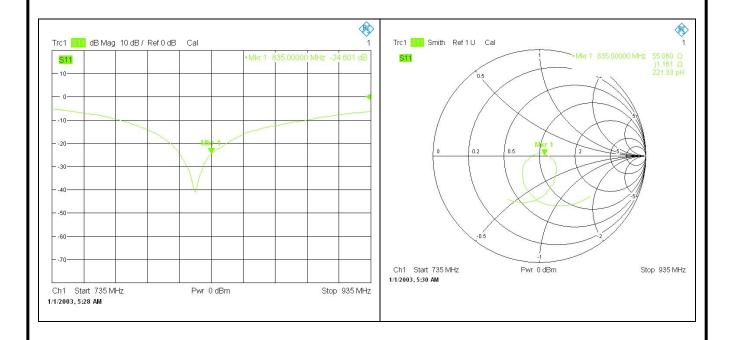

Referring to KDB 865664 D01v01r03, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Head 835MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2014.08.28	-23.17	-	57.40	-	
2015.08.26	-22.96	4.95	57.88	0.48	

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

<Dipole Verification Data>

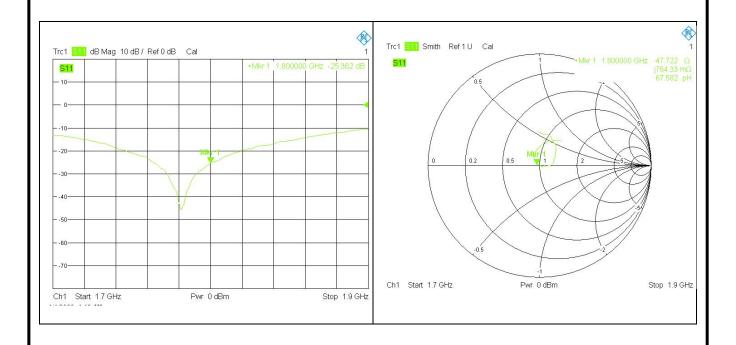
Head 835MHz


CCIC-SET/T-I (00) Page 148 of 157

Body 835MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2014.08.28	-24.50	-	55.00	-	
2015.08.26	-24.60	-2.28	55.06	0.06	

<Dipole Verification Data>

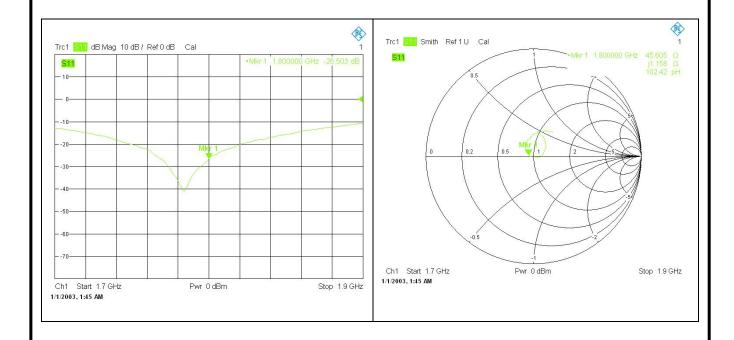
Body 835MHz


CCIC-SET/T-I (00) Page 149 of 157

Head 1800MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2014.08.28	-25.01	-	46.70	-	
2015.08.26	-25.36	-7.74	47.72	1.02	

<Dipole Verification Data>

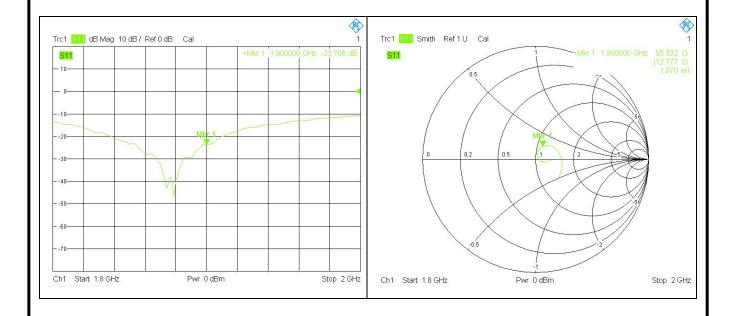
Head 1800MHz


CCIC-SET/T-I (00) Page 150 of 157

Body 1800MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2014.08.28	-26.43	-	45.80	-	
2015.08.26	-26.50	-1.60	45.60	-0.2	

<Dipole Verification Data>

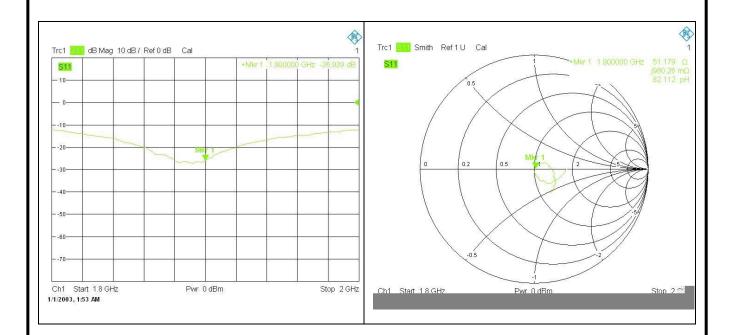
Body 1800MHz


CCIC-SET/T-I (00) Page 151 of 157

Head 1900MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2014.08.28	-23.44	-	55.40	-	
2015.08.26	-23.79	-7.74	55.33	-0.07	

