

FCC RF Test Report

APPLICANT : Nokia Shanghai Bell Co., Ltd.
EQUIPMENT : Nokia FastMile 5G Gateway 12
BRAND NAME : Nokia
MODEL NAME : 5G31-03W-B
FCC ID : 2ADZR5G3103WB
STANDARD : FCC Part 15 Subpart C §15.247
CLASSIFICATION : (DTS) Digital Transmission System
TEST DATE(S) : Aug. 03, 2024 ~ Aug. 29, 2024

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

Jason Jia

Approved by: Jason Jia

Sportun International Inc. (Kunshan)
No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300
People's Republic of China

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION.....	5
1.1 Applicant	5
1.2 Manufacturer.....	5
1.3 Product Feature of Equipment Under Test.....	5
1.4 Product Specification of Equipment Under Test.....	6
1.5 Modification of EUT	7
1.6 Testing Location	7
1.7 Test Software.....	7
1.8 Applicable Standards.....	8
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....	9
2.1 Carrier Frequency and Channel	9
2.2 Test Mode.....	10
2.3 Connection Diagram of Test System.....	11
2.4 Support Unit used in test configuration and system	11
2.5 EUT Operation Test Setup	11
3 TEST RESULT.....	12
3.1 Output Power Measurement.....	12
3.2 Radiated Band Edges and Spurious Emission Measurement	13
3.3 Antenna Requirements	18
4 LIST OF MEASURING EQUIPMENT.....	20
5 MEASUREMENT UNCERTAINTY	21
APPENDIX A. CONDUCTED TEST RESULTS	
APPENDIX B. RADIATED SPURIOUS EMISSION	
APPENDIX C. DUTY CYCLE PLOTS	
APPENDIX D. SETUP PHOTOGRAPHS	

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(b)	Power Output Measurement	$\leq 30\text{dBm}$	Pass	-
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 1.56 dB at 2483.500 MHz
3.3	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Note: This is a variant report for 5G31-03W-B, the change note could be referred to the 5G31-03W-B_Class II

Permissive Change letter which is exhibit separately. According to the change, only the related test cases were verified from original report FR432101A.

Conformity Assessment Condition:
1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account. 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"
Disclaimer:
The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

Nokia Shanghai Bell Co., Ltd.

388#, Ningqiao Road, China (Shanghai) Pilot Free Trade Zone, Shanghai 201206, China

1.2 Manufacturer

Nokia Solutions and Networks Oy

Karakaari 7, 02610 Espoo, Finland

1.3 Product Feature of Equipment Under Test

Product Feature	
Equipment	Nokia FastMile 5G Gateway 12
Brand Name	Nokia
Model Name	5G31-03W-B
FCC ID	2ADZR5G3103WB
SN Code	Conducted: KLT242200773 Radiation: KLT24220077A
HW Version	3TG03021Exxx (x may be from A to Z)
SW Version	5GGW-QCOM7X_D240300B31T0601E0138
EUT Stage	Identical Prototype

Remark:

1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
2. This report is certified with the HW version: 3TG03021EABA.

Ant Description	P/N	Vendor_1	Vendor_2	Vendor_3
Ant0&WiFi3_2.4G	3TG03393AAAA	GW12-A0W3	N42NKASA-PK1-D1X95BUD150U4LI	NKH049-15-000-R
Ant1&WiFi2_6G	3TG03394AAAA	GW12-A1W2	N40NKASB-PK1-E1X190BUE110U4LI	NKH050-15-000-R
Ant 2, Ant3, Ant5, Ant7	3TG03395AAAA	GW12-A2357	N40NKASC-PK1-R150U4LID115U4LI E165U4LIA105U4LI	NKH051-15-000-R
Ant4, Ant6&Ant9	3TG03396AAAA	GW12-A469	N40NKASD-PK1-A135U4LID170U4LI E200U4LI	NKH052-15-000-R
WiFi1_6G	3TG03397AAAA	GW12-W1	N06NKASF-PK1-A1X95BU	NKH053-15-000-R
WiFi4_2.4G	3TG03398AAAA	GW12-W4	N01NKASG-PK1-R1X160BU	NKH054-15-000-R
WiFi5_5G	3TG03399AAAA	GW12-W5	N02NKASH-PK1-D1X90BU	NKH055-15-000-R
Ant8&WiFi6_5G	3TG03400AAAA	GW12-A8W6	N43NKASE-PK1-E1X95BUA165U4LI	NKH056-15-000-R
WiFi7_5G	3TG03401AAAA	GW12-W7	N02NKASJ-PK1-A1X95BU	NKH057-15-000-R
WiFi8_5G	3TG03402AAAA	GW12-W8	N02NKASK-PK1-R1X115BU	NKH058-15-000-R

