

FCC RF Test Report

APPLICANT : Nokia Shanghai Bell Co., Ltd.
EQUIPMENT : NOKIA WiFi Beacon 24
BRAND NAME : NOKIA
MODEL NAME : Beacon 24
FCC ID : 2ADZRBEACON24
STANDARD : FCC Part 15 Subpart E §15.407
TEST DATE(S) : Dec. 31, 2024 ~ Feb. 06, 2025

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

Jason Jia

Approved by: Jason Jia

Sportun International Inc. (Kunshan)
No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300
People's Republic of China

Table of Contents

1 General Description	5
1.1 Applicant	5
1.2 Manufacturer	5
1.3 Product Feature of Equipment Under Test.....	5
1.4 Product Specification of Equipment Under Test.....	5
1.5 Modification of EUT	8
1.6 Testing Location	8
1.7 Test Software.....	8
1.8 Applicable Standards.....	9
2 Test Configuration of Equipment Under Test	10
2.1 Carrier Frequency and Channel	10
2.2 Test Mode	13
2.3 Connection Diagram of Test System.....	13
2.4 EUT Operation Test Setup	14
3 Test Result	15
3.1 26dB & 99% Occupied Bandwidth Measurement	15
3.2 Maximum conducted Output Power and Fundamental Maximum EIRP Measurement.....	16
3.3 Fundamental Power Spectral Density Measurement.....	17
3.4 In-Band Emissions (Channel Mask)	19
3.5 Unwanted Emissions Measurement.....	21
3.6 Antenna Requirements	25
4 List of Measuring Equipment.....	26
5 Measurement Uncertainty	27

Appendix A. Conducted Test Results

Appendix B. Radiated Spurious Emission

Appendix C. Duty Cycle Plots

Appendix D. Setup Photographs

History of this test report

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.407(a)(11)	26dB Emission Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Pass	-
3.2	15.407(a)(5)	Maximum Conducted Output Power	Pass	-
3.2	15.407(a)(5)	Fundamental Maximum EIRP	Pass	-
3.3	15.407(a)(5)	Fundamental Power Spectral Density	Pass	-
3.4	15.407(b)(7)	In-Band Emissions (Channel Mask)	Pass	-
3.5	15.407(b)	Unwanted Emissions	Pass	Under limit 7.59 dB at 7126.92 MHz
3.6	15.203 15.407(a)	Antenna Requirement	Pass	-

Remark: Not required means after assessing, test items are not necessary to carry out.

Note: This is a variant report. Update the gains used in 4S4T mode in this report based on the WIFI 6E antenna report, and the others are all the same. The change note could be referred to the Beacon 24_Class II Permissive Change letter which is exhibit separately. Based on the similarity between current and previous project, only fully tested for 4S4T mode, other test cases were leveraged from original test report (Sportun Report Number FR3N0940C).

Conformity Assessment Condition:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

Nokia Shanghai Bell Co., Ltd.

No.388, Ningqiao Rd, Pilot Free Trade Zone, Shanghai, 201206 P.R. China

1.2 Manufacturer

Nokia of America Corporation

2301 Sugar Bush Rd. Raleigh, NC 27612

1.3 Product Feature of Equipment Under Test

Product Feature	
Equipment	NOKIA WiFi Beacon 24
Brand Name	NOKIA
Model Name	Beacon 24
FCC ID	2ADZRBEACON24
EUT Stage	Production Unit

