

TEST REPORT

Applicant: Sun Cupid Technology (HK) Ltd.

Address: 16/F,CEO Tower,77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.

Product Name: LTE Smartphone

FCC ID: 2ADINN6504L

47 CFR Part 15, Subpart E(15.407)

ANSI C63.10-2020

Standard(s): KDB 789033 D02 General U-NII Test Procedures New Rules v02r01

Report Number: 2502Q44145E-RF-00D

Report Date: 2025/6/4

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Reviewed By: Pedro Yun

Approved By: Gavin Xu

Title: Project Engineer

Title: RF Supervisor

Bay Area Compliance Laboratories Corp. (Dongguan)

No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-86858888

Fax: +86-769-86858891

www.baclcorp.com.cn

Note: The information marked ▲ is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with ★. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. Each test item follows the test standard(s) without deviation.

CONTENTS

DOCUMENT REVISION HISTORY	4
1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	5
1.2 ACCESSORY INFORMATION	5
1.3 ANTENNA INFORMATION DETAIL▲	6
1.4 EQUIPMENT MODIFICATIONS.....	6
2. SUMMARY OF TEST RESULTS	7
3. DESCRIPTION OF TEST CONFIGURATION	8
3.1 OPERATION FREQUENCY DETAIL	8
3.2 EUT OPERATION CONDITION	9
3.3 SUPPORT EQUIPMENT LIST AND DETAILS.....	10
3.4 SUPPORT CABLE LIST AND DETAILS.....	10
3.5 BLOCK DIAGRAM OF TEST SETUP.....	11
3.6 TEST FACILITY	13
3.7 MEASUREMENT UNCERTAINTY	13
4. REQUIREMENTS AND TEST PROCEDURES	14
4.1 AC LINE CONDUCTED EMISSIONS	14
4.1.1 Applicable Standard	14
4.1.2 EUT Setup.....	15
4.1.3 EMI Test Receiver Setup	15
4.1.4 Test Procedure.....	16
4.1.5 Corrected Amplitude & Margin Calculation.....	16
4.1.6 Test Result.....	16
4.2 RADIATION SPURIOUS EMISSIONS.....	17
4.2.1 Applicable Standard	17
4.2.2 EUT Setup.....	18
4.2.3 EMI Test Receiver & Spectrum Analyzer Setup.....	20
4.2.4 Test Procedure.....	20
4.2.5 Corrected Result & Margin Calculation.....	21
4.2.6 Test Result.....	21
4.3 EMISSION BANDWIDTH	22
4.3.1 Applicable Standard	22
4.3.2 EUT Setup.....	22
4.3.3 Test Procedure.....	22
4.3.4 Test Result.....	23
4.4 MAXIMUM CONDUCTED OUTPUT POWER	24
4.4.1 Applicable Standard	24
4.4.2 EUT Setup.....	24
4.4.3 Test Procedure.....	24
4.4.4 Test Result.....	24
4.5 MAXIMUM POWER SPECTRAL DENSITY	25
4.5.1 Applicable Standard	25
4.5.2 EUT Setup.....	25

4.5.3 Test Procedure.....	26
4.5.4 Test Result.....	26
4.6 DUTY CYCLE.....	27
4.6.1 EUT Setup.....	27
4.6.2 Test Procedure.....	27
4.6.3 Judgment	27
4.7 ANTENNA REQUIREMENT	28
4.7.1 Applicable Standard	28
4.7.2 Judgment	28
5. TEST DATA AND RESULTS	29
5.1 AC LINE CONDUCTED EMISSIONS	29
5.2 RADIATION SPURIOUS EMISSIONS.....	32
5.3 EMISSION BANDWIDTH	93
5.4 99% OCCUPIED BANDWIDTH	103
5.5 MAXIMUM CONDUCTED OUTPUT POWER	113
5.6 POWER SPECTRAL DENSITY	116
5.7 DUTY CYCLE.....	126
EXHIBIT A - EUT PHOTOGRAPHS.....	131
EXHIBIT B - TEST SETUP PHOTOGRAPHS	132

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	2502Q44145E-RF-00D	Original Report	2025/6/4

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	LTE Smartphone
EUT Model:	N6504L
Multiple Models:	N21, NUU N21
Operation Frequency:	5150-5250MHz: 5180-5240 MHz(802.11a/n ht20/ac vht20) 5190-5230 MHz(802.11n ht40/ac vht40) 5210 MHz(802.11ac vht80) 5250-5350MHz: 5260-5320 MHz (802.11a/n ht20/ac vht20) 5270-5310 MHz(802.11n ht40/ac vht40) 5290 MHz(802.11ac vht80) 5470-5725MHz: 5500-5720 MHz (802.11a/n ht20/ac vht20) 5510-5710 MHz(802.11n ht40/ac vht40) 5530-5690MHz(802.11ac vht80) 5725-5850MHz: 5745-5825 MHz (802.11a/n ht20/ac vht20) 5755-5795 MHz(802.11n ht40/ac vht40) 5775 MHz(802.11ac vht80)
Maximum Average Conducted Output Power:	13.24dBm(5150-5250MHz) 11.46dBm(5250-5350MHz) 13.46dBm(5470-5725MHz) 12.02dBm(5725-5850MHz)
Modulation Type:	802.11a/n/ac: OFDM-BPSK, QPSK, 16QAM, 64QAM,256QAM
Rated Input Voltage:	DC 3.8V from battery or DC 5V from adapter
Serial Number:	AC Line Conducted Emissions and Radiated Spurious Emission: 2YHK-4 RF Conducted:2YHK-5
EUT Received Date:	2025/2/19
EUT Received Status:	Good

Note: The multiple models are electrically identical with the test model. Please refer to the declaration letter for more detail, which was provided by manufacturer.

1.2 Accessory Information

Accessory Description	Manufacturer	Model	Parameters
Adapter	HUIZHOU JUWEI ELECTRONICS CO.,LTD.	CG10A0502000UU	Input: 100-240Vac 50/60Hz 0.5A Output: 5.0Vdc 2A

1.3 Antenna Information Detail▲

Antenna Manufacturer	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain
Sun Cupid Technology (HK) Ltd.	FPC	50	5.15~5.25GHz	3.71dBi
			5.25~5.35 GHz	3.29dBi
			5.47~5.725 GHz	3.22dBi
			5.725~5.85 GHz	3.03dBi

The design of compliance with §15.203:

- Unit uses a permanently attached antenna.
- Unit uses a unique coupling to the intentional radiator.
- Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

1.4 Equipment Modifications

No modifications are made to the EUT during all test items.

2. SUMMARY OF TEST RESULTS

Standard(s) Section	Test Items	Result
§15.207(a)	AC line conducted emissions	Compliant
FCC§15.205& §15.209 &§15.407(b)	Radiated Spurious Emissions	Compliant
FCC§15.407(a) (e)	Emission Bandwidth	Compliant
FCC§15.407(a)	Maximum Conducted Output Power	Compliant
FCC§15.407 (a)	Power Spectral Density	Compliant
§15.203	Antenna Requirement	Compliant

Note 1: For AC line conducted emissions, the maximum output power channel was tested.
Note 2: For Radiated Spurious Emissions 9kHz~1GHz and 18~40GHz, the maximum output power channel was tested.

3. DESCRIPTION OF TEST CONFIGURATION

3.1 Operation Frequency Detail

For 802.11a/n ht20/ac vht20:

5150-5250MHz Band		5250-5350 MHz Band		5470-5725 MHz Band		5725-5850MHz Band	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	52	5260	100	5500	149	5745
40	5200	56	5280	104	5520	153	5765
44	5220	60	5300	108	5540	157	5785
48	5240	64	5320	112	5560	161	5805
/	/	/	/	116	5580	165	5825
/	/	/	/	120	5600	/	/
/	/	/	/	124	5620	/	/
/	/	/	/	128	5640	/	/
/	/	/	/	132	5660	/	/
/	/	/	/	136	5680	/	/
/	/	/	/	140	5700	/	/
/	/	/	/	144*	5720	/	/

For 802.11n ht40/ac vht40:

5150-5250MHz		5250-5350 MHz		5470-5725 MHz		5725-5850MHz	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	54	5270	102	5510	151	5755
46	5230	62	5310	110	5550	159	5795
/	/	/	/	118	5590	/	/
/	/	/	/	126	5630	/	/
/	/	/	/	134	5670	/	/
/	/	/	/	142*	5710	/	/

For 802.11ac vht80:

5150-5250MHz		5250-5350 MHz		5470-5725 MHz		5725-5850MHz	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
42	5210	58	5290	106	5530	155	5775
/	/	/	/	122	5610	/	/
/	/	/	/	138*	5690	/	/

*Note: Additional channels cross the band 5470-5725MHz and 5725-5850 MHz, Conducted output power/Power Spectral Density/bandwidth test with the additional channel to compliance with stricter limit of the two bands(5470-5725MHz more stricter).

3.2 EUT Operation Condition

The system was configured for testing in Engineering Mode, which was provided by the manufacturer. The EUT configuration is below:

EUT Exercise Software: Engineering mode				
5150-5250 MHz Band:				
Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
802.11a	Lowest	5180	6Mbps	18
	Middle	5200	6Mbps	18
	Highest	5240	6Mbps	18
802.11n ht20	Lowest	5180	MCS0	18
	Middle	5200	MCS0	18
	Highest	5240	MCS0	18
802.11n ht40	Lowest	5190	MCS0	18
	Highest	5230	MCS0	18
802.11ac vht80	Middle	5210	MCS0	18
5250-5350 MHz Band:				
Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
802.11a	Lowest	5260	6Mbps	16
	Middle	5280	6Mbps	16
	Highest	5320	6Mbps	16
802.11n ht20	Lowest	5260	MCS0	16
	Middle	5280	MCS0	16
	Highest	5320	MCS0	16
802.11n ht40	Lowest	5270	MCS0	16
	Highest	5310	MCS0	16
802.11ac vht80	Middle	5290	MCS0	16

5470-5725 MHz Band:

Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
802.11a	Lowest	5500	6Mbps	18
	Middle	5580	6Mbps	18
	Highest	5700	6Mbps	18
	Cross	5720	6Mbps	18
802.11n ht20	Lowest	5500	MCS0	18
	Middle	5580	MCS0	18
	Highest	5700	MCS0	18
	Cross	5720	MCS0	18
802.11n ht40	Lowest	5510	MCS0	18
	Highest	5550	MCS0	18
	Lowest	5670	MCS0	18
	Cross	5710	MCS0	18
802.11ac vht80	Lowest	5530	MCS0	18
	Middle	5610	MCS0	18
	Highest	5690	MCS0	18

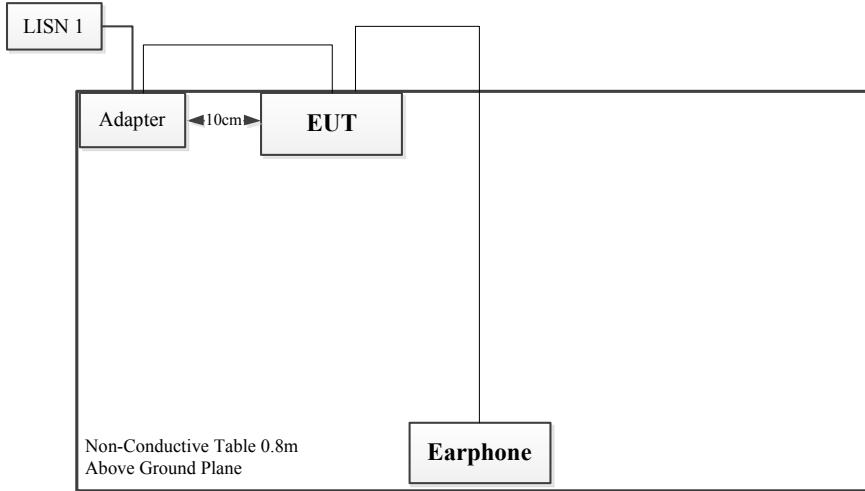
5725-5850 MHz Band:

Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
802.11a	Lowest	5745	6Mbps	18
	Middle	5785	6Mbps	18
	Highest	5825	6Mbps	18
802.11n ht20	Lowest	5745	MCS0	18
	Middle	5785	MCS0	18
	Highest	5825	MCS0	18
802.11n ht40	Lowest	5755	MCS0	18
	Highest	5795	MCS0	18
802.11ac vht80	Middle	5775	MCS0	18

Note:

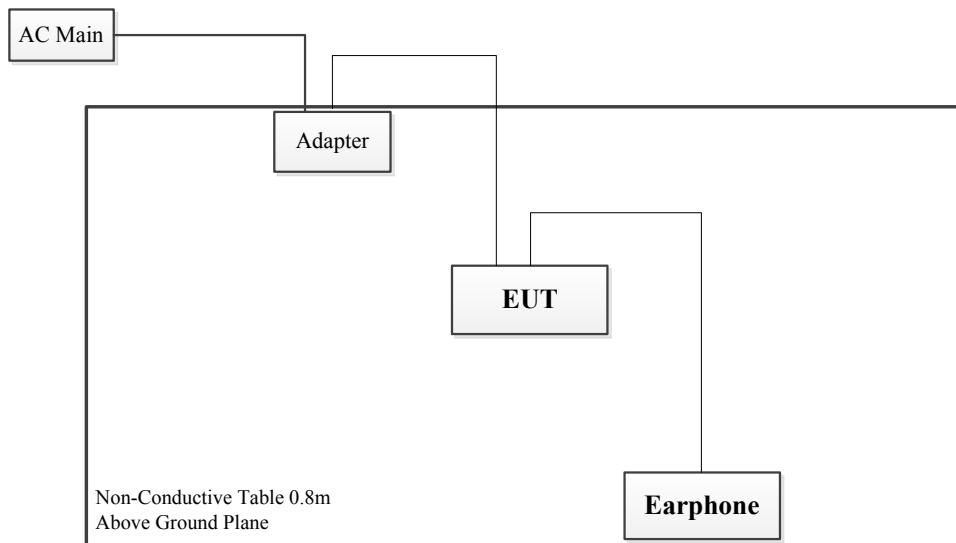
1. The system support 802.11a/n ht20/n ht40/ac vht20/vht40/vht80, the vht20/vht40 were reduced since the identical parameters with 802.11n ht20 and ht40.
2. The above are the worst-case data rates, which are determined for each mode based upon investigations by measuring the average power and PSD across all data rates, bandwidths, and modulations.

3.3 Support Equipment List and Details

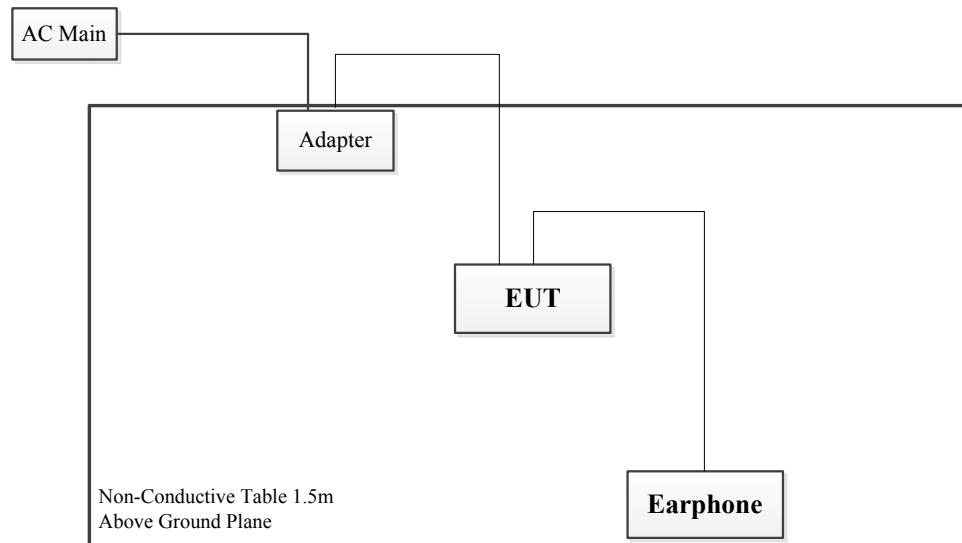

Manufacturer	Description	Model	Serial Number
Keenion	Earphone	Unknown	EMZBEP21103003B

3.4 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	To
USB Cable	no	no	1.0	Adapter	EUT
Earphone Cable	no	no	1.2	Earphone	EUT


3.5 Block Diagram of Test Setup

AC line conducted emissions:



Spurious Emissions:

Below 1GHz:

Above 1GHz:

3.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 829273, the FCC Designation No. : CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

3.7 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz: 5.92 dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB, 18GHz~26.5GHz: 5.47 dB, 26.5GHz~40GHz: 5.63 dB
Unwanted Emissions, conducted	±2.47 dB
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.11 dB (150 kHz to 30 MHz)

4. REQUIREMENTS AND TEST PROCEDURES

4.1 AC Line Conducted Emissions

4.1.1 Applicable Standard

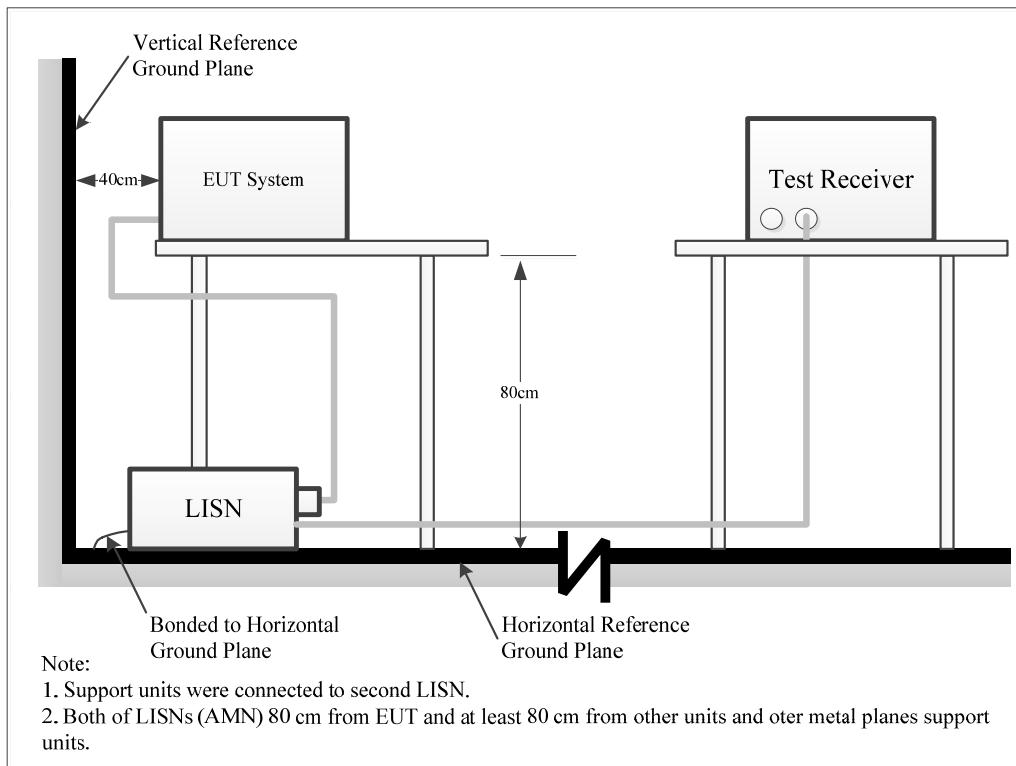
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μ V within the frequency band 535-1705 kHz, as measured using a 50 μ H/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

4.1.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2020 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase (“hot”) line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = attenuation caused by cable loss + voltage division factor of AMN

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

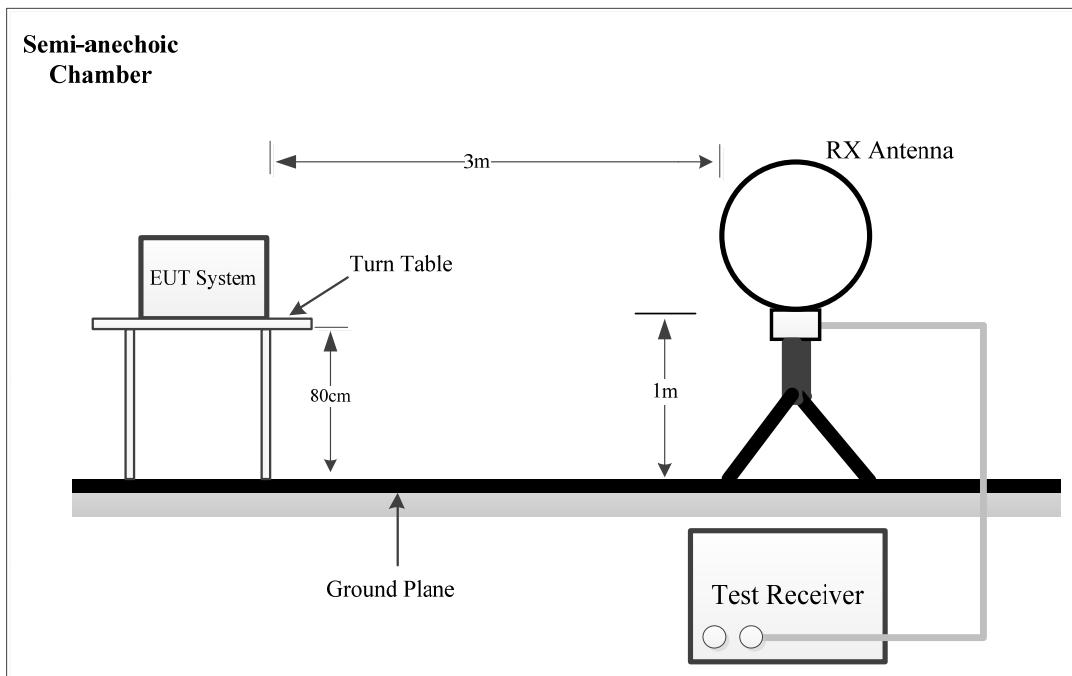
Margin = Limit – Result

4.1.6 Test Result

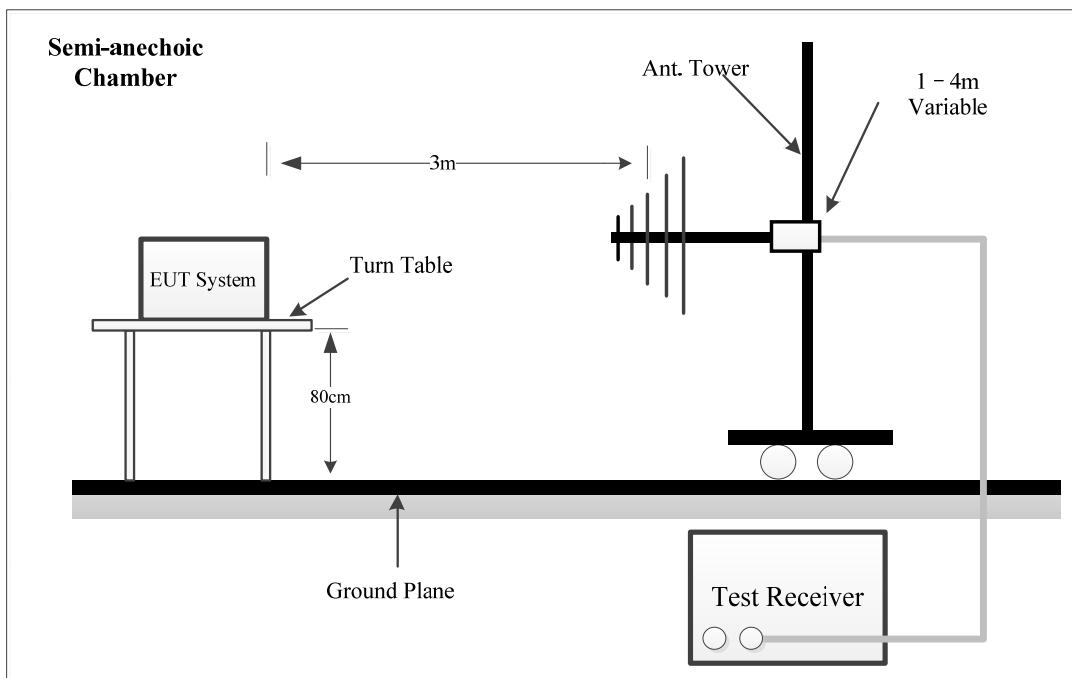
Please refer to section 5.1.

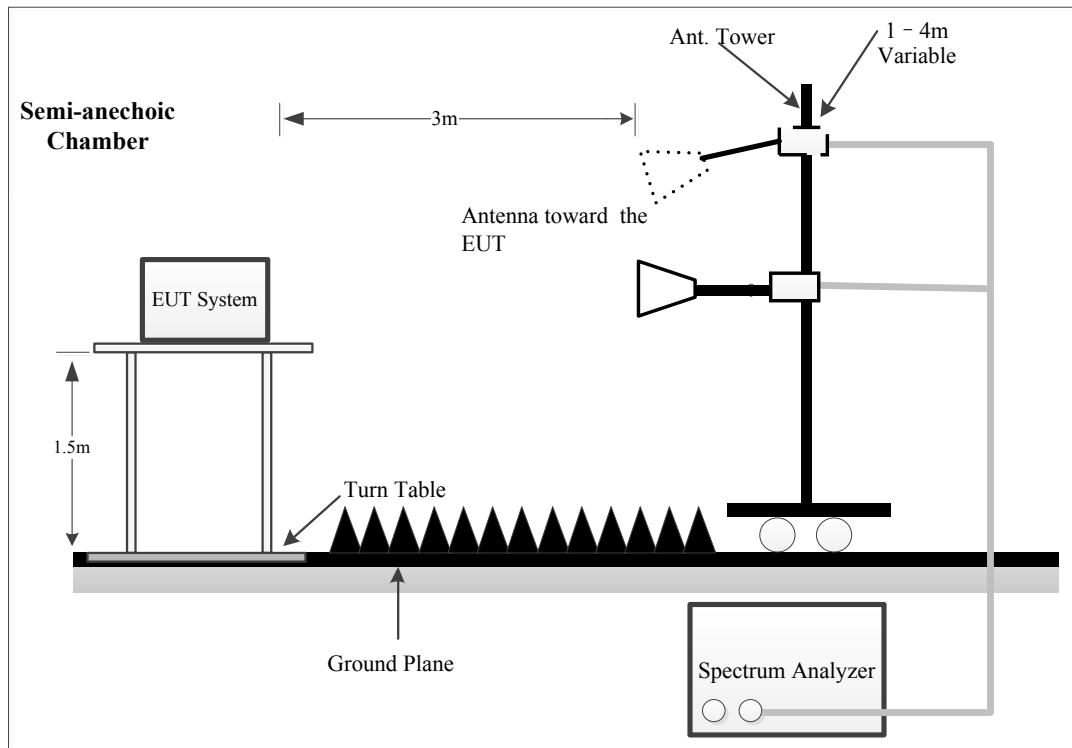
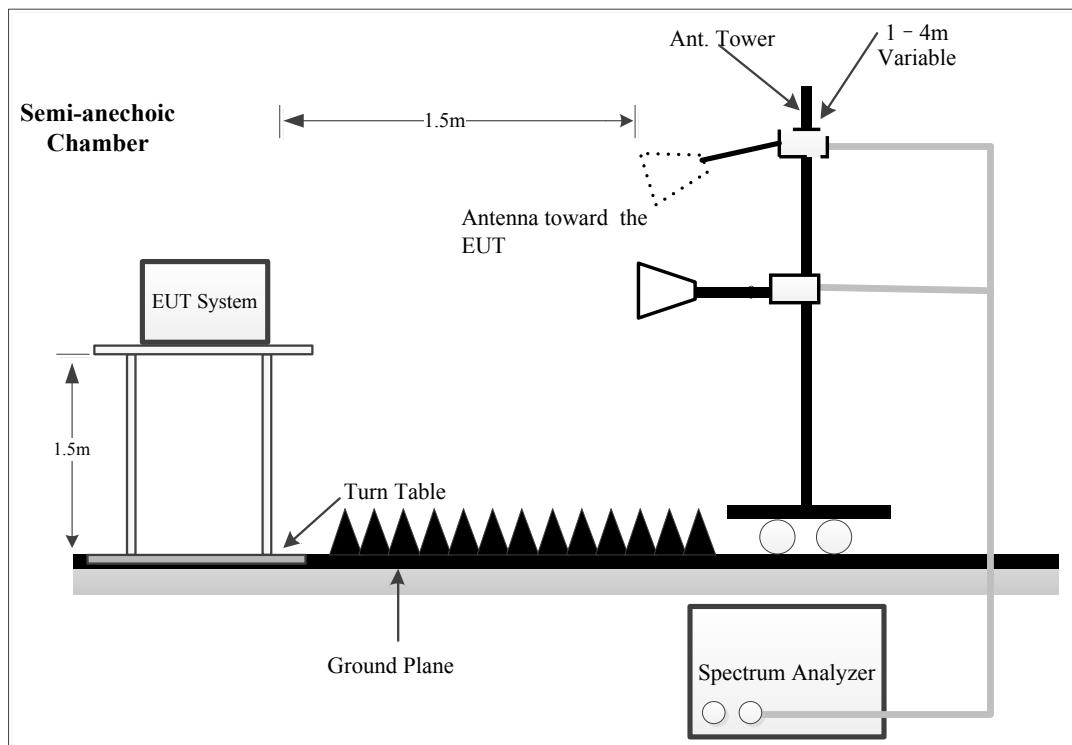
4.2 Radiation Spurious Emissions

4.2.1 Applicable Standard


FCC §15.407 (b);

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:


- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating solely in the 5.725-5.850 GHz band:
 - (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
 - (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (8) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (9) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.
- (10) The provisions of § 15.205 apply to intentional radiators operating under this section.
- (11) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.
- (c) The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.



4.2.2 EUT Setup

9kHz~30MHz:

30MHz~1GHz:

1-26.5GHz:**26.5-40GHz:**

The radiated emission tests were performed in the semi-anechoic chamber, using the setup accordance with the ANSI C63.10-2020. The specification used was FCC 15.209, FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

For 9kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

4.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9kHz-1000MHz:

Frequency Range	Measurement	RBW	Video B/W	IF B/W	Detector
9 kHz – 150 kHz	QP/AV	300Hz	1 kHz	200 Hz	QP/AV
150 kHz – 30 MHz	QP/AV	10 kHz	30 kHz	9 kHz	QP/AV
30MHz – 1000 MHz	PK	100 kHz	300 kHz	/	PK
	QP	/	/	120kHz	QP

1GHz- 40GHz:

Pre-scan:

Frequency Range	Measurement	RBW	Video B/W	Detector
Above 1 GHz	Peak	1MHz	3 MHz	PK
	AV	1MHz	5kHz	PK

Final measurement for emission identified during the pre-scan:

Frequency Range	Measurement	RBW	Video B/W	Detector
Above 1 GHz	Peak	1MHz	3 MHz	PK
	AV	1MHz	$\geq 1/T$	PK

Note: T is minimum transmission duration

4.2.4 Test Procedure

Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz -1 GHz, except 9-90 kHz, 110-490 kHz, employing an average detector, peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value is under the QP/Average limit by more than 6dB, then it is unnecessary to perform an QP/Average measurement.

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for $d = 3$ meters.

For Radiated 26.5-40GHz test, which was performed at 1.5 m distance, according to C63.10, the test result shall be extrapolated to the specified distance using an extrapolation Factor of 20dB/decade from 3m to 1.5m
Distance extrapolation Factor = $20 \log (\text{specific distance [3m]}/\text{test distance [1.5m]})$ dB= 6.0 dB

4.2.5 Corrected Result & Margin Calculation

The basic equation except 26.5-40GHz test is as follows:

Factor = Antenna Factor + Cable Loss- Amplifier Gain

For Radiated 26.5-40GHz test:

Factor = Antenna Factor + Cable Loss- Distance extrapolation Factor

Result = Reading + Factor

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

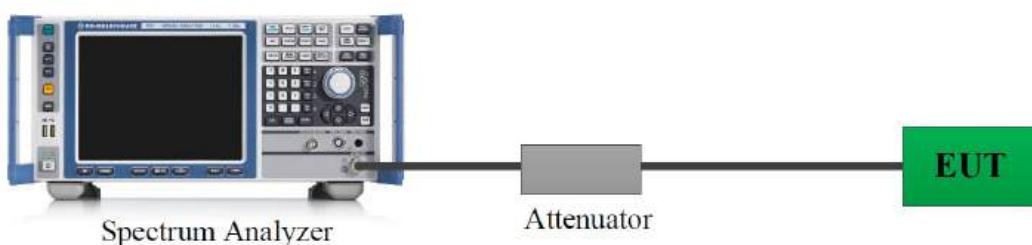
Margin = Limit – Result

4.2.6 Test Result

Please refer to section 5.2.

4.3 Emission Bandwidth

4.3.1 Applicable Standard


FCC §15.407 (a),(h)

(h)(2) Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

FCC §15.407 (e)

Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

4.3.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

4.3.3 Test Procedure

26dB Emission Bandwidth:

According to ANSI C63.10-2020 Section 12.5.2

- a) Set RBW = shall be in the range of 1% to 5% of the emission bandwidth.
- b) Set the VBW $>$ RBW.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is in the range of 1% to 5%.

6 dB emission bandwidth:

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two

outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described in this section. For devices that use channel aggregation refer to III.A and III.C for determining emission bandwidth.

99% Occupied Bandwidth:

According to ANSI C63.10-2020 Section 12.5.3&6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (OBW/RBW)]$ below the reference level. Specific guidance is given in 4.1.6.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

4.3.4 Test Result

Please refer to section 5.3 and section 5.4.

4.4 Maximum Conducted Output Power

4.4.1 Applicable Standard

FCC §15.407(a) (1)(iv)

For client devices in the 5.15 – 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.4.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

4.4.3 Test Procedure

According to ANSI C63.10-2020 Section 12.4.3.2

Method PM-G is measurement using a gated RF average power meter.

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

4.4.4 Test Result

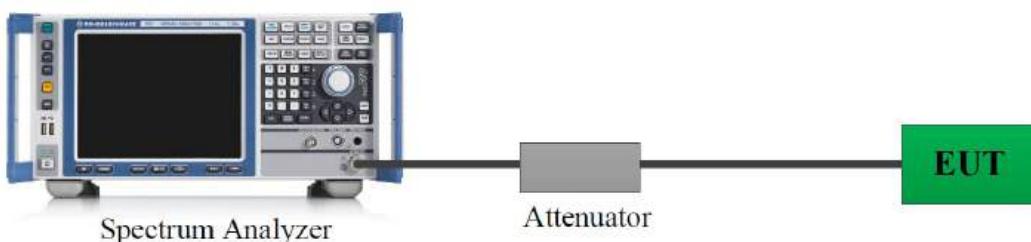
Please refer to section 5.5.

4.5 Maximum Power Spectral Density

4.5.1 Applicable Standard

FCC §15.407(a) (1)(iv)

For client devices in the 5.15 – 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


FCC §15.407(a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.5.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

4.5.3 Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

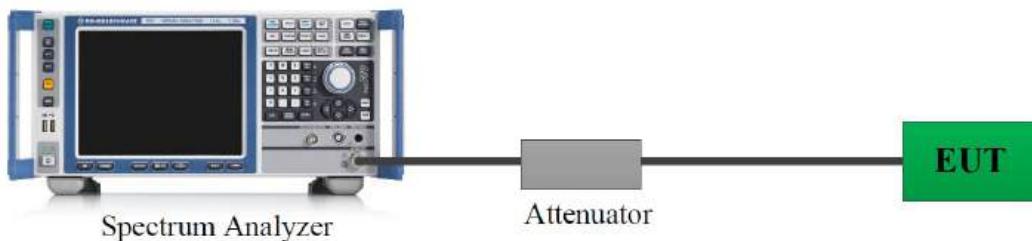
Duty cycle $\geq 98\%$

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-1 should be applied.

Duty cycle $< 98\%$, duty cycle variations are less than $\pm 2\%$

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-2 should be applied.

Duty cycle $< 98\%$, duty cycle variations exceed $\pm 2\%$


KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-3 should be applied.

4.5.4 Test Result

Please refer to section 5.6.

4.6 Duty Cycle

4.6.1 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

4.6.2 Test Procedure

According to ANSI C63.10-2020 Section 12.2

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set $RBW \geq OBW$ if possible; otherwise, set RBW to the largest available value.
- 3) Set $VBW \geq RBW$. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are $> 50/T$ and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \leq 16.7 \mu s$.)

4.6.3 Judgment

Report Only. Please refer to section 5.7.

4.7 Antenna Requirement

4.7.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

4.7.2 Judgment

Compliant. Please refer to the Antenna Information detail in Section 1.3.

5. TEST DATA AND RESULTS

5.1 AC Line Conducted Emissions

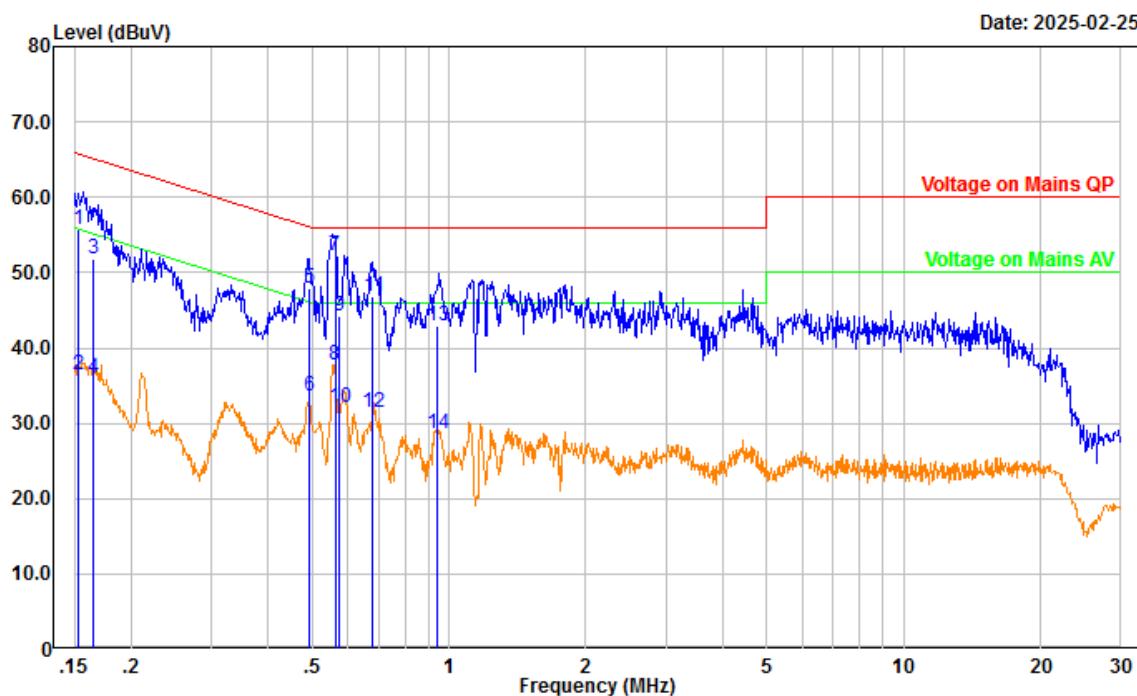
Serial Number:	2YHK-4	Test Date:	2025/2/25
Test Site:	CE	Test Mode:	Transmitting
Tester:	Yukin Qiu	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	20.3	Relative Humidity: (%)	51	ATM Pressure: (kPa)	102.1
-------------------	------	------------------------	----	---------------------	-------

Test Equipment List and Details:

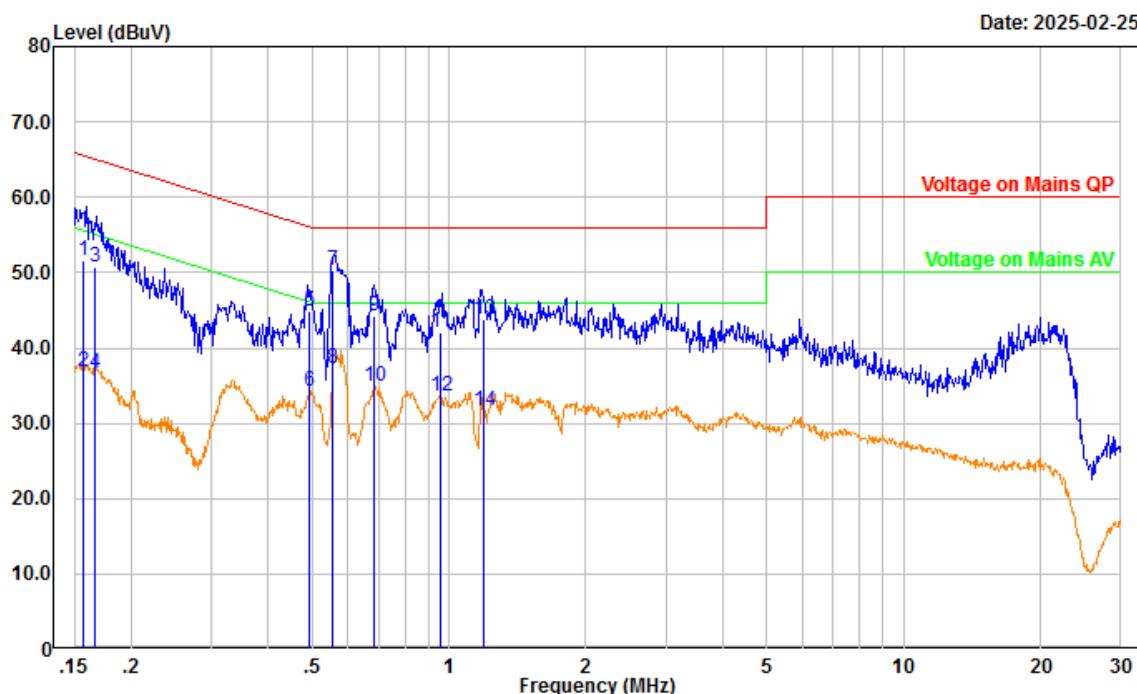
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101614	2024/9/5	2025/9/4
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2024/9/5	2025/9/4
R&S	EMI Test Receiver	ESCI	101121	2024/9/5	2025/9/4
Audix	Test Software	E3	191218 V9	N/A	N/A


* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Note: 802.11a 5500MHz was tested.