<Dipole Verification Data>

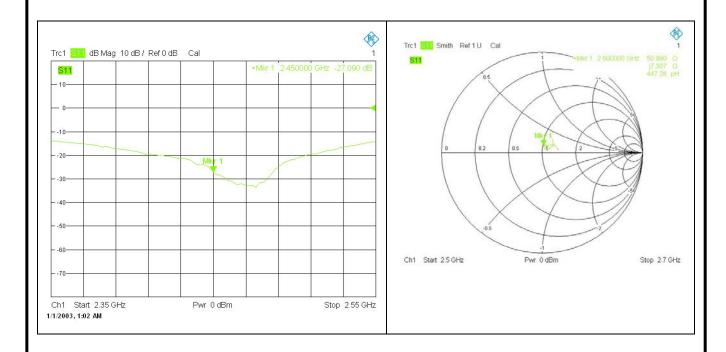
Head 1900MHz


CCIC-SET/T-I (00) Page 152 of 157

Body 1900MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2014.08.28	-27.36	-	51.70	-	
2015.08.26	-26.94	10.15	51.18	-0.52	

<Dipole Verification Data>

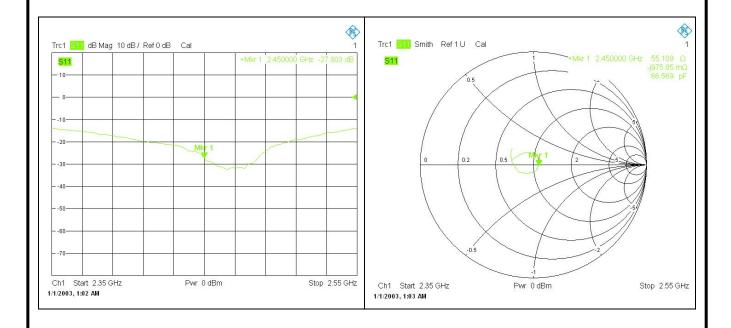
Body 1900MHz


CCIC-SET/T-I (00) Page 153 of 157

Head 2450MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2014.08.28	-27.50	-	51.70	-	
2015.08.26	-27.09	9.90	50.99	-0.71	

<Dipole Verification Data>

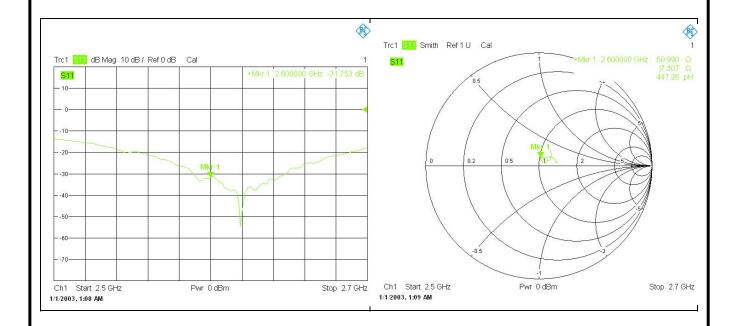
Head 2450MHz


CCIC-SET/T-I (00) Page 154 of 157

Body 2450MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2014.08.28	-27.56	-	54.30	-	
2015.08.26	-27.30	6.17	55.11	0.81	

<Dipole Verification Data>

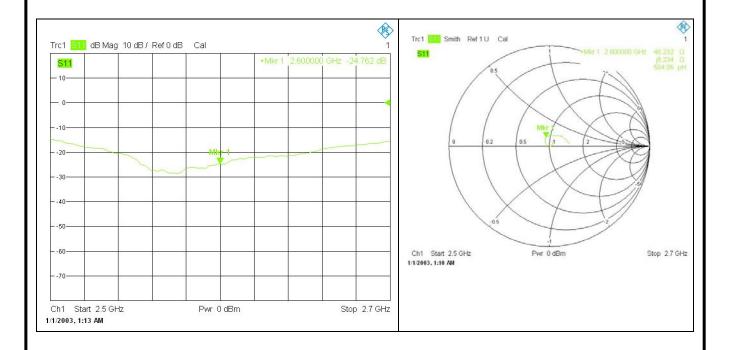
Body 2450MHz


CCIC-SET/T-I (00) Page 155 of 157

Head 2600MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2014.08.28	-31.53	-	51.30	-	
2015.08.26	-31.75	-4.94	50.99	-0.31	

<Dipole Verification Data>

Head 2600MHz


CCIC-SET/T-I (00) Page 156 of 157

Body 2600MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2014.08.28	-24.53	-	45.00	-	
2015.08.26	-24.76	-5.16	46.23	1.23	

<Dipole Verification Data>

Body 2600MHz

——End of the Report——

CCIC-SET/T-I (00) Page 157 of 157