

FCC PART 15.225

ISED RSS-210, ISSUE 10, DECEMBER 2019

TEST REPORT

For

MAD APPAREL INC.

201 Arch St., Redwood City, CA 94062, USA

FCC ID: 2ADM9-ATHOS1
IC: 12535A-ATHOS1

Report Type: Original Report	Product Type: Health Data Recording Device
Prepared By: Giriraj Gurjar Test Engineer	
Report Number: R2108033-225	
Report Date: 2021-09-09	
Reviewed By: Zhao Zhao RF Project Engineer	
Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: +1 (408) 732-9162, Fax: +1 (408) 732-9164	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA*, NIST, or any agency of the Federal Government.

* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk “*” (Rev.2)

TABLE OF CONTENTS

1 General Description.....	4
1.1 Product Description for Equipment Under Test (EUT)	4
1.2 Mechanical Description of EUT	4
1.3 Objective.....	4
1.4 Related Submittal(s)/Grant(s)	4
1.5 Test Methodology	4
1.6 Measurement Uncertainty.....	4
1.7 Test Facility Registrations	5
1.8 Test Facility Accreditations	5
2 System Test Configuration.....	8
2.1 Justification.....	8
2.2 EUT Exercise Software.....	8
2.3 Equipment Modifications.....	8
2.4 Local Support Equipment	8
2.5 Remote Support Equipment.....	8
2.6 Interface Ports and Cabling.....	8
3 Summary of Test Results	9
4 FCC §15.203 & ISEDC RSS-Gen §6.8 - Antenna Requirements	10
4.1 Applicable Standards	10
4.2 Antenna Description	10
5 FCC §2.1093 & ISEDC RSS-102 - RF Exposure	11
5.1 Applicable Standards	11
5.2 RF Exposure Evaluation Exemption for FCC.....	14
5.3 RF Exposure Evaluation Exemption for IC	14
6 FCC §15.225(a),(b),(c),(d), §15.209 & ISEDC RSS-210 Annex B.6 - Radiated Field Strength.....	15
6.1 Applicable Standards	15
6.2 Test Setup	16
6.3 Test Procedure	17
6.4 Corrected Amplitude & Margin Calculation.....	17
6.5 Test Equipment List and Details	18
6.6 Test Environmental Conditions	18
6.7 Summary of Test Results	19
6.8 Radiated Field Strength Test Data and Plots.....	19
7 FCC §15.225(e) & ISEDC RSS-210 Annex B.6 - Frequency Tolerance.....	22
7.1 Applicable Standards	22
7.2 Test Equipment List and Details	22
7.3 Test Environmental Conditions	22
7.4 Test Results.....	23
8 FCC §15.215(c) & ISEDC RSS-GEN §6.7 - Occupied Bandwidth.....	26
8.1 Applicable Standards	26
8.2 Test Setup	26
8.3 Test Equipment List and Details	27
8.4 Test Environmental Conditions	27
8.5 Test Results.....	28
9 Annex A (Normative) - Test Setup Photographs	29
10 Annex B (Normative) - EUT External Photographs.....	30
11 Annex C (Normative) - EUT Internal Photographs	31
12 Annex D (Normative) - A2LA Electrical Testing Certificate.....	32

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R2108033-225	Original	2021-09-09

1 General Description

1.1 Product Description for Equipment Under Test (EUT)

This test report was prepared on behalf of *MAD Apparel Inc. (dba Athos)*, and their product, *FCC ID: 2ADM9-ATHOS1, IC: 12535A-ATHOS1, model: AC20*, or the “EUT referred to as the EUT (Equipment under Test). The EUT is a Bluetooth Low Energy Wearable Device with NFC operating at 13.56 MHz and Bluetooth Low Energy.

1.2 Mechanical Description of EUT

AC20 measures approximately 6.4 cm (Length) x 3.3 cm (Width) x 1.6 cm (High), and weighs approximately 0.0025kg.

The data gathered are from a typical production sample provided by the manufacturer with serial number: R2108033-1 assigned by BACL.

1.3 Objective

This report was prepared on behalf of *MAD Apparel Inc. (dba Athos)*, in accordance with Part 2, Subpart J, and Part 15, Subparts B and C of the Federal Communication Commission’s rules and ISEDC RSS 210 Annex B.6’s rules. The objective was to determine compliance with FCC Part 15.225 and ISEDC RSS 210.

1.4 Related Submittal(s)/Grant(s)

Equipment Class: DTS, FCC ID: 2ADM9-ATHOS1, IC: 12535A-ATHOS1.

1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR16-4-2:2011, The Treatment of Uncertainty in EMC Measurements, the values ranging from ± 2.0 dB for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

1.7 Test Facility Registrations

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A-1, 3062A-2, and 3062A-3.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-0027.

1.8 Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3297.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report.

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.03) to certify

- For the USA (Federal Communications Commission):

- 1- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4;
- 2- All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
- 3- All Telephone Terminal Equipment within FCC Scope C.

- For the Canada (Industry Canada):

- 1 All Scope 1-Licence-Exempt Radio Frequency Devices;
- 2 All Scope 2-Licensed Personal Mobile Radio Services;
- 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
- 4 All Scope 4-Licensed Maritime & Aviation Radio Services;
- 5 All Scope 5-Licensed Fixed Microwave Radio Services
- 6 All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.

- For Singapore (Info-Communications Development Authority (IDA)):

- 1 All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment – Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment – Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2

- For the Hong Kong Special Administrative Region:

- 1 All Radio Equipment, per KHCA 10XX-series Specifications;
- 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
- 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.

- For Japan:

- 1 MIC Telecommunication Business Law (Terminal Equipment):
 - All Scope A1 - Terminal Equipment for the Purpose of Calls;
 - All Scope A2 - Other Terminal Equipment
- 2 Radio Law (Radio Equipment):
 - All Scope B1 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes & Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)
 - for Imaging Equipment (ver. 2.0)
 - for Computer Servers (ver. 2.0)
- 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)
 - for Commercial Refrigerators and Freezers
- 3 Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
 - For Water Coolers (ver. 3.0)

D- A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) – APEC Tel MRA -Phase I;
- Canada: (Innovation, Science and Economic development Canada - ISEDC) Foreign Certification Body – FCB – APEC Tel MRA -Phase I & Phase II;
- Chinese Taipei (Republic of China – Taiwan):
 - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
 - o NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
 - o EMC Directive 2014/30/EU US-EU EMC & Telecom MRA CAB (NB)

- Radio Equipment (RE) Directive 2014/53/EU US-EU EMC & Telecom MRA CAB (NB)
- Low Voltage Directive (LVD) 2014/35/EU
- Hong Kong Special Administrative Region: (Office of the Telecommunications Authority – OFTA) APEC Tel MRA -Phase I & Phase II
- Israel – US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications - Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Media Development Authority - IMDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI - Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter
- USA:
 - ENERGY STAR Recognized Test Laboratory – US EPA
 - Telecommunications Certification Body (TCB) – US FCC;
 - Nationally Recognized Test Laboratory (NRTL) – US OSHA
- Vietnam: APEC Tel MRA -Phase I;

2 System Test Configuration

2.1 Justification

The EUT was configured for testing according to ANSI C63.10-2013.

