

TEST REPORT

Test report no.: 1-2298/16-01-13

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Poly-Control ApS

Gammel Stillingvej 427 C 8462 Harlev / DENMARK

Phone: -/-Fax: -/-

Contact: Henning Overgaard e-mail: ho@poly-control.com
Phone: +45 42 42 81 22

Manufacturer

Poly-Control ApS

Gammel Stillingvej 427 C 8462 Harlev / DENMARK

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 210 Issue 9 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-Exempt Radio Apparatus: Category I Equipment

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Electronic door lock

Model name: V3-BTZU

FCC ID: 2ADSH-V3BTZU IC: 12588A-V3BTZU

Frequencies: CH 0: 916.0 MHz ; CH 1: 908.4 MHz

Technology tested: ZWave

Antenna: Integrated ceramic chip antenna

Power supply: 3.0 V DC by Li battery

Temperature range: +5°C to +35°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:

Andreas Luckenbill Lab Manager

Radio Communications & EMC

Tobias Wittenmeier
Testing Manager
Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Gene	ral information	
	2.1	Notes and disclaimer	:
	2.2	Application details	
	2.3	Test laboratories sub-contracted	
3	Test s	standard/s and references	2
4	Test e	environment	5
5	Test i	tem	5
	5.1	General description	
	5.2	Additional information	5
6	Descr	iption of the test setup	6
	6.1	Shielded semi anechoic chamber	7
	6.2	Shielded fully anechoic chamber	
	6.3	Conducted measurements	9
7	Seque	ence of testing	10
	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	
	7.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	
	7.3	Sequence of testing radiated spurious 1 GHz to 12.75 GHz	
8	Meas	urement uncertainty	13
9	Sumn	nary of measurement results	14
10	Α	dditional comments	15
11	M	leasurement results	16
	11.1	Field strength of emissions (wanted signal)	16
	11.2	Occupied bandwidth (99% bandwidth)	18
	11.3	Spurious emissions radiated	
		1.3.1 Spurious emissions radiated below 30 MHz	
		1.3.2 Spurious emissions radiated 30 MHz to 1 GHz	
		·	
12		bservations	
1	Docu	ment history	32
2	Furth	er information	32
2	A coro	ditation Cartificate	21

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2017-01-27
Date of receipt of test item: 2017-03-08
Start of test: 2017-05-09
End of test: 2017-05-12

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature :		T_{nom} T_{max} T_{min}	+22 °C during room temperature tests No tests under extreme conditions required No tests under extreme conditions required
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply		V _{nom} V _{max}	3.0 V DC by Li battery No tests under extreme conditions required
r ower supply	•	V_{min}	No tests under extreme conditions required No tests under extreme conditions required

5 Test item

5.1 General description

Kind of test item :	Electronic door lock
Type identification :	V3-BTZU
HMN :	-/-
PMN :	DANALOCK
HVIN :	V3-BTZU
FVIN :	V3
S/N serial number :	No information available
HW hardware status :	2.0.0
SW software status :	DanalockV3_0.1.14
Frequencies :	CH 0: 916.0 MHz ; CH 1: 908.4 MHz
Type of radio transmission: Use of frequency spectrum:	Modulated carrier
Type of modulation :	2-FSK
Number of channels :	2
Antenna :	Integrated ceramic chip antenna
Power supply :	3.0 V DC by Li battery
Temperature range :	22°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-2298/16-01-01_AnnexA

