

TEST REPORT WELL

WSET

FCC ID: 2ADYY-K15SDA

Product: Laptop Computer

WSET

Model No.: K15SDA

Trade Mark: TECNO

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

Issued Date: 12 February 2025

WSET WSC)

Issued for:

TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET **FOTAN NT HONGKONG**

WSCT

Issued By:

W5 (World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

TEL: +86-755-26996192

W5LT

FAX: +86-755-86376605

Note: This report shall not be reproduced except in full, without the written approval of World Standardization Certification Testing Group (Shenzhen) Co., Ltd. This document may be altered or revised by World Standardization Certification& Testing Group (Shenzhen) Co., Ltd. personnel

only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

WSET

深圳世标检测认证股份有限公司

Page 1

W5 E 7

WSET

WSET

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

X	<u> </u>		/	\times	\times	
WSET	W5	TABLE OF CO	NTENTS	W5 ET	W5L	7
	RTIFICATION			/		
2 EUT DESC 3 TEST DES		WSET	W5 LT	W	ET*	$-\!\!\!/$
	EASUREMENT UN	CERTAINTY			6	
	ST ENVIRONMEN		WARE SETTING		7	
		TERS OF TEXT SOFT F SYSTEM UNDER TE		W5 CT	8 9 W5 L	7
3.5 DE	ESCRIPTION OF S	UPPORT UNITS (CON			9	
	Y OF TEST RESU				.0	
	EMENT INSTRUMES AND ACCRED		WSET	W	1	
	CILITIES				12	
	CREDITATIONS	ONDERFENT DATA			12	
		SUREMENT DATA SION MEASUREMENT	LT \	LAFE FT	13 13 W5L	7
		N MEASUREMENT			17	
	TENNA REQUIRE				40	
	MISSION BANDWIE AXIMUM CONDUC	TED (AVERAGE) OUT	PUT POWER		41 69	
7.6 PC	OWER SPECTRAL	DENSITY		1	18	/
	REQUENCY STABI AND EDGE EMISSI	\			67 91	
		ICY SELECTION (DFS	5)-		16 W5/	7
8 TEST SET	TUP PHOTOGRA	PHS			227	
X	X	X	X		X	
WSET	WSET	WSET	WSET	W	SET	
						_
X	\rightarrow		X	X	X	
WSET	WS	ere we	CT .	WSET	WSL	
				1614		
X	X	X	X		X	
WELL	WELL	WEET	WELL	- Aug	ECT	/
WSET	WSET	WSET	W5 ET		S C T	/
X			<	X	X	
	Aver-			West		-
W5ET*	W.5	CT WS		WSET	Stiffcation& Testing Q	
		V				ED S

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

1 **Test Certification**

Product:

Laptop Computer

Model No.:

K15SDA

Trade Mark:

TECNO

Applicant:

TECNO MOBILE LIMITED

Address:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN

MEI STREET FOTAN NT HONGKONG

Manufacturer:

TECNO MOBILE LIMITED

Address:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG W 5 C

Date of Test:

02 January 2025 to 11 February 2025

Applicable Standards:

FCC CFR Title 47 FCC Part 15 Subpart E

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

(Wang Xiang)

Checked By:

(Qin Shuiquan)

Approved By:

(Li Huaibi)

WSET

W55

深圳世标检测认证股份有限公司

W5CT

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

EUT Description

W5CT

WS ET

W5 CT

WSTT WS	TO WSTT WSTT WSTT
Product:	Laptop Computer
Model No.:	K15SDA
Trade Mark: 5 ET	TECNO ⁵ ET W5ET W5ET
Software version:	Windows 11
Hardware version:	N160DBC01_MB_V10
	Band 1: 5180-5240 MHz
Operation Fraguency	Band 2: 5260-5320 MHz
	Band 3: 5500-5700 MHz
WSLI	Band 4: 5745-5825 MHz
Modulation type:	IEEE 802.11a/n/ac/ax: OFDM/OFDMA
modulation type:	(BPSK/QPSK/16QAM/64QAM/256QAM/1024QAM)
Antenna Type: W5	Integral Antenna VS CT WS CT WS CT
Antenna Gain	MAIN:3.07dBi ,AUX:2.99 dBi
	Adapter1: E065-1R200325VU
WSET	INPUT: 100-240V~50/60Hz 1.5A
	OUTPUT: 20.0V==3.25A 65.0W
EUT Power Rating	Rechargeable Li-ion Polymer Battery: K15S Nominal Voltage: 11.55V
	Poted Consoity 6060m Ab
W5117 W5	Rated Capacity.6060/IIAII Rated Energy: 70.00Wh
	Limited Charge Voltage: 13.2V
Remark:	N/A.
	Product: Model No.: Trade Mark: Software version: Hardware version: Operation Frequency: W517 Modulation type: Antenna Type: Antenna Gain W517 EUT Power Rating

W5 CT	WSET	WSCT	WSCT WSCT

W5 CT WSET W5 CT W5 ET

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT"

Configuration differences

	Cornigaration amoronoco		
	Configuration/ W5 Processor	CPU WS CT	WSET WSET
7	K15SDA (AMD Lucienne)	LuB R5-5625U 5600U 5600H/:LuC 5800U TDP 15W(5600H TDP with 30w)	
_	K15SDA (AMD Barcelo-R)	R5-7430U/R7-7730U	
C 7	Note: All models were tested	d, with the main test model being the	W5 CT
	K15SDA (R5-7430H)		

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET WSET WSET WSET

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT Structure To Structure T

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China FEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard action Certification& Testing Group(Shenzhen) Co.,Ltr

W5C1

WS CT WS CT

WSET

W5 CT

W5E

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT"

3 TEST DESCRIPTION

3.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}_{\uparrow}$ where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k}=2$, providing a level of confidence of

W5 CI

	No.	Item	Uncertainty	\rightarrow
	1	Conducted Emission Test	±3.2dB	
W5	2	RF power, conducted	±0.16dB W5 ET	W5
	3	Spurious emissions, conducted	±0.21dB	
	4	All emissions, radiated(<1GHz)	±4.7dB	
	5 W	All emissions, radiated(>1GHz)	±4.7dB 5 6 7	W5ET°
	6	Temperature	±0.5°C	
	7	Humidity	±2%	
4		free free		-

WSE

			AWS LI

/	W5CT°	W5ET*	WS CT [®]	W5 CT	W5CT [®]

WSCT WSCT WSCT WSCT	WS CT	
---------------------	-------	--

W5C		WSET	WSET	W5 CT	W5CT°	1
-----	--	------	------	-------	-------	---

W5 CT°	W5 CT°	WS CT°	W5 CT	W5CT"

WELT	WELL	WELT	WELT	WELT

W5 CT	WSET	W5 ET°	WSET	acation& Testin
				Still See

WSCT WSCT WSCT

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City Guangdong Province, China. TEL: 0086-755-26996192 26998053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

City Guangdong Province, China.
Http://www.wsct-cert.com
Http://www.wsct-cert.com
World Standard zation Certification& Testing Group(Shenzhen) Co.

VSCT* WSCT*

WSET

Page 6

WSCT

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

3.2 TEST ENVIRONMENT AND MODE

Operating Environment:		7
Temperature:	25.0 C	
Humidity:	56 % RH	
Atmospheric Pressure: W5 [7]	1010 mbar V5 5 7	
Test Mode:		
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%)	Z

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

	WSIT	WSTATE	ľ
	Test Mode	Description	
	Mode 1	802.11a	
_	Mode 2	W5 802.11n20 W5	
	Mode 3	802.11n40	
	Mode 4	802.11ac20	
	Mode 5	W5_T 802.11ac40 W5_T	6
	Mode 6	802.11ac80	
	Mode 7	802.11ax20	
	Mode 8	802.11ax40	
	Mode 9	802.11ax80	
	Mode 10	802.11ax160	

Note:

- (1) The measurements are performed at the highest, lowest available channels.
- (2) The EUT use new battery.
- (3) Record the worst case of each test item in this report.

深圳世标检测认证股份有限公司
World Standard Annual Certifications Testing Group Sharzhank o Ltd.

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China EL: 0086-755-26996192 26996053,26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com W5C

W5CT

ANAB
ANSI National Accreditation Board
A C C R E D I T E D

W5CT[®]

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT"

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

	W51	7	W	SET		VSET		W5CT°		WSCT
	Test					DRTU				
Х	program									
	programm				Test	Frequency	/MUz)			
5 L	Mode	WS		<u> </u>			(IVII IZ)		WSET	
					NCB: 20					
	802.11a	5180	5240	5260	5320	5500	5700	5745	5825	X
	002.114	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
	802.11n	5180	5240	5260	5320	5500	5700	5745	5825	W5CT
	002.1111	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
	802.11ac	5180	5240	5260	5320	5500	5700	5745	5825	
\wedge	002.1140	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
	802.11ax	5180	5240	5260	5320	5500	5700	5745	5825	
5 C	002.TTax	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
					NCB: 4	0MHz				
	X	5190	5230	X5270	5310	5510	5670	5755	5795	X
	802.11n	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
	WE	5190	5230	5270	5310	5510	5670	5755	5795	W5 CT
	802.11ac	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
		5190	5230	5270	5310	5510	5670	5755	5795	
\wedge	802.11ax	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
		- Augus		4	NCB: 8	30MHz	Week Car		Week	
5 L		5210	5290	5530	5610	5775	WSLI		AWSEI	
	802.11ac	MHz	MHz	MHz	MHz	MHz		\ /		
	X	5210	5290	X 5530	5610	5775		X		X
	802.11ax	MHz	MHz	MHz	MHz	MHz				
	W5 C	7°	W	SET N	NCB: 1	60MHz		W5 CT		W5CT
	000 1169	5250	5570						\ /	
X	802.11ax	MHz	MHz		X		X		X	

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

	W5 CT		W5CT°		W5 ET	W5 CT		W5 CT
X		X		X		X	X	
					_			
W5CT"		W5LT \		W5 CT		S C T	W5CT	
			$\overline{}$					

IWSLI

WSCT

WSET

W5ET

WSLT Constitutions Testing Cloub (Shenzib)

WSET

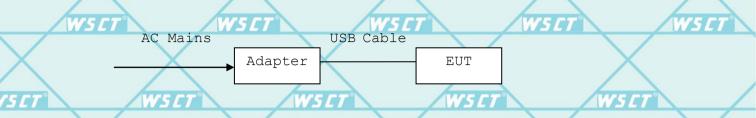
WS CT

WELT

aws ct

DD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. Chini EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard ration Certification & Testing Group (She



WS CI

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

3.4 CONFIGURATION OF SYSTEM UNDER TEST

WSCI

(EUT: Laptop Computer)

3.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Adapter	W5 TECNO	E065-1R200325VU	WSCT	1
2	Router	ASUS	GT-AXE11000	M6LAJF201230	

Note:

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Ave

TEL: 0086-755-26996192 26996053 26996144

WS C

- (1)The support equipment was authorized by Declaration of Confirmation.