2.2 EUT Exercise Software

The test software used was *TeraTerm* and verified to comply with the standard requirements being tested against.

Power setting: Default

2.3 Equipment Modifications

None

2.4 Local Support Equipment

Manufacturer	Description	Model No.	Serial No.
Dell	Laptop	Latitude E6410	3CKRAQ1

2.5 Remote Support Equipment

Manufacturer	Description	Model
Athos	Charger (Debug Board)	-
Athos	NFC tag	-

2.6 Interface Ports and Cabling

Cable Description	Length (m)	To	From
USB Type A to Micro USB Type B	1.0	EUT Charger	Laptop

3 Summary of Test Results

Results reported relate only to the product tested.

FCC & ISED Rules	Description of Test	Results
FCC §15.203 ISED RSS-Gen §6.8	Antenna Requirements	Compliant
FCC §2.1093 & ISED RSS-102	RF Exposure	Compliant
FCC §15.207 ISED RSS-Gen §8.8	AC Line Conducted Emissions	N/A ¹
FCC §15.225 (a) (b) (c) (d), §15.205, §15.209 & ISED RSS-210 Annex B.6	Radiated Field Strength (9kHz – 30MHz, 30MHz-1GHz)	Compliant
FCC §15.225 (e) & ISED RSS-210-Annex B.6	Frequency Tolerance	Compliant
FCC §15.215 (c) ISED RSS-Gen §6.7	Occupied Bandwidth	Complaint

Note¹: NFC radio is not functional when charging the rechargeable battery.

4 FCC §15.203 & ISEDC RSS-Gen §6.8 - Antenna Requirements

4.1 Applicable Standards

According to FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to ISEDC RSS-Gen §6.8: Transmitter Antenna

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For license-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

4.2 Antenna Description

External/Internal/ Integral	Frequency Range (MHz)	Antenna Type
Integral	13.56 MHz	Coil

5 FCC §2.1093 & ISEDC RSS-102 - RF Exposure

5.1 Applicable Standards

According to FCC KDB 447498 D01 General RF Exposure Guidance v06 Section 4.3.1, Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition, listed below, is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The minimum test separation distance is determined by the smallest distance from the antenna and radiating structures or outer surface of the device, according to the host form factor, exposure conditions and platform requirements, to any part of the body or extremity of a user or bystander (see 5) of section 4.1). To qualify for SAR test exclusion, the test separation distances applied must be fully explained and justified by the operating configurations and exposure conditions of the transmitter and applicable host platform requirements, typically in the SAR measurement or SAR analysis report, according to the required published RF exposure KDB procedures. When no other RF exposure testing or reporting is required, a statement of justification and compliance must be included in the equipment approval, in lieu of the SAR report, to qualify for the SAR test exclusion. When required, the device specific conditions described in the other published RF exposure KDB procedures must be satisfied before applying these SAR test exclusion provisions; for example, handheld PTT two-way radios, handsets, laptops & tablets etc.

- 1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

$$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR, where}$$

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

- 2) At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B:

- [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) · ($f(\text{MHz})/150$)] mW, at 100 MHz to 1500 MHz
- [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) · 10] mW at > 1500 MHz and ≤ 6 GHz

- 3) At frequencies below 100 MHz, the following may be considered for SAR test exclusion, and as illustrated in Appendix C:

- The power threshold at the corresponding test separation distance at 100 MHz in step 2) is multiplied by $[1 + \log(100/f(\text{MHz}))]$ for test separation distances > 50 mm and < 200 mm
- The power threshold determined by the equation in a) for 50 mm and 100 MHz is multiplied by $\frac{1}{2}$ for test separation distances ≤ 50 mm
- SAR measurement procedures are not established below 100 MHz. When SAR test exclusion cannot be applied, a KDB inquiry is required to determine SAR evaluation requirements for any test results to be acceptable.

According to 4.3.2. Simultaneous transmission SAR test exclusion considerations Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneously transmitting antenna. When the sum of 1-g or 10-g SAR of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration. When the sum is greater than the SAR limit, the SAR to peak location separation ratio procedures described below may be applied to determine if simultaneous transmission SAR test exclusion applies. For the test exclusion to apply, the maximum output power, duty factor, and other applicable parameters used in the standalone SAR tests, must be the same or more conservative than those required for simultaneous transmission. When the maximum output power used for standalone operations is reduced in an operating mode or exposure condition during simultaneous transmission, often due to SAR or other implementation requirements, the standalone SAR tested at the higher output power may be applied to determine simultaneous transmission SAR test exclusion. Alternatively, additional standalone SAR at the reduced maximum output power applied for simultaneous transmission may be performed to determine simultaneous transmission SAR test exclusion, according to the sum of 1-g SAR or SAR to peak location separation ratio procedures. The power level of the standalone SAR used to qualify for SAR test exclusion must be clearly explained in the SAR report. When simultaneous transmission SAR test exclusion does not apply, enlarged zoom scan measurements must be performed at the maximum output power required in the power reduction modes for simultaneous transmission, within the tune-up tolerance requirements of all transmitters, for applying the volume scan post-processing procedures.

