

# Users Manual

**AB1126**

# TABLE OF CONTENTS

---

|                                              |           |
|----------------------------------------------|-----------|
| <b>TABLE OF CONTENTS .....</b>               | <b>2</b>  |
| <b>1    System Overview .....</b>            | <b>3</b>  |
| 1.1    General Description .....             | 3         |
| 1.2    Features .....                        | 3         |
| 1.3    Applications.....                     | 4         |
| <b>2    Electrical Characteristics .....</b> | <b>5</b>  |
| 2.1    Absolute Maximum Ratings .....        | 5         |
| 2.2    Recommended Operating Conditions..... | 5         |
| 2.3    Digital Terminals.....                | 5         |
| 2.4    Reference Clock .....                 | 6         |
| 2.5    Switching Regulator.....              | 6         |
| 2.6    LDO Regulator .....                   | 7         |
| 2.7    Battery Charger.....                  | 7         |
| 2.8    Typical Current Consumption.....      | 7         |
| 2.9    Radio Characteristics .....           | 8         |
| 2.9.1    Transmitter .....                   | 8         |
| 2.9.2    Receiver .....                      | 9         |
| <b>3    FCC Statement .....</b>              | <b>12</b> |

# 1 System Overview

---

## 1.1 General Description

AB1126 is an optimized single-chip solution which integrates baseband and radio for wireless human input device applications including 3D glasses, game controller, remote control, and wireless mouse. It complies with Bluetooth system version 3.0 with the EDR function. AB1126 integrates the Li-ion battery charger circuit that provides 400mA charging current and reduces customer charging time.

## 1.2 Features

- Compliant with Bluetooth 3.0 specification
- Support EDR function
- HID profile version 1.1 compliant
- 3D Sync profile 1.0 compliant
- Device ID profile 1.3 compliant
- Support 3-axis detection
- Support hardware key-scan matrix
- Support SPI interface with 2/4-wire mode to mouse sensor IC
- Support I2C EEPROM interface
- Support UART interface for firmware downloading and peripheral control
- Embedded 4 LED drivers with fader
- Low cost ROM based design with customer code support
- Embedded power management unit
- Integrated 1.8V Buck and 1.8/2.7V LDO regulator
- Integrated Li-ion battery charger
- Single RF port for transmitter and receiver
- Receiver sensitivity of -89dBm at basic data rate
- Transmit power up to +4dBm with 25 dB gain tuning range
- QFN 5mm x 5mm 40 pin package

## 1.3 Applications

There are two typical applications of AB1126. One is 3D Glasses, and the other is wireless mouse. The application block diagrams are illustrated as below