Remark: WLAN 6G has four antennas. The Ant.1/2/3/4 in this report correspond to Ant. 5/6/7/8 in the original report.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification	
Tx/Rx Frequency Range	U-NII-5: 6105 MHz – 6425 MHz U-NII-6: 6425 MHz – 6525 MHz U-NII-7: 6525 MHz – 6875 MHz U-NII-8: 6875 MHz – 7125 MHz
Maximum EIRP	For 4S4T MIMO<Ant.1+2+3+4> 802.11ax HE20 : 16.91 dBm / 0.0491 W 802.11ax HE40 : 19.83 dBm / 0.0962 W 802.11ax HE80 : 23.04 dBm / 0.2014 W 802.11ax HE160 : 26.05 dBm / 0.4027 W 802.11be EHT20 : 16.97 dBm / 0.0498 W 802.11be EHT40 : 19.90 dBm / 0.0977 W 802.11be EHT80 : 23.10 dBm / 0.2042 W 802.11be EHT160 : 26.11 dBm / 0.4083 W 802.11be EHT320 : 28.88 dBm / 0.7727 W
99% Occupied Bandwidth	MIMO<Ant.1+2+3+4> 802.11 be EHT20 : 19.429 MHz 802.11 be EHT40 : 38.667 MHz 802.11 be EHT80 : 79.01 MHz 802.11be EHT160 : 159.543 MHz 802.11be EHT320: 318.781 MHz
Antenna Type	PCB Antenna
Type of Modulation	802.11ax: OFDM (BPSK / QPSK / 16QAM / 64QAM /

	256QAM / 1024QAM) 802.11be: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM / 1024QAM / 4096QAM)
--	--

Remark:

1. The SISO mode conducted power is covered by MIMO mode per chain, so only the MIMO mode is tested.
2. The power for 802.11ax mode is not greater than 802.11be mode, so all other conducted and radiated test is covered by 802.11be mode.
3. The device support UNII-8 CH233 (BW=20M, Center Frequency = 7115MHz).
4. The device supports 1S4T(CDD&TXBF) and 4S4T(SDM) mode; 1S4T: NSS=1, MIMO 4Tx; 4S4T: NSS=4, MIMO 4Tx
5. This device supports full RU and OFDMA modes for 802.11ax/be, the PSD of OFDMA modes is reduced to be smaller than full RU, therefore the full RU perform full test to cover OFDMA except for Power/PSD.
6. Please refer to the antenna report for the maximum Single antenna gain and CDD (Cyclic Delay Diversity) directional gain and TXBF (Tx Beamforming) directional gain and SDM (Space Division Multiplexing) directional gain.

Frequency Band	Maximum Single Antenna gain (dBi)				CDD DG (dBi)		TXBF DG (dBi)		SDM DG (dBi)	
	ANT1	ANT2	ANT3	ANT4	Power	PSD	Power	PSD	Power	PSD
6GHz UNII-5	4.43	3.20	4.67	3.43	4.67	4.90	4.90	4.90	0.93	0.93
6GHz UNII-6	4.39	3.54	4.05	3.91	4.39	4.94	4.94	4.94	1.04	1.04
6GHz UNII-7	4.38	3.64	4.38	3.91	4.38	5.40	5.40	5.40	0.94	0.94
6GHz UNII-8	4.99	4.54	4.38	5.32	5.32	5.37	5.37	5.37	0.94	0.94

7. This device supports channel puncturing for 802.11be EHT80/EHT160//EHT320 as below, which is less than full RU PSD, therefore have assessed only EIRP/PSD/MASK.

<80M BW Puncturing 20MHz>:

Bandwidth	Tones			Index		For test modes configure
80MHz	242	484		62	66	1
80MHz	242	484		61	66	2
80MHz	484	242		65	64	3
80MHz	484	242		65	63	4

<160M BW Puncturing 20MHz>:

Bandwidth	Tones				Index			For test modes configure
160MHz	242-Left	484-Left	996-Right	62-Left	66-Left	67-Right		1
160MHz	242-Left	484-Left	996-Right	61-Left	66-Left	67-Right		2
160MHz	484-Left	242-Left	996-Right	65-Left	64-Left	67-Right		3
160MHz	484-Left	242-Left	996-Right	65-Left	63-Left	67-Right		4
160MHz	996-Left	242-Right	484-Right	67-Left	62-Right	66-Right		5
160MHz	996-Left	242-Right	484-Right	67-Left	61-Right	66-Right		6

