

W5 CT TEST REPORT

W5 CT

W5ET

W5CT

WS CT

W5 CT FCC ID: 2ADYY-LJ8

WSEI

Product: Mobile Phone Model No.: LJ8

WSET

Trade Mark: TECNO W5 [7]

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

Issued Date: 20 May 2025

W5C

Issued for:

W5CT

TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

W5CT°

WSET

WSCT

Issued By:

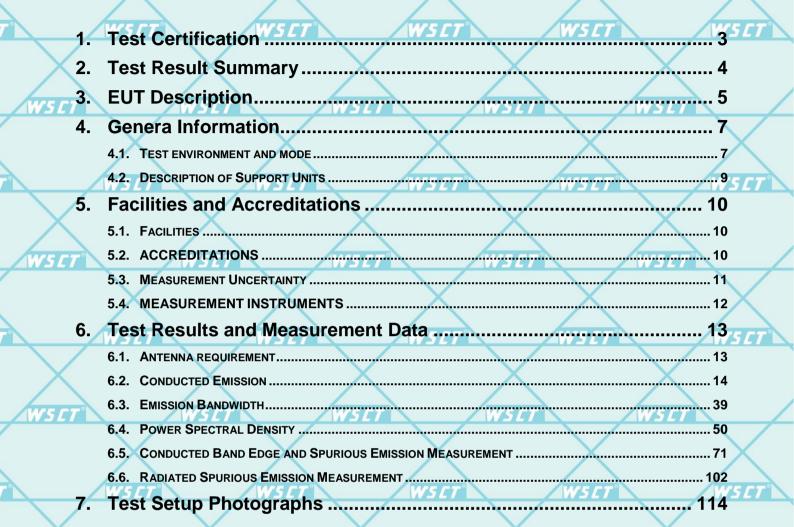
World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B.Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

TEL: +86-755-26996192

WSET

FAX: +86-755-86376605

WSE


Note: This report shall not be reproduced except in full, without the written approval of World Standardization Certification& Testing Group (Shenzhen) Co., Ltd. This document may be altered or revised by World Standardization Certification& Testing Group (Shenzhen) Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

深圳世标检测认证股份有限公司 World Standardization Certification & Testing Group (Shenzhen) Co., Ltd

WS CI

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

TABLE OF CONTENTS

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT

W.5 C.7.

W.7 C.7.

W.5 C.7.

W.5 C.7.

W.5 C.7.

W.5 C.7.

W.5 C.7.

W.5 C.

trial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard zation Certification& Testing Group(Shenzh

W5CT

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

Test Certification

Product: Mobile Phone

Model No.: LJ8

Additional

TECNO Model:

TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 Applicant:

WSCT

SHAN MEI STREET FOTAN NT HONGKONG

AWSET **TECNO MOBILE LIMITED**

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 Manufacturer:

SHAN MEI STREET FOTAN NT HONGKONG

06 March 2025 Date of receipt

> 06 March 2025 to 19 May 2025 Date of Test:

Applicable FCC CFR Title 47 Part 15 Subpart C Section 15.247 Standards:

The above equipment has been tested by World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product, which was tested. Other similar equipment will

not necessarily produce the same results due to production tolerance and measurement uncertainties.

WSET

WSET

WSC1

Tested By:

(Wang Xiang)

Checked By:

(Qin Shuiquan)

Approved By:

(Li Huaibi)

Date:

WSCT

WSET

深圳世标检测认证股份有限公司

W5 CT

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

Test Result Summary 2.

WSTT WS	T° WS/T°	WSTT	W5CT°
Requirement	CFR 47 Section	Result	
Antenna requirement	§15.203/§15.247 (c)	PASS	
AC Power Line Conducted Emission	§15.207	PASS	\bigvee
Maximum Conducted Output Power	§15.247 (b)(3) §2.1046	W5 CPASS	W5 ET
6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS WS.CT	
Power Spectral Density	§15.247 (e)	PASS	
W5 E1 Band Edge	1§5.247(d) §2.1051, §2.1057	W5 C PASS	WSET
Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS	

Note:

W5 C1

W5 E1

W5 E

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.

	V	4. The test result judgment is decided by the limit of	of test standard.	\bigvee	\bigvee	
,	\wedge				$/ \setminus$	

WS ET

W5 CT	W5CT°	WSET	W5 CT	W5CT [®]

_					
	W5CT°	W5CT°	W5CT"	WSET	WSCT

WSCT°	WSCT	WSCT	WSCT

Page 4

W5 C1

W5CT

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

EUT Description 3.

	Product:	Mobile Phone WSET WSET	V5 CT
	Model No.:	LJ8	
	Software number	LJ8-15.1,0 WS.CT	
	Hardware number	V1.4	
	Trade Mark:	TECNO	\wedge
	Operation Frequency:	2412MHz~2462MHz (802.11b/g/n(HT20)/57 2422MHz~2452MHz (802.11n(HT40)	V5 CT °l
	Channel Separation:	5MHz	
7	Modulation type:	DSSS (DBPSK, DQPSK, CCK) for IEEE 802.11b OFDM (BPSK,QPSK,16QAM,64QAM,256QAM,1024QAM) for IEEE 802.11g/n/ax	
	Antenna Type:	Integral Antenna	
	Antenna Gain	ANT1:-2.67dBi,ANT2: -4.82dBi	VS CT
		Adapter: U450TSB Input: 100-240V~50/60Hz 1.8A Output: 5.0V3.0A 15.0W or 5.0-10.0V4.5A 18.0W or 11.0V4.1A 45.0W MAX	
	Operating Voltage:	Rechargeable Li-ion Polymer Battery Model: BL-58IT Rated Voltage: 3.92V Rated Capacity: 5850mAh/22.94Wh Typical Capacity: 6000mAh/23.52Wh Limited Charge Voltage: 4.53V	NS CT
\	Remark:	N/A.	
	1 A A I / A / A / A / A / A / A / A / A /		

W5 D Note: 1. N/A stands for no applicable.