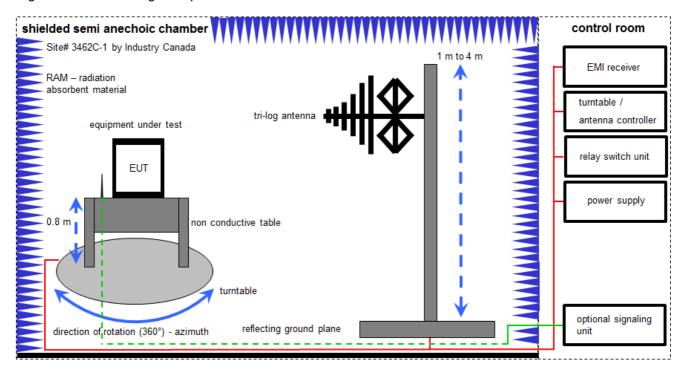
1-2298/16-01-01_AnnexB

1-2298/16-01-01_AnnexD

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

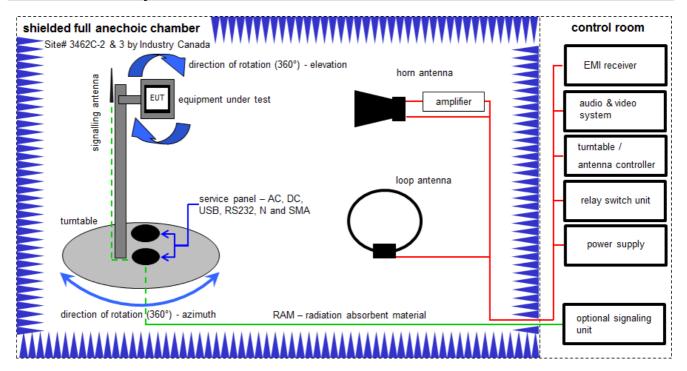
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	01.02.2017	31.01.2018
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018
9	Α	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	31.01.2017	30.01.2018

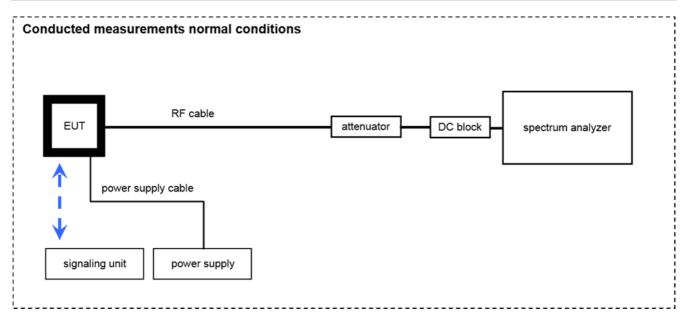
6.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO	2210	300001015	k	20.05.2015	20.05.2017
2	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	k	13.08.2015	13.08.2017
3	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
4	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
5	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
6	A,B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
7	A,B	Computer	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A54 21	300004591	ne	-/-	-/-
8	A,B	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
9	A,B	Anechoic chamber		TDK		300003726	ne	-/-	-/-
10	A,B	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	vIKI!	13.09.2016	13.03.2018

Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration		Next Calibration
1	Α	Power Supply	2X30V	Zentro	870008	300000830	NK!	-/-	-/-
2	А	EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059	k	25.01.2017	24.01.2018
3	А	RF-Cable SRD021 No. 1	Enviroflex 316 D	Huber & Suhner		400001311	ev	01.02.2017	31.01.2018

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize
 the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty						
Test case Uncertainty						
Antenna gain	± 3 dB					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum field strength	± 1 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 210, Issue 9 RSS Gen Issue 4	See table!	2017-06-27	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
§15.249(a) RSS 210	Field strength of emissions (wanted signal)	Nominal	Nominal	\boxtimes				-/-
§2.1049 RSS 210	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				-/-
§15.209(a) / §15.249(b)(1)(2)(3) RSS Gen	Field strength of emissions (spurious)	Nominal	Nominal					-/-
§15.207(a) RSS Gen	Conducted emissions < 30 MHz	Nominal	Nominal	\boxtimes				-/-
§15.109 RSS Gen	Field strength of emissions (spurious)	Nominal	Nominal					-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10 Additional comments

Reference documents:	None	
Special test descriptions:	None	
Configuration descriptions:	None	
Test mode:	☐ Normal	operation, no special test mode available.
		l software is used.

11 Measurement results

11.1 Field strength of emissions (wanted signal)

Description:

Measurement of the maximum radiated field strength of the wanted signal.

Measurement:

Measurement parameter			
Detector:	Pos-Peak		
Sweep time:	Auto		
Video bandwidth:	Auto		
Resolution bandwidth:	1 MHz		
Span:	max. 100 MHz		
Trace-Mode:	Max Hold		
Test setup	See sub clause 6.1 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC / IC					
	Field strength of emissions				
The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:					
Frequency Field Strength Measurement distance					
902 – 928 MHz	3				

Result:

CH 00:

Test condition	Maximum field strength		
	Frequency [MHz] Field strength [dBµV/m] @		
T _{nom} / V _{nom}	916.0 MHz 90.4		
Measurement uncertainty	± 3 dB		

CH 01:

Test condition	Maximum field strength	
	Frequency [MHz] Field strength [dBµV/m] @	
T _{nom} / V _{nom}	908.4 MHz 90.3	
Measurement uncertainty	± 3	dB

11.2 Occupied bandwidth (99% bandwidth)

Description:

Measurement of the 99% bandwidth of the wanted signal.