Project No.: 2502Q44145E-RF
 Port: Line
 Test Mode: Transmitting
 IF B/W 9kHz PK/AV


Serial No.: 2YHK-4
 Tester: Yukin Qiu

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB)	Result (dB μ V)	Limit (dB μ V)	Margin (dB)	Detector
1	0.153	45.00	10.76	55.76	65.84	10.08	QP
2	0.153	25.63	10.76	36.39	55.84	19.45	Average
3	0.165	41.00	10.78	51.78	65.20	13.42	QP
4	0.165	25.17	10.78	35.95	55.20	19.25	Average
5	0.493	37.05	10.84	47.89	56.11	8.22	QP
6	0.493	22.72	10.84	33.56	46.11	12.55	Average
7	0.562	41.44	10.83	52.27	56.00	3.73	QP
8	0.562	26.95	10.83	37.78	46.00	8.22	Average
9	0.572	33.45	10.83	44.28	56.00	11.72	QP
10	0.572	21.21	10.83	32.04	46.00	13.96	Average
11	0.680	35.95	10.85	46.80	56.00	9.20	QP
12	0.680	20.62	10.85	31.47	46.00	14.53	Average
13	0.943	32.17	10.86	43.03	56.00	12.97	QP
14	0.943	17.75	10.86	28.61	46.00	17.39	Average

Project No.: 2502Q44145E-RF
 Port: neutral
 Test Mode: Transmitting
 IF B/W 9kHz PK/AV

Serial No.: 2YHK-4
 Tester: Yukin Qiu

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB)	Result (dB μ V)	Limit (dB μ V)	Margin (dB)	Detector
1	0.157	40.71	10.85	51.56	65.62	14.06	QP
2	0.157	26.07	10.85	36.92	55.62	18.70	Average
3	0.167	39.96	10.85	50.81	65.13	14.32	QP
4	0.167	25.85	10.85	36.70	55.13	18.43	Average
5	0.494	34.13	10.74	44.87	56.10	11.23	QP
6	0.494	23.52	10.74	34.26	46.10	11.84	Average
7	0.557	39.54	10.73	50.27	56.00	5.73	QP
8	0.557	26.46	10.73	37.19	46.00	8.81	Average
9	0.687	33.44	10.75	44.19	56.00	11.81	QP
10	0.687	24.09	10.75	34.84	46.00	11.16	Average
11	0.957	31.30	10.84	42.14	56.00	13.86	QP
12	0.957	22.70	10.84	33.54	46.00	12.46	Average
13	1.193	32.87	10.86	43.73	56.00	12.27	QP
14	1.193	20.82	10.86	31.68	46.00	14.32	Average

5.2 Radiation Spurious Emissions

1) 9kHz - 1GHz

Serial Number:	2YHK-4	Test Date:	2025/3/7
Test Site:	Chamber10m	Test Mode:	Transmitting
Tester:	Leesin Xiang	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	18.8	Relative Humidity: (%)	53	ATM Pressure: (kPa)	101.6
-------------------	------	------------------------	----	---------------------	-------

Test Equipment List and Details:

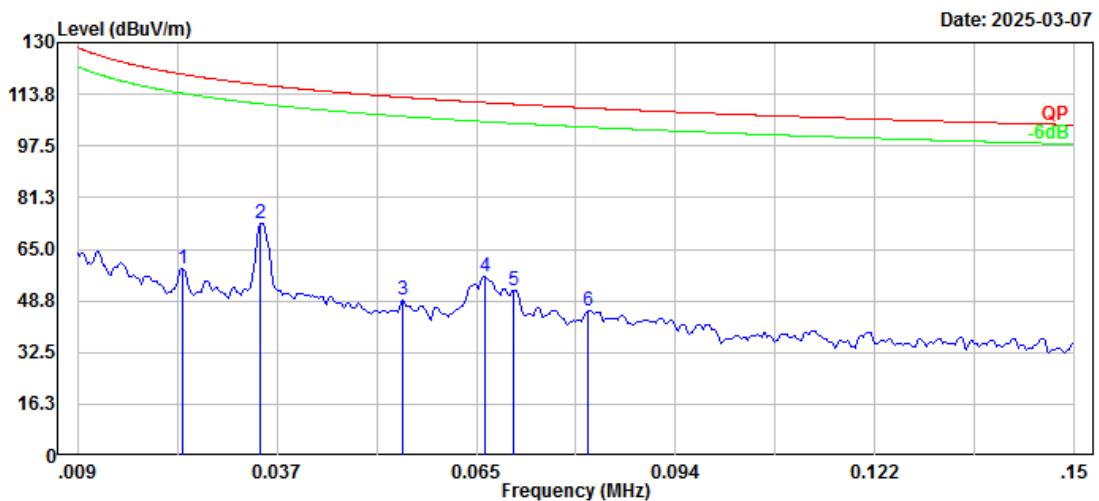
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
EMCO	Passive Loop Antenna	6512	9706-1206	2023/10/25	2026/10/24
Sunol Sciences	Hybrid Antenna	JB3	A060611-1	2023/9/6	2026/9/5
Narda	Coaxial Attenuator	779-6dB	04269	2023/9/6	2026/9/5
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2024/7/1	2025/6/30
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-04	2024/7/1	2025/6/30
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2024/7/1	2025/6/30
Sonoma	Amplifier	310N	185914	2024/8/26	2025/8/25
R&S	EMI Test Receiver	ESCI	100224	2024/8/26	2025/8/25
Audix	Test Software	E3	191218 V9	N/A	N/A

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Please refer to the below table and plots.

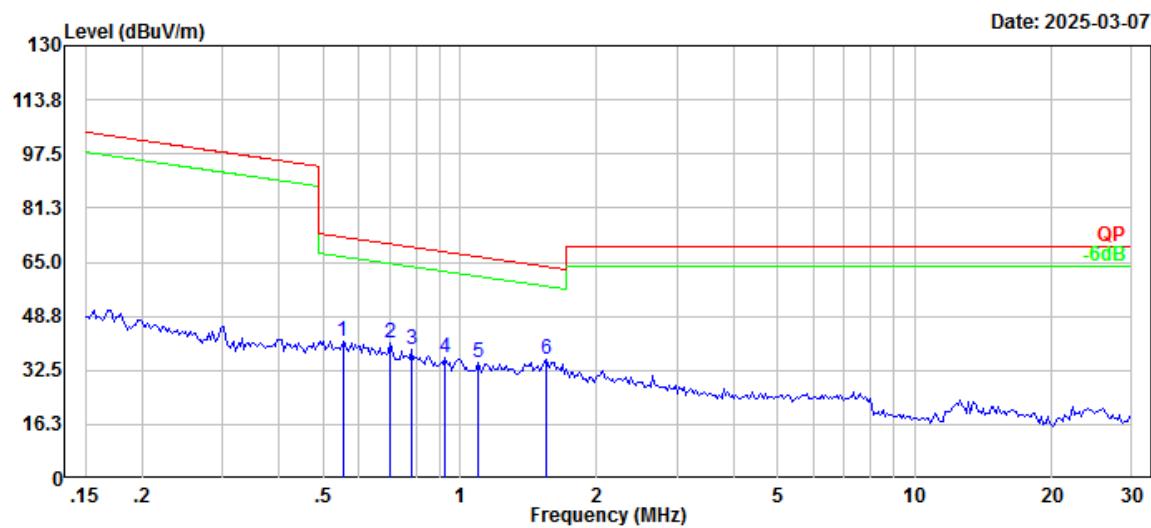
After pre-scan in the X, Y and Z axes of orientation, the worst case is refer to table and plots.


Note: 802.11a 5500MHz was tested.

9kHz-30MHz

Three antenna orientations (parallel, perpendicular, and ground-parallel) was measured, the worst orientations was below:

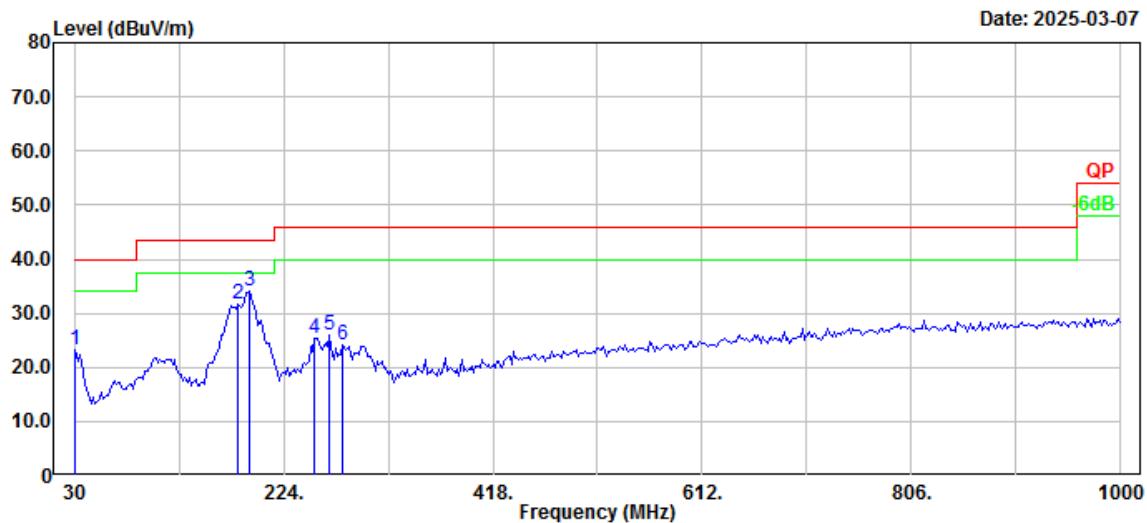
Project No.: 2502Q44145E-RF
 Polarization: Parallel
 Test Mode: Transmitting
 RBW:300Hz VBW:1kHz


Serial No.: 2YHK-4
 Tester: Leesin Xiang

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	0.024	10.05	49.05	59.10	120.02	60.92	Peak
2	0.035	26.26	46.67	72.93	116.74	43.81	Peak
3	0.055	5.69	43.21	48.90	112.80	63.90	Peak
4	0.067	15.01	41.20	56.21	111.14	54.93	Peak
5	0.071	11.71	40.46	52.17	110.61	58.44	Peak
6	0.081	6.93	38.71	45.64	109.41	63.77	Peak

Project No.: 2502Q44145E-RF
Polarization: Parallel
Test Mode: Transmitting
RBW:10kHz VBW:30kHz

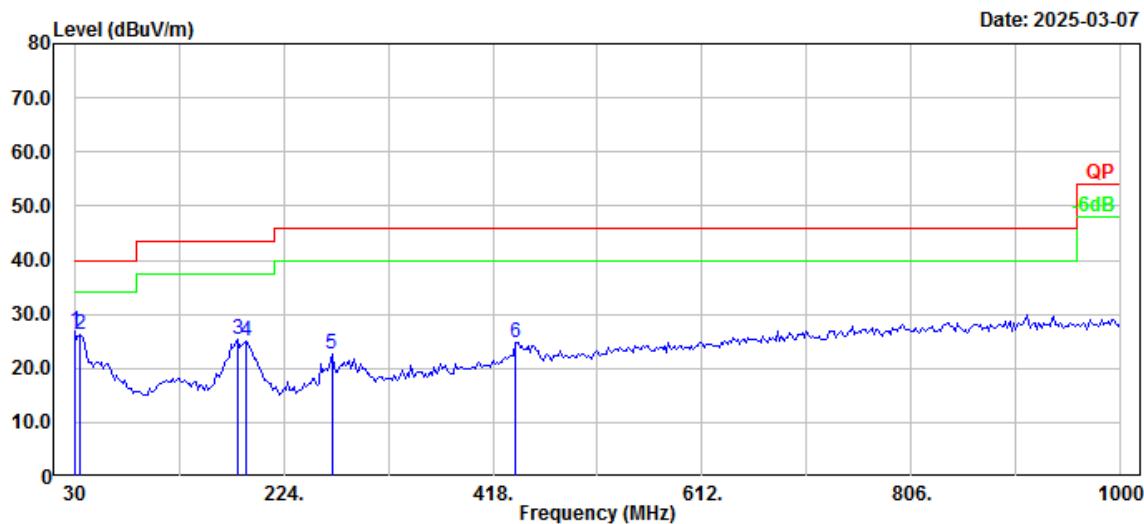
Serial No.: 2YHK-4
Tester: Leesin Xiang



No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	0.552	18.30	22.97	41.27	72.74	31.47	Peak
2	0.705	19.48	21.42	40.90	70.58	29.68	Peak
3	0.783	18.15	20.71	38.86	69.64	30.78	Peak
4	0.928	18.26	18.00	36.26	68.13	31.87	Peak
5	1.100	18.88	16.12	35.00	66.63	31.63	Peak
6	1.544	21.85	14.14	35.99	63.62	27.63	Peak

30MHz-1GHz

Project No.: 2502Q44145E-RF
Polarization: Horizontal
Test Mode: Transmitting
RBW:100kHz VBW:300kHz


Serial No.: 2YHK-4
Tester: Leesin Xiang

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	30.00	27.10	-3.80	23.30	40.00	16.70	Peak
2	181.32	44.09	-12.33	31.76	43.50	11.74	Peak
3	192.96	45.99	-11.94	34.05	43.50	9.45	Peak
4	253.10	36.78	-11.34	25.44	46.00	20.56	Peak
5	266.68	36.34	-10.43	25.91	46.00	20.09	Peak
6	278.32	33.94	-9.79	24.15	46.00	21.85	Peak

Project No.: 2502Q44145E-RF
Polarization: Vertical
Test Mode: Transmitting
RBW:100kHz VBW:300kHz

Serial No.: 2YHK-4
Tester: Leesin Xiang

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	30.00	30.72	-3.80	26.92	40.00	13.08	Peak
2	35.82	34.42	-8.01	26.41	40.00	13.59	Peak
3	181.32	37.61	-12.33	25.28	43.50	18.22	Peak
4	189.08	37.21	-12.15	25.06	43.50	18.44	Peak
5	268.62	32.79	-10.22	22.57	46.00	23.43	Peak
6	439.34	30.54	-5.84	24.70	46.00	21.30	Peak

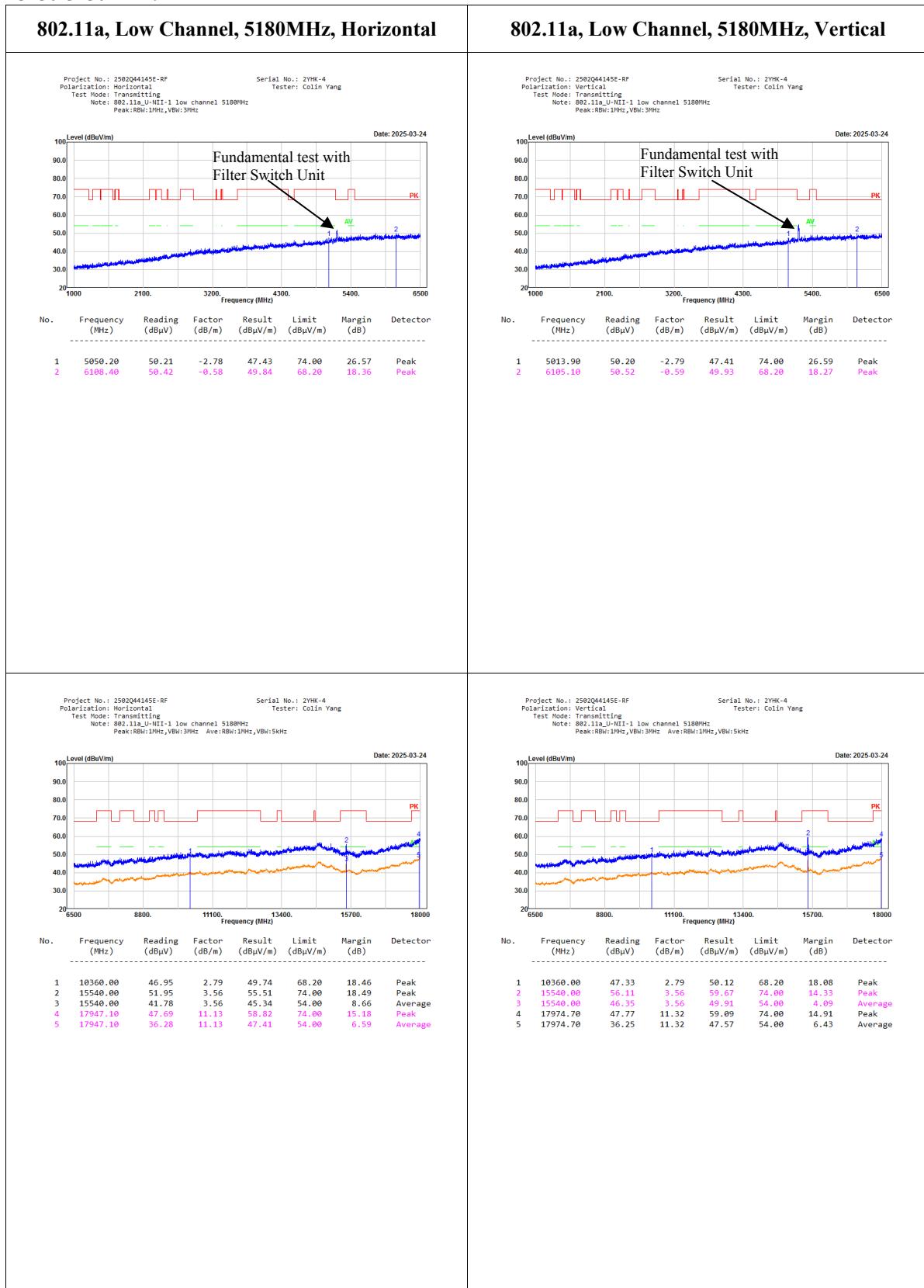
2) 1-40GHz:

Serial Number:	2YHK-4	Test Date:	2025/3/24~2025/3/25
Test Site:	Chamber B	Test Mode:	Transmitting
Tester:	Colin Yang, Leo Xiao	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	23.9~24.4	Relative Humidity: (%)	41~44	ATM Pressure: (kPa)	100.4~100.8
-------------------	-----------	------------------------	-------	---------------------	-------------

Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
ETS-Lindgren	Horn Antenna	3115	000 527 35	2023/9/7	2026/9/6
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-02 1304	2023/2/22	2026/2/21
Ducommun Technologies	Horn Antenna	ARH-2823-02	1007726-01 1302	2023/2/22	2026/2/21
Xinhang Macrowave	Coaxial Cable	XH750A-N/J-SMA/J-10M	20231117004 #0001	2024/11/17	2025/11/16
Xinhang Macrowave	Coaxial Cable	XH360A-2.92/J-2.92/J-6M-A	20231208001 #0001	2024/12/9	2025/12/8
AH	Preamplifier	PAM-0118P	469	2024/4/15	2025/4/14
AH	Preamplifier	PAM-1840VH	191	2024/9/5	2025/9/4
R&S	Spectrum Analyzer	FSV40	101944	2024/9/6	2025/9/5
Audix	Test Software	E3	191218 V9	N/A	N/A
Decentest	Multiplex Switch Test Control Set & Filter Switch Unit	DT7220SCU & DT7220FCU	DC79902 & DC79905	2024/8/27	2025/8/26

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

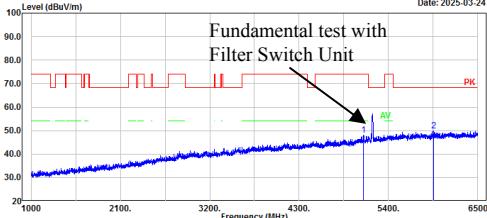
Test Data:

Please refer to the below table and plots.


After pre-scan in the X, Y and Z axes of orientation, the worst case is refer to table and plots.

**1-18GHz:
5150-5250MHz:**

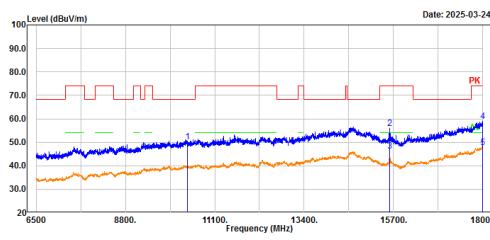
802.11a, Middle Channel, 5200MHz, Horizontal


802.11a, Middle Channel, 5200MHz, Vertical

Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11a_U-NII-1 middle channel 5200MHz
 Peak:RBW:1MHz,VBW:3MHz

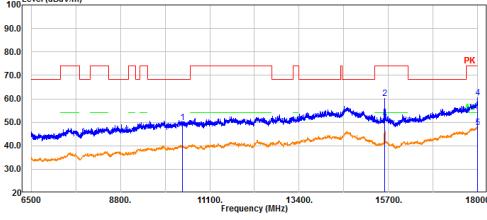
Serial No.: 2YHK-4
 Tester: Colin Yang
 Date: 2025-03-24

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5063.40	49.41	-2.33	47.08	74.00	26.92	Peak
2	6307.50	50.36	-0.40	49.96	68.20	18.24	Peak

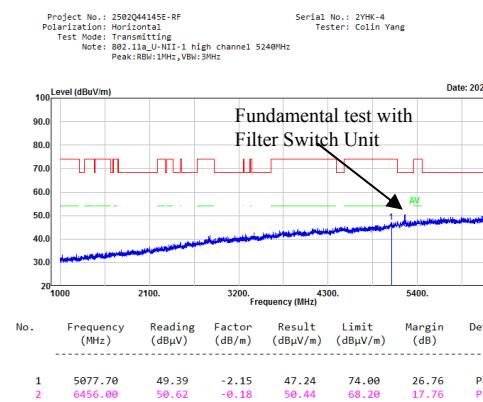

Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a_U-NII-1 middle channel 5200MHz
 Peak:RBW:1MHz,VBW:3MHz

Serial No.: 2YHK-4
 Tester: Colin Yang
 Date: 2025-03-24

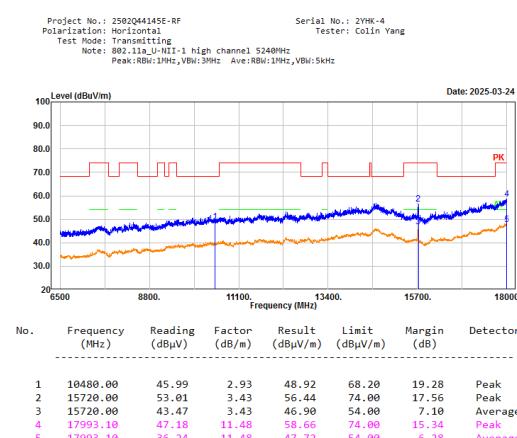
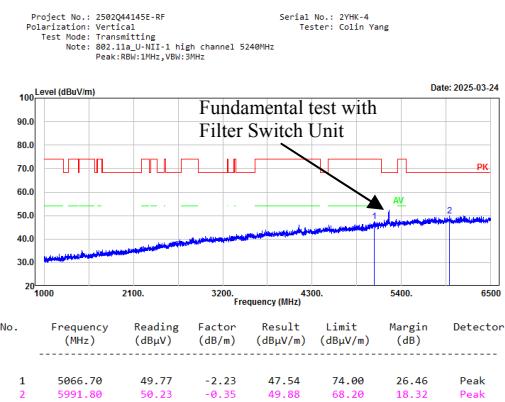
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5094.20	50.33	-2.11	48.22	74.00	25.78	Peak
2	5955.50	50.34	-0.39	49.95	68.20	18.25	Peak


Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11a_U-NII-1 middle channel 5200MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a_U-NII-1 middle channel 5200MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz


No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	10400.00	47.33	2.82	50.15	68.20	18.05	Peak
2	15600.00	52.47	3.56	56.03	74.00	17.97	Peak
3	15600.00	42.61	3.56	46.17	54.00	7.83	Average
4	17997.70	47.44	11.51	58.95	74.00	15.05	Peak
5	17997.70	36.33	11.51	47.84	54.00	6.16	Average

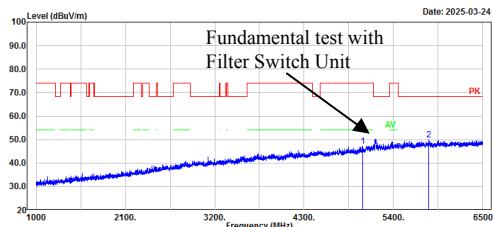
Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a_U-NII-1 middle channel 5200MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz




Serial No.: 2YHK-4
 Tester: Colin Yang
 Date: 2025-03-24

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	10400.00	47.05	2.82	49.87	68.20	18.33	Peak
2	15600.00	56.48	3.56	60.04	74.00	13.96	Peak
3	15600.00	46.69	3.56	50.25	54.00	3.75	Average
4	17997.70	48.95	11.51	60.46	74.00	13.54	Peak
5	17997.70	36.17	11.51	47.68	54.00	6.32	Average

802.11a, High Channel, 5240MHz, Horizontal

802.11a, High Channel, 5240MHz, Vertical

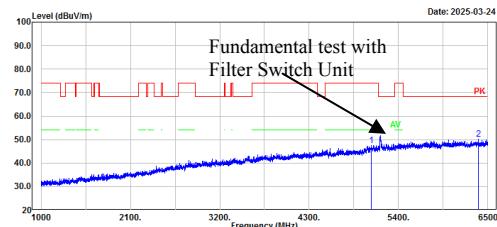

802.11n20, Low Channel, 5180MHz, Horizontal

802.11n20, Low Channel, 5180MHz, Vertical

Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11n20_U-NII-1 low channel 5180MHz
 Peak:RBW:1MHz,VBW:3MHz

Serial No.: 2YMK-4

Tester: Colin Yang

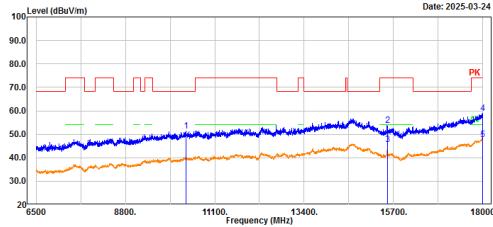


No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5019.40	49.97	-2.80	47.17	74.00	26.83	Peak
2	5830.10	50.46	-0.62	49.84	68.20	18.36	Peak

Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11n20_U-NII-1 low channel 5180MHz
 Peak:RBW:1MHz,VBW:3MHz

Serial No.: 2YMK-4

Tester: Colin Yang

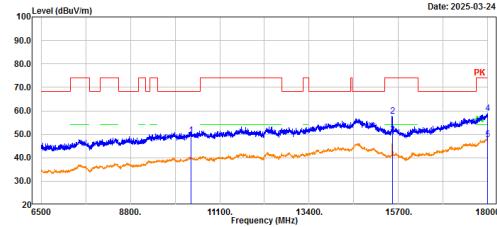


No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5063.40	49.87	-2.33	47.54	74.00	26.46	Peak
2	6386.70	50.58	-0.27	50.31	68.20	17.89	Peak

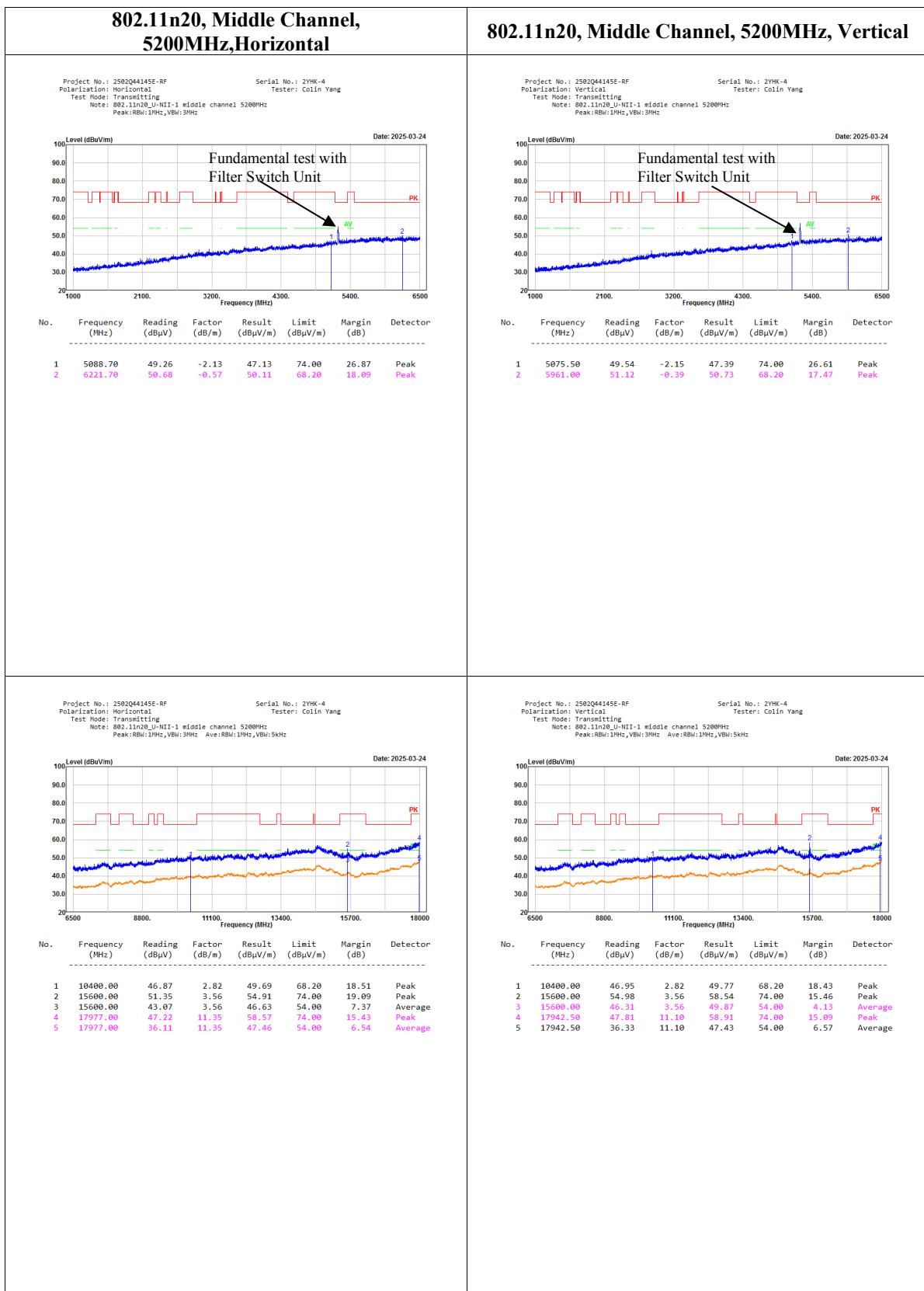
Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11n20_U-NII-1 low channel 5180MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

Serial No.: 2YMK-4

Tester: Colin Yang



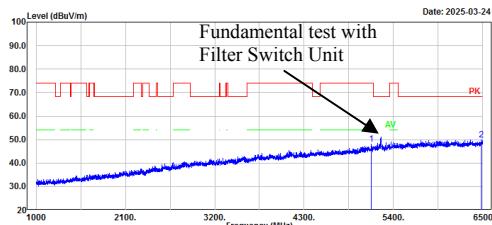
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	10360.00	48.60	2.79	51.39	68.20	16.81	Peak
2	15540.00	50.39	3.56	53.95	74.00	20.05	Peak
3	15540.00	42.12	3.56	45.68	54.00	8.32	Average
4	17995.40	47.57	11.49	59.06	74.00	14.94	Peak
5	17995.40	36.37	11.49	47.86	54.00	6.14	Average


Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11n20_U-NII-1 low channel 5180MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

Serial No.: 2YMK-4

Tester: Colin Yang

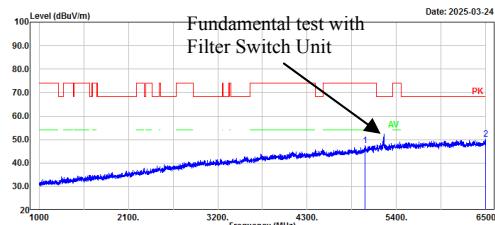
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	10360.00	46.80	2.79	49.59	68.20	18.61	Peak
2	15540.00	54.08	3.56	57.64	74.00	16.36	Peak
3	15540.00	46.27	3.56	49.83	54.00	4.17	Average
4	17997.70	47.58	11.51	59.09	74.00	14.91	Peak
5	17997.70	36.39	11.51	47.90	54.00	6.10	Average



802.11n20, High Channel, 5240MHz, Horizontal

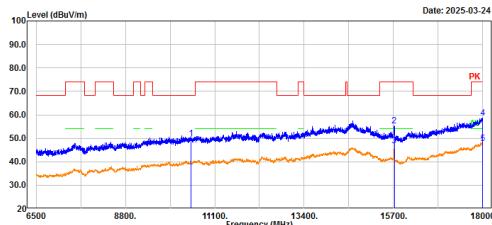
802.11n20, High Channel, 5240MHz, Vertical

Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11n20.0-U-NII-1 high channel 5240MHz
 Peak:RBW:1MHz,VBW:3MHz


Serial No.: 2YMK-4
 Tester: Colin Yang

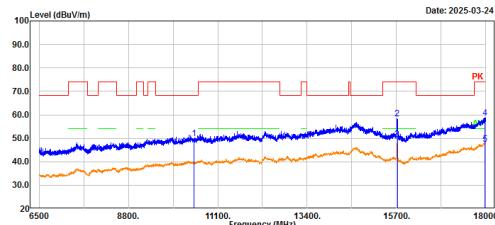
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5126.10	50.19	-1.99	48.20	74.00	25.80	Peak
2	6481.30	50.11	-0.13	49.98	68.20	18.22	Peak

Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11n20.0-U-NII-1 high channel 5240MHz
 Peak:RBW:1MHz,VBW:3MHz


Serial No.: 2YMK-4
 Tester: Colin Yang

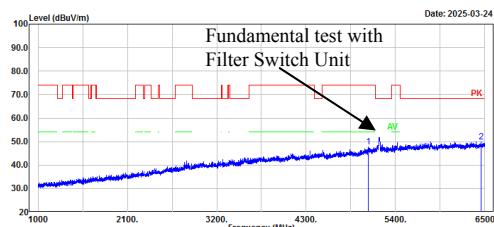
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5009.50	50.23	-2.87	47.36	74.00	26.64	Peak
2	6498.90	50.33	-0.03	50.30	68.20	17.90	Peak

Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11n20.0-U-NII-1 high channel 5240MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz


Serial No.: 2YMK-4
 Tester: Colin Yang

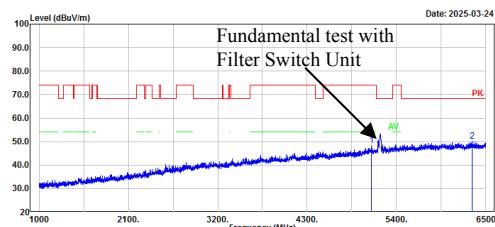
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	10488.00	47.02	2.93	49.95	68.20	18.25	Peak
2	15720.00	51.94	3.43	55.37	74.00	18.63	Peak
3	15720.00	43.33	3.43	46.76	54.00	7.24	Average
4	17997.70	47.21	11.51	58.72	74.00	15.28	Peak
5	17997.70	36.29	11.51	47.80	54.00	6.20	Average

Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11n20.0-U-NII-1 high channel 5240MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

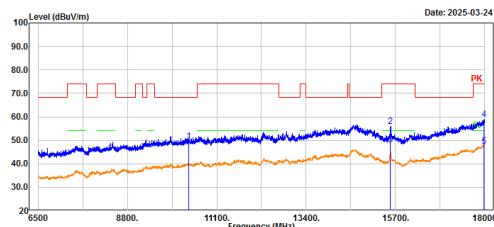

Serial No.: 2YMK-4
 Tester: Colin Yang

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	10488.00	47.05	2.93	49.98	68.20	18.22	Peak
2	15720.00	54.94	3.43	58.37	74.00	15.63	Peak
3	15720.00	46.14	3.43	49.57	54.00	4.43	Average
4	17981.60	47.39	11.39	58.78	74.00	15.22	Peak
5	17981.60	36.23	11.39	47.62	54.00	6.38	Average

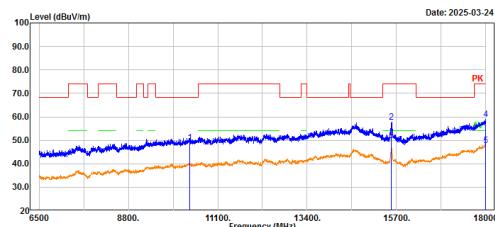
802.11n40, Low Channel, 5190MHz, Horizontal


Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11n40-U-NII-1 low channel 5190MHz
 Peak:RBW:1MHz,VBW:3MHz

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5062.30	50.06	-2.37	47.69	74.00	26.31	Peak
2	6452.70	50.10	-0.17	49.93	68.20	18.27	Peak


802.11n40, Low Channel, 5190MHz, Vertical

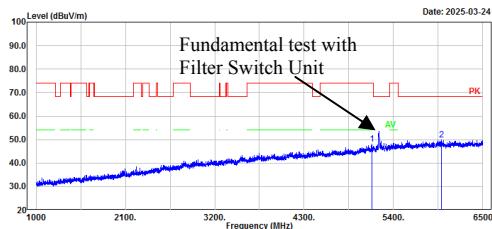
Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11n40-U-NII-1 low channel 5190MHz
 Peak:RBW:1MHz,VBW:3MHz


No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5094.20	50.61	-2.11	48.50	74.00	25.50	Peak
2	6330.60	50.57	-0.28	50.29	68.20	17.91	Peak

Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11n40-U-NII-1 low channel 5190MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	10388.00	46.74	2.78	49.52	68.20	18.68	Peak
2	15570.00	52.37	3.62	55.99	74.00	18.01	Peak
3	15570.00	44.39	3.62	48.01	54.00	5.99	Average
4	17977.00	47.61	11.35	58.96	74.00	15.04	Peak
5	17977.00	36.12	11.35	47.47	54.00	6.53	Average

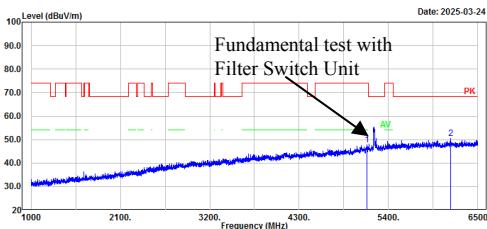
Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11n40-U-NII-1 low channel 5190MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz


No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	10388.00	46.13	2.78	48.91	68.20	19.29	Peak
2	15570.00	54.04	3.62	57.66	74.00	16.34	Peak
3	15570.00	46.21	3.62	49.83	54.00	4.17	Average
4	17995.40	47.51	11.49	59.00	74.00	15.00	Peak
5	17995.40	36.37	11.49	47.86	54.00	6.14	Average

802.11n40, High Channel, 5230MHz, Horizontal

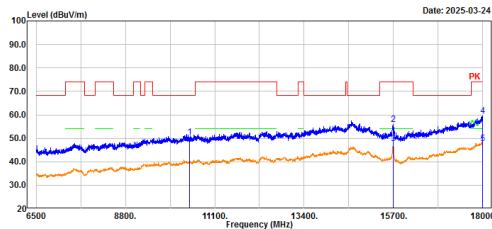
802.11n40, High Channel, 5230MHz, Vertical

Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11n40-U-NII-1 high channel 5230MHz
 Peak:RBW:1MHz,VBW:3MHz


Serial No.: 2YHK-4
 Tester: Colin Yang

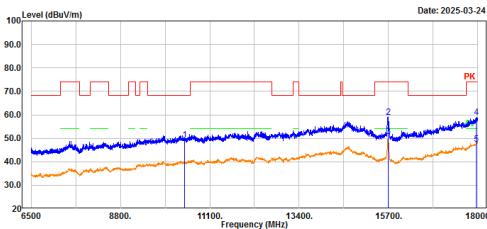
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5138.20	50.08	-1.95	48.13	74.00	25.87	Peak
2	5991.80	50.22	-0.35	49.87	68.20	18.33	Peak

