
October 17, 2024

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

WSCT Shenzhen

Certificate No. D6.5GHzV2-1116 Oct24

CALIBRATION CERTIFICATE

Object

D6.5GHzV2 - SN:1116

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date:

Primary Standards

October 14, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#

Power sensor R&S NRP33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Reference 20 dB Attenuator	SN: BH9394 (20k)	26-Mar-24 (No. 217-04046)	Mar-25
Mismatch combination	SN: 84224 / 360D	28-Mar-24 (No. 217-04050)	Mar-25
Reference Probe EX3DV4	SN: 7405	01-Jul-24 (No. EX3-7405_Jul24)	Jul-25
DAE4	SN: 908	27-Mar-24 (No. DAE4-908_Mar24)	Mar-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Secondary Standards RF generator Anapico APSIN20G	ID# SN: 827	Check Date (in house) 18-Dec-18 (in house check Jan-24)	Scheduled Check In house check: Jan-25
· · · · · · · · · · · · · · · · · · ·			
RF generator Anapico APSIN20G	SN: 827	18-Dec-18 (in house check Jan-24)	In house check: Jan-25
RF generator Anapico APSIN20G Power sensor NRP-Z23	SN: 827 SN: 100169 SN: 100950	18-Dec-18 (in house check Jan-24) 10-Jan-19 (in house check Jan-24)	In house check: Jan-25 In house check: Jan-25
RF generator Anapico APSIN20G Power sensor NRP-Z23 Power sensor NRP-18T	SN: 827 SN: 100169 SN: 100950	18-Dec-18 (in house check Jan-24) 10-Jan-19 (in house check Jan-24) 28-Sep-22 (in house check Jan-24)	In house check: Jan-25 In house check: Jan-25 In house check: Jan-25

Cal Date (Certificate No.)

Calibrated by:

Aidonia Georgiadou

Function Laboratory Technician Signature

Approved by:

Sven Kühn

Name

Technical Manager

Issued: October 14, 2024

Scheduled Calibration

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D6.5GHzV2-1116 Oct24

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to the
 body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	· · · · · · · · · · · · · · · · · · ·
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	6.21 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition		
SAR measured	100 mW input power	29.8 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	298 W/kg ± 24.7 % (k=2)	

SAR averaged over 8 cm ³ (8 g) of Head TSL	Condition			
SAR measured	100 mW input power	6.69 W/kg		
SAR for nominal Head TSL parameters	normalized to 1W	67.0 W/kg ± 24.4 % (k=2)		

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.49 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.9 W/kg ± 24.4 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.2 Ω - 4.3 jΩ
Return Loss	- 27.2 dB

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	298 W/m²
APD measured	normalized to 1W	2980 W/m² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	134 W/m²
APD measured	normalized to 1W	1340 W/m² ± 28.9 % (k=2)

^{*}The reported APD values have been derived using the psSAR1g and psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

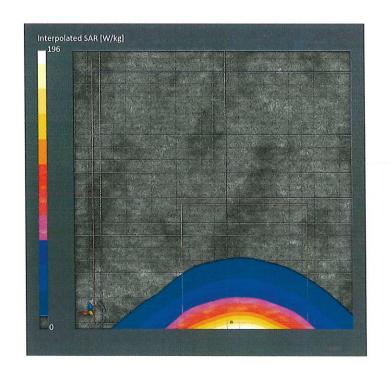
Manufactured by	SPEAG

DASY6 Validation Report for Head TSL

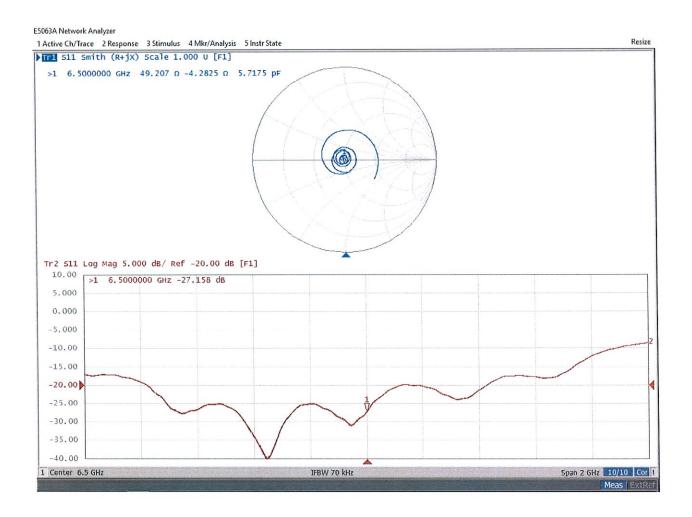
Measurement Report for D6.5GHz-1116, UID 0 -, Channel 6500 (6500.0MHz)