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification														
Tx/Rx Channel Frequency Range	2412 MHz - 2462 MHz													
Maximum Output Power to antenna	<CDD 1S2T> 802.11b : 24.65 dBm (0.2917 W) 802.11g : 24.54 dBm (0.2844 W) 802.11n HT20 : 23.53 dBm (0.2254 W) 802.11n HT40 : 22.35 dBm (0.1718 W) 802.11ax HE20 : 24.16 dBm (0.2606 W) 802.11ax HE40 : 22.61 dBm (0.1824 W) 802.11be EHT20 : 24.21 dBm (0.2636 W) 802.11be EHT40 : 22.64 dBm (0.1837 W)													
Antenna Type	Dipole Antenna													
Antenna Function Description	<table border="1"> <thead> <tr> <th></th><th>Ant. 1</th><th>Ant. 2</th></tr> </thead> <tbody> <tr> <td>802.11 b/g/n/ax/be SISO</td><td>V</td><td>V</td></tr> <tr> <td>802.11 b/g/n/ax/be CDD 1S2T</td><td>V</td><td>V</td></tr> <tr> <td>802.11ax/be Tx Beamforming 1S2T</td><td>V</td><td>V</td></tr> </tbody> </table>			Ant. 1	Ant. 2	802.11 b/g/n/ax/be SISO	V	V	802.11 b/g/n/ax/be CDD 1S2T	V	V	802.11ax/be Tx Beamforming 1S2T	V	V
	Ant. 1	Ant. 2												
802.11 b/g/n/ax/be SISO	V	V												
802.11 b/g/n/ax/be CDD 1S2T	V	V												
802.11ax/be Tx Beamforming 1S2T	V	V												
Type of Modulation	802.11b : DSSS (DBPSK / DQPSK / CCK) 802.11g/n : OFDM (BPSK / QPSK / 16QAM / 64QAM) 802.11ax : OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM / 1024QAM) 802.11be: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM / 1024QAM / 4096QAM)													

Note:

1. For WLAN SISO & MIMO mode, the whole testing has assessed only MIMO mode by referring to the higher output power.
2. WLAN MIMO support CDD mode for 802.11b/g/n/ax/be and Tx Beamforming mode for 802.11ax/be.
3. For 802.11ax/be mode, due to similar modulation, the power setting of 802.11ax 20/40MHz mode are the same or lower than 802.11be 20/40MHz mode. Therefore, the whole testing has assessed only 802.11be EHT20/EHT40 mode.
4. The device supports multiple spatial streams, the worst cases directional gain will occur when NSS = 1, therefore, the 1S2T(CDD&TXBF) mode is the worst; 1S2T: NSS=1, MIMO 2Tx.
5. This device supports full RU and OFDMA modes for 802.11ax/be, the PSD of OFDMA modes is reduced to be smaller than full RU, therefore the full RU perform full test to cover OFDMA except for Power/PSD. In OFDMA mode, Resource Unit (RU) fill the entire frequency bandwidth. Supports up to 8 Resource Unit (RU) being used at the same time.
6. The device does not support partial RU tone for 802.11ax/be mode.
7. Please refer to the antenna report for the maximum single antenna gain and CDD (Cyclic Delay Diversity) directional gain and TXBF (Tx Beamforming) directional gain.