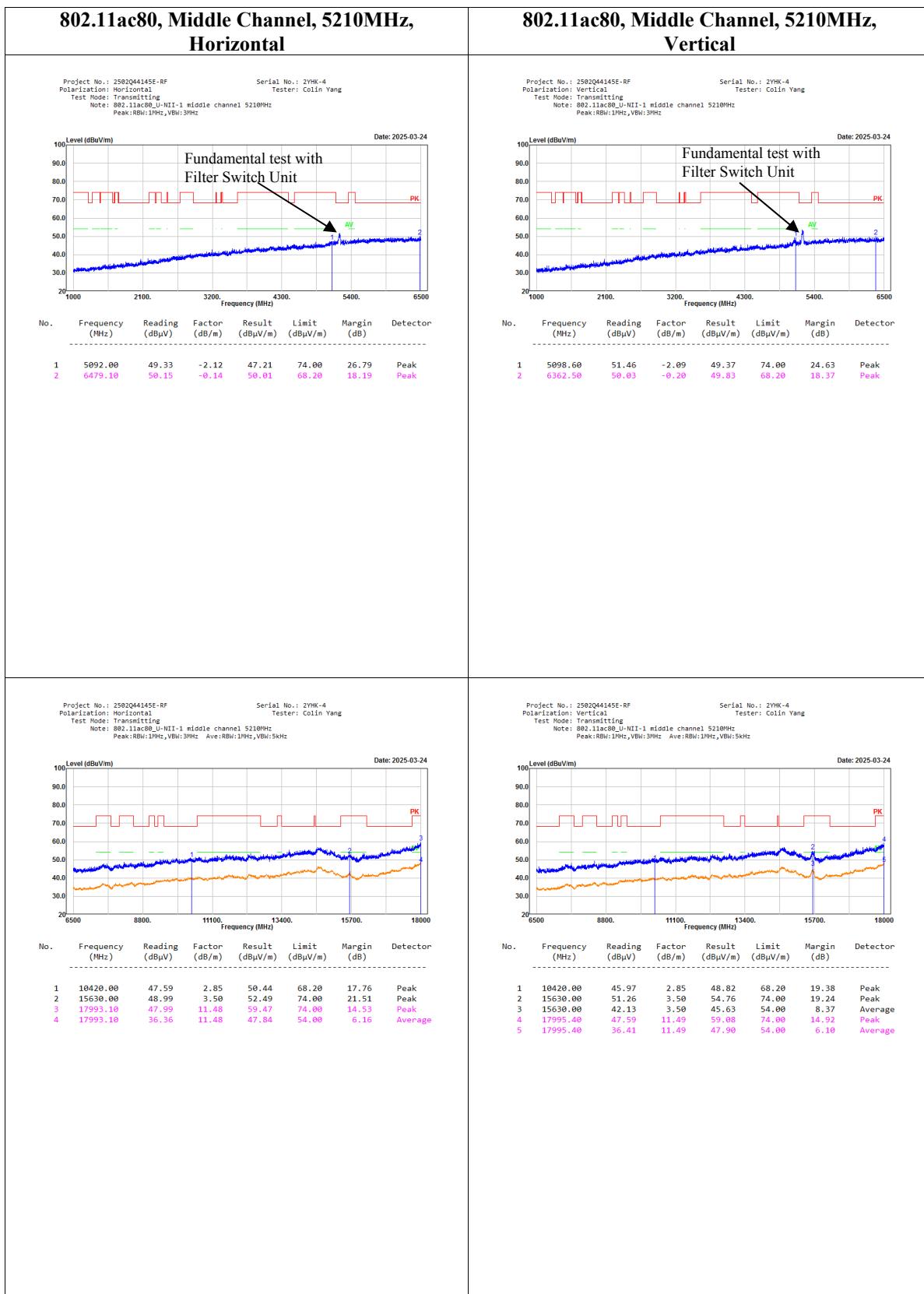
Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11n40-U-NII-1 high channel 5230MHz
 Peak:RBW:1MHz,VBW:3MHz


Serial No.: 2YHK-4
 Tester: Colin Yang

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5130.50	49.81	-1.98	47.83	74.00	26.17	Peak
2	6163.40	50.91	-0.49	50.42	68.20	17.78	Peak

Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11n40-U-NII-1 high channel 5230MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

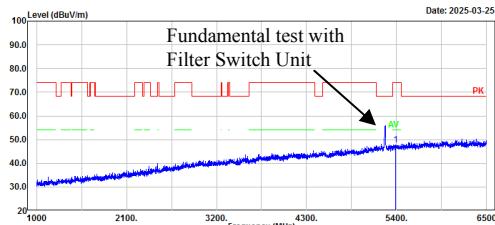

Serial No.: 2YHK-4
 Tester: Colin Yang


No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	10460.00	47.44	2.92	50.36	68.20	17.84	Peak
2	15690.00	52.59	3.45	56.04	74.00	17.96	Peak
3	15690.00	44.33	3.45	47.78	54.00	6.22	Average
4	17997.70	48.02	11.51	59.53	74.00	14.47	Peak
5	17997.70	36.39	11.51	47.90	54.00	6.10	Average

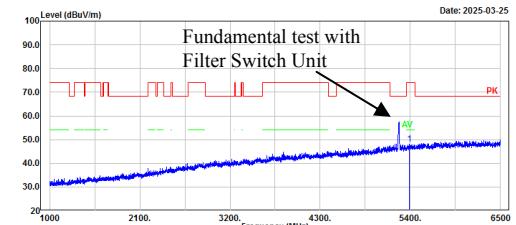
Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11n40-U-NII-1 high channel 5230MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

Serial No.: 2YHK-4
 Tester: Colin Yang

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	10460.00	46.21	2.92	49.13	68.20	19.07	Peak
2	15690.00	55.42	3.45	58.87	74.00	15.13	Peak
3	15690.00	47.36	3.45	50.81	54.00	3.19	Average
4	17963.20	47.55	11.24	58.79	74.00	15.21	Peak
5	17963.20	36.35	11.24	47.59	54.00	6.41	Average

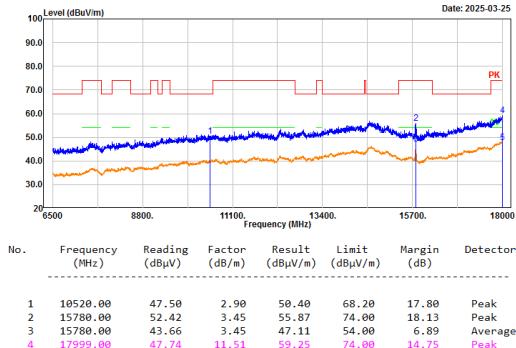

5250-5350MHz:

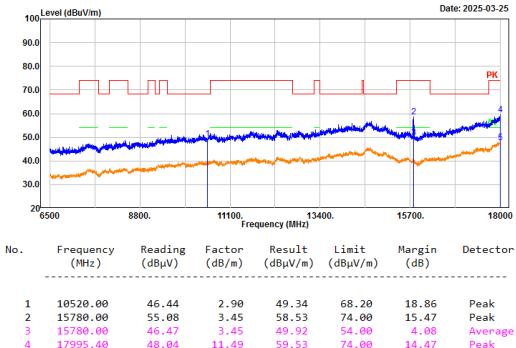
802.11a, Low Channel, 5260MHz, Horizontal


802.11a, Low Channel, 5260MHz, Vertical

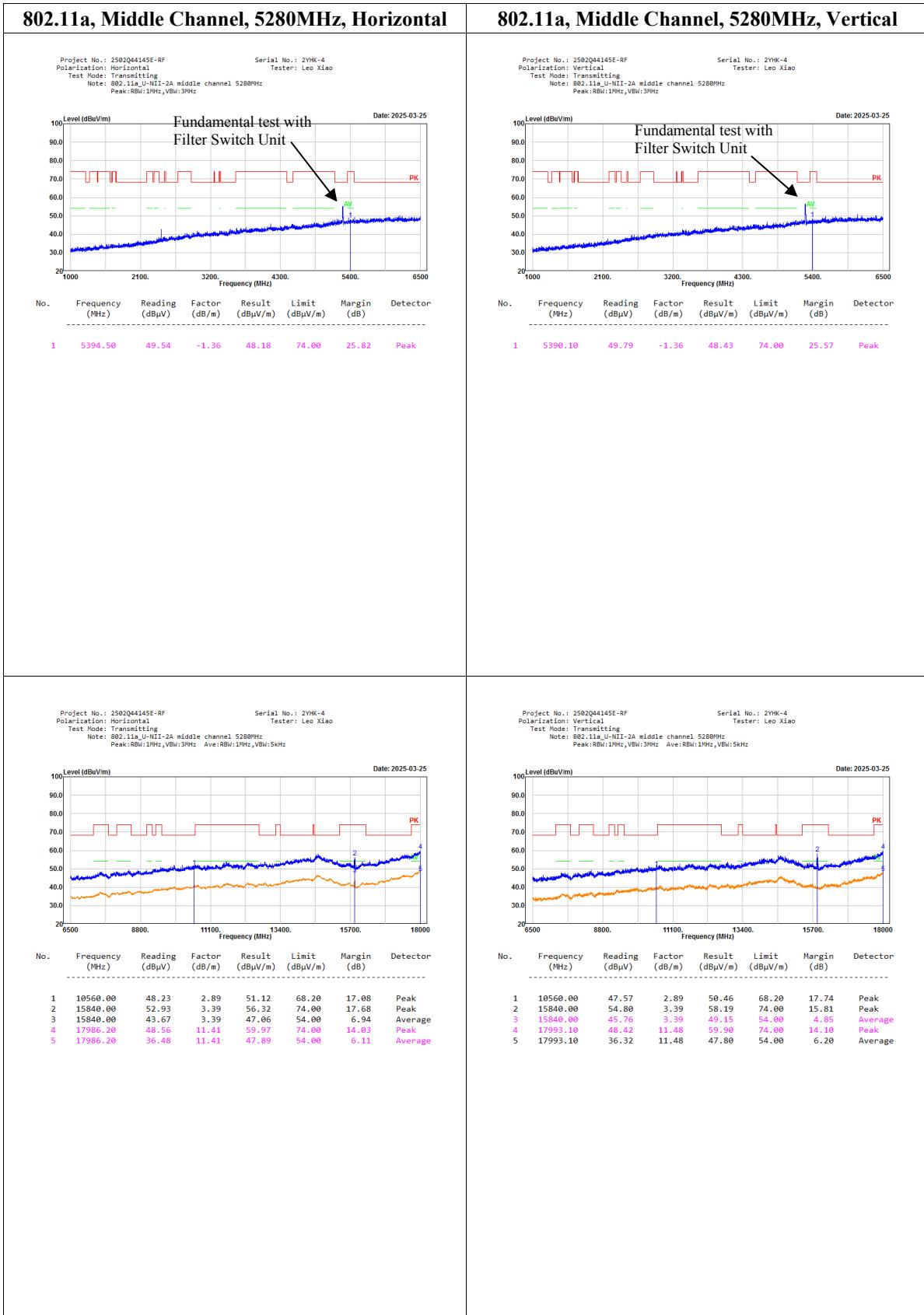
Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11a_U-NII-2A low channel 5260MHz
 Peak:RBW:1MHz,VBW:3MHz

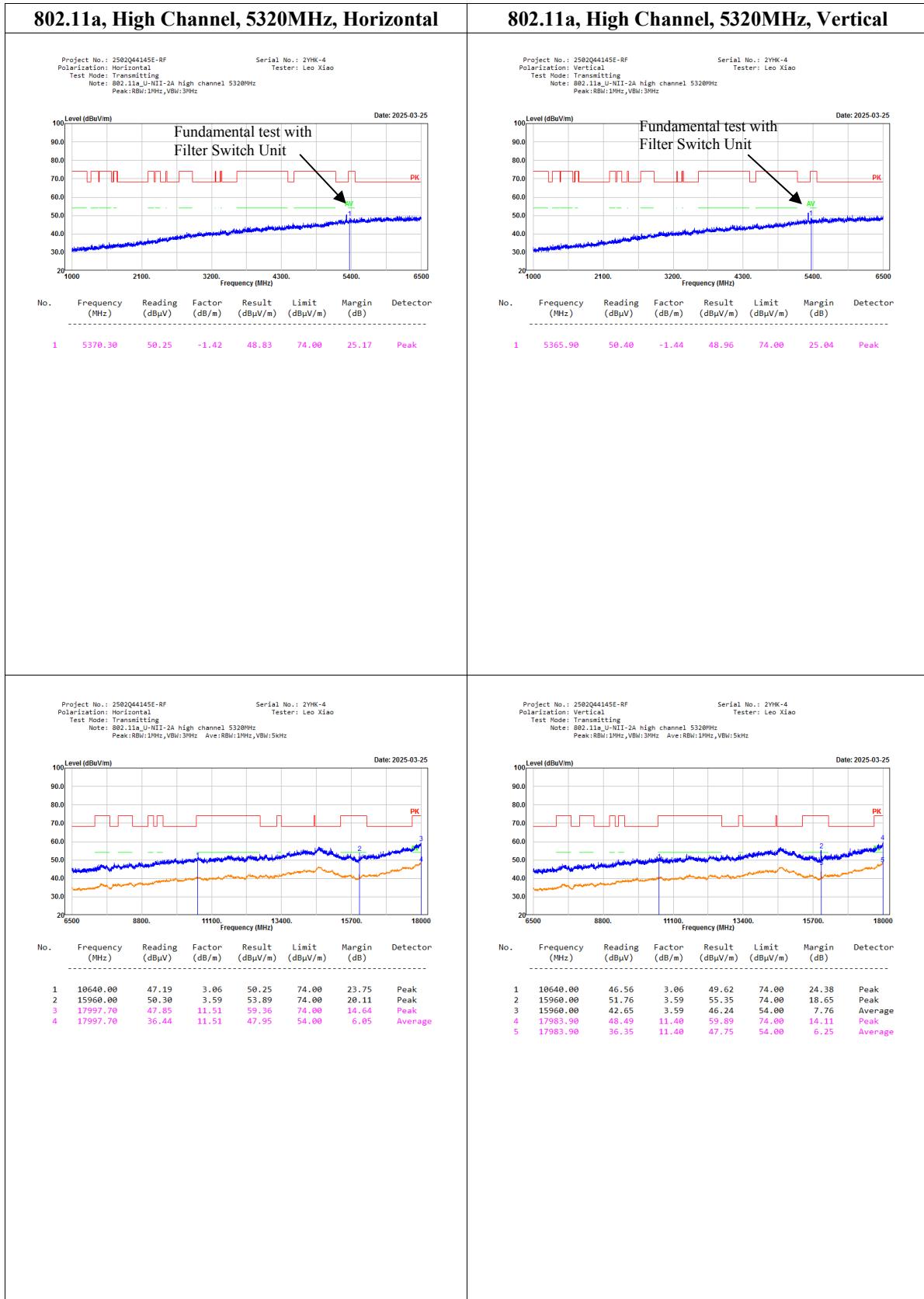
Serial No.: 2YHK-4
 Tester: Leo Xiao
 Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a_U-NII-2A low channel 5260MHz
 Peak:RBW:1MHz,VBW:3MHz

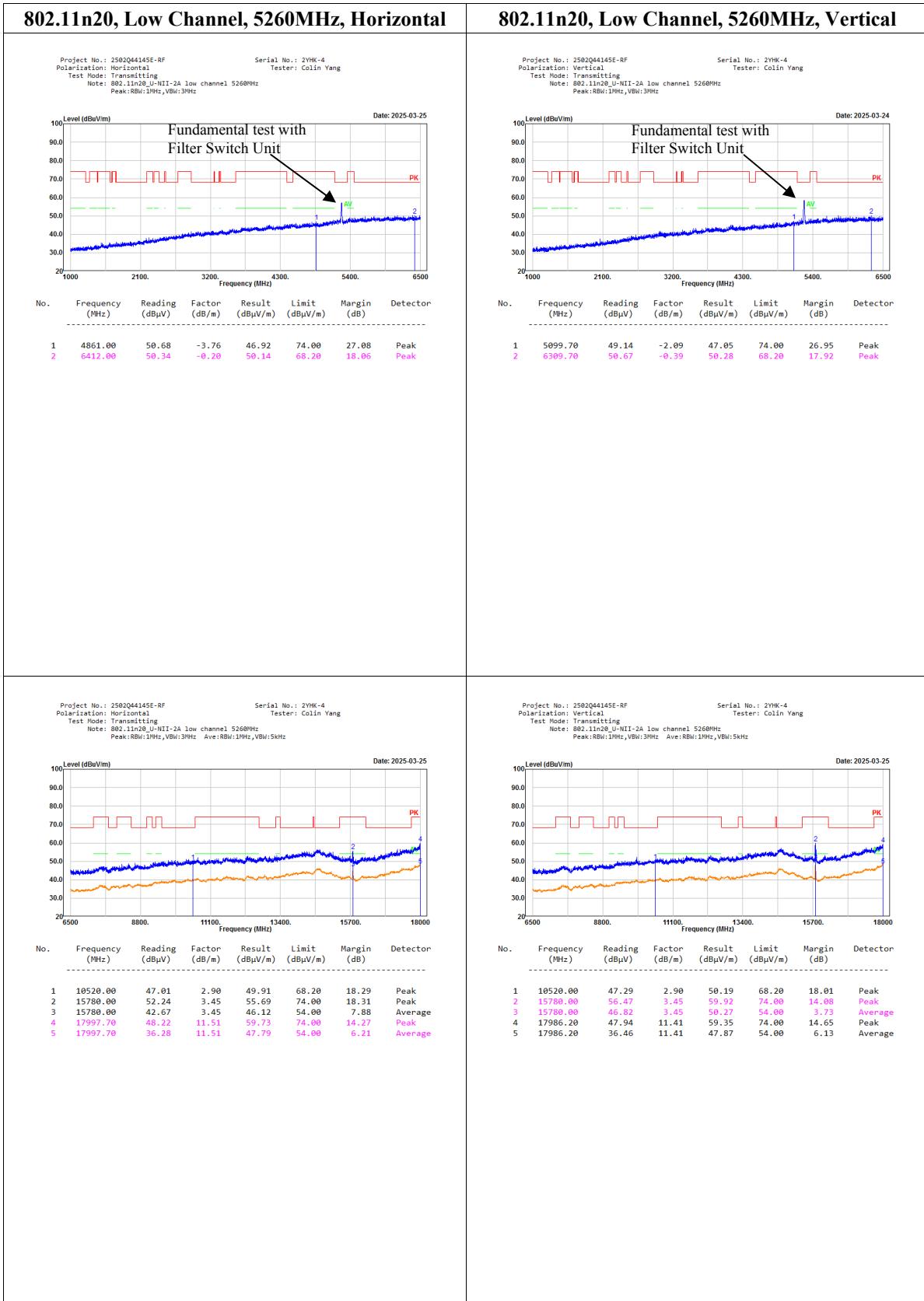

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5385.70	49.12	-1.38	47.74	74.00	26.26	Peak

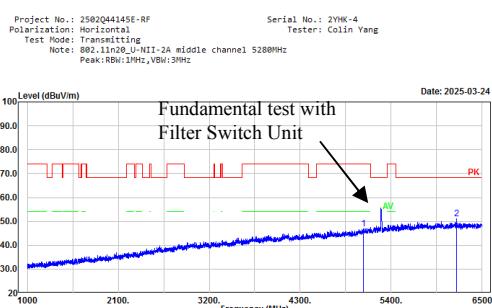

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5389.00	49.39	-1.37	48.02	74.00	25.98	Peak

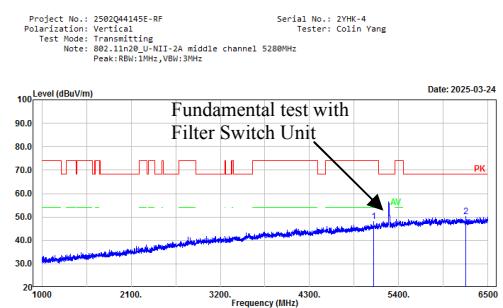
Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11a_U-NII-2A low channel 5260MHz
 Peak:RBW:1MHz,VBW:3MHz


Serial No.: 2YHK-4
 Tester: Leo Xiao
 Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a_U-NII-2A low channel 5260MHz
 Peak:RBW:1MHz,VBW:3MHz

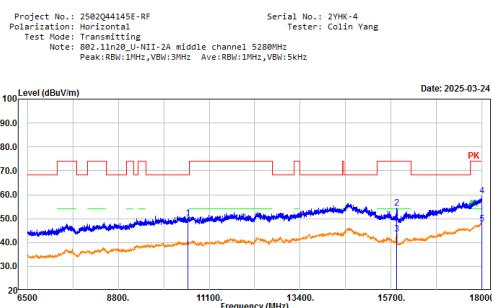



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10520.00	47.50	2.90	50.40	68.20	17.80	Peak
2	15780.00	52.42	3.45	55.87	74.00	18.13	Peak
3	15780.00	43.66	3.45	47.11	54.00	6.89	Average
4	17999.00	47.74	11.51	59.25	74.00	14.75	Peak
5	17999.00	36.41	11.51	47.92	54.00	6.08	Average

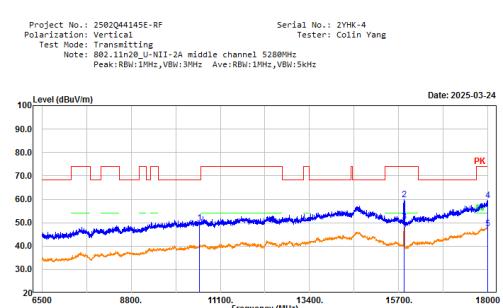

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10520.00	46.44	2.90	49.34	68.20	18.86	Peak
2	15780.00	55.08	3.45	58.53	74.00	15.47	Peak
3	15780.00	46.47	3.45	49.92	54.00	4.08	Average
4	17995.48	48.04	11.49	59.53	74.00	14.47	Peak
5	17995.40	36.30	11.49	47.79	54.00	6.21	Average

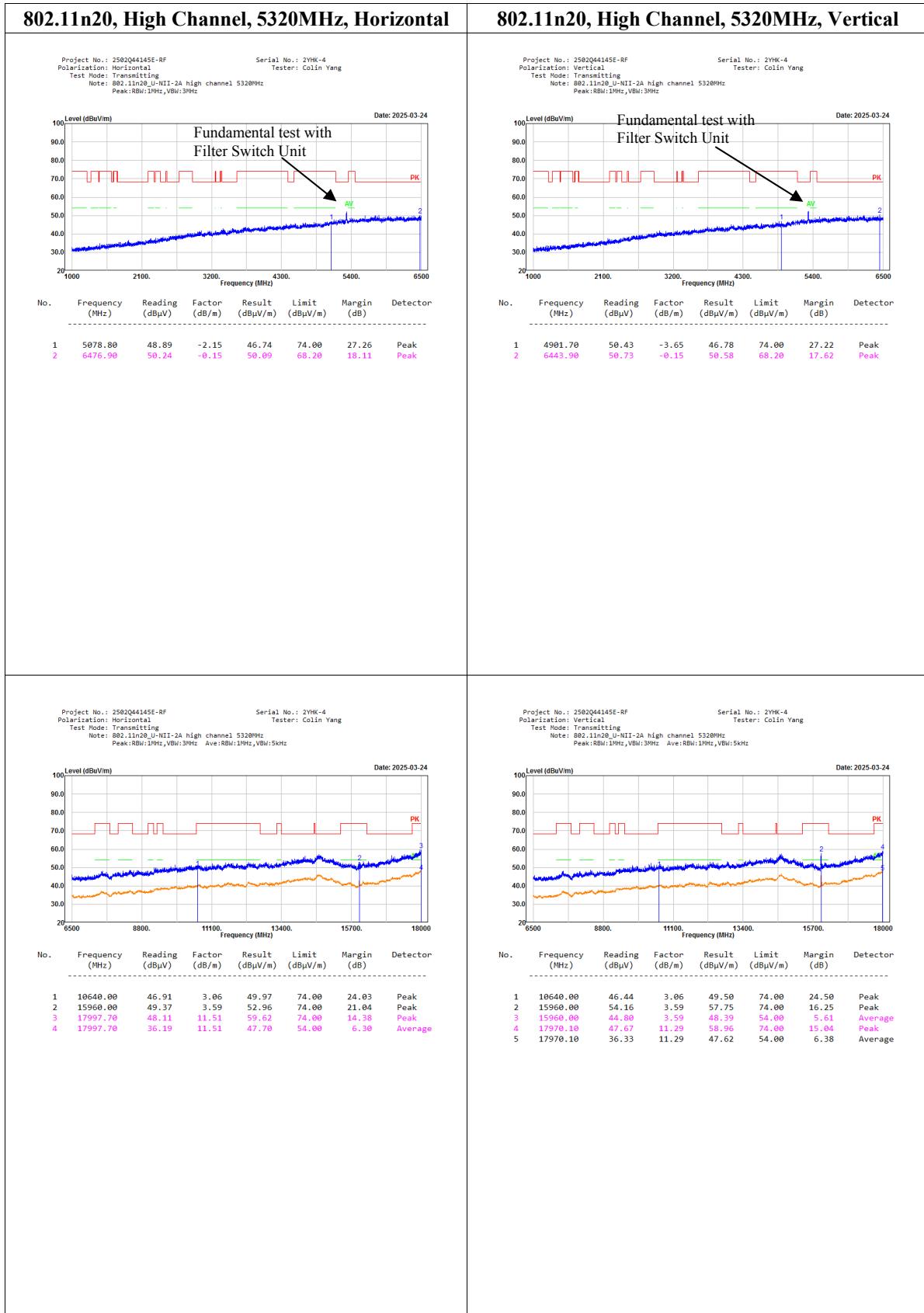


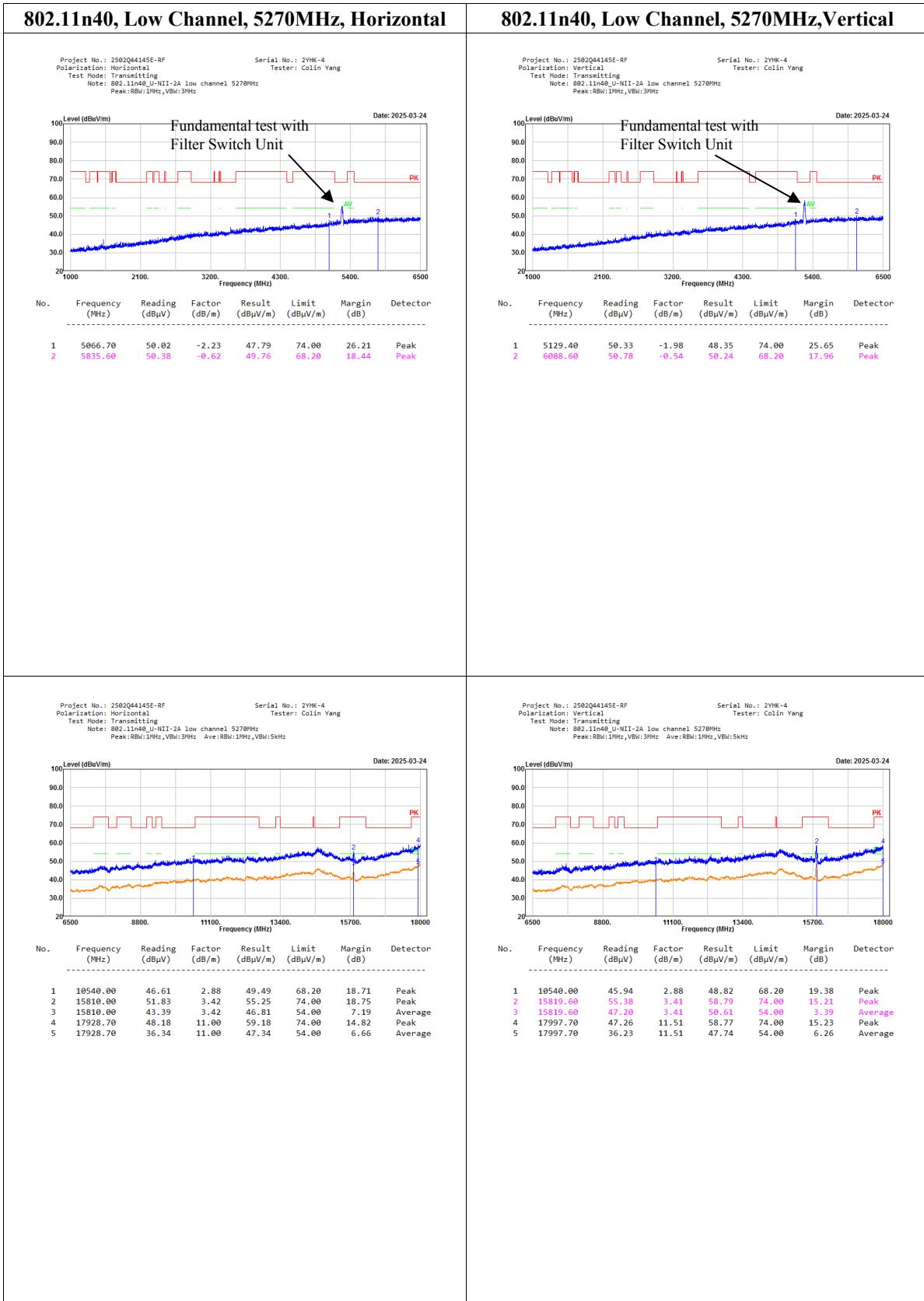
802.11n20, Middle Channel, 5280MHz,Horizontal

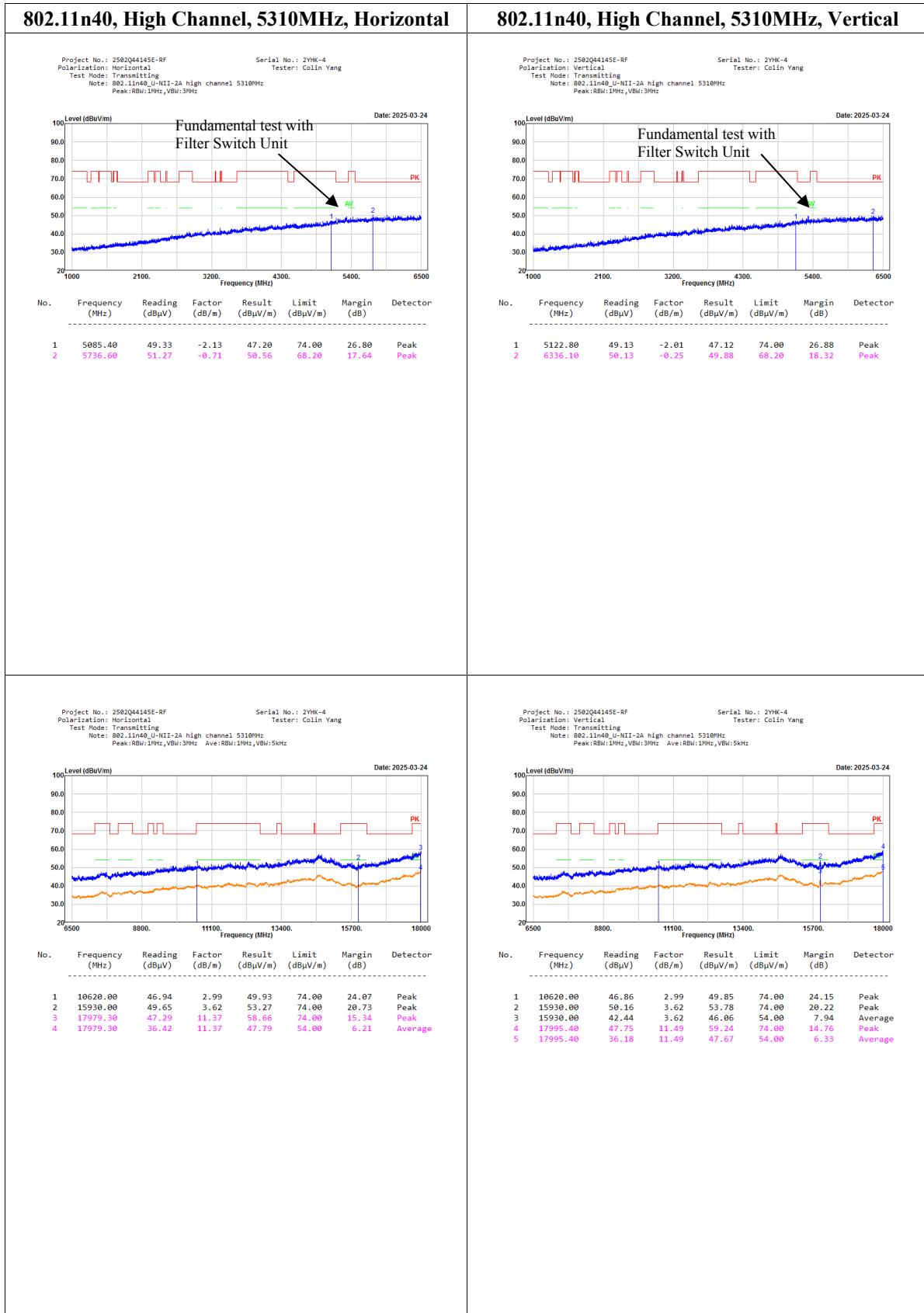


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5061.20	49.27	-2.40	46.87	74.00	27.13	Peak
2	6194.20	51.51	-0.46	51.05	68.20	17.15	Peak

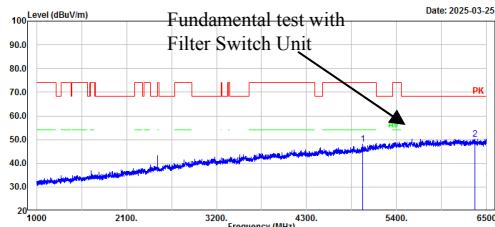

802.11n20, Middle Channel, 5280MHz, Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5090.90	50.14	-2.12	48.02	74.00	25.98	Peak
2	6222.80	50.62	-0.58	50.04	68.20	18.16	Peak

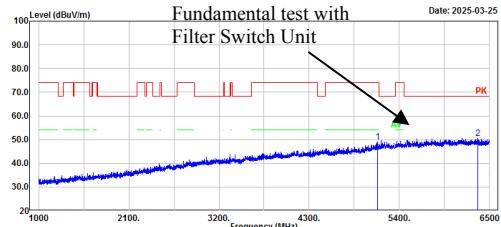



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10560.00	47.37	2.89	50.26	68.20	17.94	Peak
2	15840.00	50.90	3.39	54.29	74.00	19.71	Peak
3	15840.00	40.21	3.39	43.60	54.00	10.40	Average
4	17997.70	48.13	11.51	59.64	74.00	14.36	Peak
5	17997.70	36.26	11.51	47.77	54.00	6.23	Average

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10560.00	47.03	2.89	49.92	68.20	18.28	Peak
2	15840.00	56.46	3.39	59.85	74.00	14.15	Peak
3	15840.00	47.12	3.39	50.51	54.00	3.49	Average
4	17995.40	48.02	11.49	59.51	74.00	14.49	Peak
5	17995.40	36.11	11.49	47.60	54.00	6.40	Average

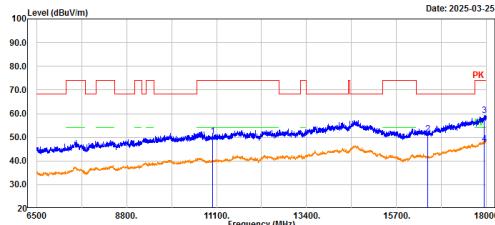

5470-5725MHz:

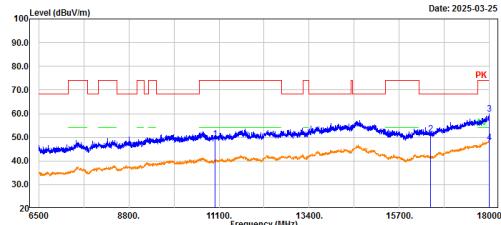
802.11a, Low Channel, 5500MHz, Horizontal


802.11a, Low Channel, 5500MHz, Vertical

Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11a_U-NII-2C low channel 5500MHz
 Peak:RBW:1MHz,VBW:3MHz

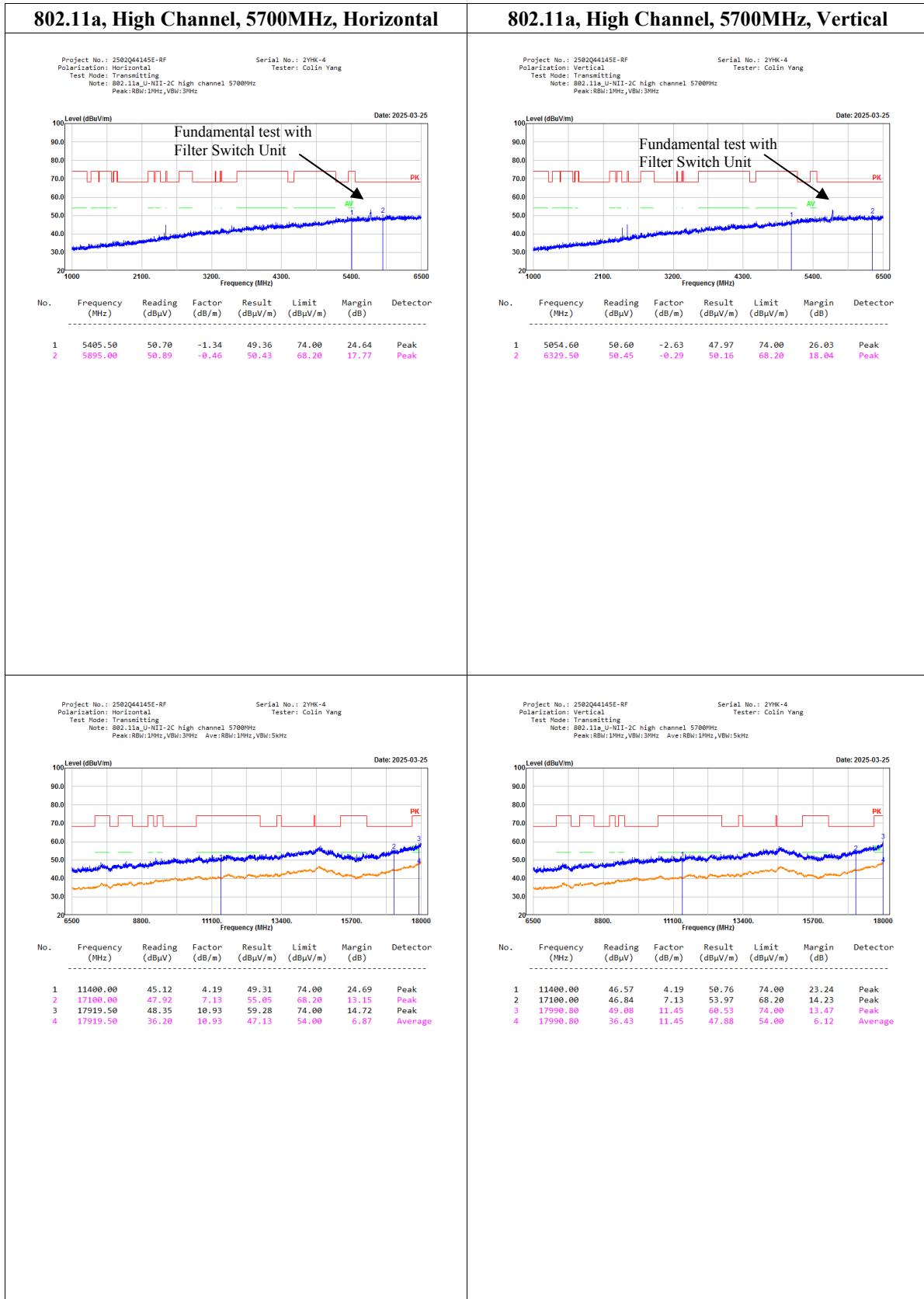
Serial No.: 2YHK-4
 Tester: Colin Yang
 Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a_U-NII-2C low channel 5500MHz
 Peak:RBW:1MHz,VBW:3MHz


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4985.30	51.45	-3.28	48.17	74.00	25.83	Peak
2	6353.70	50.53	-0.20	50.33	68.20	17.87	Peak