2. The antenna gain is provided by the customer. For any reported data issues caused by the antenna gain, World Standardization Certification&Testing Group (Shenzhen) Co., Ltd assumes no responsibility.

W5 C1 NS ET WS CT W5 E

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

Operation Frequency each of channel For 802.11b/g/n/ax(HT20)

1	s por ación	. i ioquonoj	Cuon Or	onanioi i o	1 002.11	$\frac{\partial f}{\partial t}$	_0)	
	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
7	W561	2412MHz	4 4 L 1	2427MHz	14 7 54	2442MHz	10	2457MHz
	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

WSET WSET WSET WSET

Operation Frequency each of channel For 802.11n/ax (HT40)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	1
	WSCI		w4. r7	2427MHz	W/SC	2442MHz	W/5/	7 /	W
7	-		5	2432MHz	8	2447MHz			
	3	2422MHz	6	2437MHz	9	2452MHz		X	

WSET Note: WSET WSET WSET WSET

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see helow:

WSCT WSCT WSCT WSCT WSCT

802.11b/g/n/ax (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n/ax (HT40) WSET WSET WSET WSET

Channel	Frequency	1
The lowest channel	2422MHz	
The middle channel	2437MHz	1
The Highest channel	2452MHz	

 $\mathsf{X} = \mathsf{X} = \mathsf{X} = \mathsf{X}$

WSET WSET WSET WSET

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China TEL: 0086-755-26996192 26998053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

ina. 深圳世标检测认证股份有限公司
World Standardization Certification & Testing Group (Shenzhen) Co.,Ltr

WSET

W5 CT

Page 6

WSCT WSCT

W5 L

World Standardization Certification & Testing Group (Shenzhen) Co.,ltd.

W5CT

ANAB

ANSI National Accreditation Board

A C C R E D I T E D

IDENTIFICATION LABORATORY

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

4. Genera Information

4.1. Test environment and mode

WSET I

WSCT"

W5 ET

X	Operating Environment:		
	Temperature:	25.0 °C	
SET	Humidity:	56 % RH	
	Atmospheric Pressure:	1010 mbar	\times
	Test Mode:		WELT
	Engineering mode:	Keep the EUT in continuous transmitting	AP14A
X	X	by select channel and modulations(The value of duty cycle is 98.46%)	
<i>5 </i>	The sample was placed (0.8m below 1GH	z, 1.5m above 1GHz) above the ground	
	plane of 3m chamber. Measurements in be		
	performed. During the test, each emission continuously working, investigated all oper	rating modes, rotated about all 3 axis (X, Y &	\wedge
	Z) and considered typical configuration to		W5CT
		ole, varying antenna height from 1m to 4m in	
		The emissions worst-case are shown in Test battery state and The output power to the	
SET°	maximum state. [7] W5 [7]	WSCT WSCT	

		L/ N/S	LI BANGAWS		
WSET	WSET	WSET	WSET	WSET	
ws	ET WS	CT WS	ET WS	ET WS	ET"
WSET	WSET	WSCT	WSET	WSET	

4W5LI

WSCT

WSIT

WEFT

WSCT OF THE PROPERTY OF THE PR

W5 CT

WELT

WELT

AWS CT

DD: Building A-B,Baoli'an Intustrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chi EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.c

深圳世标检测认证股份有限公司 World Standard Zation Certification& Testing Group

WSCT Group (WSCT SA)

Page 7

WSCT

W5 CI

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows: Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case. Mode 802.11b 802.11g 802.11n(H20) 802.11n(H40) 15 E 802.11ax(H20) 802.11ax(H40) **Final Test Mode:** Keep the EUT in continuous transmitting Operation mode: with modulation 15 C 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.2. According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations.

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Aver

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Ż	Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	1	Adapter		///	/	/

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

WSET	WSET	WS ET	WSCT	WSET
WS CT WS C	$\langle \hspace{0.1cm} \rangle$	$\langle \rangle$	$\langle \hspace{0.1cm} \rangle$	
WSET	WSET	WSET	WSET	WSCT
WS CT WS C	$\langle \rangle$	$\langle \hspace{0.2cm} \rangle$	$\langle \hspace{0.1cm} \rangle$	
WSET	WSCT	WSET	WSET	WSCT
WS CT WS C	$\langle \hspace{0.2cm} \rangle$	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$	
	WSET	WSET	\times	X
WSCT	$\langle \rangle$	$\langle \rangle$	do rdization Con	WS CT Strong Change (Shenzho)

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

5. Facilities and Accreditations

5.1. Facilities

W5 CT

W5CT

W5CT

All measurement facilities used to collect the measurement data are located at Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China of the World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

ANAB - Certificate Number: AT-3951

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (ANAB). Certification Number: AT-3951

	Accreditation	n (ANAB).Certifica	ition Number: A1-39	51		
1	WSET	W5	ET W	SET	WSET	WSCT
WS		WSET	WSCT	WSCT	WSCI	
	WSCT	WS		SET	WSET	WSCT
WS		WSET	WSCT	WSET	WSCI	
	WSCT	WS		SCT	WSET	WSCT
WS		WSET	WSET	WSET	WSCT	
	WSET	WS		517	W5ET CO	ione testing
WS		WSET	WSET	WSET	W Sattle	SET Shenzhous

CT WSCT

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Ave

Page 10 W5 ET

Weer

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

5.3. Measurement Uncertainty

	No.	Item	MU	W5 CT
	1	Conducted Emission Test	±3.2dB	
	2	RF power, conducted	±2.4%	
•	3	Spurious emissions, conducted	±0.21dB	
	4	All emissions, radiated(<1GHz)	±4.7dB	X
	5W5 C	All emissions, radiated(>1GHz) W5 [7] W5	±4.7dB	W5 ET
	6	Temperature	±0.5°C	
7	7	Humidity	±2.0%	
	8	Receiver Spurious Emissions	±2.5%	
	9	Transmitter Unwanted Emissions in the Spurious Domain	±2.5%	\times
_	10/5/	Transmitter Unwanted Emission in the out-of Band	±1.3%	W5 CT
	11	Occupied Channel Bandwidth	±2.4%	
NI	OTE.4 T	· · · · · · · · · · · · · · · · · · ·	al and a market of the first	_

NOTE:1. The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

2. The Ulab is less than Ucispr, compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit; non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

3. For conducted emission test of laboratory have a measurement uncertainty greater than that specified in harmonized standard, this equipment can still be used provided that an adjustment is made follows: any additionan uncertainty in the test system over and above that specified in harmonized standard should be used to tighter the test requirements-making the test harder to pass. This procedure will ensure that a test system not comliant with harmonized standard does not increase the probability of passing a EUT that would otherwise have failed a test if a test system comliant with harmonized standard had been used.