	(3) "YES" is means "s(4) The adapter suppl	oe I/O cable should be spenification in the shielded" "with core"; "NO" in the spelicant.	is means "unshielded" "w	
WSET	WSET	WSET	WSET	WSET
	WSET	WSET W	SET WS	CT WSCT
WSET	WSET	WSCT	WSLT	WSCT
	WSET	\times	SET WS	estincations Testing C
WSET	WSET	WSCT	WSET	WS CT

Page 9

FAX: 0086-755-86376605

W5CT

ac-MRA

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

SUMMARY OF TEST RESULTS 4

Test procedures according to the technical standards:

W5 C7

C)		FCC Part15 Subpart C&E		
	Standard Section	Test Item	Judgment	Remark
	2.1049 15.403(i)	26dB & 99% Bandwidth	PASS	Complies
	15.407(e)	6dB Spectrum Bandwidth	PASS	Complies
X	15.407(a)	5.407(a) Maximum Conducted Output Power		Complies
C1	15.407(a)	Power Spectral Density	PASS	Complies
	15.407(b)	Unwanted Emissions	PASS	Complies
	15.2075 <i>ET</i>	AC Conducted Emission W5 LT	PASS W5	Complies
<	15.407(g)	Frequency Stability	PASS	Complies
E1	15.407(c) W5 C	Automatically Discontinue Transmission	PASS	Complies
	15.203 & 15.407(a)	Antenna Requirement	PASS	Complies
	15.407(h)	Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)	PASS	Complies

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

W5 C1 WS ET W5 CT W5 E1

Page 10

W5CT

W5 CI

W5 C1

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

MEASUREMENT INSTRUMENTS

5	WSCT	WSCZ	WSCT		VS CT	WS	
7	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	
7	Test software	- /W	EZ-EMC	CON-03A	-/W.S	ET.	
	Test software		MTS8310	-	V-	-	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2024	11/04/2025	
_	W5 LISN	AFJ AFJ	LS165	16010222119	11/05/2024	11/04/2025	C I
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2024	11/04/2025	
7	Universal Radio Communication Tester	R&S WS	CMU 200	1100.0008.02	11/05/2024	11/04/2025	
	Coaxial cable	Megalon	LMR400	N/A	11/05/2024	11/04/2025	
	GPIB cable	Megalon	GPIB	N/A	11/05/2024	11/04/2025	
	Spectrum Analyzer	R&S	FSU ⁵ ET	100114	11/05/2024	11/04/2025	C'i
	Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2024	11/04/2025	
	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2024	11/04/2025	
7	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	11/05/2024	11/04/2025	_
	9*6*6 Anechoic	X	X		11/05/2024	11/04/2025	\langle
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000	- /	11/05/2024	11/04/2025	<u> </u>
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2024	11/04/2025	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2024	11/04/2025	
7	System-Controller	ccs ws	CT N/A	W N/A	N.C.R	N.C.R	
	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
7	RF cable	Murata	MXHQ87WA300 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11/05/2024	11/04/2025	ΣI
	Loop Antenna	EMCO	6502	00042960	11/05/2024	11/04/2025	
	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2024	11/04/2025	
	Power meter	Anritsu	ML2487A	6K00003613	11/05/2024	11/04/2025	/
	Power sensor	Anritsu	MX248XD		11/05/2024	11/04/2025	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2024	11/04/2025	C 7

W5 CI

W5CT

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

6 Facilities and Accreditations

6.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China of the World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2 ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration

Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

ANAB - Certificate Number: AT-3951

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (ANAB). Certification Number: AT-3951

WSET WSET WSET WSET WSET WSET WSET

AWS ET

WSCT

WSIT

WSET

WSET Sund Testing Coloup (Shenzhou)

VSCT WSC

AWS CT

AWS CT

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.co

深圳世标检测认证股份有限公司 World Standard zation Certification& Testing Group(Shenzhen) Co.,Lt

W5 CI

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

7 Test Results and Measurement Data

7.1 CONDUCTED EMISSION MEASUREMENT

POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

1	FREQUENCY (MHz)	Class A (dBuV)		Class B	Standard	
7	FREQUENCT (MINZ)	Quasi-peak	Average	Quasi-peak	Average	Stariuaru
	0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
	0.50 -5.0	73.00	60.00	56.00	46.00	FCC
	W 5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

	Receiver Parameters	Setting	WELT
	Attenuation	10 dB	12/7/
	Start Frequency	0.15 MHz	
\	Stop Frequency	30 MHz	
Ť	WF Bandwidth WSET	W5 C 19 kHz W5 CT	

WSET WSET WSET WSET WSET WSET WSET	1	WSCT	W5 CT°	WSET	WSCT	W5 CT
WSET WSET WSET WSET	X	X	X	X	X	
$X \times X \times X$	WS CT	WSET	WSET	WSET	WSET	
$X \times X \times X$		X	\times	\times	\times	X
\times		W5 ET	WSET	WSCT	W5CT°	W5ET
WSCT WSCT WSCT WSCT						
	WSCT	WSET	WSCT	WSFT	WSET	
	711717				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

AWJE!

AWSLI

WS CT

WSET

WSCT WSCT

W5CT

WELT

WELT

WS CT

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City Guangdong Province, Chi EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http::www.wsct-cert.com 深圳世标检测认证股份有限公司 Norld Standard zation Certification& Testing Group(Sher

lember of the WSCT Group (WSCT SA)

Page 13

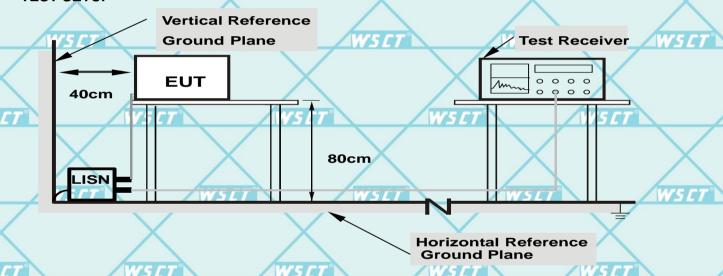
WSET

WSCT

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

7.1.1 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to W 5 I the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


W5CT

7.1.2 DEVIATION FROM TEST STANDARD

No deviation

WSET WSET WSET WSET

TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

WSCT WSCT WSCT WSCT WSCT

7.1.3 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

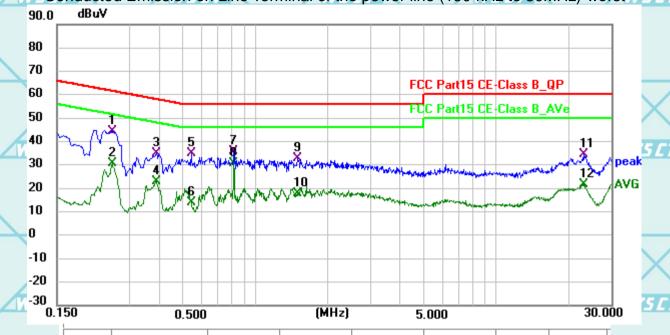
Page 14

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Stueet, Bao'an District, Shenzhen City, Guangdong Province. Chini EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standard Fation Certification & Testing Group (Shenzhen) Co.,Ltd

7 WS

V5 CT° W


Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

7.1.4 TEST RESULTS(WORST CASE)

The worst mode is 11a

W3Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)-worst W5 C

WS CT

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	
	1	0.2535	23.53	20.66	44.19	61.64	-17.45	QP	
/	2	0.2535	9.77	20.66	30.43	51.64	-21.21	AVG	
	3	0.3885	14.18	20.58	34.76	58.10	-23.34	QP	
L	4	0.3885	2.28	20.58	22.86	48.10	-25.24	AVG	4
	5	0.5415	14.61	20.52	35.13	56.00	-20.87	QP	
	6	0.5415	-6.48	20.52	14.04	46.00	-31.96	AVG	
	7	0.8160	15.41	20.59	36.00	56.00	-20.00	QP	
<	8 *	0.8160	10.21	20.59	30.80	46.00	-15.20	AVG	
	9	1.5090	12.20	20.64	32.84	56.00	-23.16	QP	
E	10	1.5090	-2.97	20.64	17.67	46.00	-28.33	AVG	/
_	11	23.0505	13.97	20.47	34.44	60.00	-25.56	QP	

20.47

Remark: All the modes have been investigated, and only worst mode is presented in this report.

1.27

W5CT

12

WSLT

23.0505

IWS CT

21.74

WSCT

-28.26

AVG

50.00

WSCT WSCT

W5CT

IWS CT

WELT

aws ct

DD: Building A-B,Baoil'an Intustrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. L: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

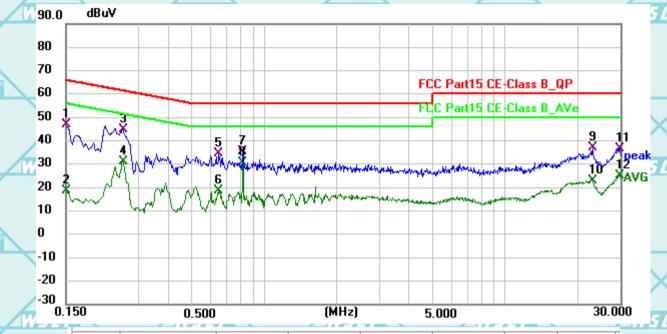
深圳世标检测认证股份有限公司
World Standard Zation Certification& Testing Group (Shenzhen)

Page 15

SET WSE

WSCT

WSCT



Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

WSCI

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	
	1	0.1500	26.25	20.73	46.98	66.00	-19.02	QP	
	2	0.1500	-2.14	20.73	18.59	56.00	-37.41	AVG	
	3	0.2580	24.08	20.66	44.74	61.50	-16.76	QP	
Į	4	0.2580	10.58	20.66	31.24	51.50	-20.26	AVG	
1	5	0.6495	14.12	20.53	34.65	56.00	-21.35	QP	
	6	0.6495	-1.95	20.53	18.58	46.00	-27.42	AVG	
	7	0.8160	14.79	20.59	35.38	56.00	-20.62	QP	
	8 *	0.8160	10.00	20.59	30.59	46.00	-15.41	AVG	
	9	23.0685	16.43	20.47	36.90	60.00	-23.10	QP	
	10	23.0685	2.39	20.47	22.86	50.00	-27.14	AVG	
Ž	11	29.8590	15.65	21.15	36.80	60.00	-23.20	QP	
	12	29.8590	3.96	21.15	25.11	50.00	-24.89	AVG	

Note1:

W5 C

W5 L

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 16

W5 C

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

7.2 RADIATED EMISSION MEASUREMENT

Radiated Emission Limits(Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

W5C7

WSET

	Frequencies	Field Strength	Measurement Distance
1	(MHz)	(micorvolts/meter)	(meters)
	0.009~0.490	2400/F(KHz)	300
	0.490~1.705	24000/F(KHz)	30
V	/5 CT 1.705~30.0 W5 C	30 W5 ET	30-7
	30~88	100	3
	88~216	150	3
1	216~960	W5 E T 200	W5LT 3 W5L T
	Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

4W5CT

	FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)				
		PEAK	AVERAGE			
1	Above 1000	W5574	W5 ET 54 W5 L			

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

WSCT

	Spectrum Parameter	Setting	
	Attenuation	5.CT W5.C Auto W5.CT	
	Start Frequency	1000 MHz	
	Stop Frequency	10th carrier harmonic	X
_	RB / VB (emission in restricted	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average	5 C
	band)		

W5CT

	Receiver Parameter	Setting
-	Attenuation	5 Auto W5 L1
	Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
	Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
4	W5 / Start ~ Stop Frequency /	30MHz~1000MHz / RB 120kHz for QP

W5 C

W5CT

WSCT

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China FEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard zation Certification& Testing Group(Shenzhen) Co.,Li