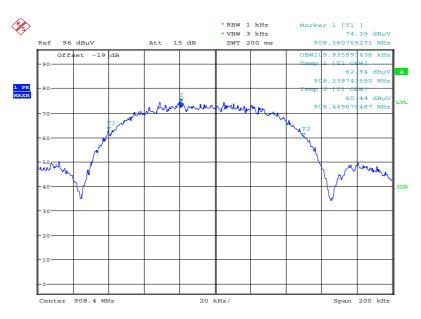
Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	1 kHz		
Resolution bandwidth:	3 kHz		
Span:	8 MHz		
Trace-Mode:	Max Hold		
Test setup	See sub clause 6.3A		
Measurement uncertainty	See sub clause 8		

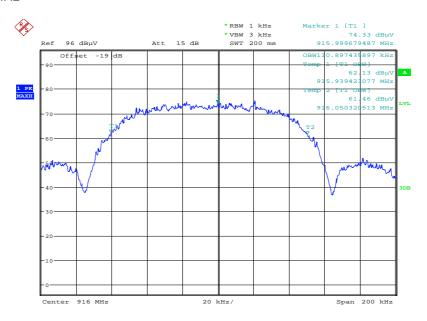
Results:

908.4 MHz

Test condition	Occupied bandwidth		
	Frequency [MHz] Occupied bandwidth [
T _{nom} / V _{nom}	908.4	109.9	
Measurement uncertainty	± 3	dB	


916.0 MHz

Test condition	Occupied bandwidth		
	Frequency [MHz] Occupied bandwidth [kH		
T _{nom} / V _{nom}	916.0 110.9		
Measurement uncertainty	± 3	dB	


Plots:

Plot 1: 908.4 MHz

Date: 2.MAR.2017 11:54:42

Plot 2: 916.0 MHz

Date: 2.MAR.2017 11:53:22

11.3 Spurious emissions radiated

11.3.1 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

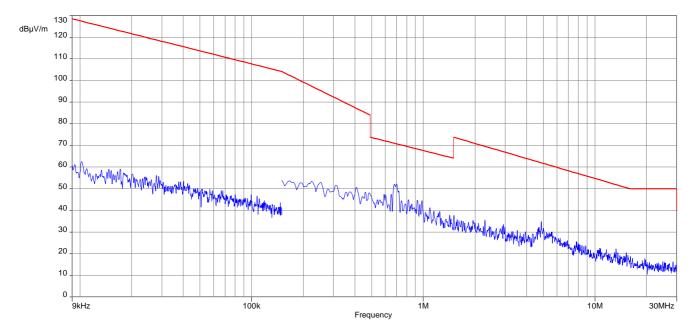
Measurement parameters					
Detector	Peak / Quasi peak				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 30 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max hold				
Test setup	See sub clause 6.2 A				
Measurement uncertainty	See sub clause 8				

Limits:

FCC	IC					
TX spurious emissions radiated below 30 MHz						
Frequency (MHz)	Field strength (dBµV/m)		Field strength (dBµV/m) Meas		Measureme	nt distance
0.009 – 0.490	2400/F(kHz)		30	0		
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		30)
1.705 – 30.0	30		30)		

Results:

TX spurious emissions radiated below 30 MHz [dBμV/m]							
F [MHz] Detector Level [dBµV/m]							
All detected emissions are more than 20 dB below the limit.							



Plots:

Plot 1: 9 kHz to 30 MHz, 908.4 MHz

Plot 2: 9 kHz to 30 MHz, 916.0 MHz

11.3.2 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode.