W5 CT

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

5.4.MEASUREMENT INSTRUMENTS

	<u> </u>						
_	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	75 L
\	Test software		EZ-EMC	CON-03A	-		
C I	Test software	CT - V	MTS8310	WSLT	- /	VS CT°	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2024	11/04/2025	
	LISN	AFJ	LS16	16010222119	11/05/2024	11/04/2025	
	LISN(EUT)	Mestec	AN3016/5/	04/10040	11/05/2024	11/04/2025	'5 L
<	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2024	11/04/2025	
C I	Coaxial cable	7 Megalon	/5 LMR400	N/A Z T	11/05/2024	11/04/2025	
	GPIB cable	Megalon	GPIB	N/A	11/05/2024	11/04/2025	\ <u></u>
	Spectrum Analyzer	R&S	FSU	100114	11/05/2024	11/04/2025	
	Pre Amplifier	H.p.ET	HP8447E 5 4	Z2945A02715	11/05/2024	11/04/2025	15
1	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2024	11/04/2025	
	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	7/29/2024	7/28/2025	
	9*6*6 Anechoic		7511	WSET	11/05/2024	11/04/2025	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2024	11/04/2025	\rangle
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2024	11/04/2025	15
7	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2024	11/04/2025	
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
C	Turn Table	ccs	V5_7N/A	N/A	N.C.R	N.C.R	
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
	RF cable	Murata	MXHQ87WA300 0	-	11/05/2024	11/04/2025	
	Loop Antenna	EMCO	6502	00042960	11/05/2024	11/04/2025	751
<	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2024	11/04/2025	
	Power meter	Anritsu	ML2487A	6K00003613	11/05/2024	11/04/2025	
5/	Power sensor	Anritsu	MX248XD	/ WELL	11/05/2024	11/04/2025	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2024	11/04/2025	X

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

Test Results and Measurement Data 6.

6.1. Antenna requirement

FCC Part15 C Section 15.203 /247(c)

Standard requirement: 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a Integral Antenna, it meets the standards, and the best case gain of the antenna is "ANT1:-2.67dBi,ANT2: -4.82dBi".

Please refer to the attached "LJ8 Internal Photo" for the antenna location

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = GANT + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(NANT/NSS=1) dB$.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4 .

Directional gain may be calculated by using the formulas applicable to equal gain antennas with

GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain GANT is set equal to the antenna having the highest gain, i.e.,

F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01

The directional gain "DG" is calculated as following table.

CDD Modes	Ant1	Ant2	DG for power	DG for PSD
<cdd modes=""></cdd>	(dBi)	(dBi)	(dBi)	(dBi)
2412~2462MHz	-2.67	-4.82	-2.67	-0.67

Power limit reduction = Composite gain -6dBi, (min = 0)

PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

6.2. Conducted Emission

6.2.1. Test Specification

(WSET")

W5 CT

4W5 C1

	6.2.1. Test Specification					
X	Test Requirement:	FCC Part15 C Section 15.207				
LT	Test Method: V5 [7]	ANSI C63.10:2014 W5 [T] W5 [T]				
	Frequency Range:	150 kHz to 30 MHz	\times			
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto	WSET			
<u></u>	Limits:	Frequency range (MHz) Limit (dBuV) 0.15-0.5 Quasi-peak Average 0.5-5 66 to 56* 56 to 46* 5-30 60 50				
	\wedge	Reference Plane	\times			
<u></u>	Test Setup: W5[T]	E.U.T AC power EMI Receiver Test table/Insulation plane EMI Receiver EMI EMI	WSET			
	WS CT WS	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	WSET			
	Test Mode:	Charging + transmitting with modulation				
E7	WS CT WS	 The E.U.T is connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main 	WSET			
<	Test Procedure:	power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).				
	WSCT WS	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63 10: 2014 an conducted massurement.	p& Testio			
		ANSI C63.10: 2014 on conducted measurement.	3 Ci			

WSCT

ETT

7 W5C

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.co

PASS

深圳世标检测认证股份有限公司
World Standard zation Certification& Testing Group(Shenzhen) Co., Ltr

Test Result:

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

6.2.2. EUT OPERATING CONDITIONS

The EUT is working in the Normal link mode. All modes have been tested and normal link mode is worst.

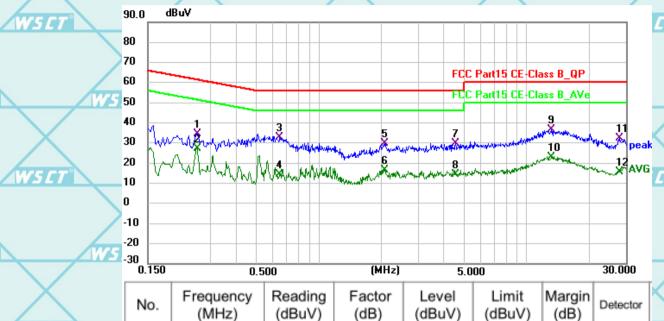
WSC

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.