Page 17

WAR CE

WSET

VSCT WSC

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

7.2.1 TEST PROCEDURE

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

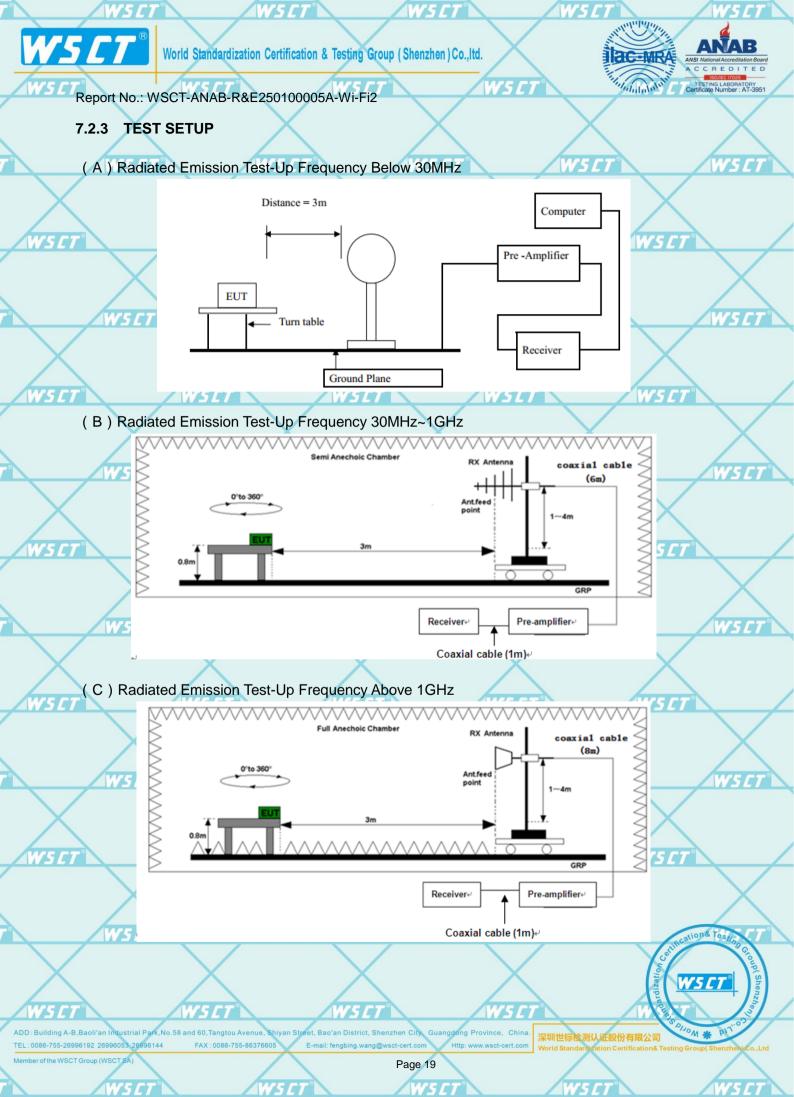
W5CT

- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

 Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

orthogonal axis. The worst case emissions were reported	X
7.2.2 DEVIATION FROM TEST STANDARD W5 [7] W5 [7]	WSCT
No deviation WSET WSET WSET WSET WSET	
WSCT WSCT WSCT	WSET
WSET WSET WSET WSET	
WSET WSET WSET	WSCT
WSET WSET WSET WSET	
	ations testing
	VSET


VSET WSE

WSET

Page 18

WSLT

W5CT°

Note:

Iding A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue

FAX: 0086-755-86376605

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

No result in this part for margin above 20dB.

7.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

WS CT

7.2.5 RESULTS (BELOW 30 MHZ)

	Freq.	Freq. Reading		Margin	State	
/	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	
	Walter		-	-	P	
	X	X	X	X	Р	

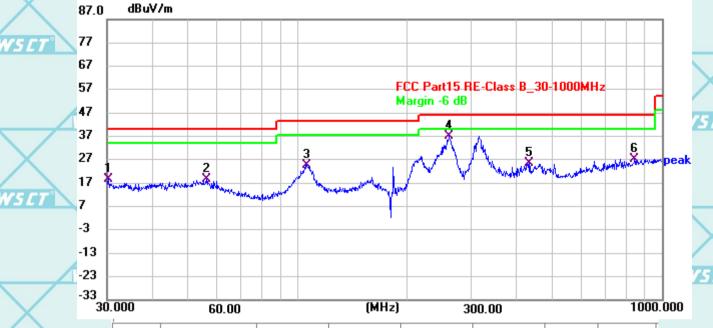
Distance extrapolation factor =20 log (specific distance/test distance)(dB); Limit line = specific limits(dBuV) + distance extrapolation factor. All the x/y/z orientation has been investigated, and only worst case is presented in this report.								
WSET	WS ET	wsc7°	W5C7°	WS ET				
WSET		WS ET	VS ET	SCT				
WSET	WSET	WSET	WSET	WSET				
WSET		\times	\times	/5 <i>CT</i>				
WSET	WSET	WSCT	WSET	WSET				
WSET	X	\times	\times	557				
WSET	WSET	WSET	X	ations test				
X				WSLT Short Cations Testing Group (Shenzing)				

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT"

7.0.0 TEST DESULTS (DETIMENT) 2014 4000 MUZ

7.2.6 TEST RESULTS (BETWEEN 30M - 1000 MHZ) (WORST CASE)


Please refer to following diagram for individual (The worst mode is 11a)

W5 C7 Below 1GHz

w 1GHz W5 C

W5 ET

Horizontal:

WSET	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	
\searrow	1	30.2376	37.74	-19.19	18.55	40.00	-21.45	QP	
	2	56.5186	38.42	-19.91	18.51	40.00	-21.49	QP	
W5L	3	106.3384	47.58	-22.97	24.61	43.50	-18.89	QP	WSET
	4 *	260.7152	58.50	-21.58	36.92	46.00	-9.08	QP	
	5	432.9250	42.30	-16.93	25.37	46.00	-20.63	QP	
WSET	6	843.2377	37.47	-10.29	27.18	46.00	-18.82	QP	

WSCT WSCT WSCT WSCT WSCT WSCT

W5CT°

WSET

WSET

WSET

WSET STORY

WSET

W5CT

WELT

AWS CT

深圳世标检测认证股份有限公司

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

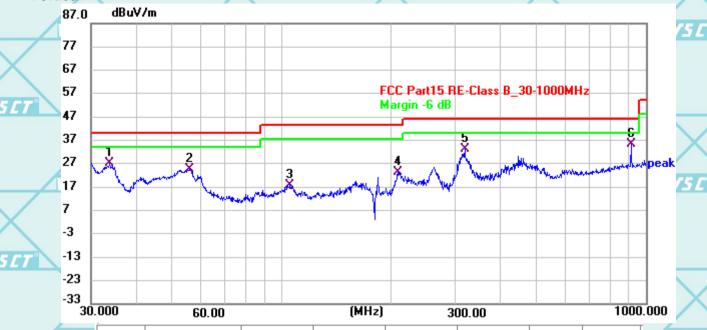
TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Page 21

SET WSE

WSET

WS CT WS CT



Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT

Vertical:

WYL

Z	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	7
	1	33.8283	46.71	-19.51	27.20	40.00	-12.80	QP	
	2	56.1974	44.37	-19.89	24.48	40.00	-15.52	QP	0
	3	105.8733	40.90	-23.00	17.90	43.50	-25.60	QP	
<	4	209.4965	47.35	-24.00	23.35	43.50	-20.15	QP	Ī
1	5	319.5164	52.65	-19.57	33.08	46.00	-12.92	QP	
	6 *	911.6625	45.07	-9.84	35.23	46.00	-10.77	QP	7

W5CT

Note1:

awsl!

W5 CT

WSCT

WSC

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) - Limits (dB μ V)

WELT

awsct

WS CT

4W5C7

WELT

WELT

WELT

MICT

WELT

WSET

WSCT

WSCT

WELT

aws ct

深圳世标检测认证股份有限公司
World Standard Zation Certification& Testing Group(Shenzh

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guz
TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com

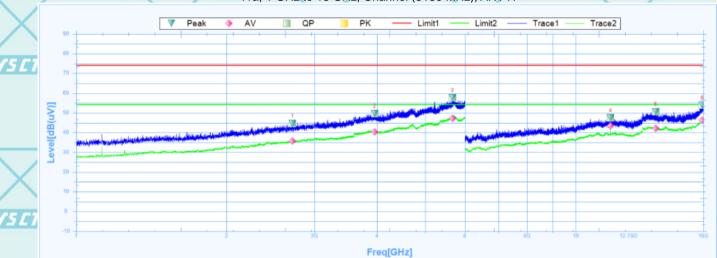
Member of the WSCT Group (WSCT-SA)

Page 22

WSET

SET WSET

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2


7.2.7 TEST RESULTS (ABOVE 1GHZ)

Note: 1. The spurious above 18G is noise only, do not show on the report.

2. Report and only recorded the worst-case scenario 802.11a.

11a, 1 GHz to 18 GHz, Channel (5180 MHz), ANT H

W5CT

Susputed Data List Freq. Reading Factor Level Limit Margin Deg NO. **Polarity** Trace Verdict [dB(uV)] [dB] [MHz] [dB] [dB(uV)] [dB] [°] PΚ 2710.0000 44.54 6.36 38.18 74 -29.46 359.5 Horizontal Pass 2710.0000 35.68 6.36 29.32 54 -18.32 359.5 Horizontal ΑV Pass PK 3958.7500 49.7 11.53 38.17 74 -24.3 357.4 Horizontal Pass 3958.7500 40.38 11.53 28.85 54 -13.62 357.4 Horizontal ΑV Pass 5663.7500 57.54 20.75 -16.46 PΚ 3 36.79 74 164.6 Horizontal Pass 3 47.27 20.75 26.52 54 -6.73 164.6 ΑV 5663.7500 Horizontal Pass 4 11743.5000 47.35 38.83 8.52 74 -26.65 360.1 PK Pass Horizontal Pass 4 11743.5000 43.58 54 -10.42 360.1 ΑV 38.83 4.75 Horizontal 5 14452.5000 50.47 40.91 9.56 74 -23.53 35.2 PK Horizontal Pass 5 ΑV 14452.5000 42.13 40.91 1.22 54 -11.87 35.2 Horizontal Pass 6 17922.0000 53.91 45.98 7.93 74 -20.09 238.4 Horizontal PK Pass 17922.0000 -7.67 46.33 45.98 0.35 54 238.4 Horizontal ΑV Pass

	WSET	WSCT	W5 ET	WSCT	WSCT
	$\overline{}$			\checkmark	\vee
WSET	WSI	7 W.5	W	51-17 W	SET

VSCT WSCT WSCT

WSCT WSCT

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standardization Certification& Testing Group(Shenzhen) Co.,Ltd

sinue of the WSC (Gloup (WSC (GA)

ET W

WSCT

Page 23

WSET

ation& Tes



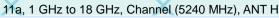
Pass

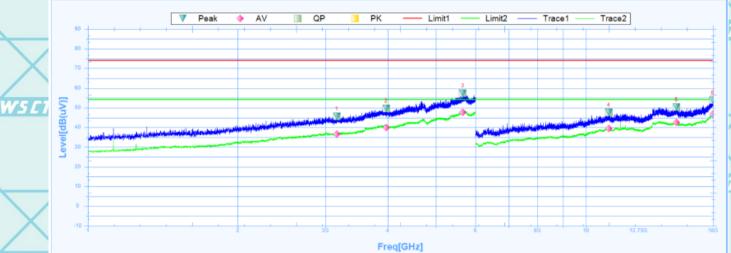
Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