### 3D Glasses

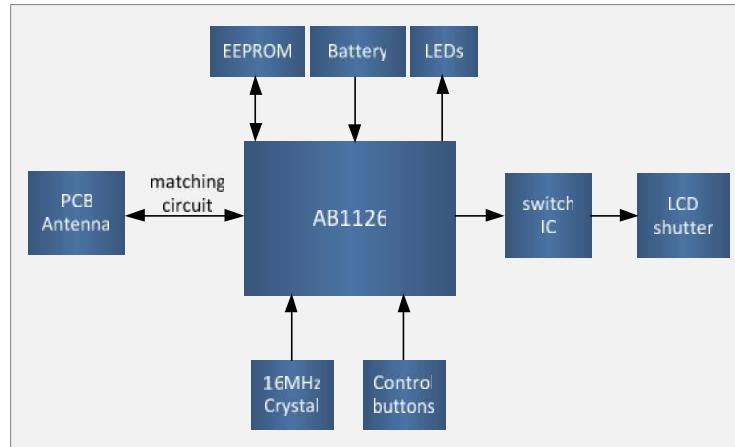



Figure 1-1 3DG Application Block Diagram

### Wireless Mouse

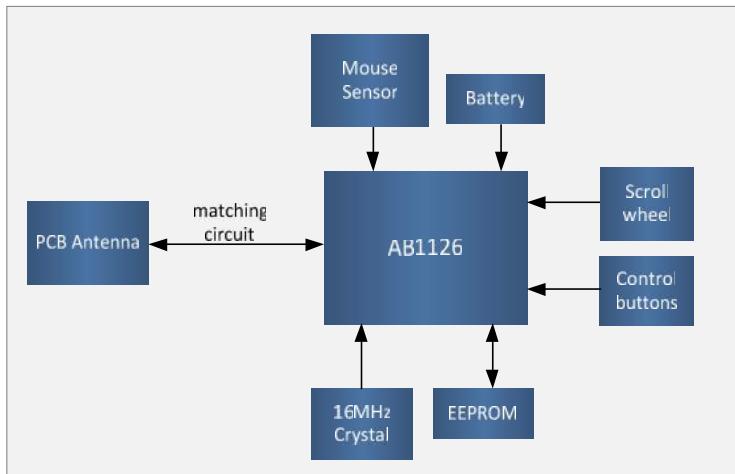



Figure 1-2 Wireless Mouse Application Block Diagram

## 2 Electrical Characteristics

---

### 2.1 Absolute Maximum Ratings

| ITEM                                       | MIN. | MAX. | UNIT |
|--------------------------------------------|------|------|------|
| I/O supply voltage (VCCIO)                 | -0.3 | 5.5  | V    |
| Switching Regulator supply voltage (BAT_P) | -0.3 | 5.5  | V    |
| Charger supply voltage (V_CHG)             | -0.3 | 6.5  | V    |
| Operating temperature                      | -40  | +85  | °C   |
| Storage temperature                        | -65  | +150 | °C   |
| LNA input level                            | -    | +10  | dBm  |
| PA output load mismatch                    | -    | 10:1 |      |

Table 3-1 Absolute Maximum Ratings

AB1128 could be damaged by any stress in excess of the absolute maximum ratings listed above

### 2.2 Recommended Operating Conditions

| Item                                                              | Min. | Typ. | Max. | Unit |
|-------------------------------------------------------------------|------|------|------|------|
| Core supply voltage (VCCIF, VCCRF, VCCVCO, VCCPLL, VCCDIG, VCCXO) |      | 1.8  |      | V    |
| I/O supply voltage (VCCIO)                                        | 1.8  |      | 3.6  | V    |
| Switching Regulator supply voltage (BAT_P)                        | 2    |      | 4.2  | V    |
| Charger supply voltage (VCHG)                                     | 4.5  | 5    | 6.5  | V    |

Table 3-2 Recommended Operating Conditions

### 2.3 Digital Terminals

| Item                                     | Min. | Typ. | Max.      | Unit |
|------------------------------------------|------|------|-----------|------|
| <b>Input Voltage Levels</b>              |      |      |           |      |
| Input logic level low (V <sub>IL</sub> ) | 0    |      | 0.3*VCCIO | V    |

|                                                              |           |  |           |   |
|--------------------------------------------------------------|-----------|--|-----------|---|
| Input logic level high ( $V_{IH}$ )                          | 0.7*VCCIO |  | VCCIO+0.4 | V |
| <b>Output Voltage Levels ( VCCIO=1.8V )</b>                  |           |  |           |   |
| Output logic level low ( $V_{OL}$ ), $I_O=4.0\text{mA}$ *    |           |  | 0.4       | V |
| Output logic level high ( $V_{OH}$ ), $I_O=-4.0\text{mA}$ ** | 0.7*VCCIO |  |           | V |
| <b>Output Voltage Levels ( VCCIO=3.3V )</b>                  |           |  |           |   |
| Output logic level low ( $V_{OL}$ ), $I_O=4.0\text{mA}$ *    |           |  | 0.4       | V |
| Output logic level high ( $V_{OH}$ ), $I_O=-4.0\text{mA}$ ** | 0.7*VCCIO |  |           | V |

Table 3-3 Digital Terminals

## 2.4 Reference Clock

| Item                                                 | Min. | Typ. | Max. | Unit |
|------------------------------------------------------|------|------|------|------|
| <b>Crystal Requirement</b>                           |      |      |      |      |
| Nominal Frequency                                    |      | 16   |      | MHz  |
| Operating Temperature Range                          | -30  | 25   | 85   | °C   |
| aging                                                | -20  |      | +20  | ppm  |
| Drive level                                          |      | 100  |      | uW   |
| Load capacitance                                     |      | 9    |      | pF   |
| Frequency tolerance                                  |      |      |      |      |
| Frequency Stability over Operating Temperature Range | -10  |      | +10  | ppm  |
| <b>Crystal Oscillator Characteristics</b>            |      |      |      |      |
| Tuning Range                                         | -30  |      | +30  | ppm  |
| Negative resistance                                  |      | -150 |      |      |

