

FCC SAR TEST REPORT

Report No.: SET2015-18821

Product: Digital camera

Brand Name: Sioeye

Model No.: IRIS4G

FCC ID: 2AE44IRIS4G

Applicant: Sioeye, Inc.

Address: 1518 First Avenue S. Suite 200 Seattle Washington United

States

Issued by: CCIC-SET

Lab Location: Electronic Testing Building, Shahe Road, Xili, Nanshan

District, Shenzhen, 518055, P. R. China

Tel: 86 755 26627338 Fax: 86 755 26627238

Mail: manager@ccic-set.com Website: http://www.ccic-set.com

This test report consists of **157** pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

CCIC-SET/T-I (00) Page 1 of 157

Test Report

Product.: Digital camera

Model No.: IRIS4G
Brand Name....: Sioeye

FCC ID...... 2AE44IRIS4G
Applicant...... Sioeye, Inc.

1518 First Avenue S. Suite 200 Seattle Washington United

Applicant Address.....: States

Manufacturer.....: CK Telecom Limited

Manufacturer Address: Technology Road.High-Tech Development Zone. Heyuan,

Guangdong, P.R. China.

Test Standards........: 47CFR § 2.1093- Radiofrequency Radiation Exposure

Evaluation: Portable Devices;

ANSI C95.1–1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz –

300 GHz.(IEEE Std C95.1-1991)

IEEE 1528–2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless

Communications Devices: Experimental Techniques;

Test Result..... Pass

Chun Mei, Test Engineer

Shuang wen Thomas

Shuangwen Zhang, Senior Egineer

Approved by.....: Ww lie 2015-12-20

Wu Li'an, Manager

CCIC-SET/T-I (00) Page 2 of 157

Contents

1.	GENERAL CONDITIONS	4
2.	ADMINISTRATIVE DATA	5
	2.1. Identification of the Responsible Testing Laboratory	5
	2.2. Identification of the Responsible Testing Location(s)	5
	2.3. Organization Item	
	2.4. Identification of Applicant	5
	2.5. Identification of Manufacture	
3.	EQUIPMENT UNDER TEST (EUT)	6
4.		
5.	1	
	5.1. Introduction	9
	5.2. SAR Definition	9
	5.3. Phantoms	10
	5.4. Device Holder	10
	5.5. Probe Specification	11
6.	OPERATIONAL CONDITIONS DURING TEST	12
	6.1. Schematic Test Configuration	
	6.2. SAR Measurement System	12
	6.3. Equipments and results of validation testing	15
	6.4. SAR measurement procedure	
	6.5. Antennas position and test position	18
7.		
	7.1. Applicable Limit Regulations	19
	7.2. Applicable Measurement Standards	19
8.	LABORATORY ENVIRONMENT	20
9.	CONDUCTED RF OUTPUT POWER	20
10.	. TEST RESULTS	38
11.	. MEASUREMENT UNCERTAINTY	42
12.	. MAIN TEST INSTRUMENTS	45
Th	nis Test Report consists of the following Annexes:	
	Annex A: Test Layout	46
	Annex B: Sample Photographs	48
	Annex C: System Performance Check Data and Highest SAR Plots	
	Annex D: Calibration Certificate of Probe and Dipoles	64

1. GENERAL CONDITIONS

- 1.1 This report only refers to the item that has undergone the test.
- 1.2 This report standalone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities.
- 1.3 This document is only valid if complete; no partial reproduction can be made without written approval of CCIC-SET
- 1.4 This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of CCIC-SET and the Accreditation Bodies, if it applies.

CCIC-SET/T-I (00) Page 4 of 157

2. Administrative Date

2.1. Identification of the Responsible Testing Laboratory

Company Name: CCIC-SET

Department: EMC & RF Department

Address: Electronic Testing Building, Shahe Road, Nanshan District,

ShenZhen, P. R. China

Telephone: +86-755-26629676 **Fax:** +86-755-26627238

Responsible Test Lab

Managers:

Mr. Wu Li'an

2.2. Identification of the Responsible Testing Location(s)

Company Name: CCIC-SET

Address: Electronic Testing Building, Shahe Road, Nanshan District,

Shenzhen, P. R. China

2.3. Organization Item

CCIC-SET Report No.: SET2015-18821
CCIC-SET Project Leader: Mr. Li Sixiong

CCIC-SET Responsible

Mr. Wu Li'an

for accreditation scope:

Start of Testing: 2015-11-17

End of Testing: 2015-11-19

2.4. Identification of Applicant

Company Name: Sioeye, Inc.

Address: 1518 First Avenue S. Suite 200 Seattle Washington United

States

2.5. Identification of Manufacture

Company Name: CK Telecom Limited

Address: Technology Road.High-Tech Development Zone. Heyuan,

Guangdong, P.R. China.

Notes: This data is based on the information by the applicant.

CCIC-SET/T-I (00) Page 5 of 157

3. Equipment Under Test (EUT)

3.1. Identification of the Equipment under Test

Sample Name: Digital camera

Model Name: IRIS4G

Brand Name: Sioeye

> WCDMA 850MHz/ 1900MHz. Support Band

LTE Band2/4/5/7/17,WIFI, BT

WCDMA 850MHz/ 1900MHz,

Test Band LTE Band 2/4/5/7/17, WIFI 802.11b

Power Supply

Development Stage Identical Prototype

Accessories General

4.2V 1160mAh Battery type description:

> Internal/External Antenna Antenna type

Operation mode WCDMA/ LTE /WIFI

UMTS(QPSK),LTE(QPSK,16QAM),

Modulation mode

WIFI(OFDM/DSSS)

Max. RF Power 23.56dBm

Max. SAR Value Body support: 0.85 W/kg;

NOTE:

a. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

CCIC-SET/T-I (00) Page 6 of 157

4 SAR SUMMARY

Highest Standalone SAR Summary

Exposure Position	Frequency Band	Scaled 1g-SAR(W/kg)	Highest Scaled 1g-SAR(W/kg)
	WCDMA Band V	0.14	
	WCDMA Band II	0.85	
	LTE Band 2	0.81	
Body-Support	LTE Band 4	0.08	0.85
(5mm Gap)	LTE Band 5	0.00	
	LTE Band 7	0.23	
	LTE Band 17	0.13	
	WIFI	0.19	

Highest Simultaneous SAR Summary

Exposure	Frequency	Scaled	Highest Scaled
Position	Band	1g-SAR(W/kg)	1g-SAR(W/kg)
Body-Support (5mm Gap)	WCDMA Band II &WIFI	0.85+0.19	1.04

CCIC-SET/T-I (00) Page 7 of 157

5 Specific Absorption Rate (SAR)

5.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

5.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \frac{\delta T}{\delta t}$$

where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

CCIC-SET/T-I (00) Page 8 of 157

5.3 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SATIMO. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

5.4 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SATIMO as an integral part of the COMOSAR test system.

The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder

CCIC-SET/T-I (00) Page 9 of 157

5.5 Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents,

e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 700 MHz to 3 GHz;

Linearity: ± 0.5 dB (700 MHz to 3 GHz)

Directivity ± 0.25 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe

axis)

Dynamic Range 1.5 μ W/g to 100 mW/g;

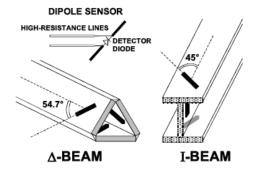
Linearity: ± 0.5 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 5 mm

Distance from probe tip to dipole centers: <2.7 mm

Application General dosimetry up to 3 GHz


Dosimetry in strong gradient fields Compliance tests of mobile phones

Compatibility COMOSAR

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

CCIC-SET/T-I (00) Page 10 of 157

6 OPERATIONAL CONDITIONS DURING TEST

6.1 Schematic Test Configuration

During SAR test, EUT was operating in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The EUT was commanded to operate at maximum transmitting power.

The EUT should use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link was used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point should be lower than the output power level of the handset by at least 35 dB

6.2 SAR Measurement System

The SAR measurement system being used is the SATIMO system, the system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

6.2.1 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Frequency (MHz) Ingredients (% by 450 835 915 1900 2450 2600 weight) Tissue Head Head Head Body Body Head Body Head Body Body Head Body Type Water 38.56 51.16 41.46 52.4 41.05 56.0 54.9 40.4 62.7 73.2 55.24 64.49 Salt (Nacl) 3.95 1.49 1.45 1.4 1.35 0.76 0.18 0.5 0.5 0.04 0.5 0.024 Sugar 56.32 46.78 56.0 45.0 56.5 41.76 0.0 58.0 0.0 0.0 0.0 0.0

Table 1: Recommended Dielectric Performance of Tissue

CCIC-SET/T-I (00) Page 11 of 157

HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	44.45	32.25
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	39.0	52.5
Conductivit y (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	1.96	2.16

MSL/HSL750 (Body and Head liquid for 700 – 800 MHz)

Week 1827 66 (Body and Fload India 1817 766 666 1911 12)								
Item	Head Tissue Simulation Liquid HSL750							
	Muscle(body)Tissu	e Simulation Liquid	MSL750					
H2O	Water, 35 - 58%							
Sucrese	Sugar, white, refine	ed, 40-60%						
NaCl	Sodium Chloride, 0	Sodium Chloride, 0-6%						
Hydroxyethel-cellulsoe	Medium Viscosity (CAS# 9004-62-0), <0.3%							
Preventol-D7	Preservative: aque	ous preparation, (C	AS# 55965-84-9), co	ontaining				
	5-chloro-2-methyl-3	3(2H)-isothiazolone	and 2-methyyl-3(2H)-isothiazolone,				
	0.1-0.7%							
Frequency (MHz)	Head εr	Head σ(S/m)	Body εr	Bodyσ(S/m)				
750	41.9	0.89	55.2	0.97				

Note: The liquid of 700MHz&2600MHz typical liquid composition is provided by SATIMO.

Table 2 Recommended Tissue Dielectric Parameters

Eroguepov (MHz)	Head	Tissue	Body ⁻	Tissue
Frequency (MHz)	ε _r	σ (S/m)	ε _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

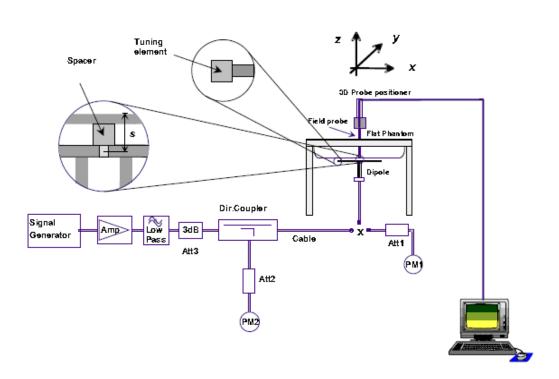
CCIC-SET/T-I (00) Page 12 of 157

6.2.2 Stimulate liquid

For measurements against the phantom head, the "cheek" and "tilt" position on both the left hand and the right hand sides of the phantom. For body-worn measurements, the EUT was tested against flat phantom representing the user body. The EUT was put on in the belt holder. Stimulate liquid that are used for testing at frequencies of GSM 850MHz/1900MHz, WCDMA850MHz/1900MHz, LTE Band2/4/7/17 and Wi-Fi 2.4GHz, which are made mainly of sugar, salt and water solutions may be left in the phantoms.

Table 3: Dielectric Performance of Body Tissue Simulating Liquid

Temperature: 23.2°C; Humidity: 64%;							
1	Frequency	Permittivity ε	Conductivity σ (S/m)				
Target value	750MHz	55.2±5%	0.97±5%				
Validation value (Nov. 17th, 2015)	750MHz	55.01	0.95				
Target value	850MHz	55.2±5%	$0.97 \pm 5\%$				
Validation value (Nov. 17th, 2015)	850MHz	55.32	0.95				
Target value	1800 MHz	53.3±5%	1.52±5%				
Validation value (Nov. 18th, 2015)	1800 MHz	53.37	1.50				
Target value	1900MHz	53.3±5%	1.52±5%				
Validation value (Nov. 18th, 2015)	1900MHz	53.14	1.52				
Target value	2450MHz	52.7±5%	1.95±5%				
Validation value (Nov. 19th, 2015)	2450MHz	52.53	1.94				
Target value	2600MHz	52.5±5%	2.16±5%				
Validation value (Nov. 19th, 2015)	2600MHz	52.56	2.15				


6.3 Results of validation testing

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The following procedure, recommended for performing validation tests using box phantoms is based on the procedures described in the IEEE standard P1528. Setup according to the setup diagram below :

CCIC-SET/T-I (00) Page 13 of 157

With the SG and Amp and with directional coupler in place, set up the source signal at the relevant frequency and use a power meter to measure the power at the end of the SMA cable that you intend to connect to the balanced dipole. Adjust the SG to make this, say, 0.25W (24dBm). If this level is too high to read directly with the power meter sensor, insert a calibrated attenuator (e.g. 10 or 20 dB) and make a suitable correction to the power meter reading.