Frequency Band	Max Single Antenna gain (dBi)		CDD DG (dBi)		TXBF DG (dBi)	
	ANT1	ANT2	For Power	For PSD	For Power	For PSD
2.4GHz	4.34	5.11	5.11	3.92	3.92	3.92

8. The Ant.1 in this report is the corresponding antenna report is W4, ant. 2 corresponding antenna report is W3

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sportun International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sportun International Inc. (Kunshan)		
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158		
Test Site No.	Sportun Site No.	FCC Designation No.	FCC Test Firm Registration No.
	03CH05-KS TH01-KS	CN1257	314309

1.7 Test Software

Item	Site	Manufacturer	Name	Version
1.	TH01-KS	Tonscend	JS1120-3 test system China_210602	3.3.10
2.	03CH05-KS	AUDIX	E3	210616

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
2400-2483.5 MHz	1	2412	7	2442
	2	2417	8	2447
	3	2422	9	2452
	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

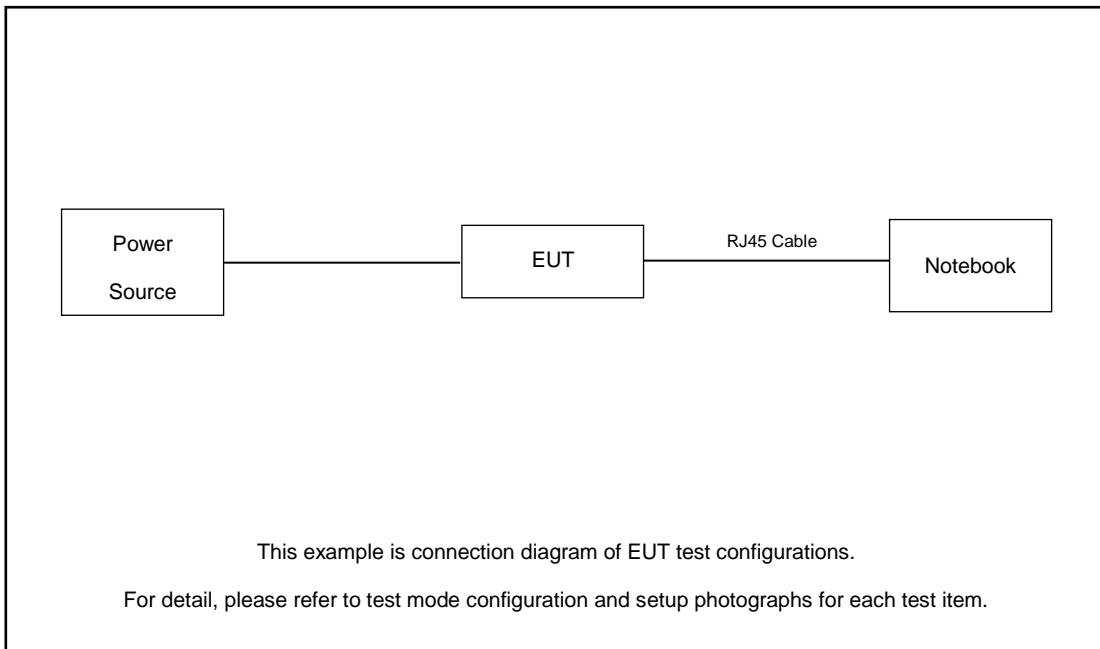
2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

MIMO Antenna

Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11be EHT20	MCS0
802.11be EHT40	MCS0

TXBF Mode


Modulation	Data Rate
802.11ax HE20	MCS0
802.11ax HE40	MCS0

Test Cases

Remark: For Radiated Test Cases, The tests were performance with Adapter.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m
2.	RJ45 Cable	N/A	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

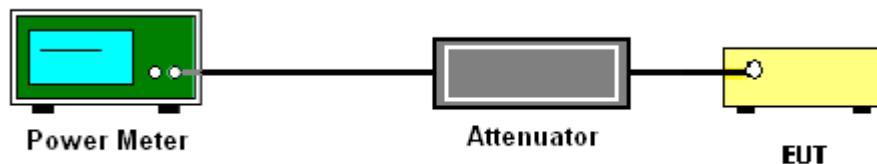
For WLAN CDD and TXBF mode, an engineering test program “QSPR.5.0-00202” TX Tool was provided and enabled to make EUT continuously transmit.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for output power is 30dBm. If transmitting antenna with directional gain greater than 6dBi is used, the output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

1. The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM method.
2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Measure the conducted output power and record the results in the test report.
5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

3.1.4 Test Setup

3.1.5 Test Result of Average Output Power

Please refer to Appendix A.