Device under Te	est Properties
-----------------	----------------

Name, Manufacturer Dimension		mensions	Dimensions [mm] IMEI 16.0 x 6.0 x 300.0 SN: 1116		DUT Ty			
D6.5GHz	5.5GHz 16.0 x 6.0 x 30				-			
Exposure Cond								
Phantom Section, TSL	Position, Test Distance	Band	Group, UID	Frequency [MHz]	Conversion Factor	TSL Cond. [S/m]	TSL Permittivity	
Section, 132	[mm]		O.D	[2]		[-,]		
Flat, HSL	5.00	Band	CW,	6500	5.14	6.21	34.6	


Hardware Setup

Phantom	TSL	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center - 1182	HBBL600-10000V6	EX3DV4 - SN7405, 2024-07-01	DAE4 Sn908, 2024-03-27


Measurement Results

Scan Setup

our octup		measurement mesure	
	Zoom Scan		Zoom Scan
Grid Extents [mm]	22.0 x 22.0 x 22.0	Date	2024-10-14, 16:49
Grid Steps [mm]	$3.4 \times 3.4 \times 1.4$	psSAR1g [W/Kg]	29.8
Sensor Surface [mm]	1.4	psSAR8g [W/Kg]	6.69
Graded Grid	Yes	psSAR10g [W/Kg]	5.49
Grading Ratio	1.4	Power Drift [dB]	0.00
MAIA	N/A	Power Scaling	Disabled
Surface Detection	VMS + 6p	Scaling Factor [dB]	
Scan Method	Measured	TSL Correction	No correction
		M2/M1 [%]	49.5
		Dist 3dB Peak [mm]	4.6

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

WSCT Shenzhen

Certificate No.

5G-Veri10-1078_Nov24

CALIBRATION CERTIFICATE

Object

5G Verification Source 10 GHz - SN: 1078

Calibration procedure(s)

QA CAL-45.v5

Calibration procedure for sources in air > 6 GHz

Calibration date

November 14, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Reference Probe SPEAG EUmmWV3	SN: 9374	28-Aug-24 (No. Eumm_9374_Aug24)	Aug-25
DAE4ip	SN: 1602	06-Nov-24 (No. DAE4ip-1602_Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Signal Generator R&S SMF100A	SN: 100184	29-Nov-23 (No. 675-5G_Source_Cal_Nov23)	Nov-24
Power Sensor R&S NRP18S-10	SN: 101258	29-Nov-23 (No. 675-5G_Source_Cal_Nov23)	Nov-24
Network Analyzer Keysight E5063A	SN: MY54504221	30-Sep-24 (No. 675-CAL18-S4489-Sep24)	Sep-26

Name Function Signature

Calibrated by Joanna Lleshaj Laboratory Technician

Approved by Sven Kühn Technical Manager

Issued: November 14, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura

C S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

CW Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- · Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E-field distribution: The E-field is measured in two x-y-planes (10mm, 10mm + $\lambda/4$) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn.
- · Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10.0 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Powe Avg (psPDn+, psP (W/	Dtot+, psPDmod+)	Uncertainty (k = 2)
				1cm ²	4cm ²	
10 mm	93.3	152	1.27 dB	61.1	57.0	1.28 dB

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power psPDn+, psPDt (W/		Uncertainty (k = 2)
				1cm ²	4cm ²	
10 mm	93.3	152	1.27 dB	60.9, 61.1, 61.3	56.7, 57.0, 57.2	1.28 dB

