

TEST REPORT

Applicant: Shenzhen Jumper Medical Equipment Co., Ltd.

EUT Description: Infrared Thermometer

Model: JPD-FR409

FCC ID: 2ADYL-JPDFR409

Standards: FCC 47 CFR Part 15 Subpart B

Date of Receipt: 2025/05/20

Date of Test: 2025/05/20 to 2025/06/25

Date of Issue: 2025/06/26

TOWE tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

the results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of the model are manufactured with identical electrical and mechanical components. All sample tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise. without written approval of TOWE, the test report shall not be reproduced except in full.

Huang Kun
Approved By:

Ou Shuyan
Reviewed By:

Revision History

Rev.	Issue Date	Description	Revised by
01	2025/06/26	Original	Ou Shuyan

Summary of Test Results

Clause	Test Items	Test Standard	Result
4.1	AC Conducted Emissions	§15.107	N/A
4.2	Radiated Emissions	§15.109	PASS

Test Method: ANSI C63.4-2014
Remark:
1. Pass is EUT meets standard requirements.
2. The EUT is DC power supply, "N/A" denotes "not applicable".

Table of Contents

1	General Description	5
1.1	Lab Information	5
1.1.1	Testing Location	5
1.1.2	Test Facility / Accreditations	5
1.2	Client Information	5
1.2.1	Applicant	5
1.2.2	Manufacturer	5
1.3	Product Information	6
2	Test Configuration During Test	7
2.1	Support Unit used in test	7
2.2	Accessory	7
2.3	Test Environment	7
2.4	Modifications	7
2.5	EUT Test Mode	8
3	Equipment and Measurement Uncertainty	9
3.1	Test Equipment List	9
3.2	Measurement Uncertainty	9
4	Test results	10
4.1	Radiated Emissions	10
5	Test Setup Photos	16

1 General Description

1.1 Lab Information

1.1.1 Testing Location

These measurements tests were conducted at the Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. facility located at F401 and F101, Building E, Hongwei Industrial Zone, Liuxian 3rd Road, Bao'an District, Shenzhen, China. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014

Tel.: +86-755-27212361

Contact Email: info@towewireless.com

1.1.2 Test Facility / Accreditations

A2LA (Certificate Number: 7088.01)

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

FCC-Designation No.: CN1353

Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. has been recognized as an accredited testing laboratory. Designation Number: CN1353.

ISED-CAB identifier: CN0152

Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0152

Company Number: 31000

1.2 Client Information

1.2.1 Applicant

Applicant:	Shenzhen Jumper Medical Equipment Co., Ltd.
Address:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong 518103, China

1.2.2 Manufacturer

Manufacturer:	Shenzhen Jumper Medical Equipment Co., Ltd.
Address:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong 518103, China

1.3 Product Information

EUT Description:	Infrared Thermometer		
Model:	JPD-FR409		
Hardware Version:	V1.0		
Software Version:	V1.0.0		
IMEI:	866840079921690		
Device Capabilities	Multi-band LTE (Cat M1, NB-IoT)		
Frequency Bands: (RX<960MHz)	Band	TX Frequency	RX Frequency
	Cat M1 Band 5	824 ~ 849 MHz	869 ~ 894 MHz
	Cat M1 Band 12	699 ~ 716 MHz	729 ~ 746 MHz
	Cat M1 Band 13	777 ~ 787 MHz	746 ~ 756 MHz
	Cat M1 Band 26 (814 ~ 824 MHz)	814 ~ 824MHz	859 ~ 869 MHz
	Cat M1 Band 26 (824 ~ 849 MHz)	824 ~ 849 MHz	869 ~ 894 MHz
	Cat M1 Band 85	698 ~ 716 MHz	728 ~ 746 MHz
	NB-IoT Band 5	824 ~ 849 MHz	869 ~ 894 MHz
	NB-IoT Band 12	699 ~ 716 MHz	729 ~ 746 MHz
	NB-IoT Band 13	777 ~ 787 MHz	746 ~ 756 MHz
	NB-IoT Band 71	663 ~ 698 MHz	617 ~ 652 MHz
	NB-IoT Band 85	698 ~ 716 MHz	728 ~ 746 MHz

Remark: The above EUT's information was declared by applicant, please refer to the specifications or user's manual for more detailed description.