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated band edge and Spurious Emission Measurement

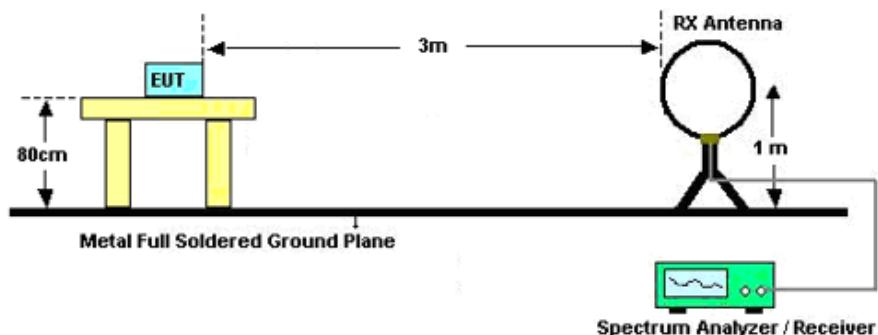
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2 Measuring Instruments

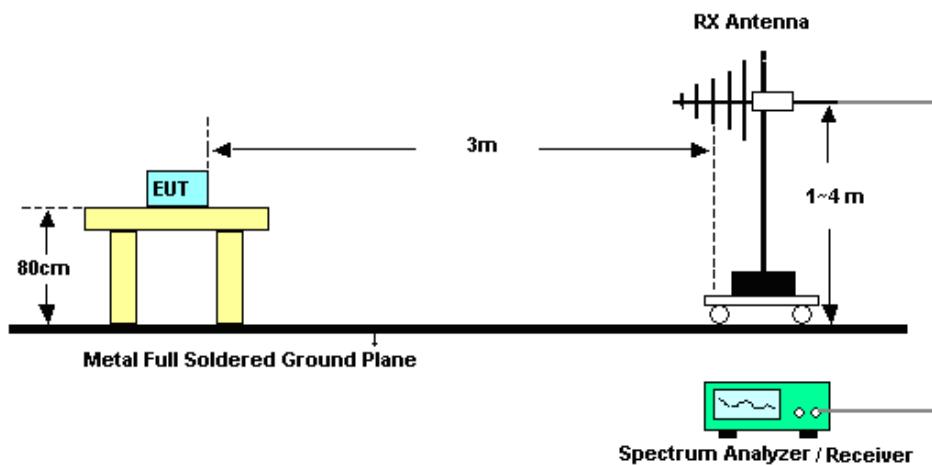
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

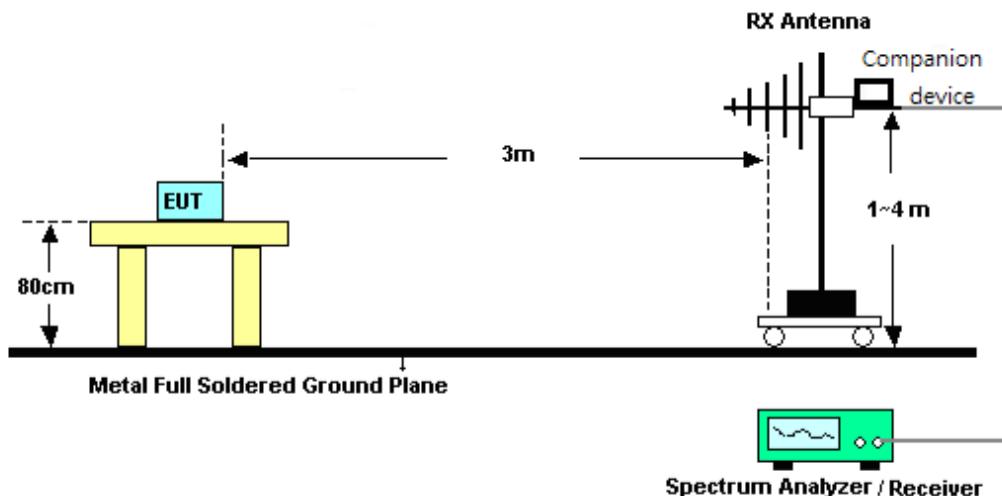

1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for $f < 1$ GHz; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \geq 1$ GHz for peak measurement.