- a) The transmitters and antennas in a device are typically not designed to transmit simultaneously and concurrently across multiple exposure conditions, such as head, body-worn accessories and other next to the body use conditions. The wireless modes and frequency bands supporting simultaneous transmission may also vary for the different exposure conditions. In addition, some exposure conditions may require multiple test positions, such as touch and tilt on the left and right side of the head, or different edges of tablets and phones. As a result, these conditions require simultaneous transmission to be evaluated according to the combinations of wireless modes and frequency bands configured to transmit simultaneously in each applicable exposure condition. In some cases, the different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR; for example, if the sum of the highest reported SAR of each antenna for the touch and tilt positions on both sides of the head does not exceed the limit. When the sum of SAR considered in this manner does not qualify for test exclusion, the individual test positions of each exposure condition should be considered separately for the sum of 1-g or 10-g SAR test exclusion. For each simultaneous transmission configuration that does not satisfy the sum of SAR test exclusion, SAR to peak location separation ratio should be evaluated to qualify for SAR test exclusion. In all cases, the reported standalone SAR should be applied to determine simultaneous transmission SAR test exclusion. b) When an antenna qualifies for the standalone SAR test exclusion of 4.3.1 and also transmits simultaneously with other antennas, the standalone SAR value must be estimated according to the following to determine the simultaneous transmission SAR test exclusion criteria:
 - 1) $[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})/x}] \text{ W/kg}$, for test separation distances $\leq 50 \text{ mm}$; where $x = 7.5$ for 1-g SAR and $x = 18.75$ for 10-g SAR.
 - 2) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distance is $> 50 \text{ mm}$.
- b) When an antenna qualifies for the standalone SAR test exclusion of 4.3.1 and also transmits simultaneously with other antennas, the standalone SAR value must be estimated according to the following to determine the simultaneous transmission SAR test exclusion criteria:
 - 1) $[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})/x}] \text{ W/kg}$, for test separation distances $\leq 50 \text{ mm}$; where $x = 7.5$ for 1-g SAR and $x = 18.75$ for 10-g SAR.
 - 2) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distance is $> 50 \text{ mm}$.

This SAR estimation formula has been considered in conjunction with the SAR Test Exclusion Thresholds to result in substantially conservative SAR values of $\leq 0.4 \text{ W/kg}$. When SAR is estimated, the peak SAR location is assumed to be at the feed-point or geometric center of the antenna, whichever provides a smaller antenna separation distance, and this location must be clearly identified in test reports. The estimated SAR is used only to determine simultaneous transmission SAR test exclusion; it should not be reported as the standalone SAR. When SAR is estimated, it must be applied to determine the sum of 1-g SAR test exclusion. When SAR to peak location separation ratio test exclusion is applied, the highest reported SAR for simultaneous transmission can be an estimated standalone SAR if the estimated SAR is the highest among the simultaneously transmitting antennas (see also KDB Publication 690783 D01). For situations where the estimated SAR is overly conservative for certain conditions, the test lab may choose to perform standalone SAR measurements, then use

the measured SAR to determine simultaneous transmission SAR test exclusion. Estimated SAR values at selected frequencies, distances, and power levels are illustrated in Appendix D

According to ISED RSS-102 Issue 5 Section 2.5.1 Exemption Limits for Routine Evaluation-SAR Evaluation:

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in table below,

Frequency (MHz)	Exemption Limits (mW)				
	At separation distance of ≤5 mm	At separation distance of 10 mm	At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm
≤300	71	101	132	162	193
450	52	70	88	106	123
835	17	30	42	55	67
1900	7	10	18	34	60
2450	4	7	15	30	52
3500	2	6	16	32	55
5800	1	6	15	27	41

Frequency (MHz)	Exemption Limits (mW)				
	At separation distance of 30 mm	At separation distance of 35 mm	At separation distance of 40 mm	At separation distance of 45 mm	At separation distance of ≥50 mm
≤300	223	254	284	315	345
450	141	159	177	195	213
835	80	92	105	117	130
1900	99	153	225	316	431
2450	83	123	173	235	309
3500	86	124	170	225	290
5800	56	71	85	97	106

5.2 RF Exposure Evaluation Exemption for FCC

The maximum turn-up EIRP measured is -50.81 dBm (0.000008 mW), Which is less than the threshold:

Threshold from step 2 a) $[1 + \log(100/f(\text{MHz}))] * 1/2 = 474.34 \text{mW} * [1 + \log(100/13.56)] * 1/2 = 442.97 \text{mW}$.

According to 4.3.2 of KDB 447498, the estimate SAR value for NFC is $[(\text{max. power of channel, including tune-up tolerance, mW})/(\text{min. test separation distance, mm})] [\sqrt{f(\text{GHz})/x}] \text{W/kg} = (0.000008 \text{ mW}/5\text{mm}) * (\sqrt{0.01356}/7.5) \text{ is almost } 0 \text{ W/kg}$.

According to the Report No. R2108033-247, the Estimate SAR value for BT5 is 0.103 W/kg.

The total estimate simultaneously SAR value will be 0.103 W/kg which is lower than the SAR limit 1.6 W/kg. Therefore, the FCC SAR testing for simultaneously transmission is exempt.

5.3 RF Exposure Evaluation Exemption for IC

Maximum EIRP power = -50.81 dBm (0.000008 mW), which is less than 71 mW. Therefore, IC SAR testing is not required.

Note: The maximum EIRP was calculated based on the peak field strength 44.35 dB μ V/m measured at 3 meter distance.

According to C63.10 Section 9.5: EIRP = E_{Meas} + 20log (d_{Meas}) - 104.7.

where

EIRP is the equivalent isotropically radiated power, in dBm

E_{Meas} is the field strength of the emission at the measurement distance, in dB μ V/m

d_{Meas} is the measurement distance, in m

6 FCC §15.225(a),(b),(c),(d), §15.209 & ISEDC RSS-210 Annex B.6 - Radiated Field Strength

6.1 Applicable Standards

As per FCC §15.225 Operation within the band 13.110-14.010 MHz

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.35:

The conducted and radiated emission limits shown in this part are based on the following, unless otherwise specified elsewhere in this part:

(a) On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths, unless otherwise specified. The specifications for the measuring instrument using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Interference (CISPR) of the International Electrotechnical Commission. As an alternative to CISPR quasi-peak measurements, the responsible party, at its option, may demonstrate compliance with the emission limits using measuring equipment employing a peak detector function, properly adjusted for such factors as pulse desensitization, as long as the same bandwidths as indicated for CISPR quasi-peak measurements are employed.

Note: For pulse modulated devices with a pulse-repetition frequency of 20 Hz or less and for which CISPR quasi-peak measurements are specified, compliance with the regulations shall be demonstrated using measuring equipment employing a peak detector function, properly adjusted for such factors as pulse desensitization, using the same measurement bandwidths that are indicated for CISPR quasi-peak measurements.

