

**RR051-14-105547-3-A Ed. 1**

This test report cancels and replaces test report RR051-14-105547-3-A Ed. 0

## **Certification test report**

**According to the standard:**  
**CFR47 FCC PART 15.247**

**Equipment under test:**  
**LOOP LINK (BLE Part)**

**MODEL: BU0211**

**FCCID:**  
**2ADLABU0211**

**Company:**  
**MYFOX**

**DISTRIBUTION: Mr CHAFIK**

**(Company: MYFOX)**

**Number of pages: 42 with 6 appendixes**

| Ed. | Date        | Modified pages    | Written by | Technical Verification and Quality Approval |
|-----|-------------|-------------------|------------|---------------------------------------------|
|     |             |                   | Name       | Name                                        |
|     |             |                   | Visa       | Visa                                        |
| 1   | 21-May-2015 | See vertical line | S. LOUIS   | SL                                          |

Duplication of this test report is only permitted for an integral photographic facsimile. It includes the number of pages referenced here above.

This document is the result of testing a specimen or a sample of the product submitted. It does not imply an assessment of the conformity of the whole manufactured products of the tested sample.



Siège Social : Emitech - 3, rue des Coudriers - Z.A. de l'Observatoire - 78180 MONTIGNY LE BX - France  
Siret : 344 545 645 00022 - Tél. : 33 (0)1 30 57 55 55 - Fax : 33 (0)1 30 43 74 48 - E-mail : contact@emitech.fr - URL : www.emitech.fr  
S.A. au capital de 1 560 000 € - R.C.S. VERSAILLES 344 545 645 - APE 7112B

**DESIGNATION OF PRODUCT:** LOOP LINK

**Serial number (S/N):** BLINK-0000025

**Reference / model (P/N):** BU0211

**Software version:** 1.0

**MANUFACTURER:** MYFOX

**COMPANY SUBMITTING THE PRODUCT:**

**Company:** MYFOX

**Address:** RUE DU LAC 2460 L'OCCITANE  
REGENT PARK II  
31670 LABEGE  
FRANCE

**Responsible:** Mr CHAFIK

**DATE(S) OF TEST:** 13 and 26 November 2014  
2 and 3 December 2014  
04 February 2015  
13 February 2015

**TESTING LOCATION:** EMITECH ANGERS laboratory at JUIGNE SUR LOIRE (49) FRANCE  
EMITECH ANGERS open area test site in JUIGNE SUR LOIRE (49)  
FRANCE  
21 rue de la Fuye  
49610 Juigne sur Loire  
France  
FCC 2.948 Listed Site Registration Number: 90469  
FCC Accredited under US-EU MRA Designation Number: FR0009  
Test Firm Registration Number: 873677

**TESTED BY:** S. LOUIS

## CONTENTS

| <b>TITLE</b>                                                                  | <b>PAGE</b> |
|-------------------------------------------------------------------------------|-------------|
| <b>1. INTRODUCTION</b>                                                        | <b>4</b>    |
| <b>2. PRODUCT DESCRIPTION</b>                                                 | <b>4</b>    |
| <b>3. NORMATIVE REFERENCE</b>                                                 | <b>5</b>    |
| <b>4. TEST METHODOLOGY</b>                                                    | <b>5</b>    |
| <b>5. TEST EQUIPMENT CALIBRATION DATES</b>                                    | <b>6</b>    |
| <b>6. TESTS AND CONCLUSIONS</b>                                               | <b>7</b>    |
| <b>7. MEASUREMENT OF THE CONDUCTED DISTURBANCES</b>                           | <b>11</b>   |
| <b>8. RADIATED EMISSION LIMITS</b>                                            | <b>15</b>   |
| <b>9. MEASUREMENT OF THE CONDUCTED DISTURBANCES</b>                           | <b>17</b>   |
| <b>10. ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS</b> | <b>19</b>   |
| <b>11. MAXIMUM PEAK OUTPUT POWER</b>                                          | <b>20</b>   |
| <b>12. INTENTIONAL RADIATOR</b>                                               | <b>22</b>   |
| <b>13. PEAK POWER DENSITY</b>                                                 | <b>25</b>   |

APPENDIX 1: Photos of the equipment under test

APPENDIX 2: Test set up

APPENDIX 3: Test equipment list

APPENDIX 4: 6 dB bandwidth

APPENDIX 5: 20 dB bandwidth

APPENDIX 6: Band edge

## **1. INTRODUCTION**

This document presents the result of Certification tests carried out on the following equipment: **LOOP LINK**, in accordance with normative reference.

The device under test integrates a modular approved WiFi module (FCC ID: COFWMNB11). The host device of certified module(s) shall be properly labeled to identify the module(s) within.

## **2. PRODUCT DESCRIPTION**

Class: B (residential)

Utilization: Alarm system

Antenna type and gain: Internal helicoidal antenna: gain not communicated

Operating frequency range: from 2400 MHz to 2483.5 MHz

Number of channels: 40

Channel spacing: 2MHz

Modulation: Bluetooth Low Energy

Power source: 120VAC / 60Hz

Power level, frequency range and channels characteristics are not user adjustable.  
The details pictures of the product and the circuit boards are joined with this file.

### **Test frequencies:**

#### Sample 1:

The EUT used can produce different test mode:

- Mode 1: RX BLE + RX 915MHz => Limited tests (15.107+15.109)
- Mode 2: RX WIFI => Limited tests (15.107+15.109)
- Mode 3: TX BLE (Low channel) + WIFI + TX 915MHz (Frame data)
- Mode 4: TX 915MHz
- Mode 7: TX BLE (Low channel) => Limited tests (15.207+15.209+15.215+15.247)
- Mode 8: TX BLE (Central channel) => Limited tests (15.209+15.215+15.247)
- Mode 9: TX BLE (High channel) => Limited tests (15.209+15.215+15.247)

In this report, only the Bluetooth Low Energy is evaluated.

### **3. NORMATIVE REFERENCE**

The standards and testing methods related throughout this report are those listed below.

They are applied on the whole test report even though the extensions (version, date and amendment) are not repeated.

CFR 47 FCC Part 15 (2014) Radio Frequency Devices

| ANSI C63.4 2009  
Methods of measurement of Radio-Noise  
Emissions from low-voltage Electrical and Electronic Equipment in the Range  
of 9 kHz to 40 GHz.

ANSI C63.10 2013  
Testing Unlicensed Wireless Devices.

558074 D01 DTS v03r02 Guidance for Performing Compliance on Digital Transmission  
Systems Operating under §15.247

### **4. TEST METHODOLOGY**

Radio performance tests procedures given in CFR 47 part 15:

Subpart A –General

- Paragraph 19: labelling requirements
- Paragraph 21: information to user

Subpart B –Unintentional Radiators

- Paragraph 105: information to the user
- Paragraph 107: Conducted limits
- Paragraph 109: Radiated emission limits
- Paragraph 111: Antenna power conduction limits for receivers

Subpart C – Intentional Radiators

- Paragraph 203: Antenna requirement
- Paragraph 205: Restricted bands of operation
- Paragraph 207: Conducted limits
- Paragraph 209: Radiated emission limits; general requirements
- Paragraph 212: Modular transmitter
- Paragraph 215: Additional provisions to the general radiated emission limitations
- Paragraph 247: Operation within the bands 902-928 MHZ, 2400-2483.5 MHz and 5725-5850  
MHz

## 5. TEST EQUIPMENT CALIBRATION DATES

| Equipment | Model                             | Type                                      | Last verification | Next verification | Validity   |
|-----------|-----------------------------------|-------------------------------------------|-------------------|-------------------|------------|
| 0000      | BAT-EMC                           | Software                                  | /                 | /                 | /          |
| 1406      | EMCO 6502                         | Loop antenna                              | 26/06/2013        | 26/03/2015        | 26/05/2015 |
| 1922      | Microwave DB C020180F-4B1         | Low-noise amplifier                       | 20/08/2014        | 20/08/2015        | 20/10/2015 |
| 1939      | IMC WR42                          | Antenna                                   | 20/04/2012        | 20/04/2016        | 20/06/2016 |
| 1940      | IMC WR42                          | Antenna                                   | 20/04/2012        | 20/04/2016        | 20/06/2016 |
| 3036      | ALC Microwave ALN02-0102          | Low-noise amplifier                       | 14/05/2014        | 14/05/2015        | 14/07/2015 |
| 4088      | R&S FSP40                         | Spectrum Analyzer                         | 22/08/2013        | 22/08/2015        | 22/10/2015 |
| 7299      | Microtronics BR50702              | Reject band filter                        | 25/10/2013        | 25/10/2015        | 25/12/2015 |
| 8508      | California instruments 1251RP     | Power source                              | 22/08/2014        | 22/08/2015        | 22/10/2015 |
| 8511      | HP 8447D                          | Low noise preamplifier                    | 20/08/2014        | 20/08/2015        | 20/10/2015 |
| 8524      | HP 8591EM                         | Test receiver                             | 30/07/2013        | 30/07/2015        | 30/09/2015 |
| 8526      | Schwarzbeck VHBB 9124             | Biconical antenna                         | 12/06/2012        | 12/06/2016        | 12/08/2016 |
| 8535      | EMCO 3115                         | Antenna                                   | 29/10/2012        | 29/10/2016        | 29/12/2016 |
| 8543      | Schwarzbeck UHALP 9108A           | Log periodic antenna                      | 12/06/2012        | 12/06/2016        | 12/08/2016 |
| 8593      | SIDT Cage 2                       | Anechoic chamber                          | /                 | /                 | /          |
| 8635      | R&S EZ-25                         | High-pass filter                          | 05/08/2014        | 05/08/2016        | 05/10/2016 |
| 8675      | AOIP MN5102B                      | Multimeter                                | 15/01/2013        | 15/01/2015        | 15/03/2015 |
| 8719      | Thurblly Thandar Instruments 1600 | LISN                                      | 23/06/2014        | 23/06/2016        | 23/08/2016 |
| 8750      | La Crosse Technology WS-9232      | Meteo station                             | 03/09/2014        | 03/09/2016        | 03/11/2016 |
| 8893      | Emitech                           | Outside room Hors cage                    | /                 | /                 | /          |
| 8896      | ACQUISYS GPS8                     | Satellite synchronized frequency standard | /                 | /                 | /          |
| 10651     | Absorber sheath current           | Emitech                                   | 17/10/2013        | 17/10/2015        | 17/12/2015 |
| /         | GPIBShot V2.4                     | Software                                  | /                 | /                 | /          |

## 6. TESTS AND CONCLUSIONS

### 6.1 general (subpart A)

| Test procedure | Description of test    | Respected criteria? |    |     |     | Comment                     |
|----------------|------------------------|---------------------|----|-----|-----|-----------------------------|
|                |                        | Yes                 | No | NAp | NAs |                             |
| FCC Part 15.19 | LABELLING REQUIREMENTS |                     |    |     | X   | See certification documents |
| FCC Part 15.21 | INFORMATION TO USER    |                     |    |     | X   | See certification documents |

NAp: Not Applicable

NAs: Not Asked

### **LABEL SHALL CONTAIN**

The label shall be located in a conspicuous location on the device

The label shall not be a stick-on, paper label. The label on these products shall be permanently affixed to the product and shall be readily visible to the purchaser at the time of purchase

### **§15.19: (can be placed in the user manual if the product is too small)**

*This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.*

### **USER NOTICE SHALL CONTAIN**

The user notice, not provided during tests, shall include the following informations:

### **§15.21:**

*Any changes or modifications to this equipment not expressly approved by MYFOX may cause, harmful interference and void the FCC authorization to operate this equipment*

## 6.2 unintentional radiator (subpart B)

| Test procedure  | Description of test                         | Respected criteria? |    |     |     | Comment                     |
|-----------------|---------------------------------------------|---------------------|----|-----|-----|-----------------------------|
|                 |                                             | Yes                 | No | NAp | NAs |                             |
| FCC Part 15.105 | INFORMATION TO THE USER                     |                     |    |     | X   | See certification documents |
| FCC Part 15.107 | CONDUCTED LIMITS                            | X                   |    |     |     |                             |
| FCC Part 15.109 | RADIATED EMISSION LIMITS                    | X                   |    |     |     | Class B                     |
| FCC Part 15.111 | ANTENNA POWER CONDUCTED LIMITS FOR RECEIVER |                     |    | X   |     |                             |