- Note 1: In this method, the directional coupler is used for monitoring rather than setting the exact feed power level. If, however, the directional coupler is used for power measurement, you should check the frequency range and power rating of the coupler and measure the coupling factor (referred to output) at the test frequency using a VNA.
- Note 2: Remember that the use of a 3dB attenuator (as shown in Figure 8.1 of P1528) means that you need an RF amplifier of 2 times greater power for the same feed power. The other issue is the cable length. You might get up to 1dB of loss per meter of cable, so the cable length after the coupler needs to be quite short.
- Note 3: For the validation testing done using CW signals, most power meters are suitable. However, if you are measuring the output of a modulated signal from either a signal generator or a handset, you must ensure that the power meter correctly reads the modulated signals.

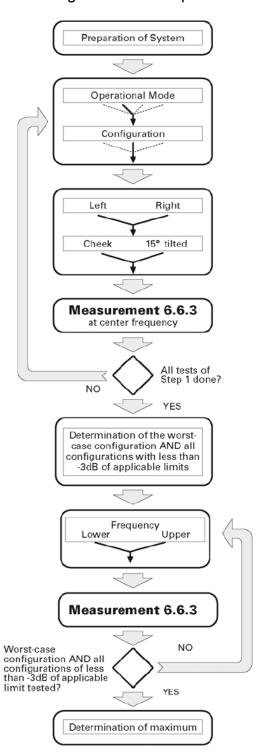
The measured 1-gram averaged SAR values of the device against the phantom are provided in Tables 5 and Table 6. The humidity and ambient temperature of test facility were 64% and 23.2°C respectively. The body phantom were full of the body tissue simulating liquid. The EUT was supplied with full-charged battery for each measurement.

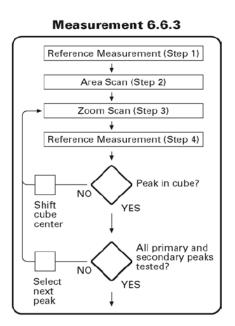
The distance between the back of the EUT and the bottom of the flat phantom is 10 mm (taking into account of the IEEE 1528 and the place of the antenna).

CCIC-SET/T-I (00) Page 14 of 157

Table 4: Body SAR system validation (1g)

_	5.	Target value	Test value (W/kg)		
Frequency	Duty cycle	(W/kg)	250 mW	1W	
750MHz(Nov. 17th, 2015)	1:1	8.43±10%	2.01	8.04	
835MHz(Nov. 17th, 2015)	1:1	10.31±10%	2.52	10.08	
1800MHz(Nov. 18th, 2015)	1:1	40.07±10%	9.83	39.32	
1900MHz(Nov. 18th, 2015)	1:1	40.81±10%	10.11	40.44	
2450MHz(Nov. 19th, 2015)	1:1	52.66±10%	13.06	52.24	
2600MHz((Nov. 19th, 2015)	1:1	57.55±10%	14.03	56.12	


^{*} Note: Target value was referring to the measured value in the calibration certificate of reference dipole. Note: All SAR values are normalized to 1W forward power.


CCIC-SET/T-I (00) Page 15 of 157

6.4 SAR measurement procedure

The SAR test against the head phantom was carried out as follow:

Establish a call with the maximum output power with a base station simulator, the connection between the EUT and the base station simulator is established via air interface.

After an area scan has been done at a fixed distance of 2mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a

CCIC-SET/T-I (00) Page 16 of 157

second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

Above is the scanning procedure flow chart and table from the IEEEp1528 standard. This is the procedure for which all compliant testing should be carried out to ensure that all variations of the device position and transmission behavior are tested.

For body-worn measurement, the EUT was tested under two position: face upward and back upward.

6.5 Transmitting antenna information

The WIFI&BT antennas inside the EUT.

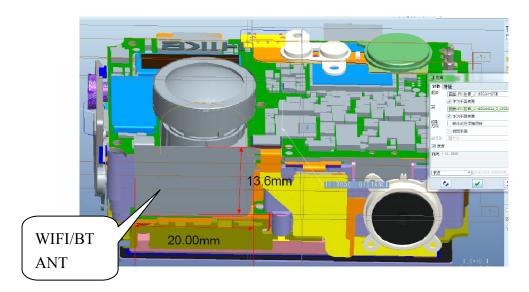


Fig. 3 Position of the antennas

CCIC-SET/T-I (00) Page 17 of 157

7 CHARACTERISTICS OF THE TEST

7.1 Applicable Limit Regulations

47CFR § **2.1093-** Radiofrequency Radiation Exposure Evaluation: Portable Devices;

ANSI C95.1–1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.(IEEE Std C95.1-1991)

IEEE 1528–2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques;

It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

7.2 Applicable Measurement Standards

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this is in accordance with the following standards:

FCC 47 CFR Part2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02

FCC KDB 447498 D01 v06 General RF Exposure Guidance

FCC KDB 865664 D01 v01r04 SAR Measurement 100MHz to 6GHz

FCC KDB 865664 D02 v01r02 SAR Exposure Reporting

FCC KDB 941225 D01 v03r01 3G SAR Procedures

FCC KDB 941225 D05 v02r04 SAR for LTE Devices

8 LABORATORY ENVIRONMENT

The Ambient Conditions during SAR Test

Temperature	Min. = 22 °C, Max. = 25 °C
Atmospheric pressure	Min.=86 kPa, Max.=106 kPa
Relative humidity	Min. = 45%, Max. = 75%
Ground system resistance	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

CCIC-SET/T-I (00) Page 18 of 157

9.Conducted RF Output Power

9.1 WCDMA Conducted output Power

WCDMA conducted output power

	band		WCDMA 850		WCDMA 1900			
Item	ARFCN	4132	4183	4233	9262	9400	9538	
	subtest		dBm			dBm		
RMC 12.2kbps	non	22.84	22.76	22.61	22.63	22.86	22.79	
	1	22.41	22.08	22.18	22.18	22.08	22.08	
HSDPA	2	22.19	22.01	22.09	22.07	22.01	22.00	
HISDFA	3	21.68	21.91	21.78	21.85	21.89	21.95	
	4	21.79	21.54	21.61	21.77	21.94	21.83	
	1	22.04	22.07	22.17	22.14	22.07	21.97	
	2	21.99	22.14	22.21	22.03	21.89	21.74	
HSUPA	3	21.86	22.09	22.08	22.17	22.01	22.08	
	4	2205	22.04	22.33	21.99	21.51	21.74	
	5	22.23	22.16	22.11	22.05	22.25	22.08	
HSPA+	1	22.23	22.18	22.25	22.01	22.05	22.07	
Note:	The Conducte	ed RF Outp	ut Power tes	t of WCDM	A /HSDPA /ŀ	ISUPA wer	e tested by	
Note.	power meter.							

Note:

- WCDMA SAR was tested under PMC 12.2kbps with HSPA Inactive per KDB Publication 941225
 D01.HSPA SAR was not requires since the average output power of the HSPA subtests was not more than 0.25dB higher than the RMC level and SAR was less than 1.2W/kg.
- 2. It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2dB more than specified by 3GPP, but also as low as 0dB according to the chipset implementation in this model.

CCIC-SET/T-I (00) Page 19 of 157

9.3 LTE Conducted Output Power

LTE Test Configurations

The CMW500 WideBand Radio Communication Tester was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR test were performed with the same number of RB and RB offsets transmitting on all frames.

1)Spectrum Plots for RB configurations

A properly configured base station simulator was used for LTE output power measurements and SAR testing. Therefore, spectrum plots for RB configurations were not required to be included in this report.

2)MPR

When MPR is implemented permanently within the UE, regardless of network requirements, only those RB configurations allowed by 3GPP for the channel banwidth and modulation conbinations may be tested with MPR active. Configurations with RB allocations less than the RB thresholds required by 3GPP must be tested without MPR.

The allowed Maximum Power Reduction(MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101:

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Channel	MPR (dB)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

3)A-MPR LTE procedures for SAR testing

A-MPR(Additional MPR) has been disabled for all SAR tests by using Network Signalling Value of "NS_01" on the base station simulator.

4)LTE procedures for SAR testing

A) Largest channel bandwidth standalone SAR test

requirements i) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

CCIC-SET/T-I (00) Page 20 of 157

ii) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in i) are applied to measure the SAR for QPSK with 50% RB allocation.

iii) QPSK with 100 % RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in i) and ii) are ≤ 0.8 Wkg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 Wkg, the remaining required test channels must also be tested.

iv) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

B) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 Wkg.

CCIC-SET/T-I (00) Page 21 of 157

1. LTE Band 2 Conducted Power Test Verdict:

BW(MHz)	Modulation	RB Size	RB Offset	Power(dBm) Low Ch./Freq.	Power(dBm) Middle Ch./Freq.	Power(dBm) High Ch./Freq.
	Channel			18700	18900	19100
	Frequency(N	(Hz)		1860	1880	1900
20	QPSK	1	0	23.24	23.31	23.35
20	QPSK	1	49	23.22	23.19	23.28
20	QPSK	1	99	23.12	23.24	23.21
20	QPSK	50	0	22.64	22.55	22.53
20	QPSK	50	24	22.57	22.59	22.44
20	QPSK	50	49	22.54	22.45	22.41
20	QPSK	100	0	22.35	22.31	22.27
20	16QAM	1	0	21.58	21.61	21.55
20	16QAM	1	49	21.44	21.45	21.53
20	16QAM	1	99	21.47	21.60	21.57
20	16QAM	50	0	20.77	20.74	20.76
20	16QAM	50	24	20.75	20.67	20.78
20	16QAM	50	49	20.62	20.58	20.61
20	16QAM	100	0	20.59	20.65	20.73
	Channel			18675	18900	19125
	Frequency(N	Mz)		1857.5	1880	1902.5
15	QPSK	1	0	23.31	23.30	23.26
15	QPSK	1	37	23.27	23.24	23.31
15	QPSK	1	74	23.11	23.16	23.20
15	QPSK	36	0	22.61	22.58	22.64
15	QPSK	36	18	22.55	22.51	22.52
15	QPSK	36	37	22.43	22.45	22.47
15	QPSK	75	0	22.61	22.58	22.60
15	16QAM	1	0	21.59	21.55	21.54
15	16QAM	1	37	21.36	21.37	21.42
15	16QAM	1	74	21.27	21.22	21.35
15	16QAM	36	0	20.67	20.71	20.75
15	16QAM	36	18	20.66	20.61	20.59
15	16QAM	36	37	20.71	20.64	20.75
15	16QAM	75	0	20.69	20.72	20.73

CCIC-SET/T-I (00) Page 22 of 157

BW(MHz)	Modulation	RB Size	RB Offset	Power(dBm) Low Ch./Freq.	Power(dBm) Middle Ch./Freq.	Power(dBm) High Ch./Freq.
Channel				18650	18900	19150
	Frequency(N	/Hz)		1855	1880	1905
10	QPSK	1	0	23.33	23.24	23.30
10	QPSK	1	24	23.22	23.21	23.29
10	QPSK	1	49	23.15	23.19	23.20
10	QPSK	25	0	22.67	22.71	22.73
10	QPSK	25	12	22.58	22.65	22.57
10	QPSK	25	24	22.69	22.70	22.65
10	QPSK	50	0	22.65	22.62	22.67
10	16QAM	1	0	21.67	21.55	21.51
10	16QAM	1	24	21.46	21.49	21.41
10	16QAM	1	49	21.35	21.32	21.38
10	16QAM	25	0	20.68	20.70	20.76
10	16QAM	25	12	20.65	20.68	20.72
10	16QAM	25	24	20.54	20.57	20.64
10	16QAM	50	0	20.81	20.77	20.82
	Channel			18625	18900	19175
	Frequency(N	/IHz)		1852.5	1880	1907.5
5	QPSK	1	0	23.31	23.28	23.30
5	QPSK	1	12	23.22	23.27	23.25
5	QPSK	1	24	23.21	23.15	23.21
5	QPSK	12	0	22.67	22.69	22.72
5	QPSK	12	6	22.62	22.54	22.59
5	QPSK	12	11	22.71	22.64	22.57
5	QPSK	25	0	22.61	22.71	22.62
5	16QAM	1	0	21.69	21.74	21.71
5	16QAM	1	12	21.62	21.51	21.58
5	16QAM	1	24	21.51	21.60	21.59
5	16QAM	12	0	20.76	20.74	20.71
5	16QAM	12	6	20.67	20.75	20.73
5	16QAM	12	11	20.64	20.71	20.65
5	16QAM	25	0	20.76	20.81	20.78