As per ISED RSS-210 Annex B.6 Band 13.110 – 14.010 MHz:

- the field strength of any emission shall not exceed the following limits:

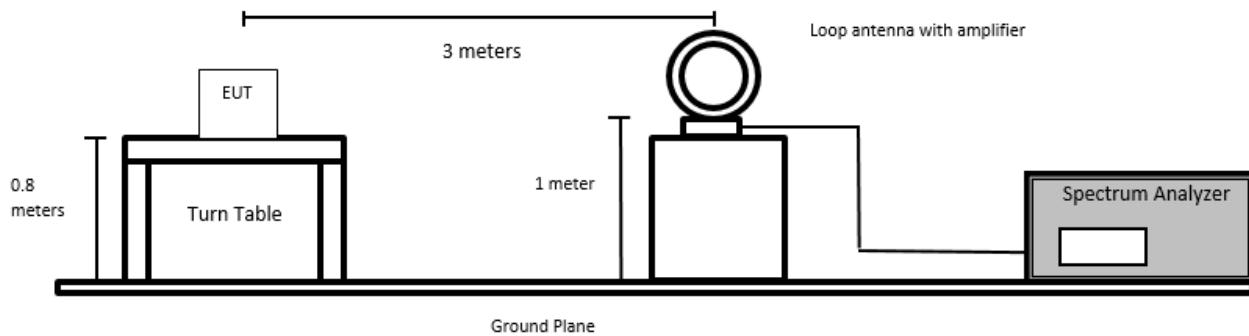
15.848 mV/m (84 dB μ V/m) at 30 m, within the band 13.553-13.567 MHz

334 μ V/m (50.5 dB μ V/m) at 30 m, within the bands 13.410-13.553 MHz and 13.567-13.710 MHz

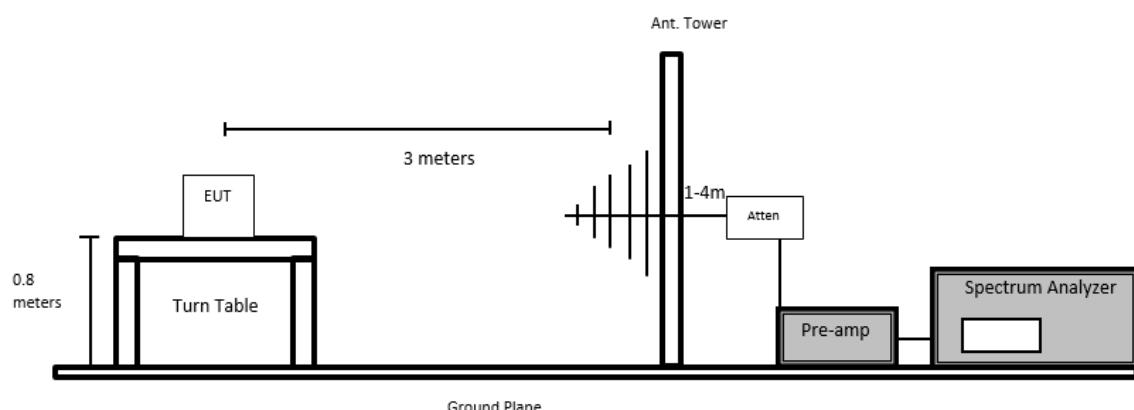
106 μ V/m (40.5 dB μ V/m) at 30 m, within the bands 13.110-13.410 MHz and 13.710-14.010 MHz

RSS-Gen general field strength limits for frequencies outside the band 13.110-14.010 MHz

6.2 Test Setup


The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.10-2013. The specification utilized was the FCC §15.225, §15.209 and ISED RSS-210 limits.

The spacing between the peripherals was 10 centimeters.


External I/O cables were draped along the edge of the test table and bundle when necessary.

Test Setup Diagram:

Below 30 MHz:

30 MHz to 1 GHz:

6.3 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which was fixed at around 1 meter for frequency below 30 MHz, and varies from 1 meter to 3 meters for 30 MHz to 1 GHz. The EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of perpendicular and parallel for frequency below 30 MHz, and the receiving antenna should be changed the polarization both of vertical and horizontal for frequency from 30 MHz to 1 GHz.

The spectrum analyzer or receiver is set as:

Below 150 kHz:

$$\text{RBW} = 200 \text{ Hz} / \text{VBW} = 600 \text{ Hz} / \text{Sweep} = \text{Auto} / \text{Quasi Peak}$$

From 150 kHz to 30 MHz:

$$\text{RBW} = 9 \text{ kHz} / \text{VBW} = 27 \text{ kHz} / \text{Sweep} = \text{Auto} / \text{Quasi Peak}$$

From 30MHz to 1GHz:

$$\text{RBW} = 120 \text{ kHz} / \text{VBW} = 300 \text{ kHz} / \text{Sweep} = \text{Auto} / \text{Quasi Peak}$$

6.4 Corrected Amplitude & Margin Calculation

For emissions below 30 MHz:

The Corrected Amplitude (CA) Reading is calculated by adding the Antenna Factor (AF), the Cable Loss (CL) to Spectrum Amplitude (SA) reading. The basic equation is as follows:

$$\text{CA} = \text{SA} + \text{AF} + \text{CL}$$

For example, a corrected amplitude of 59.7 dBuV/m = Spectrum Reading (32.5 dBuV) + Antenna Factor (+23.5dB/m) + Cable Loss (3.7 dB)

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corrected Amplitude} - \text{Limit}$$

For emissions from 30 MHz to 1 GHz,

The Corrected Amplitude (CA) is calculated by adding the Correction Factor to the S.A. Reading. The basic equation is as follows:

$$\text{CA} = \text{S.A. Reading} + \text{Correction Factor}$$

For example, a corrected amplitude of 40.3 dBuV/m = S.A. Reading (32.5 dBuV) + Correction Factor (7.8 dB/m)

The Correction Factor is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) together. This calculation is done in the measurement software, and reported in the test result section. The basic equation is as follows:

$$\text{Correction Factor} = \text{AF} + \text{CL} + \text{Atten} - \text{Ga}$$

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corrected Amplitude} - \text{Limit}$$

6.5 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rhode & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100044	2021-05-14	2 years
Sunol Science Corp	System Controller	SC99V	011003-1	N/R	N/A
Sunol Sciences	Biconilog Antenna	JB3	A020106-2	2019-11-20	2 years
HP	Pre Amplifier	8447D	2944A07030	2020-08-17	1 year
MDP Digital	Times Microwave LMR 400 UltraFlex Coaxial Cable 35'	LMR400UF	BACL1904161	2021-06-18	1 year
Com-Power	Antenna, Loop Active	AL-130	17043	2021-05-05	2 years

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 “A2LA Policy on Metrological Traceability”.