Table 3-4 Reference Clock

## 2.5 Switching Regulator

External inductor = 10uH, External capacitor = 10uF

| Item                        | Condition    | Min. | Typ. | Max. | Unit |
|-----------------------------|--------------|------|------|------|------|
| Input Voltage               |              | 2    |      | 4.4  | V    |
| Output Voltage              | BAT_P > 2.2V | 1.7  | 1.8  | 1.9  | V    |
| Rated Output Current (Iout) |              |      | 100  |      | mA   |
| Switching Frequency         |              |      | 1.3  |      | MHz  |
| Power Efficiency            | @Iout=40mA   |      | 90   |      | %    |

Table 3-5 Switching Regulator

## 2.6 LDO Regulator

External capacitor = 10uF

| Item                        | Condition   | Min. | Typ. | Max. | Unit |
|-----------------------------|-------------|------|------|------|------|
| Input Voltage               | LI_MODE_N=1 | 2.0  |      | 4.4  | V    |
| Input Voltage               | LI_MODE_N=0 | 2.7  |      | 4.4  | V    |
| Output Voltage              | LI_MODE_N=1 |      | 1.8  |      | V    |
| Output Voltage              | LI_MODE_N=0 | 2.5  |      | 3.2  | V    |
| Rated Output Current (Iout) |             |      | 100  |      | mA   |

Table 3-6 LDO Regulator

## 2.7 Battery Charger

| Item                                   | Min. | Typ. | Max. | Unit |
|----------------------------------------|------|------|------|------|
| Input Voltage                          | 4.5  | 5    | 6.5  | V    |
| Charge Current (CC Mode)               | 25   |      | 400  | mA   |
| Trickle Charge Current                 |      | 8    |      | mA   |
| Trickle to CC Charge Threshold Voltage |      | 3    |      | V    |
| Recharge Battery Hysteresis Voltage    |      | 200  |      | mV   |

Table 3-7 Battery Charger

## 2.8 Typical Current Consumption

Core Supply Voltage = 1.8V (buck output) @ 25°C unless other specified.

| Item                                                          | Condition                      | Min. | Typ. | Max. | Unit |
|---------------------------------------------------------------|--------------------------------|------|------|------|------|
| Transmit                                                      | Peak Current                   |      | TBD  |      | mA   |
| Receive                                                       | Peak Current                   |      | TBD  |      | mA   |
| Sniff mode                                                    | 10 ms                          |      | TBD  |      | mA   |
|                                                               | 100 ms                         |      | TBD  |      | mA   |
|                                                               | 1.28 s                         |      | TBD  |      | mA   |
| Deep sleep (disconnected, link loss state, wake on interrupt) | buck off, wake on by all GPIOs |      | 2    |      | uA   |

Table 3-8 Typical Current Consumption

The transmit and the receive current consumptions were measured directly on the buck output (1.8V at 25°C), while the sniff mode and deep sleep current was measured at battery output

## 2.9 Radio Characteristics

### 2.9.1 Transmitter

#### Basic Data Rate

Core Supply Voltage = 1.8V @ 25°C

| Item                                    | Min.                         | Typ. | Max. | Unit     |
|-----------------------------------------|------------------------------|------|------|----------|
| Maximum RF transmit Power <sup>*1</sup> |                              | 4    |      | dBm      |
| Maximum RF transmit Power (Low power)   |                              | 0    |      | dBm      |
| RF power control range                  |                              | 25   |      | dB       |
| 20dB bandwidth for modulated carrier    |                              |      | 1000 | KHz      |
| Adjacent channel transmit power         | +2MHz                        |      | -20  | dBm      |
|                                         | -2MHz                        |      | -20  | dBm      |
|                                         | +3MHz                        |      | -40  | dBm      |
|                                         | -3MHz                        |      | -40  | dBm      |
| Frequency deviation                     | Average deviation in payload | 115  |      | KHz      |
|                                         | Maximum deviation in payload | 140  | 175  | KHz      |
| Initial carrier frequency tolerance     | -75                          |      | 75   | KHz      |
| Drift                                   | DH1 packet                   | -25  | 25   | KHz      |
|                                         | DH3 packet                   | -40  | 40   | KHz      |
|                                         | DH5 packet                   | -40  | 40   | KHz      |
| Drift Rate                              | -20                          |      | 20   | KHz/50us |
| Harmonic Content                        |                              | -45  |      | dBm      |