NAp: Not Applicable

NAs: Not Asked

### **USER NOTICE SHALL CONTAIN**

The user notice, not provided during tests, shall include the following informations:

#### **§ 15.105:**

*NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference's by one or more of the following measures:*

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

6.3 intentional radiator (subpart C)

| Test procedure  | Description of test                                                       | Respected criteria? |    |     |     | Comment |
|-----------------|---------------------------------------------------------------------------|---------------------|----|-----|-----|---------|
|                 |                                                                           | Yes                 | No | NAp | NAs |         |
| FCC Part 15.203 | ANTENNA REQUIREMENT                                                       | X                   |    |     |     | Note 1  |
| FCC Part 15.205 | RESTRICTED BANDS OF OPERATION                                             | X                   |    |     |     |         |
| FCC Part 15.207 | CONDUCTED LIMITS                                                          | X                   |    |     |     |         |
| FCC Part 15.209 | RADIATED EMISSION LIMITS; general requirements                            | X                   |    |     |     | Note 2  |
| FCC Part 15.212 | MODULAR TRANSMITTERS                                                      |                     |    |     | X   |         |
| FCC part 15.215 | ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS        |                     |    |     |     |         |
|                 | (a) <i>Alternative to general radiated emission limits</i>                | X                   |    |     |     |         |
|                 | (b) <i>Unwanted emissions outside of §15.247 frequency bands</i>          | X                   |    |     |     | Note 3  |
|                 | (c) <i>20 dB bandwidth and band-edge compliance</i>                       | X                   |    |     |     |         |
| FCC Part 15.247 | OPERATION WITHIN THE BANDS 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz |                     |    |     |     |         |
|                 | (a) (1) <i>Hopping systems</i>                                            |                     |    |     | X   |         |
|                 | (a) (2) <i>Digital modulation techniques</i>                              | X                   |    |     |     | Note 4  |
|                 | (b) <i>Maximum peak output power</i>                                      | X                   |    |     |     | Note 5  |
|                 | (c) <i>Operation with directional antenna gains &gt; 6 dBi</i>            |                     |    |     | X   |         |
|                 | (d) <i>Intentional radiator</i>                                           | X                   |    |     |     |         |
|                 | (e) <i>Peak power spectral density</i>                                    | X                   |    |     |     |         |
|                 | (f) <i>Hybrid system</i>                                                  |                     |    |     | X   |         |
|                 | (g) <i>Frequency hopping requirements</i>                                 |                     |    |     | X   |         |
|                 | (h) <i>Frequency hopping intelligence</i>                                 |                     |    |     | X   |         |
|                 | (i) <i>RF exposure compliance</i>                                         | X                   |    |     |     |         |

NAp: Not Applicable

NAs: Not Asked

Note 1: Integral and dedicated antenna. Professionally installed equipment.

Note 2: See FCC part 15.247 (d).

Note 3: See FCC part 15.209. Unwanted emissions levels are all below the fundamental emission field strength level.

Note 4: The minimum 6 dB bandwidth of the equipment is 685.48 kHz (see appendix 4).

Note 5: Conducted measurement is not possible (integral antenna), so we used the radiated method in open field.

#### **RF EXPOSURE:**

Maximum measured power = 96.7 dB $\mu$ V/m = 1.403 mW

with  $P = (E \times d)^2 / (30 \times G_p)$  with  $d = 3$  m and  $G_p = 1$

In accordance with KDB 447498 D01 General RF Exposure Guidance v05r02

$PSD = EIRP / (4 \times \pi \times R^2) = 1.403 / (4 \times \pi \times (20 \text{ cm})^2) = 279.16 \times 10^{-6} \text{ mW/cm}^2$  (limit = 1 mW/cm<sup>2</sup>).

The equipment fulfills the requirements on power density for general population/uncontrolled exposure and therefore fulfills the requirements of 47 CFR §1.1310.

## **7. MEASUREMENT OF THE CONDUCTED DISTURBANCES**

**Standard:** FCC Part 15

**Test procedure:** Paragraph 15.107

**Test procedure deviation:** Mode 1: Bluetooth Low energy + 915 MHz module in RX mode  
Mode 2: WIFI RX mode

**Limits:** Class B

**Software used:** BAT-EMC V3.6.0.32

**Test set up:**

The EUT is isolated and placed on a wooden table, 0.8 m over an horizontal reference plane and 0.4 m from a vertical reference plane. It is powered by an artificial main network placed on the ground reference plane. The equipment is powered with the AC power operating voltage of 120 V / 60 Hz.

See photos in appendix 2

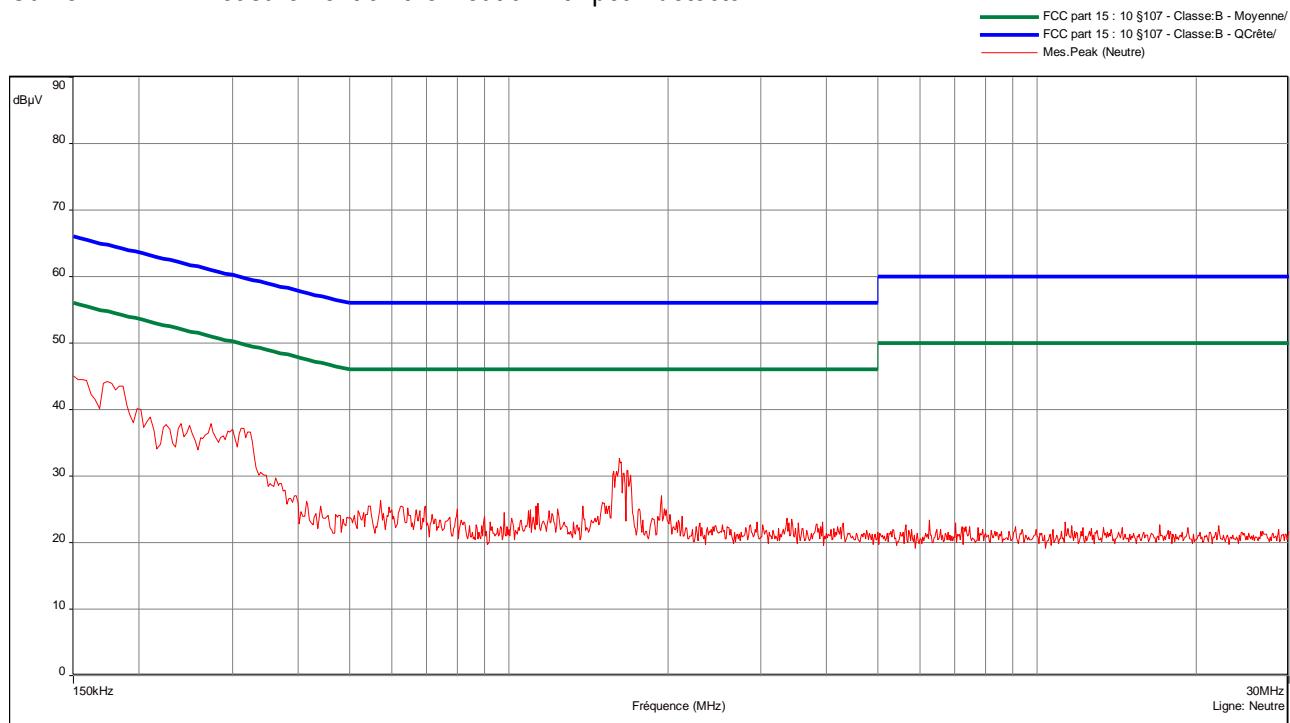
**Frequency range:** 150 kHz - 30 MHz

**Detection mode:** Peak / Average

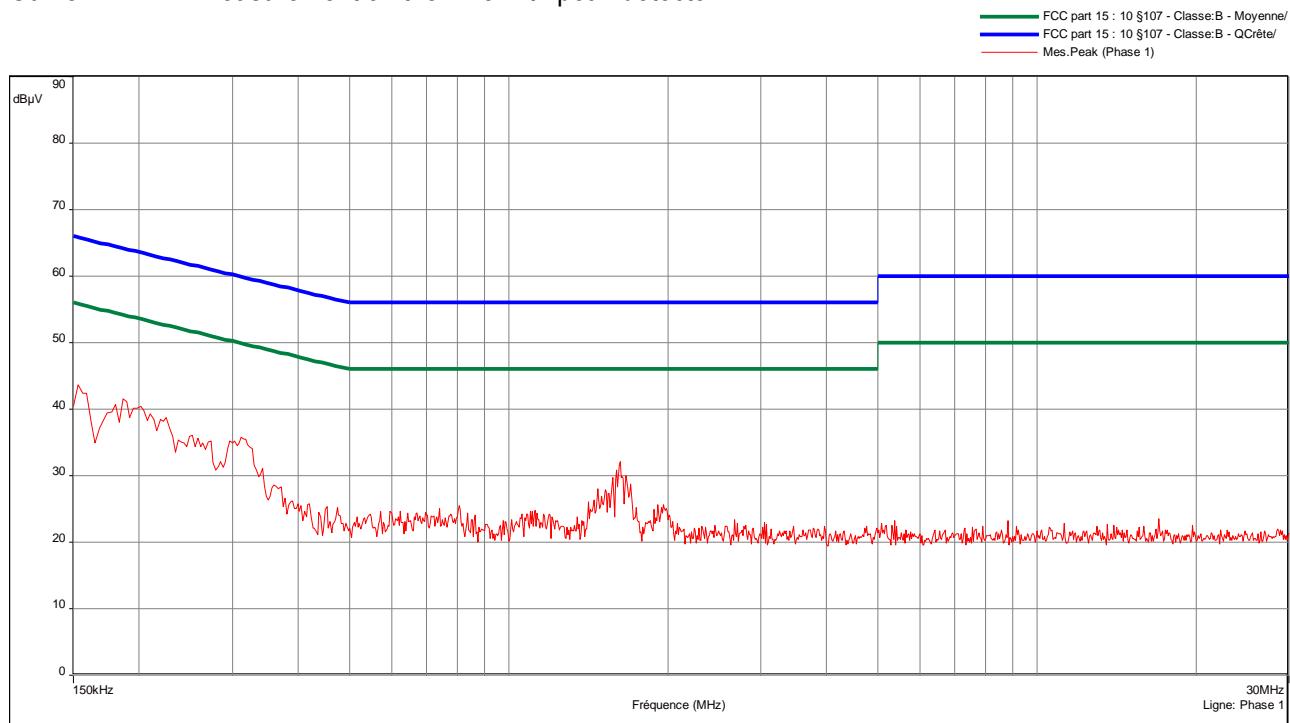
**Bandwidth:** 10 kHz / 9kHz

**Equipment under test operating condition:**

The equipment is blocked in reception mode.