11a, 1 GHz to 18 GHz, Channel (5180 MHz), ANT V

W5E **Susputed Data List** Reading **Factor** Level Limit Margin Deg Freq. NO. **Polarity** Trace Verdict [MHz] [dB(uV)] [dB] [dB(uV)] [dB] [dB] [°] 3110.6250 46.63 7.93 38.7 74 -27.37 242.4 Vertical 3110.6250 36.52 7.93 28.59 54 -17.48 242.4 Vertical ΑV 2 74 -24.9 PK 3841.8750 49.1 10.94 38.16 314.1 Vertical 40.34 10.94 54 314.1 ΑV 3841.8750 29.4 -13.66 Vertical 3 74 PK 5205.0000 58.17 17.09 41.08 -15.83 167.1 Vertical 5205.0000 17.09 -9.85 3 44.15 27.06 54 167.1 Vertical ΑV 4 11743.5000 48.42 38.83 9.59 74 -25.58 5.4 Vertical PΚ 11743.5000 43.39 38.83 4.56 54 -10.61 ΑV 5.4 Vertical 5 14028.0000 50.22 41.46 8.76 74 -23.78 89 Vertical PK 5 14028.0000 41.46 1.2 -11.34 42.66 54 89 Vertical ΑV 6 17986.5000 53.74 46.41 7.33 74 -20.26 60.2 PK Vertical 17986.5000 46.65 0.24 54 -7.35 60.2 46.41 Vertical ΑV

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605





Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT°

W5 E

W5 E

"[Suspu	ited Data Lis	it								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	3158.1250	45.7	8.07	37.63	74	-28.3	317.6	Horizontal	PK	Pass
	1	3158.1250	36.55	8.07	28.48	54	-17.45	317.6	Horizontal	AV	Pass
	2	3970.0000	49.68	11.59	38.09	74	-24.32	190.9	Horizontal	PK	Pass
	2	3970.0000	39.95	11.59	28.36	54	-14.05	190.9	Horizontal	AV	Pass
,	3	5660.6250	57.38	20.73	36.65	74	-16.62	122.7	Horizontal	PK	Pass
4	3	5660.6250	47.59	20.73	26.86	54	-6.41	122.7	Horizontal	AV	Pass
	4	11107.5000	47.59	39.4	8.19	74	-26.41	200.1	Horizontal	PK	Pass
	4	11107.5000	39.6	39.4	0.2	54	-14.4	200.1	Horizontal	AV	Pass
	5	15195.0000	50.34	39.6	10.74	74	-23.66	6.2	Horizontal	PK	Pass
[5	15195.0000	42.65	39.6	3.05	54	-11.35	6.2	Horizontal	AV	Pass
	6	17977.5000	53.83	46.35	7.48	74	-20.17	274.2	Horizontal	PK	Pass
	6	17977.5000	46.84	46.35	0.49	54	-7.16	274.2	Horizontal	AV	Pass

W5C1 WS ET WS CT W5 C1

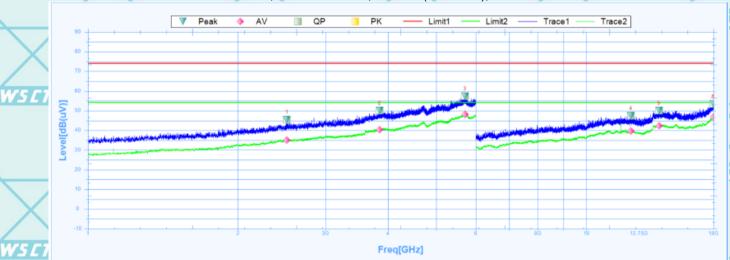
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

W5CT

Page 25

W5 CT



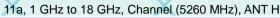
Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

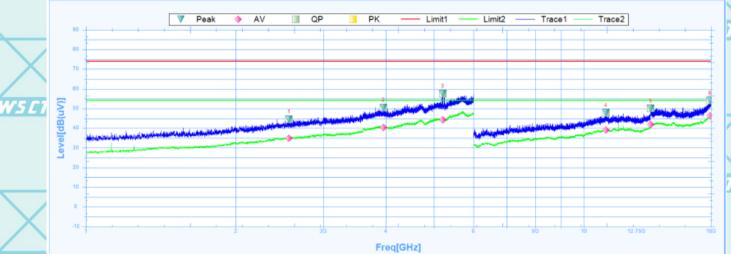
11a, 1 GHz to 18 GHz, Channel (5240 MHz), ANT V

Susputed Data List Reading Factor Limit Margin Freq. Level Deg NO. **Polarity** Trace Verdict [dB] [dB(uV)] [dB(uV)] [MHz] [dB] [dB] [°] 2506.2500 45.52 5.61 39.91 74 -28.48 0.1 Pass Vertical 2506.2500 35.09 5.61 29.48 54 -18.91 0.1 Vertical ΑV Pass 2 50.01 0.1 PK 3848.7500 10.98 39.03 74 -23.99 Vertical Pass 40.4 10.98 54 ΑV 3848.7500 29.42 -13.60.1 Vertical Pass 3 57.47 -16.53 358.2 PK 5707.5000 21.18 36.29 74 Vertical Pass 5707.5000 48.02 -5.98 358.2 ΑV 3 21.18 26.84 54 Vertical Pass 4 12289.5000 47.34 38.69 8.65 74 -26.66 360.1 Vertical PK Pass 12289.5000 39.69 38.69 54 -14.31 360.1 ΑV Pass 1 Vertical 5 13993.5000 50.17 41.48 8.69 74 -23.83 61.5 Vertical PK Pass 5 13993.5000 42.35 41.48 0.87 54 -11.65 ΑV Pass 61.5 Vertical 6 17977.5000 53.36 46.35 7.01 74 -20.64 22.2 PK Pass Vertical 6 17977.5000 46.35 0.5 54 -7.15 22.2 46.85 Vertical ΑV Pass

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

深圳世标检测认证股份有限公司





Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT

WS C

W5 E

_	Suspu	ited Data Lis	st								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2556.2500	44.61	5.89	38.72	74	-29.39	246	Horizontal	PK	Pass
,	1	2556.2500	34.81	5.89	28.92	54	-19.19	246	Horizontal	AV	Pass
	2	3956.8750	50.47	11.53	38.94	74	-23.53	167.1	Horizontal	PK	Pass
	2	3956.8750	40.36	11.53	28.83	54	-13.64	167.1	Horizontal	AV	Pass
Ţ	3	5205.0000	57.63	17.09	40.54	74	-16.37	0	Horizontal	PK	Pass
L	3	5205.0000	44.25	17.09	27.16	54	-9.75	0	Horizontal	AV	Pass
	4	11064.0000	47.85	39.44	8.41	74	-26.15	3.8	Horizontal	PK	Pass
	4	11064.0000	39.11	39.44	-0.33	54	-14.89	3.8	Horizontal	AV	Pass
	5	13624.5000	50.15	40.52	9.63	74	-23.85	310.2	Horizontal	PK	Pass
	5	13624.5000	41.97	40.52	1.45	54	-12.03	310.2	Horizontal	AV	Pass
/	6	17926.5000	54.08	46.01	8.07	74	-19.92	319.7	Horizontal	PK	Pass
	6	17926.5000	46.33	46.01	0.32	54	-7.67	319.7	Horizontal	AV	Pass

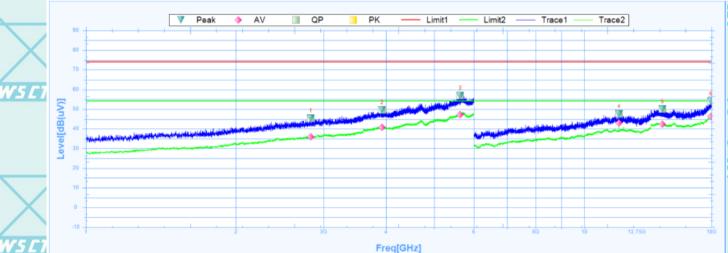
WS ET W5 C

W5C1 WS ET WS CT W5 C1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

W5 CT



Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT

	Suspu	ited Data Lis	it								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
7	1	2825.0000	45.35	7.05	38.3	74	-28.65	32.2	Vertical	PK	Pass
	1	2825.0000	36.01	7.05	28.96	54	-17.99	32.2	Vertical	AV	Pass
•	2	3929.3750	49.67	11.4	38.27	74	-24.33	356.6	Vertical	PK	Pass
	2	3929.3750	40.78	11.4	29.38	54	-13.22	356.6	Vertical	AV	Pass
	3	5637.5000	56.98	20.5	36.48	74	-17.02	105	Vertical	PK	Pass
	3	5637.5000	47.17	20.5	26.67	54	-6.83	105	Vertical	AV	Pass
	4	11743.5000	47.59	38.83	8.76	74	-26.41	222.9	Vertical	PK	Pass
	4	11743.5000	43.12	38.83	4.29	54	-10.88	222.9	Vertical	AV	Pass
	5	14356.5000	50.05	41.04	9.01	74	-23.95	306.6	Vertical	PK	Pass
/	5	14356.5000	42.45	41.04	1.41	54	-11.55	306.6	Vertical	AV	Pass
	6	17952.0000	54.07	46.18	7.89	74	-19.93	93.8	Vertical	PK	Pass
	6	17952.0000	46.36	46.18	0.18	54	-7.64	93.8	Vertical	AV	Pass

WSET	W5 ET*	WSLT	WSCT	W5ET*

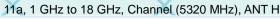
W5 ET W5 CT W5 ET W5 C1

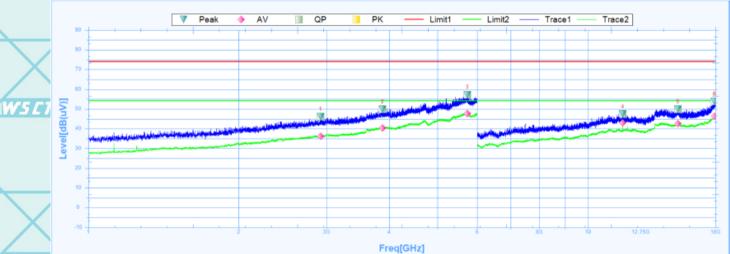
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

Page 28

W5 CT W5 CT





Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT°

W5 E

W5 E

_	Suspu	ited Data Lis	st								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2915.0000	46.17	7.51	38.66	74	-27.83	-0.1	Horizontal	PK	Pass
,	1	2915.0000	36.21	7.51	28.7	54	-17.79	-0.1	Horizontal	AV	Pass
	2	3880.6250	49.84	11.14	38.7	74	-24.16	173	Horizontal	PK	Pass
\	2	3880.6250	40.39	11.14	29.25	54	-13.61	173	Horizontal	AV	Pass
Ţ	3	5737.5000	57.26	20.96	36.3	74	-16.74	212.5	Horizontal	PK	Pass
Ц	3	5737.5000	47.61	20.96	26.65	54	-6.39	212.5	Horizontal	AV	Pass
	4	11743.5000	47.45	38.83	8.62	74	-26.55	22.2	Horizontal	PK	Pass
	4	11743.5000	43.04	38.83	4.21	54	-10.96	22.2	Horizontal	AV	Pass
	5	15138.0000	49.94	39.77	10.17	74	-24.06	111.8	Horizontal	PK	Pass
	5	15138.0000	42.54	39.77	2.77	54	-11.46	111.8	Horizontal	AV	Pass
1	6	17925.0000	53.88	46	7.88	74	-20.12	360.1	Horizontal	PK	Pass
	6	17925 0000	46.45	46	0.45	54	-7 55	360.1	Horizontal	ΔV	Pass