160MHz	996-Left	484-Right	242-Right	67-Left	65-Right	64-Right	7
160MHz	996-Left	484-Right	242-Right	67-Left	65-Right	63-Right	8

<160M BW Puncturing 40MHz>:

Bandwidth	Tones		Index		For test modes configure
160MHz	484-Left	996-Right	66-Left	67-Right	1
160MHz	484-Left	996-Right	65-Left	67-Right	2
160MHz	996-Left	484-Right	67-Left	66-Right	3
160MHz	996-Left	484-Right	67-Left	65-Right	4

<320M BW Puncturing 40MHz>:

Bandwidth	Tones	Index	For test modes configure
320MHz	484	996	1
	484	996	2
	996	484	3
	996	484	4
	996	484	5
	996	484	6
	996	484	7
	996	484	8

<320M BW Puncturing 80MHz>:

Bandwidth	Tones	Index	For test modes configure
320MHz	996	996	1
	996	996	2
	996	996	3
	996	996	4

<320M BW Puncturing 80+40MHz>:

Bandwidth	Tones	Index	For test modes configure
320MHz		1 2 3 4 5 6 7 8 9 10 11 12	1
			2
			3
			4
			5
			6
			7
			8
			9
			10
			11
			12

Only the worse cases are shown in this report.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sportun International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sportun International Inc. (Kunshan)		
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158		
Test Site No.	Sportun Site No.	FCC Designation No.	FCC Test Firm Registration No.
	03CH08-KS TH01-KS	CN1257	314309

1.7 Test Software

Item	Site	Manufacture	Name	Version
1.	03CH08-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ♦ FCC Part 15 Subpart E
- ♦ FCC KDB 987594 D02 U-NII 6 GHz EMC Measurement v03
- ♦ FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- ♦ FCC KDB 414788 D01 Radiated Test Site v01r01.
- ♦ FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ♦ ANSI C63.10-2013

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.

2.1 Carrier Frequency and Channel

<U-NII-5, 6, 7, 8>

BW 20M	Channel	33	37	41	45	49	53	57	61
	Freq. (MHz)	6115	6135	6155	6175	6195	6215	6235	6255
BW 40M	Channel	35		43		51		59	
	Freq. (MHz)	6125		6165		6205		6245	
BW 80M	Channel	39		55					
	Freq. (MHz)	6145		6225					
BW 160M	Channel	47							
	Freq. (MHz)	6185							
BW 320M	Channel	63							
	Freq. (MHz)	6265							

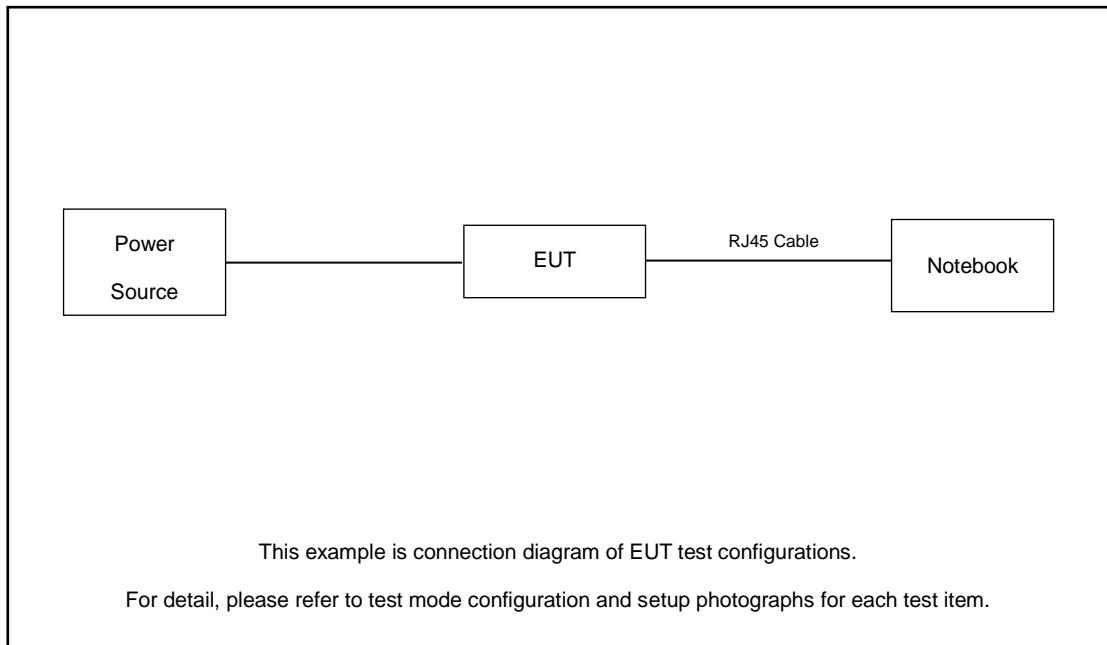
BW 20M	Channel	65	69	73	77	81	85	89	93
	Freq. (MHz)	6275	6295	6315	6335	6355	6375	6395	6415
BW 40M	Channel	67		75		83		91	
	Freq. (MHz)	6285		6325		6365		6405	
BW 80M	Channel	71		87					
	Freq. (MHz)	6305		6385					
BW 160M	Channel	79							
	Freq. (MHz)	6345							
BW 320M	Channel	95							
	Freq. (MHz)	6425							