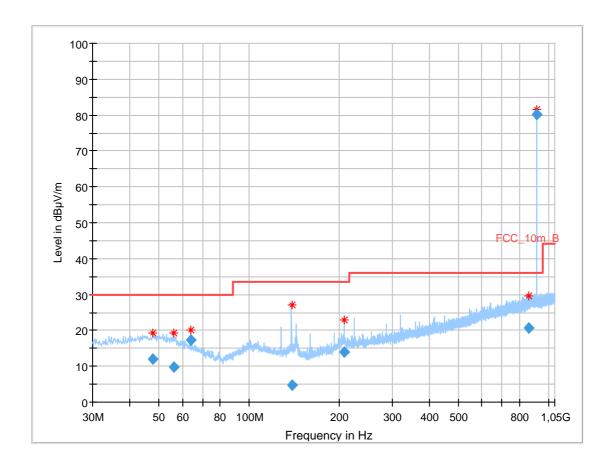
Measurement parameters				
Detector	Peak / Quasi Peak			
Sweep time	Auto			
Resolution bandwidth	120 kHz			
Video bandwidth	3 x RBW			
Span	30 MHz to 1 GHz			
Trace mode	Max hold			
Measured modulation	O-QPSK			
Test setup	See sub clause 6.1 A			
Measurement uncertainty	See sub clause 8			

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC	IC				
TX spurious emissions radiated					

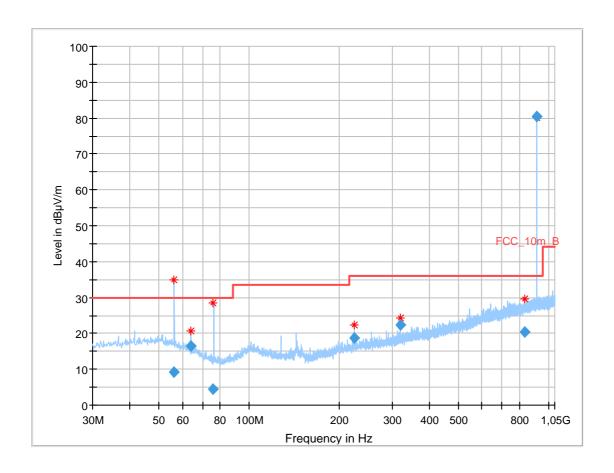
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


§15.209

Frequency (MHz)	Field strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

Plots:

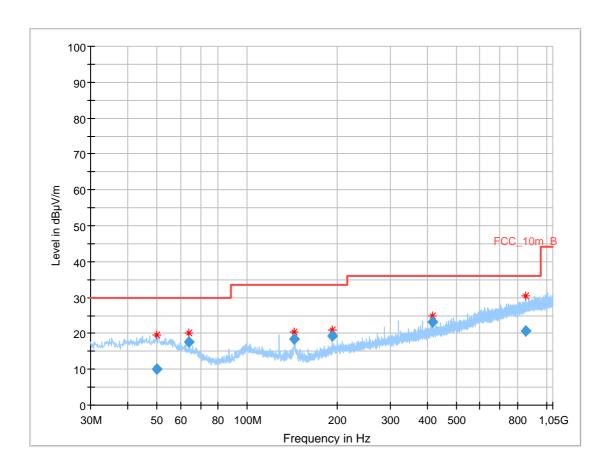
Plot 1: 30 MHz to 1 GHz, TX mode, 908.4 MHz, vertical & horizontal polarization



Final_Result QP

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
47.709750	12.03	30.00	17.97	1000.0	120.000	103.0	٧	75.0	13.7
55.825800	9.87	30.00	20.13	1000.0	120.000	200.0	٧	303.0	12.9
63.991650	17.35	30.00	12.65	1000.0	120.000	103.0	٧	300.0	11.0
138.692850	4.87	33.50	28.63	1000.0	120.000	101.0	Н	-15.0	8.9
207.994800	13.84	33.50	19.66	1000.0	120.000	101.0	٧	303.0	12.2
856.362150	20.69	36.00	15.31	1000.0	120.000	104.0	Н	75.0	23.6

Plot 2: 30 MHz to 1 GHz, TX mode, 916.0 MHz, vertical & horizontal polarization



Final_Result QP

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
56.164050	9.30	30.00	20.70	1000.0	120.000	101.0	Н	168.0	12.8
64.005750	16.58	30.00	13.42	1000.0	120.000	103.0	٧	76.0	11.0
75.847650	4.59	30.00	25.41	1000.0	120.000	104.0	Н	165.0	8.7
224.002950	18.83	36.00	17.17	1000.0	120.000	100.0	٧	-13.0	12.7
320.013600	22.48	36.00	13.52	1000.0	120.000	203.0	Н	211.0	15.1
834.697200	20.35	36.00	15.65	1000.0	120.000	98.0	Н	120.0	23.3