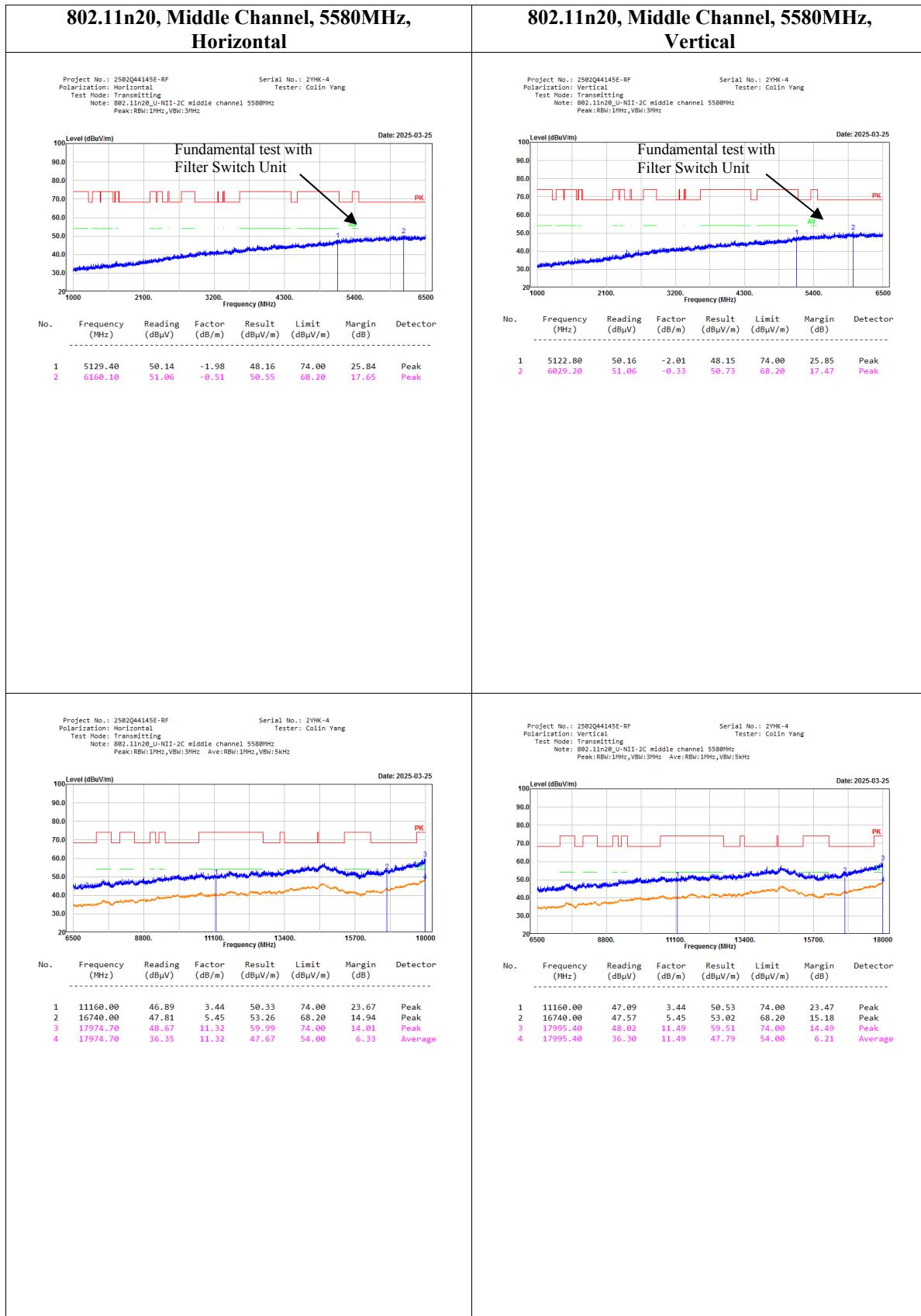

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5134.90	51.01	-1.96	49.05	74.00	24.95	Peak
2	6353.70	50.57	-0.20	50.37	68.20	17.83	Peak

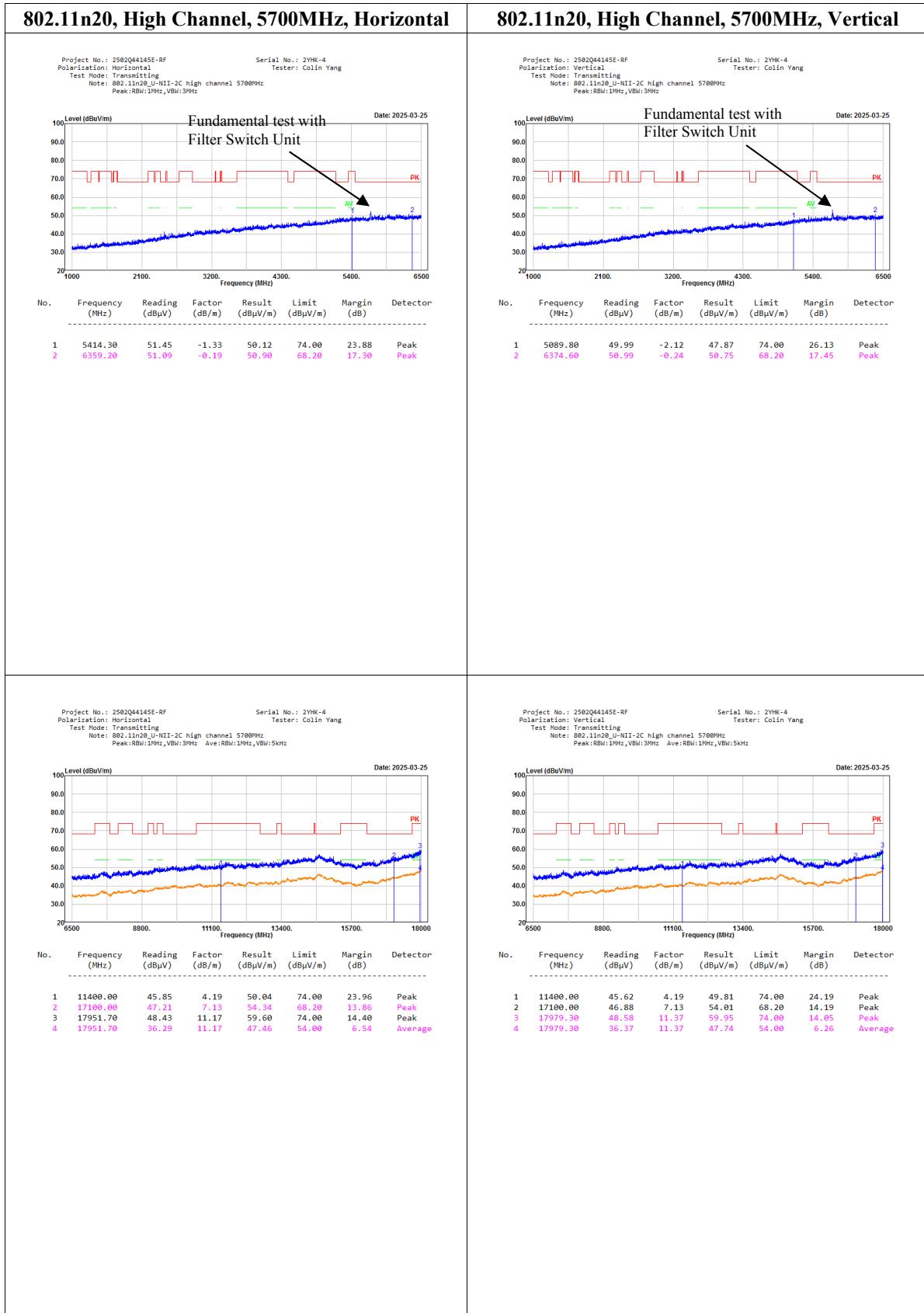
Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11a_U-NII-2C low channel 5500MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

Serial No.: 2YHK-4
 Tester: Colin Yang
 Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a_U-NII-2C low channel 5500MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz



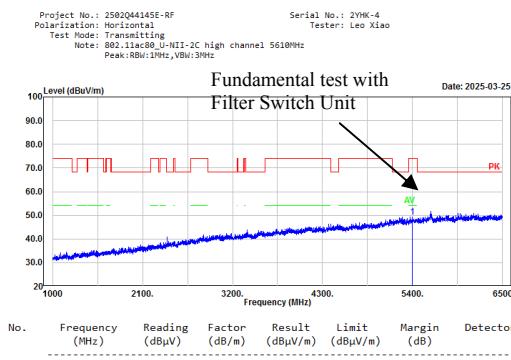
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11000.00	47.34	3.03	50.37	74.00	23.63	Peak
2	16500.00	47.23	4.16	51.39	68.20	16.81	Peak
3	17935.60	48.21	11.05	59.26	74.00	14.74	Peak
4	17935.60	36.13	11.05	47.18	54.00	6.82	Average

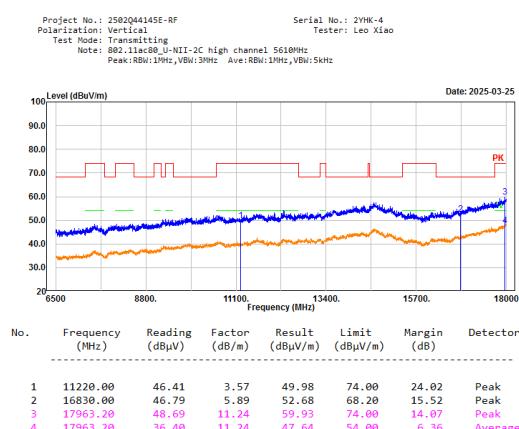
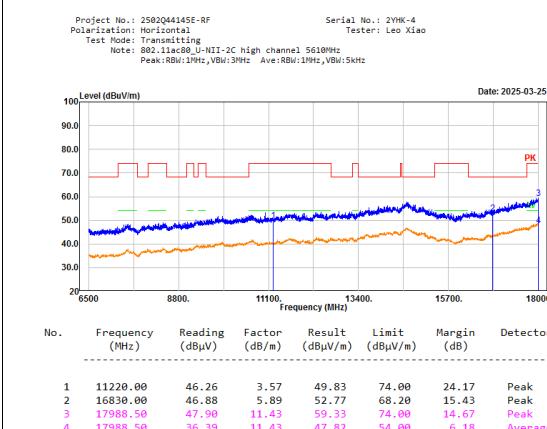
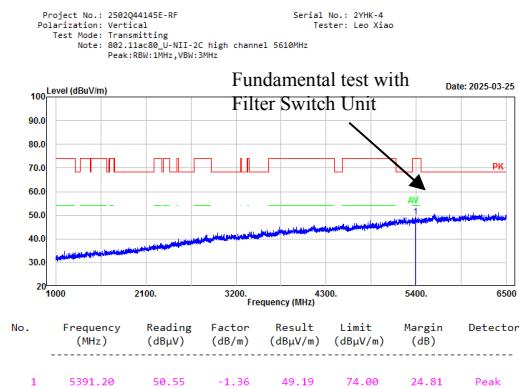



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	11000.00	46.16	3.03	49.19	74.00	24.81	Peak
2	16500.00	47.28	4.16	51.44	68.20	16.76	Peak
3	17988.50	48.29	11.43	59.72	74.00	14.28	Peak
4	17988.50	36.43	11.43	47.86	54.00	6.14	Average

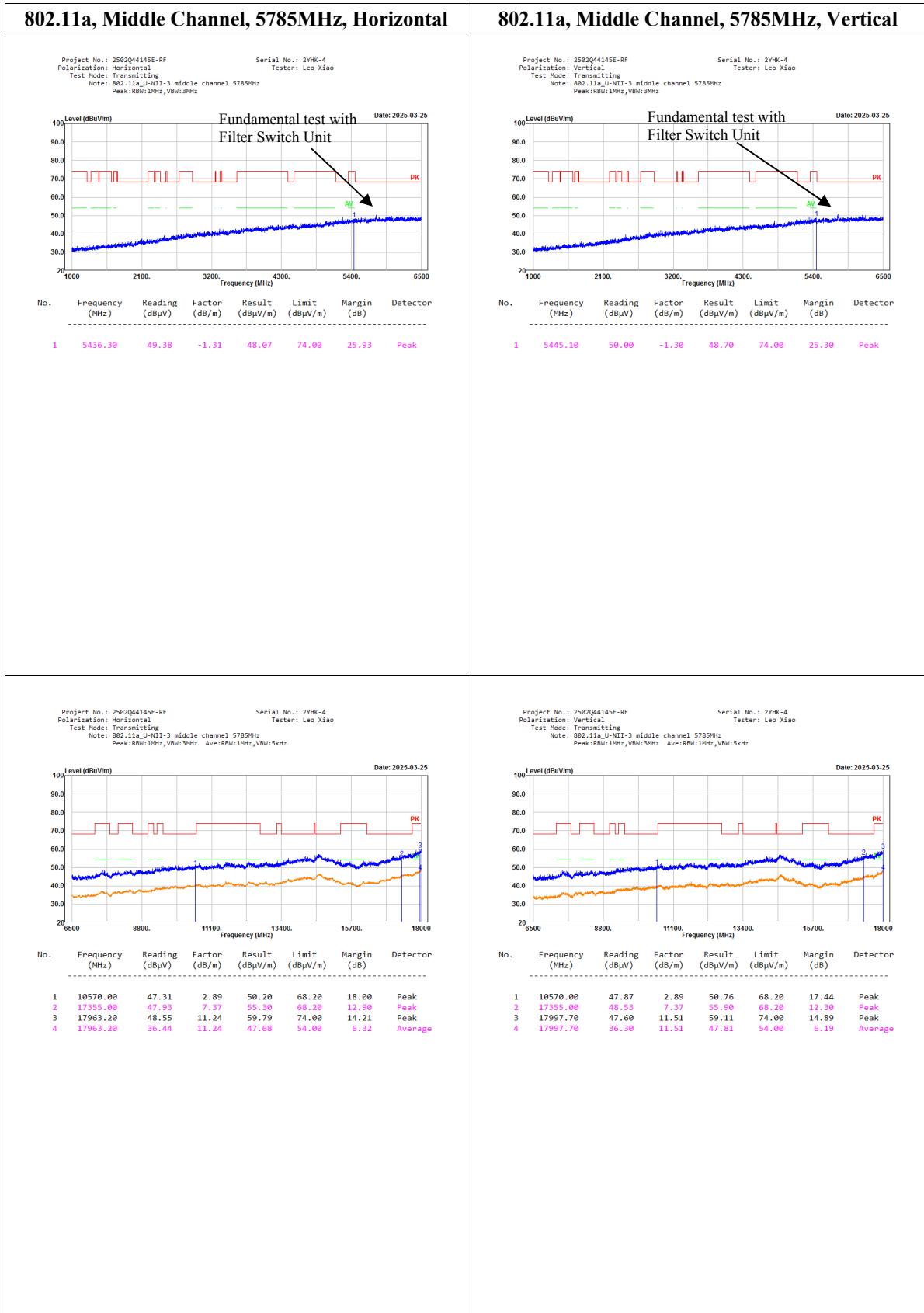


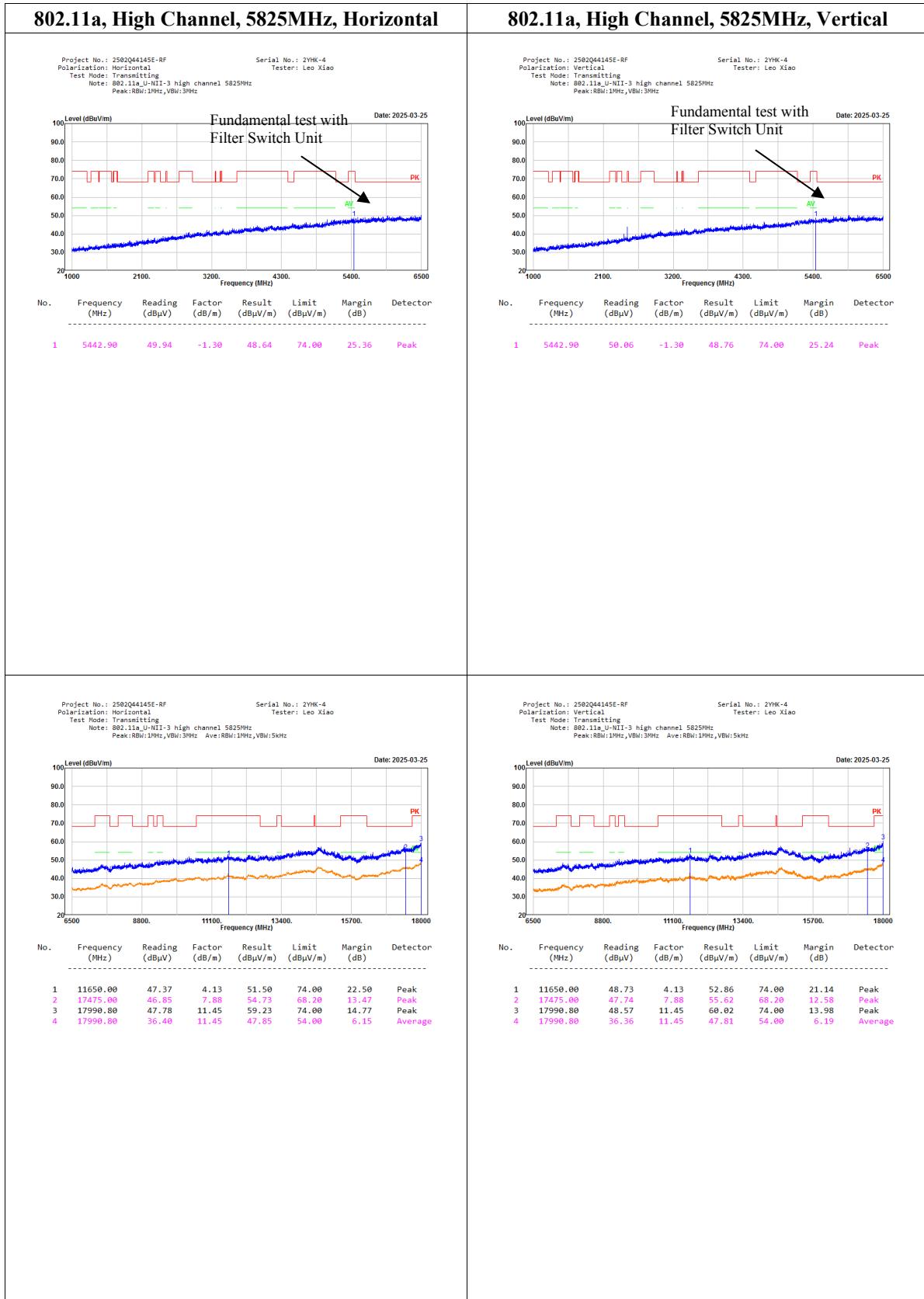
802.11n20, Low Channel, 5500MHz, Horizontal		802.11n20, Low Channel, 5500MHz, Vertical																																																																																																	
<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11n20_U-NII-2C low channel 5500MHz Peak:RBW:1MHz,VBW:3MHz</p> <p>Serial No.: 2YHK-4 Tester: Colin Yang</p> <p>Date: 2025-03-25</p> <p>Level (dBuV/m)</p> <p>Fundamental test with Filter Switch Unit</p> <p>No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Detector</p> <table border="1"> <tr><td>1</td><td>5384.60</td><td>51.53</td><td>-1.38</td><td>50.15</td><td>74.00</td><td>23.85</td><td>Peak</td></tr> <tr><td>2</td><td>6314.10</td><td>51.30</td><td>-0.37</td><td>50.93</td><td>68.20</td><td>17.27</td><td>Peak</td></tr> </table>	1	5384.60	51.53	-1.38	50.15	74.00	23.85	Peak	2	6314.10	51.30	-0.37	50.93	68.20	17.27	Peak	<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11n20_U-NII-2C low channel 5500MHz Peak:RBW:1MHz,VBW:3MHz</p> <p>Serial No.: 2YHK-4 Tester: Colin Yang</p> <p>Date: 2025-03-25</p> <p>Level (dBuV/m)</p> <p>Fundamental test with Filter Switch Unit</p> <p>No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Detector</p> <table border="1"> <tr><td>1</td><td>5396.70</td><td>50.66</td><td>-1.34</td><td>49.32</td><td>74.00</td><td>24.68</td><td>Peak</td></tr> <tr><td>2</td><td>6041.30</td><td>50.84</td><td>-0.33</td><td>50.51</td><td>68.20</td><td>17.69</td><td>Peak</td></tr> </table>	1	5396.70	50.66	-1.34	49.32	74.00	24.68	Peak	2	6041.30	50.84	-0.33	50.51	68.20	17.69	Peak	<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11n20_U-NII-2C low channel 5500MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2YHK-4 Tester: Colin Yang</p> <p>Date: 2025-03-25</p> <p>Level (dBuV/m)</p> <p>Fundamental test with Filter Switch Unit</p> <p>No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Detector</p> <table border="1"> <tr><td>1</td><td>11000.00</td><td>47.02</td><td>3.03</td><td>50.05</td><td>74.00</td><td>23.95</td><td>Peak</td></tr> <tr><td>2</td><td>16500.00</td><td>47.58</td><td>4.16</td><td>51.74</td><td>68.20</td><td>16.46</td><td>Peak</td></tr> <tr><td>3</td><td>17972.40</td><td>49.10</td><td>11.31</td><td>60.41</td><td>74.00</td><td>13.59</td><td>Peak</td></tr> <tr><td>4</td><td>17972.40</td><td>36.48</td><td>11.31</td><td>47.79</td><td>54.00</td><td>6.21</td><td>Average</td></tr> </table>	1	11000.00	47.02	3.03	50.05	74.00	23.95	Peak	2	16500.00	47.58	4.16	51.74	68.20	16.46	Peak	3	17972.40	49.10	11.31	60.41	74.00	13.59	Peak	4	17972.40	36.48	11.31	47.79	54.00	6.21	Average	<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11n20_U-NII-2C low channel 5500MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2YHK-4 Tester: Colin Yang</p> <p>Date: 2025-03-25</p> <p>Level (dBuV/m)</p> <p>Fundamental test with Filter Switch Unit</p> <p>No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Detector</p> <table border="1"> <tr><td>1</td><td>11000.00</td><td>46.83</td><td>3.03</td><td>49.86</td><td>74.00</td><td>24.14</td><td>Peak</td></tr> <tr><td>2</td><td>16500.00</td><td>48.20</td><td>4.16</td><td>52.36</td><td>68.20</td><td>15.84</td><td>Peak</td></tr> <tr><td>3</td><td>17995.40</td><td>47.92</td><td>11.49</td><td>59.41</td><td>74.00</td><td>14.59</td><td>Peak</td></tr> <tr><td>4</td><td>17995.40</td><td>36.36</td><td>11.49</td><td>47.85</td><td>54.00</td><td>6.15</td><td>Average</td></tr> </table>	1	11000.00	46.83	3.03	49.86	74.00	24.14	Peak	2	16500.00	48.20	4.16	52.36	68.20	15.84	Peak	3	17995.40	47.92	11.49	59.41	74.00	14.59	Peak	4	17995.40	36.36	11.49	47.85	54.00	6.15	Average
1	5384.60	51.53	-1.38	50.15	74.00	23.85	Peak																																																																																												
2	6314.10	51.30	-0.37	50.93	68.20	17.27	Peak																																																																																												
1	5396.70	50.66	-1.34	49.32	74.00	24.68	Peak																																																																																												
2	6041.30	50.84	-0.33	50.51	68.20	17.69	Peak																																																																																												
1	11000.00	47.02	3.03	50.05	74.00	23.95	Peak																																																																																												
2	16500.00	47.58	4.16	51.74	68.20	16.46	Peak																																																																																												
3	17972.40	49.10	11.31	60.41	74.00	13.59	Peak																																																																																												
4	17972.40	36.48	11.31	47.79	54.00	6.21	Average																																																																																												
1	11000.00	46.83	3.03	49.86	74.00	24.14	Peak																																																																																												
2	16500.00	48.20	4.16	52.36	68.20	15.84	Peak																																																																																												
3	17995.40	47.92	11.49	59.41	74.00	14.59	Peak																																																																																												
4	17995.40	36.36	11.49	47.85	54.00	6.15	Average																																																																																												

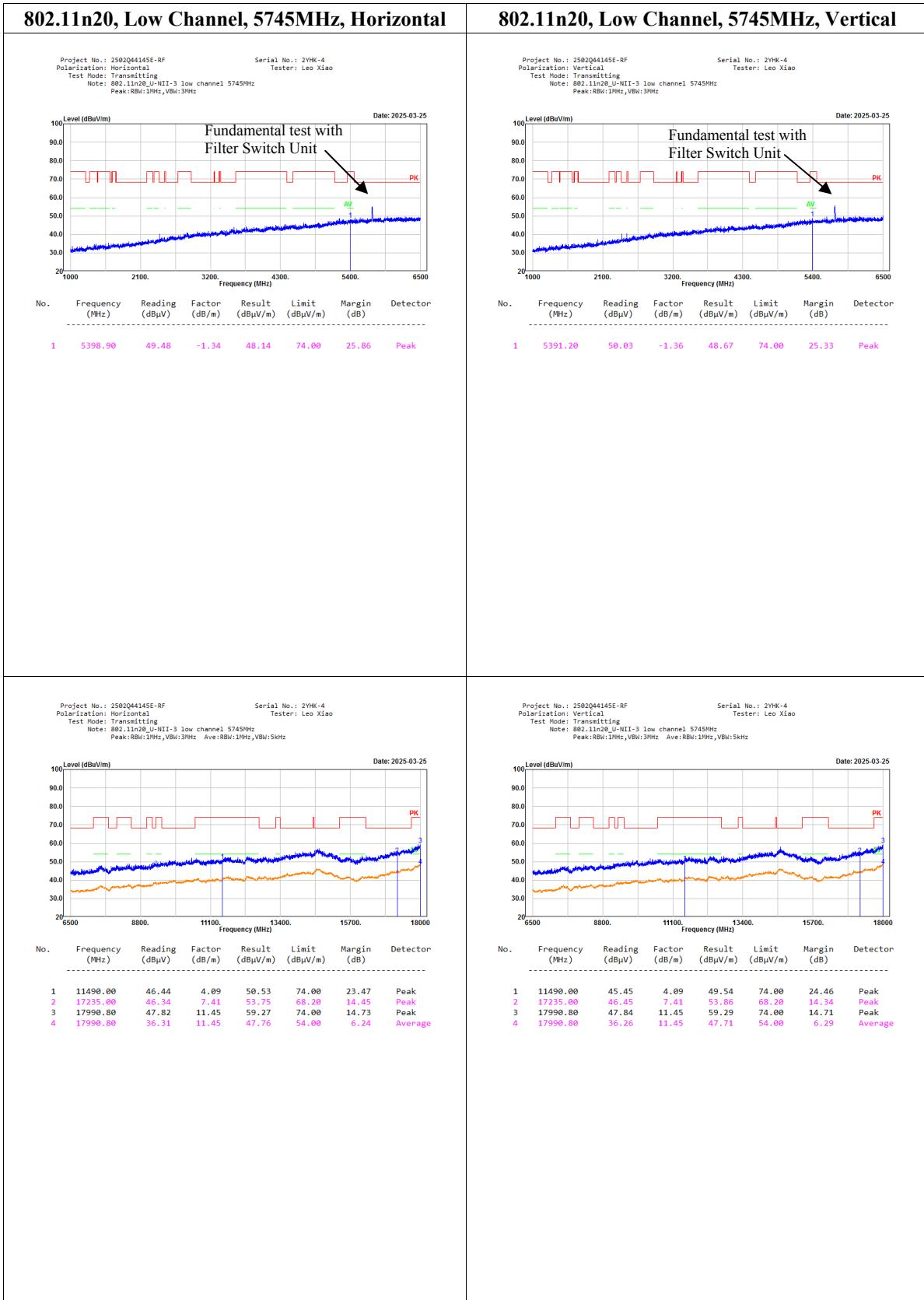


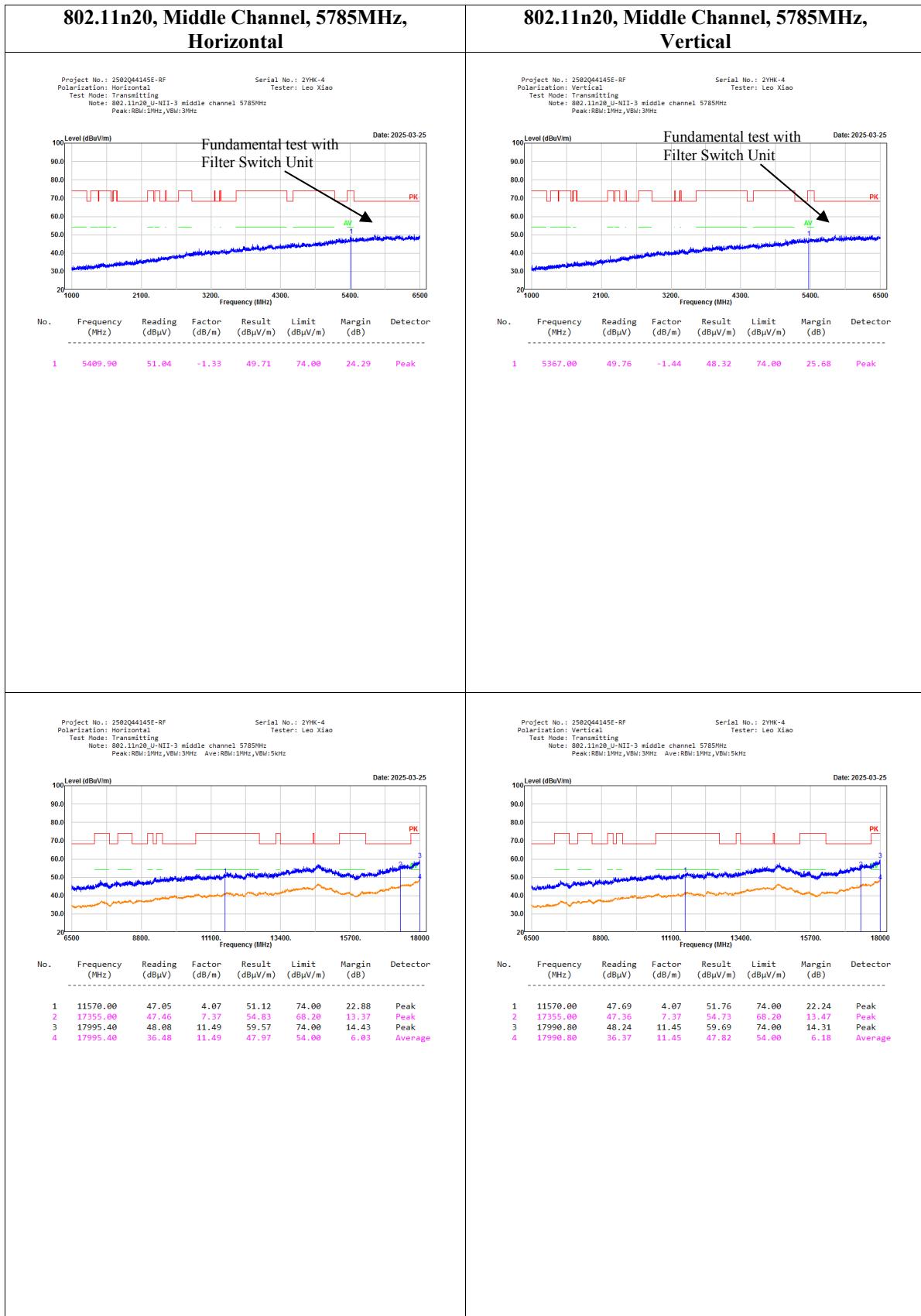




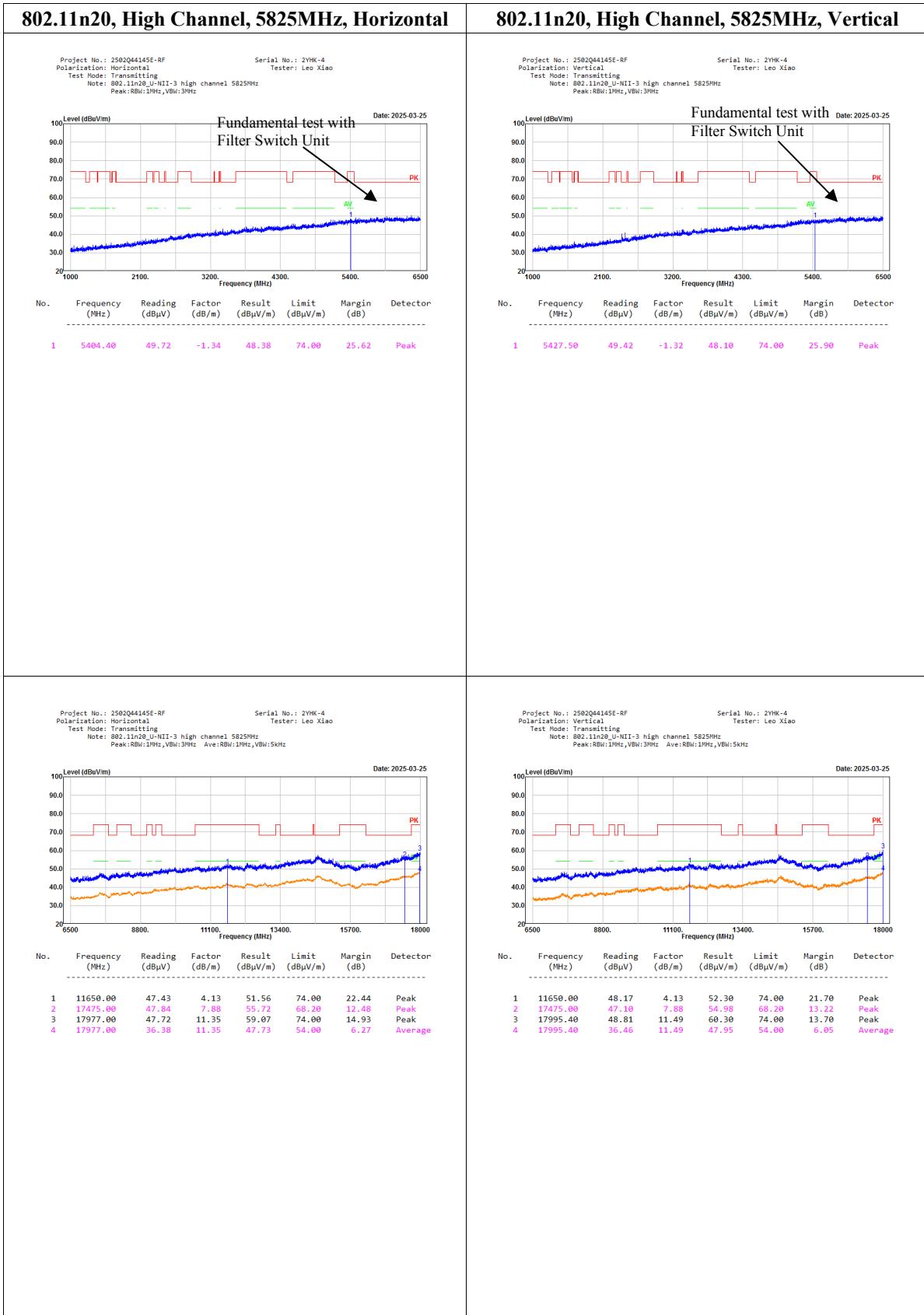
802.11ac80, High Channel, 5610MHz, Horizontal

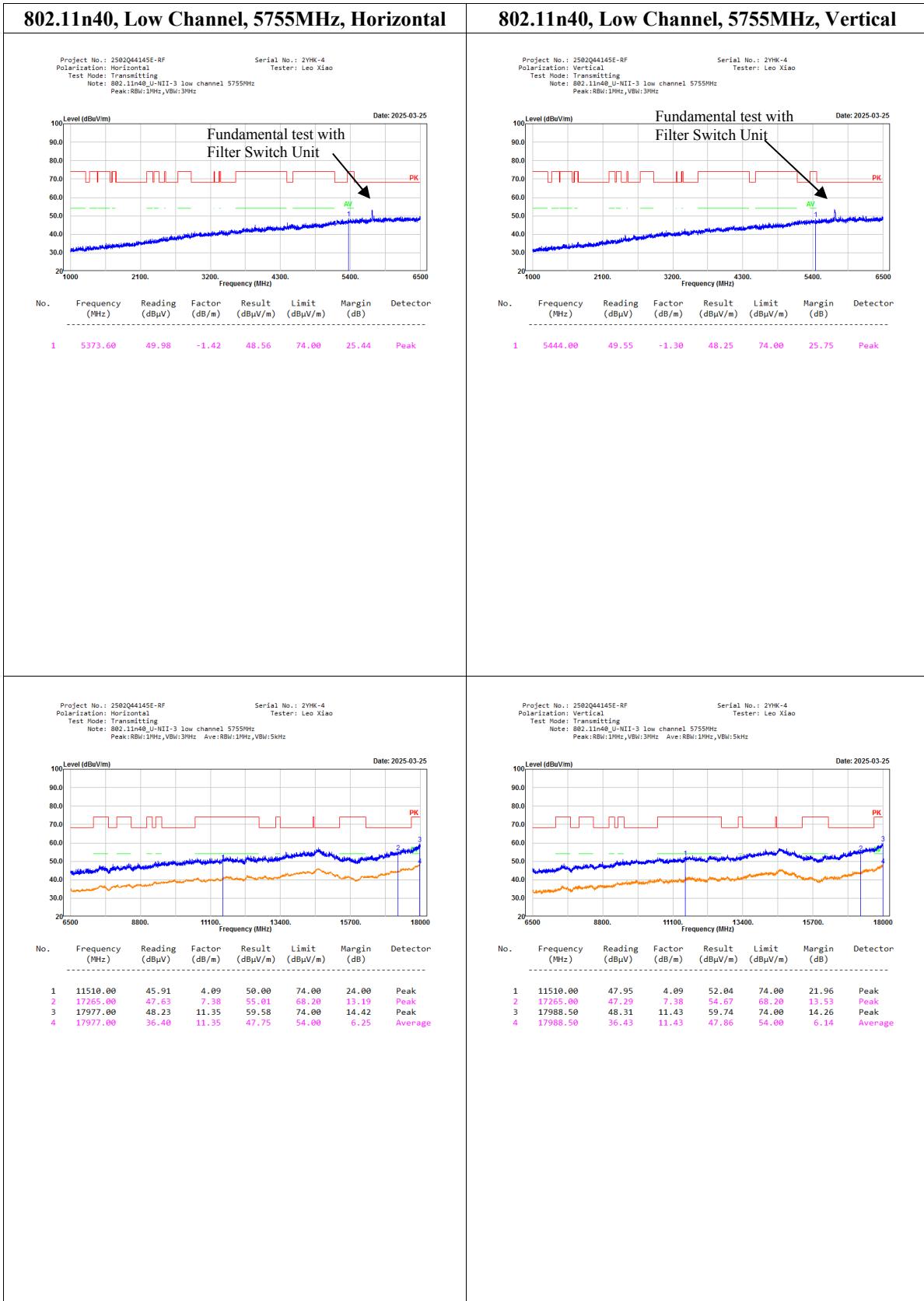


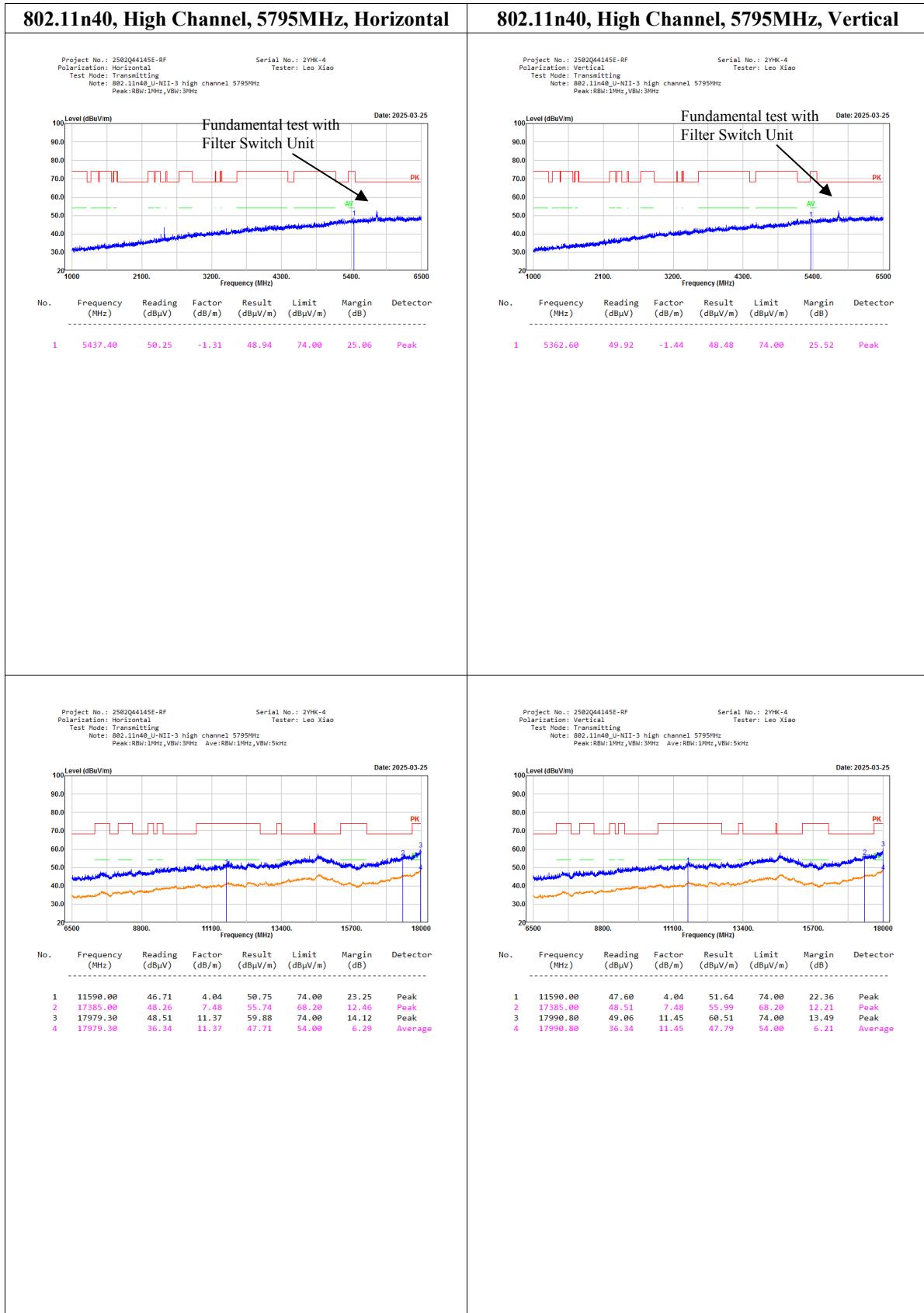

802.11ac80, High Channel, 5610MHz, Vertical



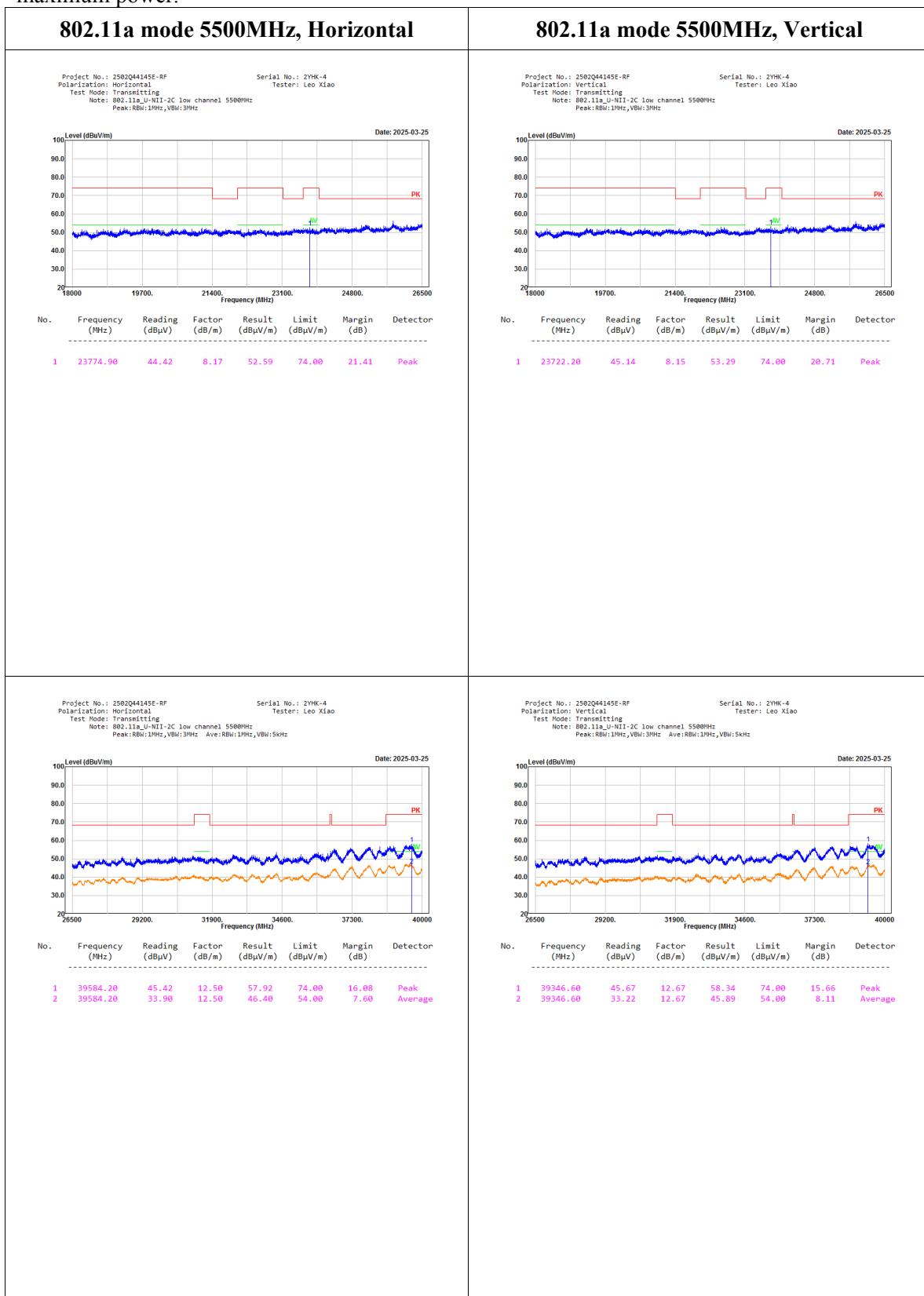

5725-5850MHz:

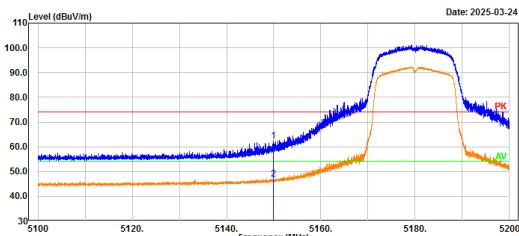






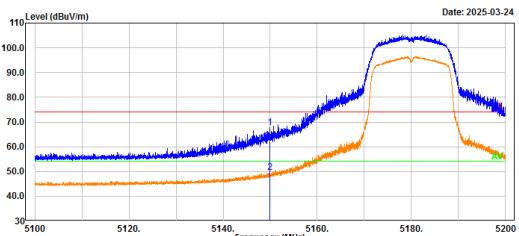





18-40GHz:

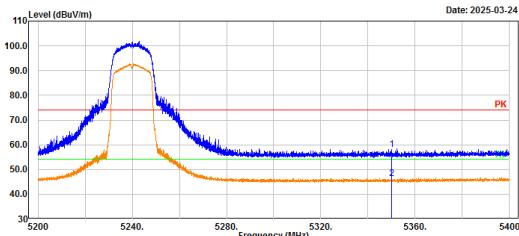
No Emission was detected in the range 18-40GHz, test was performed on the mode and channel which with the maximum power.