6.6 Test Environmental Conditions

Temperature:	23 ° C
Relative Humidity:	46 %
ATM Pressure:	101.8 kPa

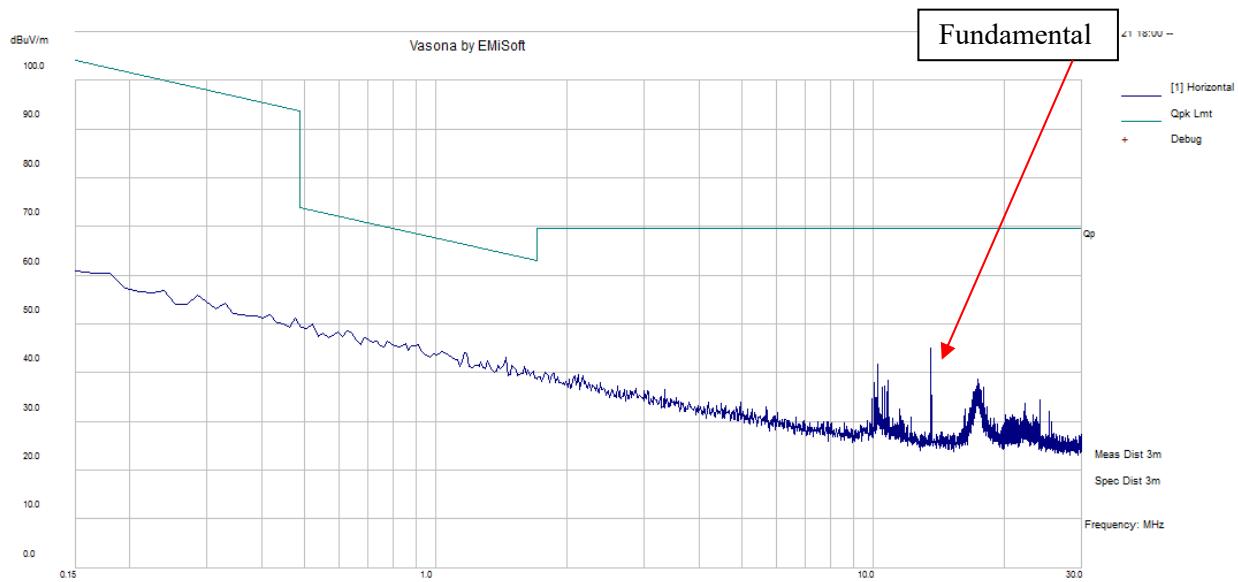
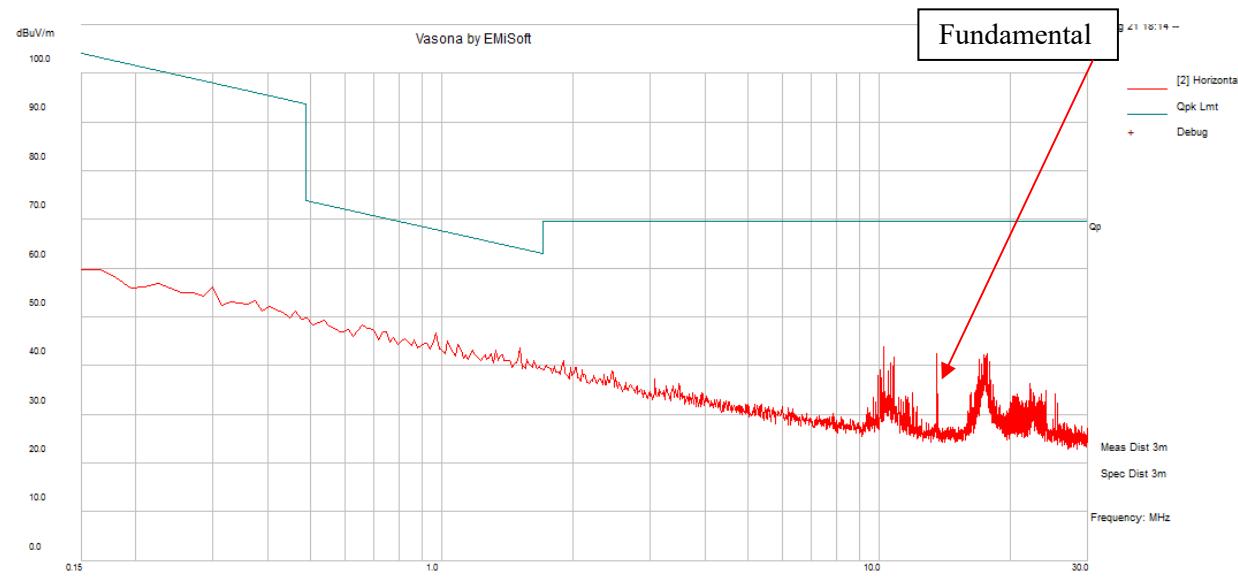
The testing was performed by Giriraj Gurjar on 2021-08-12 in 5meter chamber 3.