WS ET W5E WSE. W5 E1 WS CT W5 ET WS CI WS C W5C1 Page 15

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

Test data


Please refer to following diagram for individual

WS CT

W5 C1

W5ET

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	X
1	0.2580	14.02	20.66	34.68	61.50	-26.82	QP	L
2	0.2580	6.63	20.66	27.29	51.50	-24.21	AVG	
3 *	0.6495	12.36	20.53	32.89	56.00	-23.11	QP	
4	0.6495	-6.28	20.53	14.25	46.00	-31.75	AVG	_
5	2.0760	9.33	20.61	29.94	56.00	-26.06	QP	
6	2.0760	-4.02	20.61	16.59	46.00	-29.41	AVG	
7	4.5329	9.31	20.58	29.89	56.00	-26.11	QP	Z
8	4.5329	-6.02	20.58	14.56	46.00	-31.44	AVG	
9	13.1640	16.40	20.27	36.67	60.00	-23.33	QP	
10	13.1640	2.51	20.27	22.78	50.00	-27.22	AVG	
11	27.9150	11.34	20.93	32.27	60.00	-27.73	QP	
12	27.9150	-5.15	20.93	15.78	50.00	-34.22	AVG	/

WSLI

WSCT

W5 ET

WELT

W5CT

WSCT

MICT

WELT

Settle WSCT

WSET

WSET

WELT

AWS CT

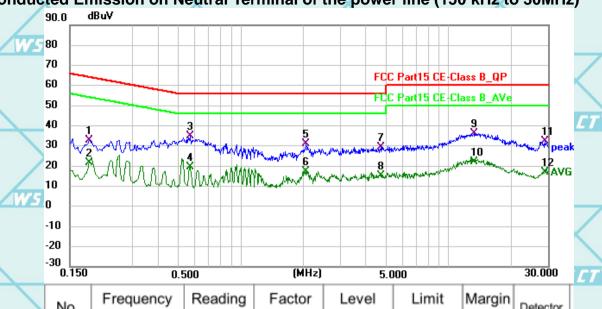
a. 深圳世标检测认证股份有限公司
World Standard zation Certification& Testing Group (Shenzhen) Co.,Lt

Maritan at the MICOT Course (MICOT CA)

Page 16

CT WS I

WSET



Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	(dBuV)	(dBuV)	Margin (dB)	Detector	
W5	1	0.1860	12.18	20.70	32.88	64.21	-31.33	QP	
	2	0.1860	1.13	20.70	21.83	54.21	-32.38	AVG	
X	3 *	0.5685	14.21	20.52	34.73	56.00	-21.27	QP	X
	4	0.5685	-0.97	20.52	19.55	46.00	-26.45	AVG	
V5 ET	5	2.0535	10.66	20.61	31.27	56.00	-24.73	QP	L
	6	2.0535	-3.27	20.61	17.34	46.00	-28.66	AVG	
	7	4.7310	9.00	20.57	29.57	56.00	-26.43	QP	
W5	8	4.7310	-5.22	20.57	15.35	46.00	-30.65	AVG	
	9	13.2630	15.77	20.27	36.04	60.00	-23.96	QP	
\times	10	13.2630	1.62	20.27	21.89	50.00	-28.11	AVG	X
V5CT°	11	29.1615	11.23	21.07	32.30	60.00	-27.70	QP	6
	12	29.1615	-4.03	21.07	17.04	50.00	-32.96	AVG	
	_								_

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit $(dB\mu V) = Limit$ stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

WSEI

W5CT

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1
6.2.3. Maximum Conducted Output Power

6.2.4. Test Specification

<u> </u>	W5 CT W5 C	T WSET	W5CT	(WSET®)			
∇	Test Requirement:	FCC Part15 C Section 15.247	(b)(3)				
	Test Method:	KDB 558074					
W5CT [°]	Limit:	30dBm W5	WSLIT				
	Test Setup:		•	WSLT			
		Spectrum Analyzer	EUT				
\wedge	Test Mode:	Transmitting mode with modula	ation				
WSET	Test Procedure:	1. The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Measure the conducted output power and record the					
	Test Result:	PASS		\triangle			
	WSET	WSET	WSLI	AWS CT			

WSL	7°	WSCT	W	SET	W5 ET		SET .	
			\bigvee			\vee		\checkmark
	WSET		WS CT	WSCI		WSET	/W	75 CT
\setminus								
WSL	7	WSCT	/w	SCT	WSET	M	/SET	,
								$ egthinspace{1.5em} otag$

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue FAX: 0086-755-86376605

深圳世标检测认证股份有限公司

W5CT

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

6.2.5. Test Data

6.2.5. Test Data						
ANT1 _{W5} CT°		WELT	WSCI		WS	CT" WSCT
WEE	Mode	Frequency	Total Power	Limit	Verdict	78 WEIGH
		(MHz)	(dBm)	(dBm)		
	b	2412	13.19	30	Pass	
	b	2437	12.73	30	Pass	
WSET WS	_ b	2462	12.42	30 5	Pass	W5 CT°
	g	2412	14.96	30	Pass	
	g	2437	14.46	30	Pass	
	g	2462	14.55	30	Pass	
	n20	2412	16.35	30	Pass	
W5ET*	n20	2437	15.85	30	Pass	rr wscr
	n20	2462	15.85	30	Pass	
	n40	2422	13.31	30	Pass	
	n40	2437	13.85	30	Pass	
	n40	2452	13.38	30	Pass	
WSET W	ax20	2412	15.00	30-	Pass	W5ET*
	ax20	2437	14.22	30	Pass	
\sim	ax20	2462	14.52	30	Pass	
	ax40	2422	14.45	30	Pass	
	ax40	2437	14.53	30	Pass	
W5 CT°	ax40	2452	13.705	30	Pass	T WS LT
ANTO				\ /		
ANT2	<u> </u>		Tital Daniel	X	Man Pat	, X
	Mode	Frequency	Total Power	Limit	Verdict	