Bandedge:**5150-5250MHz:****802.11a, 5180MHz, Bandedge, Horizontal**


Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11a_U-NII-1 low channel 5180MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

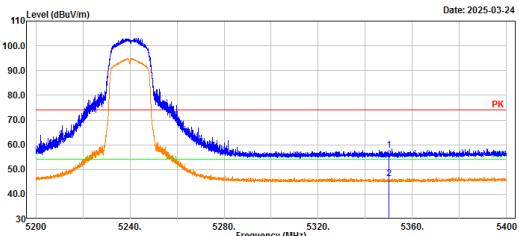
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5150.00	55.77	6.53	62.30	74.00	11.70	Peak
2	5150.00	40.52	6.53	47.05	54.00	6.95	Average

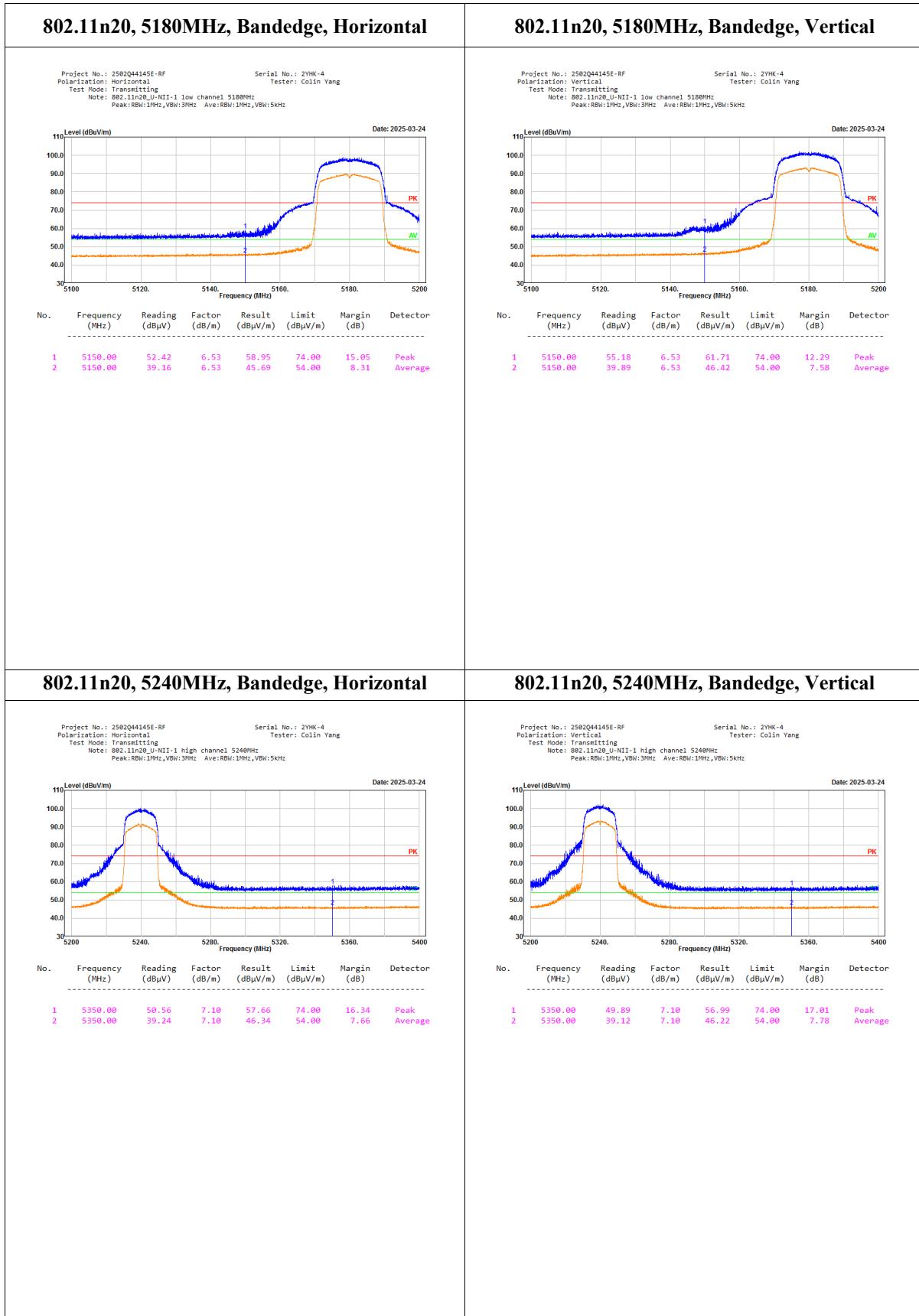
802.11a, 5180MHz, Bandedge, Vertical

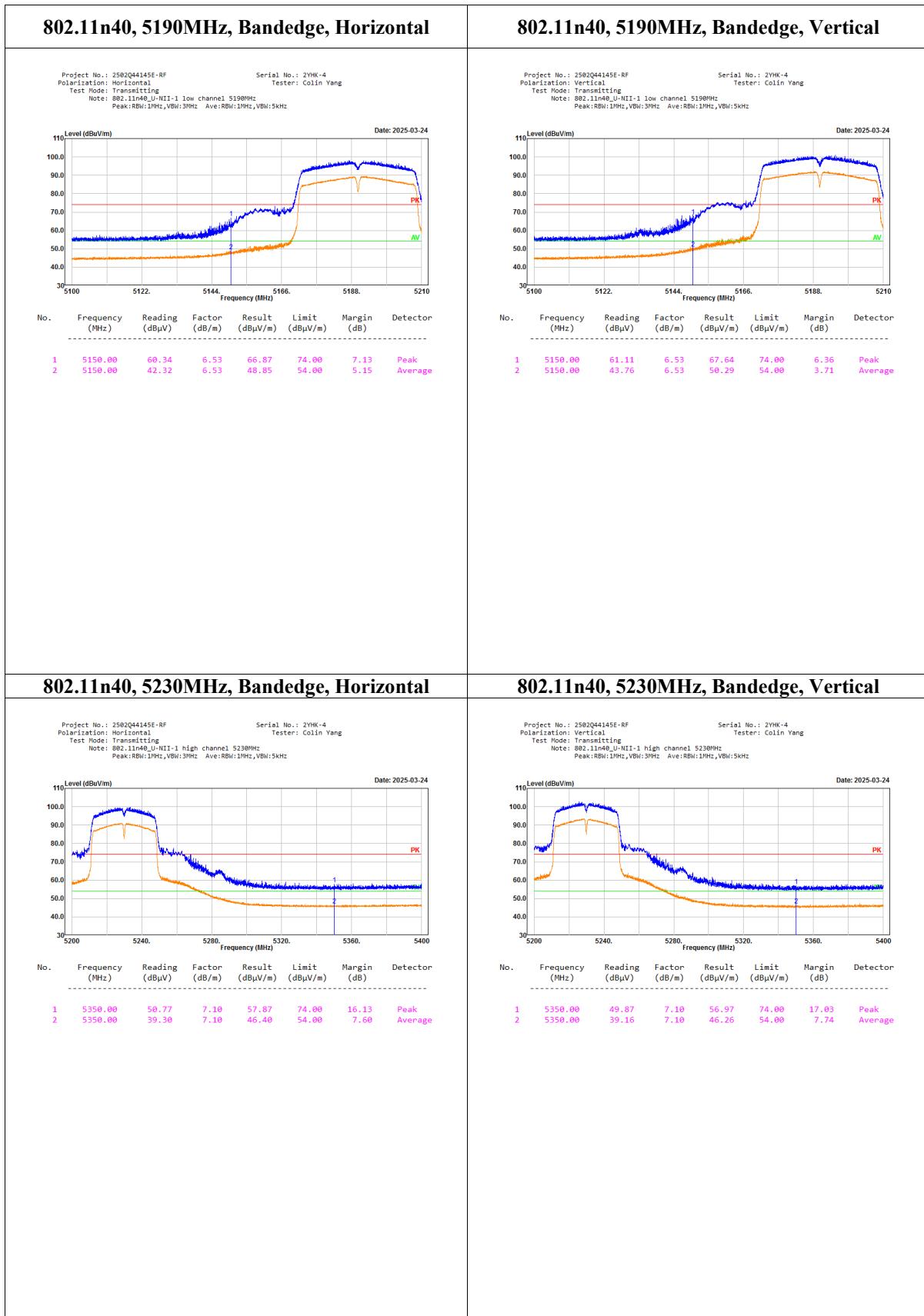

Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a_U-NII-1 low channel 5180MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

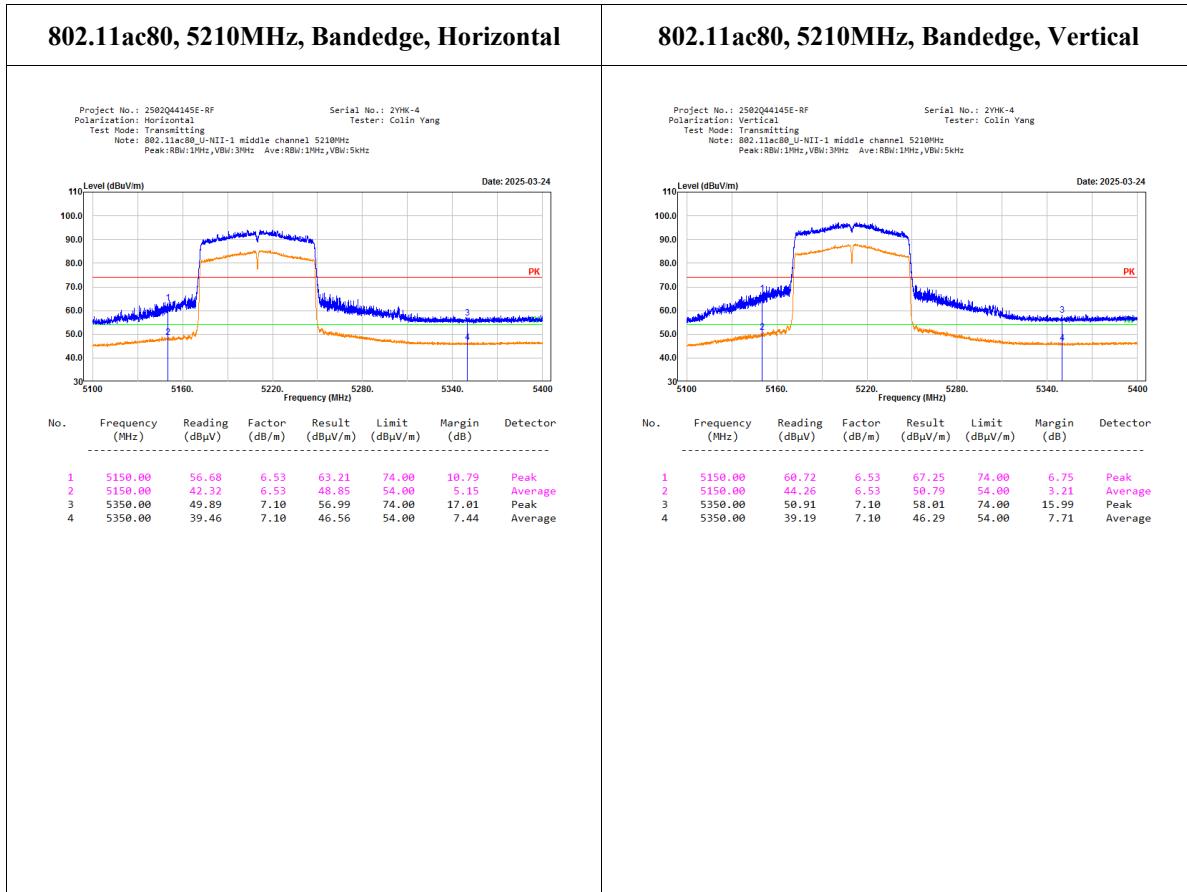
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5150.00	61.32	6.53	67.85	74.00	6.15	Peak
2	5150.00	43.23	6.53	49.76	54.00	4.24	Average

802.11a, 5240MHz, Bandedge, Horizontal

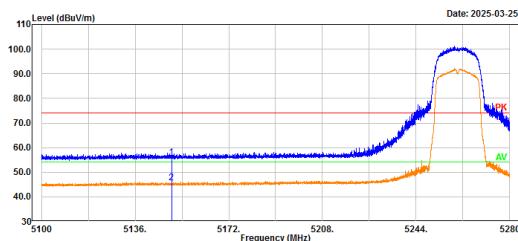

Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11a_U-NII-1 high channel 5240MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz


No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5350.00	50.88	7.10	57.98	74.00	16.02	Peak
2	5350.00	39.23	7.10	46.33	54.00	7.67	Average


802.11a, 5240MHz, Bandedge, Vertical


Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a_U-NII-1 high channel 5240MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

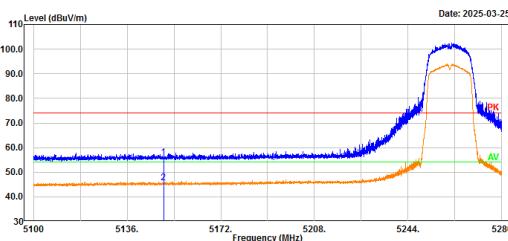
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5350.00	50.70	7.10	57.80	74.00	16.20	Peak
2	5350.00	39.10	7.10	46.20	54.00	7.80	Average


5250-5350MHz:

802.11a, 5260MHz, Bandedge, Horizontal

802.11a, 5260MHz, Bandedge, Vertical

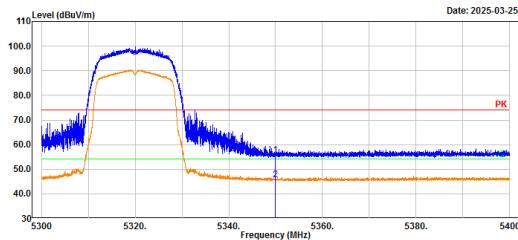
Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11a-U-NII-2A low channel 5260MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz


Serial No.: 2YHK-4
 Tester: Leo Xiao

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.00	49.56	6.53	56.09	74.00	17.91	Peak
2	5150.00	39.11	6.53	45.64	54.00	8.36	Average

Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a-U-NII-2A low channel 5260MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

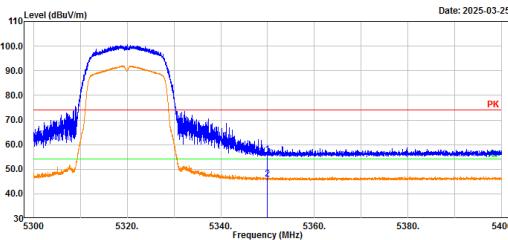
Serial No.: 2YHK-4
 Tester: Leo Xiao


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.00	49.32	6.53	55.85	74.00	18.15	Peak
2	5150.00	39.22	6.53	45.75	54.00	8.25	Average

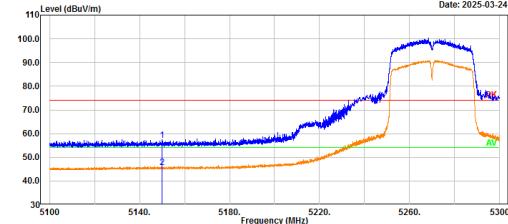
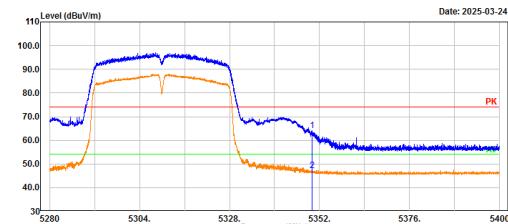
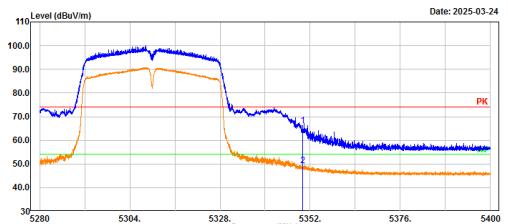
802.11a, 5320MHz, Bandedge, Horizontal

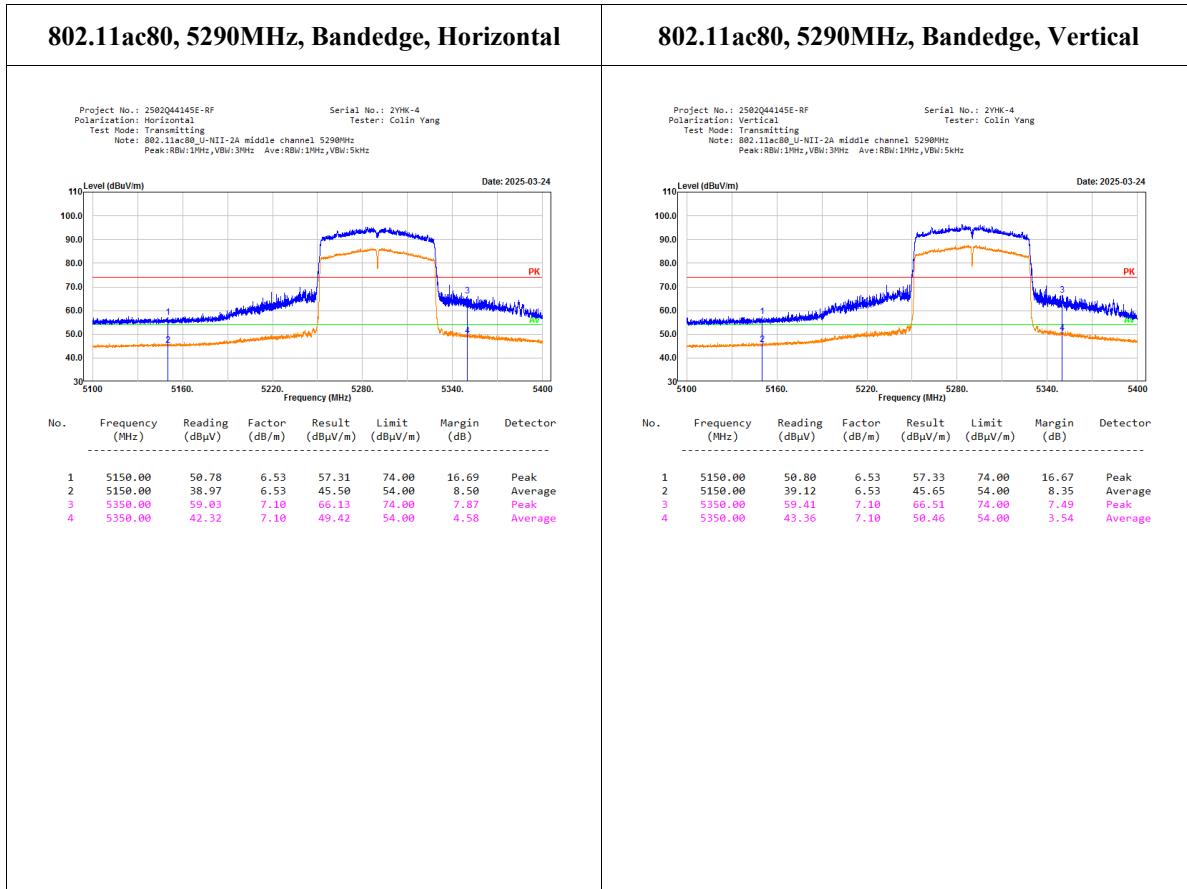
802.11a, 5320MHz, Bandedge, Vertical

Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11a-U-NII-2A high channel 5320MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz


Serial No.: 2YHK-4
 Tester: Leo Xiao

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5350.00	48.59	7.10	55.69	74.00	18.31	Peak
2	5350.00	38.68	7.10	45.78	54.00	8.22	Average

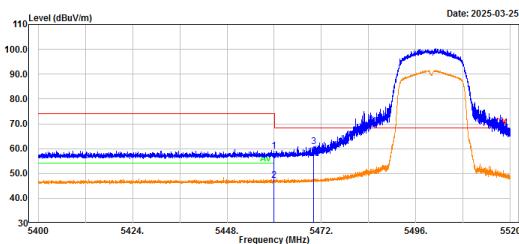



Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a-U-NII-2A high channel 5320MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz


Serial No.: 2YHK-4
 Tester: Leo Xiao

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5350.00	48.72	7.10	55.82	74.00	18.18	Peak
2	5350.00	38.76	7.10	45.86	54.00	8.14	Average

802.11n20, 5260MHz, Bandedge, Horizontal	802.11n20, 5260MHz, Bandedge, Vertical
<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11n20_U-NII-2A low channel 5260MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2VHK-4 Tester: Colin Yang</p> <p>Date: 2025-03-25</p> <p>No. Frequency (MHz) Reading (dBμV) Factor (dB/m) Result (dBμV/m) Limit (dBμV/m) Margin (dB) Detector 1 5150.00 50.93 6.53 57.46 74.00 16.54 Peak 2 5150.00 39.81 6.53 46.34 54.00 7.66 Average</p>	<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11n20_U-NII-2A low channel 5260MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2VHK-4 Tester: Colin Yang</p> <p>Date: 2025-03-25</p> <p>No. Frequency (MHz) Reading (dBμV) Factor (dB/m) Result (dBμV/m) Limit (dBμV/m) Margin (dB) Detector 1 5150.00 50.62 6.53 57.15 74.00 16.85 Peak 2 5150.00 39.34 6.53 45.87 54.00 8.13 Average</p>
<p>802.11n20, 5320MHz, Bandedge, Horizontal</p> <p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11n20_U-NII-2A high channel 5320MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2VHK-4 Tester: Colin Yang</p> <p>Date: 2025-03-24</p> <p>No. Frequency (MHz) Reading (dBμV) Factor (dB/m) Result (dBμV/m) Limit (dBμV/m) Margin (dB) Detector 1 5350.00 54.22 7.10 61.32 74.00 12.68 Peak 2 5350.00 39.12 7.10 46.22 54.00 7.78 Average</p>	<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11n20_U-NII-2A high channel 5320MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2VHK-4 Tester: Colin Yang</p> <p>Date: 2025-03-24</p> <p>No. Frequency (MHz) Reading (dBμV) Factor (dB/m) Result (dBμV/m) Limit (dBμV/m) Margin (dB) Detector 1 5350.00 55.45 7.10 62.55 74.00 11.45 Peak 2 5350.00 39.36 7.10 46.46 54.00 7.54 Average</p>

802.11n40, 5270MHz, Bandedge, Horizontal	802.11n40, 5270MHz, Bandedge, Vertical																																																
<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11n40-U-NII-2A low channel 5270MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2YHK-4 Tester: Colin Yang</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5150.00</td><td>50.68</td><td>6.53</td><td>57.21</td><td>74.00</td><td>16.79</td><td>Peak</td></tr> <tr> <td>2</td><td>5150.00</td><td>39.30</td><td>6.53</td><td>45.83</td><td>54.00</td><td>8.17</td><td>Average</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5150.00	50.68	6.53	57.21	74.00	16.79	Peak	2	5150.00	39.30	6.53	45.83	54.00	8.17	Average	<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11n40-U-NII-2A low channel 5270MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2YHK-4 Tester: Colin Yang</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5150.00</td><td>50.86</td><td>6.53</td><td>57.39</td><td>74.00</td><td>16.61</td><td>Peak</td></tr> <tr> <td>2</td><td>5150.00</td><td>39.23</td><td>6.53</td><td>45.76</td><td>54.00</td><td>8.24</td><td>Average</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5150.00	50.86	6.53	57.39	74.00	16.61	Peak	2	5150.00	39.23	6.53	45.76	54.00	8.24	Average
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																										
1	5150.00	50.68	6.53	57.21	74.00	16.79	Peak																																										
2	5150.00	39.30	6.53	45.83	54.00	8.17	Average																																										
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																										
1	5150.00	50.86	6.53	57.39	74.00	16.61	Peak																																										
2	5150.00	39.23	6.53	45.76	54.00	8.24	Average																																										
802.11n40, 5310MHz, Bandedge, Horizontal	802.11n40, 5310MHz, Bandedge, Vertical																																																
<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11n40-U-NII-2A high channel 5310MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2YHK-4 Tester: Colin Yang</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5350.00</td><td>57.00</td><td>7.10</td><td>64.10</td><td>74.00</td><td>9.90</td><td>Peak</td></tr> <tr> <td>2</td><td>5350.00</td><td>40.12</td><td>7.10</td><td>47.22</td><td>54.00</td><td>6.78</td><td>Average</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5350.00	57.00	7.10	64.10	74.00	9.90	Peak	2	5350.00	40.12	7.10	47.22	54.00	6.78	Average	<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11n40-U-NII-2A high channel 5310MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2YHK-4 Tester: Colin Yang</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5350.00</td><td>59.07</td><td>7.10</td><td>66.17</td><td>74.00</td><td>7.83</td><td>Peak</td></tr> <tr> <td>2</td><td>5350.00</td><td>42.12</td><td>7.10</td><td>49.22</td><td>54.00</td><td>4.78</td><td>Average</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5350.00	59.07	7.10	66.17	74.00	7.83	Peak	2	5350.00	42.12	7.10	49.22	54.00	4.78	Average
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																										
1	5350.00	57.00	7.10	64.10	74.00	9.90	Peak																																										
2	5350.00	40.12	7.10	47.22	54.00	6.78	Average																																										
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																										
1	5350.00	59.07	7.10	66.17	74.00	7.83	Peak																																										
2	5350.00	42.12	7.10	49.22	54.00	4.78	Average																																										

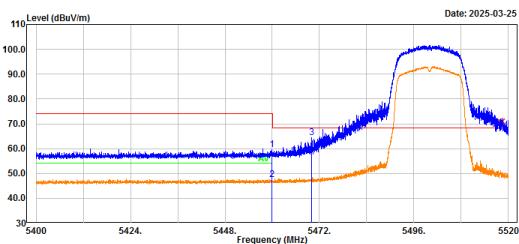


5470-5725MHz:

802.11a, 5500MHz, Bandedge, Horizontal

Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11a_U-NII-2C low channel 5500MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

Serial No.: 2YHK-4
 Tester: Colin Yang

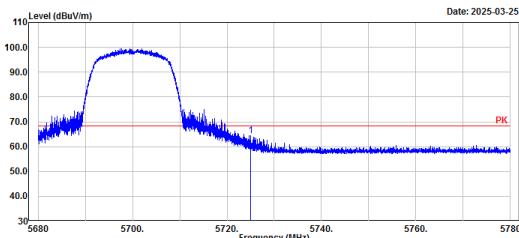


No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5460.00	51.62	7.33	58.95	74.00	15.05	Peak
2	5460.00	39.89	7.33	47.22	54.00	6.78	Average
3	5470.00	53.59	7.34	60.93	68.20	7.27	Peak

802.11a, 5500MHz, Bandedge, Vertical

Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a_U-NII-2C low channel 5500MHz
 Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz

Serial No.: 2YHK-4
 Tester: Colin Yang

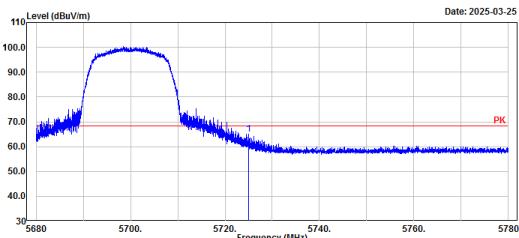


No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5460.00	52.32	7.33	59.65	74.00	14.35	Peak
2	5460.00	40.12	7.33	47.45	54.00	6.55	Average
3	5470.01	56.96	7.34	64.30	68.20	3.90	Peak

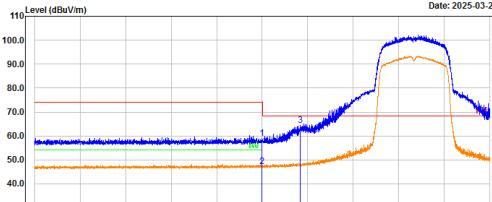
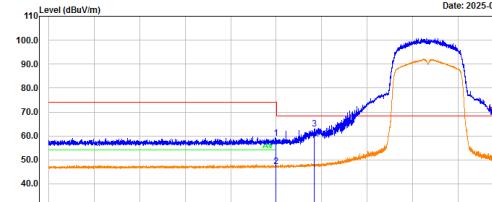
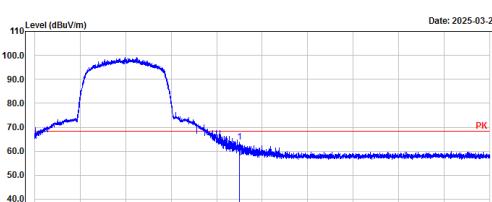
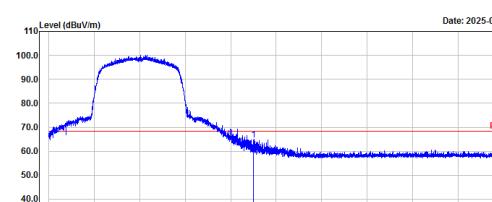
802.11a, 5700MHz, Bandedge, Horizontal

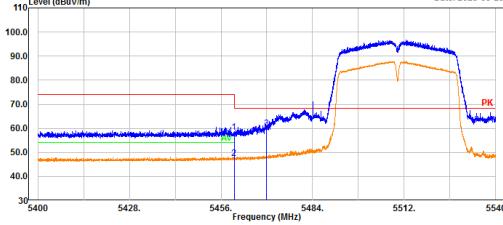
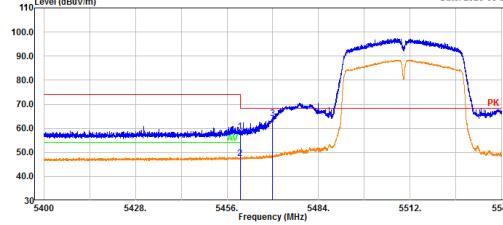
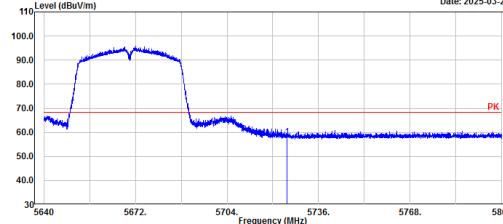
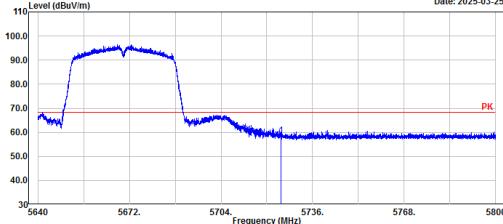
Project No.: 2502Q44145E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11a_U-NII-2C high channel 5700MHz
 Peak:RBW:1MHz,VBW:3MHz

Serial No.: 2YHK-4
 Tester: Colin Yang



No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5725.00	56.40	8.03	64.43	68.20	3.77	Peak





802.11a, 5700MHz, Bandedge, Vertical

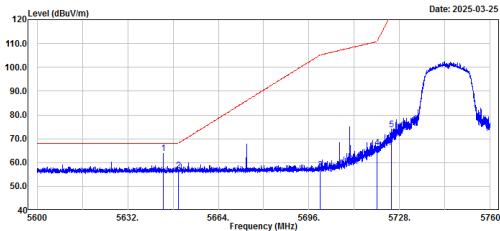




Project No.: 2502Q44145E-RF
 Polarization: Vertical
 Test Mode: Transmitting
 Note: 802.11a_U-NII-2C high channel 5700MHz
 Peak:RBW:1MHz,VBW:3MHz

Serial No.: 2YHK-4
 Tester: Colin Yang

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	5725.00	56.97	8.03	65.00	68.20	3.20	Peak

802.11n20, 5500MHz, Bandedge, Horizontal		802.11n20, 5500MHz, Bandedge, Vertical																																																																																																	
<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11n20_U-NII-2C low channel 5500MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2YHK-4 Tester: Colin Yang</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5460.00</td><td>51.78</td><td>7.33</td><td>59.11</td><td>74.00</td><td>14.89</td><td>Peak</td></tr> <tr> <td>2</td><td>5460.00</td><td>39.88</td><td>7.33</td><td>47.21</td><td>54.00</td><td>6.79</td><td>Average</td></tr> <tr> <td>3</td><td>5470.01</td><td>57.02</td><td>7.34</td><td>64.36</td><td>68.20</td><td>3.84</td><td>Peak</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5460.00	51.78	7.33	59.11	74.00	14.89	Peak	2	5460.00	39.88	7.33	47.21	54.00	6.79	Average	3	5470.01	57.02	7.34	64.36	68.20	3.84	Peak	<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11n20_U-NII-2C low channel 5500MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2YHK-4 Tester: Colin Yang</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5460.00</td><td>51.76</td><td>7.33</td><td>59.09</td><td>74.00</td><td>14.91</td><td>Peak</td></tr> <tr> <td>2</td><td>5460.00</td><td>40.82</td><td>7.33</td><td>47.35</td><td>54.00</td><td>6.65</td><td>Average</td></tr> <tr> <td>3</td><td>5470.00</td><td>55.53</td><td>7.34</td><td>62.87</td><td>68.20</td><td>5.33</td><td>Peak</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5460.00	51.76	7.33	59.09	74.00	14.91	Peak	2	5460.00	40.82	7.33	47.35	54.00	6.65	Average	3	5470.00	55.53	7.34	62.87	68.20	5.33	Peak	<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11n20_U-NII-2C high channel 5700MHz Peak:RBW:1MHz,VBW:3MHz</p> <p>Serial No.: 2YHK-4 Tester: Colin Yang</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5725.00</td><td>55.69</td><td>8.03</td><td>63.72</td><td>68.20</td><td>4.48</td><td>Peak</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5725.00	55.69	8.03	63.72	68.20	4.48	Peak	<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11n20_U-NII-2C high channel 5700MHz Peak:RBW:1MHz,VBW:3MHz</p> <p>Serial No.: 2YHK-4 Tester: Colin Yang</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5725.00</td><td>56.54</td><td>8.03</td><td>64.57</td><td>68.20</td><td>3.63</td><td>Peak</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5725.00	56.54	8.03	64.57	68.20	3.63	Peak
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																																												
1	5460.00	51.78	7.33	59.11	74.00	14.89	Peak																																																																																												
2	5460.00	39.88	7.33	47.21	54.00	6.79	Average																																																																																												
3	5470.01	57.02	7.34	64.36	68.20	3.84	Peak																																																																																												
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																																												
1	5460.00	51.76	7.33	59.09	74.00	14.91	Peak																																																																																												
2	5460.00	40.82	7.33	47.35	54.00	6.65	Average																																																																																												
3	5470.00	55.53	7.34	62.87	68.20	5.33	Peak																																																																																												
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																																												
1	5725.00	55.69	8.03	63.72	68.20	4.48	Peak																																																																																												
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																																												
1	5725.00	56.54	8.03	64.57	68.20	3.63	Peak																																																																																												