BW 20M	Channel	97	101	105	109	113	117	121	125									
	Freq. (MHz)	6435	6455	6475	6495	6515	6535	6555	6575									
BW 40M	Channel	99		107		115		123										
	Freq. (MHz)	6445		6485		6525		6565										
BW 80M	Channel	103			119													
	Freq. (MHz)	6465			6545													
BW 160M	Channel	111																
	Freq. (MHz)	6505																

BW 20M	Channel	129	133	137	141	145	149	153	157									
	Freq. (MHz)	6595	6615	6635	6655	6675	6695	6715	6735									
BW 40M	Channel	131		139		147		155										
	Freq. (MHz)	6605		6645		6685		6725										
BW 80M	Channel	135			151													
	Freq. (MHz)	6625			6705													
BW 160M	Channel	143																
	Freq. (MHz)	6665																
BW 320M	Channel	127																
	Freq. (MHz)	6585																

BW 20M	Channel	161	165	169	173	177	181	185	189									
	Freq. (MHz)	6755	6775	6795	6815	6835	6855	6875	6895									
BW 40M	Channel	163		171		179		187										
	Freq. (MHz)	6765		6805		6845		6885										
BW 80M	Channel	167			183													
	Freq. (MHz)	6785			6865													
BW 160M	Channel	175																
	Freq. (MHz)	6825																
BW 320M	Channel	159																
	Freq. (MHz)	6745																

BW 20M	Channel	193	197	201	205	209	213	217	221									
	Freq. (MHz)	6915	6935	6955	6975	6995	7015	7035	7055									
BW 40M	Channel	195		203		211		219										
	Freq. (MHz)	6925		6965		7005		7045										
BW 80M	Channel	199			215													
	Freq. (MHz)	6945			7025													
BW 160M	Channel	207																
	Freq. (MHz)	6985																
BW 320M	Channel	191																
	Freq. (MHz)	6905																
BW 20M	Channel	225		229		233												
	Freq. (MHz)	7075		7095		7115												
BW 40M	Channel	227																
	Freq. (MHz)	7085																


2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

SDM Mode

Modulation	Data Rate
802.11ax EHT20(Covered by EHT20)	MCS0
802.11ax EHT40(Covered by EHT40)	MCS0
802.11ax EHT80(Covered by EHT80)	MCS0
802.11ax EHT160(Covered by EHT160)	MCS0
802.11be EHT20	MCS0
802.11be EHT40	MCS0
802.11be EHT80	MCS0
802.11be EHT160	MCS0
802.11be EHT320	MCS0