ANT2						
	Mode	Frequency	Total Power	Limit	Verdict	
		(MHz)	(dBm)	(dBm)		
W5CT W	L b	2412	17.18	305	Pass	W5ET°
	b	2437	17.56	30	Pass	
	b	2462	17.44	30	Pass	
	g	2412	19.49	30	Pass	
	g	2437	19.54	30	Pass	
W5 CT	g	2462	19.76	30	Pass	ET WSET
	n20	2412	20.81	30	Pass	
× ×	n20	2437	21.11	30	Pass	X
	n20	2462	21.22	30	Pass	
from from	n40	2422	18.70	30	Pass	(market)
WSCT [®] W.	n40	2437	18.49	30	Pass	WSET
	n40	2452	18.49	30	Pass	
X	ax20	2412	19.15	30	Pass	X
	ax20	2437	19.43	30	Pass	
	ax20	2462	19.38	30	Pass	
W5 CT°	ax40	2422	19.23	30	Pass	CT" WSCT"
	ax40	2437	19.45	30	Pass	
X	ax40	2452	19.29	30	Pass	X

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT

WSCT

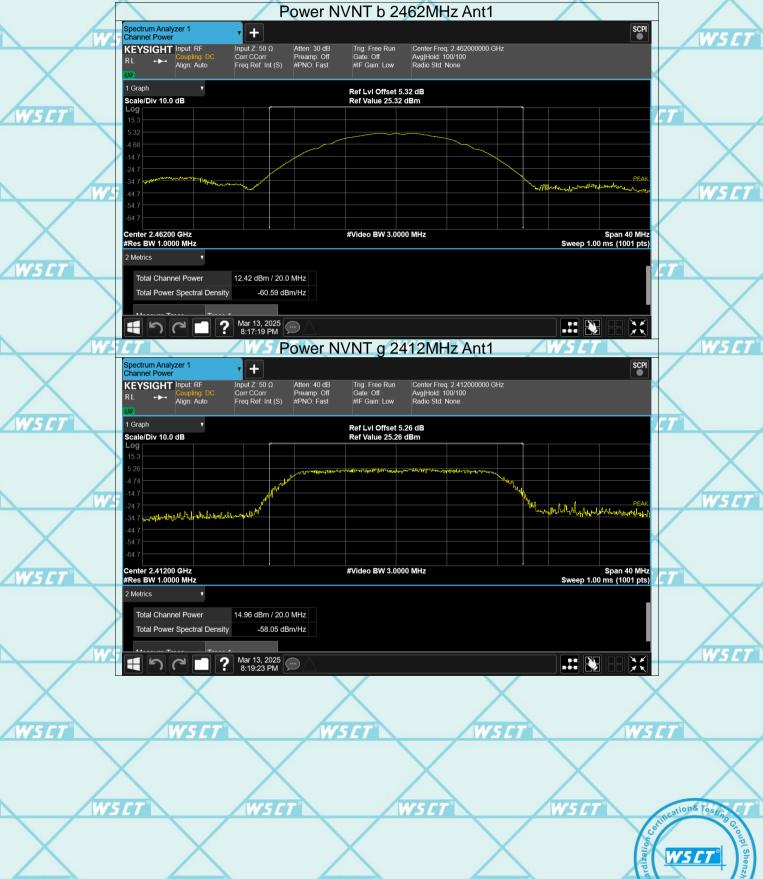
ma. 深圳世标检测认证股份有限公司 World Standard zation Certification& Testing Group(Shenzh

D: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chini : 0086-755-26998192 26998053 26998144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com Http: www.wsct-cert.com

Member of the WSCT Group (WSCT SA)

WSET

WSCT WSCT



						William Certificate	Humber . A1-5551
Report No.: WSCT-A		500034A-Wi-Fi1					\/
WILLIE IN	Mode	Frequency	Total Power	Limit	Verdict		X
		(MHz)	(dBm)	(dBm)	1010101		
W5ET"	n20	V 5 2412	22.145	30	Pass	57 °	W5ET°
	n20	2437	22.24	30	Pass		
X	n20	2462	22.33	30	Pass	X	
	n40	2422	19.80	30	Pass		
WSET	n40	2437	19.77	30	Pass	W5 CT°	/
THE LAND OF THE PARTY OF THE PA	n40	2452	19.66	30	Pass	WELL	
	ax20	2412	20.56	30	Pass		
	ax20	2437	20.57	30	Pass		
	ax20	2462	20.61	30	Pass		
WS ET	ax40	V 5 2422	20.48	30	Pass	7	W5CT
	ax40	2437	20.66	30	Pass		
X	ax40	2452	20.35	30	Pass	X	
WSET	W5CT	W5	LT.	WSET		W5ET*	/
						/	
		\times	\sim		\sim		
Nuc. cz	_	MECT	Weeken Co		WS		West Co.
W5ET*		W5 CT	W5 CT				W5CT
X	X					X	
WSET /	WSET	W.5	CT .	W5 C1		W5 CT	
			\ /				
X		X	X		>		X
WSET		WSCT	WSET		W5	[T]	W5LT°
Wee CT	West Care	1000	-	WSEI		WEET	
WSET	WSLT		ET	WSLI		WSET	
		\/					
X		X	X				X
	- 2						
W5 CT		NS ET"	W5 ET		W5	CT°	W5CT°
				\ /			
X	X		X	X		X	
WSCT	W5ET	W5	CT	W5 C1		WSET	/
			/mrs		Aur		
WSET		WSET	W5 LT		W5	diffication&	esting
	\/			\/		13	Gige
X	X			X		Councations	7° Sh

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

深圳世标检测认证股份有限公司

Page 22

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

WSCT WSCT

"dalahahah World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** Mahalalak W5 CT Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1 Power NVNT n20 2412MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI + Center Freq: 2.412000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto Ref LvI Offset 5.26 dB Ref Value 25.26 dBm Scale/Div 10.0 dB hy Manya phalley hand Long how what wol water water of the supply state of the fill of Center 2.41200 GHz #Res BW 1.0000 MHz #Video BW 3 0000 MHz Span 40 MHz Sweep 1.00 ms (1001 pts) Total Channel Power 16 35 dBm / 20 0 MHz -56.66 dBm/Hz Total Power Spectral Density Power NVNT n20 2437MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI **+** Center Freq: 2.437000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Ref LvI Offset 5.28 dB Ref Value 25.28 dBm Scale/Div 10.0 dB Mary Lucy My Jorganier Anaghe, regitant persy fatt VI step ently personalise set a Span 40 MHz Sweep 1.00 ms (1001 pts) Center 2.43700 GHz #Res BW 1.0000 MHz #Video BW 3.0000 MHz 15.85 dBm / 20.0 MHz Total Channel Power Total Power Spectral Density -57.16 dBm/Hz ation& Testi ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, 深圳世标检测认证股份有限公司 FAX: 0086-755-86376605 Page 24 VS CI