**Results:**

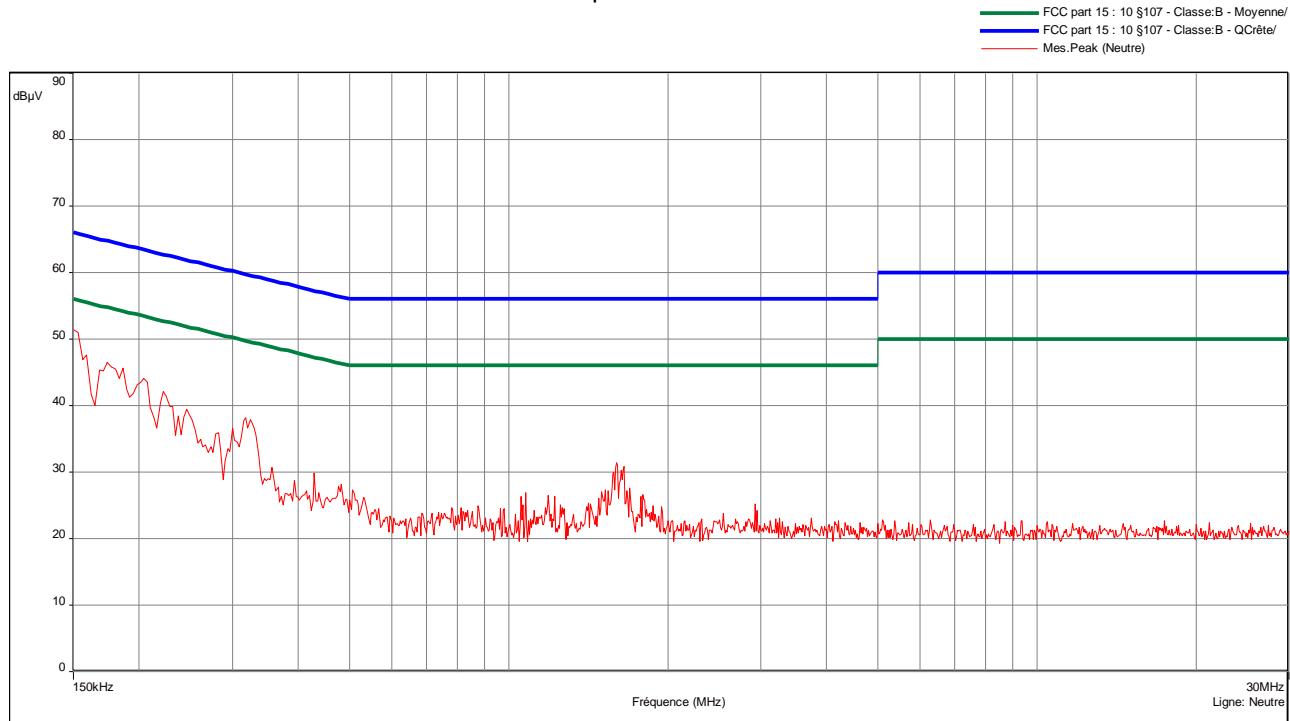
|                           |      |
|---------------------------|------|
| Ambient temperature (°C): | 20.5 |
| Relative humidity (%):    | 34   |


**Measurement on the mains power supply: Mode 1: 915MHz radio Module + BLE in RX mode**

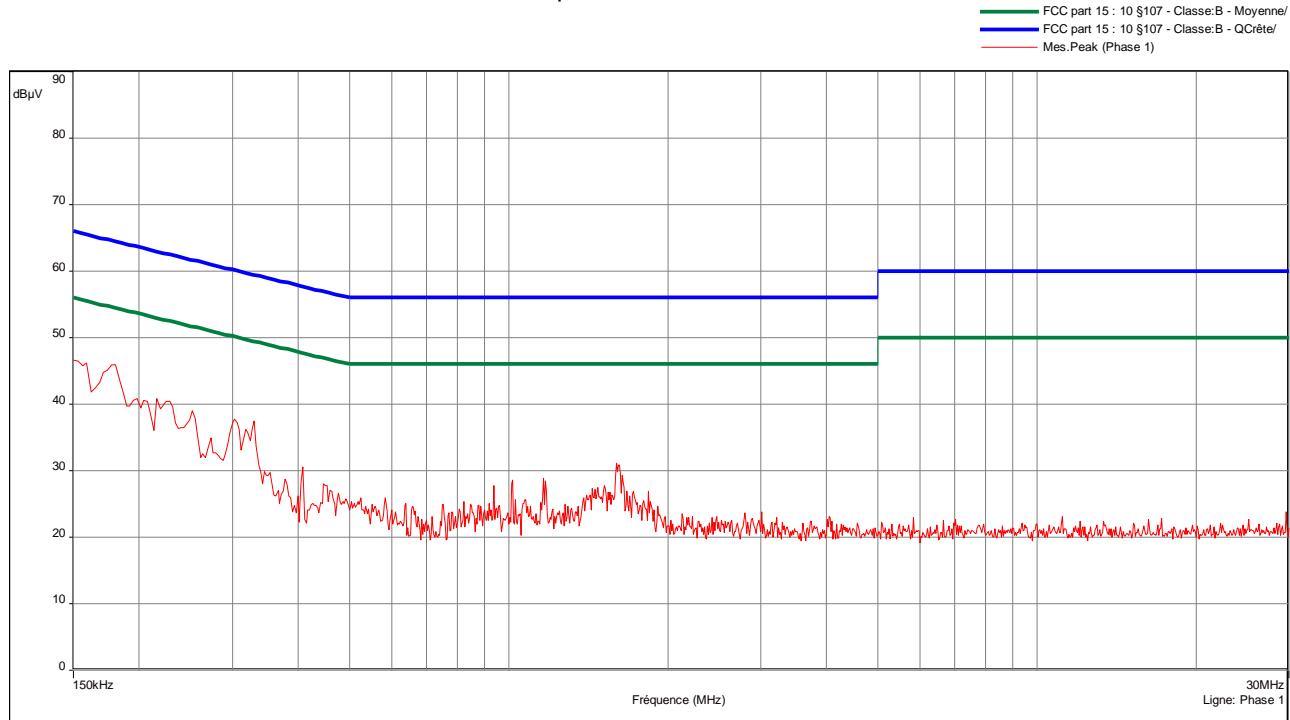
The measurement is first realized with Peak detector.

Curve N° 1: measurement on the Neutral with peak detector



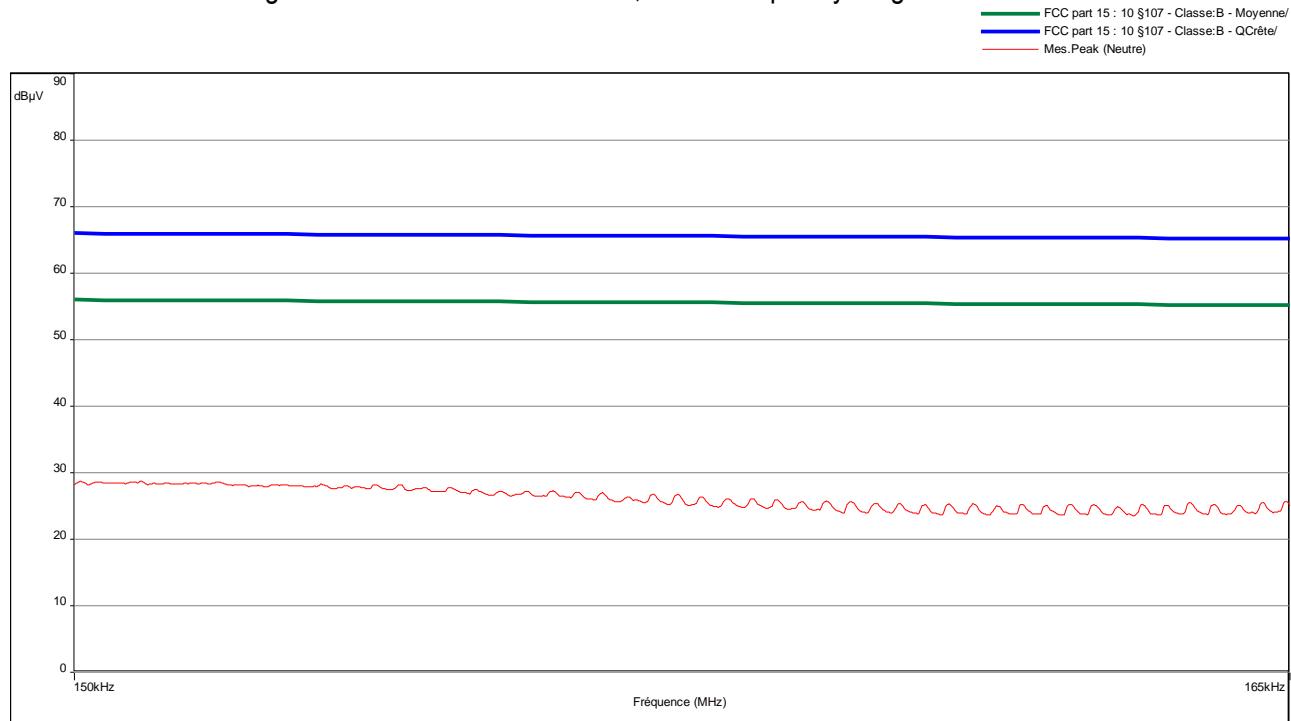

Curve N° 2: measurement on the Line with peak detector




**Measurement on the mains power supply: Mode 2 WIFI in RX mode**

The measurement is first realized with Peak detector.

Curve N° 3: measurement on the Neutral with peak detector




Curve N° 4: measurement on the Line with peak detector



The frequencies which are not 6 dB under the Average limit are then analyzed with Average detector.

Curve N° 5: average measurement on the Neutral, for the frequency range: 150 KHz – 165 KHz



#### Test conclusion:

RESPECTED STANDARD

## **8. RADIATED EMISSION LIMITS**

## Standard: FCC Part 15

**Test procedure:** paragraph 109

**Test procedure deviation:** Mode 1: Bluetooth Low energy + 915 MHz module in RX mode  
Mode 2: WIFI RX mode

## Limit class: Class B

## Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

**Frequency range:** From 30 MHz to 5<sup>th</sup> harmonic of the highest frequency used (2.48 GHz).

**Detection mode:** Quasi-peak ( $F < 1$  GHz)      Average ( $F > 1$  GHz)

**Bandwidth:** 120 kHz ( $F < 1$  GHz) 1 MHz ( $F > 1$  GHz)

**Distance of antenna:** 10 meters (in open area test site) / 3 meters (in anechoic room)

**Antenna height:** 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

**Antenna polarization:** vertical and horizontal (only the highest level is recorded)

### Equipment under test operating condition:

The equipment is blocked in reception mode.

**Results:**

Ambient temperature (°C): 21.2  
Relative humidity (%): 39

Power source:  
We used for power source an external power supply regulated to 120VAC / 60Hz.

**Sample N° 1 Mode 1: 915MHz radio Module + BLE in RX mode**

Not any spurious has been detected.

|                    |                                                   |                                           |
|--------------------|---------------------------------------------------|-------------------------------------------|
| Applicable limits: | for $30 \text{ MHz} \leq F \leq 88 \text{ MHz}$ : | 40 $\text{dB}\mu\text{V/m}$ at 3 meters   |
|                    | for $88 \text{ MHz} < F \leq 216 \text{ MHz}$ :   | 43.5 $\text{dB}\mu\text{V/m}$ at 3 meters |
|                    | for $216 \text{ MHz} < F \leq 960 \text{ MHz}$ :  | 46 $\text{dB}\mu\text{V/m}$ at 3 meters   |
|                    | Above 960 MHz :                                   | 54 $\text{dB}\mu\text{V/m}$ at 3 meters   |

**Sample N° 1 Mode 2: WIFI in RX mode**

Not any spurious has been detected.

|                    |                                                   |                                           |
|--------------------|---------------------------------------------------|-------------------------------------------|
| Applicable limits: | for $30 \text{ MHz} \leq F \leq 88 \text{ MHz}$ : | 40 $\text{dB}\mu\text{V/m}$ at 3 meters   |
|                    | for $88 \text{ MHz} < F \leq 216 \text{ MHz}$ :   | 43.5 $\text{dB}\mu\text{V/m}$ at 3 meters |
|                    | for $216 \text{ MHz} < F \leq 960 \text{ MHz}$ :  | 46 $\text{dB}\mu\text{V/m}$ at 3 meters   |
|                    | Above 960 MHz :                                   | 54 $\text{dB}\mu\text{V/m}$ at 3 meters   |

**Note:** any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

**Test conclusion:**

RESPECTED STANDARD

## **9. MEASUREMENT OF THE CONDUCTED DISTURBANCES**

**Standard:** FCC Part 15

**Test procedure:** Paragraph 15.207

**Software used:** BAT-EMC V3.6.0.32

**Test set up:**

The EUT is isolated and placed on a wooden table, 0.8 m over an horizontal reference plane and 0.4 m from a vertical reference plane. It is powered by an artificial main network placed on the ground reference plane. The equipment is powered with the AC power operating voltage of 120 V / 60 Hz.