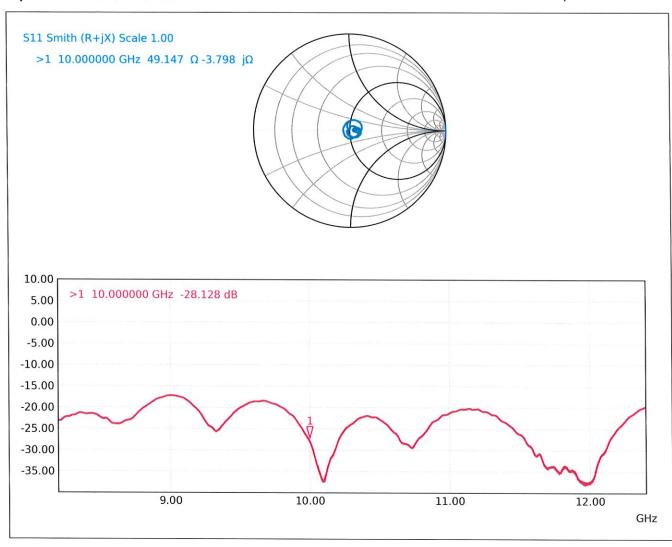
Square Averaging

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Powe Avg (psPDn+, psP (W/	Dtot+, psPDmod+)	Uncertainty (k = 2)
				1cm ²	4cm ²	
10 mm	93.3	152	1.27 dB	61.1	56.9	1.28 dB

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	psPDn+, psPDt	Density ot+, psPDmod+ ′m²)	Uncertainty (k = 2)
				1cm ²	4cm ²	
10 mm	93.3	152	1.27 dB	60.9, 61.1, 61.3	56.6, 56.9, 57.1	1.28 dB

Max Power Density

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Max Power Density Sn, Stot, Stot (W/m ²)	Uncertainty (k = 2)
10 mm	93.3	152	1.27 dB	62.5, 62.5, 62.7	1.28 dB


¹ Assessed ohmic and mismatch loss plus numerical offset: 0.30 dB

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	49.1 Ω – 3.8 jΩ
Return Loss	-28.1 dB

Impedance Measurement Plot

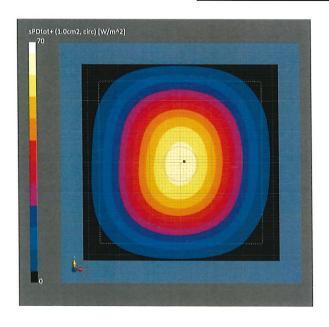
Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000.0 (10000.0 MHz)

Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1078	-

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW, 0	10000.0,10000	1.0


Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom -	Air -	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip - SN1602, 2024-11-06

Scans Setup

Sensor Surface [mm]	10.0
MAIA	MAIA not used

Scan Type	5G Scan
Date	2024-11-14 14:21
Avg. Area [cm²]	1.00
Avg. Type	Circular Averaging
psPDn+ [W/m ²]	60.9
psPDtot+ [W/m ²]	61.1
psPDmod+ [W/m²]	61.3
Max(Sn) [W/m²]	62.5
Max(Stot) [W/m ²]	62.5
Max(Stot) [W/m ²]	62.7
E _{max} [V/m]	152
Power Drift [dB]	0.01

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000.0 (10000.0 MHz)

Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type	
5G Verification Source 10 GHz	100.0 × 100.0 × 172.0	SN: 1078	-	_

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW, 0	10000.0,10000	1.0


Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom -	Air -	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip - SN1602, 2024-11-06

Scans Setup

Sensor Surface [mm]	10.0
MAIA	MAIA not used

Scan Type	5G Scan
Date	2024-11-14 14:21
Avg. Area [cm²]	4.00
Avg. Type	Circular Averaging
psPDn+ [W/m ²]	56.7
psPDtot+ [W/m ²]	57.0
psPDmod+ [W/m²]	57.2
Max(Sn) [W/m ²]	62.5
Max(Stot) [W/m ²]	62.5
Max(Stot) [W/m ²]	62.7
E _{max} [V/m]	152
Power Drift [dB]	0.01

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000.0 (10000.0 MHz)