CCIC-SET/T-I (00) Page 23 of 157

BW(MHz)	Modulation	RB Size	RB Offset	Power(dBm) Low Ch./Freq.	Power(dBm) Middle Ch./Freq.	Power(dBm) High Ch./Freq.
	Channe			18615	18900	19185
	Frequency(N	/Hz)		1851.5	1880	1908.5
3	QPSK	1	0	23.28	23.29	23.27
3	QPSK	1	7	23.27	23.31	23.25
3	QPSK	1	14	23.14	23.17	23.22
3	QPSK	8	0	22.75	22.67	22.79
3	QPSK	8	4	22.68	22.75	22.73
3	QPSK	8	7	22.64	22.68	22.75
3	QPSK	15	0	22.71	22.79	22.83
3	16QAM	1	0	21.61	21.55	21.62
3	16QAM	1	7	21.72	21.68	21.70
3	16QAM	1	14	21.64	21.57	21.62
3	16QAM	8	0	20.92	20.89	20.87
3	16QAM	8	4	20.85	20.77	20.92
3	16QAM	8	7	20.84	20.79	20.89
3	16QAM	15	0	20.67	20.72	20.70
	Channel			18607	18900	19193
	Frequency(N	/IHz)		1850.7	1732.5	1909.3
1.4	QPSK	1	0	23.30	23.24	23.27
1.4	QPSK	1	2	23.23	23.22	23.26
1.4	QPSK	1	5	23.11	23.16	23.19
1.4	QPSK	3	0	22.70	22.75	22.72
1.4	QPSK	3	1	22.74	22.62	22.73
1.4	QPSK	3	2	22.64	22.58	22.61
1.4	QPSK	6	0	22.50	22.56	22.53
1.4	16QAM	1	0	21.67	21.72	21.75
1.4	16QAM	1	2	21.72	21.70	21.65
1.4	16QAM	1	5	21.57	21.62	21.54
1.4	16QAM	3	0	20.65	20.71	20.67
1.4	16QAM	3	1	20.74	20.83	20.75
1.4	16QAM	3	2	20.65	20.67	20.73
1.4	16QAM	6	0	20.75	20.71	20.74

CCIC-SET/T-I (00) Page 24 of 157

2. LTE Band 4 Conducted Power Test Verdict:

BW(MHz)	Modulation	RB Size	RB Offset	Power(dBm) Low Ch./Freq.	Power(dBm) Middle Ch./Freq.	Power(dBm) High Ch./Freq.
	Channel				20175	20300
	Frequency(N	/IHz)		1720	1732.5	1745
20	QPSK	1	0	23.52	23.56	23.55
20	QPSK	1	49	23.49	23.53	23.51
20	QPSK	1	99	23.51	23.49	23.53
20	QPSK	50	0	22.75	22.86	22.85
20	QPSK	50	24	22.84	22.79	22.81
20	QPSK	50	49	22.73	22.75	22.80
20	QPSK	100	0	22.73	22.72	22.82
20	16QAM	1	0	21.63	21.67	21.64
20	16QAM	1	49	21.53	21.48	21.55
20	16QAM	1	99	21.49	21.51	21.54
20	16QAM	50	0	20.87	20.79	20.82
20	16QAM	50	24	20.79	20.77	20.80
20	16QAM	50	49	20.81	20.78	20.83
20	16QAM	100	0	20.74	20.76	20.81
	Channe	<u> </u>		20025	20175	20325
	Frequency(N	/IHz)		1717.5	1732.5	1747.5
15	QPSK	1	0	23.47	23.51	23.48
15	QPSK	1	37	23.43	23.41	23.44
15	QPSK	1	74	23.34	23.32	23.31
15	QPSK	36	0	22.86	22.79	22.78
15	QPSK	36	18	22.87	22.78	22.81
15	QPSK	36	37	22.79	22.75	22.78
15	QPSK	75	0	22.76	22.75	22.82
15	16QAM	1	0	21.56	21.51	21.53
15	16QAM	1	37	21.50	21.54	21.53
15	16QAM	1	74	21.59	21.62	21.58
15	16QAM	36	0	20.86	20.83	20.81
15	16QAM	36	18	20.79	20.76	20.78
15	16QAM	36	37	20.82	20.75	20.83
15	16QAM	75	0	20.78	20.75	20.81

CCIC-SET/T-I (00) Page 25 of 157

BW(MHz)	Modulation	RB Size	RB Offset	Power(dBm) Low Ch./Freq.	Power(dBm) Middle Ch./Freq.	Power(dBm) High Ch./Freq.
	Channel	1	l	20000	20175	20350
	Frequency(N	ИHz)		1715	1732.5	1750
10	QPSK	1	0	23.47	23.53	23.48
10	QPSK	1	24	23.49	23.43	23.51
10	QPSK	1	49	23.38	23.27	23.33
10	QPSK	25	0	22.94	22.87	22.85
10	QPSK	25	12	22.82	22.89	22.83
10	QPSK	25	24	22.78	22.80	22.85
10	QPSK	50	0	22.86	22.82	22.91
10	16QAM	1	0	21.67	21.65	21.69
10	16QAM	1	24	21.61	21.58	21.64
10	16QAM	1	49	21.61	21.62	21.56
10	16QAM	25	0	20.81	20.83	20.88
10	16QAM	25	12	20.82	20.78	20.82
10	16QAM	25	24	20.85	20.77	20.83
10	16QAM	50	0	20.80	20.74	20.79
	Channel	1		19975	20175	20375
	Frequency(N	MHz)		1712.5	1732.5	1752.5
5	QPSK	1	0	23.47	23.49	23.45
5	QPSK	1	12	23.45	23.48	23.50
5	QPSK	1	24	23.38	23.40	23.38
5	QPSK	12	0	22.81	22.87	22.82
5	QPSK	12	6	22.85	22.82	22.78
5	QPSK	12	11	22.83	22.73	22.77
5	QPSK	25	0	22.85	22.78	22.75
5	16QAM	1	0	21.67	21.66	21.63
5	16QAM	1	12	21.50	21.49	21.49
5	16QAM	1	24	21.54	21.58	21.51
5	16QAM	12	0	20.75	20.77	20.69
5	16QAM	12	6	20.67	20.65	20.64
5	16QAM	12	11	20.72	20.75	20.76
5	16QAM	25	0	20.78	20.72	20.75

CCIC-SET/T-I (00) Page 26 of 157

BW(MHz)	Modulation	RB Size	RB Offset	Power(dBm) Low Ch./Freq.	Power(dBm) Middle Ch./Freq.	Power(dBm) High Ch./Freq.
	Channe	l		19965	20175	20385
	Frequency(N	MHz)		1711.5	1732.5	1753.5
3	QPSK	1	0	23.46	23.52	23.47
3	QPSK	1	7	23.43	23.49	23.50
3	QPSK	1	14	23.32	23.42	23.37
3	QPSK	8	0	22.77	22.71	22.76
3	QPSK	8	4	22.75	22.75	22.78
3	QPSK	8	7	22.69	22.70	22.70
3	QPSK	15	0	22.67	22.67	22.68
3	16QAM	1	0	21.51	21.45	21.49
3	16QAM	1	7	21.47	21.45	21.43
3	16QAM	1	14	21.38	21.30	21.36
3	16QAM	8	0	20.63	20.70	20.72
3	16QAM	8	4	20.64	20.68	20.68
3	16QAM	8	7	20.63	20.62	20.65
3	16QAM	15	0	20.52	20.56	20.58
	Channel	1		19957	20175	20393
	Frequency(N	ИHz)		1710.7	1732.5	1754.3
1.4	QPSK	1	0	23.45	23.51	23.49
1.4	QPSK	1	2	23.44	23.42	23.48
1.4	QPSK	1	5	23.39	23.37	23.35
1.4	QPSK	3	0	22.73	22.68	22.72
1.4	QPSK	3	1	22.57	22.47	22.52
1.4	QPSK	3	2	22.66	22.57	22.61
1.4	QPSK	6	0	22.57	22.46	22.53
1.4	16QAM	1	0	21.72	21.77	21.61
1.4	16QAM	1	2	21.73	21.81	21.75
1.4	16QAM	1	5	21.81	21.86	21.84
1.4	16QAM	3	0	20.79	20.74	20.85
1.4	16QAM	3	1	20.62	20.73	20.67
1.4	16QAM	3	2	20.70	20.59	20.67
1.4	16QAM	6	0	20.59	20.55	20.66

CCIC-SET/T-I (00) Page 27 of 157

3. LTE Band 5 Conducted Power Test Verdict:

BW(MHz)	Modulation	RB Size	RB Offset	Power(dBm) Low Ch./Freq.	Power(dBm) Middle Ch./Freq.	Power(dBm) High Ch./Freq.
	Channel				20525	20600
	Frequency(N	/Hz)		829	836.5	844
10	QPSK	1	0	23.28	23.25	23.23
10	QPSK	1	24	23.19	23.20	23.21
10	QPSK	1	49	23.23	23.14	23.19
10	QPSK	25	0	22.72	22.71	22.76
10	QPSK	25	12	22.67	22.76	22.72
10	QPSK	25	24	22.81	22.75	22.76
10	QPSK	50	0	22.69	22.66	22.67
10	16QAM	1	0	21.54	22.64	22.57
10	16QAM	1	24	21.60	22.51	22.53
10	16QAM	1	49	21.52	22.41	22.42
10	16QAM	25	0	20.81	20.76	20.85
10	16QAM	25	12	20.64	20.65	20.71
10	16QAM	25	24	20.82	20.74	20.76
10	16QAM	50	0	20.73	20.76	20.81
	Channel	<u> </u>		20425	20525	20625
	Frequency(N	/IHz)		826.5	836.5	846.5
5	QPSK	1	0	23.22	23.27	23.23
5	QPSK	1	12	23.19	23.23	23.16
5	QPSK	1	24	23.18	23.20	23.19
5	QPSK	12	0	22.80	22.83	22.77
5	QPSK	12	6	22.66	22.72	22.67
5	QPSK	12	11	22.76	22.81	22.79
5	QPSK	25	0	22.81	22.73	22.82
5	16QAM	1	0	21.64	21.59	21.69
5	16QAM	1	12	21.55	21.58	21.66
5	16QAM	1	24	21.53	22.47	22.44
5	16QAM	12	0	20.76	20.75	20.81
5	16QAM	12	6	20.62	20.72	20.69
5	16QAM	12	11	20.78	20.80	20.77
5	16QAM	25	0	20.71	20.82	20.74

CCIC-SET/T-I (00) Page 28 of 157

BW(MHz)	Modulation	RB Size	RB Offset	Power(dBm) Low Ch./Freq.	Power(dBm) Middle Ch./Freq.	Power(dBm) High Ch./Freq.
	Channel				20525	20635
	Frequency(N	MHz)		825.5	836.5	847.5
3	QPSK	1	0	23.24	23.25	23.23
3	QPSK	1	7	23.19	23.20	23.21
3	QPSK	1	14	23.13	23.14	23.19
3	QPSK	8	0	22.72	22.71	22.76
3	QPSK	8	4	22.67	22.76	22.82
3	QPSK	8	7	22.81	22.75	22.76
3	QPSK	15	0	22.69	22.66	22.72
3	16QAM	1	0	21.54	21.64	21.57
3	16QAM	1	7	21.60	21.51	21.53
3	16QAM	1	14	21.52	21.41	21.42
3	16QAM	8	0	20.81	20.76	20.85
3	16QAM	8	4	20.84	20.75	20.71
3	16QAM	8	7	20.82	20.74	20.76
3	16QAM	15	0	20.73	20.76	20.81
	Channel			20407	20525	20643
	Frequency(N	MHz)	ı	824.7	836.5	848.3
1.4	QPSK	1	0	23.22	23.17	23.23
1.4	QPSK	1	2	23.19	23.23	23.26
1.4	QPSK	1	5	23.18	23.20	23.19
1.4	QPSK	3	0	22.80	22.83	22.77
1.4	QPSK	3	1	22.76	22.82	22.72
1.4	QPSK	3	2	22.64	22.66	22.62
1.4	QPSK	6	0	22.56	22.43	22.52
1.4	16QAM	1	0	21.64	21.69	21.71
1.4	16QAM	1	2	21.65	21.58	21.66
1.4	16QAM	1	5	21.53	21.47	21.54
1.4	16QAM	3	0	20.70	20.75	20.85
1.4	16QAM	3	1	20.62	20.75	20.69
1.4	16QAM	3	2	20.78	20.80	20.77
1.4	16QAM	6	0	20.71	20.82	20.74