See photos in appendix 2

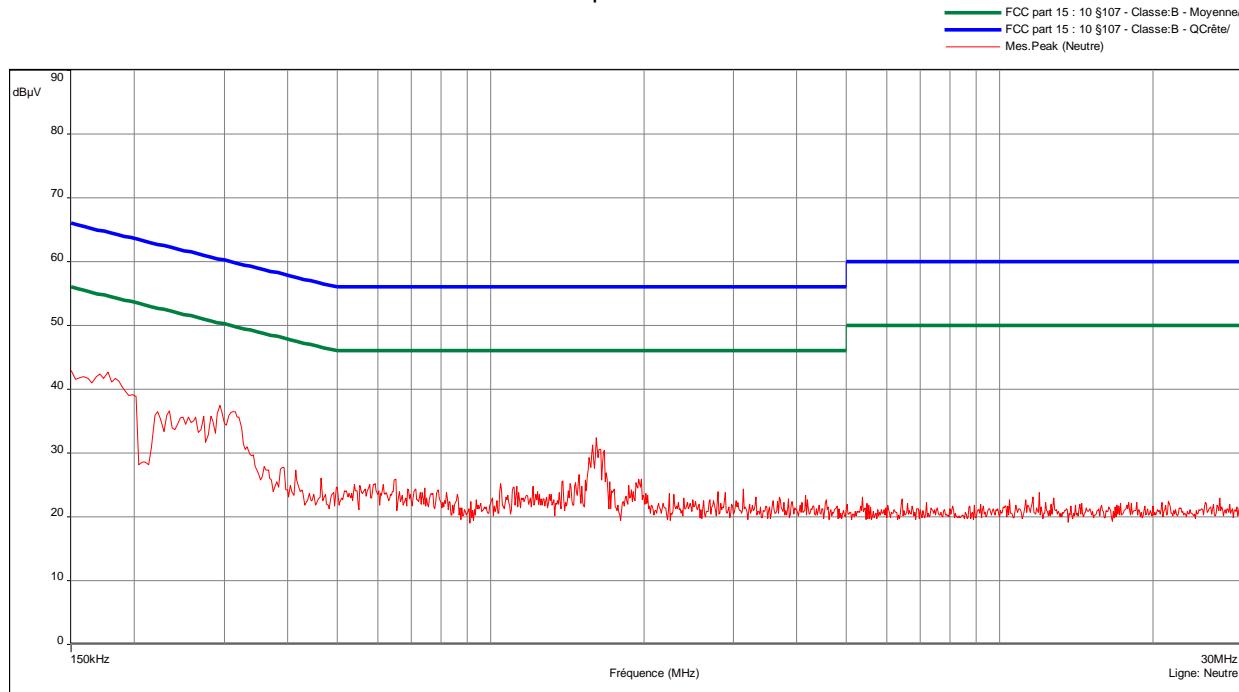
**Frequency range:** 150 kHz - 30 MHz

**Detection mode:** Peak

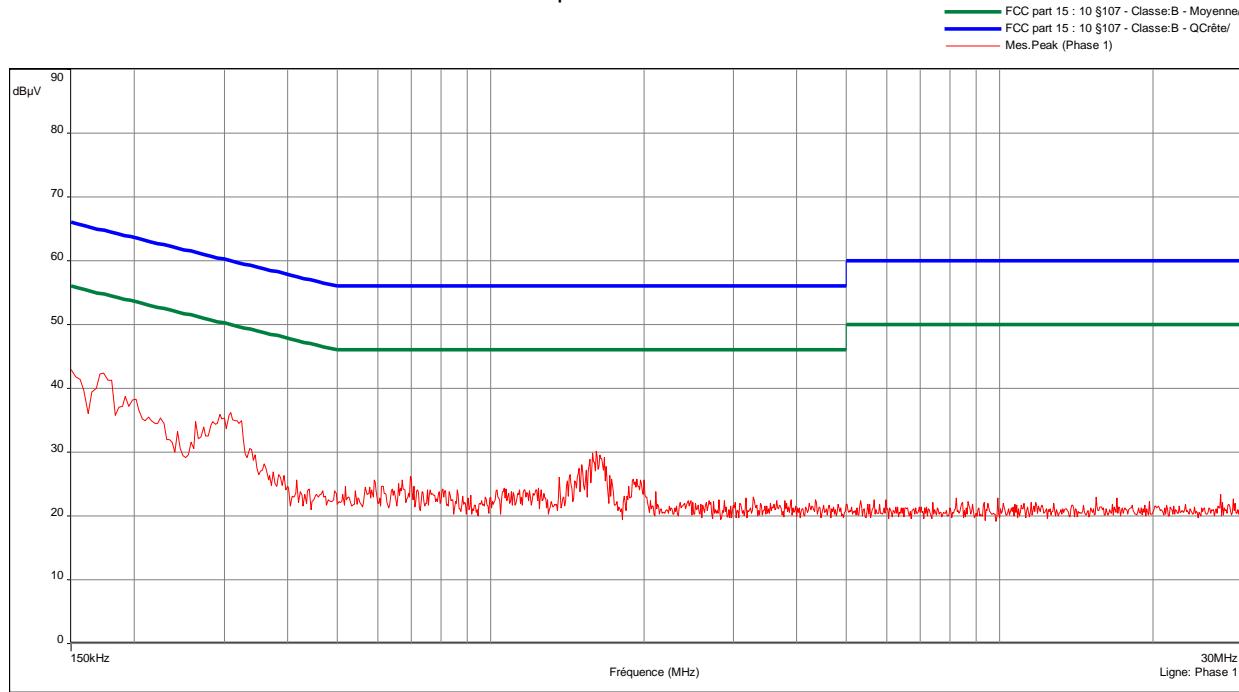
**Bandwidth:** 10 kHz

**Equipment under test operating condition:**

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.


**Results:**

|                           |      |
|---------------------------|------|
| Ambient temperature (°C): | 20.5 |
| Relative humidity (%):    | 34   |


**Measurement on the mains power supply: Mode 7 BLE in TX mode on low channel**

The measurement is first realized with Peak detector.

Curve N° 6: measurement on the Neutral with peak detector



Curve N° 7: measurement on the Line with peak detector



**Test conclusion:**

RESPECTED STANDARD

## 10. ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS

**Standard:** FCC Part 15

**Test procedure:** Paragraph 15.215

### **Test set up:**

Test realized in near field. All field strength measurements are correlated with the radiated maximum peak output power

### **Test operating condition of the equipment:**

The equipment under test is blocked in continuous transmission mode, modulated by internal data signal, at the highest output power level which the transmitter is intended to operate.

### **Results:**

|                           |      |
|---------------------------|------|
| Ambient temperature (°C): | 19.8 |
| Relative humidity (%):    | 38   |

### **Power source:**

We used for power source an external power supply regulated to 120VAC / 60Hz.

Lower Band Edge: band from 2398 MHz to 2400 MHz  
 Upper Band Edge: band from 2483.5 MHz to 2485.5 MHz

### Sample N° 1:

| Fundamental frequency (MHz) | Field strength level of fundamental (dB $\mu$ V/m) | Detector (peak or average) | Frequency of maximum band-edges emission (MHz) | Delta marker (dB)* | Calculated max out-of-band emission level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) |
|-----------------------------|----------------------------------------------------|----------------------------|------------------------------------------------|--------------------|----------------------------------------------------------|----------------------|-------------|
| 2402                        | 96.3                                               | peak                       | 2399.82                                        | -33.88             | 62.42                                                    | 69.8                 | 7.38        |
| 2480                        | 92.4                                               | peak                       | 2483.51                                        | -25.54             | 66.86                                                    | 74                   | 7.14        |
| 2480                        | 92.4                                               | average                    | 2483.56                                        | -41.83             | 50.57                                                    | 54                   | 3.43        |

\*Marker-Delta method

20 dB bandwidth curves are given in appendix 5; band-edge curves are given in appendix 6.

### **Test conclusion:**

RESPECTED STANDARD

## 11. MAXIMUM PEAK OUTPUT POWER

**Standard:** FCC Part 15

**Test procedure:** paragraph 15.247 (b)

### **Test set up:**

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

The measurement of the electro-magnetic field is realized, with a resolution bandwidth adjusted at 3 MHz and video bandwidth at 10 MHz.

**Distance of antenna:** 10 meters (in open area test site) / 3 meters (in anechoic room)

**Antenna height:** 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

**Antenna polarization:** vertical and horizontal (only the highest level is recorded)

### **Equipment under test operating condition:**

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

**Results:**

Ambient temperature (°C): 21.2  
 Relative humidity (%): 39

Power source:  
 We used for power source an external power supply regulated to 120VAC / 60Hz.

Sample N° 1 Low Channel

|                                | Electro-magnetic field (dB $\mu$ V/m): | Conducted power *(W) | Limit (W) |
|--------------------------------|----------------------------------------|----------------------|-----------|
| <b>Nominal supply voltage:</b> | 96.7                                   | 0.001403             | 0.125     |

Polarization of test antenna: Vertical (height: 150 cm)

Position of equipment: See photos in appendix 2 (azimuth: 39 degrees)

\*  $P = (E \times d)^2 / (30 \times Gp)$  with  $d = 3$  m and  $Gp = 1$

Sample N° 1 Central Channel

|                                | Electro-magnetic field (dB $\mu$ V/m): | Conducted power *(W) | Limit (W) |
|--------------------------------|----------------------------------------|----------------------|-----------|
| <b>Nominal supply voltage:</b> | 95.1                                   | 0.000971             | 0.125     |

Polarization of test antenna: Vertical (height: 150 cm)

Position of equipment: See photos in appendix 2 (azimuth: 14 degrees)

\*  $P = (E \times d)^2 / (30 \times Gp)$  with  $d = 3$  m and  $Gp = 1$

Sample N° 1 High Channel

|                                | Electro-magnetic field (dB $\mu$ V/m): | Conducted power *(W) | Limit (W) |
|--------------------------------|----------------------------------------|----------------------|-----------|
| <b>Nominal supply voltage:</b> | 92.4                                   | 0.000521             | 0.125     |

Polarization of test antenna: Vertical (height: 150 cm)

Position of equipment: See photos in appendix 2 (azimuth: 16 degrees)

\*  $P = (E \times d)^2 / (30 \times Gp)$  with  $d = 3$  m and  $Gp = 1$

**Test conclusion:**

RESPECTED STANDARD

## 12. INTENTIONAL RADIATOR

## Standard: FCC Part 15

**Test procedure:** paragraph 15.205, paragraph 15.209, paragraph 15.247 (d)

## Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

**Frequency range:** From 9 kHz to 10<sup>th</sup> harmonic of the highest fundamental frequency (2.48GHz).

**Detection mode:** Quasi-peak ( $F < 1$  GHz)      Peak / Average ( $F > 1$  GHz)

**Bandwidth:** 200Hz (9 kHz < F < 150kHz)  
9 kHz (150 kHz < F < 30MHz)  
120 kHz (30 MHz < F < 1 GHz)  
100 kHz / 1 MHz (F > 1 GHz)

**Distance of antenna:** 10 meters (in open area test site) / 3 meters (in anechoic room)

**Antenna height:** 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

**Antenna polarization:** vertical and horizontal (only the highest level is recorded)

### Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

**Results:**

Ambient temperature (°C): 21.5  
 Relative humidity (%): 35

Power source:  
 We used for power source an external power supply regulated to 120VAC / 60Hz.

Sample N° 1 Low Channel

| FREQUENCIES (MHz) | Detector<br>P: Peak<br>QP: Quasi-Peak<br>Av: Average | Antenna height (cm) | Azimuth (degree) | Resolution bandwidth (kHz) | Polarization<br>H: Horizontal<br>V: Vertical | Field strength (dB $\mu$ V/m) | Limits (dB $\mu$ V/m) | Margin (dB) |
|-------------------|------------------------------------------------------|---------------------|------------------|----------------------------|----------------------------------------------|-------------------------------|-----------------------|-------------|
| 4804.5(*)         | P                                                    | 150                 | —                | 1000                       | V                                            | 47.3**                        | 74                    | 26.7        |
| 7206              | P                                                    | 150                 | 276              | 100                        | H                                            | 51.2                          | 76.3                  | 25.1        |

Sample N° 1 Central Channel

| FREQUENCIES (MHz) | Detector<br>P: Peak<br>QP: Quasi-Peak<br>Av: Average | Antenna height (cm) | Azimuth (degree) | Resolution bandwidth (kHz) | Polarization<br>H: Horizontal<br>V: Vertical | Field strength (dB $\mu$ V/m) | Limits (dB $\mu$ V/m) | Margin (dB) |
|-------------------|------------------------------------------------------|---------------------|------------------|----------------------------|----------------------------------------------|-------------------------------|-----------------------|-------------|
| 4881(*)           | P                                                    | 150                 | —                | 1000                       | V                                            | 46.1**                        | 74                    | 27.9        |
| 7320.6(*)         | P                                                    | 150                 | 343              | 1000                       | H                                            | 53.1**                        | 74                    | 20.9        |

Sample N° 1 High Channel

| FREQUENCIES (MHz) | Detector<br>P: Peak<br>QP: Quasi-Peak<br>Av: Average | Antenna height (cm) | Azimuth (degree) | Resolution bandwidth (kHz) | Polarization<br>H: Horizontal<br>V: Vertical | Field strength (dB $\mu$ V/m) | Limits (dB $\mu$ V/m) | Margin (dB) |
|-------------------|------------------------------------------------------|---------------------|------------------|----------------------------|----------------------------------------------|-------------------------------|-----------------------|-------------|
| 7440.6(*)         | P                                                    | 150                 | 330              | 1000                       | H                                            | 55.8                          | 74                    | 18.2        |
| 7439.6(*)         | Av                                                   | 150                 | 330              | 1000                       | H                                            | 50.6                          | 54                    | 3.4         |

\* restricted bands of operation in 15.205

\*\*the peak level is lower than the average limit (54 dB $\mu$ V/m).