W5 C1 WS ET WS CT W5 C1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

W5C7





Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT

W5 C

	Suspu	ited Data Lis	st									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	3016.2500	45.21	8.12	37.09	74	-28.79	277	Vertical	PK	Pass	4
/	1	3016.2500	37.13	8.12	29.01	54	-16.87	277	Vertical	AV	Pass	
\	2	4010.6250	49.85	11.74	38.11	74	-24.15	0	Vertical	PK	Pass	
	2	4010.6250	40.53	11.74	28.79	54	-13.47	0	Vertical	AV	Pass	
Ľ	3	5203.7500	58.02	17.09	40.93	74	-15.98	359.5	Vertical	PK	Pass	
	3	5203.7500	44.67	17.09	27.58	54	-9.33	359.5	Vertical	AV	Pass	
	4	11743.5000	48.44	38.83	9.61	74	-25.56	284.8	Vertical	PK	Pass	
	4	11743.5000	43.02	38.83	4.19	54	-10.98	284.8	Vertical	AV	Pass	
	5	14175.0000	50.02	41.27	8.75	74	-23.98	214.3	Vertical	PK	Pass	7
	5	14175.0000	42.37	41.27	1.1	54	-11.63	214.3	Vertical	AV	Pass	
X	6	17992.5000	54.22	46.45	7.77	74	-19.78	320.7	Vertical	PK	Pass	
1	6	17992.5000	46.99	46.45	0.54	54	-7.01	320.7	Vertical	AV	Pass	

W5 C7

W5 E1 W5 C W5 C

W5 CT

W5 CT WS ET WS CT W5 E1

Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

W5 CT

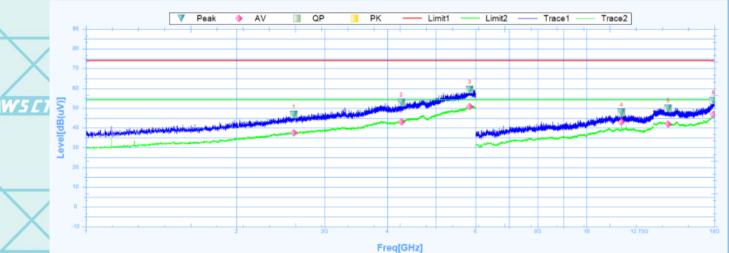
深圳世标检测认证股份有限公司

Page 30

W5CT

W5 CT

W5CT



Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT

W5 C

W5 E

_	Suspu	ited Data Lis	st									7
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2601.8750	46.74	5.92	40.82	74	-27.26	353.9	Horizontal	PK	Pass	7
	1	2601.8750	37.57	5.92	31.65	54	-16.43	353.9	Horizontal	AV	Pass	
	2	4266.8750	52.85	12.76	40.09	74	-21.15	245.9	Horizontal	PK	Pass	
1	2	4266.8750	43.07	12.76	30.31	54	-10.93	245.9	Horizontal	AV	Pass	
	3	5840.6250	59.4	20.08	39.32	74	-14.6	-0.1	Horizontal	PK	Pass	
7	3	5840.6250	50.84	20.08	30.76	54	-3.16	-0.1	Horizontal	AV	Pass	7
	4	11743.5000	47.78	38.83	8.95	74	-26.22	268.2	Horizontal	PK	Pass	
	4	11743.5000	43.11	38.83	4.28	54	-10.89	268.2	Horizontal	AV	Pass	
	5	14556.0000	49.93	40.78	9.15	74	-24.07	90.2	Horizontal	PK	Pass	
	5	14556.0000	41.88	40.78	1.1	54	-12.12	90.2	Horizontal	AV	Pass	4
/	6	17935.5000	53.95	46.07	7.88	74	-20.05	306.5	Horizontal	PK	Pass	
	6	17935.5000	46.82	46.07	0.75	54	-7.18	306.5	Horizontal	AV	Pass	

W5 C

W5 CT

W5C1 WS ET WS CT W5 C1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

Page 31

W5C7 W5CT

W5ET

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5 CT

WSE

W5 E

	Suspu	ited Data Lis	st								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2611.8750	46.68	5.96	40.72	74	-27.32	333.2	Vertical	PK	Pass
7	1	2611.8750	37.9	5.96	31.94	54	-16.1	333.2	Vertical	AV	Pass
	2	4046.2500	51.43	11.81	39.62	74	-22.57	356.6	Vertical	PK	Pass
\	2	4046.2500	42.31	11.81	30.5	54	-11.69	356.6	Vertical	AV	Pass
Ţ	3	5916.2500	59.37	20.56	38.81	74	-14.63	283	Vertical	PK	Pass
	3	5916.2500	50.26	20.56	29.7	54	-3.74	283	Vertical	AV	Pass
	4	11743.5000	48.09	38.83	9.26	74	-25.91	98.6	Vertical	PK	Pass
	4	11743.5000	43.06	38.83	4.23	54	-10.94	98.6	Vertical	AV	Pass
	5	14055.0000	49.94	41.43	8.51	74	-24.06	6.6	Vertical	PK	Pass
	5	14055.0000	42.83	41.43	1.4	54	-11.17	6.6	Vertical	AV	Pass
1	6	17877.0000	53.81	45.68	8.13	74	-20.19	293.4	Vertical	PK	Pass
	6	17877.0000	45.69	45.68	0.01	54	-8.31	293.4	Vertical	AV	Pass

WSCT WSCT WSCT WSCT WSCT

WSCT" WSCT" WSCT" WSCT

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. FEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

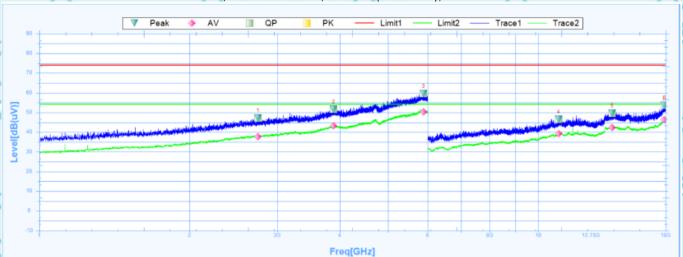
long Province。China. http://www.wsct-cert.com World Standard vation Certification& Testing Group(Shenzhen) Co., L

VS CT WS CI

WSET

Page 32

WSET WSET



Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT

11a, 1 GHz to 18 GHz, Channel (5700 MHz), ANT H

W5 E

W5 CI

	Suspu	ited Data Lis	st								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2743.1250	47.15	6.51	40.64	74	-26.85	95.4	Horizontal	PK	Pass
,	1	2743.1250	37.63	6.51	31.12	54	-16.37	95.4	Horizontal	AV	Pass
	2	3888.7500	51.55	11.19	40.36	74	-22.45	310.5	Horizontal	PK	Pass
/	2	3888.7500	43.2	11.19	32.01	54	-10.8	310.5	Horizontal	AV	Pass
7	3	5891.2500	59.51	20.41	39.1	74	-14.49	109.6	Horizontal	PK	Pass
24	3	5891.2500	50.23	20.41	29.82	54	-3.77	109.6	Horizontal	AV	Pass
	4	10989.0000	46.55	39.48	7.07	74	-27.45	298.1	Horizontal	PK	Pass
	4	10989.0000	39.22	39.48	-0.26	54	-14.78	298.1	Horizontal	AV	Pass
	5	14062.5000	49.73	41.42	8.31	74	-24.27	96.2	Horizontal	PK	Pass
	5	14062.5000	42.37	41.42	0.95	54	-11.63	96.2	Horizontal	AV	Pass
/	6	17895.0000	53.69	45.8	7.89	74	-20.31	24.4	Horizontal	PK	Pass
	6	17895 0000	46.42	45.8	0.62	54	-7 58	24.4	Horizontal	Δ\/	Page

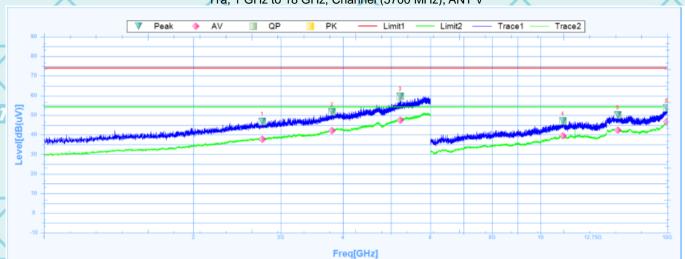
W5 C1 WS ET WS CT W5 E1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

Page 33

W5C7



Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT

11a, 1 GHz to 18 GHz, Channel (5700 MHz), ANT V

W5 C

	Suspu	ited Data Lis	st								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2750.0000	46.79	6.56	40.23	74	-27.21	0	Vertical	PK	Pass
	1	2750.0000	37.7	6.56	31.14	54	-16.3	0	Vertical	AV	Pass
	2	3802.5000	51.7	10.7	41	74	-22.3	156.3	Vertical	PK	Pass
\	2	3802.5000	42.08	10.7	31.38	54	-11.92	156.3	Vertical	AV	Pass
r	3	5217.5000	59.52	17.1	42.42	74	-14.48	162.3	Vertical	PK	Pass
L	3	5217.5000	47.4	17.1	30.3	54	-6.6	162.3	Vertical	AV	Pass
	4	11086.5000	46.96	39.42	7.54	74	-27.04	360.1	Vertical	PK	Pass
	4	11086.5000	39.42	39.42	0	54	-14.58	360.1	Vertical	AV	Pass
	5	14310.0000	50.18	41.1	9.08	74	-23.82	124.8	Vertical	PK	Pass
	5	14310.0000	42.28	41.1	1.18	54	-11.72	124.8	Vertical	AV	Pass
/	6	17959.5000	53.6	46.23	7.37	74	-20.4	249.2	Vertical	PK	Pass
	6	17959.5000	46.72	46.23	0.49	54	-7.28	249.2	Vertical	AV	Pass

		W S L I			
	X	\times	\times	\times	
M	YS ET	WS ET*	WSET	W5 CT°	WSET
\times	X	\times	\times		
WSET	WSET	WSET	W5 L	T WS	CT .
	X	X	\times	\times	\times

 \times

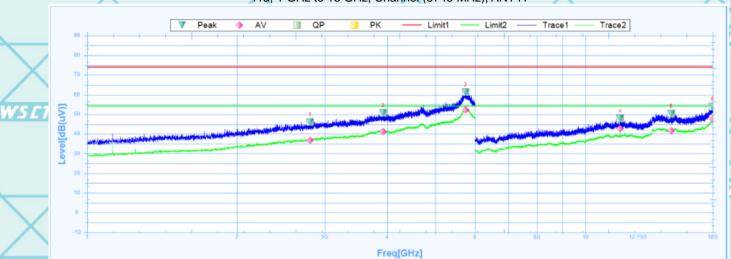
DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standard zation Certification & Testing Group(Shenzhen) Co.,Lt