2 Test Configuration During Test

2.1 Support Unit used in test

Description	Manufacturer	Model	Serial Number
Wideband Radio Communication Tester	R&S	CMW500	150645
Radio Communication Analyzer	Anritsu	MT8821C	6262170463
“AAA” Battery	Naccon Power Technology Co.,Ltd	LR03 AM4	/

2.2 Accessory

N/A

2.3 Test Environment

Temperature:	Normal: 20°C ~ 25°C
Humidity:	35-56 % RH Ambient
Voltage:	DC 3V (2x“AAA” Battery)

Remark: The testing environment is within the scope of the EUT user manual and meets the requirements of the standard testing environment.

2.4 Modifications

No modifications were made during testing.

2.5 EUT Test Mode

Test Items	Test mode
Radiated Emissions	Mode1: Measuring + DC Power (worst case, above 1GHz) Mode2: Cat M1 Band 5 Idle + DC Power Mode3: Cat M1 Band 12 Idle + DC Power Mode4: Cat M1 Band 13 Idle + DC Power Mode5: Cat M1 Band 26 Idle + DC Power Mode6: Cat M1 Band 85 Idle + DC Power Mode7: NB-IoT Band 5 Link + DC Power (worst case, below 1GHz) Mode8: NB-IoT Band 12 Link + DC Power Mode9: NB-IoT Band 13 Link + DC Power Mode10: NB-IoT Band 71 Link + DC Power Mode11: NB-IoT Band 85 Link + DC Power

Note: All modes of operation were investigated, and only the worst case emissions are reported.

3 Equipment and Measurement Uncertainty

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, whichever is less, and where applicable is traceable to recognized national standards.

3.1 Test Equipment List

Radiated Emission					
Description	Manufacturer	Model	S.N.	Last Due	Cal Due
Biconic Logarithmic Periodic Antennas	Schwarzbeck	VULB9163	1643	2023/06/25	2026/06/24
Double-Ridged Horn Antennas	Schwarzbeck	BBHA 9120D	2809	2023/06/25	2026/06/24
Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	1290	2023/06/25	2026/06/24
Signal Analyzer	Keysight	N9020A	MY49100252	2025/03/11	2026/03/10
EXA Signal Analyzer, Multi-touch	Keysight	N9010B	MY63440541	2024/05/30	2025/05/29
				2025/05/29	2026/05/28
EMI Tester Receiver	Rohde & Schwarz	ESR7	102719	2024/05/31	2025/05/30
				2025/05/29	2026/05/28
Low Noise Amplifier	Tonscend	TAP9K3G40	AP23A8060273	2025/03/11	2027/03/10
Low Noise Amplifier	Tonscend	TAP01018050	AP22G806258	2025/03/11	2027/03/10
Low Noise Amplifier	Tonscend	TAP18040048	AP22G806247	2025/03/11	2027/03/10
Band Reject Filter Group	Townshend	JS0806-F	23A806F0652	N/A	N/A
Test Software	Tonscend	TS+	Version: 5.0.0	N/A	N/A
N/A: Not applicable, confirmed internally by the laboratory					

3.2 Measurement Uncertainty

Parameter	U_{lab}
Radiated Emissions(30MHz~1000MHz)	4.66dB
Radiated Emissions(1GHz~18GHz)	5.42dB
Radiated Emissions(18GHz~40GHz)	5.46dB

Uncertainty figures are valid to a confidence level of 95%

4 Test results

4.1 Radiated Emissions

Limits

Frequency	Field strength (μ V/m)	Limit (dB μ V/m)	Remark	Measurement distance (m)
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	74.0	Peak	3
		54.0	Average	