Note: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

**Applicable limits:** In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The highest level recorded in a 100 kHz bandwidth is 96.3 dB $\mu$ V/m on lower channel.  
So the applicable limit is 76.3 dB $\mu$ V/m.

In addition, radiated emissions which fall in the restricted band, as defined in section 15.205 (a), must also comply with the radiated emission limits specified in section 15.209 (a) (see section 15.205 (c)).

**Test conclusion:**

RESPECTED STANDARD

### **13. PEAK POWER DENSITY**

**Standard:** FCC Part 15

**Test procedure:** paragraph 15.247 (e)

#### **Test set up:**

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The system is tested in anechoic chamber. The EUT is placed on a rotating table, 1.5m from a ground plane. Zero degree azimuth corresponds to the front of the device under test.

The measuring distance between the equipment and the test antenna is 3 m. The test antenna has been oriented in two polarizations (Vertical and Horizontal) and raised and lowered from 1m to 4m above the ground level. Only the highest level of each measurement is reported.

We used the same method of the peak output power measurement, but the equipment under test power level is recorded with the spectrum analyzer.

Resolution bandwidth: 3 kHz

Video bandwidth: 10 kHz

#### **Equipment under test operating condition:**

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

**Results:**

Ambient temperature (°C): 21.2  
 Relative humidity (%): 39

Power source:  
 We used for power source an external power supply regulated to 120VAC / 60Hz.

Sample N° 1 Low Channel:

| Peak power density at frequency:<br>2402 MHz |           |
|----------------------------------------------|-----------|
| <b>Normal test conditions</b>                | -0.43 dBm |
| <b>Limits</b>                                | +8 dBm    |

Polarization of test antenna: Vertical (height: 150 cm)

Position of equipment: See photos in appendix 2 (azimuth: 39 degrees)

Sample N° 1 Central Channel:

| Peak power density at frequency:<br>2440 MHz |           |
|----------------------------------------------|-----------|
| <b>Normal test conditions</b>                | -1.93 dBm |
| <b>Limits</b>                                | +8 dBm    |

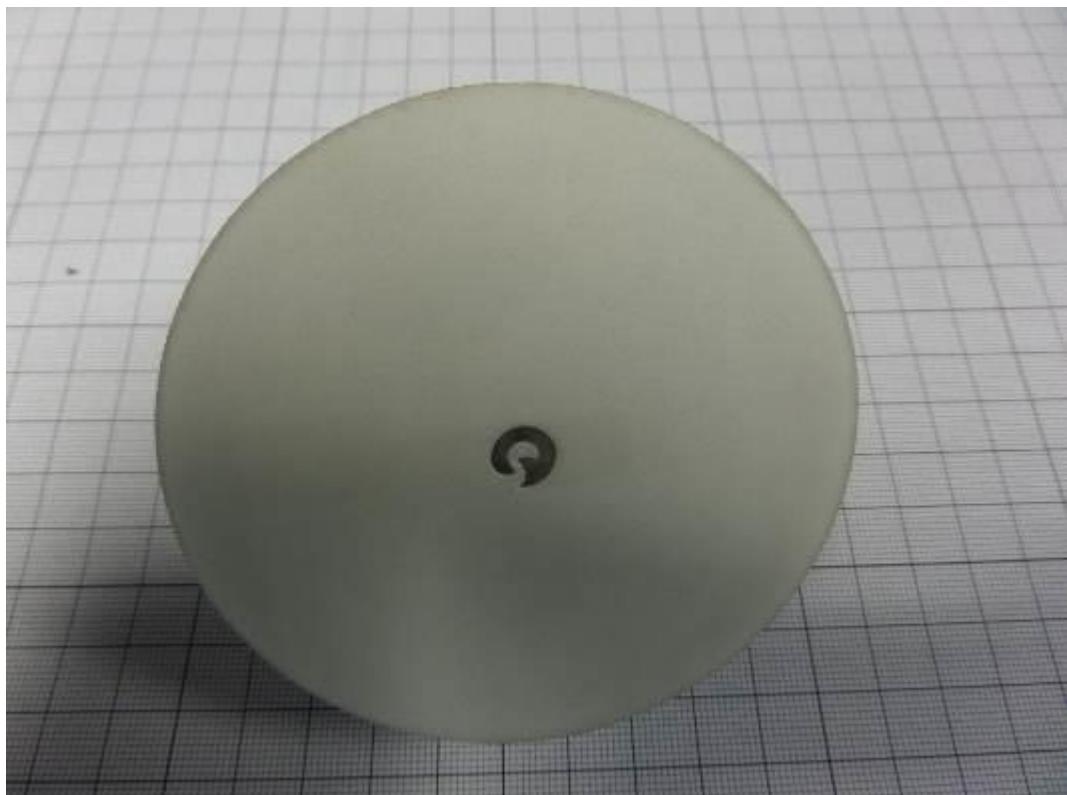
Polarization of test antenna: Vertical (height: 150 cm)

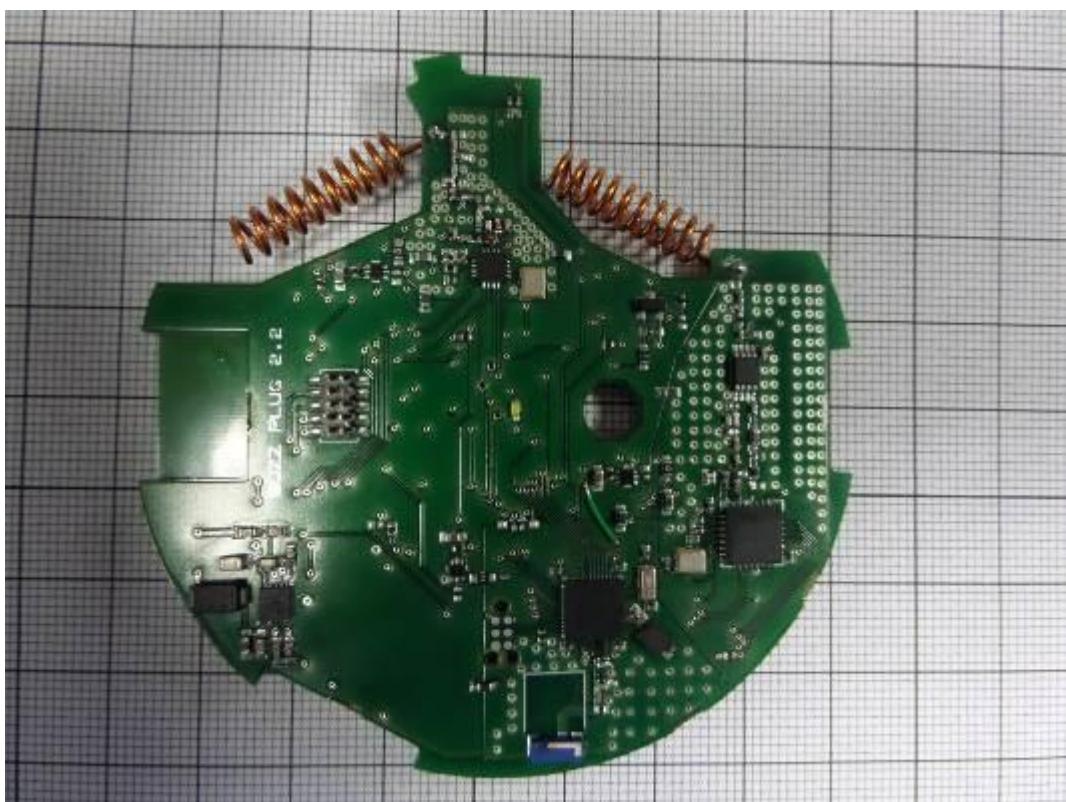
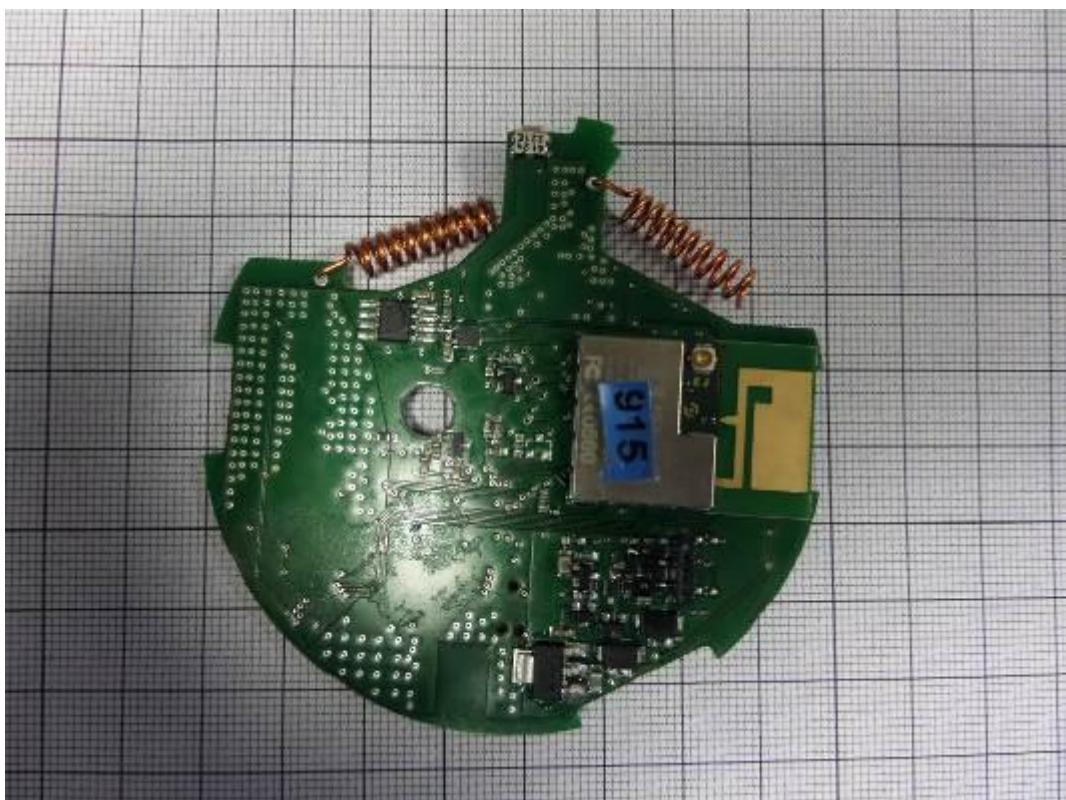
Position of equipment: See photos in appendix 2 (azimuth: 14 degrees)