Page 34

WSCT WSCT

W5ET



Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT

11a, 1 GHz to 18 GHz, Channel (5745 MHz), ANT H

W5 E

W5L

24	Suspu	ited Data Lis	st									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2800.0000	46.17	6.97	39.2	74	-27.83	-0.1	Horizontal	PK	Pass	1
,	1	2800.0000	36.83	6.97	29.86	54	-17.17	-0.1	Horizontal	AV	Pass	Ī
	2	3926.8750	50.7	11.38	39.32	74	-23.3	226.8	Horizontal	PK	Pass	
	2	3926.8750	41.21	11.38	29.83	54	-12.79	226.8	Horizontal	AV	Pass	
7	3	5746.8750	61.44	20.85	40.59	74	-12.56	286.6	Horizontal	PK	Pass	
74	3	5746.8750	52.31	20.85	31.46	54	-1.69	286.6	Horizontal	AV	Pass	
	4	11745.0000	47.94	38.83	9.11	74	-26.06	360	Horizontal	PK	Pass	•
	4	11745.0000	42.71	38.83	3.88	54	-11.29	360	Horizontal	AV	Pass	
	5	14857.5000	50.33	40.39	9.94	74	-23.67	255.1	Horizontal	PK	Pass	
	5	14857.5000	41.66	40.39	1.27	54	-12.34	255.1	Horizontal	AV	Pass	4
/	6	17998.5000	53.95	46.49	7.46	74	-20.05	350.2	Horizontal	PK	Pass	
	6	17998.5000	47.45	46.49	0.96	54	-6.55	350.2	Horizontal	AV	Pass	

W5 C

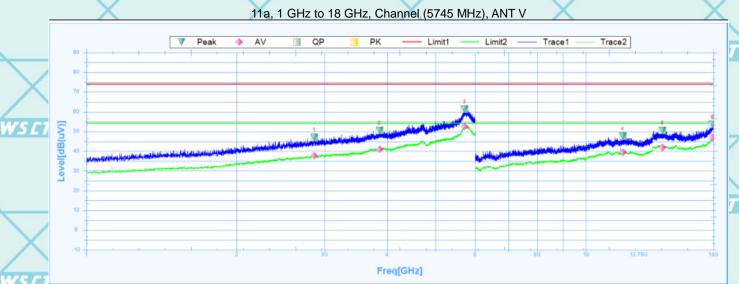
W5C1 WS ET WS CT W5 C1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue hiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

深圳世标检测认证股份有限公司

Page 35

W5 CT



Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT"

97												J
	Susputed Data List											
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2857.5000	46.9	7.16	39.74	74	-27.1	0.1	Vertical	PK	Pass	ij
1	1	2857.5000	37.65	7.16	30.49	54	-16.35	0.1	Vertical	AV	Pass	ĺ
	2	3859.3750	50.51	11.03	39.48	74	-23.49	0.1	Vertical	PK	Pass	ĺ
	2	3859.3750	41	11.03	29.97	54	-13	0.1	Vertical	AV	Pass	l
	3	5717.5000	61.41	21.18	40.23	74	-12.59	143.3	Vertical	PK	Pass	l
	3	5717.5000	52.58	21.18	31.4	54	-1.42	143.3	Vertical	AV	Pass	
	4	11851.5000	47.64	38.73	8.91	74	-26.36	203.8	Vertical	PK	Pass	ľ
	4	11851.5000	39.49	38.73	0.76	54	-14.51	203.8	Vertical	AV	Pass	
	5	14221.5000	50.54	41.21	9.33	74	-23.46	305.4	Vertical	PK	Pass	
	5	14221.5000	41.87	41.21	0.66	54	-12.13	305.4	Vertical	AV	Pass	μ
	6	17931.0000	53.59	46.04	7.55	74	-20.41	248	Vertical	PK	Pass	l
	6	17931.0000	47.06	46.04	1.02	54	-6.94	248	Vertical	AV	Pass	l

	WSET	WSCT	WSET	WSET	WSET
WSET	$\langle \hspace{0.1cm} \rangle$			CT WS	CT CT

WSET WSET WSET

15

WSLT SONOM * PITTO

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province,

深圳世标检测认证股份有限公司
World Standard Zation Certification& Testing Group (Shenzhen) Co., Ltd

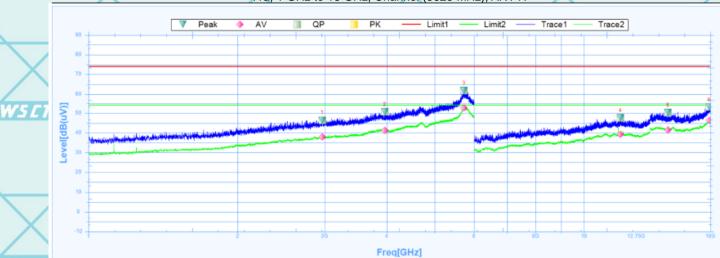
EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com

Page 36

WSCT W

VS CT WS CT

W5CT



Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT"

11a, 1 GHz to 18 GHz, Channel (5825 MHz), ANT H

W5 CI

W5 E

	Susputed Data List										
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2963.7500	46.44	7.66	38.78	74	-27.56	210	Horizontal	PK	Pass
	1	2963.7500	38.05	7.66	30.39	54	-15.95	210	Horizontal	AV	Pass
	2	3963.1250	50.74	11.55	39.19	74	-23.26	359.5	Horizontal	PK	Pass
	2	3963.1250	41.16	11.55	29.61	54	-12.84	359.5	Horizontal	AV	Pass
	3	5728.1250	61.7	21.05	40.65	74	-12.3	289	Horizontal	PK	Pass
/	3	5728.1250	52.74	21.05	31.69	54	-1.26	289	Horizontal	AV	Pass
	4	11850.0000	47.76	38.74	9.02	74	-26.24	360.1	Horizontal	PK	Pass
	4	11850.0000	39.36	38.74	0.62	54	-14.64	360.1	Horizontal	AV	Pass
	5	14782.5000	50.3	40.48	9.82	74	-23.7	330.5	Horizontal	PK	Pass
	5	14782.5000	41.43	40.48	0.95	54	-12.57	330.5	Horizontal	AV	Pass
	6	17905.5000	53.25	45.87	7.38	74	-20.75	360.1	Horizontal	PK	Pass
	6	17905.5000	46.42	45.87	0.55	54	-7.58	360.1	Horizontal	AV	Pass

WSCT WSCT WSCT WSCT WSCT WSCT

W5 CT

WSCT WSCT WSCT WSCT

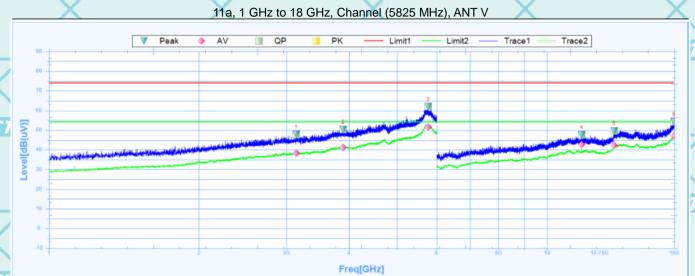
ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

深圳世标检测认证股份有限公司
World Standard Zation Certification & Testing Group (Shenzhen) Co., Ltd

L: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://
mber of the WSCT Group (WSCT SA) Page 37

WSET

WS CT WS CT



Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

AWSLI

W5 C

Suspu	Susputed Data List										
NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
1	3133.1250	47.98	7.98	40	74	-26.02	155.1	Vertical	PK	Pass	7
1	3133.1250	38.32	7.98	30.34	54	-15.68	155.1	Vertical	AV	Pass	
2	3896.8750	50.36	11.23	39.13	74	-23.64	66.6	Vertical	PK	Pass	
2	3896.8750	41.2	11.23	29.97	54	-12.8	66.6	Vertical	AV	Pass	
3	5773.1250	62.05	20.57	41.48	74	-11.95	20.1	Vertical	PK	Pass	
3	5773.1250	51.75	20.57	31.18	54	-2.25	20.1	Vertical	AV	Pass	
4	11745.0000	47.71	38.83	8.88	74	-26.29	3.5	Vertical	PK	Pass	-
4	11745.0000	42.8	38.83	3.97	54	-11.2	3.5	Vertical	AV	Pass	
5	13632.0000	49.64	40.54	9.1	74	-24.36	166.6	Vertical	PK	Pass	
5	13632.0000	42.43	40.54	1.89	54	-11.57	166.6	Vertical	AV	Pass	7
6	17994.0000	54.23	46.46	7.77	74	-19.77	0.5	Vertical	PK	Pass	
6	17994.0000	47.24	46.46	0.78	54	-6.76	0.5	Vertical	AV	Pass	

Note:

1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.

2. Emission Level= Reading Level+ Probe Factor +Cable Loss.

- 3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. EUT has been tested in unfolded states, and the report only reflects data in the unfolded state (worst-case scenario)

WSCT WSCT WSCT WSCT

WS CT WS CT

SET WSE

Countries Testing On

W5CT

WSIT

WELT

WSCT

China.
深圳世标检测认证股份有限公司
world Standard Zation Certification& Testing Grou

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

World Standard Zation Certification& Testing Group

lember of the WSCT Group (WSCT SA)

age 50

Page 38

SCT WSCT

ac-MRA

Mahalalala

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

W5 CT

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

7.2.8 RESTRICTED BANDS REQUIREMENTS

	rest Nesuit	Offiny recorde	d tile wol	St case in the	e report).				
	Frequency	Reading	Correct	Emission	Limit	Margin	Polar	Detector	W5
	. ,	S	Factor	Level					
((MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V		
			802.11	a(6Mbps) Test	t channel:36				
<i>C 1</i>	5150	64.60	-5.24	59.36	68.23	8.87	_H_/	PK	_
	5150	54.17	-5.24	48.93	54	5.07	¥	AV	
	5150	63.73	-4.87	58.86	68.23	9.37	V	PK	/
	5150	54.11	-4.87	49.24	54	4.76	5 V	AV	4W5
/		\times	802.11	a(6Mbps) Test	t channel:48			X	
	5350	64.82	-5.24	59.58	68.23	8.65	Н	PK	
57	5350	53.42	-5.24	48.18	54	5.82	Н/	WAV.7°	_
	5350	62.64	-4.87	57.77	68.23	10.46	V	PK	
	5350	52.82	-4.87	47.95	54	6.05	V	AV	
	W5 CT		802.11a	a(6Mbps) Test	channel: 165	W	<u>'5 [T </u>		W5
/	5850	63.25	-5.24	58.01	122.23	64.22	Н	PK	
/	5850	55.97	-4.87	51.10	122.23	71.13	V	PK	

Note: Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Attenuation factor + Cable loss

Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Level (dB μ V) – Limits (dB μ V)

WS CI W5 C W5E W5 CI

WS ET

W5 C1 WS ET WS CT W5 E1

hiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

深圳世标检测认证股份有限公司 Page 39

W5 E1

W5C1

WS CI

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

7.3 ANTENNA REQUIREMENT

The EUT'S antenna is met the requirement of FCC part 15C Standard requirement: section 15.203 and FCC part 15C section 15.407.

FCC part 15C section 15.203 and FCC part 15C section 15.407 requirements: Systems operating in the 5150~5850MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Wi-Fi antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is "MAIN:3.07dBi ,AUX:2.99 dBi".

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = GANT + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices.

Array Gain = 10 log(NANT/NSS=1) dB.

For power measurements on IEEE 802.11 devices.

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4.

Directional gain may be calculated by using the formulas applicable to equal gain antennas

GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain GANT is set equal to the antenna having the highest gain, i.e., F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The directional gain "DG" is calculated as following table.

<cdd modes=""></cdd>	Ant1	Ant2	DG for power	DG for PSD	
CODD Modes>	(dBi)	(dBi)	(dBi)	(dBi)	
5180~5825MHz	3.07	75 (2.99	3.075 [7]	6.04/5 <i>[T</i>]	

Power limit reduction = Composite gain -6dBi, (min = 0) PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

Page 40

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

7.4 EMISSION BANDWIDTH

7.4.1 TEST EQUIPMENT

Please refer to Section 5 this report.