Device Under Test Prope	erties
-------------------------	--------

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type	
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1078	82	

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW, 0	10000.0,10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date	
mmWave Phantom -	Air -	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip - SN1602, 2024-11-06	

Scans Setup

Sensor Surface [mm]	10.0
MAIA	MAIA not used

Scan Type	5G Scan	
Date	2024-11-14 14:21	
Avg. Area [cm²]	1.00	
Avg. Type	Square Averaging	
psPDn+ [W/m ²]	60.9	
psPDtot+ [W/m ²]	61.1	
psPDmod+ [W/m ²]	61.3	
Max(Sn) [W/m²]	62.5	
Max(Stot) [W/m ²]	62.5	
Max(Stot) [W/m ²]	62.7	
E _{max} [V/m]	152	
Power Drift [dB]	0.01	

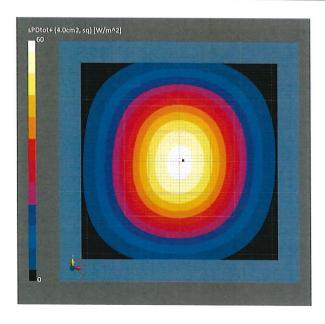
Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000.0 (10000.0 MHz)

Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1078	-

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW, 0	10000.0,10000	1.0


Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom -	Air -	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip - SN1602, 2024-11-06

Scans Setup

Sensor Surface [mm]	10.0	
MAIA	MAIA not used	

Scan Type	5G Scan
Date	2024-11-14 14:21
Avg. Area [cm²]	4.00
Avg. Type	Square Averaging
psPDn+ [W/m ²]	56.6
psPDtot+ [W/m ²]	56.9
psPDmod+ [W/m²]	57.1
Max(Sn) [W/m ²]	62.5
Max(Stot) [W/m ²]	62.5
Max(Stot) [W/m²]	62.7
E _{max} [V/m]	152
Power Drift [dB]	0.01

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

WSCT

Shenzhen

Certificate No: OCP-DAK3.5-1363_Nov24

CALIBRATION CERTIFICATE

Object

DAK-3.5 - SN: 1363

Calibration procedure(s)

QA CAL-33.v3

Calibration of dielectric parameter probes

Calibration date:

Primary Standards

November 5, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#

Filliary Standards	ID Tr	Car Date (Certificate 140.)	Concadioa Calibration
OCP DAK-3.5 (weighted)	SN: 1249	23-Sep-24 (OCP-DAK3.5-1249_Sep24)	Sep-25
	ĭ	ï	Ī
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Rohde & Schwarz ZVA67	T4383	1-Oct-24 (in house check Oct-24)	Oct-25
Digital Thermometer DTM3000	4026	07-Feb-24 (DTM-4026_Feb24)	Feb-25
Methanol 99.9% Type 34860	STBH5818	06-May-19 (bottle opened, check May-24)	May-25
Ethanol 99.9% Type 1.0983	241014-1	14-Oct-20 (bottle opened, check Oct-24)	Oct-25
Head Liquid, HBBL U16	200311-0	11-Mar-20 (in house check May-24)	May-25
0.1 mol/L NaCl solution	190926-1	20-Sep-19 (in house check May-24)	May-25
0.05 mol/L NaCl solution	190926-0	20-Sep-19 (in house check May-24)	May-25
Head Gel, SLAGH U08 AA-B	200227-1	07-Apr-20 (in house check Apr-24)	Apr-25
Eccostock0005	1507101	01-Jul-15 (in house check May-24)	May-25
	Name	Function	Signature
Calibrated by:	Cindy Karina	External Engineer	Candal
			Chron
Approved by:	Sven Kühn	Technical Manager	C

Cal Date (Certificate No.)