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	G480	N/A	N/A	shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m
2.	Notebook	acer	N20C5	QDS-BRCM1050I	N/A	shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m
3.	RJ45 Cable	N/A	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

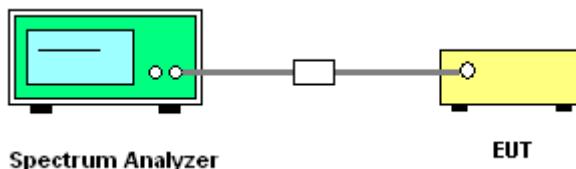
For WLAN RF test items, an engineering test program “QSPR Version:5.0.00202” was provided and enabled to make EUT continuously transmit.

3 Test Result

3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 CFR 15.407 (a)(11)

The maximum transmitter channel bandwidth for U-NII devices in the 5.925-7.125 GHz band is 320 megahertz.


3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section C) Emission bandwidth
2. Set RBW = approximately 1% of the emission bandwidth.
3. Set the VBW > RBW.
4. Detector = Peak.
5. Trace mode = max hold
6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) $\geq 3 * \text{RBW}$.
8. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

3.2 Maximum conducted Output Power and Fundamental Maximum EIRP Measurement

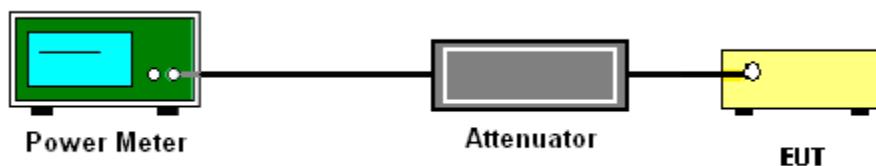
3.2.1 Limit of Fundamental Maximum EIRP

<FCC 14-30 CFR 15.407>

(a)(5) For an indoor access point operating in the 5.925-7.125 GHz band, the maximum e.i.r.p. over the frequency band of operation must not exceed 30dBm.

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.


3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM (Measurement using an RF average power meter):

1. Measurement is performed using a wideband RF power meter.
2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.
4. For MIMO mode, the measure-and-sum technique should be used for measuring the in-band transmit power of a device.

3.2.4 Test Setup

3.2.5 Test Result of Fundamental Maximum EIRP

Please refer to Appendix A.

3.3 Fundamental Power Spectral Density Measurement

3.3.1 Limit of Fundamental Power Spectral Density

<FCC 14-30 CFR 15.407>

(a)(5) For an indoor access point operating in the 5.925-7.125 GHz band, the maximum power spectral density must not exceed 5dBm e.i.r.p. in any 1-megahertz band.

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

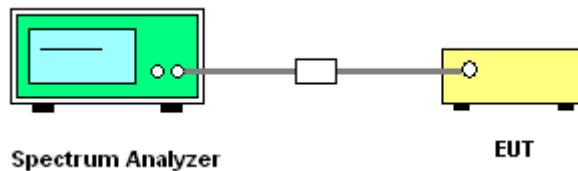
3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Section F) Maximum power spectral density.

Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW \geq 3 MHz.
- Number of points in sweep \geq 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add $10 \log(1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add $10 \log(1/0.25) = 6$ dB if the duty cycle is 25 percent.


1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
2. Each plot has already offset with cable loss, attenuator loss and duty factor. Measure the PPSD and record it.
3. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (a): Measure and sum the spectra across the outputs.