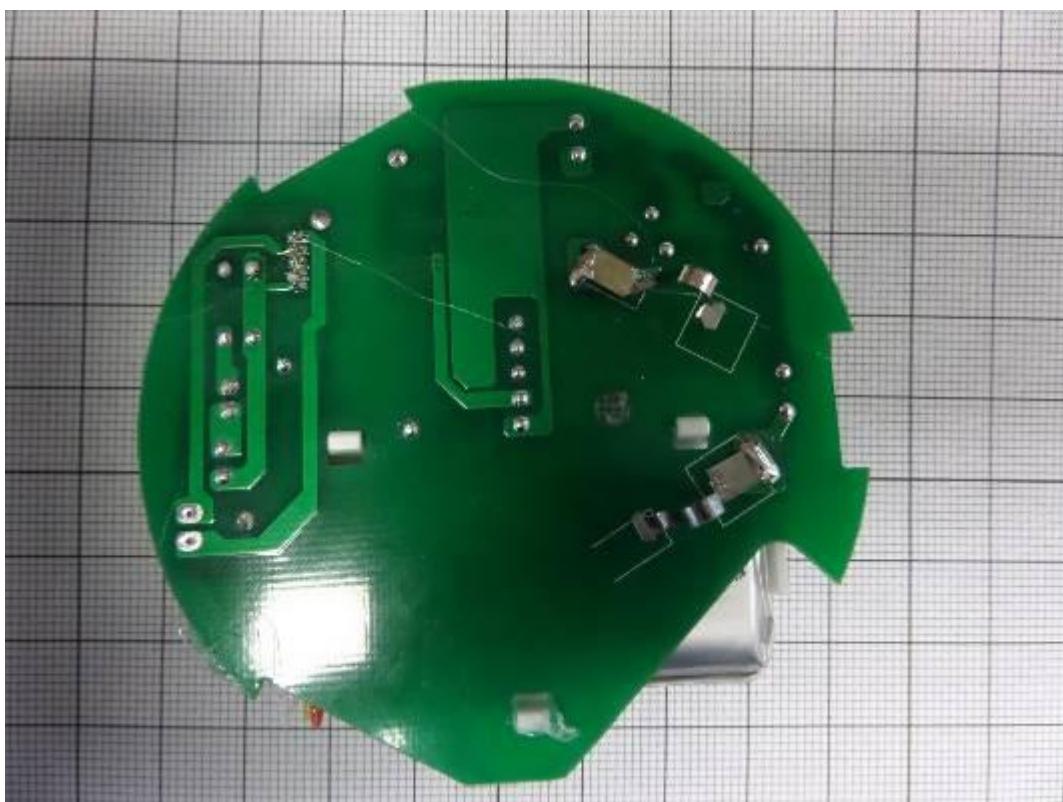
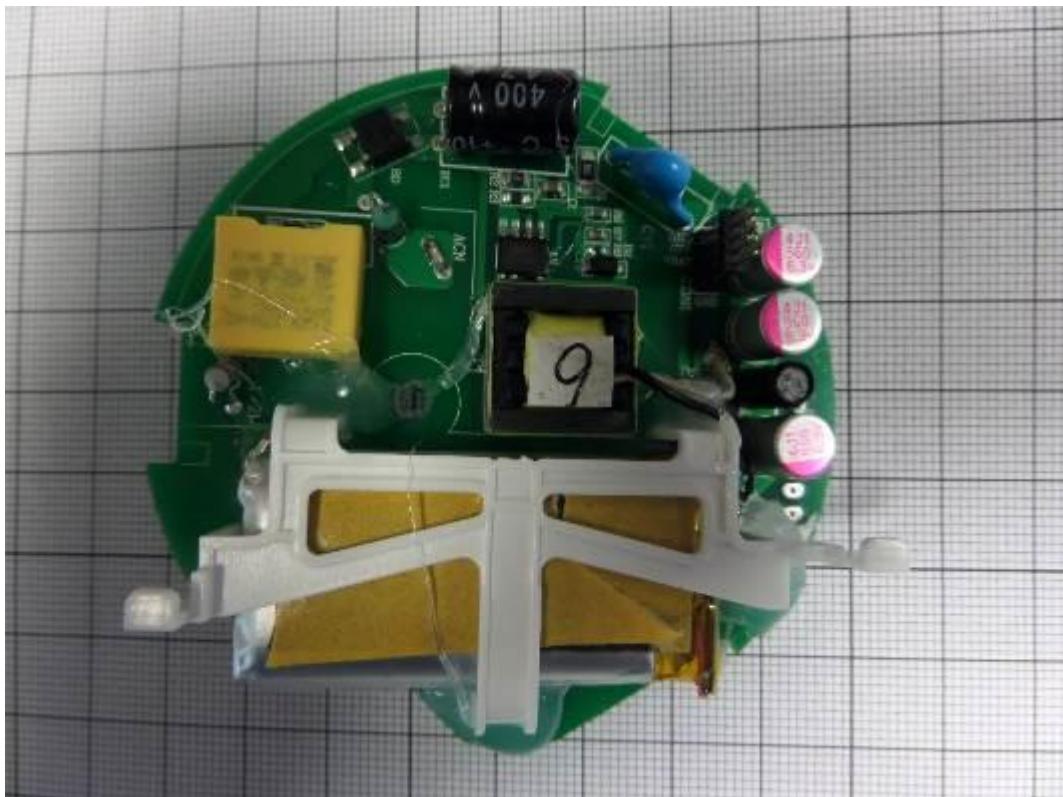
Sample N° 1 High Channel:

| Peak power density at frequency:<br>2480 MHz |        |
|----------------------------------------------|--------|
| <b>Normal test conditions</b>                | -2.83  |
| <b>Limits</b>                                | +8 dBm |

Polarization of test antenna: Vertical (height: 150 cm)

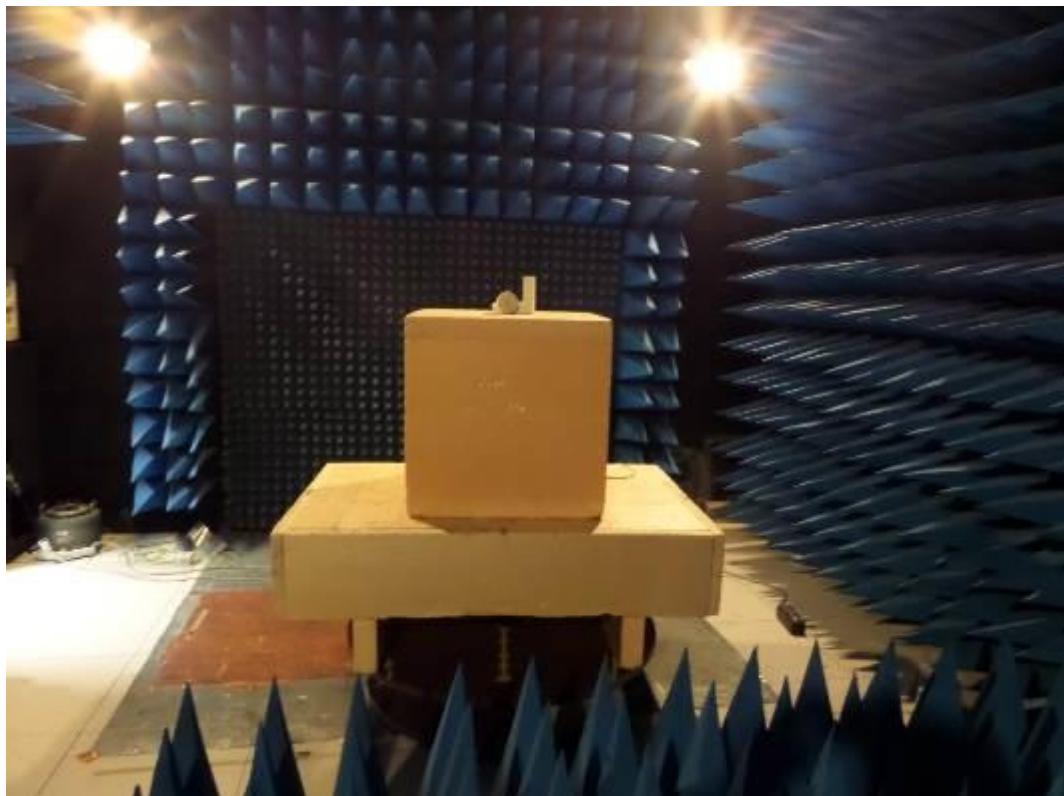

Position of equipment: See photos in appendix 2 (azimuth: 16 degrees)



**Test conclusion:**



RESPECTED STANDARD

*□□□ End of report, 6 appendixes to be forwarded □□□*

## APPENDIX 1: Photos of the equipment under test








## APPENDIX 2: Test set up

Radiated measurements



## Conducted measurements



## APPENDIX 3: Test equipment list

### Measurement of the conducted disturbances

| TYPE                                           | MANUFACTURER                 | EMITECH NUMBER |
|------------------------------------------------|------------------------------|----------------|
| Outside room Hors cage                         | Emitech                      | 8893           |
| Satellite synchronized frequency standard GPS8 | ACQUISYS                     | 8896           |
| Test receiver HP 8591EM                        | Hewlett Packard              | 8524           |
| LISN 1600                                      | Thurblly Thandar Instruments | 8719           |
| High-pass filter EZ-25                         | Rohde & Schwarz              | 8635           |
| Absorber sheath current                        | Emitech                      | 10651          |
| Power source 1251RP                            | California instruments       | 8508           |
| Multimeter MN5102B                             | AOIP                         | 8675           |
| Meteo station WS-9232                          | La Crosse Technology         | 8750           |
| Software                                       | BAT-EMC V3.6.0.32            | 0000           |

### Radiated emission limits

| TYPE                                           | MANUFACTURER           | EMITECH NUMBER |
|------------------------------------------------|------------------------|----------------|
| Anechoic Chamber                               | EMITECH                | 8593           |
| Satellite synchronized frequency standard GPS8 | ACQUISYS               | 8896           |
| Spectrum Analyzer FSP40                        | Rohde & Schwarz        | 4088           |
| Biconical antenna VHBB 9124                    | Schwarzbeck            | 8526           |
| Log periodic antenna UHALP 9108A               | Schwarzbeck            | 8543           |
| Antenna 3115                                   | EMCO                   | 8535           |
| Low-noise amplifier 8447D                      | Hewlett Packard        | 8511           |
| Low-noise amplifier C020180F-4B1               | Microwave DB           | 1922           |
| Power source 1251RP                            | California instruments | 8508           |
| Multimeter MN5102B                             | AOIP                   | 8675           |
| Meteo station WS-9232                          | La Crosse Technology   | 8750           |
| Software                                       | BAT-EMC V3.6.0.32      | 0000           |

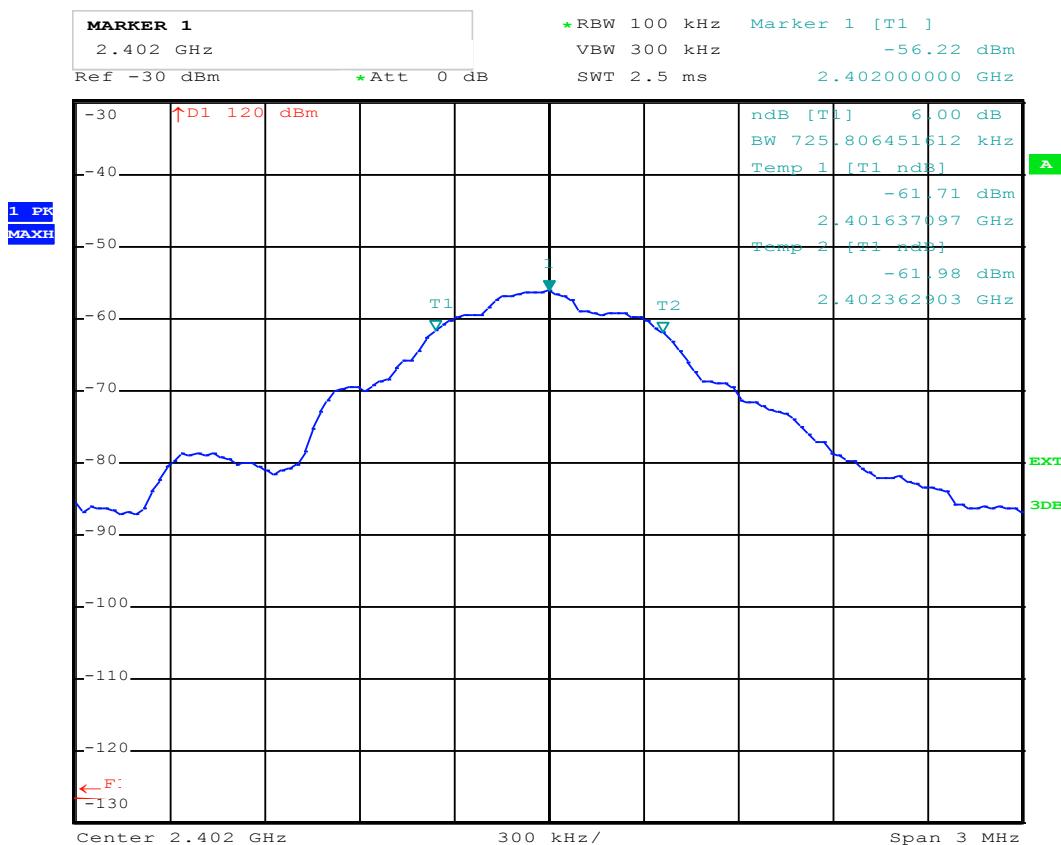
## Additional provisions to the general radiated emission limitations

| TYPE                                           | MANUFACTURER           | EMITECH NUMBER |
|------------------------------------------------|------------------------|----------------|
| Outside room Hors cage                         | Emitech                | 8893           |
| Satellite synchronized frequency standard GPS8 | ACQUISYS               | 8896           |
| Spectrum Analyzer FSP40                        | Rohde & Schwarz        | 4088           |
| Antenna 3115                                   | EMCO                   | 8535           |
| Power source 1251RP                            | California instruments | 8508           |
| Multimeter MN5102B                             | AOIP                   | 8675           |
| Meteo station WS-9232                          | La Crosse Technology   | 8750           |
| Software                                       | GPIBShot V2.4          | -              |