Table 3-9 Transmitter Basic Data Rate

\*1 The maximum RF transmit power could reach 4dBm with appropriate settings

#### Enhanced Data Rate

Core Supply Voltage = 1.8V @ 25°C

| Item | Min. | Typ. | Max. | Unit |
|------|------|------|------|------|
|      |      |      |      |      |

|                                                                    |               |      |     |     |
|--------------------------------------------------------------------|---------------|------|-----|-----|
| Relative transmit power                                            |               | -1.5 |     | dB  |
| /4 DQPSK max carrier frequency stability   $\omega$                | -10           |      | 10  | KHz |
| /4 DQPSK max carrier frequency stability   $\dot{\omega}$          | -75           |      | 75  | KHz |
| /4 DQPSK max carrier frequency stability   $\omega + \dot{\omega}$ | -75           |      | 75  | KHz |
| 8DPSK max carrier frequency stability   $\omega$                   | -10           |      | 10  | KHz |
| 8DPSK max carrier frequency stability   $\dot{\omega}$             | -75           |      | 75  | KHz |
| 8DPSK max carrier frequency stability   $\omega + \dot{\omega}$    | -75           |      | 75  | KHz |
| /4 DQPSK Modulation Accuracy                                       | RMS DEVM      |      | 20  | %   |
|                                                                    | 99% DEVM      | 99   |     | %   |
|                                                                    | Peak DEVM     |      | 35  | %   |
| 8DPSK Modulation Accuracy                                          | RMS DEVM      |      | 13  | %   |
|                                                                    | 99% DEVM      | 99   |     | %   |
|                                                                    | Peak DEVM     |      | 25  | %   |
| In-band spurious emissions                                         | F > F0 + 3MHz |      | -40 | dBm |
|                                                                    | F < F0 - 3MHz |      | -40 | dBm |
|                                                                    | F = F0 + 3MHz |      | -40 | dBm |
|                                                                    | F = F0 - 3MHz |      | -40 | dBm |
|                                                                    | F = F0 + 2MHz |      | -20 | dBm |
|                                                                    | F = F0 - 2MHz |      | -20 | dBm |
|                                                                    | F = F0 + 1MHz |      | -26 | dBm |
|                                                                    | F = F0 - 1MHz |      | -26 | dBm |
| EDR Differential Phase Encoding                                    | 99            |      |     | %   |

Table 3-10 Transceiver Enhanced Data Rate

## 2.9.2 Receiver

### Basic Data Rate

Core Supply Voltage = 1.8V @ 25°C

| Item                                | Min.     | Typ. | Max. | Unit |
|-------------------------------------|----------|------|------|------|
| Sensitivity at 0.1% BER             | 2.402GHz |      | -89  |      |
|                                     | 2.441GHz |      | -89  |      |
|                                     | 2.480GHz |      | -89  |      |
| Sensitivity at 0.1% BER (Low Power) | 2.402GHz |      | -84  |      |
|                                     | 2.441GHz |      | -84  |      |