WSCT°

W5 CT

W5 CI

7.4.2 TEST PROCEDURE

Auren	-26dB Bandwidth	and 99% Occupied Bandwidth:	THE CO.						
W5 [1	Test Method:	a)The transmitter was radiated to	the spectrum analyzer in peak hold mode.						
			the emission that is 26 dB down from the peak of						
	the emission Compare this with the RBW setting of the analyzer. Readjust RBW								
			led until the RBW/EBW ratio is approximately						
	1%.								
	Toot Equipment S	etting – 26dB Bandwidth:	Test Equipment Setting – 99%% Bandwidth:	W5 CT°					
	a)Attenuation: Aut		a)Span: 1.5 times to 5.0 times the OBW						
		v: > 26dB Bandwidth	b)RBW: 1 % to 5 % of the OBW						
		ately 1% of the emission bandwidth	c)VBW: ≥ 3 x RBW						
	d)VBW: VBW > RI		d)Detector: Peak						
WSCI	e)Detector: Peak	WSCT WSCT	e)Trace: Max Hold 5						
WELL	f)Trace: Max Hold	VEISE VIELS	o) riddo: max rold						
	g)Sweep Time: Au	ito							
	6 dB Bandwidth:	X	X	X					
	Test Method:	a)The transmitter was radiated to the	spectrum analyzer in peak hold mode.						
	ALLE CE	b)Test was performed in accordance	with KDB789033 D02 v01 for Compliance Testing of	TAKE CE					
	W5 CT	Unlicensed National Information Infra	structure (U-NII) Devices - section (C) Emission	WSLI					
		Bandwidth.							
X			med in accordance with KDB662911 D01 v02r01						
		Emissions							
4		Testing of Transmitters with Multiple (
WS CI	Toot Faulinment C	d)Measured the spectrum width with p	power higher than 6dB below carrier.						
	Test Equipment So a)Attenuation: Aut		a\Datastari Dook						
		o ∕: > 6dB Bandwidth	e)Detector: Peak f)Trace: Max Hold						
	c)RBW: 100kHz	. > oub bandwidth	g)Sweep Time: Auto						
	d)VBW: ≥ 3 x RBV	V	g/Sweep Time. Auto						
		cted Output Power Measurement:	WSCT WSCT	W5CT [°]					
	Test Method:	a)The transmitter output (antenna por	t) was connected to the power meter.						
		b)Test was performed in accordance	with KDB789033 D02 v01 for Compliance Testing of						
			structure (U-NII) Devices - section (E) Maximum						
W5 C1		(Measurement using a gated RF aver	conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G						
	(Measurement using a gated RF average power meter).								
	c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01								
		c)Multiple antenna systems was performanted by the company of the	ormed in accordance with KDB662911 D01 v02r01						
	\times	c)Multiple antenna systems was perform Emissions Testing of Transmitters with Multiple (ormed in accordance with KDB662911 D01 v02r01 Outputs in the Same Band.						
	X	c)Multiple antenna systems was perform Emissions Testing of Transmitters with Multiple (d)When measuring maximum conductions.	Ormed in accordance with KDB662911 D01 v02r01 Outputs in the Same Band. ted output power with multiple antenna systems, add						
		c)Multiple antenna systems was perform Emissions Testing of Transmitters with Multiple (d)When measuring maximum conductive every result of the values by mathematics.	Ormed in accordance with KDB662911 D01 v02r01 Outputs in the Same Band. ted output power with multiple antenna systems, add	WSCT					
		c)Multiple antenna systems was perform Emissions Testing of Transmitters with Multiple (d)When measuring maximum conductive every result of the values by mathematetting: Detector - Average	Ormed in accordance with KDB662911 D01 v02r01 Outputs in the Same Band. ted output power with multiple antenna systems, add	WSCT					
	Power Spectral D	c)Multiple antenna systems was performed Emissions Testing of Transmitters with Multiple (d)When measuring maximum conduct every result of the values by mathematetting: Detector - Average Density:	Ormed in accordance with KDB662911 D01 v02r01 Outputs in the Same Band. Ited output power with multiple antenna systems, add atic formula.	WSCT					
$\overline{}$		c)Multiple antenna systems was performed Emissions Testing of Transmitters with Multiple (d)When measuring maximum conduction every result of the values by mathematic enting: Detector - Average pensity: a)The transmitter output (antenna por	Outputs in the Same Band. Ited output power with multiple antenna systems, add atic formula. It was connected RF switch to the spectrum analyzer.	WSCT					
\times	Power Spectral D	c)Multiple antenna systems was performed Emissions Testing of Transmitters with Multiple (d)When measuring maximum conduct every result of the values by mathematering: Detector - Average Density: a)The transmitter output (antenna portion)Test was performed in accordance of the conduction of the co	Outputs in the Same Band. Ited output power with multiple antenna systems, add atic formula. It) was connected RF switch to the spectrum analyzer. with KDB789033 D02 v01 for Compliance Testing of	WSCT					
W15 G	Power Spectral D	c)Multiple antenna systems was performissions Testing of Transmitters with Multiple (d)When measuring maximum conductivery result of the values by mathematic etting: Detector - Average Density: a)The transmitter output (antenna por b)Test was performed in accordance of Unlicensed National Information Infras	Outputs in the Same Band. Ited output power with multiple antenna systems, add atic formula. It was connected RF switch to the spectrum analyzer.	WSCT					
WSEI	Power Spectral D	c)Multiple antenna systems was performissions Testing of Transmitters with Multiple (d)When measuring maximum conductive every result of the values by mathematic etting: Detector - Average Density: a)The transmitter output (antenna portion)Test was performed in accordance of Unlicensed National Information Infrast Spectral Density (PSD).	Outputs in the Same Band. Ited output power with multiple antenna systems, add atic formula. It was connected RF switch to the spectrum analyzer. With KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (F) Maximum Power	WSCT					
WSE	Power Spectral D	c)Multiple antenna systems was performed Emissions Testing of Transmitters with Multiple (d)When measuring maximum conductive every result of the values by mathematic etting: Detector - Average Density: a)The transmitter output (antenna por b)Test was performed in accordance of Unlicensed National Information Infrast Spectral Density (PSD). c)Multiple antenna systems was performed.	Outputs in the Same Band. Ited output power with multiple antenna systems, add atic formula. It) was connected RF switch to the spectrum analyzer. with KDB789033 D02 v01 for Compliance Testing of	WSCT					
WSE	Power Spectral D	c)Multiple antenna systems was performissions Testing of Transmitters with Multiple (d)When measuring maximum conductive every result of the values by mathematic etting: Detector - Average Density: a)The transmitter output (antenna portion)Test was performed in accordance of Unlicensed National Information Infrast Spectral Density (PSD). c)Multiple antenna systems was performed Power	Outputs in the Same Band. Ited output power with multiple antenna systems, add atic formula. It was connected RF switch to the spectrum analyzer. With KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (F) Maximum Power ormed in accordance KDB662911 D01 v02r01 in-Band	WSCT					
WSG	Power Spectral D	c)Multiple antenna systems was performissions Testing of Transmitters with Multiple (d)When measuring maximum conductive every result of the values by mathematic etting: Detector - Average Density: a)The transmitter output (antenna portion)Test was performed in accordance of Unlicensed National Information Infrast Spectral Density (PSD). c)Multiple antenna systems was performed Power	Outputs in the Same Band. Ited output power with multiple antenna systems, add atic formula. It was connected RF switch to the spectrum analyzer. With KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (F) Maximum Power	WSCT					
WSE	Power Spectral D	c)Multiple antenna systems was performissions Testing of Transmitters with Multiple (d)When measuring maximum conductive every result of the values by mathematic etting: Detector - Average Density: a)The transmitter output (antenna portion)Test was performed in accordance Unlicensed National Information Infrast Spectral Density (PSD). c)Multiple antenna systems was performed power Spectral Density (PSD) Measurement outputs. d)When measuring first spectral bin of	Outputs in the Same Band. Ited output power with multiple antenna systems, add atic formula. Itel was connected RF switch to the spectrum analyzer. With KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (F) Maximum Power ormed in accordance KDB662911 D01 v02r01 in-Band ats (a) Measure and sum the spectra across the	WSCT					
WSG	Power Spectral D	c)Multiple antenna systems was performissions Testing of Transmitters with Multiple of d)When measuring maximum conductive every result of the values by mathematering: Detector - Average Density: a)The transmitter output (antenna portion b)Test was performed in accordance of Unlicensed National Information Infrast Spectral Density (PSD). c)Multiple antenna systems was performed power Spectral Density (PSD) Measurement outputs. d)When measuring first spectral bin of output 2 and that from the first spectral	Outputs in the Same Band. Ited output power with multiple antenna systems, add atic formula. It was connected RF switch to the spectrum analyzer. With KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (F) Maximum Power Ormed in accordance KDB662911 D01 v02r01 in-Band ats (a) Measure and sum the spectra across the	WSCT					
WSEI	Power Spectral D	c)Multiple antenna systems was performissions Testing of Transmitters with Multiple (d)When measuring maximum conductive every result of the values by mathematic etting: Detector - Average Density: a)The transmitter output (antenna portion)Test was performed in accordance Unlicensed National Information Infrast Spectral Density (PSD). c)Multiple antenna systems was performed Density (PSD). c)Multiple antenna systems was performed Density (PSD) Measurement Outputs. d)When measuring first spectral bin of Output 2 and that from the first spectral Obtain the value for	Outputs in the Same Band. Ited output power with multiple antenna systems, add atic formula. Itel was connected RF switch to the spectrum analyzer. With KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (F) Maximum Power ormed in accordance KDB662911 D01 v02r01 in-Band ats (a) Measure and sum the spectra across the	WSCT					

DD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

frequency bins is computed in the same way.

深圳世标检测认证股份有限公司 # P1

Member of the WSCT Group (WSCT SA

Page 41

e)For 5.725~5.85 GHz, the measured result of PSD level must add 10log(500kHz/RBW)

WSCT

WSCT

1 age 4

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

and the final result should ≤ 30 dBm. Test Equipment Setting: a)Attenuation: Auto e)Detector: RMS f)Trace: AVERAGE b)Span Frequency: Encompass the entire emissions bandwidth (EBW) of g)Sweep Time: Auto the signal c)RBW: 1000 kHz h)Trace Average: 100 times d)VBW: 3000 kHz Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement. **Frequency Stability Measurement:** Test Method: a) The transmitter output (antenna port) was connected to the spectrum analyzer. b)EUT have transmitted absence of modulation signal and fixed channelize. c)Set the spectrum analyzer span to view the entire absence of modulation emissions d)Set RBW = 10 kHz. VBW = 10 kHz with peak detector and maxhold settings. e)fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 106 ppm and the limit is less than ±20ppm (IEEE 802.11nspecification). f)The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the g)Extreme temperature is 0°C~35°C Test Equipment Setting: a)Attenuation: Auto e)Sweep Time: Auto b)Span Frequency: Entire absence of modulation emissions bandwidth c)RBW: 10 kHz d)VBW: 10 kHz 7.4.3 CONFIGURATION OF THE EUT Same as section 3.4 of this report 7.4.4 EUT OPERATING CONDITION Same as section 3.5 of this report.