802.11n40, 5510MHz, Bandedge, Horizontal		802.11n40, 5510MHz, Bandedge, Vertical																																																																																																	
<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11n40_U-NII-2C Low channel 5510MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBuV)</th><th>Factor (dB/m)</th><th>Result (dBuV/m)</th><th>Limit (dBuV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5460.00</td><td>51.13</td><td>7.33</td><td>58.46</td><td>74.00</td><td>15.54</td><td>Peak</td></tr> <tr> <td>2</td><td>5460.00</td><td>48.16</td><td>7.33</td><td>47.49</td><td>54.00</td><td>6.51</td><td>Average</td></tr> <tr> <td>3</td><td>5470.00</td><td>52.48</td><td>7.34</td><td>59.82</td><td>68.20</td><td>8.38</td><td>Peak</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	1	5460.00	51.13	7.33	58.46	74.00	15.54	Peak	2	5460.00	48.16	7.33	47.49	54.00	6.51	Average	3	5470.00	52.48	7.34	59.82	68.20	8.38	Peak	<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11n40_U-NII-2C Low channel 5510MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBuV)</th><th>Factor (dB/m)</th><th>Result (dBuV/m)</th><th>Limit (dBuV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5460.00</td><td>51.43</td><td>7.33</td><td>58.76</td><td>74.00</td><td>15.24</td><td>Peak</td></tr> <tr> <td>2</td><td>5460.00</td><td>40.07</td><td>7.33</td><td>47.40</td><td>54.00</td><td>6.60</td><td>Average</td></tr> <tr> <td>3</td><td>5470.00</td><td>56.88</td><td>7.34</td><td>64.14</td><td>68.20</td><td>4.06</td><td>Peak</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	1	5460.00	51.43	7.33	58.76	74.00	15.24	Peak	2	5460.00	40.07	7.33	47.40	54.00	6.60	Average	3	5470.00	56.88	7.34	64.14	68.20	4.06	Peak	<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11n40_U-NII-2C High channel 5670MHz Peak:RBW:1MHz,VBW:3MHz</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBuV)</th><th>Factor (dB/m)</th><th>Result (dBuV/m)</th><th>Limit (dBuV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5725.00</td><td>49.93</td><td>8.03</td><td>57.96</td><td>68.20</td><td>10.24</td><td>Peak</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	1	5725.00	49.93	8.03	57.96	68.20	10.24	Peak	<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11n40_U-NII-2C High channel 5670MHz Peak:RBW:1MHz,VBW:3MHz</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBuV)</th><th>Factor (dB/m)</th><th>Result (dBuV/m)</th><th>Limit (dBuV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5725.00</td><td>50.66</td><td>8.03</td><td>58.69</td><td>68.20</td><td>9.51</td><td>Peak</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	1	5725.00	50.66	8.03	58.69	68.20	9.51	Peak
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector																																																																																												
1	5460.00	51.13	7.33	58.46	74.00	15.54	Peak																																																																																												
2	5460.00	48.16	7.33	47.49	54.00	6.51	Average																																																																																												
3	5470.00	52.48	7.34	59.82	68.20	8.38	Peak																																																																																												
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector																																																																																												
1	5460.00	51.43	7.33	58.76	74.00	15.24	Peak																																																																																												
2	5460.00	40.07	7.33	47.40	54.00	6.60	Average																																																																																												
3	5470.00	56.88	7.34	64.14	68.20	4.06	Peak																																																																																												
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector																																																																																												
1	5725.00	49.93	8.03	57.96	68.20	10.24	Peak																																																																																												
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector																																																																																												
1	5725.00	50.66	8.03	58.69	68.20	9.51	Peak																																																																																												
802.11n40, 5670MHz, Bandedge, Horizontal		802.11n40, 5670MHz, Bandedge, Vertical																																																																																																	

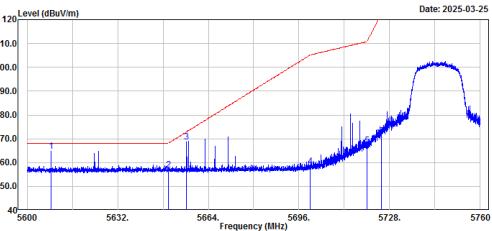

802.11ac80, 5530MHz, Bandedge, Horizontal		802.11ac80, 5530MHz, Bandedge, Vertical																																																																																	
<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11ac80_1-NII-2C low channel 5530MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2YHK-4 Tester: Leo Xiao</p>		<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11ac80_1-NII-2C low channel 5530MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <p>Serial No.: 2YHK-4 Tester: Leo Xiao</p>																																																																																	
<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr><td>1</td><td>5460.00</td><td>51.97</td><td>7.33</td><td>59.30</td><td>74.00</td><td>14.70</td><td>Peak</td></tr> <tr><td>2</td><td>5460.00</td><td>40.92</td><td>7.33</td><td>48.25</td><td>54.00</td><td>5.75</td><td>Average</td></tr> <tr><td>3</td><td>5463.98</td><td>57.35</td><td>7.34</td><td>64.69</td><td>68.28</td><td>3.51</td><td>Peak</td></tr> <tr><td>4</td><td>5470.00</td><td>52.86</td><td>7.34</td><td>60.20</td><td>68.20</td><td>8.00</td><td>Peak</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5460.00	51.97	7.33	59.30	74.00	14.70	Peak	2	5460.00	40.92	7.33	48.25	54.00	5.75	Average	3	5463.98	57.35	7.34	64.69	68.28	3.51	Peak	4	5470.00	52.86	7.34	60.20	68.20	8.00	Peak		<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr><td>1</td><td>5460.00</td><td>53.92</td><td>7.33</td><td>61.25</td><td>74.00</td><td>12.75</td><td>Peak</td></tr> <tr><td>2</td><td>5460.00</td><td>41.76</td><td>7.33</td><td>49.69</td><td>54.00</td><td>4.31</td><td>Average</td></tr> <tr><td>3</td><td>5468.94</td><td>57.85</td><td>7.34</td><td>65.19</td><td>68.28</td><td>3.01</td><td>Peak</td></tr> <tr><td>4</td><td>5470.00</td><td>54.78</td><td>7.34</td><td>62.12</td><td>68.20</td><td>6.08</td><td>Peak</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5460.00	53.92	7.33	61.25	74.00	12.75	Peak	2	5460.00	41.76	7.33	49.69	54.00	4.31	Average	3	5468.94	57.85	7.34	65.19	68.28	3.01	Peak	4	5470.00	54.78	7.34	62.12	68.20	6.08	Peak	
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																												
1	5460.00	51.97	7.33	59.30	74.00	14.70	Peak																																																																												
2	5460.00	40.92	7.33	48.25	54.00	5.75	Average																																																																												
3	5463.98	57.35	7.34	64.69	68.28	3.51	Peak																																																																												
4	5470.00	52.86	7.34	60.20	68.20	8.00	Peak																																																																												
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																												
1	5460.00	53.92	7.33	61.25	74.00	12.75	Peak																																																																												
2	5460.00	41.76	7.33	49.69	54.00	4.31	Average																																																																												
3	5468.94	57.85	7.34	65.19	68.28	3.01	Peak																																																																												
4	5470.00	54.78	7.34	62.12	68.20	6.08	Peak																																																																												
802.11ac80, 5610MHz, Bandedge, Horizontal		802.11ac80, 5610MHz, Bandedge, Vertical																																																																																	
<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11ac80_1-NII-2C high channel 5610MHz Peak:RBW:1MHz,VBW:3MHz</p> <p>Serial No.: 2YHK-4 Tester: Leo Xiao</p>		<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11ac80_1-NII-2C high channel 5610MHz Peak:RBW:1MHz,VBW:3MHz</p> <p>Serial No.: 2YHK-4 Tester: Leo Xiao</p>																																																																																	
<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr><td>1</td><td>5725.00</td><td>49.74</td><td>8.03</td><td>57.77</td><td>68.20</td><td>10.43</td><td>Peak</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5725.00	49.74	8.03	57.77	68.20	10.43	Peak		<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr><td>1</td><td>5725.00</td><td>50.17</td><td>8.03</td><td>58.20</td><td>68.20</td><td>10.00</td><td>Peak</td></tr> <tr><td>2</td><td>5727.66</td><td>53.44</td><td>8.03</td><td>61.47</td><td>68.20</td><td>6.73</td><td>Peak</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5725.00	50.17	8.03	58.20	68.20	10.00	Peak	2	5727.66	53.44	8.03	61.47	68.20	6.73	Peak																																									
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																												
1	5725.00	49.74	8.03	57.77	68.20	10.43	Peak																																																																												
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																												
1	5725.00	50.17	8.03	58.20	68.20	10.00	Peak																																																																												
2	5727.66	53.44	8.03	61.47	68.20	6.73	Peak																																																																												

5725-5850MHz:

802.11a, 5745MHz, Bandedge, Horizontal

Project No.: 2502Q44145E-RF
Polarization: Horizontal
Test Mode: Transmitting
Note: 802.11a_U-NII-3 low channel 5745MHz
Peak:RBW:1MHz,VBW:3MHz

Serial No.: 2VHK-4
Tester: Leo Xiao

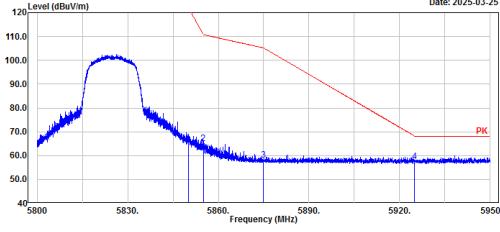


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5644.64	55.83	7.88	63.71	68.20	4.49	Peak
2	5650.00	48.77	7.89	56.66	68.20	11.54	Peak
3	5700.00	48.97	7.98	56.95	105.20	48.25	Peak
4	5720.00	58.38	8.02	66.48	110.80	44.40	Peak
5	5725.00	65.72	8.03	73.75	122.20	48.45	Peak

802.11a, 5745MHz, Bandedge, Vertical

Project No.: 2502Q44145E-RF
Polarization: Vertical
Test Mode: Transmitting
Note: 802.11a_U-NII-3 low channel 5745MHz
Peak:RBW:1MHz,VBW:3MHz

Serial No.: 2VHK-4
Tester: Leo Xiao

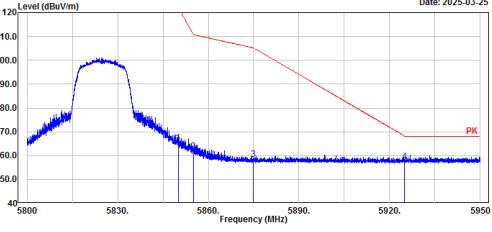


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5608.51	57.11	7.75	64.86	68.20	3.34	Peak
2	5650.00	49.15	7.89	57.04	68.20	11.16	Peak
3	5656.35	60.92	7.91	68.83	72.92	4.09	Peak
4	5700.00	50.54	7.98	58.52	105.20	46.68	Peak
5	5720.00	59.02	8.02	67.04	110.80	43.76	Peak
6	5725.00	63.20	8.03	71.23	122.20	50.97	Peak

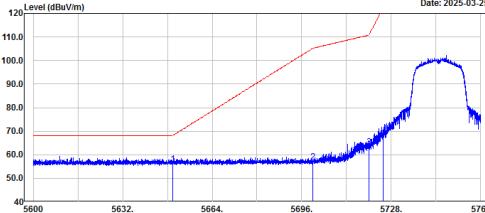
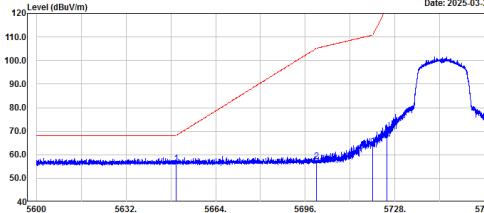
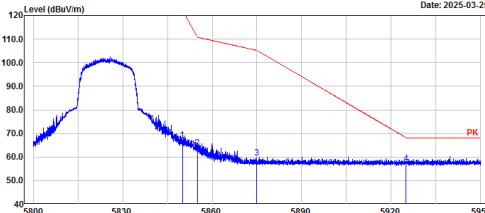
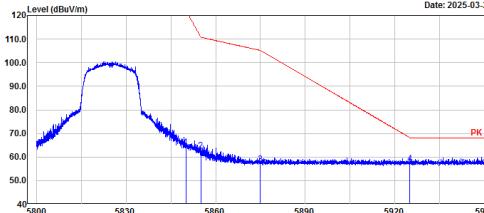
802.11a, 5825MHz, Bandedge, Horizontal

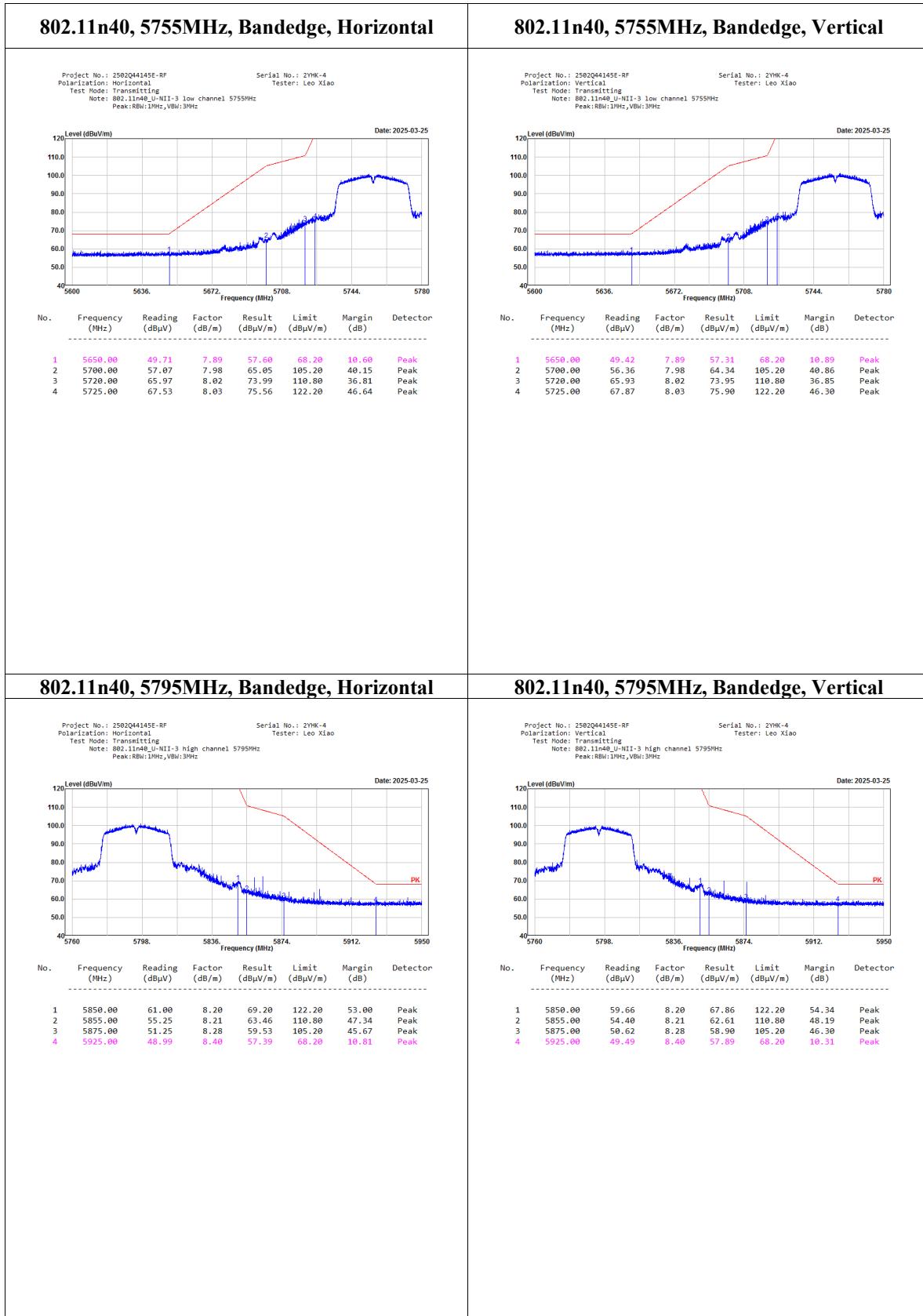
Project No.: 2502Q44145E-RF
Polarization: Horizontal
Test Mode: Transmitting
Note: 802.11a_U-NII-3 high channel 5825MHz
Peak:RBW:1MHz,VBW:3MHz

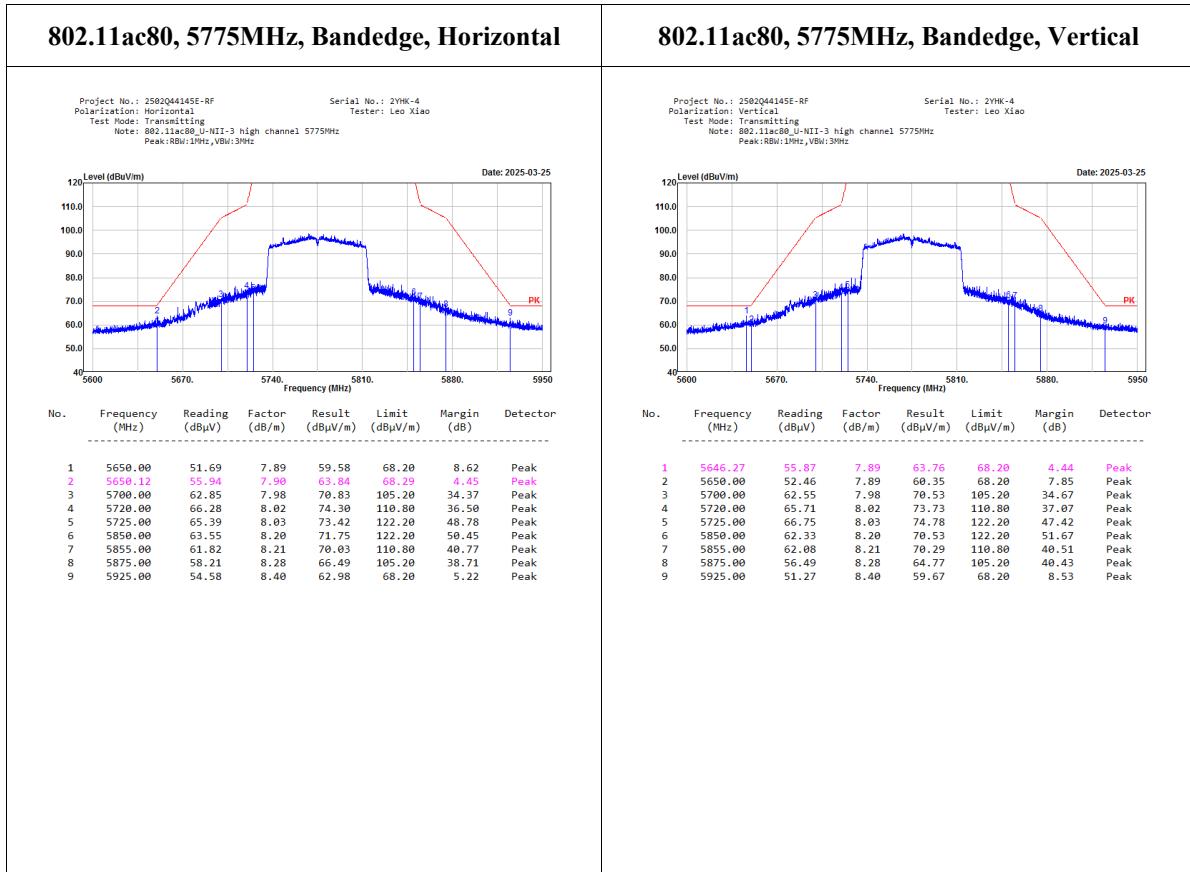
Serial No.: 2VHK-4
Tester: Leo Xiao



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5850.00	57.28	8.20	65.48	122.20	56.72	Peak
2	5855.00	56.80	8.21	65.01	110.80	45.79	Peak
3	5875.00	49.78	8.28	58.06	105.20	47.14	Peak
4	5925.00	49.14	8.40	57.54	68.20	10.66	Peak





802.11a, 5825MHz, Bandedge, Vertical


Project No.: 2502Q44145E-RF
Polarization: Vertical
Test Mode: Transmitting
Note: 802.11a_U-NII-3 high channel 5825MHz
Peak:RBW:1MHz,VBW:3MHz


Serial No.: 2VHK-4
Tester: Leo Xiao

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5850.00	57.28	8.20	65.48	122.20	56.72	Peak
2	5855.00	53.53	8.21	61.74	110.80	49.06	Peak
3	5875.00	50.08	8.28	58.36	105.20	46.84	Peak
4	5925.00	49.15	8.40	57.55	68.20	10.65	Peak

802.11n20, 5745MHz, Bandedge, Horizontal		802.11n20, 5745MHz, Bandedge, Vertical																																																																																	
<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11n20_U-NII-3 low channel 5745MHz Peak:RBW:1MHz,VBW:3MHz</p>		<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11n20_U-NII-3 low channel 5745MHz Peak:RBW:1MHz,VBW:3MHz</p>																																																																																	
<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5650.00</td><td>48.07</td><td>7.89</td><td>55.96</td><td>68.20</td><td>12.24</td><td>Peak</td></tr> <tr> <td>2</td><td>5700.00</td><td>48.88</td><td>7.98</td><td>56.86</td><td>105.20</td><td>48.34</td><td>Peak</td></tr> <tr> <td>3</td><td>5720.00</td><td>55.10</td><td>8.02</td><td>63.12</td><td>110.80</td><td>47.68</td><td>Peak</td></tr> <tr> <td>4</td><td>5725.00</td><td>59.37</td><td>8.03</td><td>67.40</td><td>122.20</td><td>54.80</td><td>Peak</td></tr> </tbody> </table>		No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5650.00	48.07	7.89	55.96	68.20	12.24	Peak	2	5700.00	48.88	7.98	56.86	105.20	48.34	Peak	3	5720.00	55.10	8.02	63.12	110.80	47.68	Peak	4	5725.00	59.37	8.03	67.40	122.20	54.80	Peak	<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5650.00</td><td>48.53</td><td>7.89</td><td>56.42</td><td>68.20</td><td>11.78</td><td>Peak</td></tr> <tr> <td>2</td><td>5700.00</td><td>49.26</td><td>7.98</td><td>57.24</td><td>105.20</td><td>47.96</td><td>Peak</td></tr> <tr> <td>3</td><td>5720.00</td><td>55.29</td><td>8.02</td><td>63.31</td><td>110.80</td><td>47.49</td><td>Peak</td></tr> <tr> <td>4</td><td>5725.00</td><td>58.36</td><td>8.03</td><td>66.39</td><td>122.20</td><td>55.81</td><td>Peak</td></tr> </tbody> </table>		No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5650.00	48.53	7.89	56.42	68.20	11.78	Peak	2	5700.00	49.26	7.98	57.24	105.20	47.96	Peak	3	5720.00	55.29	8.02	63.31	110.80	47.49	Peak	4	5725.00	58.36	8.03	66.39	122.20	55.81	Peak
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																												
1	5650.00	48.07	7.89	55.96	68.20	12.24	Peak																																																																												
2	5700.00	48.88	7.98	56.86	105.20	48.34	Peak																																																																												
3	5720.00	55.10	8.02	63.12	110.80	47.68	Peak																																																																												
4	5725.00	59.37	8.03	67.40	122.20	54.80	Peak																																																																												
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																												
1	5650.00	48.53	7.89	56.42	68.20	11.78	Peak																																																																												
2	5700.00	49.26	7.98	57.24	105.20	47.96	Peak																																																																												
3	5720.00	55.29	8.02	63.31	110.80	47.49	Peak																																																																												
4	5725.00	58.36	8.03	66.39	122.20	55.81	Peak																																																																												
<p>802.11n20, 5825MHz, Bandedge, Horizontal</p>		<p>802.11n20, 5825MHz, Bandedge, Vertical</p>																																																																																	
<p>Project No.: 2502Q44145E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11n20_U-NII-3 high channel 5825MHz Peak:RBW:1MHz,VBW:3MHz</p>		<p>Project No.: 2502Q44145E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11n20_U-NII-3 high channel 5825MHz Peak:RBW:1MHz,VBW:3MHz</p>																																																																																	
<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5850.00</td><td>59.00</td><td>8.20</td><td>67.20</td><td>122.20</td><td>55.00</td><td>Peak</td></tr> <tr> <td>2</td><td>5855.00</td><td>55.49</td><td>8.21</td><td>63.70</td><td>110.80</td><td>47.10</td><td>Peak</td></tr> <tr> <td>3</td><td>5875.00</td><td>51.20</td><td>8.28</td><td>59.48</td><td>105.20</td><td>45.72</td><td>Peak</td></tr> <tr> <td>4</td><td>5925.00</td><td>48.75</td><td>8.40</td><td>57.15</td><td>68.20</td><td>11.05</td><td>Peak</td></tr> </tbody> </table>		No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5850.00	59.00	8.20	67.20	122.20	55.00	Peak	2	5855.00	55.49	8.21	63.70	110.80	47.10	Peak	3	5875.00	51.20	8.28	59.48	105.20	45.72	Peak	4	5925.00	48.75	8.40	57.15	68.20	11.05	Peak	<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5850.00</td><td>56.85</td><td>8.20</td><td>64.25</td><td>122.20</td><td>57.95</td><td>Peak</td></tr> <tr> <td>2</td><td>5855.00</td><td>54.41</td><td>8.21</td><td>62.62</td><td>110.80</td><td>48.18</td><td>Peak</td></tr> <tr> <td>3</td><td>5875.00</td><td>48.77</td><td>8.28</td><td>57.05</td><td>105.20</td><td>48.15</td><td>Peak</td></tr> <tr> <td>4</td><td>5925.00</td><td>48.50</td><td>8.40</td><td>57.30</td><td>68.20</td><td>10.90</td><td>Peak</td></tr> </tbody> </table>		No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5850.00	56.85	8.20	64.25	122.20	57.95	Peak	2	5855.00	54.41	8.21	62.62	110.80	48.18	Peak	3	5875.00	48.77	8.28	57.05	105.20	48.15	Peak	4	5925.00	48.50	8.40	57.30	68.20	10.90	Peak
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																												
1	5850.00	59.00	8.20	67.20	122.20	55.00	Peak																																																																												
2	5855.00	55.49	8.21	63.70	110.80	47.10	Peak																																																																												
3	5875.00	51.20	8.28	59.48	105.20	45.72	Peak																																																																												
4	5925.00	48.75	8.40	57.15	68.20	11.05	Peak																																																																												
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																												
1	5850.00	56.85	8.20	64.25	122.20	57.95	Peak																																																																												
2	5855.00	54.41	8.21	62.62	110.80	48.18	Peak																																																																												
3	5875.00	48.77	8.28	57.05	105.20	48.15	Peak																																																																												
4	5925.00	48.50	8.40	57.30	68.20	10.90	Peak																																																																												

5.3 Emission Bandwidth

Test Information:

Serial No.:	2YHK-5	Test Date:	2025/03/25~2025/03/29
Test Site:	RF	Test Mode:	Transmitting
Tester:	Tower Qing	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	23~24.9	Relative Humidity: (%)	37~44	ATM Pressure: (kPa)	100.4~101.5
-------------------	---------	------------------------	-------	---------------------	-------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Coaxial Attenuator	10dB	F-08-EM512	2024/06/13	2025/06/12
R&S	Spectrum Analyzer	FSV40	101589	2024/09/05	2025/09/04

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

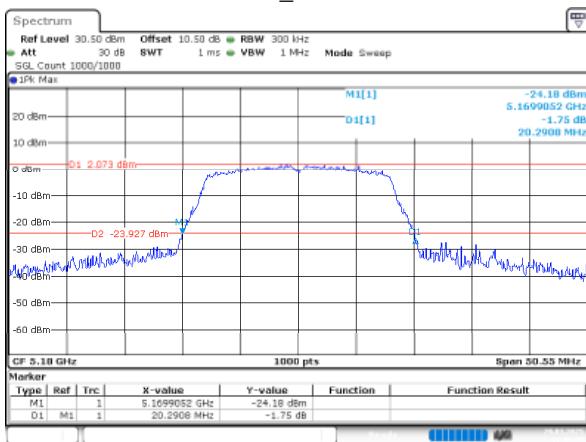
26dB Emission Bandwidth 5150-5250MHz

Mode	Test Frequency (MHz)	Result (MHz)
802.11a	5180	20.291
	5200	20.240
	5240	20.327
802.11n20	5180	20.842
	5200	20.695
	5240	20.747
802.11n40	5190	41.041
	5230	40.741
802.11ac80	5210	81.281

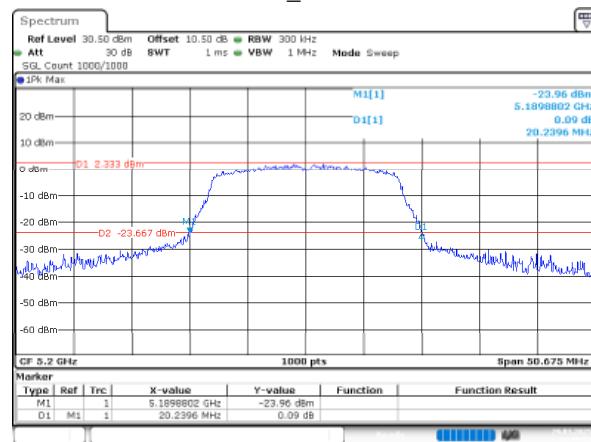
5250-5350MHz

Mode	Test Frequency (MHz)	Result (MHz)
802.11a	5260	19.970
	5280	19.870
	5320	19.970
802.11n20	5260	20.595
	5280	20.492
	5320	20.645
802.11n40	5270	40.841
	5310	40.941
802.11ac80	5290	86.286

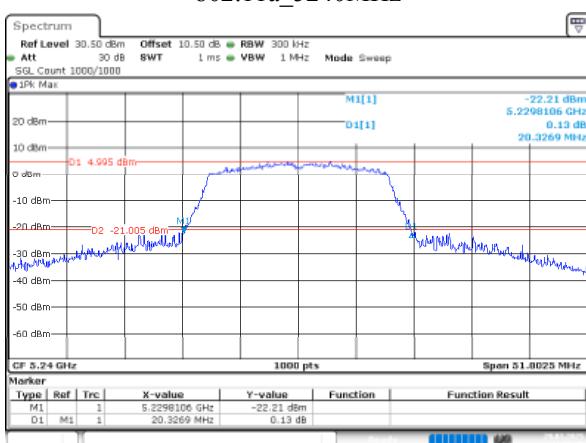
5470-5725MHz

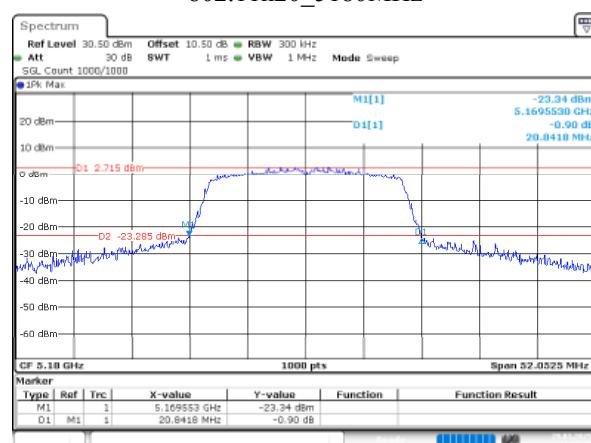

Mode	Test Frequency (MHz)	Result (MHz)
802.11a	5500	20.341
	5580	20.291
	5700	23.795
	5720	20.887
802.11n20	5500	23.033
	5580	25.415
	5700	23.681
	5720	23.828
802.11n40	5510	69.558
	5550	70.219
	5670	58.539
	5710	68.886
802.11ac80	5530	81.682
	5610	96.697
	5690	95.295

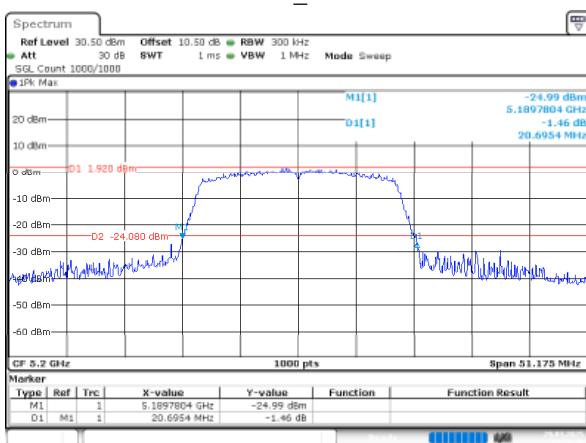
6dB Emission Bandwidth**5725-5850MHz**

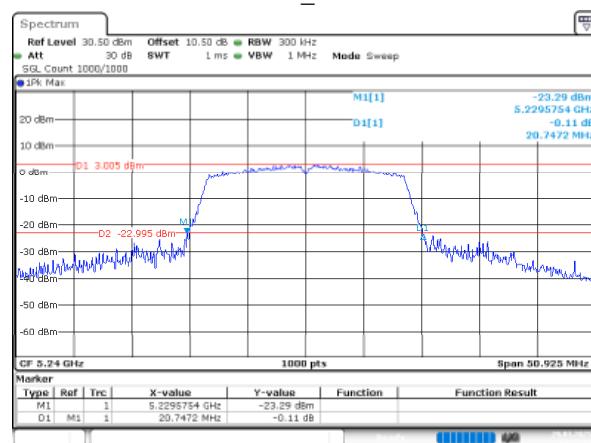

Mode	Test Frequency (MHz)	Result (MHz)	Limit (MHz)	Verdict
802.11a	5745	15.215	0.5	Pass
	5785	15.165	0.5	Pass
	5825	15.415	0.5	Pass
802.11n20	5745	15.165	0.5	Pass
	5785	15.215	0.5	Pass
	5825	15.165	0.5	Pass
802.11n40	5755	35.335	0.5	Pass
	5795	35.335	0.5	Pass
802.11ac80	5775	75.475	0.5	Pass

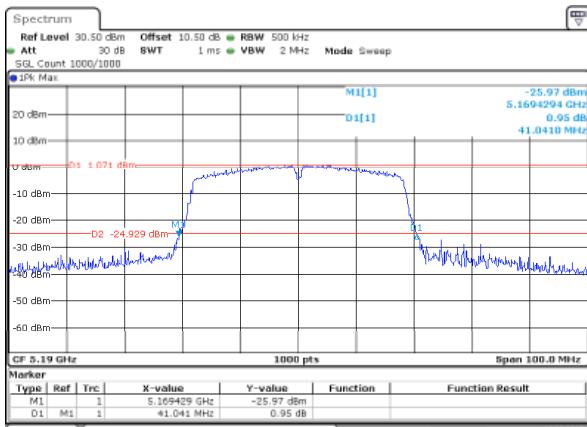
5150-5250MHz

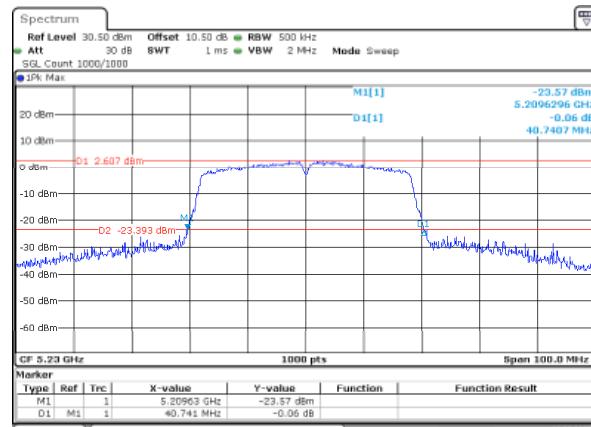

802.11a_5180MHz

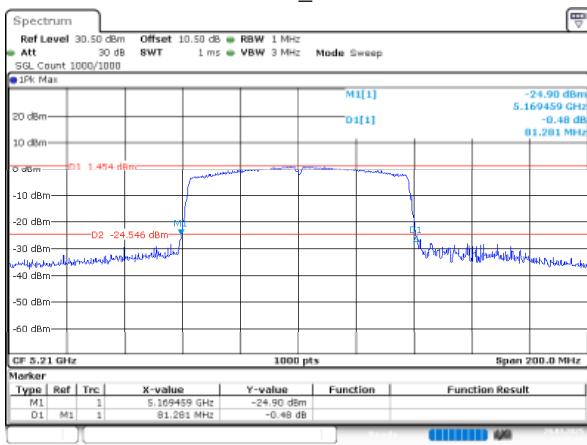

802.11a_5200MHz

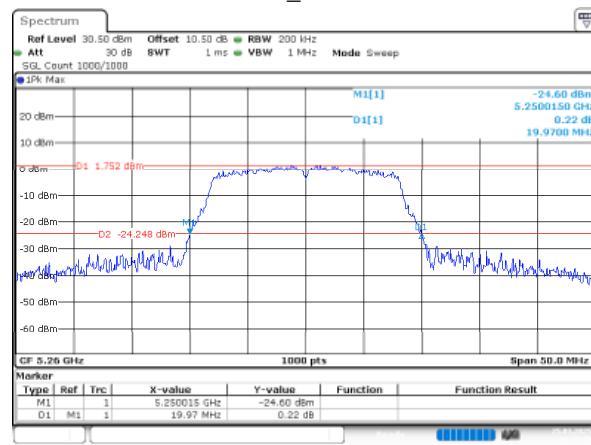

802.11a_5240MHz

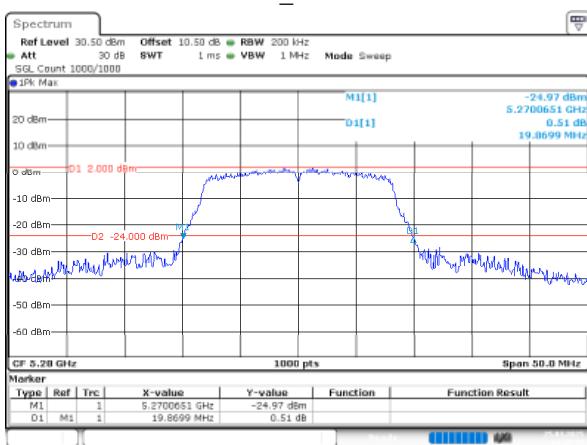

802.11n20_5180MHz

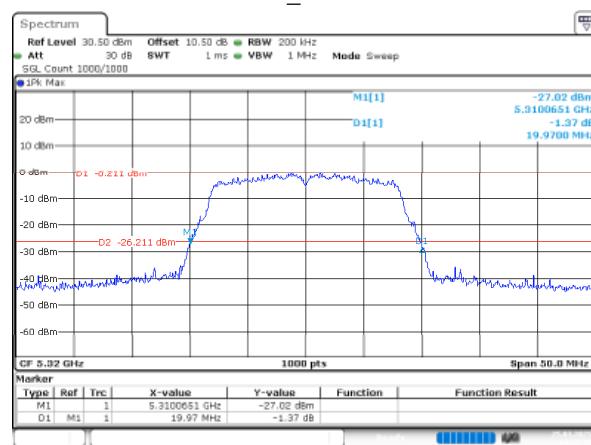

802.11n20_5200MHz

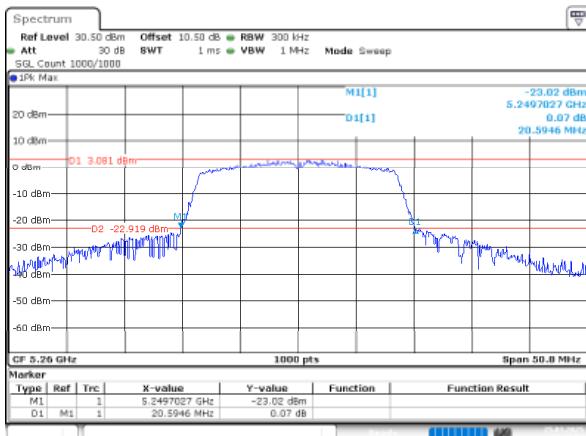

802.11n20_5240MHz


802.11n40_5190MHz

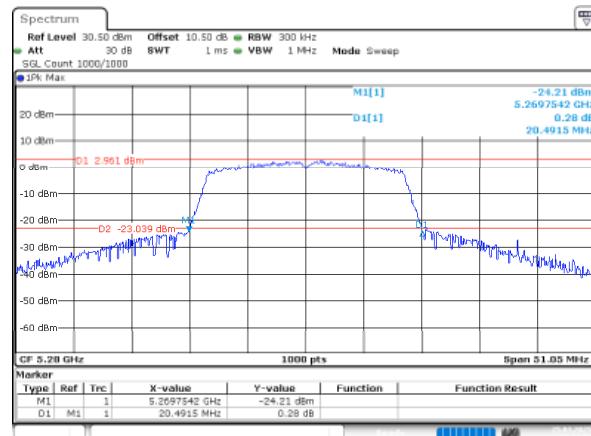

802.11n40_5230MHz


802.11ac80_5210MHz

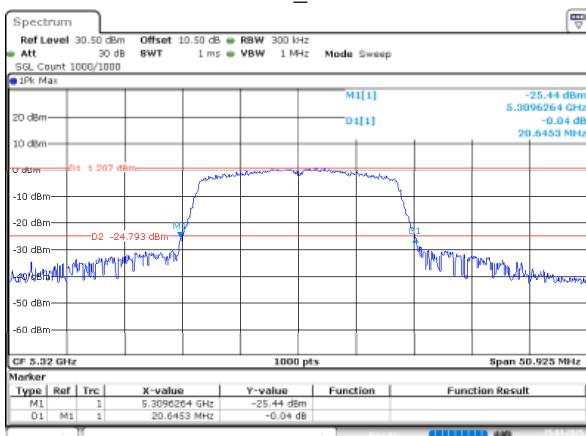

802.11a_5260MHz


802.11a_5280MHz

802.11a_5320MHz



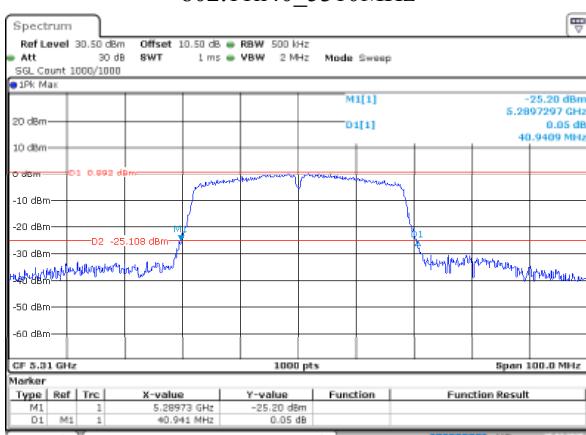
802.11n20_5260MHz


ProjectNo.:2502Q44145E-RF Test on Tower Qing
Date: 25.MAR.2025 14:32:54

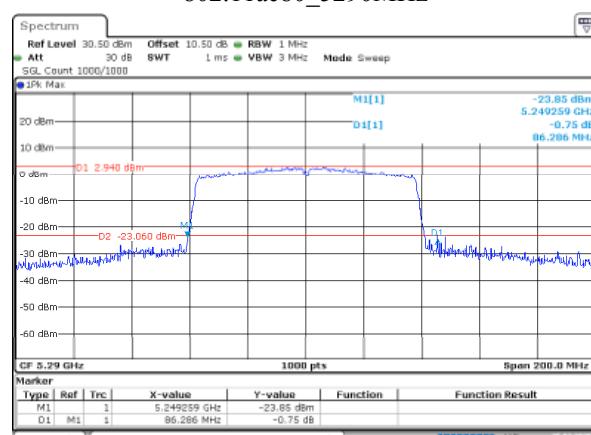
802.11n20_5280MHz


ProjectNo.:2502Q44145E-RF Test on Tower Qing
Date: 25.MAR.2025 14:34:14

802.11n20_5320MHz

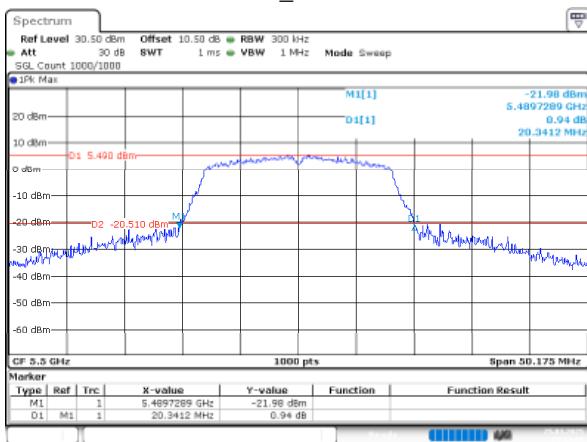

ProjectNo.:2502Q44145E-RF Test on Tower Qing
Date: 25.MAR.2025 14:35:14

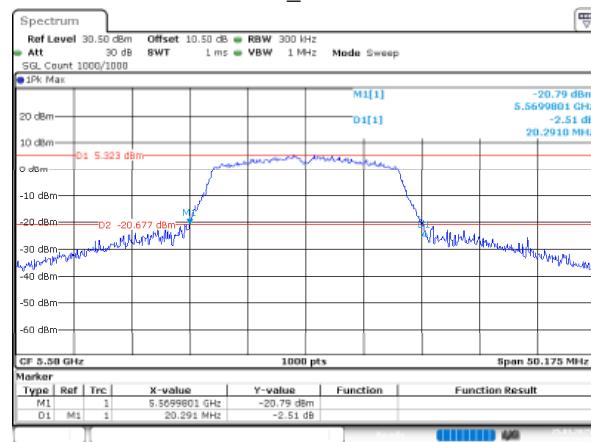
802.11n40_5270MHz


ProjectNo.:2502Q44145E-RF Test on Tower Qing
Date: 25.MAR.2025 14:37:12

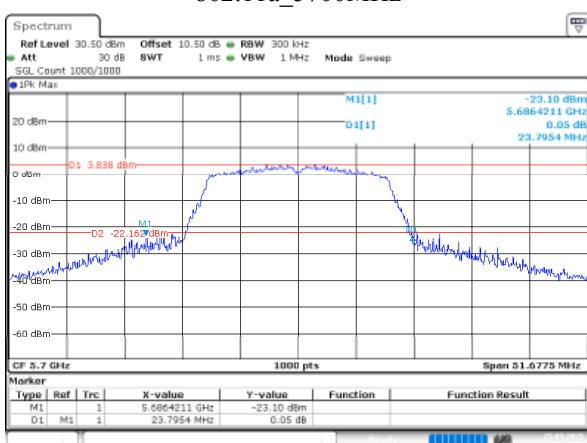
802.11n40_5310MHz

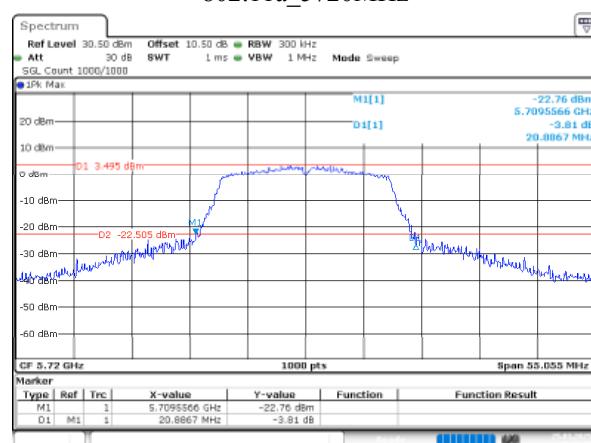
ProjectNo.:2502Q44145E-RF Test on Tower Qing
Date: 25.MAR.2025 14:38:24