|                                               |                                                |     |     |     |     |
|-----------------------------------------------|------------------------------------------------|-----|-----|-----|-----|
|                                               | 2.480GHz                                       |     | -84 |     | dBm |
| Maximum input power at 0.1% BER               |                                                | -20 |     |     | dBm |
| Co-Channel interference                       |                                                |     |     | 11  | dB  |
| Adjacent channel selectivity<br>C/I           | $F = F_0 + 5\text{MHz}$                        |     |     | -40 | dB  |
|                                               | $F = F_0 + 4\text{MHz}$                        |     |     | -40 | dB  |
|                                               | $F = F_0 + 3\text{MHz}$                        |     |     | -40 | dB  |
|                                               | $F = F_0 + 2\text{MHz}$                        |     |     | -30 | dB  |
|                                               | $F = F_0 + 1\text{MHz}$                        |     |     | 0   | dB  |
|                                               | $F = F_0$                                      |     |     | 11  | dB  |
| Adjacent channel selectivity<br>C/I           | $F = F_0 - 1\text{MHz}$                        |     |     | 0   | dB  |
|                                               | $F = F_0 - 2\text{MHz}$                        |     |     | -20 | dB  |
|                                               | $F = F_0 - 3\text{MHz}$ ( $F_{\text{image}}$ ) |     |     | -9  | dB  |
|                                               | $F = F_0 - 4\text{MHz}$                        |     |     | -20 | dB  |
|                                               | $F = F_0 - 5\text{MHz}$                        |     |     | -40 | dB  |
| Maximum level of intermodulation interference |                                                |     |     | -39 | dBm |
| Blocking @Pin=-67dBm with<br>0.1%BER          | 30-2000 MHz                                    |     |     | -10 | dBm |
|                                               | 2000-2400 MHz                                  |     |     | -27 | dBm |
|                                               | 2500-3000 MHz                                  |     |     | -27 | dBm |
|                                               | 3000-12750 MHz                                 |     |     | -10 | dBm |

Table 3-11 Receiver Basic Rate

**Enhanced Data Rate**

Core Supply Voltage = 1.8V @ 25°C

| Item                                    |                         | Min.     | Typ. | Max. | Unit |
|-----------------------------------------|-------------------------|----------|------|------|------|
| Sensitivity at 0.01% EDR                | /4 DQPSK                |          | -90  |      | dBm  |
|                                         | 8DPSK                   |          | -81  |      | dBm  |
| Sensitivity at 0.01% EDR<br>(Low power) | /4 DQPSK                |          | -86  |      | dBm  |
|                                         | 8DPSK                   |          | -77  |      | dBm  |
| Maximum input power at 0.1%<br>BER      | /4 DQPSK                | -20      |      |      | dBm  |
|                                         | 8DPSK                   | -20      |      |      | dBm  |
| Co-Channel interference                 | /4 DQPSK                |          |      | 13   | dB   |
|                                         | 8DPSK                   |          |      | 21   | dB   |
| Adjacent channel selectivity<br>C/I     | $F = F_0 + 1\text{MHz}$ | /4 DQPSK |      | 0    | dB   |
|                                         |                         | 8DPSK    |      | 5    | dB   |

|                         |          |  |  |     |    |
|-------------------------|----------|--|--|-----|----|
| $F = F_0 - 1\text{MHz}$ | /4 DQPSK |  |  | 0   | dB |
|                         | 8DPSK    |  |  | 5   | dB |
| $F = F_0 + 2\text{MHz}$ | /4 DQPSK |  |  | -30 | dB |
|                         | 8DPSK    |  |  | -25 | dB |
| $F = F_0 - 2\text{MHz}$ | /4 DQPSK |  |  | -20 | dB |
|                         | 8DPSK    |  |  | -13 | dB |
| $F = F_0 + 3\text{MHz}$ | /4 DQPSK |  |  | -40 | dB |
|                         | 8DPSK    |  |  | -33 | dB |
| $F = F_{\text{image}}$  | /4 DQPSK |  |  | -7  | dB |
|                         | 8DPSK    |  |  | 0   | dB |

Table 3-12 Receiver Enhanced Data Rate

## **FCC STATEMENT :**

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) This device must accept any interference received, including interference that may cause undesired operation.

**Warning:** Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

Reorient or relocate the receiving antenna.

Increase the separation between the equipment and receiver.

Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

Consult the dealer or an experienced radio/TV technician for help.

## **RF warning statement:**

The device has been evaluated to meet general RF exposure requirement. The device can be used in portable exposure condition without restriction.

### **Module Warning Statement:**

This Bluetooth module is designed to comply with the FCC statement, FCC ID is: 2ADQG-AB1126.

The host system using this module, should have label in a visible area indicated the following texts:  
"Contains FCC ID: 2ADQG-AB1126".

This radio module must not be installed to co-locate and operated simultaneously with other radios in host system, additional testing and equipment authorization may be required to operating simultaneously with other radio.

This Bluetooth module has a PCB antenna. While this module has no shielding, and therefore the host equipment shall add a shielding function, and any host with module installed, has to be retested, then additional equipment authorization shall be achieved on the host equipment that has the module installed.