CCIC-SET/T-I (00) Page 29 of 157

4. LTE Band 7 Conducted Power Test Verdict:

BW(MHz)	Modulation	RB Size	RB Offset	Power(dBm) Low Ch./Freq.	Power(dBm) Middle Ch./Freq.	Power(dBm) High Ch./Freq.
	Channel				21100	21350
	Frequency(N	/IHz)		2510	2535	2560
20	QPSK	1	0	23.32	23.34	23.27
20	QPSK	1	49	23.28	23.27	23.33
20	QPSK	1	99	23.31	23.22	23.25
20	QPSK	50	0	22.62	22.75	22.67
20	QPSK	50	24	22.77	22.75	22.71
20	QPSK	50	49	22.64	22.62	22.65
20	QPSK	100	0	22.62	22.55	22.60
20	16QAM	1	0	21.30	21.31	21.35
20	16QAM	1	49	21.34	21.25	21.33
20	16QAM	1	99	21.28	21.30	21.24
20	16QAM	50	0	20.67	20.75	20.72
20	16QAM	50	24	20.59	20.67	20.70
20	16QAM	50	49	20.61	20.51	20.56
20	16QAM	100	0	20.70	20.65	20.71
	Channel			20825	21100	21375
	Frequency(N	/IHz)		2507.5	2535	2562.5
15	QPSK	1	0	23.26	23.32	23.27
15	QPSK	1	37	23.31	23.25	23.28
15	QPSK	1	74	23.25	23.27	23.21
15	QPSK	36	0	22.77	22.75	22.72
15	QPSK	36	18	22.72	22.75	22.68
15	QPSK	36	37	22.64	22.62	22.65
15	QPSK	75	0	22.61	22.65	22.67
15	16QAM	1	0	21.70	21.67	21.73
15	16QAM	1	37	21.64	21.68	21.70
15	16QAM	1	74	21.67	21.60	21.66
15	16QAM	36	0	20.63	20.55	20.58
15	16QAM	36	18	20.69	20.67	20.72
15	16QAM	36	37	20.58	20.61	20.56
15	16QAM	75	0	20.74	20.69	20.71

CCIC-SET/T-I (00) Page 30 of 157

BW(MHz)	Modulation	RB Size	RB Offset	Power(dBm) Low Ch./Freq.	Power(dBm) Middle Ch./Freq.	Power(dBm) High Ch./Freq.
	Channe	l		20800	21100	21400
	Frequency(N	/IHz)		2505	2535	2565
10	QPSK	1	0	23.31	23.32	23.30
10	QPSK	1	24	23.24	23.25	23.24
10	QPSK	1	49	23.21	23.28	23.25
10	QPSK	25	0	22.67	22.72	22.66
10	QPSK	25	12	22.72	22.74	22.76
10	QPSK	25	24	22.69	22.62	22.65
10	QPSK	50	0	22.77	22.75	22.71
10	16QAM	1	0	21.60	21.71	21.65
10	16QAM	1	24	21.64	21.69	21.73
10	16QAM	1	49	21.54	21.50	21.48
10	16QAM	25	0	20.67	20.75	20.68
10	16QAM	25	12	20.69	20.67	20.70
10	16QAM	25	24	20.61	20.71	20.66
10	16QAM	50	0	20.84	20.75	20.81
	Channel			20775	21100	21425
	Frequency(N	/IHz)		2502.5	2535	2567.5
5	QPSK	1	0	23.27	23.33	23.31
5	QPSK	1	12	23.26	23.21	23.27
5	QPSK	1	24	23.31	23.23	23.25
5	QPSK	12	0	22.74	22.77	22.68
5	QPSK	12	6	22.70	22.65	22.62
5	QPSK	12	11	22.64	22.68	22.65
5	QPSK	25	0	22.61	22.58	22.55
5	16QAM	1	0	21.60	21.51	21.57
5	16QAM	1	12	21.54	21.45	21.51
5	16QAM	1	24	21.39	21.42	21.44
5	16QAM	12	0	20.53	20.65	20.58
5	16QAM	12	6	20.79	20.77	20.80
5	16QAM	12	11	20.68	20.74	20.72
5	16QAM	25	0	20.76	20.84	20.81

CCIC-SET/T-I (00) Page 31 of 157

5. LTE Band 17 Conducted Power Test Verdict:

BW(MHz)	Modulation	RB Size	RB Offset	Power(dBm) Low Ch./Freq.	Power(dBm) Middle Ch./Freq.	Power(dBm) High Ch./Freq.
	Channel				23790	23800
	Frequency(MHz)				710	711
10	QPSK	1	0	23.38	23.35	23.44
10	QPSK	1	24	23.42	23.39	23.41
10	QPSK	1	49	23.28	23.33	23.21
10	QPSK	25	0	22.75	22.79	22.77
10	QPSK	25	12	22.76	22.77	22.72
10	QPSK	25	24	22.65	22.63	22.55
10	QPSK	50	0	22.73	22.77	22.70
10	16QAM	1	0	21.83	21.74	21.81
10	16QAM	1	24	21.71	21.70	21.73
10	16QAM	1	49	21.63	21.63	21.70
10	16QAM	25	0	20.86	20.71	20.77
10	16QAM	25	12	20.69	20.67	20.57
10	16QAM	25	24	20.55	20.57	20.63
10	16QAM	50	0	20.61	20.59	20.56
	Channel			23755	23790	23825
	Frequency(N	MHz)		706.5	710	713.5
5	QPSK	1	0	23.33	23.34	23.39
5	QPSK	1	12	23.41	23.37	23.34
5	QPSK	1	24	23.35	23.31	23.35
5	QPSK	12	0	22.74	22.83	22.79
5	QPSK	12	6	22.82	22.78	22.69
5	QPSK	12	11	22.64	22.72	22.75
5	QPSK	25	0	22.80	22.75	22.71
5	16QAM	1	0	21.74	21.70	21.81
5	16QAM	1	12	21.75	21.69	21.74
5	16QAM	1	24	21.65	21.58	21.59
5	16QAM	12	0	20.74	20.73	20.77
5	16QAM	12	6	20.69	20.58	20.71
5	16QAM	12	11	20.72	20.82	20.79
5	16QAM	25	0	20.63	20.60	20.74

CCIC-SET/T-I (00) Page 32 of 157

WLAN 2.4GHz Band Conducted Power

Channel/Frog (MHz)	Peak Power (dBm) for Data Rates (Mbps)					
Channel/Freq.(MHz)	802.11b	802.11g	802.11n(HT20)			
1(2412)	16.88	16.40	16.01			
6(2437)	17.20	16.63	16.21			
11(2462)	16.94	16.51	16.10			
Channel	802.11n(HT40)					
3(2422)	15.70					
6(2437)	15.77					
9(2452)	15.62					

Bluetooth Conducted Power

Channel	Frequency	BT3.0 Output Power(dBm)					
Orianinei	(MHz)	GFSK	π /4-DQPSK	8-DPSK			
CH 0	2402	6.29	5.67	5.70			
CH 39	2441	6.79	6.20	6.16			
CH 78	2480	7.34	6.66	6.47			
Channel	Frequency	BT4.0 Outp	ut Power(dBm)				
Orianinei	(MHz)	G	FSK				
CH 0	2402						
CH 20	2442						
CH 39	2480		0.97				

Note:

- 1. Per KDB248227 D01 v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion
- 2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at lowest data rate
- 3. Per KDB248227 D01 v02r02, 802.11g /11n-HT20/11n-HT40 is not required. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2W/Kg. Thus the SAR can be excluded.

CCIC-SET/T-I (00) Page 33 of 157

Stand alone SAR Exclusion & Estimated SAR valuation

1. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100MHz to 6GHz at test separation distances ≤ 50mm are determined by:[(max. power of channel, including tune-up tolerance,

mW)/(min. test separation distance, mm)] • [$^{\sqrt{f}}$ (GHz)] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR

- (1) f(GHz) is the RF channel transmit frequency in GHz
- (2) Power and distance are round to the nearest mW and mm before calculation
- (3) The result is rounded to one decimal place for comparison

(4) If the test separation distance(antenna-user) is < 5mm, 5mm is used for excluded SAR calculation

Bluetooth Max Tune up Power (dBm)	mW	Test Distance (mm)	Frequency(Ghz)	Calculation result	Exclusion Thresholds
7.5	5.62	5	2.4	1.76	3.0

2. Estimated SAR

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f_{(GHz)}/x}]$ W/kg for test separation distances ≤ 50 mm;

Bluetooth Max Tune up Power (dBm)	mW	Test Distance (mm)	Frequency(Ghz)	BT Estimated SAR(W/kg)
7.5	5.62	5	2.4	0.23

The estimated SAR value is used for simultaneous transmission analysis.

CCIC-SET/T-I (00) Page 34 of 157

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
- 2. Per KDB447498 D01v06, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is≤ 100MHz. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 3. Per KDB 865664 D01v01r04,for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%,and the measured SAR <1.45W/Kg,only one repeated measurement is required.
- 4. Per KDB865664 D02 v01r02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing(Refer to appendix D for details).
- 5. Per KDB941225 D01 v03r01, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.
- 6. Per KDB248227 D01 v02r02, 802.11g /11n-HT20/11n-HT40 is not required. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/Kg. Thus the SAR can be excluded.

CCIC-SET/T-I (00) Page 35 of 157

9.3. Scaling Factor calculation

Operation Mode	Channel	Output Power(dBm)	Tune up Power in tolerance(dBm)	Scaling Factor
WCDMA850	4132	22.84	22.5 ± 1.0	1.164
	4183	22.76	22.5 ± 1.0	1.186
	4233	22.61	22.5 ± 1.0	1.227
WCDMA1900	9262	22.63	22.5 ± 1.0	1.221
	9400	22.86	22.5 ± 1.0	1.159
	9538	22.79	22.5 ± 1.0	1.178
LTE B2 20MHz 1RB#49	18700	23.24	23.0 ± 1.0	1.191
	18900	23.31	23.0 ± 1.0	1.172
	19100	23.35	23.0 ± 1.0	1.161
LTE B2 20MHz 50RB#0	18700	22.64	22.5 ± 1.0	1.219
	18900	22.55	22.5 ± 1.0	1.245
	19100	22.53	22.5 ± 1.0	1.250
	20050	23.52	23.0 ± 1.0	1.117
LTE B4 20MHz 1RB#0	20175	23.56	23.0 ± 1.0	1.107
IND#0	20300	23.55	23.0 ± 1.0	1.109
LTE B4 20MHz 50RB#0	20050	22.75	22.5 ± 1.0	1.189
	20175	22.86	22.5 ± 1.0	1.159
	20300	22.85	22.5 ± 1.0	1.161
LTE B5 20MHz 1RB#0	20450	23.28	23.0 ± 1.0	1.180
	20525	23.25	23.0 ± 1.0	1.189
	20600	23.23	23.0 ± 1.0	1.194
LTE B5 20MHz 25RB#0	20450	22.72	22.5 ± 1.0	1.196
	20525	22.71	22.5 ± 1.0	1.199
	20600	22.76	22.5 ± 1.0	1.186
LTE B7 20MHz 1RB#49	20850	23.32	23.0 ± 1.0	1.169
	21100	23.34	23.0 ± 1.0	1.164
	21350	23.27	23.0 ± 1.0	1.183
1 TE D7 001"	20850	22.62	22.5 ± 1.0	1.225
LTE B7 20MHz 50RB#0	21100	22.75	22.5 ± 1.0	1.189
	21350	22.67	22.5 ± 1.0	1.211
LTE B17 10MHz 1RB#49	23780	23.38	23.0 ± 1.0	1.153
	23790	23.38	23.0 ± 1.0	1.153
	23800	23.44	23.0 ± 1.0	1.137

CCIC-SET/T-I (00) Page 36 of 157

LTE D47 40ML	23780	22.76	22.5 ± 1.0	1.186
LTE B17 10MHz 25RB#0	23790	22.77	$22.5 ~\pm~ 1.0$	1.183
20110#10	23800	22.72	22.5 ± 1.0	1.197
	1	16.88	16.5 ± 1.0	1.153
WIFI 802.11b	6	17.20	16.5 ± 1.0	1.072
	11	16.94	16.5 ± 1.0	1.138
ВТ	78	7.34	6.5 ± 1.0	1.038

Note: for LTE power tolerance, only QPSK modulation mode was provide here.