Mahahaha World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** Mahalalak W5 CT Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1 Power NVNT n20 2462MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI + Center Freq: 2.462000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto 1 Granh Ref LvI Offset 5.32 dB Ref Value 25.32 dBm Scale/Div 10.0 dB بالمليا ليروا المراوال والمراد والمرد والمرد والمرد والمراد والمرد والمراد والمراد والمراد والمراد والمراد والمراد والمراد وال itylmyseglyllaylastyryllastyr Span 40 MHz Sweep 1.00 ms (1001 pts) Center 2.46200 GHz #Res BW 1.0000 MHz #Video BW 3 0000 MHz Total Channel Power 15 85 dBm / 20 0 MHz -57.16 dBm/Hz Total Power Spectral Density Power NVNT n40 2422MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI **+** Center Freq: 2.422000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto Ref LvI Offset 5.27 dB Ref Value 25.27 dBm Scale/Div 10.0 dB Marked Mapagaranas Lebakar Hambaranas Span 80 MHz Sweep 1.00 ms (1001 pts) Center 2.42200 GHz #Res BW 1.0000 MHz #Video BW 3.0000 MHz 13.31 dBm / 40.0 MHz Total Channel Power Total Power Spectral Density -62.71 dBm/Hz ation& Tesus ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, 深圳世标检测认证股份有限公司 FAX: 0086-755-86376605

VS CI

Malahaha World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** Mahalalak W5 CT Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1 Power NVNT n40 2440MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI + Center Freq: 2.440000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto Ref LvI Offset 5.28 dB Ref Value 25.28 dBm Scale/Div 10.0 dB

> Center 2.44000 GHz #Res BW 1.0000 MHz #Video BW 3 0000 MHz Span 80 MHz Sweep 1.00 ms (1001 pts) Total Channel Power 13 85 dBm / 40 0 MHz -62.18 dBm/Hz Total Power Spectral Density Power NVNT n40 2452MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI **+** Center Freq: 2.452000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto Ref LvI Offset 5.31 dB Ref Value 25.31 dBm Scale/Div 10.0 dB Span 80 MHz Sweep 1.00 ms (1001 pts) Center 2.45200 GHz #Res BW 1.0000 MHz #Video BW 3.0000 MHz Total Channel Power 13.38 dBm / 40.0 MHz Total Power Spectral Density -62.64 dBm/Hz

WSCT WSCT WSCT WSCT WSCT WSCT WSCT ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. 深圳世标检测认证股份有限公司

EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.co

深圳世标检测认证股份有限公司 World Standardization Certification& Testing Group(Shenzhen) Co.,,Ltd

VS CI

PEA

all half had been

"dalahahah World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** Mahalalak W5 C1 Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1 Power NVNT ax20 2412MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI + Center Freq: 2.412000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto 1 Granh Ref LvI Offset 5.26 dB Ref Value 25.26 dBm Scale/Div 10.0 dB Washing out of before in which is the Center 2.41200 GHz #Res BW 1.0000 MHz #Video BW 3 0000 MHz Span 40 MHz Sweep 1.00 ms (1001 pts) Total Channel Power 15 00 dBm / 20 0 MHz -58.01 dBm/Hz Total Power Spectral Density Power NVNT ax20 2437MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI **+** Center Freq: 2.437000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto Ref LvI Offset 5.28 dB Ref Value 25.28 dBm Scale/Div 10.0 dB Span 40 MHz Sweep 1.00 ms (1001 pts) Center 2.43700 GHz #Res BW 1.0000 MHz #Video BW 3.0000 MHz 14.22 dBm / 20.0 MHz Total Channel Power Total Power Spectral Density -58.80 dBm/Hz

ation& Testi

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, FAX: 0086-755-86376605

VS CI

"dalahahah World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** Mahalalak W5 C1 Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1 Power NVNT ax20 2462MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI + Center Freq: 2.462000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto 1 Graph Ref LvI Offset 5.32 dB Ref Value 25.32 dBm Scale/Div 10.0 dB ┸╌┸┸┌╼┸┵┲┅╟┸┧┪<mark>┎┸┤╾╱╌╟┸┵╌╈[╏]┸┪</mark>┺┸<mark>┦╷</mark>╢ Aphillan and while free many my man was man

#Video BW 3 0000 MHz

Power NVNT ax40 2422MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI **+** Center Freq: 2.422000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto Ref LvI Offset 5.27 dB Ref Value 25.27 dBm Scale/Div 10.0 dB Span 80 MHz Sweep 1.00 ms (1001 pts) Center 2.42200 GHz #Res BW 1.0000 MHz #Video BW 3.0000 MHz Total Channel Power 14.45 dBm / 40.0 MHz Total Power Spectral Density -61.57 dBm/Hz

WSCT WSCT WSCT WSCT College Testing CT

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Center 2.46200 GHz #Res BW 1.0000 MHz

Total Channel Power

Total Power Spectral Density

14.52 dBm / 20.0 MHz -58.49 dBm/Hz

> 深圳世标检测认证股份有限公司 World Standard Zation Certification& Testing Group(Shenzhen, Co., Ltd.