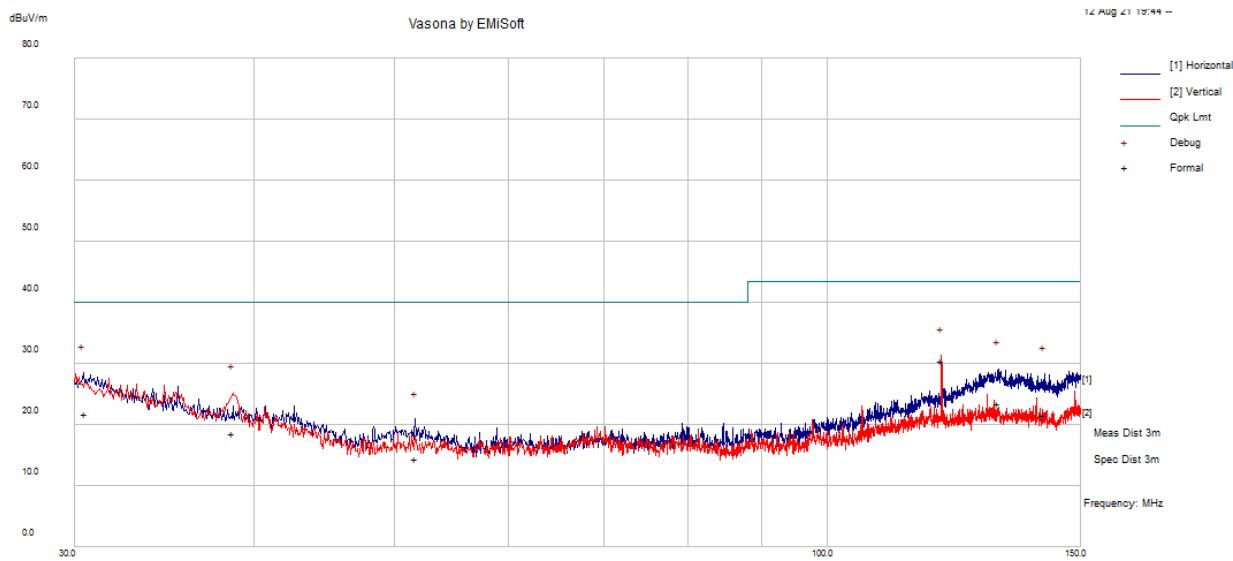
6.7 Summary of Test Results

According to the data hereinafter, the EUT complied with the FCC Part 15C and ISED/C RSS-210 standard's radiated emissions limits, and had the worst margin of:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization	Range
-41.36	25.2	Perp	9kHz – 30MHz
-13.02	120.0145	Vertical	30 MHz – 150 MHz

Please refer to the following table and plots for specific test result details



6.8 Radiated Field Strength Test Data and Plots


9 kHz to 30 MHz:

Frequency (MHz)	S.A. Reading (dB μ V)	Turntable Azimuth (degrees)	Test Antenna			Cable Loss (dB)	Cord. Reading (dB μ V/m)	FCC/ISED/C		Comments
			Height (cm)	Polarity	Factor (dB/m)			Limit (dB μ V/m)	Margin (dB)	
Loop Parallel										
13.56	32.55	203	100	Par.	11.4	0.4	44.35	124	-79.65	QP
13.553	15.59	203	100	Par.	11.4	0.4	27.39	90.47	-63.08	QP
13.567	21.24	203	100	Par.	11.4	0.4	33.04	90.47	-57.43	QP
13.26	9.65	203	100	Par.	11.4	0.4	21.45	80.51	-59.06	QP
13.801	9.8	203	100	Par.	11.4	0.4	21.6	80.51	-58.91	QP
10.22	12.42	64	100	Par.	11.2	0.4	24.02	69.54	-45.52	QP
16.89	12.66	201	100	Par.	11.2	0.4	24.26	69.54	-45.28	QP
29	9.75	0	100	Par.	11.2	0.4	21.35	69.54	-48.19	QP

Frequency (MHz)	S.A. Reading (dB μ V)	Turntable Azimuth (degrees)	Test Antenna			Cable Loss (dB)	Cord. Reading (dB μ V/m)	FCC/ISED/C		Comments
			Height (cm)	Polarity	Factor (dB/m)			Limit (dB μ V/m)	Margin (dB)	
Loop Perpendicular										
13.56	30.07	102	100	Par.	11.4	0.4	41.87	124	-82.13	QP
13.553	13.58	102	100	Par.	11.4	0.4	25.38	90.47	-65.09	QP
13.567	18.92	102	100	Par.	11.4	0.4	30.72	90.47	-59.75	QP
13.391	10.65	102	100	Par.	11.4	0.4	22.45	80.51	-58.06	QP
13.882	9.72	102	100	Par.	11.4	0.4	21.52	80.51	-58.99	QP
25.2	16.58	0	100	Par.	11.2	0.4	28.18	69.54	-41.36	QP

Note: the distance extrapolation factor (40 dB/decade) is used for below 30 MHz

Below 30 MHz Radiated Field Strength (Parallel):**Below 30 MHz Radiated Field Strength (Perpendicular):**

30 MHz - 150 MHz Radiated Field Strength:

Frequency (MHz)	SA Reading (dB μ V)	Correction Factor (dB/m)	Cord. Reading (dB μ V/m)	Antenna Pol.	Antenna Height (cm)	Turntable Azimuth (degrees)	Limit (dBuV/m)	Margin (dB)	Comment
120.0145	34.69	-4.21	30.48	V	107	14	43.5	-13.02	QP
30.51225	19.68	2.09	21.77	H	145	193	40	-18.23	QP
131.4475	27.79	-4.42	23.37	H	277	117	43.5	-20.13	QP
38.595	22.68	-4.13	18.55	V	161	322	40	-21.45	QP
141.2733	26.87	-5.37	21.49	H	240	269	43.5	-22.01	QP
51.78575	25.43	-11.07	14.36	H	218	61	40	-25.64	QP

Note: The Correction factor equals to antenna factor (dB/m) + cable loss (dB) - amplifier gain (dB)

7 FCC §15.225(e) & ISEDC RSS-210 Annex B.6 - Frequency Tolerance

7.1 Applicable Standards

As per FCC §15.225(e): Operation within the band 13.110-14.010 MHz

(e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

As per ISEDC RSS-210 Annex B.6 Band 13.110 – 14.010 MHz:

- a. the carrier frequency stability shall not exceed ± 100 ppm

7.2 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2021-04-27	1 years
BACL	Temp and Humi Chamber	BTH-150-40	30078	2020-06-25	1.5 years
Com-Power	Antenna, Loop Active	AL-130	17043	2021-05-05	2 years
-	RF Cable	-	-	Each time	-

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 “A2LA Policy on Metrological Traceability”.