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

FAX: 0086-755-86376605

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT

	7.4.5 LIMIT		
	-26dB Bandwidth and 99% Occupied Bandwidth:		
	Limit: No restriction limits.	WELLT	WALLET.
	-6 dB Bandwidth:	ANSLI ANSLI A	MALL
		inimum 6dB bandwidth shall be at least 500 kHz.	
		ITIIITIUTII OOD DATIUWIUITI STIAII DE ALIEASI 500 KHZ.	
	Test Equipment Setting:		
	a)Attenuation: Auto	e)Detector: Peak	
	b)Span Frequency: > 6dB Bandwidth	f)Trace: Max Hold	
1561	c)RBW: 100kHz	g)Sweep Time: Auto	
	d)VBW: ≥ 3 x RBW	0/	
	Maximum Conducted Output Power Measurement:		
	⊠ 5.15~5.2	05 CU ₇	X
	Limit of Outdoor access point:	Limit of Indoor access point:	
	The maximum conducted output power over the	The maximum conducted output power over the	WS CT
	frequency band of operation shall not exceed 1 W	frequency band of operation shall not exceed 1 W	
	(30dBm) provided the maximum antenna gain does not	(30dBm) provided the maximum antenna gain does	
X	exceed 6 dBi. If transmitting antennas of directional gain	not	
	greater than 6 dBi are used, both the maximum	exceed 6 dBi. If transmitting antennas of directional	
	conducted output power and the maximum power	gain greater than 6 dBi are used, both the maximum	
VSFT	spectral density shall be reduced by the amount in dB	conducted output power and the maximum power	
	that the directional gain of the antenna exceeds 6 dBi.	spectral density shall be reduced by the amount in	
	The maximum e.i.r.p. at any elevation angle above 30	dB	X
	degrees as measured from the horizon must not exceed	that the directional gain of the antenna exceeds 6	
	125 mW (21 dBm).	dBi.	
	Limit of Fixed point-to-point access points:		W5CT°
	The maximum conducted output power over the	The maximum conducted output power over the	- IF13
	frequency band of operation shall not exceed 1 W	frequency band of operation shall not exceed 250	
	(30dBm). Fixed point-to-point U-NII devices may employ	mW	
	antennas with directional gain up to 23 dBi without any	(24dBm) provided the maximum antenna gain does	
VEFT	corresponding reduction in the maximum conducted	not	70
	output power or maximum power spectral density. For	exceed 6 dBi. If transmitting antennas of directional	
	fixed point-to-point transmitters that employ a directional	gain greater than 6 dBi are used, both the maximum	
	antenna gain greater than 23 dBi, a 1 dB reduction in	conducted output power and the maximum power	
	maximum conducted output power and maximum	spectral density shall be reduced by the amount in	
	power spectral density is required for each 1 dB of	dB	
	antenna gain in excess of 23 dBi.	that the directional gain of the antenna exceeds 6	THE CT.
		dBi.	AWSLI
	⊠5.25-5.35 GHz & ∑		
	The maximum conducted output power over the frequency		
	mW (24dBm) or 11 dBm 10 log B, where B is the 26 dB e		
AFF FT	antennas of directional gain greater than 6 dBi are used, l		
VJLI	maximum power spectral density shall be reduced by the	amount in dB that the directional gain of the antenna	
	exceeds 6 dBi.		
	∑5.725~5.	.85 GHz	
	The maximum conducted output power over the frequence		
	transmitting antennas of directional gain greater than 6 de		
	power and the maximum power spectral density shall be r		THE CO
	the antenna exceeds 6 dBi. However, fixed point-to-point		W5CT"
	transmitting antennas with	o mi devides operating in this band may employ	
		ling reduction in transmitter announts of sever	
	directional gain greater than 6 dBi without any correspond	aing reduction in transmitter conducted power.	
	Power Spectral Density		
	⊠5.15~5.	25 GHz	
156	Limit of Outdoor access point: 17 dBm/MHz	Limit of Indoor access point: 17 dBm/MHz	
	Limit of Fixed point-to-point access points: 17	Limit of Mobile and portable client devices: 11	
	dBm/MHz	dBm/MHz	X
	□5.25-5.35 GHz	11 dBm/MHz	
	□5.470-5.725 GHz	11 dBm/MHz	
	∑5.725~5.85 GHz	30 dBm/500kHz	ation& Testin
	Frequency Stability Measurement:	a constant of the constant of	S.C.
\/		the band of operation under all conditions of normal	0
X			Mar Casal S
	operation as specified in the user's ma		he he
		ance shall be ± 20 ppm maximum for the 5 GHz band	HZ h
15 4	(IEEE 802.11n specification).	WSTT	3
		00	1.00

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT°

7.4.6 TEST RESULT

AWS CT

WSET

WSET

W5 CT

-26dB Bandwidth and 99% Occupied Bandwidth

<u></u>	Product	: EUT-Sample	Test Mode	: See section 3.4	
7	Test Item	: -26dB Bandwidth/-6dB Bandwidth and 99% Occupied Bandwidth	Temperature	: 25 ℃	
	Test Voltage	: DC 11.55V	Humidity	: 56%RH	
	Test Result	: PASS	WSIT	WSIT	

-26dB Bandwidth

-260B Bandwigth/					
	Mode	Frequency (MHz)	-26 dB Bandwidth (MHz)	Verdict	
Anna Anna	а	5180	18.297	Pass	The state of the s
W5CT W5	L a	5240	18.287	Pass	WSET
	а	5260	18.277	Pass	
	а	5320	18.866	Pass	
	а	5500	18.293	Pass	
	а	5700	18.46	Pass	
Trees.	n20 /	5180	19.273	Pass	Aug Car
WSET	n20	5240	19.364	Pass	WSET
	n20	5260	29.507	Pass	
	n20	5320	18.173	Pass	
	n20	5500	18.136	Pass	
	n20	5700	18.132	Pass	
August Au	n40	5190	40.641	Pass	Augusta
W5CT W5	n40	5230	43.041	Pass	WSCT
	n40	5270	41.014	Pass	
	n40	5310	45.484	Pass	
X	n40	5510	43.101	Pass	X
	n40	5670	40.852	Pass	
	ac20	5180	19.249	Pass	(1)
W5CT°	ac20	5240	20.426	Pass	WSET
	ac20	5260	19.568	Pass	
	ac20	5320	19.76	Pass	
X /	ac20	5500	22.313	Pass	X
	ac20	5700	19.271	Pass	
Anna Anna	ac40	5190	41.088	Pass	
W5 CT W5	ac40	5230	40.31	Pass	W5 CT
	ac40	5270	40.967	Pass	
	ac40	5310	46.191	Pass	
X	ac40	5510	42.03	Pass	X
	ac40	5670	40.316	Pass	
	ac80 ac80	5210 5290	82.412 83.163	Pass Pass	(Aura)
WSLT	ac80	5530	83.163 91.193	Pass	W5CT°
	ac80	5610	81.02	Pass	
	acou	3010	01.02	Fa55	
		X	X		

WSET

W5 CT

WSET

WSET

WSET Sollow Testing Group (Shenzhou)

WSET

WELT

WELT

WSCT

DD: Building A-B,Baoil'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.cc

深圳世标检测认证股份有限公司 World Standard Pation Certification& Testing

WSCT Group (WSCT SA)

Page 44

W/S

WSET

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

W5CT

-6dB Bandwidth

1	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict	ac.
	a	5745	16.32	0.5	Pass	
	а	5825	16.342	0.5	Pass	
	n20	5745	16.334	0.5	Pass	
	n20	5825	16.346	0.5	Pass	
	n40	5755	33.829	0.5	Pass	
	n40	5795	60	0.5	Pass	
_	ac20	5745	17.557	0.5	Pass	
	ac20	5825	17.556	0.5	Pass	
	ac40	5755	35.128	0.5	Pass	
	ac40	5795	35.109	0.5	Pass	
	ac80	5775	72.55	0.5	Pass	
	A					

	n20	5745	16.334	0.5	Pass
	n20	5825	16.346	0.5	Pass
	n40	5755	33.829	0.5	Pass
WSET	n40	5795	60	0.5	Pass
/ II-II	ac20	5745	17.557	0.5	Pass
	ac20	5825	17.556	0.5	Pass
	ac40	5755 5705	35.128 35.109	0.5	Pass Pass
	ac40 ac80	5795 5775	72.55	0.5 0.5	Pass
"\ /W	V5 CT°	W5	CT° W5C	7° W5 C	W5 CT
X		X	X	X	X
WSET		WSCT	WSET	W5 CT	WSET
	$\overline{}$				
	\vee		<i>(</i>		
A /				A /	
N N	15 ET®	W5	ET" WS E	T° W5C	W5 CT
X		X	X	X	X
WSCT		W5 CT	WS CT [®]	W5 ET	W5 CT°
	X	X	(X	X	\times
			\ / \		
	<i>V5CT</i> °l	W5	CT" WS C	T [®] W5E	W5 CT
WSCT		WSCT	WSCT	WSCT	WSET
			\		
	V5 CT	W5	CT WSC	WS C	T° WSCT°
WSET		WSET	WSET	W5 CT	WSCT

W5 ET W5 CT W5E7

Page 45

World Standardization Certification & Testing Group (Shenzhen) Co., ltd. Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

15 C I

Test Graphs -26dB Bandwidth NVNT a 5180MHz Ant1 W Spectrum Analyzer 1
Occupied BW SCPI + Center Freq: 5.180000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 30 dB Preamp: Off Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input: RF Align: Auto Mkr3 5.189131000 GHz Ref LvI Offset 5.21 dB Ref Value 25.21 dBm -19.61 dBm Scale/Div 10.0 dB \Diamond^{1} www.mynyllyra.ba.ga.a.a. 34.8 my/h-1/2ph/4ph-4ph/ph-4ph/ph Center 5.18000 GHz #Res BW 200.00 kHz #Video BW 620.00 kHz Span 30 MHz Sweep 1.33 ms (10001 pts) 2 Metrics Measure Trace Trace 1 Occupied Bandwidth 16.347 MHz Total Power 21.5 dBm -17.156 kHz 18.30 MHz 99.00 % -26.00 dB Transmit Freq Error % of OBW Power x dB Bandwidth x dB ** 4 5 6 -26dB Bandwidth NVNT a 5240MHz Ant1 Spectrum Analyzer 1
Occupied BW SCPI + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low Center Freq: 5.240000000 GHz Avg|Hold: 100/100 Radio Std: None KEYSIGHT Input: RF Atten: 30 dB Preamp: Off Align: Auto Mkr3 5.249131000 GHz Ref LvI Offset 5.25 dB Ref Value 25.25 dBm -22.80 dBm Scale/Div 10.0 dB 34.8 Johnson Myharmon March 44 marks 4 m p. John 191 (4/) for deep 12 mg 12 mg 16 Center 5.24000 GHz #Res BW 200.00 kHz Span 30 MHz Sweep 1.33 ms (10001 pts) #Video BW 620.00 kHz 2 Metrics

ation& Tesus ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. 10M # 深圳世标检测认证股份有限公司

TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

Occupied Bandwidth
16.348 MHz

? Feb 11, 2025 4:28:24 PM

Transmit Freq Error

56

-12.271 kHz 18.29 MHz

W5 C1

Trace 1

20.6 dBm

99.00 % -26.00 dB

Measure Trace

% of OBW Power x dB

Total Power

World Standardization Certification & Testing Group (Shenzhen) Co.,ltd.

Report No.: WSCT-ANAB-R&E250100005A-Wi-Fi2

-26dB Bandwidth NVNT a 5500MHz Ant1

Spectrum Analyzer 1
Occupied BW

KEYSIGHT Input RF
Court Corr Corr Corr Corr Corr Corr Corr Cate Corr Cate Corr Corr Cate Corr Cate Corr Cate Corr Corr Cate Corr

Transmit Free Error 40.600 kHz x dB 2000 kHz x dB 2000 dB 2000