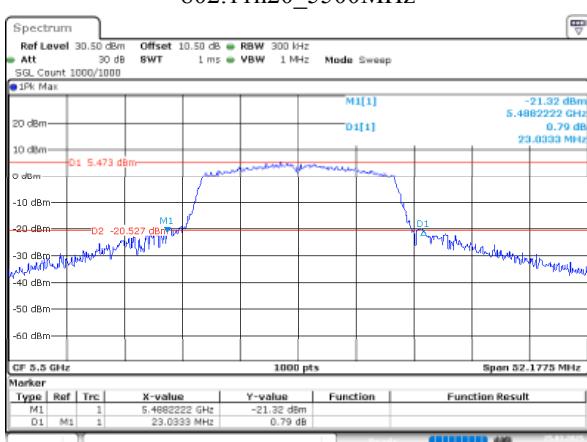

802.11ac80_5290MHz

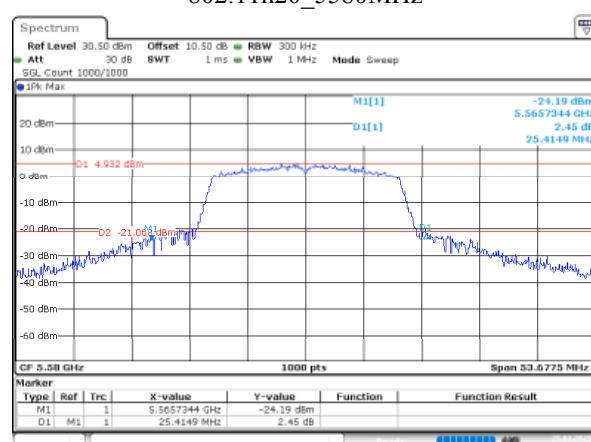

ProjectNo.:2502Q44145E-RF Test on Tower Qing
Date: 25.MAR.2025 14:39:25

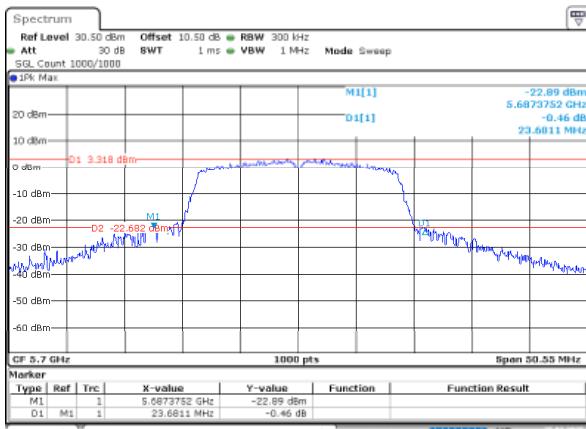
5470-5725MHz


802.11a_5500MHz

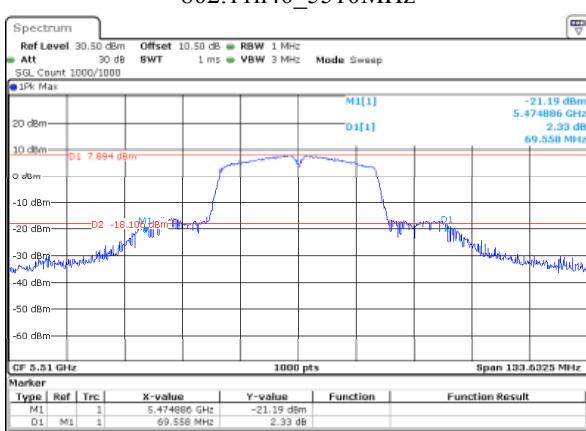

802.11a_5580MHz

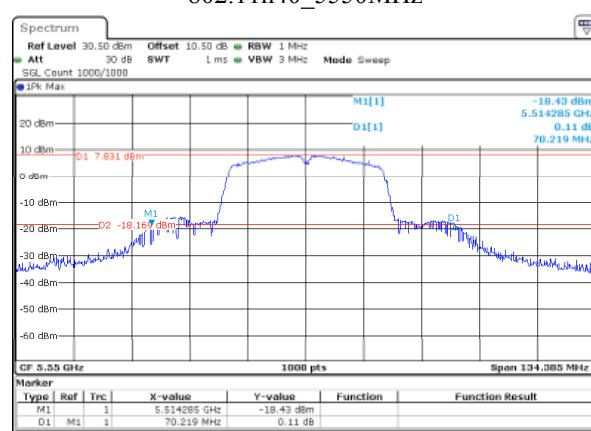

802.11a_5700MHz

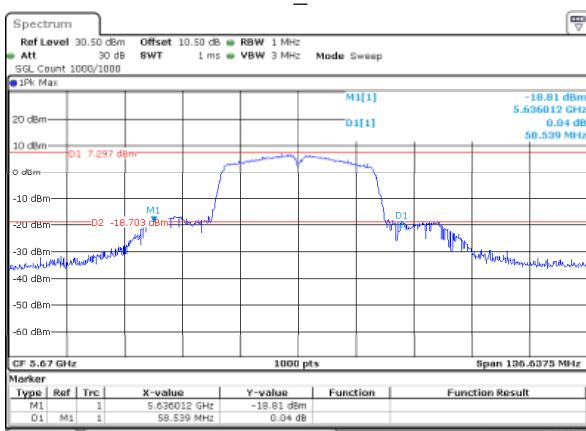

802.11a_5720MHz

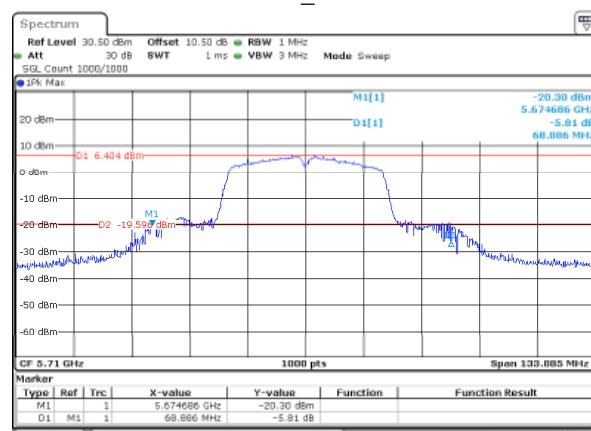

802.11n20_5500MHz

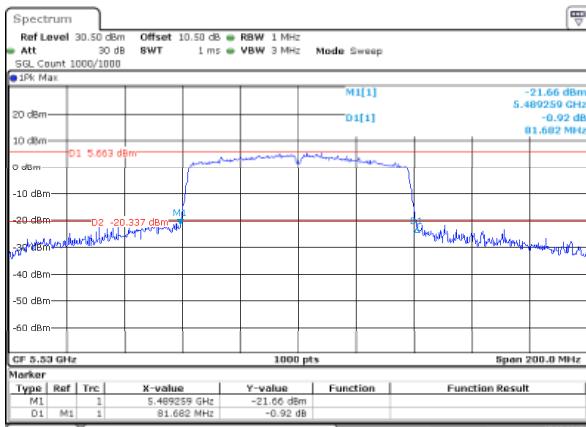

802.11n20_5580MHz

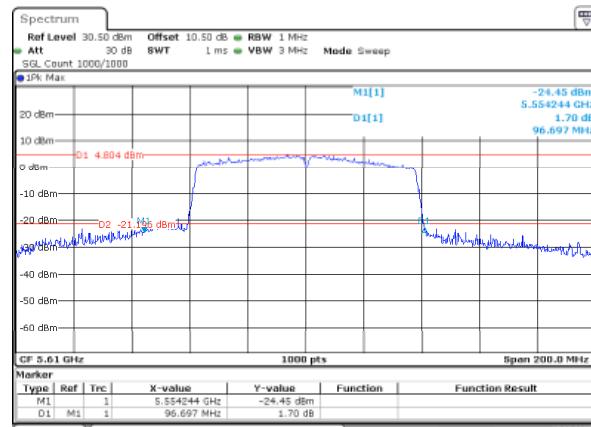

802.11n20_5700MHz

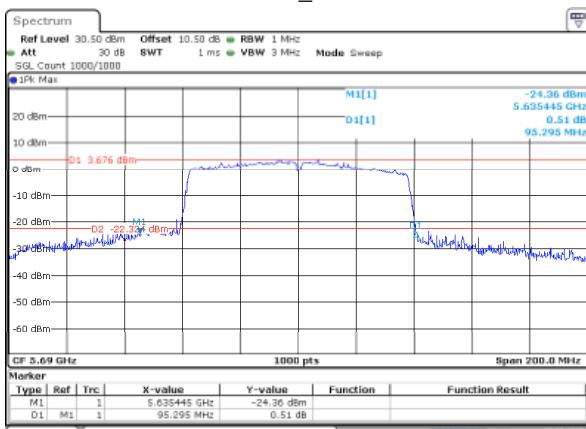

802.11n20_5720MHz

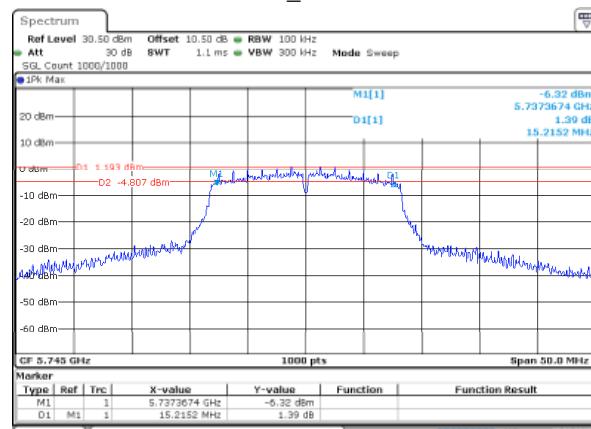

802.11n40_5510MHz

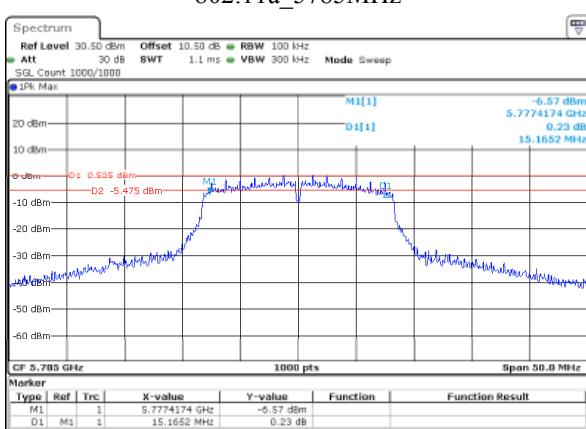

802.11n40_5550MHz

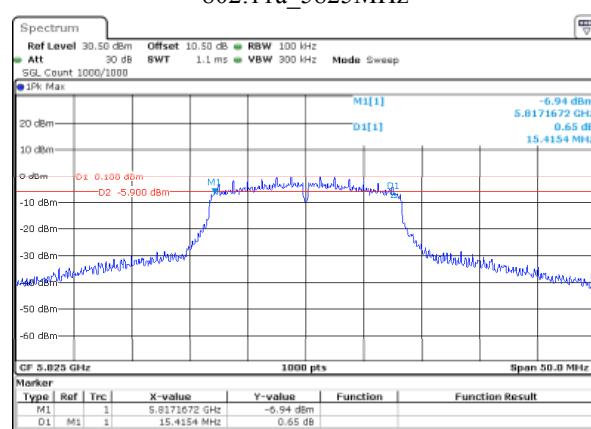

802.11n40_5670MHz

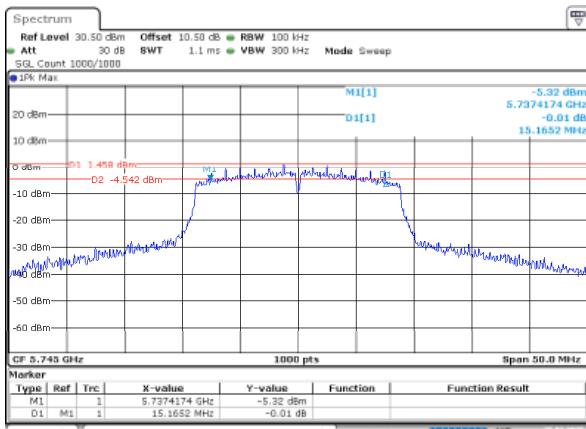

802.11n40_5710MHz


802.11ac80_5530MHz

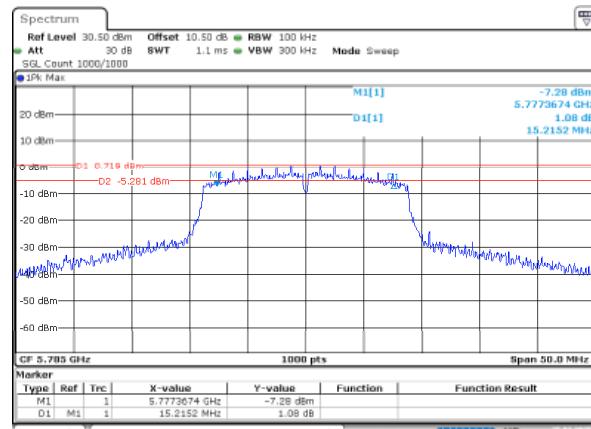

802.11ac80_5610MHz


802.11ac80_5690MHz

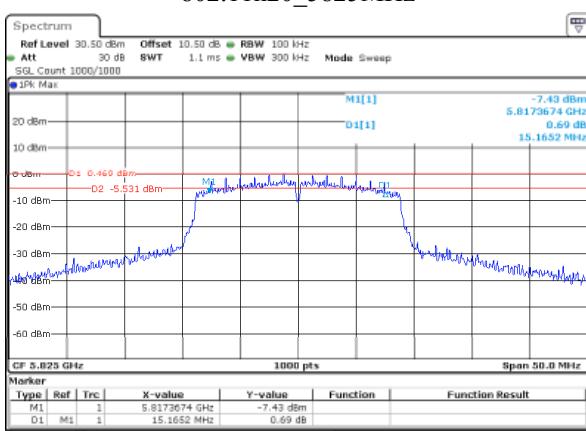

802.11a_5745MHz


802.11a_5785MHz

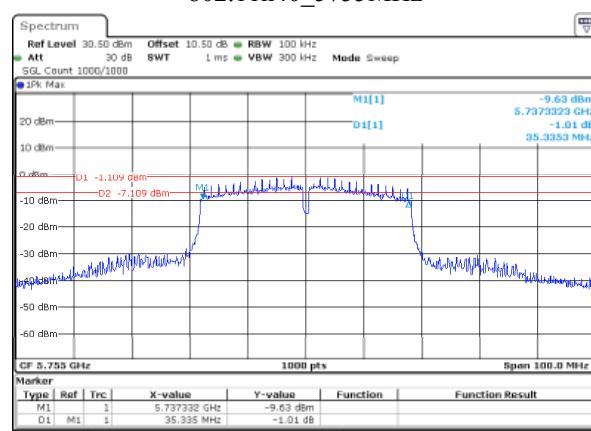
802.11a_5825MHz



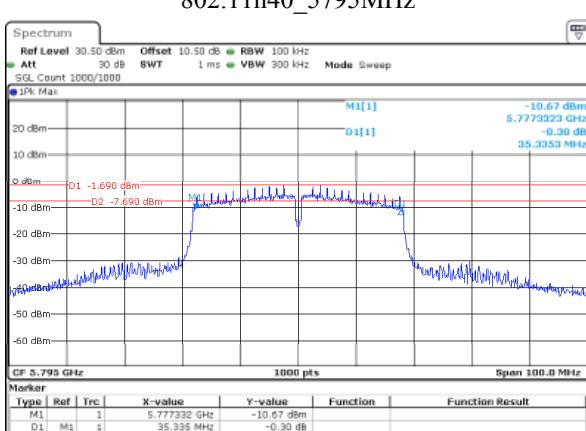
802.11n20_5745MHz


ProjectNo.:2502Q44145E-RF Test on Power Qing
Date: 25.MAR.2025 14:56:43

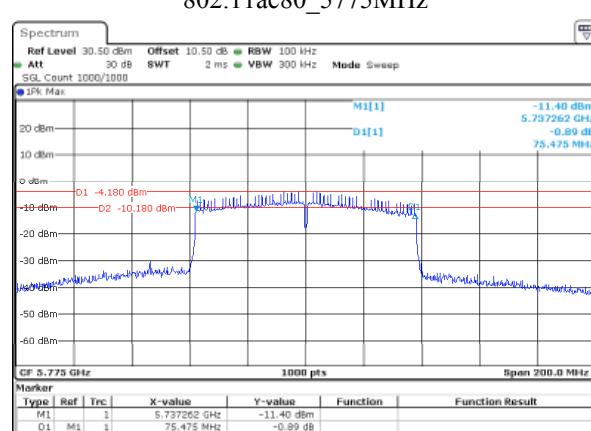
802.11n20_5785MHz


ProjectNo.:2502Q44145E-RF Test on Power Qing
Date: 25.MAR.2025 14:56:07

802.11n20_5825MHz


ProjectNo.:2502Q44145E-RF Test on Power Qing
Date: 25.MAR.2025 14:59:19

802.11n40_5755MHz


ProjectNo.:2502Q44145E-RF Test on Power Qing
Date: 25.MAR.2025 15:00:42

802.11n40_5795MHz

ProjectNo.:2502Q44145E-RF Test on Power Qing
Date: 25.MAR.2025 15:01:34

802.11ac80_5775MHz

ProjectNo.:2502Q44145E-RF Test on Power Qing
Date: 25.MAR.2025 15:02:44

5.4 99% Occupied Bandwidth

Test Information:

Serial No.:	2YHK-5	Test Date:	2025/03/25~2025/03/29
Test Site:	RF	Test Mode:	Transmitting
Tester:	Tower Qing	Test Result:	N/A

Environmental Conditions:

Temperature: (°C)	23~24.9	Relative Humidity: (%)	37~44	ATM Pressure: (kPa)	100.4~101.5
-------------------	---------	------------------------	-------	---------------------	-------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Coaxial Attenuator	10dB	F-08-EM512	2024/06/13	2025/06/12
R&S	Spectrum Analyzer	FSV40	101589	2024/09/05	2025/09/04

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

5150-5250MHz

Mode	Test Frequency (MHz)	99% OBW (MHz)
802.11a	5180	16.650
	5200	16.600
	5240	16.600
802.11n20	5180	17.800
	5200	17.600
	5240	17.650
802.11n40	5190	36.200
	5230	36.200
802.11ac80	5210	75.400

Note:

The 99% Occupied Bandwidth have not fallen into the band 5250-5350MHz, please refer to the test plots of 99% Occupied Bandwidth.

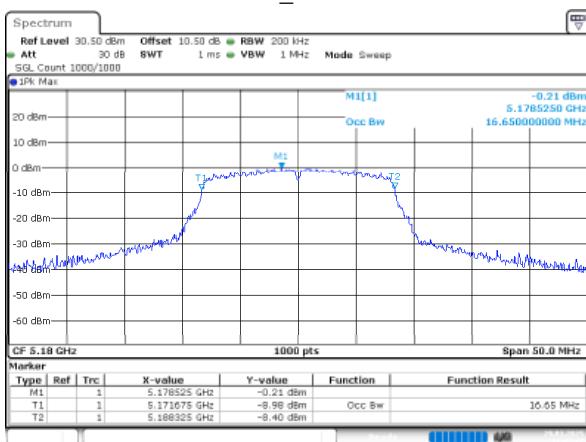
5250-5350MHz

Mode	Test Frequency (MHz)	99% OBW (MHz)
802.11a	5260	16.450
	5280	16.500
	5320	16.500
802.11n20	5260	17.650
	5280	17.550
	5320	17.600
802.11n40	5270	36.200
	5310	36.200
802.11ac80	5290	75.400

5470-5725MHz

Mode	Test Frequency (MHz)	99% OBW (MHz)
802.11a	5500	16.500
	5580	16.550
	5700	16.500
	5720	16.500
802.11n20	5500	17.650
	5580	17.650
	5700	17.650
	5720	17.600
802.11n40	5510	36.400
	5550	36.500
	5670	36.400
	5710	36.400
802.11ac80	5530	75.600
	5610	75.400
	5690	75.400

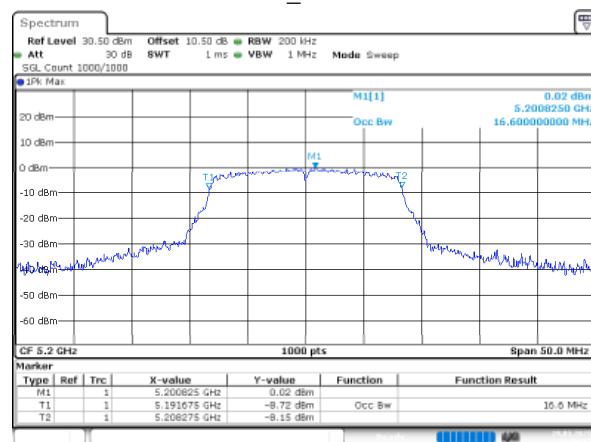
5725-5850MHz


Mode	Test Frequency (MHz)	99% OBW (MHz)
802.11a	5745	16.650
	5785	16.700
	5825	16.700
802.11n20	5745	17.750
	5785	17.800
	5825	17.800
802.11n40	5755	36.600
	5795	36.600
802.11ac80	5775	75.800

Note:

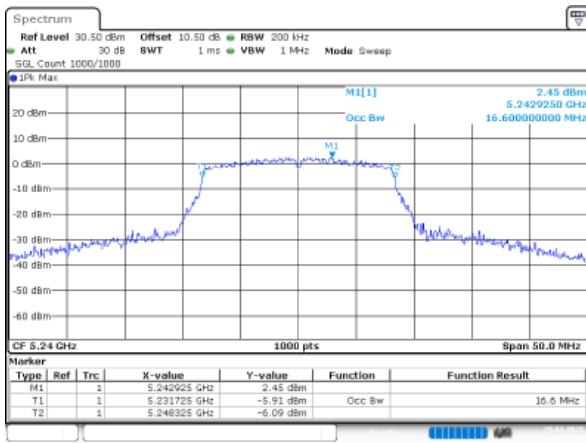
The 99% Occupied Bandwidth have not fallen into the band 5470-5725MHz, please refer to the test plots of 99% Occupied Bandwidth.

5150-5250MHz


802.11a_5180MHz

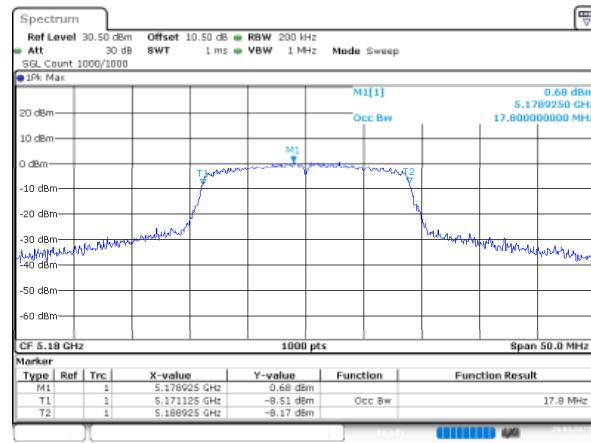
ProjectNo.: 2502Q44145E-RF Test on Power Qing
Date: 29-MAR-2025 11:47:14

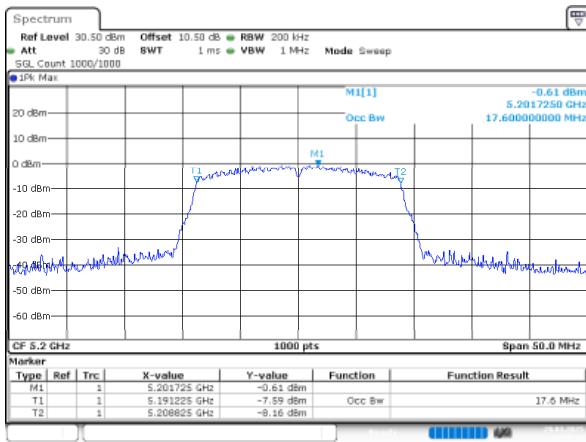
802.11a_5200MHz


802.11a_5200MHz

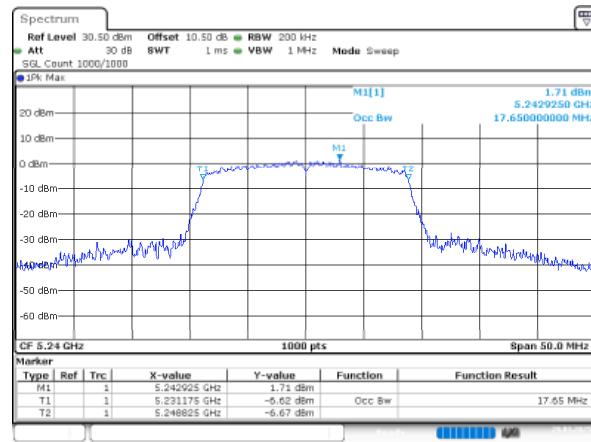
ProjectNo.: 2502Q44145E-RF Test on Power Qing
Date: 29-MAR-2025 11:50:17

802.11a_5240MHz

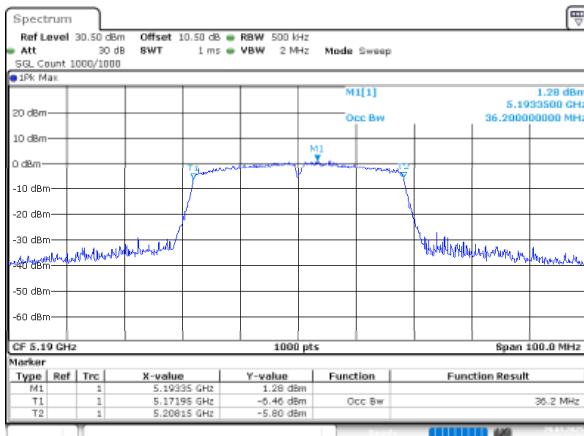

802.11n20_5180MHz


ProjectNo.: 2502Q44145E-RF Test on Power Qing
Date: 29-MAR-2025 11:52:08

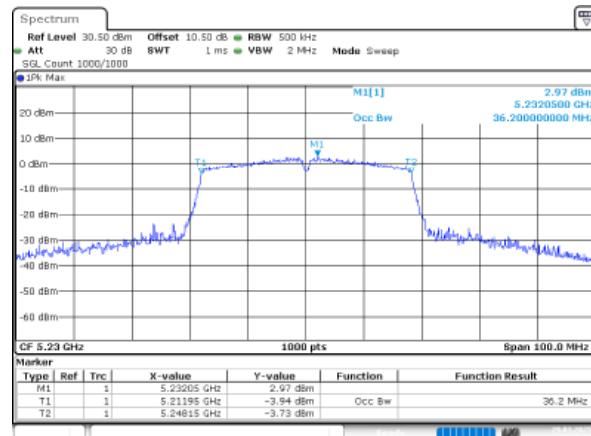
802.11n20_5200MHz


802.11n20_5240MHz

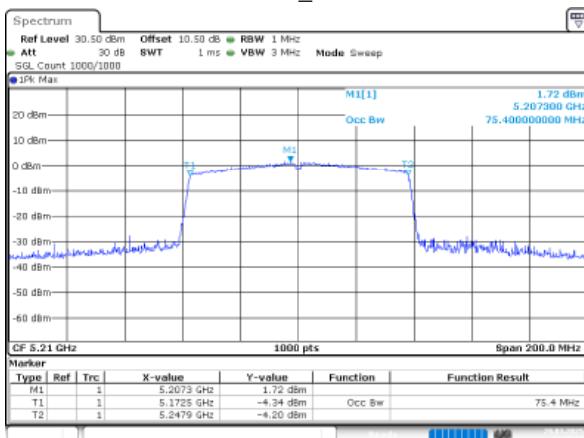
ProjectNo.: 2502Q44145E-RF Test on Power Qing
Date: 29-MAR-2025 11:54:05

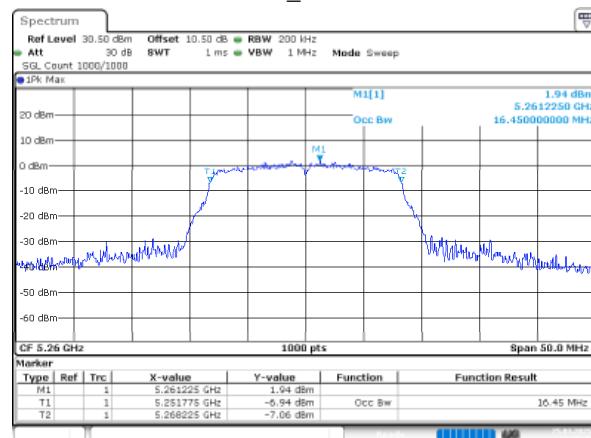


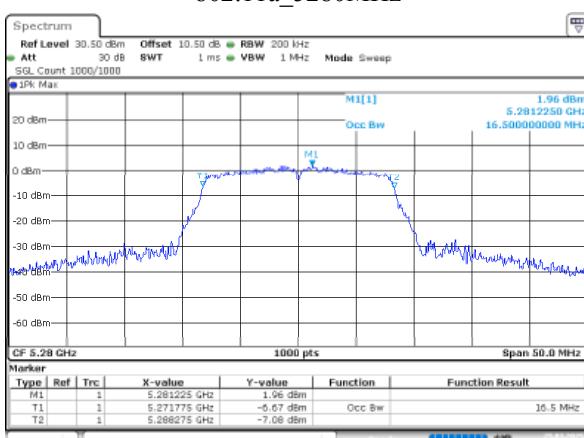
ProjectNo.: 2502Q44145E-RF Test on Power Qing
Date: 29-MAR-2025 13:21:10

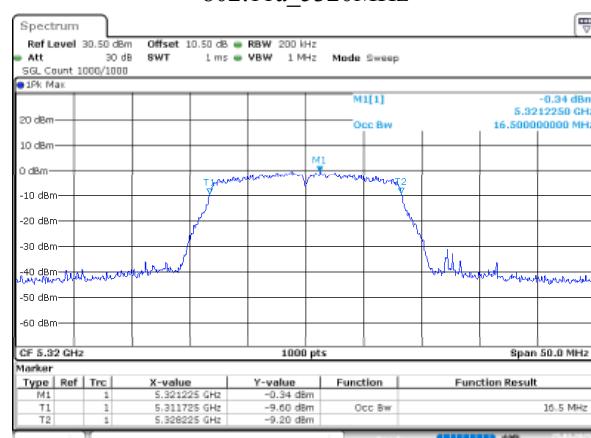


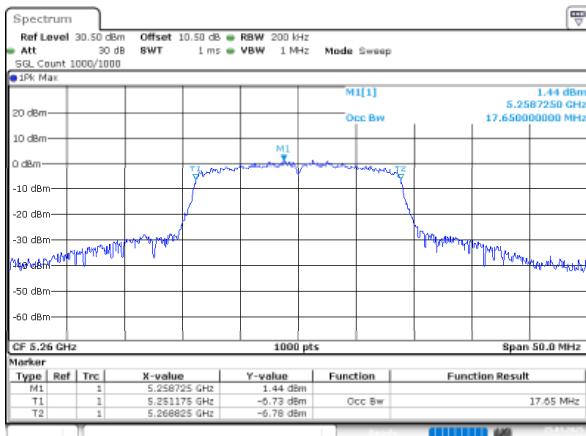
ProjectNo.: 2502Q44145E-RF Test on Power Qing
Date: 29-MAR-2025 13:22:17


802.11n40_5190MHz

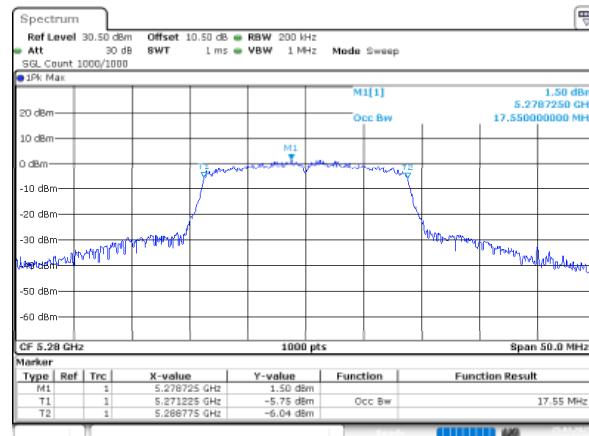

802.11n40_5230MHz


802.11ac80_5210MHz

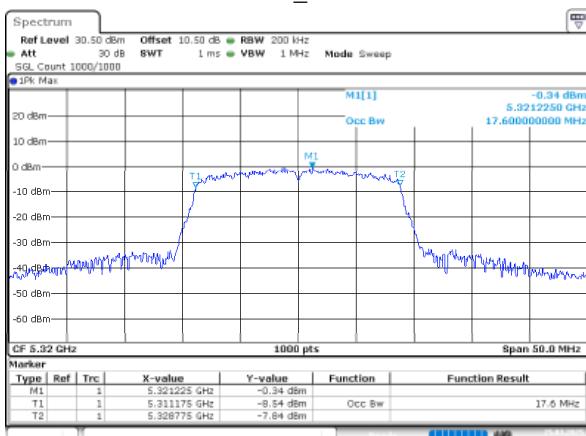

802.11a_5260MHz


802.11a_5280MHz

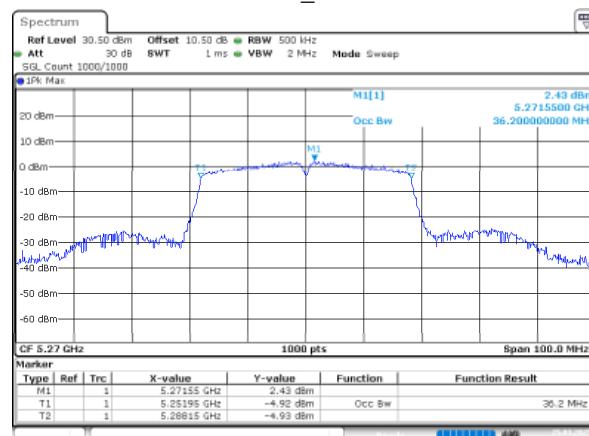
802.11a_5320MHz



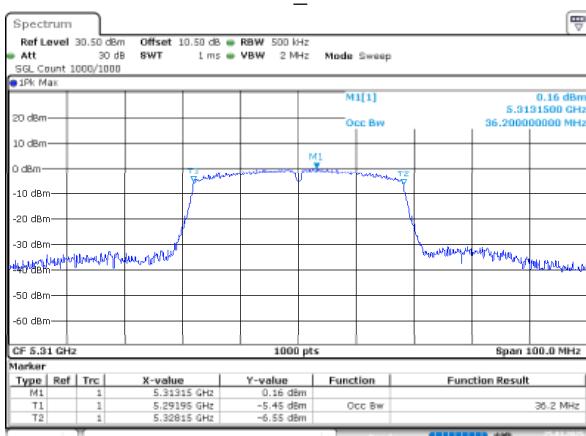
802.11n20_5260MHz


ProjectNo.: 2502Q44145E-RF Test on Power Qing
Date: 25.MAR.2025 14:33:18

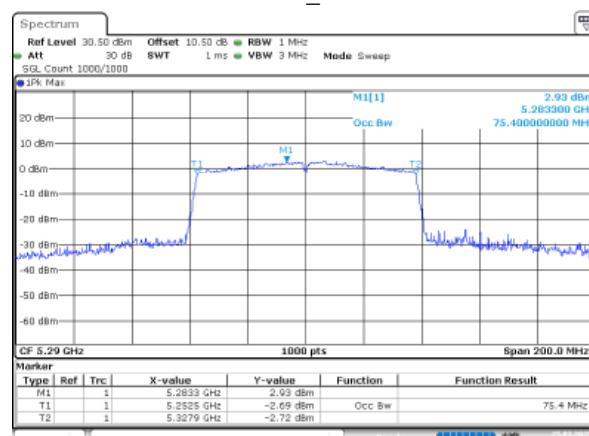
802.11n20_5280MHz


ProjectNo.: 2502Q44145E-RF Test on Power Qing
Date: 25.MAR.2025 14:34:41

802.11n20_5320MHz

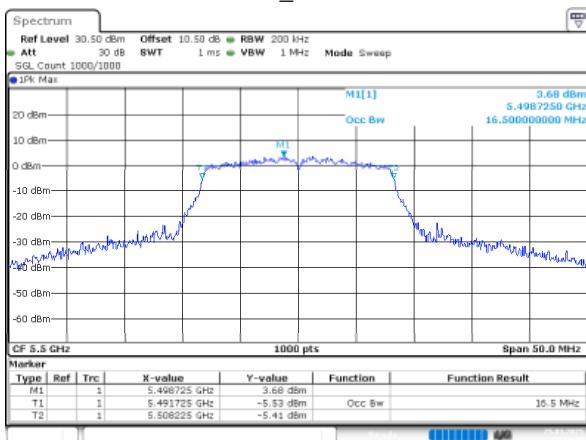

ProjectNo.: 2502Q44145E-RF Test on Power Qing
Date: 25.MAR.2025 14:36:07

802.11n40_5270MHz


ProjectNo.: 2502Q44145E-RF Test on Power Qing
Date: 25.MAR.2025 14:37:14

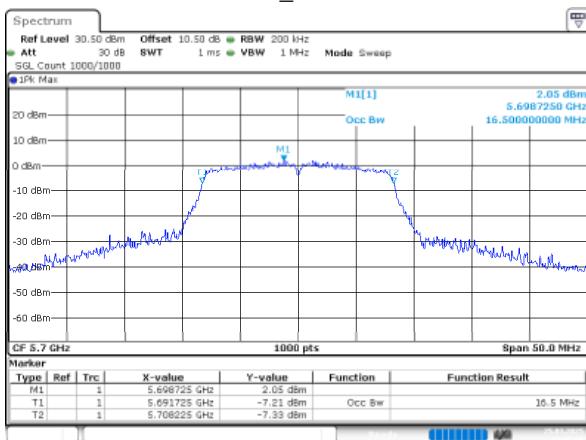
802.11n40_5310MHz

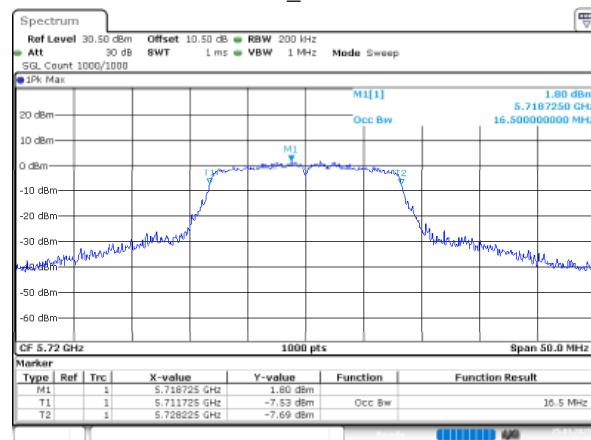
ProjectNo.: 2502Q44145E-RF Test on Power Qing
Date: 25.MAR.2025 14:38:39