> > VS CI

Span 40 MHz Sweep 1.00 ms (1001 pts)

"dalahahah World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** Mahalalak W5 CT Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1 Power NVNT ax40 2437MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI **+** Center Freq: 2.437000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto 1 Graph Ref LvI Offset 5.28 dB Ref Value 25.28 dBm Scale/Div 10.0 dB was free to be for the first of n water harbywardshop Center 2.43700 GHz #Res BW 1.0000 MHz #Video BW 3 0000 MHz Span 80 MHz Sweep 1.00 ms (1001 pts) Total Channel Power 14 53 dBm / 40 0 MHz -61.49 dBm/Hz Total Power Spectral Density Power NVNT ax40 2452MHz Ant1

Spectrum Analyzer 1 Channel Power SCPI **+** Center Freq: 2.452000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto Ref LvI Offset 5.31 dB Ref Value 25.31 dBm Scale/Div 10.0 dB whitelest in the physical production in the contraction of the contrac Span 80 MHz Sweep 1.00 ms (1001 pts) Center 2.45200 GHz #Res BW 1.0000 MHz #Video BW 3.0000 MHz 13.70 dBm / 40.0 MHz Total Channel Power Total Power Spectral Density -62.32 dBm/Hz

WSCT WSCT WSCT WSCT

WS CT WS CT WS CT WS CT WS CT WS CT WS CT

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin.
TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standardization Certification& Testing Group(Shenzhen) Co.,Ltd

VS CI

World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1 Power NVNT b 2462MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI + Center Freq: 2.462000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 30 dB Preamp: Off #PNO: Fast KEYSIGHT Input: RF Ref LvI Offset 2.32 dB Ref Value 22.32 dBm Scale/Div 10.0 dB Span 40 MHz Sweep 1.00 ms (1001 pts) Center 2.46200 GHz #Res BW 1.0000 MHz #Video BW 3 0000 MHz Total Channel Power 17 44 dBm / 20 0 MHz -55.57 dBm/Hz Total Power Spectral Density Power NVNT g 2412MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI **+** Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Center Freq: 2.412000000 GHz Avg|Hold: 100/100 Radio Std: None KEYSIGHT Input: RF Ref LvI Offset 2.26 dB Ref Value 22.26 dBm Scale/Div 10.0 dB politically departed a breathfully bearings, Prophyllulian phagain by the state of the st Span 40 MHz Sweep 1.00 ms (1001 pts) Center 2.41200 GHz #Res BW 1.0000 MHz #Video BW 3.0000 MHz Total Channel Power 19.49 dBm / 20.0 MHz Total Power Spectral Density -53.52 dBm/Hz ation& Test ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

Page 31

WSET

WSCT

World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** Mahalalak W5 CT Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1 Power NVNT n40 2440MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI + Center Freq: 2.440000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto Ref LvI Offset 2.28 dB Ref Value 22.28 dBm Scale/Div 10.0 dB Marine Marine Committee Marine Ma PE Center 2.44000 GHz #Res BW 1.0000 MHz #Video BW 3 0000 MHz Span 80 MHz Sweep 1.00 ms (1001 pts) Total Channel Power 18 49 dBm / 40 0 MHz -57.53 dBm/Hz Total Power Spectral Density Power NVNT n40 2452MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI **+** Center Freq: 2.452000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast KEYSIGHT Input: RF Ref LvI Offset 2.31 dB Ref Value 22.31 dBm Scale/Div 10.0 dB hapity of the of by part that white the first of the original that Span 80 MHz Sweep 1.00 ms (1001 pts) Center 2.45200 GHz #Res BW 1.0000 MHz #Video BW 3.0000 MHz Total Channel Power 18.49 dBm / 40.0 MHz Total Power Spectral Density -57.53 dBm/Hz ation& Tesus ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, 深圳世标检测认证股份有限公司 FAX: 0086-755-86376605 Page 35 V5 C1

"dalahahah World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** Mahalalak W5 C1 Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1 Power NVNT ax20 2412MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI + Center Freq: 2.412000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto 1 Granh Ref LvI Offset 2.26 dB Ref Value 22.26 dBm Scale/Div 10.0 dB Lapara hady phaladahahan Center 2.41200 GHz #Res BW 1.0000 MHz #Video BW 3 0000 MHz Span 40 MHz Sweep 1.00 ms (1001 pts) Total Channel Power 19 15 dBm / 20 0 MHz -53.86 dBm/Hz Total Power Spectral Density Power NVNT ax20 2437MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI **+** Center Freq: 2.437000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Ref Lvi Offset 2.28 dB Ref Value 22.28 dBm Scale/Div 10.0 dB Nantohalaran to through the my transfer on the graph of the could Span 40 MHz Sweep 1.00 ms (1001 pts) Center 2.43700 GHz #Res BW 1.0000 MHz #Video BW 3.0000 MHz Total Channel Power 19.43 dBm / 20.0 MHz Total Power Spectral Density -53.58 dBm/Hz ation& Testi ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

Page 36

FAX: 0086-755-86376605

VS CI

"dalahahah World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** Mahalalak W5 CT Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1 Power NVNT ax20 2462MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI + Center Freq: 2.462000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto Ref LvI Offset 2.32 dB Ref Value 22.32 dBm Scale/Div 10.0 dB The relative the orthogonal of the little of halfettettettetterterannanteranteral Center 2.46200 GHz #Res BW 1.0000 MHz #Video BW 3 0000 MHz Span 40 MHz Sweep 1.00 ms (1001 pts) Total Channel Power 19 38 dBm / 20 0 MHz -53.63 dBm/Hz Total Power Spectral Density Power NVNT ax40 2422MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI **+** Center Freq: 2.422000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast KEYSIGHT Input: RF Align: Auto Ref LvI Offset 2.27 dB Ref Value 22.27 dBm Scale/Div 10.0 dB protected the thropped and are the second Added the white of the white of the state of Span 80 MHz Sweep 1.00 ms (1001 pts) Center 2.42200 GHz #Res BW 1.0000 MHz #Video BW 3.0000 MHz Total Channel Power 19.23 dBm / 40.0 MHz Total Power Spectral Density -56.79 dBm/Hz ation& Tesus ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, 深圳世标检测认证股份有限公司 FAX: 0086-755-86376605 Page 37 VS CI