CCIC-SET/T-I (00) Page 37 of 157

10 TEST RESULTS

10.1 Summary of SAR Measurement Results
Note: 1. wifi SAR was performed at 6 Edge position with 5mm separation distance without the external shell. WWAN SAR testing was performed with external shell

Table 5: SAR Values of WCDMA850

Temperature: 23.0~23.5°C, humidity: 62~64%.							
Test Positions		Channel	Channel SAR(W/Kg), 1.6 (1g average)				
		/Frequency	SAR(W/Kg),	Scaled	Scaled	Plot No.	
		(MHz)	1g	Factor	SAR(W/Kg),1	FIOLINO.	
					g		
Body-Support	EUT with	4132/824.6	0.118	1.164	0.14	1	
(5mm	shell(External)	4183/836.6	0.109	1.186	0.13	-	
Separation)	, , ,	4233/846.6	0.098	1.227	0.12	-	

Table 6: SAR Values of WCDMA1900

Temperature: 23.0~23.5°C, humidity: 62~64%.							
		Channel	SAR(W	/Kg), 1.6 (1g a	verage)		
Toot D	ooitiono	/Frequency	SAR(W/Kg),	Scaled	Scaled	Diet No	
Test Positions		(MHz)	1g	Factor	SAR(W/Kg),1	Plot No.	
					g		
Body-Support	EUT with	9262/1852.4	0.620	1.221	0.76		
(5mm	shell(External)	9400/1880	0.733	1.159	0.85	2	
Separation)	(,	9538/1907.6	0.700	1.178	0.82		

Table 7: SAR Values of LTE Band 2, 20MHz, QPSK

	Tem	perature: 23.0~	Temperature: 23.0~23.5°C, humidity: 62~64%.								
		Channel	(3), (3 3)								
Test Po	ositions	/Frequency	SAR(W/Kg),1g	Scaled	Scaled	Plot					
		(MHz)		Factor	SAR(W/Kg),1	No.					
		10	L RB #49		l g						
		IF	AD #49		1						
Body-Support	EUT with	18700/1860	0.608	1.191	0.72						
(5mm	shell(External)	18900/1880	0.642	1.172	075						
Separation)	Sileli(External)	19100/1900	0.701	1.161	0.81	3					
		50%	6RB #0								
Body-Support	(5mm EUT with shell(External)		0.568	1.219	0.69						
Separation)			0.581	1.245	0.72						
ocparation)		18700/1900	0.608	1.250	0.76						

CCIC-SET/T-I (00) Page 38 of 157

Table 8: SAR Values of LTE Band 4, 20MHz, QPSK

Temperature: 23.0~23.5°C, humidity: 62~64%.								
		Channel		(g), 1.6 (1g a	verage)			
Test P	ositions	/Frequency	SAR(W/Kg),1	Scaled	Scaled	Plot		
100(1)	001110110	(MHz)	g	Factor	SAR(W/Kg)	No.		
					,1g			
	Γ	1RB	#49		T	ı		
Body-Support	EUT with	20050/1720	0.051	1.117	0.06			
(5mm	shell(External)	20175/1732.5	0.074	1.107	0.08	4		
Separation)	Sileii(External)	20300/1745	0.066	1.109	0.07			
		50%F	RB #0					
Body-Support (5mm	EUI with		0.049	1.189	0.06			
Separation)	shell(External)	20175/1732.5	0.066	1.159	0.08			
coparation)		20300/1745	0.048	1.161	0.06			

Table 9: SAR Values of LTE Band 5, 20MHz, QPSK

Table 5. Of the values of ETE Band 5 , 20191112, Q1 Off								
Temperature: 23.0~23.5°C, humidity: 62~64%.								
		Channel	Channel SAR(W/Kg), 1.6 (1g average					
Test Po	ositions	/Frequency	SAR(W/Kg),1	Scaled	Scaled	Plot		
103(1)	ooitiono	(MHz)	g	Factor	SAR(W/Kg)	No.		
					,1g			
		1RB	#49					
Body-Support		20450/829	0.121	1.180	0.14	5		
(5mm	EUT with	20525/836.5	0.069	1.189	0.08			
Separation)	shell(External)	20600/844	0.056	1.194	0.07			
		50%F	RB #0					
Body-Support (5mm	I EUI with		0.041	1.196	0.05			
Separation)	shell(External)	20525/836.5	0.055	1.199	0.07			
Coparation)		20600/844	0.101	1.186	0.12			

Table 10: SAR Values of LTE Band 7,20MHz, QPSK

Temperature: 23.0~23.5°C, humidity: 62~64%.								
		Channel	21 11 (1111 13); 112 (13 211 21 313)					
Test Po	ositions	/Frequency	SAR(W/Kg),	Scaled	Scaled	Plot		
1.00(1)	3011101110	(MHz)	1g	Factor	SAR(W/Kg)	No.		
		4DD	#40		,1g			
		IKB	#49		1	1		
Body-Support	EUT with	20850/2510	0.158	1.169	0.18			
(5mm		21100/2535	0.201	1.164	0.23	6		
Separation)	shell(External)	21350/2560	0.179	1.183	0.21			
		50%F	RB #0			Į		
Body-Support (5mm	EUT with	20850/2510	0.111	1.225	0.14			
Separation)	shell(External)	21100/2535	0.159	1.189	0.19			
ocparation)		21350/2560	0.081	1.211	0.10			

CCIC-SET/T-I (00) Page 39 of 157

Table 11: SAR Values of LTE Band 17,10MHz, QPSK

	Tem	perature: 23.0~23	3.5°C, humidity:	62~64%.		
		Channel		(g), 1.6 (1g	average)	5
Test P	ositions	/Frequency	SAR(W/Kg),1	Scaled	Scaled	Plot
		(MHz)	g	Factor	SAR(W/Kg),1	No.
					g	
		1RB	#49			
Body-Support	EUT with	23780/709	0.093	1.153	0.11	
(5mm	shell(External)	23790/710	0.089	1.153	0.10	
Separation)	Shell(External)	23800/711	0.116	1.137	0.13	7
		50%F	RB #0			
Body-Support (5mm	EUT with	23780/709	0.101	1.186	0.12	
Separation)	shell(External)	23790/710	0.086	1.183	0.10	
osparation)		23800/711	0.088	1.197	0.11	

Table 12: SAR Values of Wi-Fi 802.11b

14510 12. 07 11 Validoo 01 VII 1 1 002.115							
		Channel	SAR(W/k	SAR(W/Kg), 1.6 (1g average)			
Tost Do	Test Positions		SAR(W/Kg1g	Scaled	Scaled	Plot	
163(1)	วรแบบร	(MHz)	Peak)	Factor	SAR(W/Kg),	No.	
					1g		
	Face Upward	6/2437	0.021	1.072	0.02		
	Back Upward	6/2437	0.034	1.072	0.04		
Dady Cupper	Edge A	6/2437	0.126	1.072	0.14		
Body-Support (5mm	Edge B	6/2437	0.016	1.072	0.02		
Separation)	Edge C	6/2437	0.011	1.072	0.01		
Separation)	Edge D	6/2437	0.176	1.072	0.19	8	
	Edge D	6/2437	0.028	1.072	0.03		
	(with shell)	0/2437	0.026	1.072	0.03		

Note: When the 1-g SAR for the mid-band channel or the channel with the Highest output power satisfy the following conditions, testing of the other channels in the band is not required.(Per KDB 447498 D01 General RF Exposure Guidance v06)

- \leq 0.8 W/kg, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg, when the transmission band is \geq 200 MHz

CCIC-SET/T-I (00) Page 40 of 157

10.2 Simultaneous SAR Evaluation

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 6 of this report. Maximum localized SAR is **below** exposure limits specified in the relevant standards.

Simultaneous Transmission analysis:

No.	Transmitter Combinations	Scenario Supported or not
1	WCDMA(Data) +wifi	Yes
2	LTE(Data)+wifi	Yes
3	LTE(Data)+WCDMA(Data)	No
4	WIFI+BT	No
5	WCDMA(Data) +wifi+BT	No
6	LTE(Data)+wifi+BT	No

Simultaneous SAR Calculation

Tes	t Position	body
Body-Support	WCDMA850	0.14
5mm separation	WCDMA1900	0.85
MAX 1-g SAR(W/Kg)	LTE Band2	0.81
	LTE Band4	0.08
	LTE Band5	0.14
	LTE Band7	0.23
	LTE Band17	0.13
	WIFI 802.11b	0.19
	ВТ	0.23
Simultaneous E	BT ∑1-g SAR(W/Kg)	1.08
Simultaneous W	/iFi ∑1-g SAR(W/Kg)	1.04

Simultaneous Tx Combination of GSM/WCDMA/LTE and BT/WIFI (Body).

The estimated SAR value with * Signal

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required

CCIC-SET/T-I (00) Page 41 of 157

11 Measurement Uncertainty

No.	Uncertainty Component	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty (%) ui(%)	Degree of freedom Veff or vi		
	Measurement System									
1	– Probe Calibration	В	5.8	N	1	1	5.8	∞		
2	– Axial isotropy	В	3.5	R	$\sqrt{3}$	0.5	1.43	∞		
3	-Hemispherical Isotropy	В	5.9	R	$\sqrt{3}$	0.5	2.41	∞		
4	– Boundary Effect	В	1	R	$\sqrt{3}$	1	0.58	∞		
5	Linearity	В	4.7	R	$\sqrt{3}$	1	2.71	∞		
6	– System Detection Limits	В	1.0	R	$\sqrt{3}$	1	0.58	∞		
7	Modulation response	В	3	N	1	1	3.00			
8	– Readout Electronics	В	0.5	N	1	1	0.50	∞		
9	- Response Time	В	1.4	R	$\sqrt{3}$	1	0.81	∞		
10	- Integration Time	В	3.0	R	$\sqrt{3}$	1	1.73	∞		
11	- RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	∞		
12	Probe Position Mechanical tolerance	В	1.4	R	$\sqrt{3}$	1	0.81	∞		
13	Probe Position with respect to Phantom Shell	В	1.4	R	$\sqrt{3}$	1	0.81	8		
14	Extrapolation,Interpolation and IntegrationAlgorithms for Max. SARevaluation	В	2.3	R	$\sqrt{3}$	1	1.33	œ		
			Uncertair	nties of the DU	Γ					
15	– Position of the DUT	А	2.6	N	$\sqrt{3}$	1	2.6	5		
16	– Holder of the DUT	А	3	N	$\sqrt{3}$	1	3.0	5		

CCIC-SET/T-I (00) Page 42 of 157

17	- Output Power Variation -SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.89	∞
		Р	hantom and Ti	ssue Paramet	ers			
18	Phantom Uncertainty(shape and thickness tolerances)	В	4	R	$\sqrt{3}$	1	2.31	∞
19	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	В	2	N	1	1	2.00	
20	- Liquid Conductivity Target -tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	88
21	- Liquid Conductivity -measurement Uncertainty)	В	4	N	$\sqrt{3}$	1	0.92	9
22	- Liquid Permittivity Target tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	80
23	Liquid Permittivity measurement uncertainty	В	5	N	$\sqrt{3}$	1	1.15	∞
Con	nbined Standard Uncertainty			RSS			10.63	
(0	Expanded uncertainty Confidence interval of 95 %)			K=2			21.26	

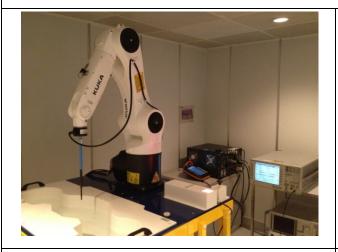
System Check Uncertainty

No.	Uncertainty Component	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty (%) ui(%)	Degree of freedom Veff or vi
			Measur	ement System	_			
1	Probe Calibration	В	5.8	Z	1	1	5.8	∞
2	– Axial isotropy	В	3.5	R	$\sqrt{3}$	0.5	1.43	∞
3	—Hemispherical Isotropy	В	5.9	R	$\sqrt{3}$	0.5	2.41	∞
4	– Boundary Effect	В	1	R	$\sqrt{3}$	1	0.58	∞
5	Linearity	В	4.7	R	$\sqrt{3}$	1	2.71	∞
6	– System Detection Limits	В	1	R	$\sqrt{3}$	1	0.58	∞
7	Modulation response	В	0	N	1	1	0.00	

CCIC-SET/T-I (00) Page 43 of 157

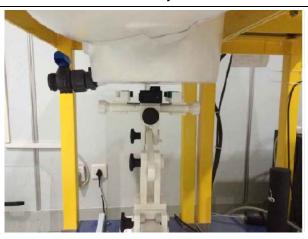
						110	00π NO. SE 12	.010-10021
8	- Readout Electronics	В	0.5	N	1	1	0.50	∞
9	– Response Time	В	0.00	R	$\sqrt{3}$	1	0.00	∞
10	 Integration Time 	В	1.4	R	$\sqrt{3}$	1	0.81	∞
11	- RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	∞
12	Probe Position Mechanical tolerance	В	1.4	R	$\sqrt{3}$	1	0.81	∞
13	Probe Position with respect to Phantom Shell	В	1.4	R	$\sqrt{3}$	1	0.81	∞
14	Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation	В	2.3	R	$\sqrt{3}$	1	1.33	8
			Uncertair	nties of the DU	Т			
15	Deviation of experimental source from numberical source	Α	4	N	1	1	4.00	5
16	Input Power and SAR drift measurement	Α	5	R	$\sqrt{3}$	1	2.89	5
17	Dipole Axis to Liquid Distance	В	2	R	$\sqrt{3}$	1	1.2	∞
		Р	hantom and Ti	ssue Paramet	ers			
18	– PhantomUncertainty(shape and thickness tolerances)	В	4	R	$\sqrt{3}$	1	2.31	8
19	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	В	2	N	1	1	2.00	
20	- Liquid Conductivity Target -tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
21	- Liquid Conductivity -measurement Uncertainty)	В	4	N	$\sqrt{3}$	1	0.92	9
22	Liquid Permittivity Target tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	8
23	- Liquid Permittivity -measurement uncertainty	В	5	N	$\sqrt{3}$	1	1.15	∞
Coi	mbined Standard Uncertainty			RSS			10.15	
(Expanded uncertainty Confidence interval of 95 %)			K=2			20.29	