Plot 3: 30 MHz to 1 GHz, RX mode, vertical & horizontal polarization

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
49.885050	10.10	30.00	19.90	1000.0	120.000	203.0	٧	255.0	13.7
64.004700	17.62	30.00	12.38	1000.0	120.000	203.0	٧	75.0	11.0
143.999700	18.34	33.50	15.16	1000.0	120.000	100.0	٧	210.0	9.0
192.003150	19.40	33.50	14.10	1000.0	120.000	100.0	٧	121.0	11.5
415.998000	23.19	36.00	12.81	1000.0	120.000	103.0	Н	77.0	17.1
855.159600	20.58	36.00	15.42	1000.0	120.000	200.0	Н	211.0	23.6

11.3.3 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode.

Measurement parameters				
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 x RBW			
Span	1 GHz to 12.75 GHz			
Trace mode	Max hold			
Measured modulation	2-FSK			
Test setup	See sub clause 6.2 B			
Measurement uncertainty	See sub clause 8			

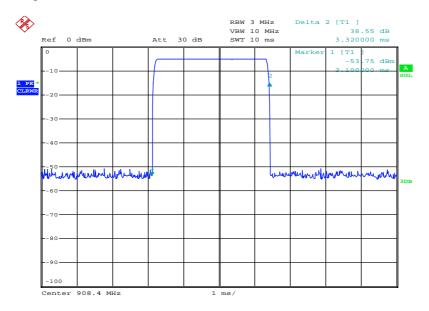
The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC		IC					
TX spurious emissions radiated							
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).							
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance				
Above 960	54.0 (A	(Average) 3					
Above 960	74.0 (Peak)	3				

RSS-210					
Frequency (MHz)	Field strength (dBµV/m)	Measurement distance			
Harmonics	64.1 (Average)	3			

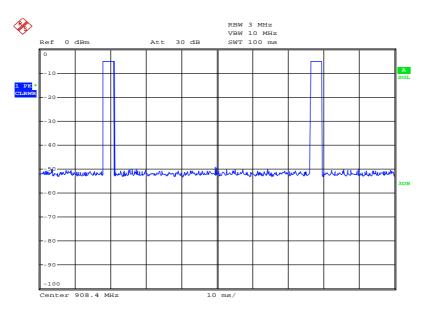
Result:


For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using RMS detector. If the dwell time of the hopping signal is less than 100 ms (per channel), the RMS reading may be adjusted by a factor:

F = 20*log (dwell time/100 ms)

In a period of 100 ms, we have a maximum of 2 transmissions and that gives the correction factor for spurious measurement.