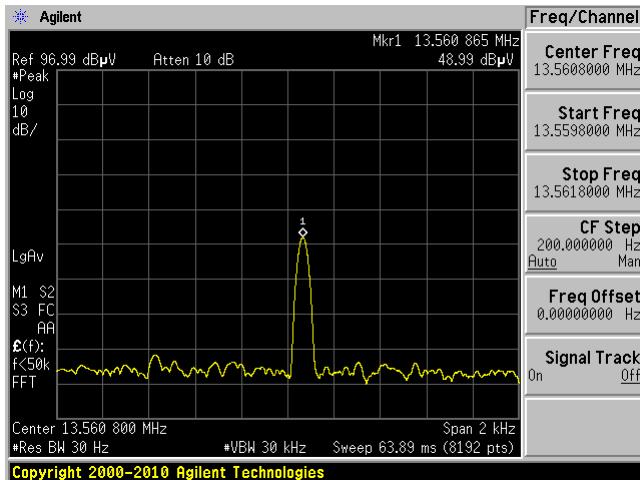
7.3 Test Environmental Conditions

Temperature:	20° C
Relative Humidity:	42 %
ATM Pressure:	101.9 kPa

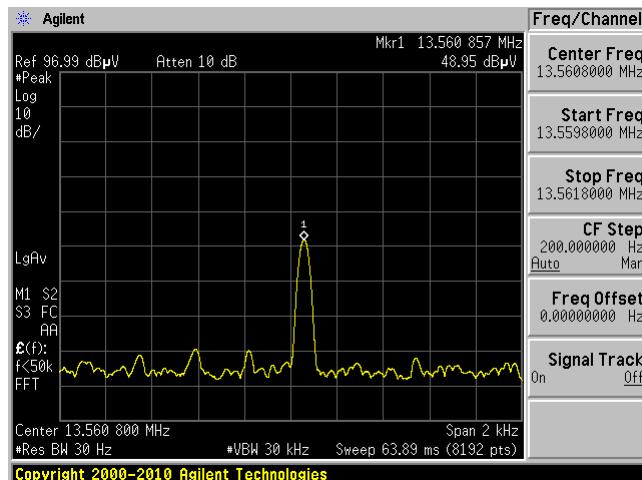
The testing was performed by Giriraj Gurjar on 2021-08-23 at RF Site.

7.4 Test Results

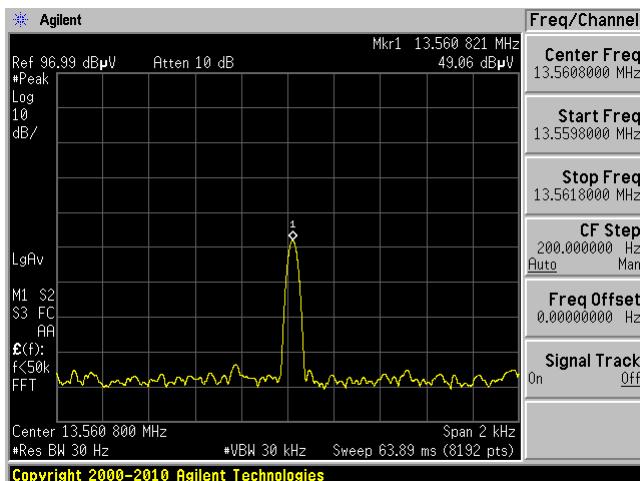
FCC:

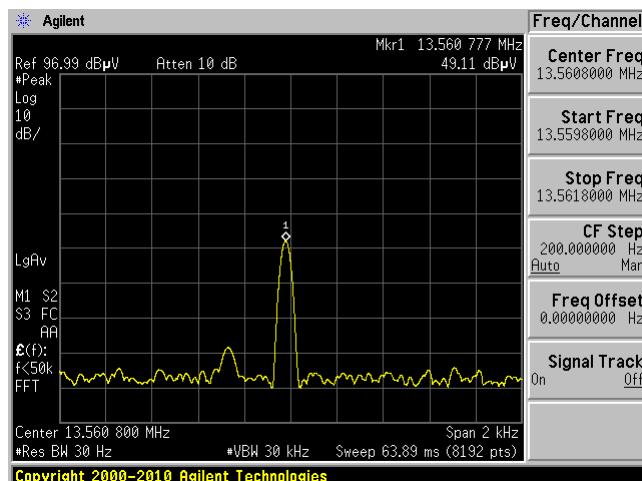

Temperature °C	Operating Frequency (MHz)	Measured Frequency (MHz)	Frequency Tolerance (%)	Limit (%)	Result
-20	13.56	13.560865	0.006379	±0.01	Pass
-10	13.56	13.560857	0.00632	±0.01	Pass
0	13.56	13.560821	0.006054	±0.01	Pass
10	13.56	13.560777	0.00573	±0.01	Pass
20	13.56	13.560752	0.005545	±0.01	Pass
30	13.56	13.560723	0.005332	±0.01	Pass
40	13.56	13.560687	0.005066	±0.01	Pass
50	13.56	13.560695	0.005125	±0.01	Pass

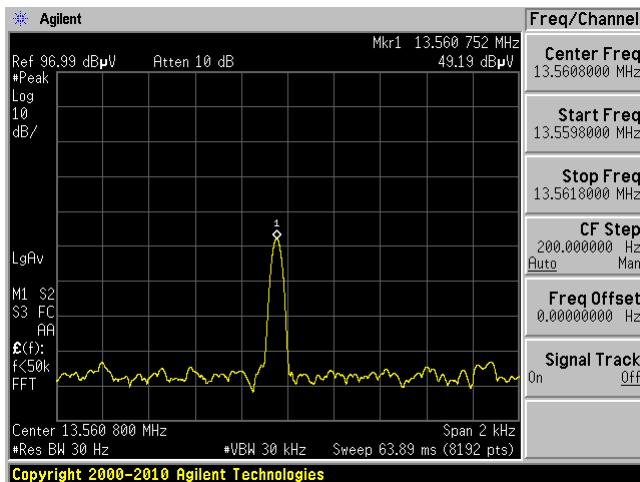
IC:

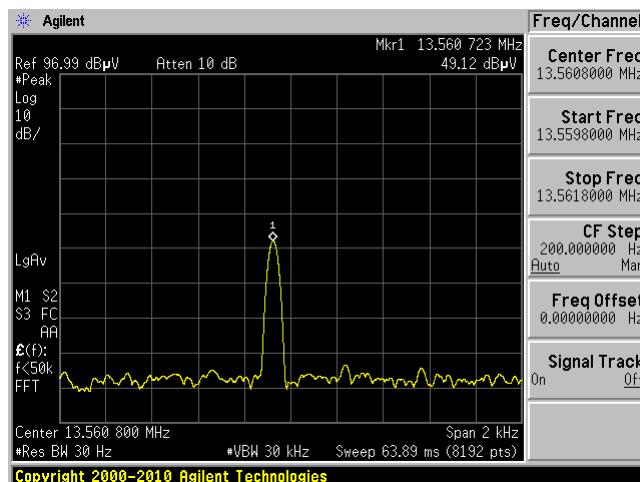

Temperature °C	Operating Frequency (MHz)	Measured Frequency (MHz)	Frequency Tolerance (ppm)	Limit (ppm)	Result
-20	13.56	13.560865	63.79	± 100	Pass
-10	13.56	13.560857	63.20	± 100	Pass
0	13.56	13.560821	60.55	± 100	Pass
10	13.56	13.560777	57.30	± 100	Pass
20	13.56	13.560752	55.46	± 100	Pass
30	13.56	13.560723	53.32	± 100	Pass
40	13.56	13.560687	50.66	± 100	Pass
50	13.56	13.560695	51.25	± 100	Pass