CCIC-SET/T-I (00) Page 44 of 157


12 MAIN TEST INSTRUMENTS

TVDE	Sorios No	Calibration	calibration
1111	Series No.	Date	period
E5515C	GB 47200710	2015/06/10	1 Year
CMW500	130805	2015/08/10	1 Year
SATIMO	SN_0413_EP166	2015/08/10	1 Year
SATIMO	SN09/13 EP169	2015/05/04	1 Year
SID750	SN23/15 DIP0G750-378	2015/06/01	1 Year
SID835	SN09/13 DIP0G835-217	2014/08/28	2 Year
SID1800	SN09/13 DIP1G800-216	2014/08/28	2 Year
SID1900	SN09/13 DIP1G900-218	2014/08/28	2 Year
SID2450	SN09/13 DIP2G450-220	2014/08/28	2 Year
SID2600	SN32/14 DIP2G600-338	2014/08/12	2 Year
ZVB8	A0802530	2015/06/08	1 Year
SMR27	A0304219	2015/06/08	1 Year
ML2495A	1421017	2015/06/02	1 Year
MA2411B	1417208	2015/06/02	1 Year
Nucletudes	143060	2015/03/27	1 Year
DC6180A	305827	2015/03/27	1 Year
Keithley-2000	4014020	2015/03/27	1 Year
	CMW500 SATIMO SATIMO SID750 SID835 SID1800 SID1900 SID2450 SID2600 ZVB8 SMR27 ML2495A MA2411B Nucletudes DC6180A	E5515C GB 47200710 CMW500 130805 SATIMO SN_0413_EP166 SATIMO SN09/13 EP169 SID750 SN23/15 DIP0G750-378 SID835 SN09/13 DIP0G835-217 SID1800 SN09/13 DIP1G800-216 SID1900 SN09/13 DIP1G900-218 SID2450 SN09/13 DIP2G450-220 SID2600 SN32/14 DIP2G600-338 ZVB8 A0802530 SMR27 A0304219 ML2495A 1421017 MA2411B 1417208 Nucletudes 143060 DC6180A 305827	TYPE Series No. Date E5515C GB 47200710 2015/06/10 CMW500 130805 2015/08/10 SATIMO SN_0413_EP166 2015/08/10 SATIMO SN09/13 EP169 2015/05/04 SID750 SN23/15 DIP0G750-378 2015/06/01 SID835 SN09/13 DIP0G835-217 2014/08/28 SID1800 SN09/13 DIP1G800-216 2014/08/28 SID1900 SN09/13 DIP1G900-218 2014/08/28 SID2450 SN09/13 DIP2G450-220 2014/08/28 SID2600 SN32/14 DIP2G600-338 2014/08/12 ZVB8 A0802530 2015/06/08 SMR27 A0304219 2015/06/08 ML2495A 1421017 2015/06/02 MA2411B 1417208 2015/06/02 Nucletudes 143060 2015/03/27 DC6180A 305827 2015/03/27

CCIC-SET/T-I (00) Page 45 of 157



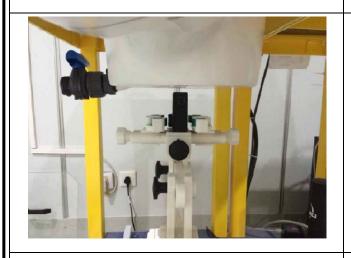
ANNEX A TEST SETUP

SAR Test System

Liquid deep(15cm)

Body Back Upward(5mm)

Body Face Upward(5mm)



Body Edge D(5mm)

Body Edge C(5mm)

CCIC-SET/T-I (00) Page 46 of 157

Body Edge B(5mm)

Body Edge A (5mm)

With shell (external antenna)

Body Edge D(with external shell) 5mm

CCIC-SET/T-I (00) Page 47 of 157

ANNEX B EUT Photos

CCIC-SET/T-I (00) Page 48 of 157

ANNEX C SYSTEM CHECK

System Performance Check (Body, 750MHz)

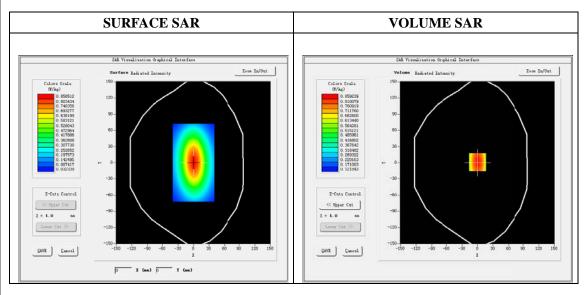
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/11/2015

Measurement duration: 20 minutes 12 seconds


A. Experimental conditions.

Phantom File	dx=8mm dy=8mm	
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm	
Device Position	Dipole	
Band	750MHz	
Signal	CW	

B. SAR Measurement Results

Band SAR

<u>51 11 1</u>	
E-Field Probe	SATIMO SN_09/13_EP169
Frequency (MHz)	750
Relative permittivity (real part)	55.01
Relative permittivity	22.80
Conductivity (S/m)	0.95
Power drift (%)	-3.08
Ambient Temperature:	22.2°C
Liquid Temperature:	22.5°C
ConvF:	5.41
Duty factor:	1:1

Maximum location: X=0.00, Y=1.00

SAR 10g (W/Kg)	0.996423
SAR 1g (W/Kg)	2.012576

CCIC-SET/T-I (00) Page 49 of 157

System Performance Check (Body, 850MHz)

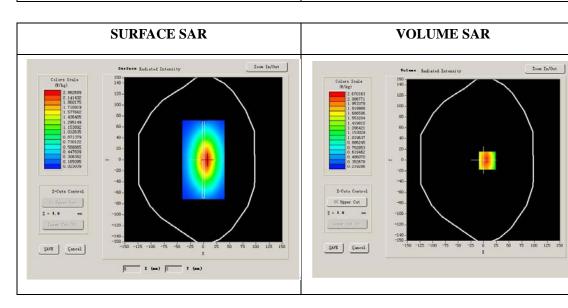
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/11/2015

Measurement duration: 20 minutes 12 seconds


A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	Dipole
Band	835MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

<u> </u>	
E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	850
Relative permittivity (real part)	55.32
Relative permittivity	20.12
Conductivity (S/m)	0.95
Power drift (%)	-0.31
Ambient Temperature:	22.2°C
Liquid Temperature:	22.5°C
ConvF:	5.82
Duty factor:	1:1

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.631452
SAR 1g (W/Kg)	2.523687

CCIC-SET/T-I (00) Page 50 of 157

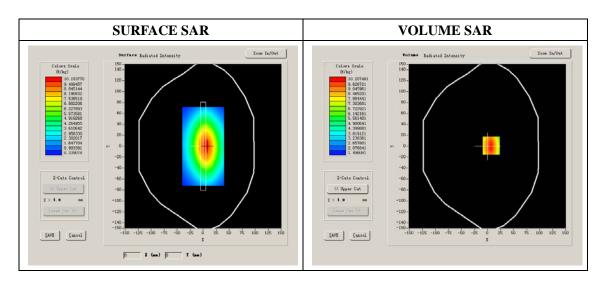
System Performance Check (Body, 1800MHz)

Type: Phone measurement

Area scan resolution: dx=8mm,dy=8mm
Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 18/11/2015

Measurement duration: 20 minutes 06 seconds


A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	Dipole
Band	1800MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	1800
Relative permittivity (real part)	53.37
Relative permittivity	15.00
Conductivity (S/m)	1.50
Power drift (%)	-0.39
Ambient Temperature:	22.2°C
Liquid Temperature:	22.6°C
ConvF:	4.96
Crest factor:	1:1

Maximum location: X=7.00, Y=1.00

SAR 10g (W/Kg)	5.020572
SAR 1g (W/Kg)	9.831277

CCIC-SET/T-I (00) Page 51 of 157

System Performance Check (Body, 1900MHz)

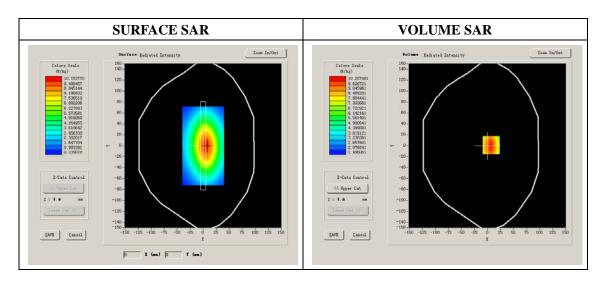
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 18/11/2015

Measurement duration: 21 minutes 34 seconds


A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	Dipole
Band	1900MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	1900
Relative permittivity (real part)	53.14
Relative permittivity	14.40
Conductivity (S/m)	1.52
Power Drift (%)	-0.68
Ambient Temperature:	22.1°C
Liquid Temperature:	22.6°C
ConvF:	5.43
Duty factor:	1:1

Maximum location: X=1.00, Y=6.00

SAR 10g (W/Kg)	5.268423
SAR 1g (W/Kg)	10.108358

CCIC-SET/T-I (00) Page 52 of 157

System Performance Check (Body, 2450MHz)

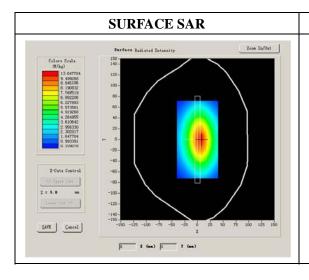
Type: Phone measurement

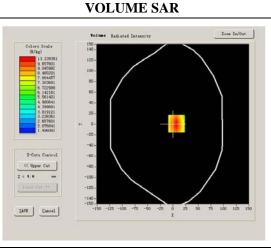
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 19/11/2015

Measurement duration: 22 minutes 21 seconds


A. Experimental conditions.


Phantom File	dx=8mm dy=8mm
Phantom	7x7x8,dx=5mm dy=5mm dz=4mm
Device Position	Dipole
Band	2450MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2450
Relative permittivity (real part)	52.53
Relative permittivity	14.25
Conductivity (S/m)	1.94
Power Drift (%)	-0.31
Duty factor:	1:1
ConvF:	5.09

Maximum location: X=0.00, Y=8.00

SAR 10g (W/Kg)	6.050681
SAR 1g (W/Kg)	13.064876

CCIC-SET/T-I (00) Page 53 of 157

System Performance Check (Body, 2600MHz)

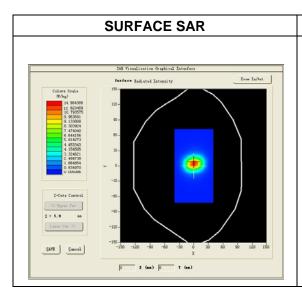
Type: Phone measurement

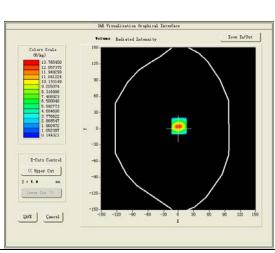
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 19/11/2015

Measurement duration: 22 minutes 24 seconds


A. Experimental conditions.


Phantom File	dx=8mm dy=8mm
Phantom	7x7x8,dx=5mm dy=5mm dz=4mm
Device Position	Dipole
Band	2600MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

SATIMO SN_04/13_EP166
2600
52.56
14.88
2.15
1.35
22.2°C
22.5°C
1:1
5.22

VOLUME SAR

Maximum location: X=1.00, Y=4.00

SAR 10g (W/Kg)	5.987241
SAR 1g (W/Kg)	14.032842

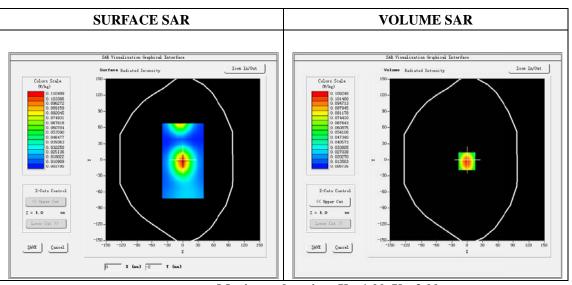
CCIC-SET/T-I (00) Page 54 of 157

Plot 1: WCDMA850, Body-Support, low

Type: Phone measurement

Date of measurement: 17/11/2015

Measurement duration: 7 minutes 19 seconds


Mobile Phone IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	
Band	Band5_WCDMA850
Channels	4132
Signal	WCDMA (Duty cycle: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	824.6
Relative permittivity (real part)	55.32
Relative permittivity (imaginary part)	20.12
Conductivity (S/m)	0.95
Variation (%)	-0.37
ConvF:	5.82