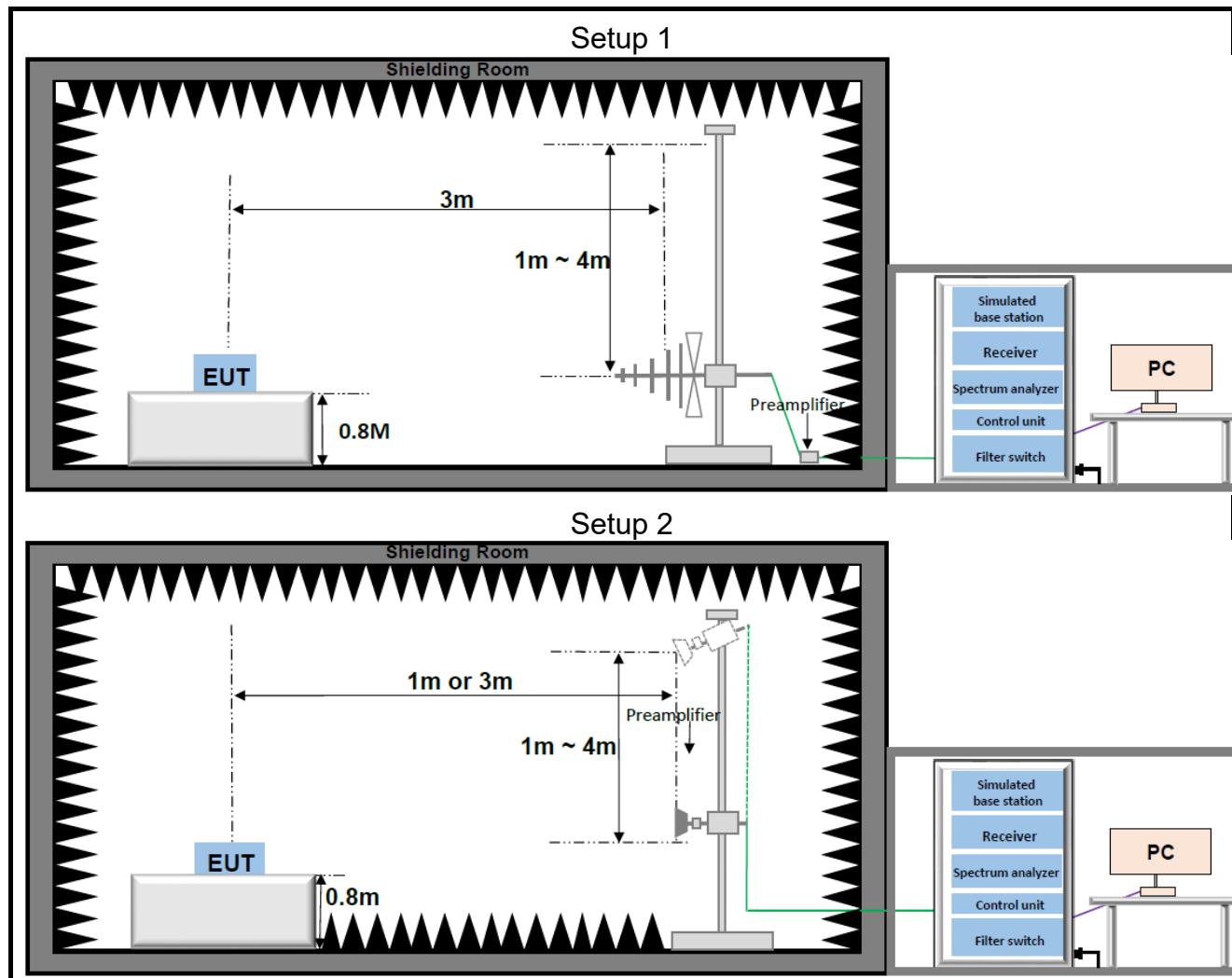
Test Procedure

ANSI C63.4:2014

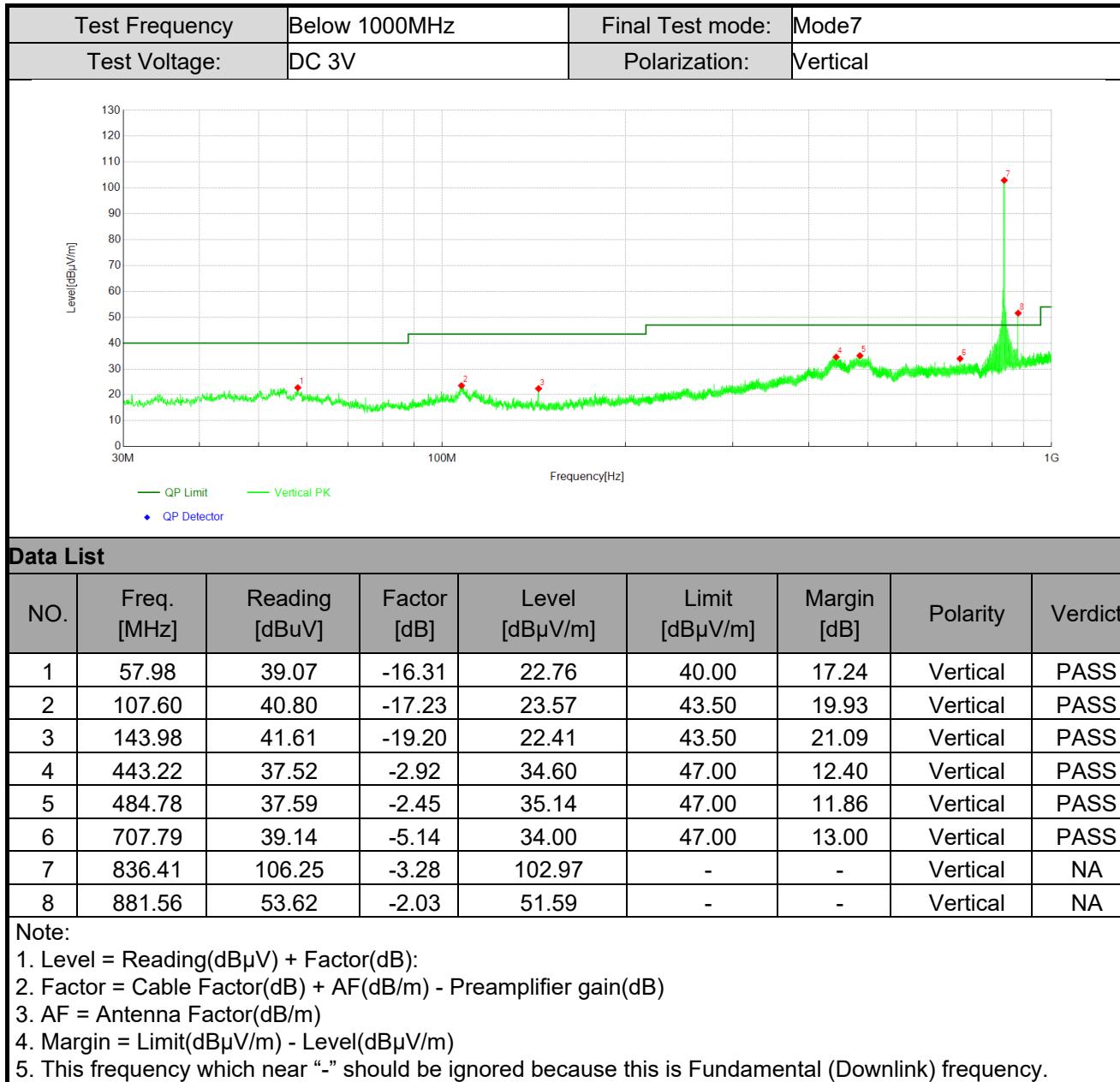
Test Settings

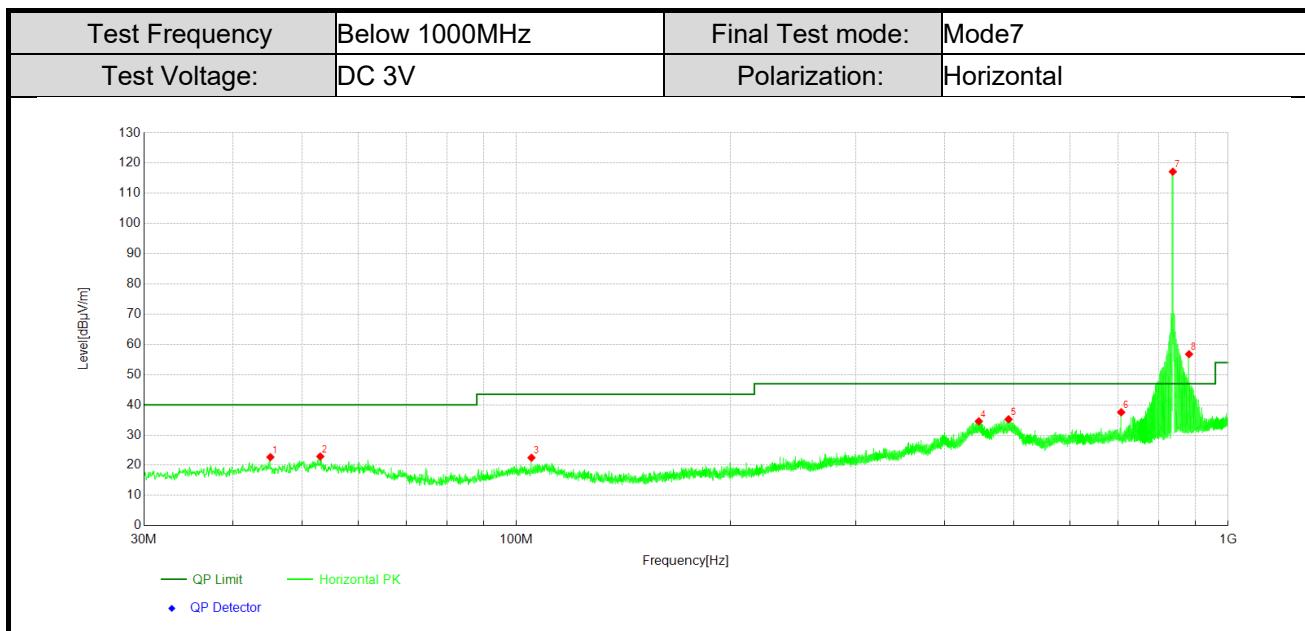
1. For radiated emissions measurements performed at frequencies less than or equal to 1GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 80cm above the reference ground plane.
2. For radiated emissions measurements performed at frequencies above 1GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 80cm above the ground plane.
3. Radiated measurements shall be made with the measurement antenna positioned in both horizontal and vertical polarization. The measurement antenna shall be varied from 1m to 4m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level (i.e, field strength or received power), when orienting the measurement antenna in vertical polarization, the minimum height of the lowest element of the antenna shall clear the site reference ground plane by at least 25cm.
4. For each suspected emission, the EUT was ranged to its worst case and then tune the antenna tower(from 1~4m) and turntable(from 0~360°) to find the maximum reading. Preamplifier and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
5. Exploratory radiated emissions testing of handheld and/or body-worn devices shall include rotation of the EUT through three orthogonal axes (X/Y/Z Plane) to determine the orientation(attitude) that maximizes the emissions.
6. For measurements below 1GHz the resolution bandwidth is set to 100kHz for peak detection measurements or 120kHz for Quasi-peak detection measurements in the 30~1000MHz range.
7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported for frequency range below 1GHz.
8. For measurements above 1GHz the resolution bandwidth is set to 1MHz and the video resolution is set to 3MHz, the peak emission measurement will be measured by the peak detector, the average emission measurement will be measured by the average detector.
9. The field strength is calculated by adding the Antenna Factor, Cable Factor. The basic equation with a sample calculation is as follows:

$$\text{Level} = \text{Reading(dB}\mu\text{V)} + \text{AF(dB/m)} + \text{Factor(dB)}$$