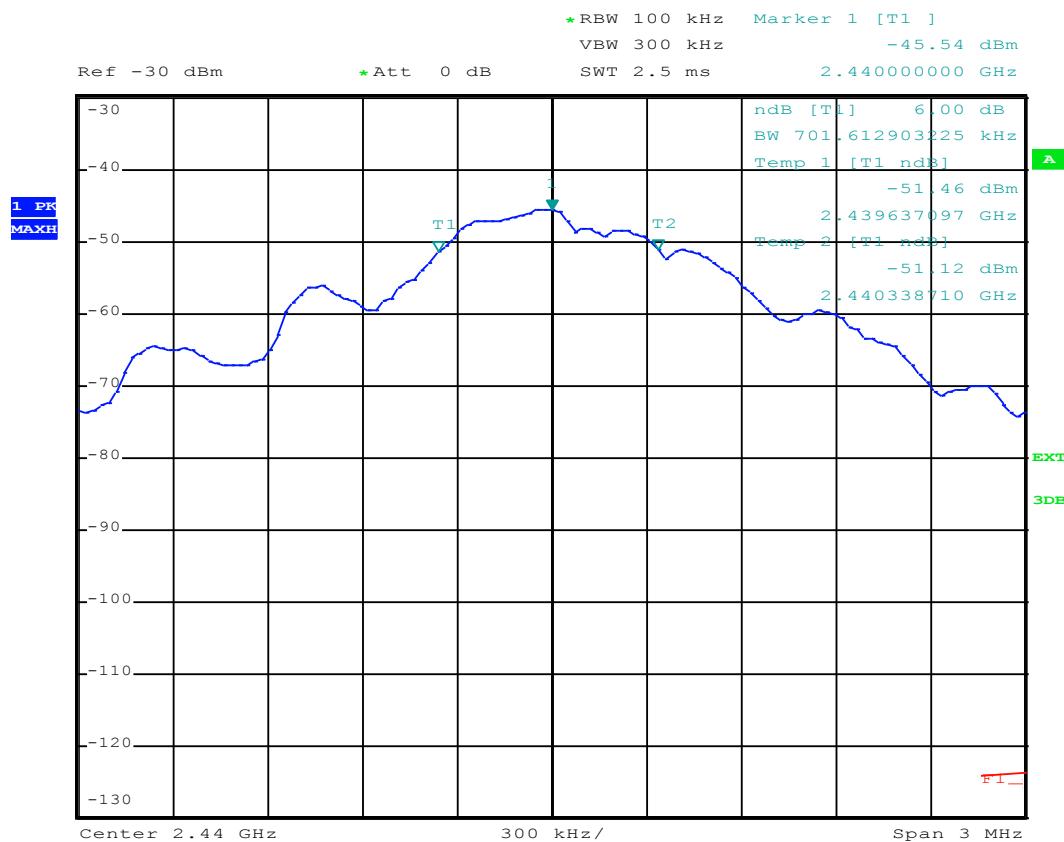
## Maximum peak output power

| TYPE                                           | MANUFACTURER           | EMITECH NUMBER |
|------------------------------------------------|------------------------|----------------|
| Anechoic Chamber                               | EMITECH                | 8593           |
| Satellite synchronized frequency standard GPS8 | ACQUISYS               | 8896           |
| Spectrum Analyzer FSP40                        | Rohde & Schwarz        | 4088           |
| Antenna 3115                                   | EMCO                   | 8535           |
| Power source 1251RP                            | California instruments | 8508           |
| Multimeter MN5102B                             | AOIP                   | 8675           |
| Meteo station WS-9232                          | La Crosse Technology   | 8750           |
| Software                                       | BAT-EMC V3.6.0.32      | 0000           |

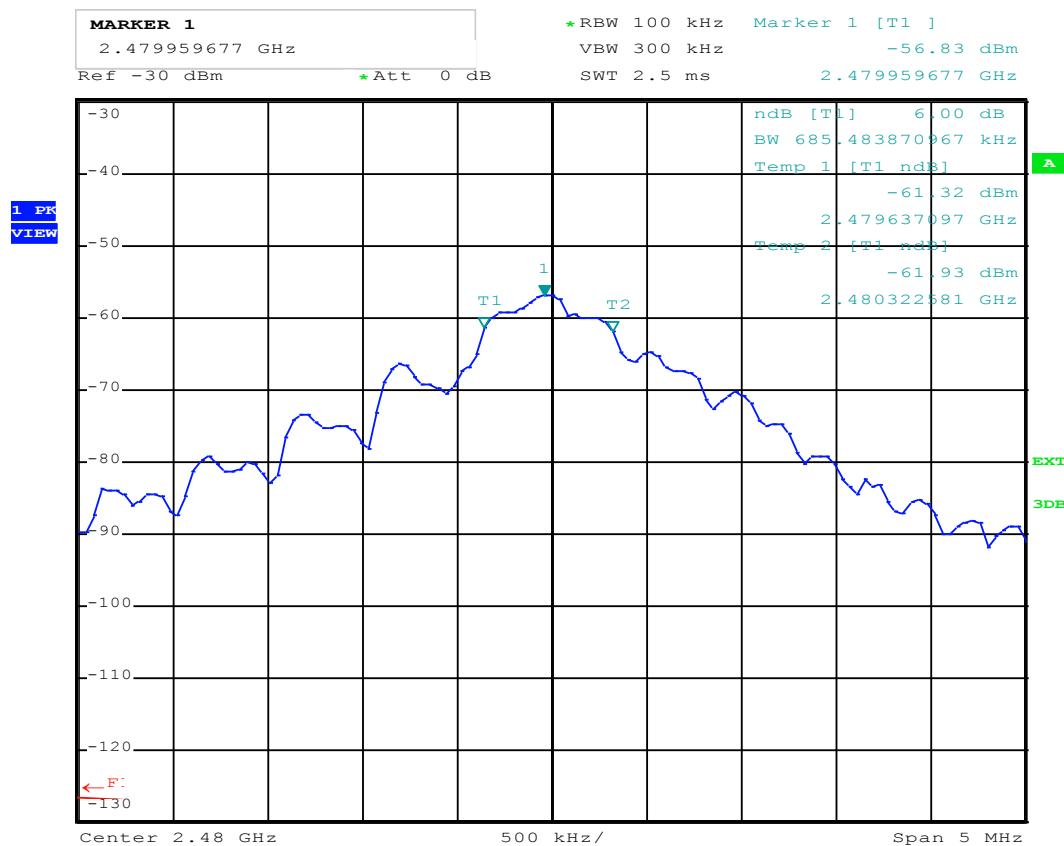
**Intentional radiator**


| TYPE                                           | MANUFACTURER           | EMITECH NUMBER |
|------------------------------------------------|------------------------|----------------|
| Anechoic Chamber                               | EMITECH                | 8593           |
| Satellite synchronized frequency standard GPS8 | ACQUISYS               | 8896           |
| Spectrum Analyzer FSP40                        | Rohde & Schwarz        | 4088           |
| Loop antenna 6502                              | EMCO                   | 1406           |
| Biconical antenna VHBB 9124                    | Schwarzbeck            | 8526           |
| Log periodic antenna UHALP 9108A               | Schwarzbeck            | 8543           |
| Antenna 3115                                   | EMCO                   | 8535           |
| Antenna WR42                                   | IMC                    | 1939           |
| Antenna WR42                                   | IMC                    | 1940           |
| Low-noise amplifier 8447D                      | Hewlett Packard        | 8511           |
| Low-noise amplifier C020180F-4B1               | Microwave DB           | 1922           |
| Low-noise amplifier ALN02-0102                 | ALC Microwave          | 3036           |
| Reject band filter BRM50702                    | Microtronics           | 7299           |
| Power source 1251RP                            | California instruments | 8508           |
| Multimeter MN5102B                             | AOIP                   | 8675           |
| Meteo station WS-9232                          | La Crosse Technology   | 8750           |
| Software                                       | BAT-EMC V3.6.0.32      | 0000           |

**Peak power density**

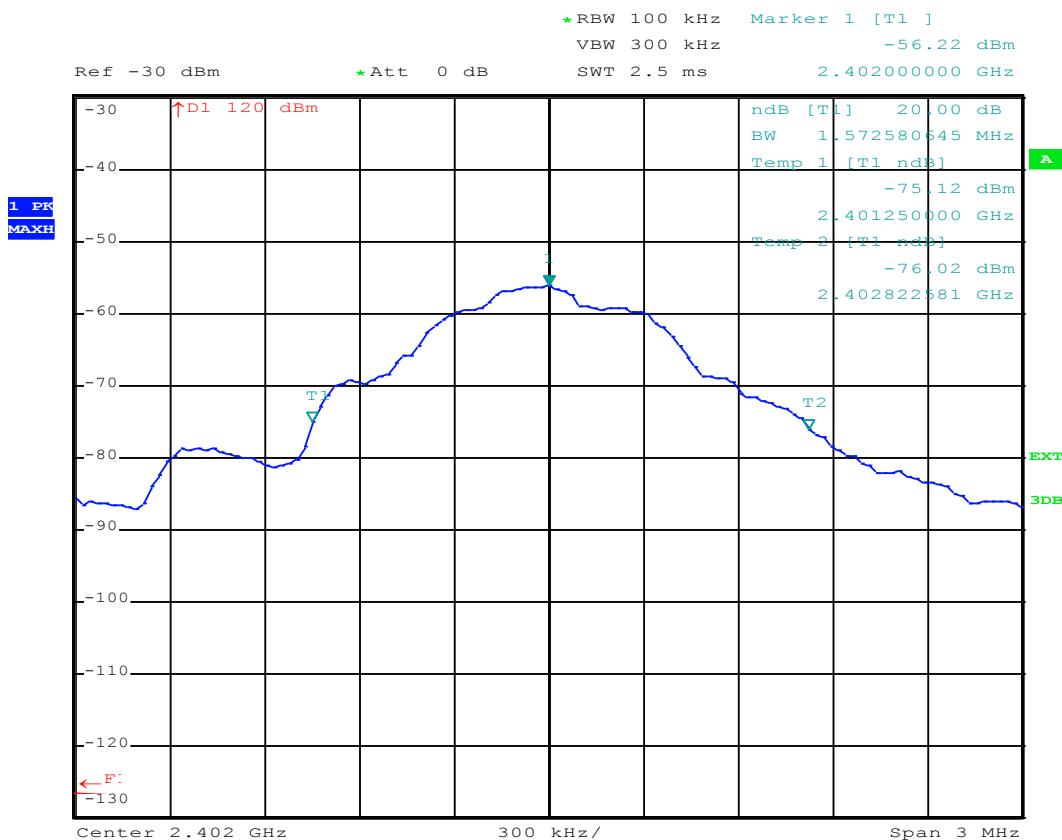

| TYPE                                           | MANUFACTURER           | EMITECH NUMBER |
|------------------------------------------------|------------------------|----------------|
| Anechoic Chamber                               | EMITECH                | 8593           |
| Satellite synchronized frequency standard GPS8 | ACQUISYS               | 8896           |
| Spectrum Analyzer FSP40                        | Rohde & Schwarz        | 4088           |
| Antenna 3115                                   | EMCO                   | 8535           |
| Power source 1251RP                            | California instruments | 8508           |
| Multimeter MN5102B                             | AOIP                   | 8675           |
| Meteo station WS-9232                          | La Crosse Technology   | 8750           |
| Software                                       | BAT-EMC V3.6.0.32      | 0000           |