Maximum location: X=-1.00, Y=-3.00 SAR Peak: 0.15 W/kg

SAR 10g (W/Kg)	0.06048
SAR 1g (W/Kg)	0.11854

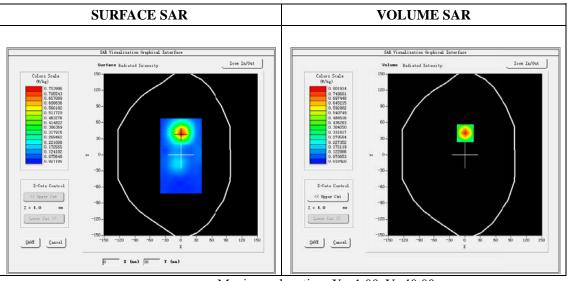
CCIC-SET/T-I (00) Page 55 of 157

Plot 2: WCDMA1900, Body-Support, mid

Type: Phone measurement

Date of measurement: 18/11/2015

Measurement duration: 7 minutes 14 seconds

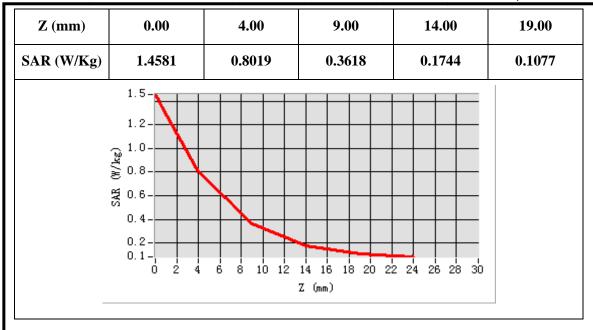

Mobile Phone IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Back
Band	Band2_WCDMA1900
Channels	9400
Signal	WCDMA (Duty cycle: 1:1)

B. SAR Measurement Results

	1
E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	1880
Relative permittivity (real part)	53.14
Relative permittivity (imaginary	14.40
Conductivity (S/m)	1.52
Variation (%)	-4.51
ConvF:	5.43



Maximum location: X=-1.00, Y=40.00 SAR Peak: 1.46W/kg

SAR 10g (W/Kg)	0.36484
SAR 1g (W/Kg)	0.73359

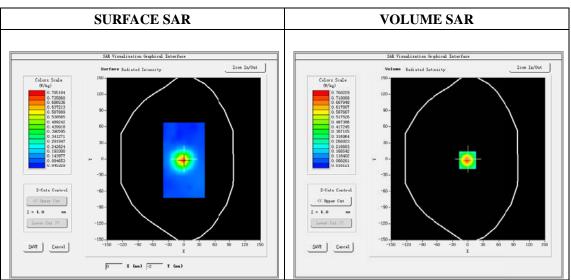
CCIC-SET/T-I (00) Page 56 of 157

CCIC-SET/T-I (00) Page 57 of 157

Plot 3: LTE Band2, 20MHz, Body-Support, high

Type: Phone measurement

Date of measurement: 18/11/2015


Measurement duration: 7 minutes 13 seconds

Mobile Phone IMEI number: -- **A. Experimental conditions.**

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Back
Band	LTE Band2
Channels	19100
Signal	Duty cycle: 1:1

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	1900
Relative permittivity (real part)	53.14
Relative permittivity (imaginary	14.40
Conductivity (S/m)	1.52
Variation (%)	-4.16
ConvF:	5.43

Maximum location: X=-1.00, Y=-2.00

SAR Peak: 1.38W/kg

SAR 10g (W/Kg) 0.33613

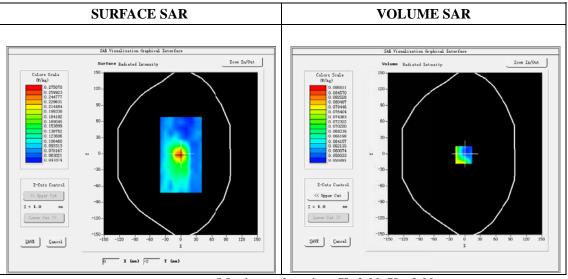
SAR 1g (W/Kg) 0.70105

CCIC-SET/T-I (00) Page 58 of 157

Plot 4: LTE Band4, 20MHz, Body-Support, mid

Type: Phone measurement

Date of measurement: 17/7/2015


Measurement duration: 7 minutes 15 seconds

Mobile Phone IMEI number: -- **A. Experimental conditions.**

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	
Band	LTE Band 4
Channels	20175
Signal	LTE (Duty cycle: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	1732.5
Relative permittivity (real part)	53.37
Relative permittivity (imaginary	15.00
Conductivity (S/m)	1.50
Variation (%)	4.70
ConvF:	4.96

Maximum location: X=2.00, Y=-2.00 SAR Peak: 0.08W/kg

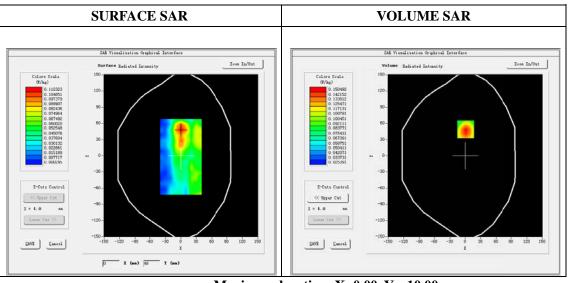
SAR 10g (W/Kg)	0.07301
SAR 1g (W/Kg)	0.07432

CCIC-SET/T-I (00) Page 59 of 157

Plot 5: LTE Band5, 20MHz, Body-Support, low

Type: Phone measurement

Date of measurement: 17/7/2015


Measurement duration: 7 minutes 17 seconds

Mobile Phone IMEI number: -- **A. Experimental conditions.**

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Back
Band	LTE Band 5
Channels	20450
Signal	LTE (Duty cycle: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	829
Relative permittivity (real part)	55.32
Relative permittivity (imaginary	20.12
Conductivity (S/m)	0.95
Variation (%)	-0.42
ConvF:	5.82

Maximum location: X=0.00, Y=-10.00 SAR Peak: 0.22 W/kg

SAR 10g (W/Kg)	0.083845
SAR 1g (W/Kg)	0.141271

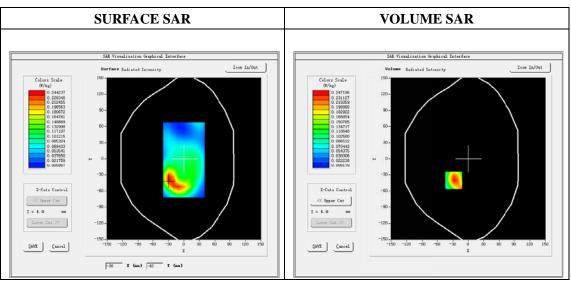
CCIC-SET/T-I (00) Page 60 of 157

Plot 6: LTE Band 7, 20MHz, Body-Support, mid

Type: Phone measurement

Date of measurement: 19/11/2015

Measurement duration: 7 minutes 32 seconds


Mobile Phone IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm	
Phantom	Validation plane	
Device Position	Back	
Band	LTE Band 7	
Channels	2110	
Signal	LTE (Duty cycle: 1:1)	

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2535
Relative permittivity (real part)	52.56
Relative permittivity (imaginary part)	14.88
Conductivity (S/m)	2.15
Variation (%)	-3.09
ConvF:	5.22

Maximum location: X=-28.00, Y=-40.00 SAR Peak: 0.37 W/kg

Start car. 0.37 W/Rg	
SAR 10g (W/Kg)	0.12101
SAR 1g (W/Kg)	0.20131

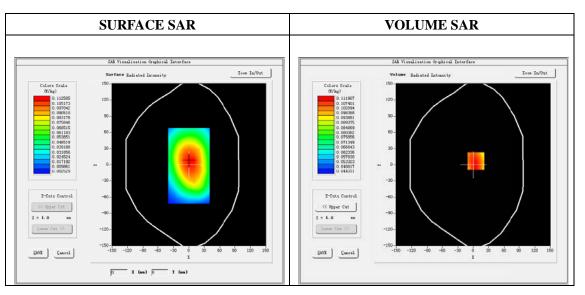
CCIC-SET/T-I (00) Page 61 of 157

Plot 7: LTE Band 17, 10MHz, Body-Support, high

Type: Phone measurement

Date of measurement: 17/11/2015

Measurement duration: 7 minutes 29 seconds


Mobile Phone IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm	
Phantom	Validation plane	
Device Position	Back	
Band	LTE Band 17	
Channels	23800	
Signal	LTE (Duty cycle: 1:1)	

B. SAR Measurement Results

SATIMO SN_09/13_EP169
711
55.01
33.01
22.80
0.95
-0.59
5.41

Maximum location: X=5.00, Y=7.00

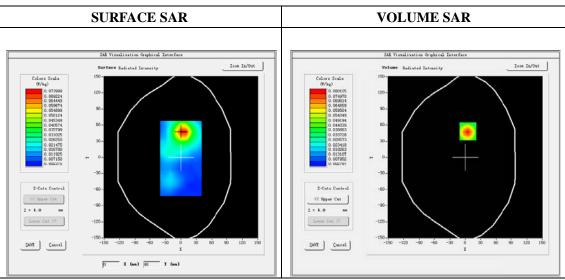
SAR 10g (W/Kg)	0.094251
SAR 1g (W/Kg)	0.116264

CCIC-SET/T-I (00) Page 62 of 157

Plot 8:Wi-Fi 802.11b , Body-Support Edge D

Type: Phone measurement

Date of measurement: 19/11/2015


Measurement duration: 07 minutes 05 seconds

Mobile Phone IMEI number: -- **A. Experimental conditions.**

14 Experimental conditions		
Area Scan	dx=8mm dy=8mm	
ZoomScan	7x7x8,dx=5mm dy=5mm dz=4mm	
Phantom	Validation plane	
Device Position	Edge D	
Band	IEEE 802.11b	
Channels	6	
Signal	DSSS (Crest factor: 1:1)	

B. SAR Measurement Results

D. SAK Measurement Results	
E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2437
Relative permittivity (real part)	52.53
Relative permittivity (imaginary part)	14.25
Conductivity (S/m)	1.94
Variation (%)	3.50
ConvF:	5.09

Maximum location: X=5.00, Y=48.00 SAR Peak: 0.13 W/kg

SAR 10g (W/Kg)	0.03907
SAR 1g (W/Kg)	0.07617

CCIC-SET/T-I (00) Page 63 of 157

ANNEX D Calibration Certificate of Probe and Dipoles

COMOSAR E-Field Probe Calibration Report

Ref: ACR. 227. 15. 14. SATU. A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055)
SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 04/13 EP166

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

08/10/2015

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR testbench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national methology institutions.

CCIC-SET/T-I (00) Page 64 of 157

	Nam e	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/11/2015	JE
Checked by :	Jérôme LUC	Product Manager	8/11/2015	JE
Approved by:	Kim RUTKOWSKI	Quality Manager	8/11/2015	tum Puethowski

Distribution :	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co.,

Issue	Date	Modifications
A	8/11/2015	Initial release

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 65 of 157

TABLE OF CONTENTS

1 D	evice Under Test	4	
2 Pr	roduct Description	4	
2.1	General Information		4
3 M	leasurement Method		
3.1	Linearity		4
3.2	Sensitivity		5
3.3	Lower Detection Limit		5
3.4	Isotropy		5
3.5	Boundary Effect		5
4 M	leasurement Uncertainty	5	
5 Ca	alibration Measurement Results	6	
5.1	Sensitivity in air		6
5.2	Linearity		7
5.3	Sensitivity in liquid		7
5.4	Isotropy		8
6 Li	ist of Equipment	Q	

Page: 3/9

This document shall not he reproduced, except in full or in yort, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

1 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE			
Manufacturer	Satimo			
Model	SSE5			
Serial Number	SN 04/13 EP166			
Product Condition (new / used)	Used			
Frequency Range of Probe	0.7 GHz-3 GHz			
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.231 MΩ			
Dipole 2: R2=0.225 MΩ				
	Dipole 3: R3=0.228 MΩ			

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 - Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 67 of 157

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0.360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide						
ERROR SOURCES	Un certainty value (%)	Probability Distribution	Divisur	ci	Standard Uncertainty (%)	
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%	
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%	
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%	
Liquid permittivity	4.00%	Rectangular	√3	1	2.309%	
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%	
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%	
Field probe linearity	3.00%	Rectangular	√3	1	1.732%	

Page: 5/9

CCIC-SET/T-I (00) Page 68 of 157

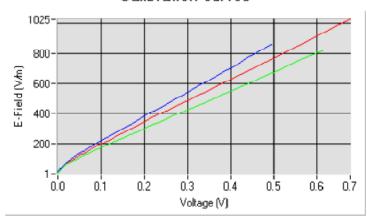
This document shall not be reproduced, except in full or in part, without the written approval of SATIMC. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

Combined standard uncertainty			5.831%
Expanded uncertainty 95 % confidence level k = 2			12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters				
Liquid Temperature 21 °C				
Lab Temperature	21 °C			
Lab Humidity	45 %			


5.1 SENSITIVITY IN AIR

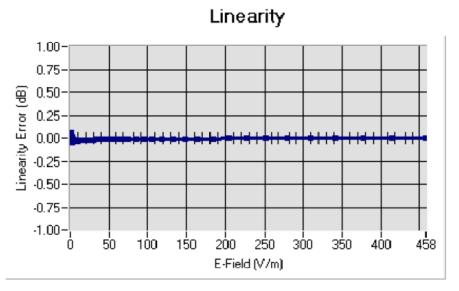

Normx dipole 1 (μV/(V/m) ²)	Normy dipole $2 (\mu V/(V/m)^2)$	Normz dip ole $3 (\mu V/(V/m)^2)$
8.57	4.83	7.15