$$\text{AF} = \text{Antenna Factor(dB/m)}$$

$$\text{Factor} = \text{Cable Factor(dB)} - \text{Preamplifier gain(dB)}$$

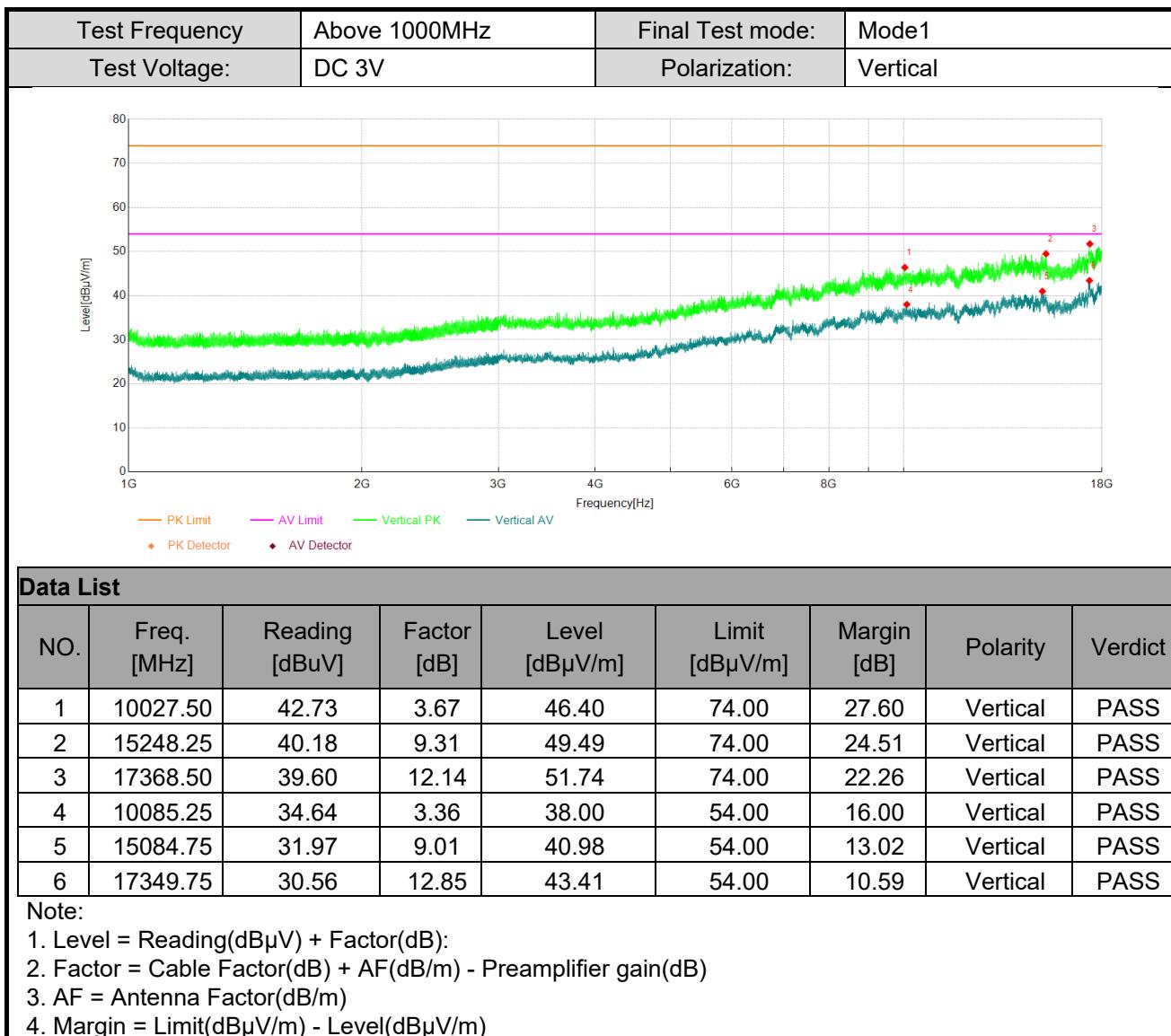

$$\text{Margin} = \text{Limit(dB}\mu\text{V/m)} - \text{Level(dB}\mu\text{V/m)}$$
10. Measure and record the results in the test report.

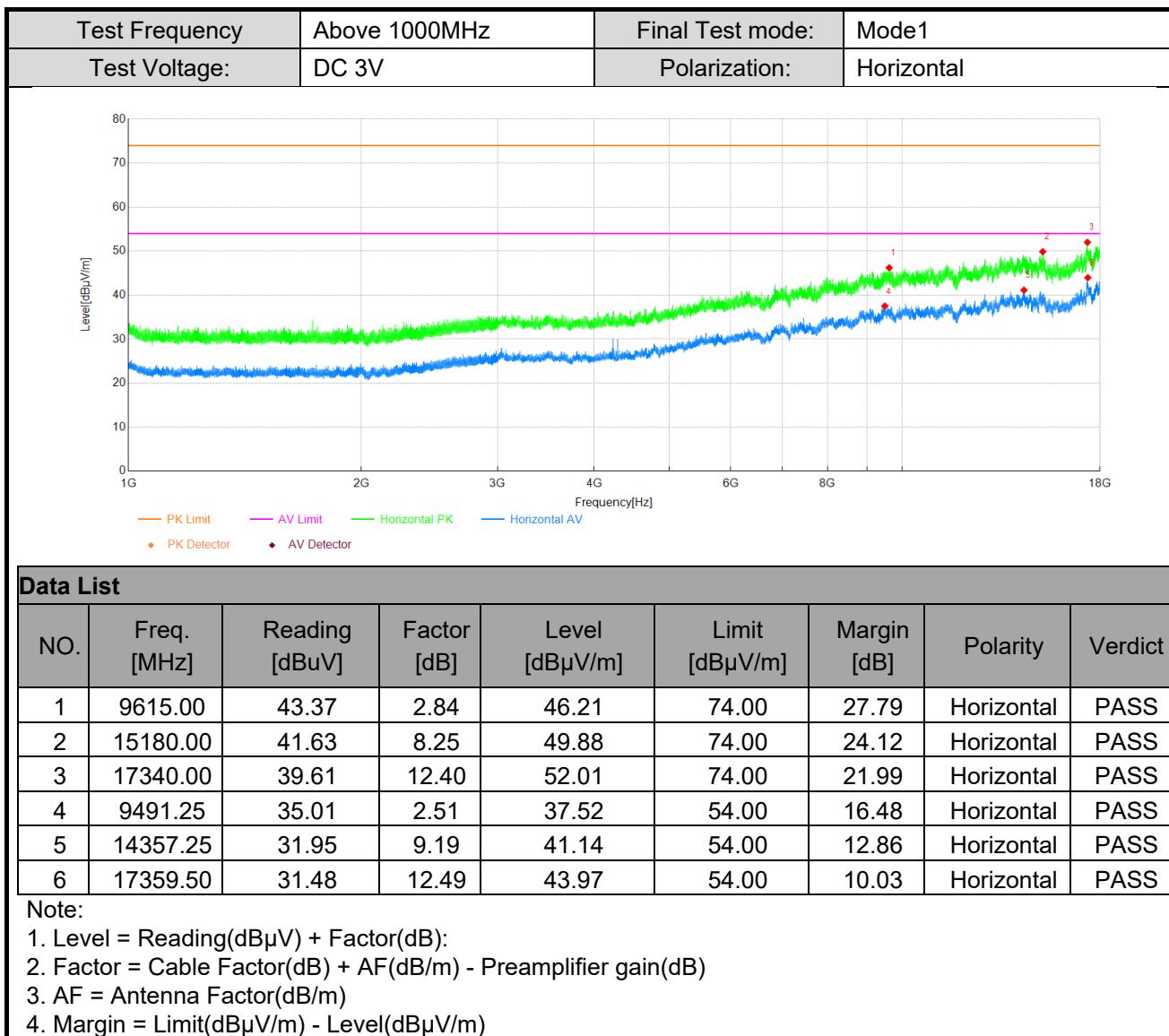

Test notes

1. Radiated emissions were measured from 30MHz - 40GHz to ensure that the provisions of 15.33(b)(1) are satisfied with respect to the upper frequency scanning range. No Spurious emissions were detected above 18GHz.

Test SetupMeasuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.


Test Result:


Data List

NO.	Freq. [MHz]	Reading [dB μ V]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Polarity	Verdict
1	45.13	39.32	-16.63	22.69	40.00	17.31	Horizontal	PASS
2	53.04	38.90	-15.99	22.91	40.00	17.09	Horizontal	PASS
3	105.03	39.86	-17.36	22.50	43.50	21.00	Horizontal	PASS
4	446.57	37.30	-2.75	34.55	47.00	12.45	Horizontal	PASS
5	491.62	37.50	-2.27	35.23	47.00	11.77	Horizontal	PASS
6	707.74	43.05	-5.50	37.55	47.00	9.45	Horizontal	PASS
7	836.41	120.11	-2.93	117.18	-	-	Horizontal	NA
8	881.51	59.04	-2.27	56.77	-	-	Horizontal	NA

Note:

1. Level = Reading(dB μ V) + Factor(dB):
2. Factor = Cable Factor(dB) + AF(dB/m) - Preamplifier gain(dB)
3. AF = Antenna Factor(dB/m)
4. Margin = Limit(dB μ V/m) - Level(dB μ V/m)
5. This frequency which near “-” should be ignored because this is Fundamental (Downlink) frequency.

5 Test Setup Photos

The detailed test data see: **Appendix-D 15B Setup Photos**

~The End~