## APPENDIX 4: 6 dB bandwidth

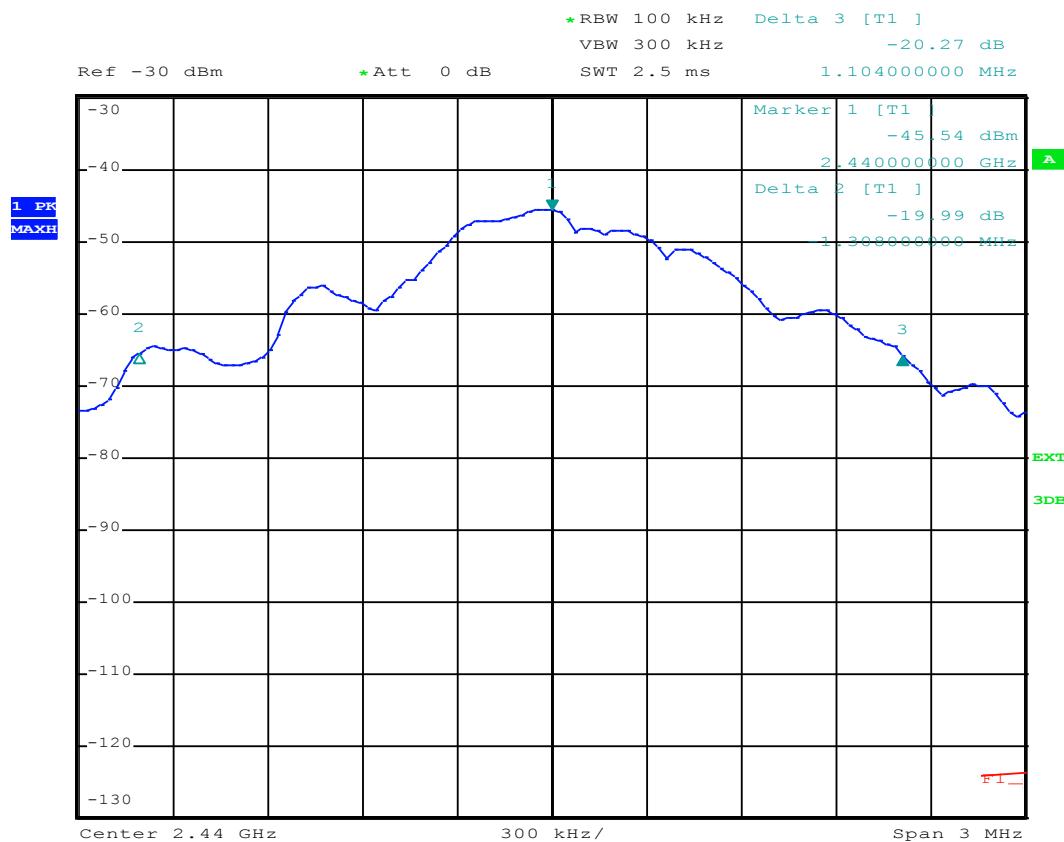

### Low Channel



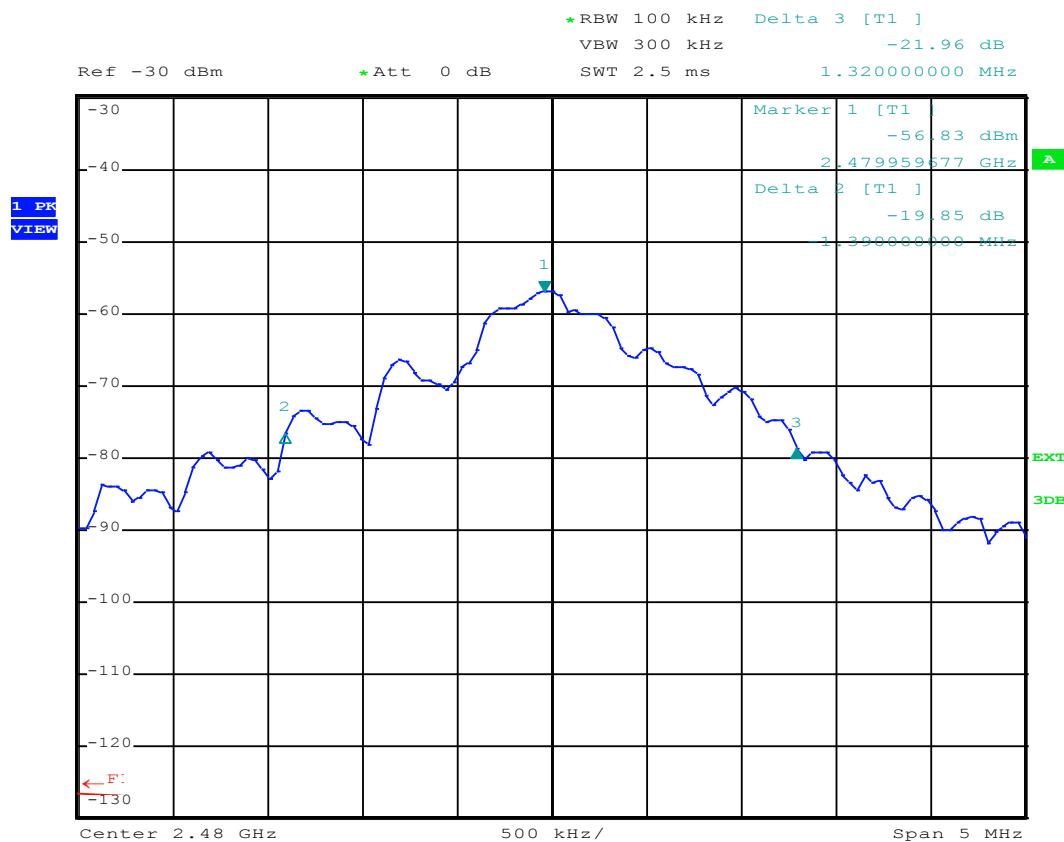
## Central Channel




## High Channel

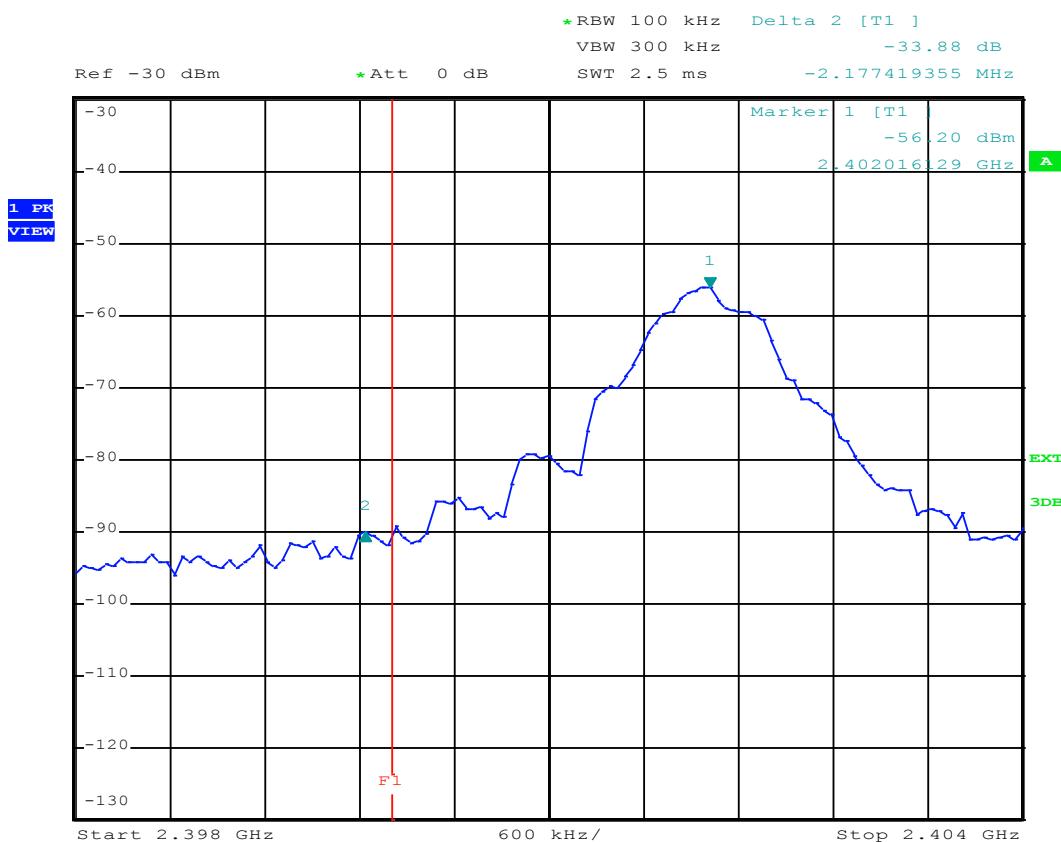



## APPENDIX 5: 20 dB bandwidth

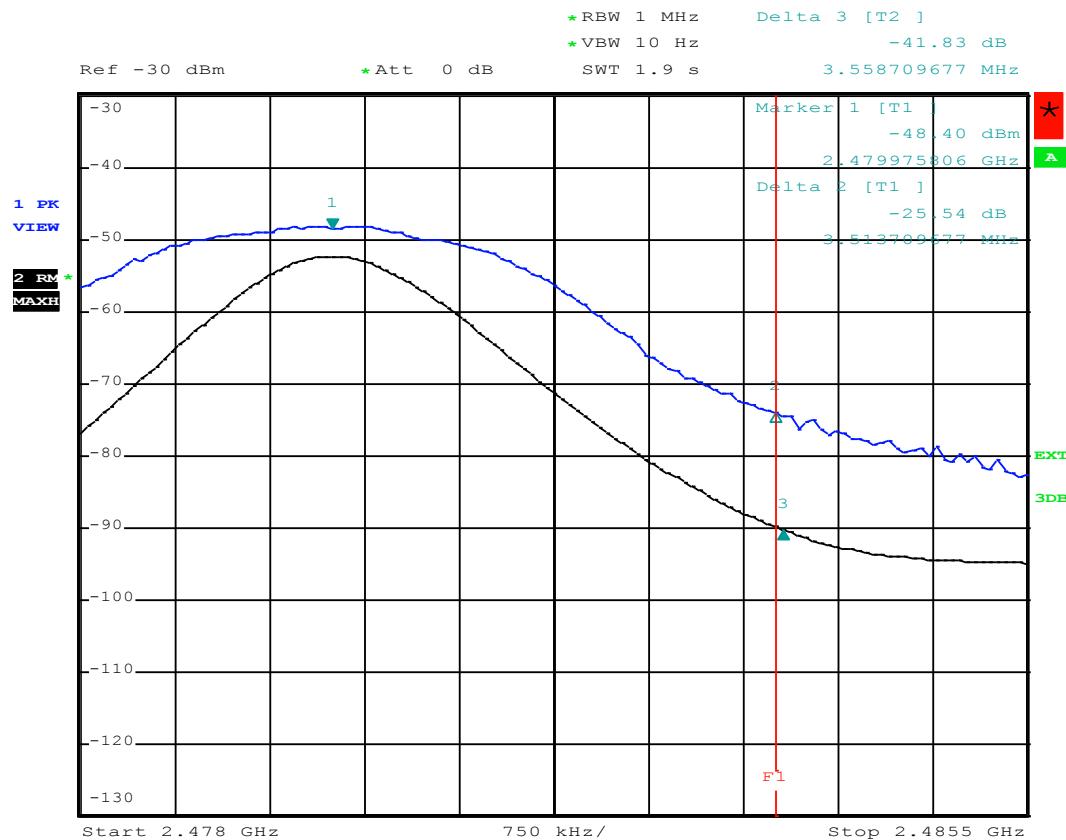

### Low Channel



## Central Channel




## High Channel




## APPENDIX 6: Band edge

Lower Band edge



## Upper Band edge