Issued: November 5, 2024

Scheduled Calibration

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

References

[1] IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Techniques", June 2013

[2] IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)",

July 2016

[3] IEĆ 62209-2 Ed.1, "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices – Human models, Instrumentation, and Procedures Part 2: Procedure to determine the specific absorption rate (SAR) for mobile wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

[4] A. P. Gregory and R. N. Clarke, "NPL Report MAT 23", January 2012
Tables of the Complex Permittivity of Dielectric Reference Liquids at Frequencies up to 5 GHz

[5] DAK Professional Handbook, SPEAG, September 2018

[6] A. Toropainen et al, "Method for accurate measurement of complex permittivity of tissue equivalent liquids". Electronics Letters 36 (1) 2000 pp32-34

[7] J. Hilland, "Simple sensor system for measuring the dielectric properties of saline solutions", Meas.

Sci. Technol. 8 pp901-910 (1997)

[8] K. Nörtemann, J. Hilland and U. Kaatze, "Dielectric Properties of Aqueous NaCl Solutions at Microwave Frequencies", J. Phys. Chem. A 101 pp6864-6869 (1997)

[9] R. Buchner, G. T. Hefter and Peter M. May, "Dielectric Relaxation of Aqueous NaCl Solutions", J. Phys. Chem. A 103 (1) (1999)

Description of the dielectric probe

Dielectric probes are used to measure the dielectric parameters of tissue simulating media in a wide frequency range. The complex permittivity $\epsilon_r^* = (\epsilon'/\epsilon_0) - j(\epsilon''/\epsilon_0)$ is determined from the S parameters measured with a vector network analyzer (VNA) with software specific to the probe type. The parameters of interest e.g. in standards [1, 2, 3] and for other applications are presented are calculated as follows:

(Relative) permittivity ϵ ' (real part of $\epsilon_r^* = (\epsilon'/\epsilon_0) - j(\epsilon''/\epsilon_0)$ where $\epsilon_0 = 8.854$ pF/m is the permittivity in free space)

Conductivity $\sigma = 2 \pi f \epsilon^{"} \epsilon_{0}$, Loss Tangent = $(\epsilon^{"}/\epsilon')$

The **OCP** (open ended coaxial) is a cut off section of 50 Ohm transmission line, similar to the system described in [1, 2, 3, 5], used for contact measurement. The material is measured either by touching the probe to the surface of a solid/gel or by immersing it into a liquid media. The electromagnetic fields at the probe end fringe into the material to be measured, and its parameters are determined from the change of the S_{11} parameters. With larger diameter of the dielectrics, the probe can be used down to lower frequencies.

The flange surrounding the active area shapes the near field similar to a semi-infinite geometry and is inserted fully into the measured lossy liquid.

The probe is connected with a phase and amplitude stable cable to a VNA which is then calibrated with Open, Short and a Liquid with well-known parameters.

All parts in the setup influencing the amplitude and phase of the signal are important and shall remain stable.

Handling of the item

Before usage, the active probe area has to be cleaned from any material residuals potentially contaminating the reference standards. The metal and dielectric surface must be protected to keep the precision of the critical mechanical dimensions. The connector and cable quality are critical; any movements between calibration and measurement shall be avoided.

The temperature must be stable and must not differ from the material temperature.

Methods Applied and Interpretation of Parameters

The calibration of the dielectric probe system is done in the steps described below for the desired frequency range and calibration package (SAR/MRI liquids, Semi-solid/solid material). Because the standard calibration in step 3 is critical for the results in steps 4 to 8, the sequence 3 to 8 is repeated 3 times. As a result, the result from these 3 sets is represented.

1. Configuration and mechanical / optical status.

2. Measurement resolution is 5 MHz from 10 to 300 MHz, 50 MHz from 300 to 6000 MHz and 250 MHz from 6 to 20 GHz.

3. Standard calibration uses Air / Short / Liquid. 1 liter liquid quantity is used to reduce the influence the reflections. The liquid type is selected depending on the lowest frequency and probe diameter:

DAK-1.2, DAK-3.5, Agilent OCP: de-ionized water (approx. 22 °C)

DAK-12: saline solution with static conductivity 1 S/m (approx. 22 °C)

NPL OCP: pure ethanol (approx. 22 °C)

4. The cable used in the setup stays in a fixed position, i.e. the probe is fixed and measuring from the top in an angle of typ. 20° from the vertical axis. For DAK and Agilent probes, the refresh function (air standard) is used previous to the individual measurements in order to compensate for possible deviations from cable movements. After insertion of the probe into a liquid, the possible air bubbles are removed from the active surface.