Mahahaha World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** Mahalalak W5 CT Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1 Power NVNT ax40 2437MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI + Center Freq: 2.437000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto 1 Granh Ref LvI Offset 2.28 dB Ref Value 22.28 dBm Scale/Div 10.0 dB mphalaman-papahan tallender reserved property of the deed of the Center 2.43700 GHz #Res BW 1.0000 MHz #Video BW 3 0000 MHz Span 80 MHz Sweep 1.00 ms (1001 pts) Total Channel Power 19 45 dBm / 40 0 MHz -56.57 dBm/Hz Total Power Spectral Density Power NVNT ax40 2452MHz Ant1 Spectrum Analyzer 1 Channel Power SCPI **+** Center Freq: 2.452000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 40 dB Preamp: Off #PNO: Fast KEYSIGHT Input: RF Align: Auto Ref LvI Offset 2.31 dB Ref Value 22.31 dBm Scale/Div 10.0 dB Span 80 MHz Sweep 1.00 ms (1001 pts) Center 2.45200 GHz #Res BW 1.0000 MHz #Video BW 3.0000 MHz Total Channel Power 19.29 dBm / 40.0 MHz Total Power Spectral Density -56.73 dBm/Hz

ation& Tesus

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, FAX: 0086-755-86376605

深圳世标检测认证股份有限公司

VS CI

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

6.3. Emission Bandwidth

6.3.1. Test Specification

WSET"

W5 CT

W5CT

W5 CT

X	Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
W5CT°	Test Method:	KDB 558074 W5 [T] W5 [T]	_/
	Limit:	>500kHz	
	Test Setup:	WS WS	ET .
		Spectrum Analyzer EUT	
W5CT	Test Mode:	Transmitting mode with modulation	
		The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously.	CT.
Test Procedure:	Test Procedure:	3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must	
		be greater than 500 kHz. 4. Measure and record the results in the test report.	7
	Test Result:	PASS WS CT WS CT WS	CT.

WSCT WSCT WSCT WSCT WSCT

W5CT

WSET

WSET

WSET

W5 CT

WSCT WSCT

WSET WSE

WS CT

WS CT

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Cl El: 0086-755-26996192 26996053 29996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert. 深圳世标检测认证股份有限公司

ember of the WSCT Group (WSCT SA)

WSCT

Page 39

WSCT

W5 C1

W5 C1

W5 C7

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

W5CT°

Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

6.3.2. Test data(worst)

ALARE PT		1	
WILL		L	5/4

WSET"

AWS CT"

W5 ET

W5CT

W5 CT

	Mode	Frequency (MHz)	-6 dB	Limit -6 dB	Verdict	
			Bandwidth (MHz)	Bandwidth (MHz)		
	_ b /	2412	8.505	0.5	Pass	
	b	2437	8.510	0.5	Pass	
	b	2462	8.493	0.5	Pass	
1	g	2412	15.75	0.5	Pass	
	g	2437	15.10	0.5	Pass	
	g	2462	15.76	0.5	Pass	
	n20	2412	16.56	0.5	Pass	
	n20	2437	17.57	0.5	Pass	
	n20	2462	17.16	0.5	Pass	
	n40	2422	35.35	0.5	Pass	
	n40	2437	35.71	0.5	Pass	
	n40	2452	34.22	0.5	Pass	
	ax20	2412	18.71	0.5/5//	Pass	
	ax20	2437	18.84	0.5	Pass	
	ax20	2462	17.70	0.5	Pass	
	ax40	2422	37.55	0.5	Pass	
	ax40	W5 CT 2437 W5	36.57	W5 ET 0.5	Pass	
	ax40	2452	36.26	0.5	Pass	
	X	Y	X	X		

WSET WSET WSET WSET WSET

WSCT WSCT WSCT WSCT

WSET WSET WSET WSET WSET

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin FEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard Zation Certification& Testing Group(Shen

W5 CT

WELT

WSET WSET

WSCT

"dalahahah World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** CCREDITED Mahalalak W5 CI Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1 Test Graphs -6dB Bandwidth NVNT b 2412MHz Ant1 Spectrum Analyzer 1 Occupied BW + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low Center Freq: 2.412000000 GHz Avg|Hold: 100/100 Radio Std: None KEYSIGHT Input: RF Align: Auto Mkr3 2.416257000 GHz Ref Lvi Offset 5.26 dB Ref Value 25.26 dBm -7.02 dBm Scale/Div 10.0 dB Center 2.41200 GHz #Res BW 100.00 kHz #Video BW 300.00 kHz Span 30 MHz Sweep 3.33 ms (10001 pts) 2 Metrics Measure Trace Trace 1 Occupied Bandwidth
13.064 MHz 16.7 dBm Total Power 4.702 kHz 8.505 MHz 99.00 % Transmit Freq Error % of OBW Powe x dB x dB Bandwidth -6dB Bandwidth NVNT b 2437MHz Ant1 Spectrum Analyzer 1 Occupied BW + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Center Freq: 2.437000000 GHz Avg|Hold: 100/100 Radio Std: None Atten: 30 dB Preamp: Off Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto Mkr3 2.441265000 GHz Ref LvI Offset 5.28 dB Ref Value 25.28 dBm Scale/Div 10.0 dB Span 30 MHz Sweep 3.33 ms (10001 pts) Center 2.43700 GHz #Res BW 100.00 kHz #Video BW 300.00 kHz Occupied Bandwidth 12.956 MHz 16.2 dBm Total Power 99.00 % -6.00 dB 10.416 kHz % of OBW Power x dB Transmit Freq Error 8.510 MHz ation& Test

Page 41

FAX: 0086-755-86376605

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

WSET

W5 CT

深圳世标检测认证股份有限公司

W5CT"

World Standardization Certification & Testing Group (Shenzhen) Co., ltd. Report No.: WSCT-ANAB-R&E250500034A-Wi-Fi1

W5 CI

tion& Test

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue