

FCC SAR Test Report

FCC ID: 2ADUTLGPAU0E

Project No. : 2502C215

Equipment: AC1200 Wireless AC USB Adapter With An Antenna

Brand Name : Panda Wireless

Test Model : PAU0E Series Model : IGU0E

Date of Receipt : Apr. 25, 2025

Date of Test : Apr. 27, 2025 ~ Jul. 07, 2025

Issued Date : Jul. 18, 2025

Report Version : R01

Test Sample : Engineering Sample No.: DG2025042544

Standard(s) : Please refer to page 2.

Applicant : Panda Wireless, Inc.

Address : 15559 Union Ave., Suite 300, Los Gatos , CA95032, USA

Manufacturer : Panda Wireless, Inc.

Address : 15559 Union Ave., Suite 300, Los Gatos , CA95032, USA

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. (Dongguan)

Prepared by

lna

Dana Cher

Approved by

Herbort Liu

No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Standard(s)

: **IEEE Std C95.1:2019** IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 kHz to 300 GHz

IEEE Std 1528-2013 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

KDB447498 D04 Interim General RF Exposure Guidance v01 KDB447498 D02 SAR Procedures for Dongle Xmtr v02 KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04

KDB865664 D02 SAR Reporting v01r02 **KDB248227 D01** 802.11 Wi-Fi SAR v02r02

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

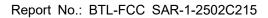


Table of Contents	Page
REPORT ISSUED HISTORY	6
1. GENERAL INFORMATION	7
1.1 STATEMENT OF COMPLIANCE	7
1.2 LABORATORY ENVIRONMENT	7
1.3 GENERAL DESCRIPTION OF EUT	8
1.4 MAIN TEST INSTRUMENTS	9
2. RF EMISSIONS MEASUREMENT	10
2.1 TEST FACILITY	10
2.2 MEASUREMENT UNCERTAINTY	10
3 . SAR MEASUREMENTS SYSTEM CONFIGURATION	11
3.1 SAR MEASUREMENT SET-UP	11
3.1.1 TEST SETUP LAYOUT	11
3.2 DASY5 E-FIELD PROBE SYSTEM 3.2.1 PROBE SPECIFICATION	12 12
3.2.2 E-FIELD PROBE CALIBRATION	13
3.2.3 OTHER TEST EQUIPMENT	14
3.2.4 SCANNING PROCEDURE	15
3.2.5 SPATIAL PEAK SAR EVALUATION 3.2.6 DATA STORAGE AND EVALUATION	16 17
3.2.7 DATA EVALUATION BY SEMCAD	18
4 . SYSTEM VERIFICATION PROCEDURE	20
4.1 TISSUE VERIFICATION	20
4.2 SYSTEM CHECK	21
4.3 SYSTEM CHECK PROCEDURE	21
5 . SAR MEASUREMENT VARIABILITY AND UNCERTAINTY	22
5.1 SAR MEASUREMENT VARIABILITY	22
6 . OPERATIONAL CONDITIONS DURING TEST	23
6.1 TEST POSITION	23
6.2 TEST CONFIGURATION	24
6.2.1 WIFI TEST CONFIGURATION	24
7 . TEST RESULT	27
7.1 CONDUCTED POWER RESULTS	27
7.1.1 CONDUCTED POWER MEASUREMENTS OF WIFI	27
7.2 SAR TEST RESULTS 7.2.1 SAR MEASUREMENT RESULT	38 39

Table of Contents	Report No.: BTL-FCC SAR-1-2502C215 Page
8 MULTIPLE TRANSMITTER EVALUATION	44
APPENDIX	45
1. TEST LAYOUT	45
Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate Appendix D. Photographs of the Test Set-Up	

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCC SAR-1-2502C215	R00	Original Report.	Jul. 11, 2025	Invalid
BTL-FCC SAR-1-2502C215	R01	Revised the description in Section 8.	Jul. 18, 2025	Valid

1. GENERAL INFORMATION

1.1 STATEMENT OF COMPLIANCE

Mode	Highest Reported Body-worn SAR-1g(W/kg)
2.4G WLAN	0.924
5.2G WLAN	1.465
5.3G WLAN	1.359
5.6G WLAN	1.336
5.8G WLAN	1.482

Note:

1.2 LABORATORY ENVIRONMENT

Temperature	Min. = 20°C, Max. = 24°C						
Relative humidity	Min. = 30%, Max. = 70%						
Ground system resistance	< 0.5Ω						
Ambient noise is checked and found very low and in compliance with requirement of standards.							
Reflection of surrounding objects is minir	Reflection of surrounding objects is minimized and in compliance with requirement of standards.						

¹⁾ The device is in compliance with Specific Absorption Rate (SAR) for general population uncontrolled exposure limits according to the FCC rule §2.1093, the ANSI C95.1:1992/IEEE C95.1:1991, the NCRP Report Number 86 for uncontrolled environment, and had been tested in accordance with the measurement methods and procedures specified in EN IEC/IEEE 62209-1528.

1.3 GENERAL DESCRIPTION OF EUT

Equipment	AC1200 Wireless AC USB Adapter With An Antenna								
Brand Name	Panda Wireless								
Test Model	PAU0E								
Series Model	IGU0E								
Model Difference(s)	Only differ in model name.								
Hardware Version	PW-PAU	0E-LG-V	/1.0						
Software Version	V1.0.0								
Modulation	WiFi(DSS	SS/OFDI	M)						
	Bar	nd			TX (I	MHz)			
					2400~	2483.5			
Operation Frequency					5150	~5250			
Range(s)	Wil	Fi			5250	~5350			
					5470	~5725			
	5725~5850								
				b/g/n HT20)					
	3-6-9 (WiFi 2.4G 802.11n			,					
	Band		WiFi 5.2G	WiFi 5.3G	WiFi 5.6G	WiFi 5.8G			
Test Channels	802.11a/n HT20 /ac VHT20		36-40-44-48	52-56-60- 64	100-104-108- 112-116-132-	149-153-157- 161-165			
(low-mid-high)					136-140				
	802.11n HT40 /ac VHT40		38-46	54-62	102-110-118- 126-134	151-159			
	802.1	11ac VH	T80	42	58	106-122	155		
	Ant.	Manufa	acturer	P/N	Туре	Frequency Rang (MHz)	e Gain (dBi)		
						2400-2500	2.26		
		Tonor		ANO450 00D		5150-5250	2.47		
	ANT 1	Teng	xiang logy.Inc	AN2450-08B C04RS-B	Dipole	5250-5350	2.56		
And the second for th			.egye	3011102		5470-5725	2.92		
Antenna Information						5725-5895	2.69		
						2400-2500	2.73		
		Teng	viana	AN2450-FPC		5150-5250	3.19		
	ANT 2		kiarig logy.Inc	309BX	FPC	5250-5350	3.54		
						5470-5725	2.99		
						5725-5895	3.19		

Note: The antenna gain is provided by the manufacturer.

1.4 MAIN TEST INSTRUMENTS

Item	Equipment	Manufacturer	Model	Serial No.	Cal. Date	Cal. Interval
1	Data Acquisition Electronics	Speag	DAE4	1390	Nov. 14, 2024	1 Year
2	E-field Probe	Speag	EX3DV4	3809	Jan. 24, 2025	1 Year
3	System Validation Dipole	Speag	D2450V2	919	Apr. 22, 2024	3 Years
4	System Validation Dipole	Speag	D5GHzV2	1160	Apr. 25, 2024	3 Years
5	E-field Probe	Speag	EX3DV4	7350	Dec. 19, 2024	1 Year
6	ELI Phantom	Speag	ELI Phantom V5.0	1128	N/A	N/A
7	Power Amplifier	Mini-Circuits	ZVE-8G+	520701341	Jan. 12, 2025	1 Year
8	DC Source metter	Iteck	IT6154	0061041267682 01001	Jun. 29, 2024	1 Year
9	Vector Network Analyzer	Agilent	E5071C	MY46102965	Jan. 11, 2025	1 Year
10	Signal Generator	Agilent	N5172B	MY53050758	Jan. 11, 2025	1 Year
11	Smart Power Sensor	R&S	NRP18S	101333	Jun. 01, 2024	1 Year
12	Smart Power Sensor	R&S	NRP-Z21	102209	Jan. 12, 2025	1 Year
13	3.5mm Economy Calibration Kit	Agilent	85052D	MY43252246	Nov. 04, 2024	1 Year
14	Dielectric Assessment Kit	Speag	DAK-3.5	1226	Jan. 20, 2025	3 Years
15	Coupler	Woken	0110A05601O-10	COM5BNW1A2	Jan. 12, 2025	1 Year
16	Liquid Thermometer	Nscing Es	YZ6021S	1	Nov. 24, 2024	1 Year

Note:

- 1. "N/A" denotes no model name, serial No. or calibration specified.
- 2.
- 1) Per KDB865664 D01 requirements for dipole calibration, the test laboratory has adopted three-year extended calibration interval. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a short block performed before measuring liquid parameters.

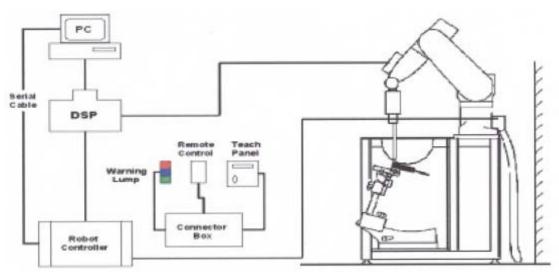
2. RF EMISSIONS MEASUREMENT

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is SAR room at the location of Room 108-116, 309-310, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan, Guangdong, People's Republic of China. BTL's Registration Number for FCC: 747969
BTL's Designation Number for FCC: CN1377.

2.2 MEASUREMENT UNCERTAINTY

Note: Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in EN IEC/IEEE 62209-1528 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.


3. SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1 SAR MEASUREMENT SET-UP

The DASY5 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. A unit to operate the optical surface detector which is connected to the EOC.
- 5. The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- 6. The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows.
- 7. DASY5 software and SEMCAD data evaluation software.
- 8. Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- 9. The generic twin phantom enabling the testing of left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. System validation dipoles allowing to validate the proper functioning of the system.

3.1.1 TEST SETUP LAYOUT

3.2 DASY5 E-FIELD PROBE SYSTEM

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetrice valuation.

3.2.1 PROBE SPECIFICATION

EX3DV4

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity:± 0.2dB
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.0 mm

E-field Probe

3.2.2 E-FIELD PROBE CALIBRATION

Eachprobeiscalibratedaccordingtoadosimetricassessmentprocedurewithaccuracybetterthan±10%. The spherical isotropy was evaluatedandfoundtobebetterthan±0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where: Δt =Exposure time (30 seconds),

C =Heat capacity of tissue (brain or muscle), ΔT =Temperature increase due to RF exposure.

Or
$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where: σ =Simulated tissue conductivity, ρ =Tissue density (kg/m3).

3.2.3 OTHER TEST EQUIPMENT

3.2.3.1 Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI and SAM v6.0 Phantoms. **Material:** POM, Acrylic glass, Foam

3.2.3.2 Phantom

Model	ELI Phantom	
Construction	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.	
Shell Thickness	2±0.1 mm	
Filling Volume	Approx. 30 liters	
Dimensions	Length: 600 mm; Width: 190mm Height: adjustable feet	
Available	Special	

3.2.4 SCANNING PROCEDURE

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary \max . \pm 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within \pm 30°.)

Area Scan

The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension (≤2GHz), 12 mm inx- and y- dimension (2-4 GHz) and 10mm in x- and y- dimension (4-6GHz). If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation.

Zoom Scan

A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine grid with maximum scan spatial resolution: Δx_{zoom} , $\Delta y_{zoom} \leq 2$ GHz - ≤ 8 mm, 2-4GHz - ≤ 5 mm and 4-6 GHz- ≤ 4 mm; $\Delta z_{zoom} \leq 3$ GHz - ≤ 5 mm, 3-4 GHz- ≤ 4 mm and 4-6GHz- ≤ 2 mm where the robot additionally moves the probe along the z-axis away from the bottom of the Phantom. DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in Appendix B. Test results relevant for the specified standard (see chapter 1.4.) are shown in table form in chapter 7.2.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2 mm steps. This measurement shows the continuity of the liquid and can - depending in the field strength – also show the liquid depth.

The following table summarizes the area scan and zoom scan resolutions per FCC KDB 865664D01:

	Maximun Area	Maximun Zoom	Maximun Zo	Maximun Zoom Scan spatial resolution				
Frequency	Scan Scan spatial		Uniform Grid Grad		ded Grad	zoom scan		
Troquency	resolution (Δx _{area} , Δy _{area})	resolution $(\Delta x_{Zoom}, \Delta y_{Zoom})$	Δz _{Zoom} (n)	$\Delta z_{\text{Zoom}}(1)^*$	Δz _{Zoom} (n>1)*	volume (x,y,z)		
≤2GHz	≤15mm	≤8mm	≤5mm	≤4mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥30mm		
2-3GHz	≤12mm	≤5mm	≤5mm	≤4mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥30mm		
3-4GHz	≤12mm	≤5mm	≤4mm	≤3mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥28mm		
4-5GHz	≤10mm	≤4mm	≤3mm	≤2.5mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥25mm		
5-6GHz	≤10mm	≤4mm	≤2mm	≤2mm	\leq 1.5* Δz_{Zoom} (n-1)	≥22mm		

3.2.5 SPATIAL PEAK SAR EVALUATION

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of 5 x 5 x 7 points (with 8mm horizontal resolution) or 7 x 7 x 7 points (with 5mm horizontal resolution) or 8 x 8 x 7 points (with 4mm horizontal resolution). The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting "Graph Evaluated".
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computer mathematic, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computer mathematic, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY5 uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes.

3.2.6 DATA STORAGE AND EVALUATION

3.2.6.1 Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension "DAE". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.2.7 DATA EVALUATION BY SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: Sensitivity Normi, aj0, aj1,aj2

Conversion factor ConvFi

Diode compression point Dcpi

Device parameters: Frequency f

Crest factor cf

Media parameters: Conductivity

Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

With V_i = compensated signal of channel i (i = x,y,z)

 U_{j} = input signal of channel i (i = x, y,z)

cf=crest factor of exciting field (DASY parameter)

dcpj=diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

With V_i = compensated signal of channel i (i = x,y,z)

Norm_i= sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²]for E-field Probes

ConvF = sensitivity enhancement in solution

aij=sensor sensitivity factors for H-field probes

f=carrier frequency [GHz]

Ei=electric field strength of channel i in V/m

H_i= magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_X^2 + E_Y^2 + E_Z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

SAR=
$$(E_{tot})^2 \cdot \boldsymbol{\sigma} / (\boldsymbol{\rho} \cdot 1000)$$

With SAR=local specific absorption rate in mW/g

E_{tot}=total field strength in V/m =conductivity in[mho/m]or[Siemens/m] =equivalent tissue density in g/cm³

Note that the density is normally set to 1(or1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2/3770 \text{ or } P_{pwe} = H_{tot}^2 \cdot 37.7$$

With

Ppwe= equivalent power density of a plane wave in mW/cm²

Etot=total field strength in V/m

Htot=total magnetic field strength in A/m

4. SYSTEM VERIFICATION PROCEDURE

4.1 TISSUE VERIFICATION

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within \pm 5% of the target values.

The following materials are used for producing the tissue-equivalent materials.

Tissue Type	Bactericide	DGBE	HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether
Head 2450	-	45.0	-	0.1	-	-	54.9	-
Head 5G	-	-	-	-	-	17.2	65.5	17.3

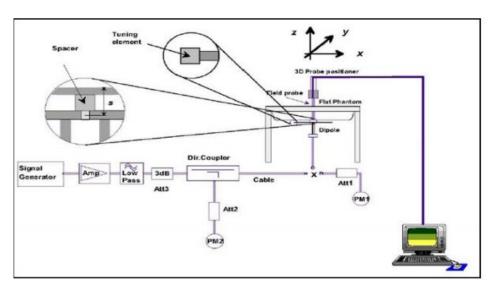
Salt: 99+% Pure Sodium Chloride; Sugar: 98+% Pure Sucrose; Water: De-ionized, 16M + resistivity HEC: Hydroxyethyl Cellulose; DGBE: 99+% Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy)ethanol] Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

	Tissue Verification										
Tissue Type	Frequency (MHz)	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (εr)	Targeted Conductivity (σ)	Targeted Permittivity (εr)	Deviation Conductivity (σ) (%)	Deviation Permittivity (εr) (%)	Date		
Head	2450	22.2	1.836	39.145	1.80	39.2	2.00	-0.14	May 07, 2025		
Head	2450	22.6	1.868	38.320	1.80	39.2	3.78	-2.24	Jul. 07, 2025		
Head	5250	22.8	4.853	35.925	4.71	36.0	3.04	-0.07	May 08, 2025		
Head	5600	22.6	5.060	35.511	5.07	35.5	-0.20	0.03	May 09, 2025		
Head	5750	22.6	5.249	35.135	5.22	35.4	0.56	-0.61	May 09, 2025		

Note:

- 1)The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.
- 2)KDB 865664 was ensured to be applied for probe calibration frequencies greater than or equal to 50MHz of the EUT frequencies.
- 3)The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies. The SAR test plots may slightly differ from the table above since the DASY rounds to three significant digits.

4.2 SYSTEM CHECK


The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to EN IEC/IEEE 62209-1528 (described above). The following table shows system check results for all frequency bands and tissue liquids used during the tests.

System Check	Date	Frequency (MHz)	Targeted SAR 1g (W/kg)	Measured SAR 1g (W/kg)	normalized SAR 1g (W/kg)	Deviation (%)	Dipole S/N
Head	May 07, 2025	2450	52.10	13.30	53.20	2.11	919
Head	Jul. 07, 2025	2450	52.10	23.70	50.40	-3.26	919
Head	May 08, 2025	5250	78.00	8.08	80.80	3.59	1160
Head	May 09, 2025	5600	80.60	8.23	82.30	2.11	1160
Head	May 09, 2025	5750	76.50	7.81	78.10	2.09	1160

4.3 SYSTEM CHECK PROCEDURE

The system check is performed by using a system check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250mW (below 3GHz) or 100mW (3-6GHz). To adjust this power a power meter is used.

The power sensor is connected to the cable before the system check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system check to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test. System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system (±10 %).

5. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY

5.1 SAR MEASUREMENT VARIABILITY

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The detailed repeated measurement results are shown in Section 7.2.

6. OPERATIONAL CONDITIONS DURING TEST

6.1 TEST POSITION

Test all USB orientations [see figure below: (A) Horizontal-Up, (B) Horizontal-Down, (C) Vertical-Front, and (D) Vertical-Back and Tip] with a device-to-phantom separation distance of 5 mm.

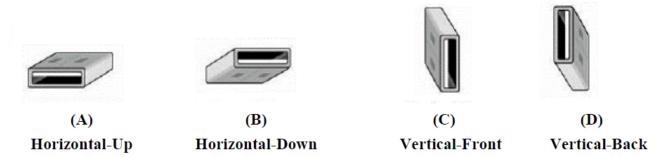
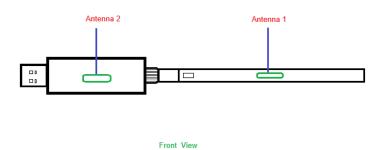
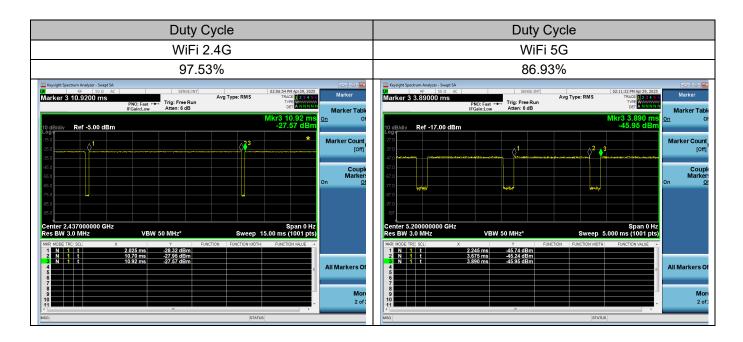



Fig: USB Connector Orientations Implemented on Laptop Computers

The location of the antennas inside the EUT is shown as below:

Page 23 of 46



6.2 TEST CONFIGURATION

6.2.1 WIFI TEST CONFIGURATION

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal.

For WiFi SAR testing, a communication link is set up with the test mode software for WiFi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. The test procedures in KDB 248227 D01 are applied.

6.1.1.1 2.4G SAR Test Requirements

802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

SAR Test Requirements for OFDM configurations

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, each stand alone. And frequency aggregated band is considered separately for SAR test reduction. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

6.1.1.2 5G SAR Test Requirements

♦ U-NII-1 and U-NII-2A Band

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR.

♦ U-NII-2C, U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47 - 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 - 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification.

Unless band gap channels are permanently disabled, they must be considered for SAR testing. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels.11 When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

6.1.1.3 OFDM transmission mode and SAR test channel selection

For the 2.4GHz and 5GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations (for example 802.11a, 802.11n and 802.11ac, or 802.11g and 802.11n, with the same channel bandwidth, modulation, and data rate, etc.), the lower order 802.11 mode (i.e.802.11a then 802.11n and 802.11ac, or 802.11g then 802.11n) is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

6.1.1.4 Initial test configuration procedure

For OFDM, in both 2.4G and 5GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. If the average RF output powers of the highest identical transmission modes are within 0.25 dB of each other, mid channel of the transmission mode with highest average RF output powers is the initial test channel. Otherwise, the channel of the transmission mode with the highest average RF output power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurement.

7. TEST RESULT

7.1 CONDUCTED POWER RESULTS

7.1.1 CONDUCTED POWER MEASUREMENTS OF WIFI

1. Conducted power measurements of WiFi 2.4G

Band	Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Max. Tune up	Average Power (dBm)
		1	2412		14.50	13.45
	802.11b	6	2437	1	16.50	15.48
		11	2462		13.50	12.39
		1	2412		10.00	9.52
\A/: : ::	802.11g	6	2437	6	19.00	18.44
WiFi 2.4G		11	2462		11.00	10.25
_ ANT 1	902 44m	1	2412		10.00	9.10
_ANI I	802.11n HT20	6	2437	MCS0	19.00	18.45
	П120	11	2462		10.00	9.24
	902.44=	3	2422		6.00	5.84
	802.11n HT40	6	2437	MCS0	10.00	9.27
	П140	9	2452		5.00	4.23

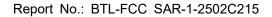
Band	Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Max. Tune up	Average Power (dBm)
		1	2412		14.50	12.99
	802.11b	6	2437	1	16.50	15.96
		11	2462		13.50	13.04
		1	2412		10.00	9.43
\A/:F:	802.11g	6	2437	6	19.00	18.55
WiFi		11	2462		11.00	9.88
2.4G	000 44	1	2412		10.00	8.88
_ ANT 2	802.11n	6	2437	MCS0	19.00	18.55
	HT20	11	2462		10.00	9.61
	000 44	3	2422		6.00	5.41
	802.11n	6	2437	MCS0	10.00	9.05
	HT40	9	2452		5.00	4.85

Band	Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	ANT 1 Average Power (dBm)	ANT 2 Average Power (dBm)	Max. Tune up	Total Average Power (dBm)
		1	2412		13.45	12.99	17.50	16.24
	802.11b	6	2437	1	15.48	15.96	19.50	18.74
		11	2462		12.39	13.04	16.50	15.74
		1	2412	6	9.52	9.43	13.00	12.49
\A/:F:	802.11g	6	2437		18.44	18.55	22.00	21.51
WiFi 2.4G		11	2462		10.25	9.88	14.00	13.08
_ ANT 1+2	000 44	1	2412		9.10	8.88	13.00	12.00
_AN1 1+2	802.11n HT20	6	2437	MCS8	18.45	18.55	22.00	21.51
	П120	11	2462		9.24	9.61	13.00	12.44
	902 44m	3	2422		5.84	5.41	9.00	8.64
	802.11n HT40	6	2437	MCS8	9.27	9.05	13.00	12.17
	H140	9	2452		4.23	4.85	8.00	7.56

Note:

¹⁾ The Average conducted power of WiFi 2.4G is measured with RMS detector.

²⁾ Per KDB248227 D01, for WiFi 2.4G, the highest measured maximum output power Channel for DSSS modes (802.11b) was selected for SAR measurement. SAR for OFDM modes (2.4GHz 802.11g/n/ac/ax) was not required When the highest reported SAR for DSSS is adjusted by the ratio of OFDM modes (802.11g/n/ac/ax) to DSSS modes (802.11b) specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.


³⁾ The tested channel results are marks in bold.

2. Conducted power measurements of WiFi 5.2G

Dand	Mada	Channal	Frequency	Data Rate	Max.	Average Power
Band	Mode	Channel	(MHz)	(Mbps)	Tune-up	(dBm)
		36	5180		12.50	11.76
	802.11a	40	5200	6	12.50	11.51
		48	5240		12.50	12.31
		36	5180		11.50	
	802.11n HT20	40	5200	MCS0	11.50	
		48	5240		11.50	No Require
5.2G	802.11n HT40	38	5190	MCS0	10.00	
_ANT 1	002.11II H140	46	5230	MCSU	13.00	
		36	5180		11.50	10.83
	802.11ac VHT20	40	5200	MCS0	11.50	11.22
		48	5240		11.50	11.10
	902 44cc V/UT40	38	5190	MCCO	10.00	9.12
	802.11ac VHT40	46	5230	MCS0	13.50	12.96
	802.11ac VHT80	42	5210	MCS0	8.50	7.95

Dond	Mode	Channel	Frequency	Data Rate	Max.	Average Power
Band	Mode	Channel	(MHz)	(Mbps)	Tune-up	(dBm)
		36	5180		13.00	12.71
	802.11a	40	5200	6	13.50	12.83
		48	5240		13.50	13.02
		36	5180		13.00	
	802.11n HT20	40	5200	MCS0	13.00	
		48	5240		13.00	
5.2G	000 44 m UT40	38	5190	MCS0	11.00	No Doguino
_ANT 2	802.11n HT40	46	5230	IVICSU	13.00	No Require
		36	5180		13.00	
	802.11ac VHT20	40	5200	MCS0	13.00	
		48	5240		13.00	
	902 44ee VUT40	38	5190	MCCO	11.00	10.46
	802.11ac VHT40	46	5230	MCS0	13.00	12.35
	802.11ac VHT80	42	5210	MCS0	10.50	9.78

Band	Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	ANT 1 Average Power (dBm)	ANT 2 Average Power (dBm)	Max. Tune-up	Total Average Power (dBm)
		36	5180		11.76	12.71	16.00	15.27
	802.11a	40	5200	6	11.51	12.83	16.00	15.23
		48	5240		12.31	13.02	16.00	15.69
	802.11n	36	5180		-	ı	15.00	
	HT20	40	5200	MCS8	-	1	15.00	
	11120	48	5240		-	-	15.00	
5.2G	802.11n	38	5190	MCS8	-	-	13.50	No Require
_ANT 1+2	HT40	46	5230	IVICSO	-	1	16.00	- No Require
_AN1 1+2	802.11ac	36	5180		-	ı	15.00	
	VHT20	40	5200	MCS8	-	-	15.00	
	VHIZU	48	5240		-	-	15.00	
	802.11ac 38 5190	MCS8	9.12	10.46	13.50	12.85		
	VHT40	46	5230	IVICOO	12.96	12.35	16.50	15.68
	802.11ac VHT80	42	5210	MCS8	7.95	9.78	12.50	11.97

Note:

¹⁾ The Average conducted power of WiFi 5.2G is measured with RMS detector.
2) The tested channel results are marks in bold.

3. Conducted power measurements of WiFi 5.3G

Dand	Mada	Channel	From the (MILE)	Data	Max.	Average	
Band	Mode	Channel	Frequency(MHz)	Rate(Mbps)	Tune-up	Power(dBm)	
		52	5260		12.00	11.34	
	802.11a	60	5300	6	12.00	10.83	
		64	5320		12.00	10.81	
		52	5260		13.00		
	802.11n HT20	60	5300	MCS0	13.00	No Require	
		64	5320		13.00		
5.3G	802.11n HT40	54 5270 MCSO		MCS0	13.00		
_ANT 1	602.11II H140	62	5310	IVICSU	11.50		
		52	5260		13.00	12.02	
	802.11ac VHT20	60	5300	MCS0	13.00	11.85	
		64	5320		13.00	11.64	
	902 1100 VUT40	54	5270	MCS0	13.50	12.88	
	802.11ac VHT40	62	5310	IVICOU	11.50	10.77	
	802.11ac VHT80	58	5290	MCS0	10.00	9.23	

Dand	Mode	Channel	Fraguency/MU=)	Data	Max.	Average	
Band	Wode	Channel	Frequency(MHz)	Rate(Mbps)	Tune-up	Power(dBm)	
		52	5260		14.00	13.29	
	802.11a	60	5300	6	14.00	12.54	
		64	5320		14.00	12.09	
		52	5260		14.00		
	802.11n HT20	60	5300	MCS0	14.00	No Require	
		64	5320		14.00		
5.3G	802.11n HT40	54	5270	MCS0	14.50		
_ANT 2	602.1111 H140	62	5310	IVICSU	13.50		
		52	5260		14.00	13.64	
	802.11ac VHT20	60	5300	MCS0	14.00	13.03	
		64	5320		14.00	12.71	
	902 44 oo VUT40	54	5270	MCS0	15.00	14.61	
	802.11ac VHT40	62	5310	IVICSU	13.50	12.35	
	802.11ac VHT80	58	5290	MCS0	11.00	10.37	

Band	Mode	Channel	Frequency	Data Rate	ANT 1 Average	ANT 2 Average	Max.	Total Average
			(MHz)	(Mbps)	Power	Power	Tune-up	Power
				(560)	(dBm)	(dBm)		(dBm)
	802.11a	52	5260		11.34	13.29	16.00	15.43
		60	5300	6	10.83	12.54	16.00	14.78
		64	5320		10.81	12.09	16.00	14.51
	802.11n HT20	52	5260		-	1	16.50	
		60	5300	MCS8	-	1	16.50	No Require
	П120	64	5320		-	-	16.50	
5.3G	802.11n	54	5270	MCS8	-	1	17.00	
9.3G ANT 1+2	HT40	62	5310	IVICSO	-	1	15.50	
_ANT 112	802.11ac	52	5260		12.02	13.64	16.50	15.92
	VHT20	60	5300	MCS8	11.85	13.03	16.50	15.49
	VHIZU	64	5320		11.64	12.71	16.50	15.22
	802.11ac	54	5270	MCS8	12.88	14.61	17.50	16.84
	VHT40	62	5310	IVICOO	10.77	12.35	15.50	14.64
	802.11ac VHT80	58	5290	MCS8	9.23	10.37	13.50	12.85

Note:

¹⁾ The Average conducted power of WiFi 5.3G is measured with RMS detector.
2) The tested channel results are marks in bold.

4. Conducted power measurements of WiFi 5.6G

Donal	Mada	Ohamal	Frequency	Data Rate	Max.	Average Power
Band	Mode	Channel	(MHz)	(Mbps)	Tune-up	(dBm)
		100	5500		14.00	13.24
	802.11a	116	5580	6	15.00	14.60
		140	5700		15.00	13.94
	000 44 =	100	5500		13.00	
	802.11n HT20	116	5580	MCS0	15.00	
		140	5700		14.00	No Doguiro
	000 44	102	5510		13.00	No Require
F CC	802.11n HT40	110	5550	MCS0	15.50	
5.6G	П140	134	5670		15.50	
_ANT 1	902 4400	100	5500		13.00	12.10
	802.11ac VHT20	116	5580	MCS0	15.00	13.44
	VIIIZU	140	5700		14.00	12.24
	902 4405	102	5510		13.00	12.38
	802.11ac VHT40	110	5550	MCS0	15.50	15.18
	VIII40	134	5670		15.50	15.07
	802.11ac	106	5530	MCS0	9.50	8.52
	VHT80	122	5610	IVICSU	16.00	15.45

Donal	Mada	Ohamaal	Frequency	Data Rate	Max.	Average Power
Band	Mode	Channel	(MHz)	(Mbps)	Tune-up	(dBm)
		100	5500		13.00	
	802.11a	116	5580	6	13.00	
		140	5700		13.00	
	802.11n HT20	100	5500		13.00	
		116	5580	MCS0	13.00	
		140	5700		13.00	
	000 44	102	5510		13.00	
F CC	802.11n	110	5550	MCS0	13.00	No Require
5.6G	HT40	134	5670		13.00	
_ANT 2	000 44	100	5500		13.00	1
	802.11ac VHT20	116	5580	MCS0	13.00	
	VIIIZU	140	5700		13.00	
	902 4406	102	5510		13.00	
	802.11ac VHT40	110	5550	MCS0	13.00	
	VII 140	134	5670		13.00	
	802.11ac	106	5530	MCS0	9.50	8.22
	VHT80	122	5610	IVICSU	13.50	13.02

Band	Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	ANT 1 Average Power (dBm)	ANT 2 Average Power (dBm)	Max. Tune-up	Total Average Power (dBm)
		100	5500		-	-	16.50	
	802.11a	116	5580	6	-	-	17.00	
		140	5700		-	-	17.00	
	000 44=	100	5500		-	-	16.00	
	802.11n HT20	116	5580	MCS0	-	-	17.00	
		140	5700		-	-	16.50	
	802.11n HT40	102	5510		-	-	16.00	
F.00		110	5550	MCS0	-	-	17.25	No Require
5.6G ANT 1+2		134	5670		-	-	17.25	
_AN1 1+2	000 4400	100	5500		-	-	16.00	
	802.11ac VHT20	116	5580	MCS0	-	-	17.00	
	VHIZU	140	5700		-	-	16.50	
	000 445	102	5510		-	-	16.00	
	802.11ac VHT40	110	5550	MCS0	-	-	17.25	
	VH140	134	5670		-	-	17.25	
	802.11ac	106	5530	MCS0	8.52	8.22	12.50	11.38
	VHT80	122	5610	IVICSU	15.45	13.02	18.00	17.41

Note:

¹⁾ The Average conducted power of WiFi 5.6G is measured with RMS detector.
2) The tested channel results are marks in bold.

5. Conducted power measurements of WiFi 5.8G

Band	Mode	Channel	Frequency	Data Rate	Max.	Average Power
Dallu	Wiode	Citatillei	(MHz)	(Mbps)	Tune-up	(dBm)
		149	5745		14.00	13.36
	802.11a	157	5785	6	14.00	13.02
		165	5825		12.00	11.24
	802.11n	149	5745		14.00	
	HT20	157	5785	MCS0	13.00	
	пі20	165	5825		13.00	No Require
5.8G	802.11n	151	5755	MCS0	14.50	
5.8G _ANT 1	HT40	159	5795	IVICSU	14.50	
_ANT I	000 44	149	5745		14.00	13.03
	802.11ac VHT20	157	5785	MCS0	13.00	12.61
	VH120	165	5825		13.00	11.85
	802.11ac	151	5755	MCS0	15.00	14.10
	VHT40	159	5795	IVICSU	15.00	13.82
	802.11ac VHT80	155	5775	MCS0	15.00	14.82

Dand	Mada	Channal	Frequency	Data Rate	Max.	Average Power
Band	Mode	Channel	(MHz)	(Mbps)	Tune-up	(dBm)
		149	5745		16.00	15.04
	802.11a	157	5785	6	16.00	14.95
		165	5825		14.00	13.14
	802.11n	149	5745		15.00	
	HT20	157	5785	MCS0	15.00	
	піги	165	5825		14.00	No Require
5.8G	802.11n	151	5755	MCS0	16.00	
5.8G _ANT 2	HT40	159	5795	MCSU	16.00	
_ANT 2	802.11ac	149	5745		15.00	14.26
	VHT20	157	5785	MCS0	15.00	14.49
	VIII 20	165	5825		14.00	13.31
	802.11ac	151	5755	MCS0	16.00	15.59
	VHT40	159	5795	IVICOU	16.00	15.69
	802.11ac	155	5775	MCS0	16.50	16.12
	VHT80	100	3113	IVICOU	10.50	10.12

Band	Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	ANT 1 Average Power (dBm)	ANT 2 Average Power (dBm)	Max. Tune-up	Total Average Power (dBm)
		149	5745		13.36	15.04	18.00	17.29
	802.11a	157	5785	6	13.02	14.95	18.00	17.10
		165	5825		11.24	13.14	16.00	15.30
	802.11n HT20	149	5745		-	-	17.50	
		157	5785	MCS8	-	-	17.00	
		165	5825		-	-	16.50	No Require
5.8G	802.11n	1 151	5755	MCS8	-	-	18.25	
_ANT 1+2	HT40	159	5795	IVICSO	-	-	18.25	
_AN1 1+2	802.11ac	149	5745		13.03	14.26	17.50	16.70
	VHT20	157	5785	MCS8	12.61	14.49	17.00	16.66
	VHIZU	165	5825		11.85	13.31	16.50	15.65
	802.11ac	151	5755	MCS8	14.10	15.59	18.50	17.92
	VHT40	159	5795	IVICOO	13.82	15.69	18.50	17.87
	802.11ac VHT80	155	5775	MCS8	14.82	16.12	19.00	18.47

Note:

¹⁾ The Average conducted power of WiFi 5.8G is measured with RMS detector.
2) The tested channel results are marks in bold.

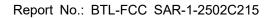
7.2 SAR TEST RESULTS

General Notes:

- 1) Per KDB447498 D04, all measurement SAR results are scaled to the maximum tune-up tolerance limit to demonstrate compliant.
- 2) Per KDB447498 D04, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 3) Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥ 0.8W/kg; if the deviation among the repeated measurement is ≤ 20%, and the measured SAR < 1.45W/kg, only one repeated measurement is required.
- 4) Per KDB941225 D06, the DUT Dimension is bigger than 9 cm x 5 cm, so 10mm is chosen as the test separation distance for Hotspot mode. When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.
- 5) Per KDB648474 D04, SAR is evaluated without a headset connected to the device. When the standalone reported body-worn SAR is ≤ 1.2 W/kg, no additional SAR evaluations using a headset are required.
- 6) Per KDB865664 D02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing.

WLAN Notes:

- 1. For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 for 2.4GHZ WIFI single transmission chain operations, the highest measured maximum output power Channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section7.1 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 for 5GHZ WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed power. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2W/kg. See Section 7.1 for more information.



7.2.1 SAR MEASUREMENT RESULT

1. SAR test results of WiFi 2.4G

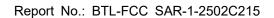
	R test results	OI VVII I		Separation		A 4	Data	Maximum	Conducted	Duty	Power	SAR	SAR	Reported
Test No.	Band	Channel	Test Position	Distance (mm)	Ant	Ant Angle	Data Rate	Tune-up (dBm)	Power (dBm)	Cycle (%)	Drift (dB)	1g (W/kg)	10g (W/kg)	1g SAR (W/kg)
W01	802.11n HT20	6	Horizontal Up	5	2	180	MCS0	19.00	18.55	97.53	0.08	0.450	0.160	0.512
W02	802.11n HT20	6	Horizontal Down	5	2	180	MCS0	19.00	18.55	97.53	0.02	0.041	0.021	0.047
W03	802.11n HT20	6	Vertical Back	5	2	180	MCS0	19.00	18.55	97.53	0.05	0.060	0.030	0.068
W04	802.11n HT20	6	Vertical Front	5	2	180	MCS0	19.00	18.55	97.53	-0.03	0.004	0.002	0.004
W05	802.11n HT20	6	Tip Side	5	2	180	MCS0	19.00	18.55	97.53	0.07	0.005	0.003	0.006
W06	802.11n HT20	1	Horizontal Up	5	2	180	MCS0	10.00	8.88	97.53	-0.12	0.111	0.037	0.147
W07	802.11n HT20	11	Horizontal Up	5	2	180	MCS0	10.00	9.61	97.53	-0.06	0.126	0.046	0.141
W09	802.11n HT20	6	Horizontal Up	5	1	180	MCS0	19.00	18.45	97.53	0.04	0.681	0.312	0.793
W10	802.11n HT20	6	Horizontal Down	5	1	180	MCS0	19.00	18.45	97.53	-0.14	0.643	0.310	0.748
W11	802.11n HT20	6	Vertical Back	5	1	180	MCS0	19.00	18.45	97.53	0.11	0.408	0.197	0.475
W12	802.11n HT20	6	Vertical Front	5	1	180	MCS0	19.00	18.45	97.53	0.11	0.268	0.132	0.312
W13	802.11n HT20	6	Tip Side	5	1	180	MCS0	19.00	18.45	97.53	0.09	0.014	0.008	0.016
W15	802.11n HT20	6	Horizontal Down	5	1	90	MCS0	19.00	18.45	97.53	0.1	0.101	0.051	0.118
W16	802.11n HT20	6	Vertical Back	5	1	90	MCS0	19.00	18.45	97.53	-0.15	0.483	0.235	0.562
W17	802.11n HT20	6	Vertical Front	5	1	90	MCS0	19.00	18.45	97.53	-0.03	0.396	0.201	0.461
W18	802.11n HT20	6	Tip Side	5	1	90	MCS0	19.00	18.45	97.53	0.07	0.765	0.352	0.890
W19	802.11b	1	Tip Side	5	1	90	MCS0	14.50	13.45	97.53	0.09	0.657	0.293	0.858
W20	802.11b	11	Tip Side	5	1	90	MCS0	13.50	12.39	97.53	0.01	0.669	0.307	0.886
W22	802.11n HT20	6	Horizontal Up	5	1+2	180	MCS8	22.00	21.51	97.53	0.02	0.611	0.281	0.701
W23	802.11n HT20	6	Horizontal Down	5	1+2	180	MCS8	22.00	21.51	97.53	-0.14	0.427	0.199	0.490
W24	802.11n HT20	6	Vertical Back	5	1+2	180	MCS8	22.00	21.51	97.53	0.07	0.295	0.149	0.339
W25	802.11n HT20	6	Vertical Front	5	1+2	180	MCS8	22.00	21.51	97.53	-0.09	0.249	0.125	0.286
W26	802.11n HT20	6	Tip Side	5	1+2	180	MCS8	22.00	21.51	97.53	0.01	0.011	0.006	0.013
W28	802.11n HT20	6	Horizontal Down	5	1+2	90	MCS8	22.00	21.51	97.53	-0.02	0.104	0.053	0.119
W29	802.11n HT20	6	Vertical Back	5	1+2	90	MCS8	22.00	21.51	97.53	0.07	0.455	0.228	0.522
W30	802.11n HT20	6	Vertical Front	5	1+2	90	MCS8	22.00	21.51	97.53	-0.18	0.415	0.21	0.476
W31	802.11n HT20	6	Tip Side	5	1+2	90	MCS8	22.00	21.51	97.53	0.08	0.805	0.372	0.924
W32	802.11b	1	Tip Side	5	1+2	90	MCS8	17.50	16.24	97.53	0.03	0.660	0.303	0.905
W33	802.11b	11	Tip Side	5	1+2	90	MCS8	16.50	15.74	97.53	-0.11	0.614	0.296	0.750
W34	802.11n HT20	6	Tip Side (Repeated)	5	1+2	90	MCS8	22.00	21.51	97.53	0.04	0.596	0.274	0.684

Note: The value with boldface is the maximum SAR Value of each test band.

2. SAR test results of WiFi 5G

Test No.	Band	Channel	Test Position	Separation Distance (mm)	Ant	Ant Angle	Data Rate	Maximum Tune-up (dBm)	Conducted Power (dBm)	Duty Cycle (%)		SAR 1g (W/kg)	SAR 10g (W/kg)	Reported 1g SAR (W/kg)
W35	802.11a	48	Horizontal Up	5	2	180	MCS0	13.50	13.02	86.93	-0.07	1.140	0.268	1.465
W36	802.11a	48	Horizontal Down	5	2	180	MCS0	13.50	13.02	86.93	0.01	0.100	0.034	0.128
W37	802.11a	48	Vertical Back	5	2	180	MCS0	13.50	13.02	86.93	0.12	0.395	0.113	0.507
W38	802.11a	48	Vertical Front	5	2	180	MCS0	13.50	13.02	86.93	-0.08	0.180	0.054	0.231
W39	802.11a	48	Tip Side	5	2	180	MCS0	13.50	13.02	86.93	0.04	0.106	0.022	0.136
W40	802.11a	36	Horizontal Up	5	2	180	MCS0	13.00	12.71	86.93	0.18	1.100	0.258	1.353
W41	802.11a	40	Horizontal Up	5	2	180	MCS0	13.50	12.83	86.93	0.05	0.740	0.174	0.993
W42	802.11ac VHT40	46	Horizontal Up	5	1	180	MCS0	13.50	12.96	86.93	-0.06	0.341	0.102	0.444
W43	802.11ac VHT40	46	Horizontal Down	5	1	180	MCS0	13.50	12.96	86.93	0.12	0.240	0.076	0.313
W44	802.11ac VHT40	46	Vertical Back	5	1	180	MCS0	13.50	12.96	86.93	-0.03	0.285	0.084	0.371
W45	802.11ac VHT40	46	Vertical Front	5	1	180	MCS0	13.50	12.96	86.93	0.06	0.288	0.082	0.375
W46	802.11ac VHT40	46	Tip Side	5	1	180	MCS0	13.50	12.96	86.93	0.1	0.064	0.025	0.083
W48	802.11ac VHT40	46	Horizontal Down	5	1	90	MCS0	13.50	12.96	86.93	0.15	0.025	0.001	0.033
W49	802.11ac VHT40	46	Vertical Back	5	1	90	MCS0	13.50	12.96	86.93	-0.03	0.156	0.015	0.203
W50	802.11ac VHT40	46	Vertical Front	5	1	90	MCS0	13.50	12.96	86.93	-0.06	0.155	0.014	0.202
W51	802.11ac VHT40	46	Tip Side	5	1	90	MCS0	13.50	12.96	86.93	0.1	0.494	0.144	0.644
W52	802.11ac VHT40	38	Tip Side	5	1	90	MCS0	10.00	9.12	86.93	0.04	0.223	0.0594	0.314
W55	802.11ac VHT40	46	Horizontal Up	5	1+2	180	MCS8	16.50	15.68	86.93	-0.08	0.309	0.074	0.430
W56	802.11ac VHT40	46	Horizontal Down	5	1+2	180	MCS8	16.50	15.68	86.93	-0.06	0.043	0.012	0.060
W57	802.11ac VHT40	46	Vertical Back	5	1+2	180	MCS8	16.50	15.68	86.93	0.13	0.043	0.014	0.060
W58	802.11ac VHT40	46	Vertical Front	5	1+2	180	MCS8	16.50	15.68	86.93	0.16	0.062	0.020	0.086
W59	802.11ac VHT40	46	Tip Side	5	1+2	180	MCS8	16.50	15.68	86.93	0.08	0.017	0.007	0.024
W61	802.11ac VHT40	46	Horizontal Down	5	1+2	90	MCS8	16.50	15.68	86.93	0.12	0.060	0.013	0.083
W62	802.11ac VHT40	46	Vertical Back	5	1+2	90	MCS8	16.50	15.68	86.93	-0.16	0.077	0.015	0.107
W63	802.11ac VHT40	46	Vertical Front	5	1+2	90	MCS8	16.50	15.68	86.93	0.02	0.080	0.018	0.111
W64	802.11ac VHT40	46	Tip Side	5	1+2	90	MCS8	16.50	15.68	86.93	-0.01	0.082	0.022	0.114
W65	802.11ac VHT40	38	Horizontal Up	5	1+2	180	MCS8	13.50	12.85	86.93	0.08	0.079	0.022	0.106

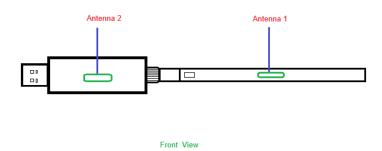
Test No.	Band	Channel	Test Position	Separation Distance (mm)	Ant	Ant Angle	Data Rate	Maximum Tune-up (dBm)	Conducted Power (dBm)	Duty Cycle (%)		SAR 1g (W/kg)	SAR 10g (W/kg)	Reported 1g SAR (W/kg)
W67	802.11ac VHT40	54	Horizontal Up	5	2	180	MCS0	15.00	14.61	86.93	0.02	1.080	0.242	1.359
W68	802.11ac VHT40	54	Horizontal Down	5	2	180	MCS0	15.00	14.61	86.93	-0.03	0.108	0.030	0.136
W69	802.11ac VHT40	54	Vertical Back	5	2	180	MCS0	15.00	14.61	86.93	0.09	0.181	0.055	0.228
W70	802.11ac VHT40	54	Vertical Front	5	2	180	MCS0	15.00	14.61	86.93	-0.16	0.170	0.055	0.214
W71	802.11ac VHT40	54	Tip Side	5	2	180	MCS0	15.00	14.61	86.93	-0.17	0.041	0.012	0.052
W72	802.11ac VHT40	62	Horizontal Up	5	2	180	MCS0	13.50	12.35	86.93	0.1	0.453	0.114	0.679
W74	802.11ac VHT40	54	Horizontal Up	5	1	180	MCS0	13.50	12.88	86.93	0.06	0.383	0.115	0.508
W75	802.11ac VHT40	54	Horizontal Down	5	1	180	MCS0	13.50	12.88	86.93	-0.02	0.228	0.070	0.303
W76	802.11ac VHT40	54	Vertical Back	5	1	180	MCS0	13.50	12.88	86.93	-0.05	0.171	0.056	0.227
W77	802.11ac VHT40	54	Vertical Front	5	1	180	MCS0	13.50	12.88	86.93	0.06	0.143	0.049	0.190
W78	802.11ac VHT40	54	Tip Side	5	1	180	MCS0	13.50	12.88	86.93	-0.12	0.098	0.035	0.130
W80	802.11ac VHT40	54	Horizontal Down	5	1	90	MCS0	13.50	12.88	86.93	0.16	0.139	0.046	0.184
W81	802.11ac VHT40	54	Vertical Back	5	1	90	MCS0	13.50	12.88	86.93	-0.06	0.325	0.101	0.431
W82	802.11ac VHT40	54	Vertical Front	5	1	90	MCS0	13.50	12.88	86.93	0.02	0.291	0.089	0.386
W83	802.11ac VHT40	54	Tip Side	5	1	90	MCS0	13.50	12.88	86.93	0.01	0.509	0.146	0.675
W84	802.11ac VHT40	62	Tip Side	5	1	90	MCS0	11.50	10.77	86.93	-0.16	0.325	0.087	0.442
W86	802.11ac VHT40	54	Horizontal Up	5	1+2	180	MCS8	17.50	16.84	86.93	0.08	0.274	0.058	0.367
W87	802.11ac VHT40	54	Horizontal Down	5	1+2	180	MCS8	17.50	16.84	86.93	0.08	0.111	0.025	0.149
W88	802.11ac VHT40	54	Vertical Back	5	1+2	180	MCS8	17.50	16.84	86.93	-0.15	0.098	0.024	0.131
W89	802.11ac VHT40	54	Vertical Front	5	1+2	180	MCS8	17.50	16.84	86.93	0.17	0.081	0.017	0.108
W90	802.11ac VHT40	54	Tip Side	5	1+2	180	MCS8	17.50	16.84	86.93	0.03	0.022	0.009	0.029
W92	802.11ac VHT40	54	Horizontal Down	5	1+2	90	MCS8	17.50	16.84	86.93	-0.08	0.051	0.009	0.068
W93	802.11ac VHT40	54	Vertical Back	5	1+2	90	MCS8	17.50	16.84	86.93	-0.11	0.074	0.018	0.099
W94	802.11ac VHT40	54	Vertical Front	5	1+2	90	MCS8	17.50	16.84	86.93	0.1	0.047	0.01	0.063
W95	802.11ac VHT40	54	Tip Side	5	1+2	90	MCS8	17.50	16.84	86.93	0.08	0.079	0.02	0.106
W96	802.11ac VHT40	62	Horizontal Up	5	1+2	180	MCS8	15.50	14.64	86.93	0.02	0.178	0.038	0.250



Test No.	Band	Channel	IDCT	Separation Distance (mm)	Ant	Ant Angle	Data	Maximum Tune-up (dBm)	Conducted Power (dBm)	Duty Cycle (%)	Power Drift (dB)	SAR 1g (W/kg)	SAR 10g (W/kg)	Reported 1g SAR (W/kg)
W98	802.11ac VHT80	122	Horizontal Up	5	2	180	MCS0	13.50	13.02	86.93	-0.03	1.040	0.258	1.336
W99	802.11ac VHT80	122	Horizontal Down	5	2	180	MCS0	13.50	13.02	86.93	0.09	0.239	0.067	0.307
W100	802.11ac VHT80	122	Vertical Back	5	2	180	MCS0	13.50	13.02	86.93	0.02	0.145	0.039	0.186
W101	802.11ac VHT80	122	Vertical Front	5	2	180	MCS0	13.50	13.02	86.93	0.09	0.352	0.103	0.452
W102	802.11ac VHT80	122	Tip Side	5	2	180	MCS0	13.50	13.02	86.93	0.18	0.075	0.021	0.096
W103	802.11ac VHT80	106	Horizontal Up	5	2	180	MCS0	9.50	8.22	86.93	0.15	0.452	0.100	0.698
W105	802.11ac VHT80	122	Horizontal Up	5	1	180	MCS0	16.00	15.45	86.93	-0.08	0.722	0.207	0.943
W106	802.11ac VHT80	122	Horizontal Down	5	1	180	MCS0	16.00	15.45	86.93	-0.19	0.517	0.147	0.675
W107	802.11ac VHT80	122	Vertical Back	5	1	180	MCS0	16.00	15.45	86.93	0.17	0.315	0.093	0.411
W108	802.11ac VHT80	122	Vertical Front	5	1	180	MCS0	16.00	15.45	86.93	-0.16	0.310	0.089	0.405
W109	802.11ac VHT80	122	Tip Side	5	1	180	MCS0	16.00	15.45	86.93	0.06	0.141	0.049	0.184
W111	802.11ac VHT80	122	Horizontal Down	5	1	90	MCS0	16.00	15.45	86.93	-0.01	0.197	0.072	0.257
W112	802.11ac VHT80	122	Vertical Back	5	1	90	MCS0	16.00	15.45	86.93	0.1	0.382	0.124	0.499
W113	802.11ac VHT80	122	Vertical Front	5	1	90	MCS0	16.00	15.45	86.93	-0.12	0.198	0.071	0.259
W114	802.11ac VHT80	122	Tip Side	5	1	90	MCS0	16.00	15.45	86.93	0.2	0.621	0.188	0.811
W115	802.11ac VHT80	106	Horizontal Up	5	1	180	MCS0	9.50	8.52	86.93	0.03	0.080	0.022	0.115
W117	802.11ac VHT80	122	Horizontal Up	5	1+2	180	MCS8	19.50	18.88	86.93	-0.04	0.389	0.087	0.516
W118	802.11ac VHT80	122	Horizontal Down	5	1+2	180	MCS8	19.50	18.88	86.93	0.01	0.088	0.020	0.117
W119	802.11ac VHT80	122	Vertical Back	5	1+2	180	MCS8	19.50	18.88	86.93	0.12	0.100	0.019	0.133
W120	802.11ac VHT80	122	Vertical Front	5	1+2	180	MCS8	19.50	18.88	86.93	0.06	0.049	0.015	0.065
W121	802.11ac VHT80	122	Tip Side	5	1+2	180	MCS8	19.50	18.88	86.93	0.08	0.029	0.011	0.038
W123	802.11ac VHT80	122	Horizontal Down	5	1+2	90	MCS8	19.50	18.88	86.93	-0.13	0.101	0.028	0.134
W124	802.11ac VHT80	122	Vertical Back	5	1+2	90	MCS8	19.50	18.88	86.93	-0.08	0.115	0.027	0.152
W125	802.11ac VHT80	122	Vertical Front	5	1+2	90	MCS8	19.50	18.88	86.93	0.01	0.078	0.025	0.103
W126	802.11ac VHT80	122	Tip Side	5	1+2	90	MCS8	19.50	18.88	86.93	0.02	0.144	0.041	0.191
W127	802.11ac VHT80	106	Horizontal Up	5	1+2	180	MCS8	12.50	11.38	86.93	0.01	0.123	0.029	0.183

Test No.	Band	Channel	1221	Separation Distance (mm)	Ant	Ant Angle	Data Rate	Maximum Tune-up (dBm)	Conducted Power (dBm)	Duty Cycle (%)	Power Drift (dB)	1g	SAR 10g (W/kg)	Reported 1g SAR (W/kg)
W129	802.11ac VHT80	155	Horizontal Up	5	2	180	MCS0	16.50	16.12	86.93	0.04	1.180	0.285	1.482
W130	802.11ac VHT80	155	Horizontal Down	5	2	180	MCS0	16.50	16.12	86.93	-0.05	0.262	0.069	0.329
W131	802.11ac VHT80	155	Vertical Back	5	2	180	MCS0	16.50	16.12	86.93	-0.1	0.177	0.059	0.222
W132	802.11ac VHT80	155	Vertical Front	5	2	180	MCS0	16.50	16.12	86.93	-0.12	0.373	0.110	0.468
W133	802.11ac VHT80	155	Tip Side	5	2	180	MCS0	16.50	16.12	86.93	-0.15	0.064	0.020	0.080
W135	802.11ac VHT80	155	Horizontal Up	5	1	180	MCS0	15.00	14.82	86.93	0.02	0.693	0.195	0.831
W136	802.11ac VHT80	155	Horizontal Down	5	1	180	MCS0	15.00	14.82	86.93	-0.1	0.505	0.162	0.606
W137	802.11ac VHT80	155	Vertical Back	5	1	180	MCS0	15.00	14.82	86.93	0.19	0.231	0.081	0.277
W138	802.11ac VHT80	155	Vertical Front	5	1	180	MCS0	15.00	14.82	86.93	0.11	0.269	0.098	0.323
W139	802.11ac VHT80	155	Tip Side	5	1	180	MCS0	15.00	14.82	86.93	-0.13	0.117	0.046	0.140
W141	802.11ac VHT80	155	Horizontal Down	5	1	90	MCS0	15.00	14.82	86.93	0.19	0.164	0.062	0.197
W142	802.11ac VHT80	155	Vertical Back	5	1	90	MCS0	15.00	14.82	86.93	-0.15	0.246	0.086	0.295
W143	802.11ac VHT80	155	Vertical Front	5	1	90	MCS0	15.00	14.82	86.93	-0.16	0.222	0.083	0.266
W144	802.11ac VHT80	155	Tip Side	5	1	90	MCS0	15.00	14.82	86.93	0.09	0.684	0.205	0.820
W146	802.11ac VHT80	155	Horizontal Up	5	1+2	180	MCS8	19.00	18.53	86.93	0.07	0.296	0.076	0.379
W147	802.11ac VHT80	155	Horizontal Down	5	1+2	180	MCS8	19.00	18.53	86.93	0.01	0.085	0.029	0.109
W148	802.11ac VHT80	155	Vertical Back	5	1+2	180	MCS8	19.00	18.53	86.93	-0.13	0.076	0.024	0.097
W149	802.11ac VHT80	155	Vertical Front	5	1+2	180	MCS8	19.00	18.53	86.93	0.06	0.107	0.039	0.137
W150	802.11ac VHT80	155	Tip Side	5	1+2	180	MCS8	19.00	18.53	86.93	0.12	0.032	0.014	0.041
W152	802.11ac VHT80	155	Horizontal Down	5	1+2	90	MCS8	19.00	18.53	86.93	0.08	0.071	0.020	0.091
W153	802.11ac VHT80	155	Vertical Back	5	1+2	90	MCS8	19.00	18.53	86.93	-0.04	0.092	0.023	0.118
W154	802.11ac VHT80	155	Vertical Front	5	1+2	90	MCS8	19.00	18.53	86.93	0.1	0.126	0.033	0.162
W155	802.11ac VHT80	155	Tip Side	5	1+2	90	MCS8	19.00	18.53	86.93	0.07	0.145	0.041	0.186

Note: The value with boldface is the maximum SAR Value of each test band.

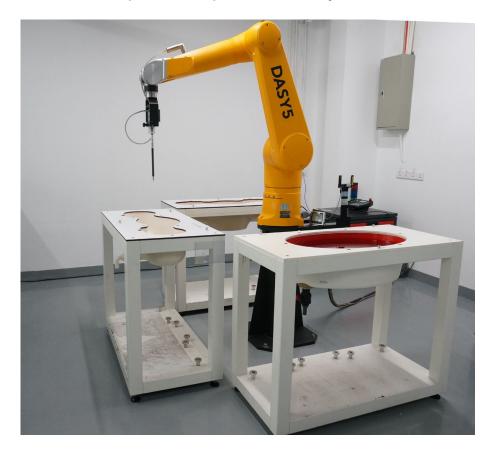


8 MULTIPLE TRANSMITTER EVALUATION

The following tables list information which is relevant for the decision if a simultaneous transmit evaluation is necessary according to FCC KDB 447498 D04 Interim General RF Exposure Guidance v01.

The location of the antennas inside the EUT is shown as below:

Note:


In the test data of Chapter 7.2, MIMO SAR (Ant 1+2) has already been tested, so there is no need to perform synchronous transmission calculation

APPENDIX

1. TEST LAYOUT

Specific Absorption Rate Test Layout

Liquid depth in the flat Phantom (≥15cm depth)

Appendix A. SAR Plots of System Verification

(PIs See BTL-FCC SAR-1-2502C215_Appendix A.)

Appendix B. SAR Plots of SAR Measurement

(PIs See BTL-FCC SAR-1-2502C215_Appendix B.)

Appendix C. Calibration Certificate

(PIs See BTL-FCC SAR-1-2502C215_Appendix C.)

Appendix D. Photographs of the Test Set-Up

(PIs See BTL-FCC SAR-1-2502C215_Appendix D.)

End of Test Report