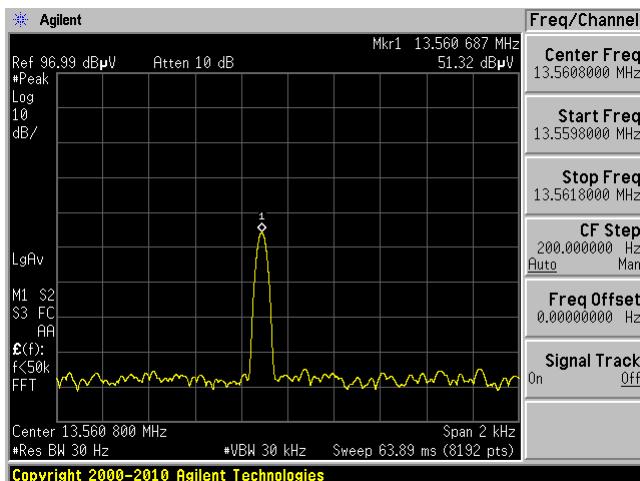
Please refer to the following plots for detail

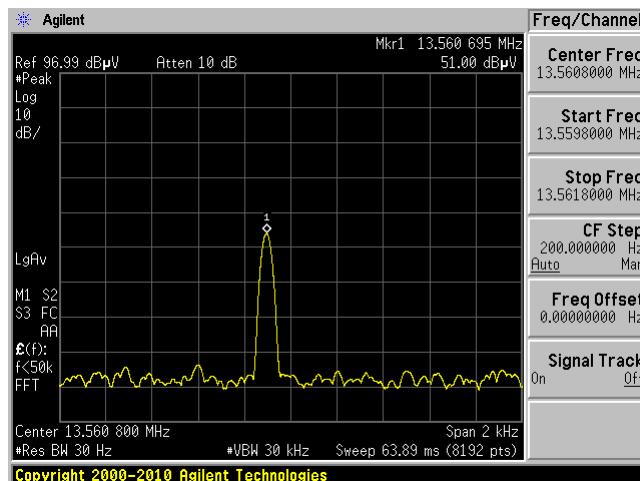

-20 °C


-10 °C


0 °C


10 °C


20 °C


30 °C

40 °C

50 °C

8 FCC §15.215(c) & ISEDC RSS-GEN §6.7 - Occupied Bandwidth

8.1 Applicable Standards

As per FCC §15.215(c):

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

As per ISEDC RSS-GEN §6.7:

The occupied bandwidth or the “99% emission bandwidth” is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the “x dB bandwidth” is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to “Sample”. However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or “Max Hold”) may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted

8.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.10-2014. The specification utilized was the FCC §15.225, §15.209 limits.

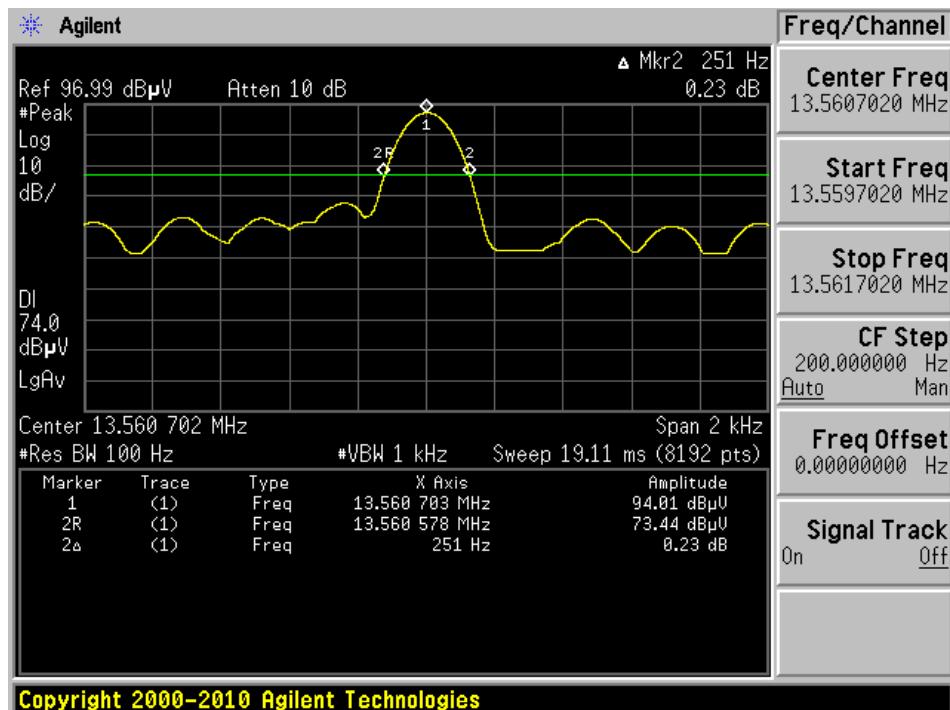
The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

8.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2021-04-27	1 years
Com-Power	Antenna, Loop Active	AL-130	17043	2021-05-05	2 years
-	RF Cable	-	-	Each time	-

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 "A2LA Policy on Metrological Traceability".


8.4 Test Environmental Conditions

Temperature:	21° C
Relative Humidity:	42 %
ATM Pressure:	101.9 kPa

The testing was performed by Giriraj Gurjar on 2021-08-20 at RF Site.

8.5 Test Results

20 dB Bandwidth: 251 Hz

9 Annex A (Normative) - Test Setup Photographs

Please refer to the attachment

10 Annex B (Normative) - EUT External Photographs

Please refer to the attachment

11 Annex C (Normative) - EUT Internal Photographs

Please refer to the attachment

12 Annex D (Normative) - A2LA Electrical Testing Certificate

Accredited Laboratory

A2LA has accredited

BAY AREA COMPLIANCE LABORATORIES CORP.

Sunnyvale, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 *General requirements for the competence of testing and calibration laboratories*. This laboratory also meets A2LA R222 - Specific Requirements EPA ENERGY STAR Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 10th day of March 2021.

A blue ink signature of Trace McInturff's name.

Trace McInturff, Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 3297.02
Valid to September 30, 2022

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Please follow the web link below for a full ISO 17025 scope

<https://www.a2la.org/scopepdf/3297-02.pdf>

--- END OF REPORT ---