The total final Power Spectral Density is the bin-by-bin summation to obtain the combined spectrum. For the device with 4 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points, the spectrum value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2, output 3 and output 4 to obtain the value for the first frequency bin of the summed spectrum.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.4 In-Band Emissions (Channel Mask)

3.4.1 Limit of Unwanted Emissions

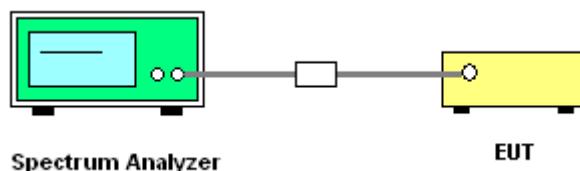
<FCC 14-30 CFR 15.407>

(b)(7) For transmitters operating within the 5.925-7.125 GHz bands: Power spectral density must be suppressed by 20 dB at 1 MHz outside of channel edge, by 28 dB at one channel bandwidth from the channel center, and by 40 dB at one- and one-half times the channel bandwidth away from channel center. At frequencies between one megahertz outside an unlicensed device's channel edge and one channel bandwidth from the center of the channel, the limits must be linearly interpolated between 20 dB and 28 dB suppression, and at frequencies between one and one- and one-half times an unlicensed device's channel bandwidth, the limits must be linearly interpolated between 28 dB and 40 dB suppression. Emissions removed from the channel center by more than one- and one-half times the channel bandwidth must be suppressed by at least 40 dB.

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedures


The testing follows FCC KDB 987594 D02 U-NII 6GHz EMC Measurement.

Section J) In-Band Emissions.

1. Take nominal bandwidth as reference channel bandwidth provided that 26 dB emission bandwidth is always larger than nominal bandwidth
2. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:
 - a) Set the span to encompass the entire 26 dB EBW of the signal.
 - b) Set RBW = same RBW used for 26 dB EBW measurement.
 - c) Set VBW \geq 3 X RBW
 - d) Number of points in sweep \geq [2 X span / RBW].
 - e) Sweep time = auto.
 - f) Detector = RMS (i.e., power averaging)
 - g) Trace average at least 100 traces in power averaging (rms) mode.
 - h) Use the peak search function on the instrument to find the peak of the spectrum.
3. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:
 - a. Suppressed by 20 dB at 1 MHz outside of the channel edge.

- b. Suppressed by 28 dB at one channel bandwidth from the channel center.
- c. Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.
4. Adjust the span to encompass the entire mask as necessary.
5. Clear trace.
6. Trace average at least 100 traces in power averaging (rms) mode.
7. Adjust the reference level as necessary so that the crest of the channel touches the top of the emission mask.

3.4.4 Test Setup

3.4.5 Test Result

Please refer to Appendix A.

3.5 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.5.1 Limit of Unwanted Emissions

(1) For transmitters operating within the 5.925-7.125 GHz band: Any emissions outside of the 5.925-7.125 GHz band must not exceed an e.i.r.p. of -27 dBm/MHz.

EIRP (dBm)	Field Strength at 3m (dB μ V/m)
- 27 (RMS)	68.3
- 7 (Peak)	88.3

Unwanted emissions outside of restricted bands are measured with a RMS detector.

In addition, 15.35(b) applies where the peak emissions must be limited to no more than 20 dB above the average limit

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3} \mu\text{V/m}, \text{ where } P \text{ is the eirp (Watts)}$$

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

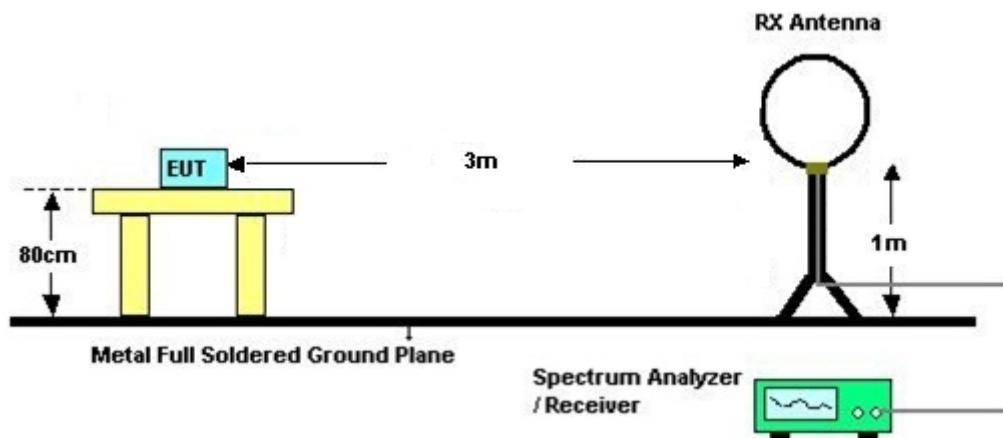
Section G) Unwanted emissions measurement.