For average measurement:

 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW $\geq 1/T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

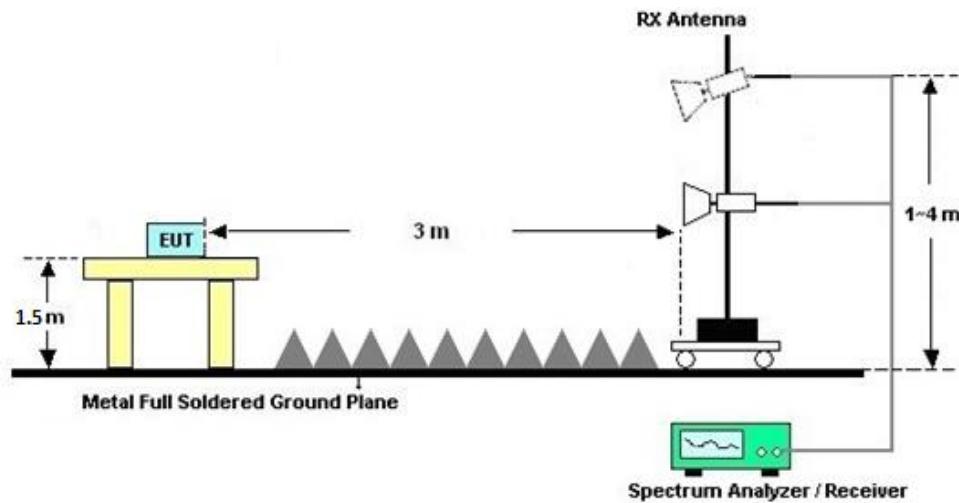

3.2.4 Test Setup

For radiated emissions below 30MHz

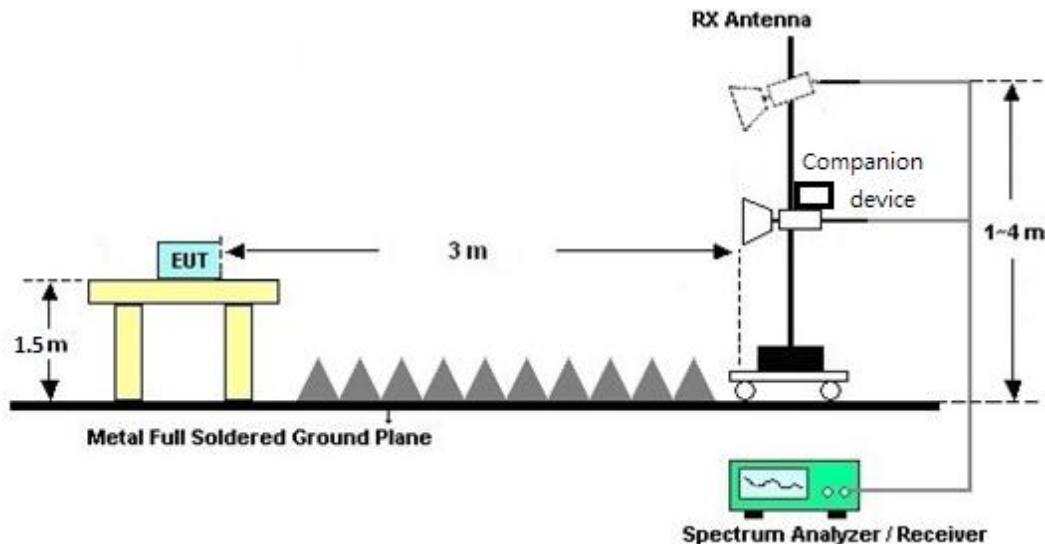


For radiated emissions from 30MHz to 1GHz

<CDD Mode>



<TXBF Modes>



For radiated emissions above 1GHz

<CDD Mode>

<TXBF Modes>

3.2.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.2.7 Duty Cycle

Please refer to Appendix C.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix B.