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
92	90	95

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$

Dipole 1 Dipole 2 Dipole 3


Page: 6/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 69 of 157

5.2 LINEARITY

Linearity:I+/-1.55% (+/-0.07dB)

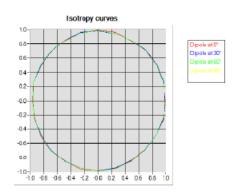
5.3 <u>SENSITIVITY IN LIQUID</u>

<u>Liquid</u>	Frequency (MHz +/-	<u>Permittivity</u>	Epsilon (S/m)	<u>ConvF</u>
	<u>100MHz)</u>			
HL850	835	42.80	0.89	5.69
BL850	835	53.45	0.96	5.82
HL900	900	42.47	0.96	5.34
BL900	900	56.68	1 .08	5.55
HL1800	1800	41.30	1.38	4.75
BL1800	1800	53.27	1 .51	4.96
HL1900	1900	41.09	1.42	5.25
BL1900	1900	54.20	1.54	5.43
HL2000	2000	39.72	1.43	4.81
BL2000	2000	53.90	1.53	4.95
HL2450	2450	39.05	1.77	4.93
BL2450	2450	52.98	1.93	5.09
HL2600	2600	38.35	1.92	5.08
BL2600	2600	51.82	2.19	5.22

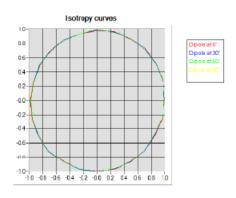
LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


CCIC-SET/T-I (00) Page 70 of 157

5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.07 dB

Page: 8/9

This document shall not he reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 71 of 157

6 LIST OF EQUIPMENT

Equipment Summary Sheet							
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date			
Flat Phantom	Satimo	SN-20/09-SAM71		Validated. No cal required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.			
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016			
Reference Probe	Satimo	EP 94 SN 37/08	10/2014	10/2015			
Multimeter	Keithley 2000	1188656	12/2013	12/2016			
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016			
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	HP E4418A	US38261498	12/2013	12/2016			
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016			
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.			
Waveguide Transition	Mega Industries	069Y7-158-13-701		Validated. No cal required.			
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.			
Temperature / Humidity Sensor	Control Company	11-661-9	8/2013	8/2016			

Page: 9/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 72 of 157

COMOSAR E-Field Probe Calibration Report

Ref: ACR, 125, 1, 15, SATU, A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055)
MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 09/13 EP169

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

05/05/15

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAR test bench, for use with a COMOSAR system only. All calibration results are traceable to national methology institutions.

CCIC-SET/T-I (00) Page 73 of 157

Ref: ACR.125.1.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	5/5/2015	JS
Checked by :	Jérôme LUC	Product Manager	5/5/2015	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	5/5/2015	nim Ruthowski

	Customer Name
Distribution :	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co., Ltd

Issue	Date	Modifications
Α	5/5/2015	Initial release

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of IdVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of IdVG.

CCIC-SET/T-I (00) Page 74 of 157

Ref: ACR.125.1.14.SATU.A

TABLE OF CONTENTS

1	Devi	ce Under Test4	
2	Prod	uct Description4	
	2.1	General Information	4
3		surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	
	3.4	Isotropy	
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty5	
5	Calit	oration Measurement Results 6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
б	List	of Equipment9	

Page: 3/9

This document shall not be reproduced, except in full or in part, without the written approval of IAVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of IAVG.

Ref: ACR.125.1.14.SATU.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE5		
Serial Number	SN 09/13 EP169		
Product Condition (new / used)	Used		
Frequency Range of Probe	0.7 GHz-3GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.222 MΩ		
	Dipole 2: R2=0.232 MΩ		
	Dipole 3: R3=0.221 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric Efield Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEVIEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

This document shall not be reproduced, except in full or in part, without the written approval of IdVG. The information contained here in is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of IdVG.

CCIC-SET/T-I (00) Page 76 of 157

Ref: ACR.125.1.14.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3	1	1.732%
Reflected power	3.00%	Rec tangular	<u></u> —√₃ –	1	1.732%
Liquid conductivity	5.00%	Rec tangular	<u></u> —√3 –	1	2.887%
Liquid permittivity	4.00%	Rectangular	√3-	1	2.309%
Field homogeneity	3.00%	Rectangular	√3_	1	1.732%
Field probe positioning	5.00%	Rectangular	√3	1	2.887%

Page: 5/9

This document shall not be reproduced, except in full or in part, without the written approval of InVG. The information contained here in is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of InVG.

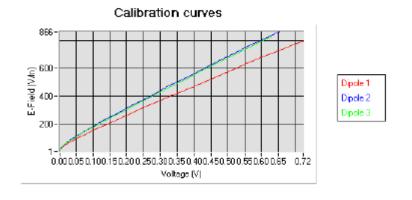
CCIC-SET/T-I (00) Page 77 of 157

Ref: ACR.125.1.14.SATU.A

Field probe linearity	3.00%	Rectangular	√3	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95% confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibratio	n Parameters
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


5.1 <u>SENSITIVITY IN AIR</u>

	Normx dipole	Normy dipole	Normz dipole
	1 (μV/(V/m)²)	2 (μV/(V/m)²)	3 (μV/(V/m)²)
1	7.16	6.11	5.85

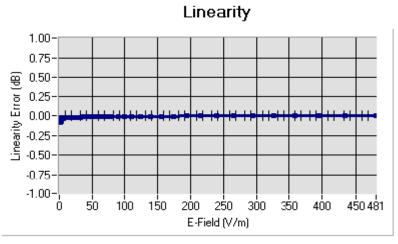
DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	96	91

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$

Page: 6/9

This document shall not be reproduced, except in full or in part, without the written approval of IdVG. The information contained here in is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of IdVG.


CCIC-SET/T-I (00) Page 78 of 157

Ref: ACR.125.1.14.SATU.A

5.2 LINEARITY

Linearity: I+/-1.83% (+/-0.08dB)

5.3 SENSITIVITY IN LIQUID

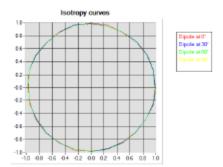
<u>Liquid</u>	<u>Frequency</u> (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	<u>ConvF</u>
HL750	750	41.85	0.90	526
BL750	750	56.28	0.98	5.41
HL2300	2300	38.75	1.64	4.75
BL2300	2300	51.66	1.77	493

LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9

This document shall not be reproduced, except in full or in part, without the written approval of hAVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of hAVG.

CCIC-SET/T-I (00) Page 79 of 157



Ref: ACR.125.1.14.SATU.A

5.4 <u>ISOTROPY</u>

HL 750 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

Page: 8/9

This document shall not be reproduced, except in full or in part, without the written approval of haVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of haVG.

CCIC-SET/T-I (00) Page 80 of 157

Ref: ACR.125.1.14.SATU.A

6 LIST OF EQUIPMENT

	Equi	pment Summary S	Sheet	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. Nocal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. Nocal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Reference Probe	MVG	EP 94 SN 37/08	10/2014	10/2015
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E 4438C	MY49070581	12/2013	12/2016
Am plifier	Aethercom m	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. Nocal required.
Waveguide Transition	Mega Industries	069 Y7-158-13-701	Validated. Nocal required.	Validated. Nocal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. Nocal required.
Temperature / Humidity Sensor	Control Company	11-661-9	8 <i>1</i> 2012	8/2015

Page: 9/9

This document shall not be reproduced, except in full or in part, without the written approval of laVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of laVG.

CCIC-SET/T-I (00) Page 81 of 157

SID750 Dipole Calibration Certificate

SAR Reference Dipole Calibration Report

Ref: ACR.154.1.15.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 750 MHZ SERIAL NO.: SN 23/15 DIP 0G750-378

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

06/01/15

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.154.1.15.SATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	6/3/2015	JES
Checked by:	Jérôme LUC	Product Manager	6/3/2015	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	6/3/2015	them Puthoush

Customer Name

CCIC SOUTHERN
ELECTRONIC
PRODUCT
TESTING
(SHENZHEN) Co.,
Ltd

Issue	Date	Modifications
A	6/3/2015	Initial release
		CO ESTABLIST AND SAFETY AND SECRETARIES
		IT SARCIONATA BERMAN
-		

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 83 of 157

Ref: ACR.154.1.15.SATU.A

TABLE OF CONTENTS

1	Intr	oduction4	
2		vice Under Test4	
3		duct Description4	
	3.1	General Information	4
4	Mea	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	
5	Mea	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	
6	Cali	ibration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	
	6.3	Mechanical Dimensions	
7	Vali	idation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
8	List	of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.154.1.15.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

De	evice Under Test
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID750
Serial Number	SN 23/15 DIP 0G750-378
Product Condition (new / used)	New

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 85 of 157

Ref: ACR.154.1.15.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

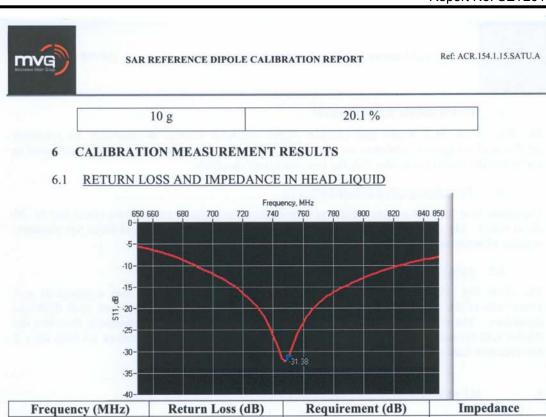
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %


Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 86 of 157

 $51.9 \Omega + 1.9 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

-31.38

750 -24.86 $49.3 \Omega + 5.7 j\Omega$

MECHANICAL DIMENSIONS

750

Frequency MHz L		nm	h m	ım	d n	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 87 of 157

Ref: ACR.154.1.15.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.	PASS	100.0 ±1 %.	PASS	6.35 ±1 %.	PASS
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.	Eur I	83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.	ME T	51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.	LHI	42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.	5,45	41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.	-	3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ϵ_{r}')	Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %	- 14	0.87 ±5 %	
750	41.9 ±5 %	PASS	0.89 ±5 %	PASS
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 88 of 157

Ref: ACR.154.1.15.SATU.A

1800	40.0 ±5 %	1.40 ±5 %
1900	40.0 ±5 %	1.40 ±5 %
1950	40.0 ±5 %	1.40 ±5 %
2000	40.0 ±5 %	1.40 ±5 %
2100	39.8 ±5 %	1.49 ±5 %
2300	39.5 ±5 %	1.67 ±5 %
2450	39.2 ±5 %	1.80 ±5 %
2600	39.0 ±5 %	1.96 ±5 %
3000	38.5 ±5 %	2.40 ±5 %
3500	37.9 ±5 %	2.91 ±5 %

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

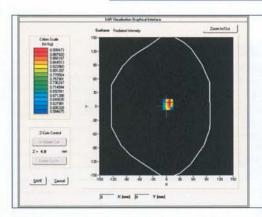
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

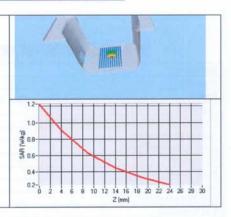
Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Head Liquid Values: eps': 41.8 sigma: 0.90	
Distance between dipole center and liquid	15.0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm	
Frequency	750 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49	8.67 (0.87)	5.55	5.73 (0.57)
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


CCIC-SET/T-I (00) Page 89 of 157



Ref: ACR.154.1.15.SATU.A

1000	30.7	20.5
1900	39.7	20.5
1950	40.5	20.9
2000	41.1	21.1
2100	43.6	21.9
2300	48.7	23.3
2450	52.4	24
2600	55.3	24.6
3000	63.8	25.7
3500	67.1	25

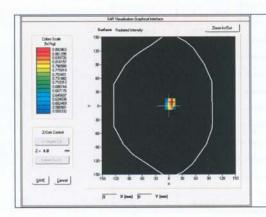
7.3 BODY LIQUID MEASUREMENT

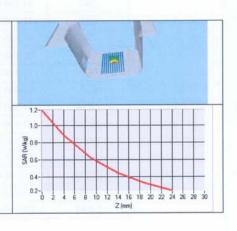
Frequency MHz	Relative permittivity (ε_{r}')		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	123122
750	55.5 ±5 %	PASS	0.96 ±5 %	PASS
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	177
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 90 of 157


Ref: ACR.154.1.15.SATU.A


2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Body Liquid Values: eps': 56.3 sigma: 0.98	
Distance between dipole center and liquid	15.0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm	
Frequency	750 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
750	8.43 (0.84)	5.63 (0.56)

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 91 of 157