(1) Procedure for Unwanted Emissions Measurements Below 1000MHz

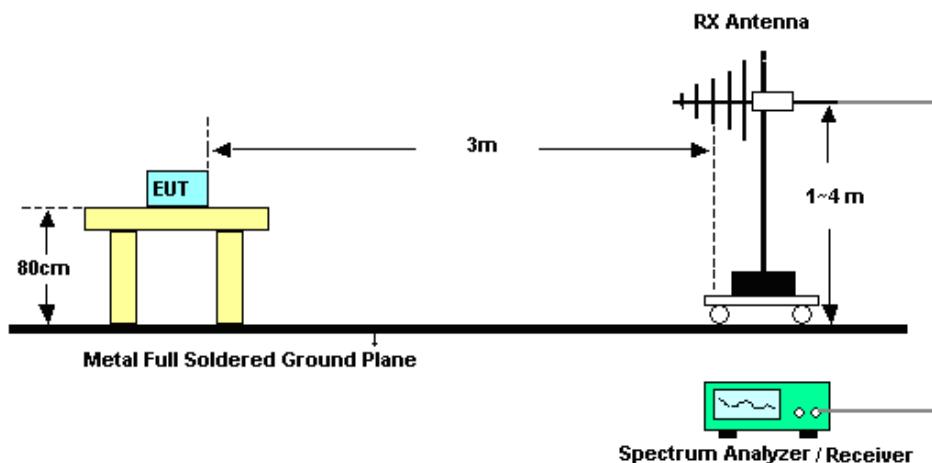
- RBW = 120 kHz
- VBW = 300 kHz
- Detector = Peak
- Trace mode = max hold

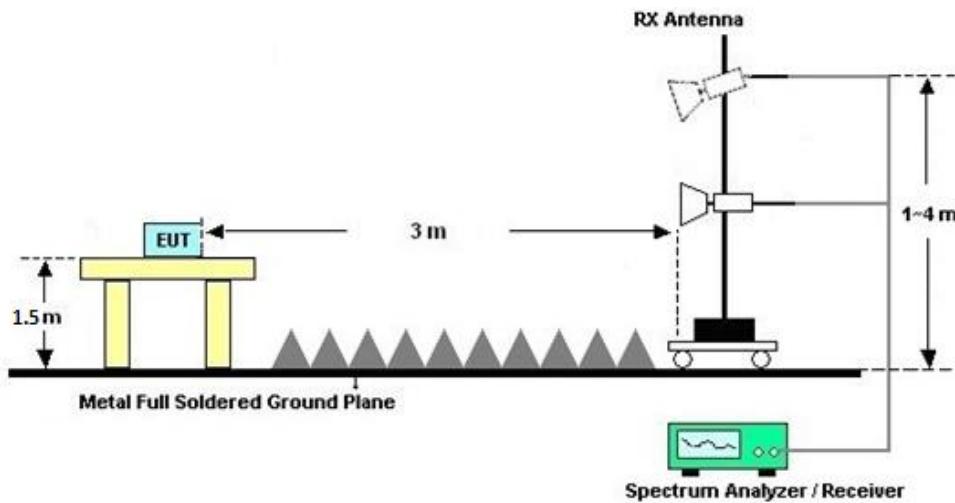
(2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz

- RBW = 1 MHz
- VBW \geq 3 MHz
- Detector = Peak
- Sweep time = auto
- Trace mode = max hold


(3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz

- RBW = 1 MHz
- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.