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting Antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached Antenna or of an Antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}=1)$ dB.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \leq 4$.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with G_{ANT} set equal to the gain of the antenna having the highest gain;

For power, the directional gain G_{ANT} is set equal to the antenna having the highest gain, i.e., F2)f)i).

For PSD, the directional gain calculation is following F2)f)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

<TXBF Mode>

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For TXBF transmissions, directional gain is calculated as

$$Directional\ Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

where

Each antenna is driven by no more than one spatial stream;

N_{SS} = the number of independent spatial streams of data;

N_{ANT} = the total number of antennas

$g_{j,k} = 10^{G_k/20}$ if the k th antenna is being fed by spatial stream j , or zero if it is not;

G_k is the gain in dBi of the k th antenna.

The EUT supports beamforming for 802.11n/ac/ax modes.

The directional gain calculation is following F)2)e)ii).

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is as following table.

Frequency Band	Max Single Antenna gain (dBi)		CDD DG (dBi)		TXBF DG (dBi)	
	ANT1	ANT2	For Power	For PSD	For Power	For PSD
2.4GHz	4.34	5.11	5.11	3.92	3.92	3.92

Note:

1. Please refer to the antenna report for the maximum Single antenna gain and CDD (Cyclic Delay Diversity) directional gain and TXBF (Tx Beamforming) directional gain.
2. The device supports 1S2T(CDD&TXBF) mode; 1S4T: NSS=1, MIMO 2Tx.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 11, 2023	Aug. 29, 2024	Oct. 10, 2024	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GHz	Jan. 02, 2024	Aug. 29, 2024	Jan. 01, 2025	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 02, 2024	Aug. 29, 2024	Jan. 01, 2025	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY56400004	3Hz~8.5GHz; Max 30dBm	Oct. 11, 2023	Aug. 03, 2024~Aug. 28, 2024	Oct. 10, 2024	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55150244	10Hz~44G, MAX 30dB	Apr. 18, 2024	Aug. 03, 2024~Aug. 28, 2024	Apr. 17, 2025	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2E	101125	9kHz~30MHz	Sep. 11, 2023	Aug. 03, 2024~Aug. 28, 2024	Sep. 10, 2024	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49921	30MHz~1GHz	Apr. 18, 2024	Aug. 03, 2024~Aug. 28, 2024	Apr. 17, 2025	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Oct. 23, 2023	Aug. 03, 2024~Aug. 28, 2024	Oct. 22, 2024	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101093	18GHz~40GHz	Jan. 06, 2024	Aug. 03, 2024~Aug. 28, 2024	Jan. 05, 2025	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	381512	9KHz-1GHz	Jan. 02, 2024	Aug. 03, 2024~Aug. 28, 2024	Jan. 01, 2025	Radiation (03CH05-KS)
Amplifier	EM	EM18G40GA	060852	18~40GHz	Jan. 02, 2024	Aug. 03, 2024~Aug. 28, 2024	Jan. 01, 2025	Radiation (03CH05-KS)
high gain Amplifier	EM	EM01G18GA	060890	1Ghz-18Ghz	Oct. 11, 2023	Aug. 03, 2024~Aug. 28, 2024	Oct. 10, 2024	Radiation (03CH05-KS)
Amplifier	EM	EM01G18GA	060833	1Ghz-18Ghz	Jan. 03, 2024	Aug. 03, 2024~Aug. 28, 2024	Jan. 02, 2025	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Aug. 03, 2024~Aug. 28, 2024	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Aug. 03, 2024~Aug. 28, 2024	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Aug. 03, 2024~Aug. 28, 2024	NCR	Radiation (03CH05-KS)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Conducted Power	±0.46 dB
-----------------	----------

Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{C(y)}$)	3.30 dB
---	---------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{C(y)}$)	6.02 dB
---	---------

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{C(y)}$)	5.22 dB
---	---------

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{C(y)}$)	5.34 dB
---	---------

----- THE END -----

Appendix A. Conducted Test Results