5. Measurement of multiple shorts if not already available from the calibration in the previous step (NPL). Evaluation of the deviation from the previous calibration short with graphical representation of the complex quantities and magnitude over the frequency range. Probe specific short is used. This assessment shows ability to define a short circuit at the end of the probe for the VNA calibration in the setup which is essential at high frequencies and depends on the probe surface quality.

6. Measurement of validation liquids in a quantity of 1 liter at well defined temperature. Evaluation of the deviations from the target. The targets base on traceable data from reference sources. The deviation of the measurement is graphically presented for permittivity and conductivity (for lossy

liquids) or loss tangent (for low losses at low frequencies).

7. Measurement of lossy liquids in a quantity of 1 liter at well defined temperature. Head tissue simulating liquid or saline solution with 0.5 S/m static conductivity are representative. The target data base on traceable data from reference sources or from multiple measurements with precision reference probes or different evaluations such as transmission line or slotted line methods. Evaluation of the deviation from the target and graphical representation for permittivity and conductivity over the frequency range

8. Semi-solid / solid material calibration: Measurements of an elastic lossy broadband semi-solid gel with parameters close to the head tissue target. Measurements of a planar very low loss solid microwave-substrate. The average of 4 measurements of the same sample at different location is shown as a single result. The deviation of the permittivity and conductivity from the reference data is evaluated. Measurements of a planar very low loss solid microwave-substrate. The average of 4 measurements

Measurements of a planar very low loss solid microwave-substrate. The average of 4 measurement of the same sample at different location is shown as a single result. The relative deviation of the permittivity and the absolute deviation of the loss tangent is evaluated.

The targets base on multiple measurements (on the same material batch at identical temperature) on convex and planar surfaces with precision reference OCP.

- The measurement on semi-solid / solid materials is sensitive to the quality and planarity of the probe contact area, such as air gaps due to imperfect probes (resulting lower permittivity values).
- 9. Table for the probe uncertainty: The uncertainty of the probe depending on probe type, size, material parameter range and frequency is given in a table. It represents the best measurement capability of the specific probe but does not include the material (deviation from the target values).
- 10. Appendix with detailed results of all measurements with the uncertainties for the specific measurement. In addition to the probe uncertainty (see above), it includes the uncertainty of the reference material used for the measurement. A set of results from independent calibrations represents the capability of the setup and the lossy materials used, including the precision of the measured material and the influence of temperature deviations. Temperature and operator influence was minimized and gives a good indication of the achievable repeatability of a measurement.
- 11. Summary assessment of the measured deviations and detailed comments if not typical for the probe type.

Dielectric probe identification and configuration data

Item description

iii description	
Probe type	OCP Open-ended coaxial probe
Probe name SPEAG Dielectric Assessment Kit DAK-3.5	
Type No	SM DAK 040 CA
Serial No	1363
Description	Open-ended coaxial probe with flange
•	Flange diameter: 19.0 mm
	Dielectric diameter: 3.5 mm
	Material: stainless steel
Connector 1	PC 3.5 pos.
Software version	DAK Measurement Solver 3.0.6.34
	Calibration Type: Air / short / water (set to measured water temp.)
	Probe type: "DAK3.5" (software setting)
Further settings	VNA bandwidth setting: 50 Hz

SCS 0108 Accessories used for customer probe calibration

QQ 0.007.000000.	,0 0100 / 1000000;;00 0.000; 01 00000;			
Cable	Huber & Suhner Sucoflex 100, SN: 512046/126, length 1 m,			
	PC3.5 neg. – PC3.5 neg.			
Short	DAK-3.5 shorting block, type SM DAK 200 BA			
	Contact area covered with cleaned Cu stripe			

Additional items used during measurements

<u> </u>	
Adapter 1	PC3.5 pos PC1.85 (VNA side)
Adapter 2	PC3.5 pos PC3.5 neg. (probe side)

Notes

- Before the calibration, the connectors of the probe and cable were inspected and cleaned.
- Probe visual inspection: according to requirements
- Short inspection: according to the requirements