$$F = 20*log (2*3.32/100) = -23.6 dB$$


Plot 1: Time slot length = 3.32 ms

Date: 21.JUN.2017 11:21:22

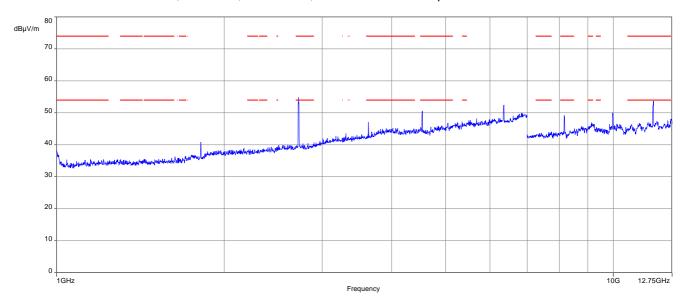
Plot 2: Number of bursts in 100ms = 2

Date: 21.JUN.2017 11:19:48

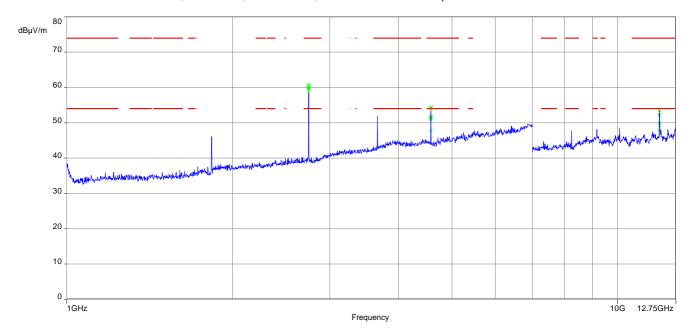
Results: Transmitter mode

TX spurious emissions radiated [dBμV/m]									
908.4 MHz			916 MHz				-/-		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level [dBµV/m] F [MHz]			Detector	Level [dBµV/m]	
2720	Peak	55.2	2748	Peak	60.8		Peak		
2/20	AVG*	31.6	2/40	AVG*	37.2		AVG*		
11805	Peak	53.9	4580	Peak	54.4		Peak		
11003	AVG*	30.3	4360	AVG*	30.8		AVG*		
	Peak		11908	Peak	53.8		Peak		
	AVG*		11906	AVG*	30.2		AVG*		

^{*}Values recalculated with a DC correction factor of -23.6

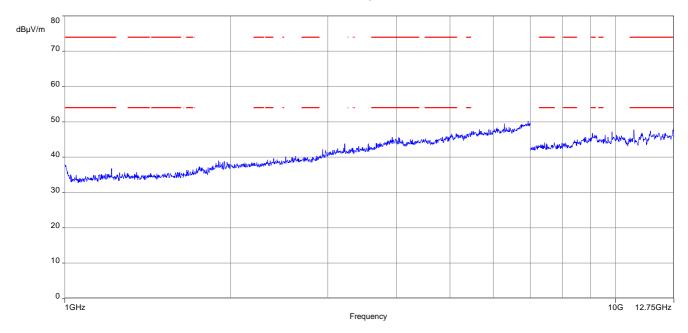

Results: Receiver mode

RX spurious emissions radiated [dBµV/m]			
F [MHz]	Detector	Level [dBµV/m]	
All detected emissions are more than 20 dB below the limit.			



Plots:

Plot 1: 1 GHz to 12.75 GHz, TX mode, 908.4 MHz, vertical & horizontal polarization



Plot 2: 1 GHz to 12.75 GHz, TX mode, 916.0 MHz, vertical & horizontal polarization

Plot 3: 1 GHz to 12.75 GHz, RX mode, vertical & horizontal polarization

12 Observations

No observations except those reported with the single test cases have been made.

1 Document history

Version	Applied changes	Date of release
	Initial release	2017-06-27

2 Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number

S/N - Serial nur SW - Software

PMN - Product marketing name HMN - Host marketing name

HVIN - Hardware version identification number FVIN - Firmware version identification number

OBW Occupied Bandwidth OC Operating Channel

OCW Operating Channel Bandwidth

OOB Out Of Band

3 **Accreditation Certificate**

first page

DAkkS Deutsche Akkreditierungsstelle GmbH Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung Akkreditierung Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaborator CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen: Funk
Mobiliumk (GSM / DCS) + OTA
Elektromagnetische Verträglichkeit (EMV)
Produktsicherheit
SAR / EMF
Umwelt
Umwelt
Smart Card Technology
Bluetooth*
Automotive
Wi-H-Services
Kanadische Anforderungen
Us-Anforderungen
Aksustik Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsnummer D-Pt-12076-01 und ist gültig bis 17.01.2018. Sie besteht aus diesem Dec der Rückseite des Deckblatts und der folgenden Anlage mit Insgesamt 63 Seiten. Registrierungsnummer der Urkunde: D-PL-12076-01-01 Frankfurt, 25.11.2016

last page

Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AktöselleG) vom 31. Juli 2009 (BGBI. 1.5. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europälschen Parlamen und des Rates vom 9. Juli 2008 (Bert die Verschriften Grüe die Akkrediterung und Marküberwin 1m. Zusammenhang mit der Vermarktung von Produkten (Abl. 1.218 vom 9. Juli 2008, 5. 30). Die Dakksi Stu Uterzeichherni der Muhillateralen Abkommen zur gegenseitigen Anerkennung der European co-operation for Aczreditation (EA), des International Aczreditation Forum (IAF) und der International Laboratory Aczerdatiano (Copperation (ILAC). Die Unterzeichner dieser Abkommu erkennen ihre Akkreditierungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entne EA: www.curopean-accreditation.org ILAC: www.llac.org ILAC: www.llac.org

Note:

The current certificate including annex can be received on request.