2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz**3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)**

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B

3.5.7 Duty Cycle

Please refer to Appendix C

3.5.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix B

3.6 Antenna Requirements

3.6.1 Standard Applicable

§15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used. The EUT complies with the requirement of 15.203.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 10, 2024	Dec. 31, 2024~Jan. 02, 2025	Oct. 09, 2025	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GHz	Jan. 03, 2024	Dec. 31, 2024~Jan. 02, 2025	Jan. 02, 2025	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GHz	Jan. 02, 2025	Dec. 31, 2024~Jan. 02, 2025	Jan. 01, 2026	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1435004	50MHz Bandwidth	Jan. 03, 2024	Dec. 31, 2024~Jan. 02, 2025	Jan. 02, 2025	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1435004	50MHz Bandwidth	Jan. 02, 2025	Dec. 31, 2024~Jan. 02, 2025	Jan. 01, 2026	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;Max 30dBm	Jul. 04, 2024	Feb. 06, 2025	Jul. 03, 2025	Radiation (03CH08-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY574410 79	10Hz-44GHz	Oct. 09, 2024	Feb. 06, 2025	Oct. 08, 2025	Radiation (03CH08-KS)
Loop Antenna	R&S	HFH2-Z2E	101125	9kHz~30MHz	Sep. 08, 2024	Feb. 06, 2025	Sep. 07, 2025	Radiation (03CH08-KS)
Bilog Antenna	TESEQ	CBL 6111D	59915	30MHz-1GHz	Aug. 18, 2024	Feb. 06, 2025	Aug. 17, 2025	Radiation (03CH08-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00240138	1GHz~18GHz	Jul. 06, 2024	Feb. 06, 2025	Jul. 05, 2025	Radiation (03CH08-KS)
high gain Amplifier	EM	EM01G18GA	060890	1Ghz-18Ghz	Jul. 23, 2024	Feb. 06, 2025	Jul. 22, 2025	Radiation (03CH08-KS)
SHF-EHF Horn	Com-power	AH-840	101116	18GHz~40GHz	Oct. 22, 2024	Feb. 06, 2025	Oct. 21, 2025	Radiation (03CH08-KS)
Amplifier	SONOMA	310N	380826	9KHz-1GHz	Jul. 03, 2024	Feb. 06, 2025	Jul. 02, 2025	Radiation (03CH08-KS)
Amplifier	Keysight	83017A	MY532704 17	500MHz~26.5GHz	Oct. 09, 2024	Feb. 06, 2025	Oct. 08, 2025	Radiation (03CH08-KS)
Amplifier	EM	EM18G40GGA	060737	18~40GHz	Jan. 03, 2025	Feb. 06, 2025	Jan. 02, 2026	Radiation (03CH08-KS)
AC Power Source	Chroma	61601	616010002 473	N/A	NCR	Feb. 06, 2025	NCR	Radiation (03CH08-KS)
Turn Table	EM	EM 1000-T	N/A	0~360 degree	NCR	Feb. 06, 2025	NCR	Radiation (03CH08-KS)
Antenna Mast	EM	EM 1000-A	N/A	1 m~4 m	NCR	Feb. 06, 2025	NCR	Radiation (03CH08-KS)

NCR: No Calibration Required

5 Measurement Uncertainty

Uncertainty of Conducted Measurement

Conducted Spurious Emission & Bandedge	±2.22 dB
Occupied Channel Bandwidth	±0.1%
Conducted Power	±0.50 dB
Conducted Power Spectral Density	±0.90 dB
Frequency	±0.4 Hz
Conducted Generated signal Levels	±0.56 dB
Conducted Time	0.54%

Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_c(y)$)	3.30 dB
--	---------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_c(y)$)	6.04dB
--	--------

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_c(y)$)	5.26dB
--	--------

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_c(y)$)	5.40dB
--	--------

----- THE END -----

Appendix A. Conducted Test Results