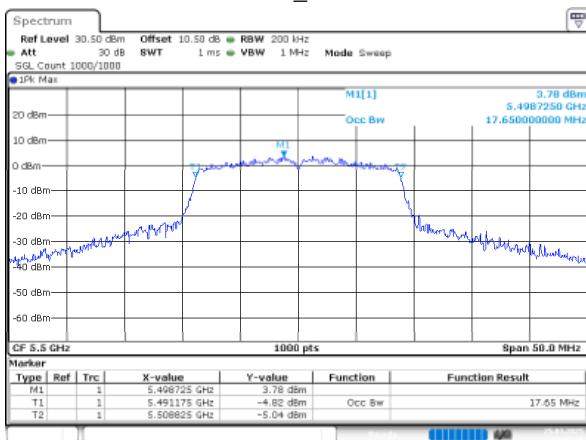

802.11ac80_5290MHz

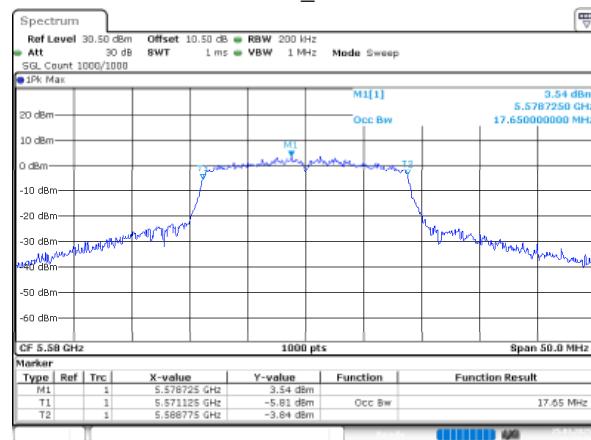
ProjectNo.: 2502Q44145E-RF Test on Power Qing
Date: 25.MAR.2025 14:39:42

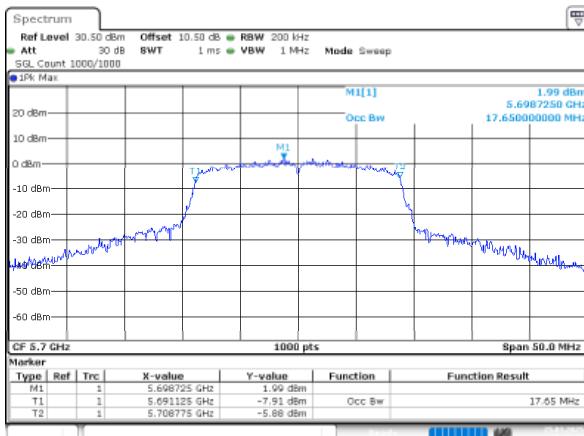
5470-5725MHz


802.11a_5500MHz

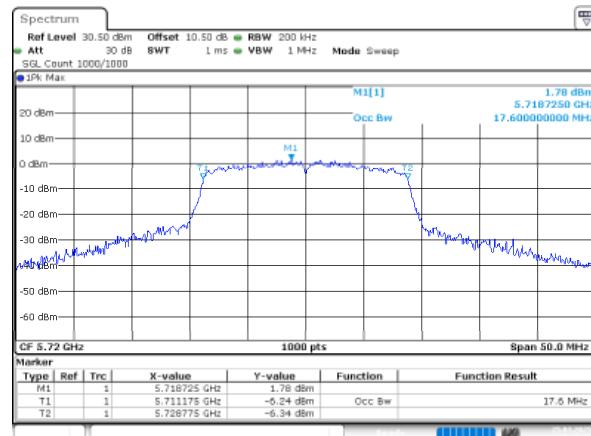

802.11a_5580MHz


802.11a_5700MHz

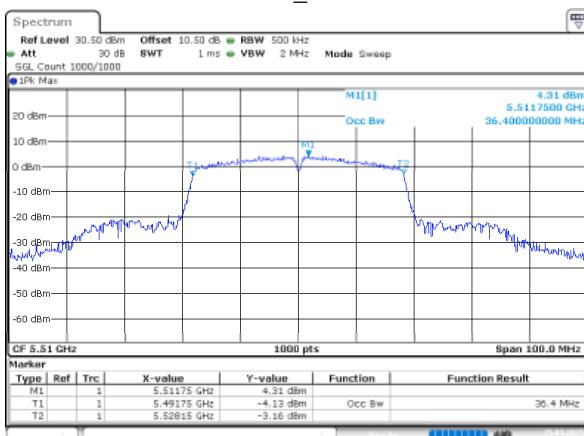

802.11a_5720MHz


802.11n20_5500MHz

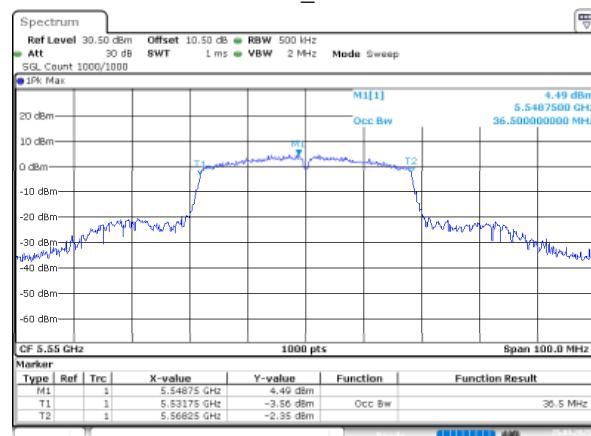
802.11n20_5580MHz



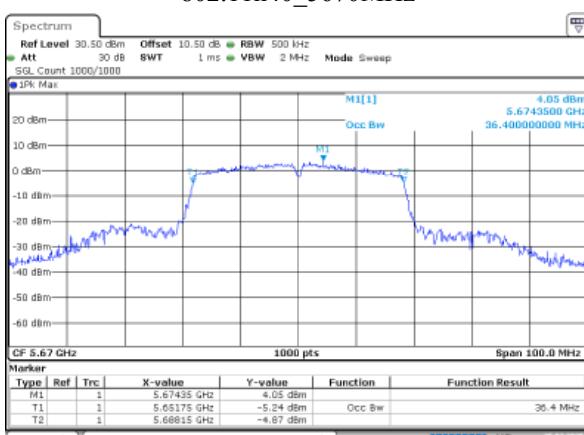
802.11n20_5700MHz


ProjectNo.:2502Q44145E-RF TesterID:Power Qing
Date: 25.MAR.2025 15:26:140

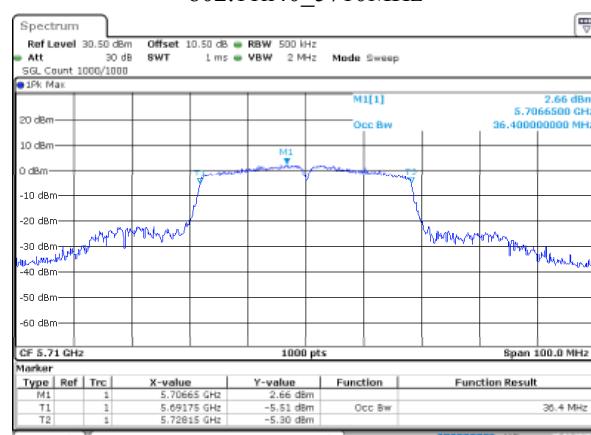
802.11n20_5720MHz


ProjectNo.:2502Q44145E-RF TesterID:Power Qing
Date: 25.MAR.2025 15:28:00

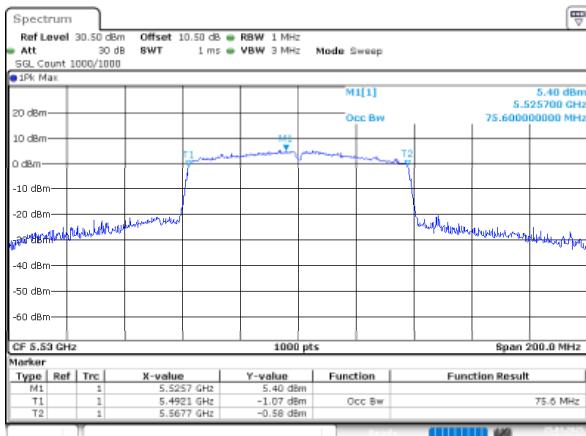
802.11n40_5510MHz


ProjectNo.:2502Q44145E-RF TesterID:Power Qing
Date: 25.MAR.2025 15:29:13

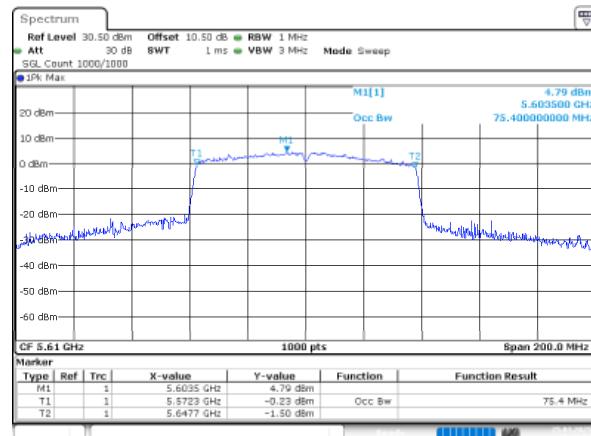
802.11n40_5550MHz


ProjectNo.:2502Q44145E-RF TesterID:Power Qing
Date: 25.MAR.2025 15:31:07

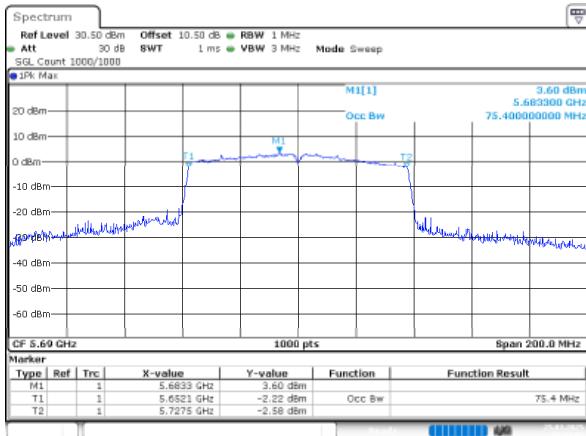
802.11n40_5670MHz

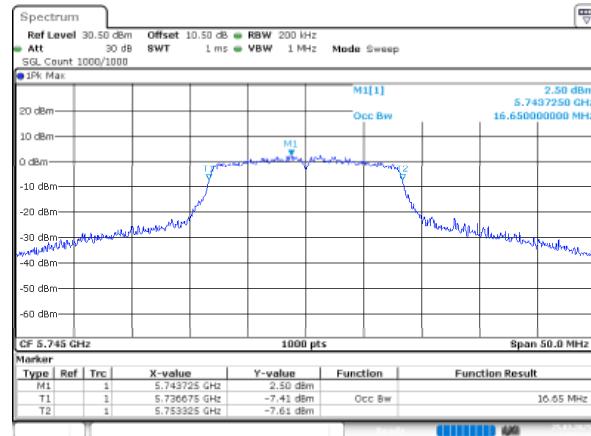

ProjectNo.:2502Q44145E-RF TesterID:Power Qing
Date: 25.MAR.2025 15:32:44

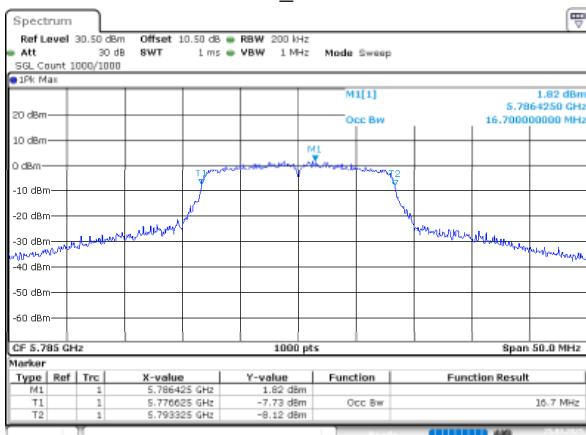
802.11n40_5710MHz

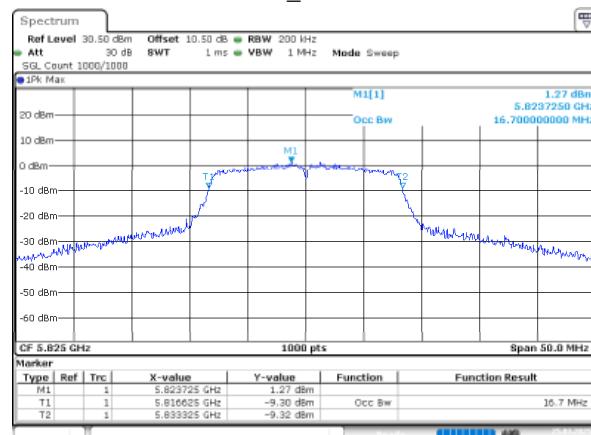


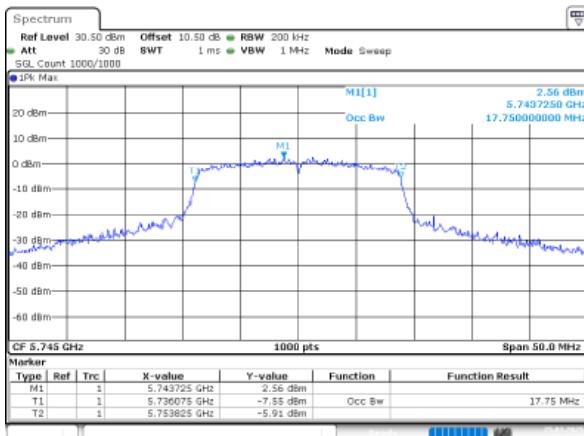
ProjectNo.:2502Q44145E-RF TesterID:Power Qing
Date: 25.MAR.2025 15:33:47


802.11ac80_5530MHz

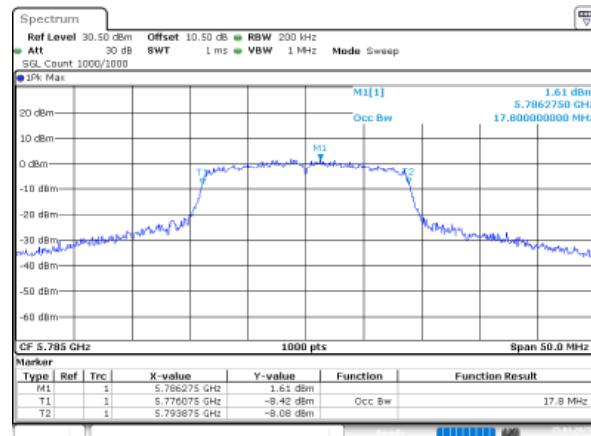

802.11ac80_5610MHz


802.11ac80_5690MHz

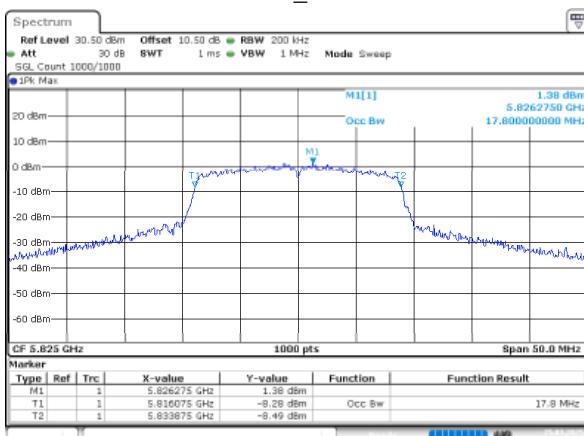

802.11a_5745MHz


802.11a_5785MHz

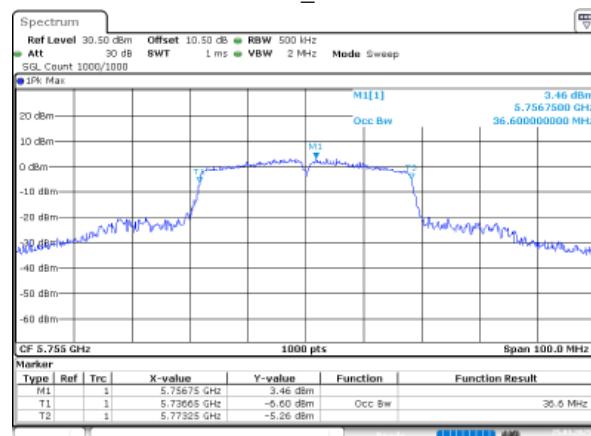
802.11a_5825MHz



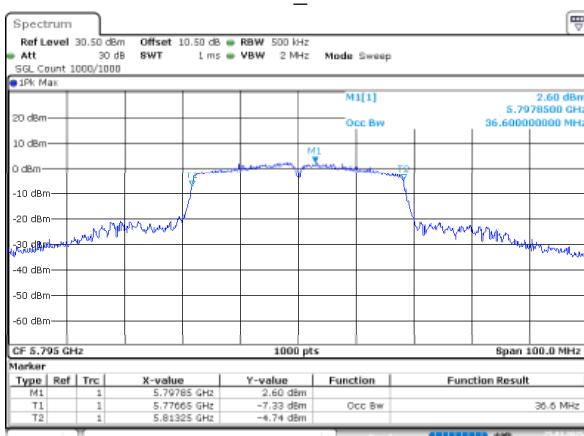
802.11n20_5745MHz


ProjectNo.:2502Q44145E-RF TesterID:Power Qing
Date: 25.MAR.2025 14:57:13

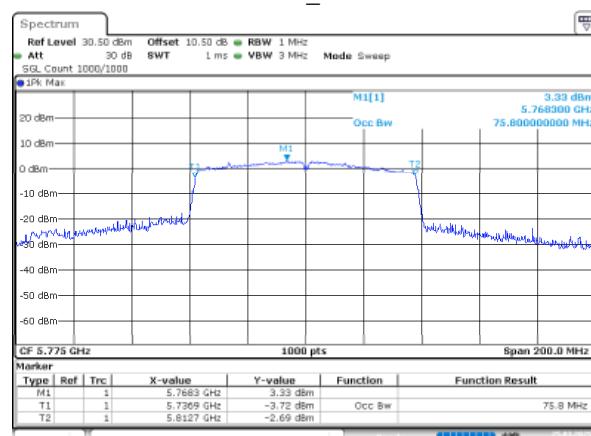
802.11n20_5785MHz


ProjectNo.:2502Q44145E-RF TesterID:Power Qing
Date: 25.MAR.2025 14:58:38

802.11n20_5825MHz


ProjectNo.:2502Q44145E-RF TesterID:Power Qing
Date: 25.MAR.2025 14:59:43

802.11n40_5755MHz


ProjectNo.:2502Q44145E-RF TesterID:Power Qing
Date: 25.MAR.2025 15:00:57

802.11n40_5795MHz

ProjectNo.:2502Q44145E-RF TesterID:Power Qing
Date: 25.MAR.2025 15:01:48

802.11ac80_5775MHz

ProjectNo.:2502Q44145E-RF TesterID:Power Qing
Date: 25.MAR.2025 15:03:02

5.5 Maximum Conducted Output Power

Test Information:

Serial No.:	2YHK-5	Test Date:	2025/03/25
Test Site:	RF	Test Mode:	Transmitting
Tester:	Tower Qing	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	23.2	Relative Humidity: (%)	47	ATM Pressure: (kPa)	100.4
-------------------	------	------------------------	----	---------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Coaxial Attenuator	10dB	F-08-EM512	2024/06/13	2025/06/12
Anritsu	Microwave Peak Power Sensor	MA24418A	12618	2024/08/27	2025/08/26

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

5150-5250MHz

Mode	Test Frequency (MHz)	Average Output Power(dBm)	Limit (dBm)	Verdict
802.11a	5180	11.72	24	Pass
	5200	11.77	24	Pass
	5240	13.24	24	Pass
802.11n20	5180	11.59	24	Pass
	5200	11.66	24	Pass
	5240	13.07	24	Pass
802.11n40	5190	11.55	24	Pass
	5230	13.05	24	Pass
802.11ac80	5210	11.67	24	Pass

Note: The device is a Client device.

5250-5350MHz

Mode	Test Frequency (MHz)	Average Output Power(dBm)	Limit (dBm)	Verdict
802.11a	5260	11.45	24	Pass
	5280	11.46	23.98	Pass
	5320	9.15	24	Pass
802.11n20	5260	10.92	24	Pass
	5280	10.93	24	Pass
	5320	9.07	24	Pass
802.11n40	5270	10.91	24	Pass
	5310	9.03	24	Pass
802.11ac80	5290	11.11	24	Pass

5470-5725MHz

Mode	Test Frequency (MHz)	Average Output Power(dBm)	Limit (dBm)	Verdict
802.11a	5500	13.46	24	Pass
	5580	13.12	24	Pass
	5700	11.39	24	Pass
	5720	10.58	24	Pass
802.11n20	5500	13.18	24	Pass
	5580	12.86	24	Pass
	5700	11.47	24	Pass
	5720	10.41	24	Pass
802.11n40	5510	13.16	24	Pass
	5550	13.19	24	Pass
	5670	11.88	24	Pass
	5710	10.93	24	Pass
802.11ac80	5530	13.29	24	Pass
	5610	12.77	24	Pass
	5690	11.44	24	Pass

5725-5850MHz

Mode	Test Frequency (MHz)	Average Output Power(dBm)	Limit (dBm)	Verdict
802.11a	5745	12.02	30	Pass
	5785	11.35	30	Pass
	5825	10.77	30	Pass
802.11n20	5745	11.97	30	Pass
	5785	11.28	30	Pass
	5825	10.76	30	Pass
802.11n40	5755	11.69	30	Pass
	5795	11.18	30	Pass
802.11ac80	5775	11.48	30	Pass

5.6 Power Spectral Density

Test Information:

Serial No.:	2YHK-5	Test Date:	2025/03/29~2025/03/31
Test Site:	RF	Test Mode:	Transmitting
Tester:	Tower Qing	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	23~24.9	Relative Humidity: (%)	37~44	ATM Pressure: (kPa)	100.4~101.5
-------------------	---------	------------------------	-------	---------------------	-------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Coaxial Attenuator	10dB	F-08-EM512	2024/06/13	2025/06/12
R&S	Spectrum Analyzer	FSV40	101589	2024/09/05	2025/09/04

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

5150-5250MHz

Mode	Test Frequency (MHz)	Reading (dBm/MHz)	Duty Cycle Factor(dB)	Result (dBm/MHz)	Limit (dBm/MHz)	Verdict
802.11a	5180	-0.33	0	-0.33	11	Pass
	5200	-0.01	0	-0.01	11	Pass
	5240	2.83	0	2.83	11	Pass
802.11n20	5180	0.50	0	0.50	11	Pass
	5200	-0.71	0	-0.71	11	Pass
	5240	0.92	0	0.92	11	Pass
802.11n40	5190	-3.26	0	-3.26	11	Pass
	5230	-1.98	0	-1.98	11	Pass
802.11ac80	5210	-6.66	0	-6.66	11	Pass

Note: The device is a Client device.

5250-5350MHz

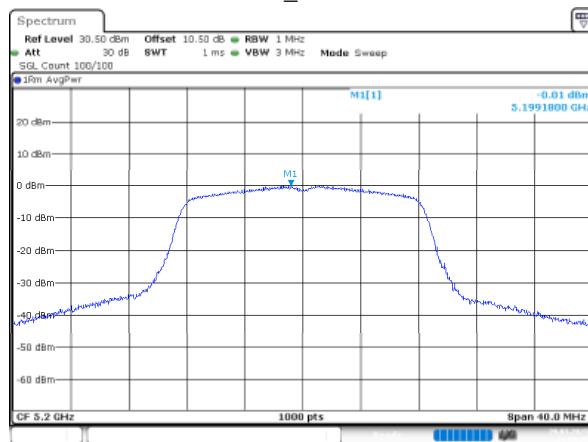
Mode	Test Frequency (MHz)	Reading (dBm/MHz)	Duty Cycle Factor(dB)	Result (dBm/MHz)	Limit (dBm/MHz)	Verdict
802.11a	5260	-0.45	0	-0.45	11	Pass
	5280	-1.10	0	-1.10	11	Pass
	5320	-2.96	0	-2.96	11	Pass
802.11n20	5260	-1.30	0	-1.30	11	Pass
	5280	-0.74	0	-0.74	11	Pass
	5320	-2.59	0	-2.59	11	Pass
802.11n40	5270	-3.99	0	-3.99	11	Pass
	5310	-6.26	0	-6.26	11	Pass
802.11ac80	5290	-7.40	0	-7.40	11	Pass

5470-5725MHz

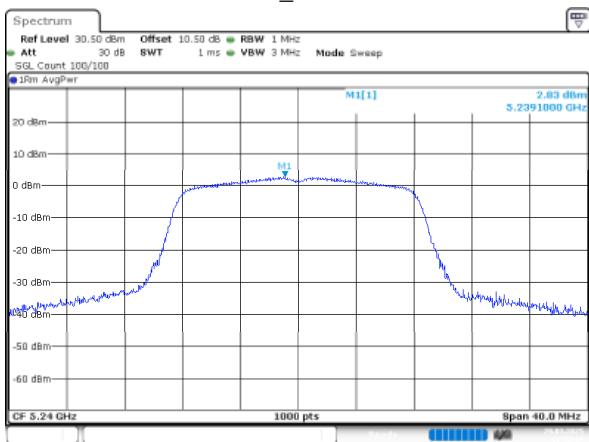
Mode	Test Frequency (MHz)	Reading (dBm/MHz)	Duty Cycle Factor(dB)	Result (dBm/MHz)	Limit (dBm/MHz)	Verdict
802.11a	5500	2.05	0	2.05	11	Pass
	5580	1.43	0	1.43	11	Pass
	5700	-0.58	0	-0.58	11	Pass
	5720	-0.79	0	-0.79	11	Pass
802.11n20	5500	1.46	0	1.46	11	Pass
	5580	1.04	0	1.04	11	Pass
	5700	-0.83	0	-0.83	11	Pass
	5720	-1.21	0	-1.21	11	Pass
802.11n40	5510	-1.42	0	-1.42	11	Pass
	5550	-1.74	0	-1.74	11	Pass
	5670	-3.43	0	-3.43	11	Pass
	5710	-3.96	0	-3.96	11	Pass
802.11ac80	5530	-4.82	0	-4.82	11	Pass
	5610	-5.60	0	-5.60	11	Pass
	5690	-7.03	0	-7.03	11	Pass

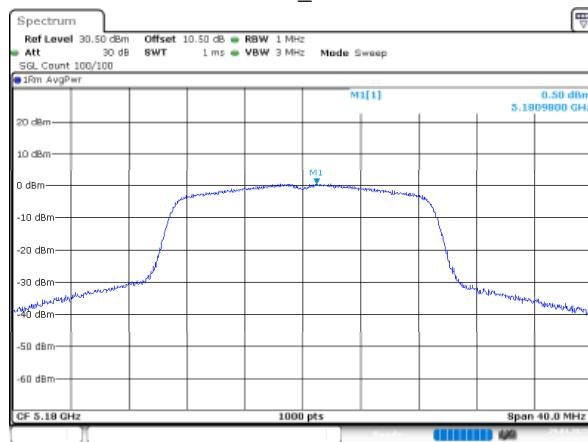
5725-5850MHz

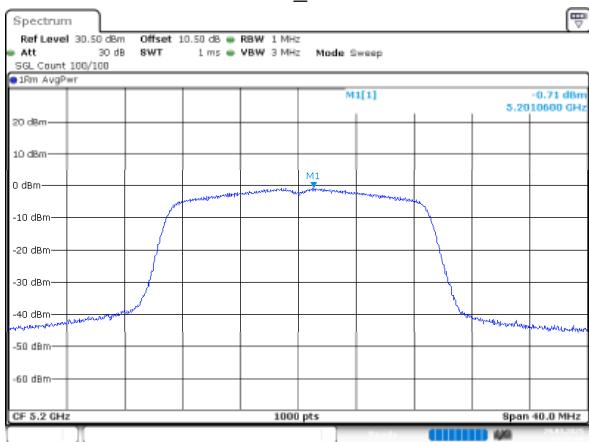
Mode	Test Frequency (MHz)	Reading (dBm/500kHz)	Duty Cycle Factor(dB)	Result (dBm/500kHz)	Limit (dBm/500kHz)	Verdict
802.11a	5745	-3.39	0	-3.39	30	Pass
	5785	-4.30	0	-4.30	30	Pass
	5825	-4.60	0	-4.60	30	Pass
802.11n20	5745	-3.88	0	-3.88	30	Pass
	5785	-4.53	0	-4.53	30	Pass
	5825	-4.78	0	-4.78	30	Pass
802.11n40	5755	-7.24	0	-7.24	30	Pass
	5795	-7.42	0	-7.42	30	Pass
802.11ac80	5775	-10.74	0	-10.74	30	Pass

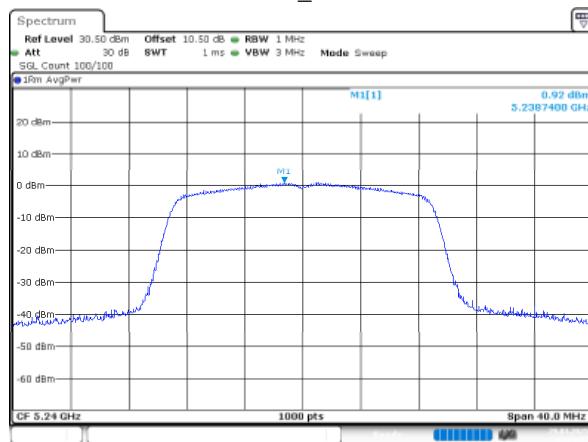

Result = Reading + Duty Cycle Factor

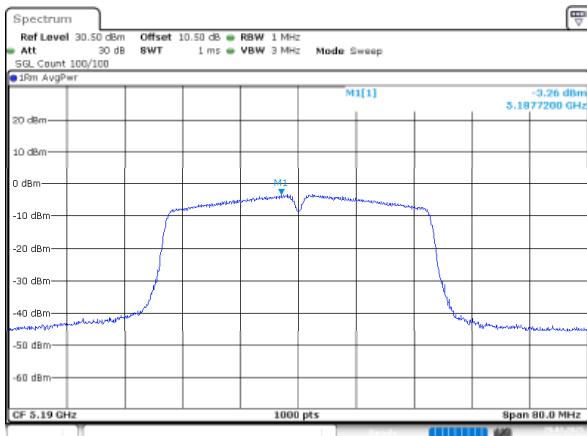
5150-5250MHz


802.11a_5180MHz

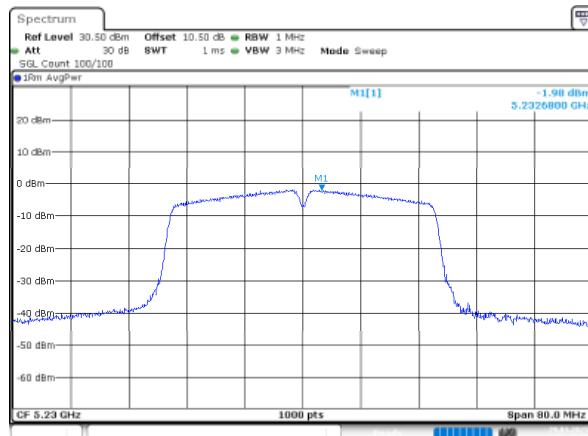

802.11a_5200MHz


802.11a_5240MHz


802.11n20_5180MHz

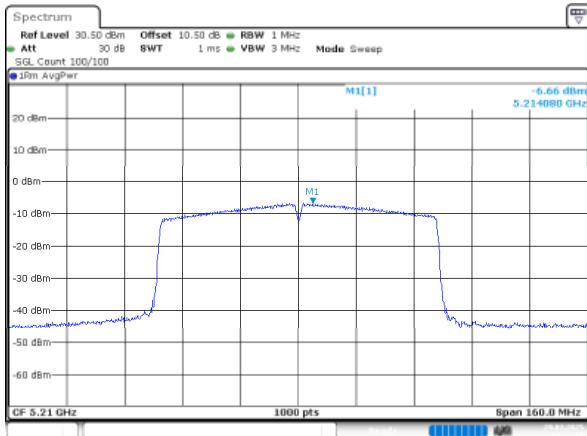

802.11n20_5200MHz

802.11n20_5240MHz

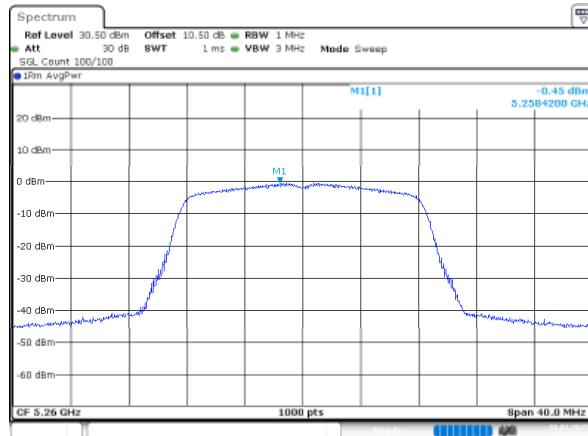


802.11n40_5190MHz

ProjectNo.:2502Q44145E-RF Test on Tower Qing
Date: 29.MAR.2025 13:24:29


802.11n40_5230MHz

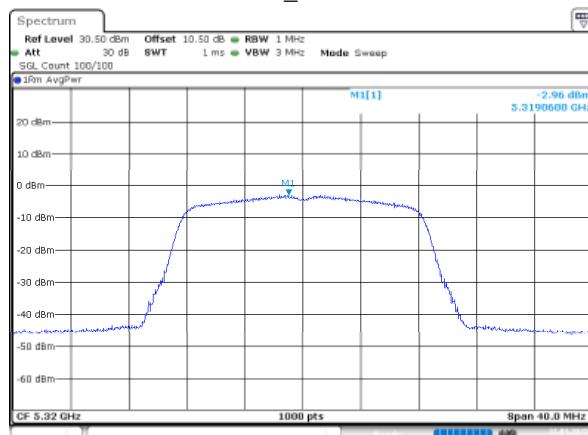
ProjectNo.:2502Q44145E-RF Test on Tower Qing
Date: 29.MAR.2025 13:25:53


5250-5350MHz

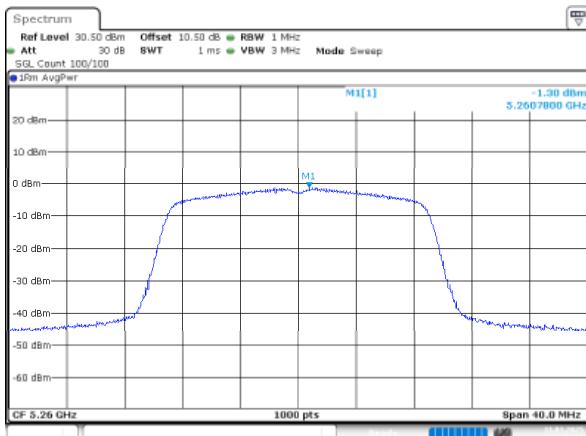
802.11ac80_5210MHz

ProjectNo.:2502Q44145E-RF Test on Tower Qing
Date: 29.MAR.2025 13:27:18

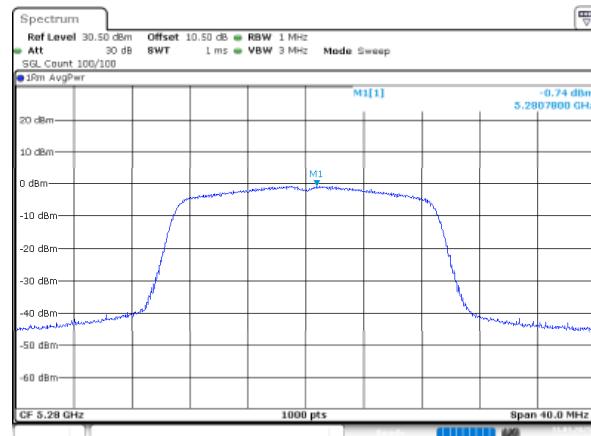
802.11a_5260MHz


ProjectNo.:2502Q44145E-RF Test on Tower Qing
Date: 31.MAR.2025 20:52:12

802.11a_5280MHz


ProjectNo.:2502Q44145E-RF Test on Tower Qing
Date: 31.MAR.2025 20:52:33

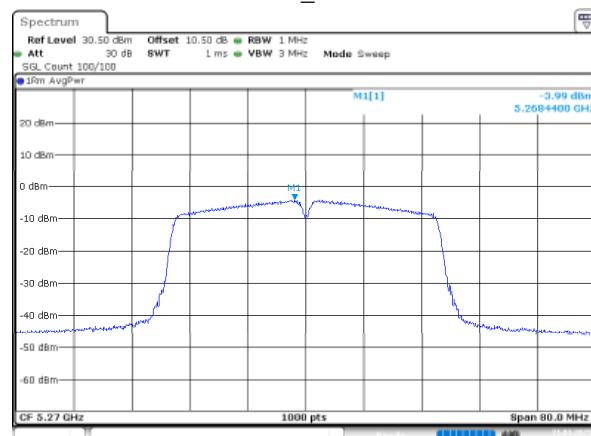
802.11a_5320MHz


ProjectNo.:2502Q44145E-RF Test on Tower Qing
Date: 31.MAR.2025 20:52:52

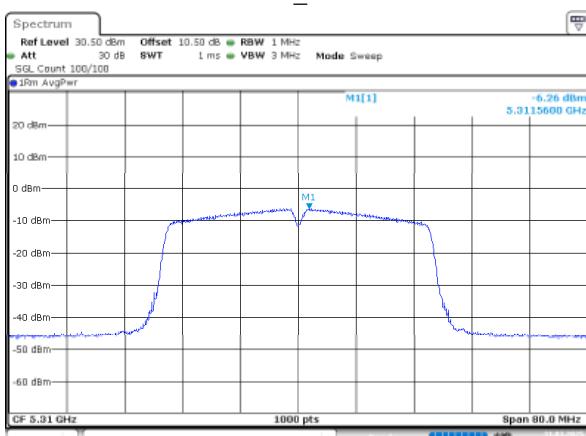
802.11n20_5260MHz

ProjectNo.:i2502Q44145E-RF TesterID:Power Qing
Date: 31.MAR.2025 20:53:17

802.11n20_5280MHz


ProjectNo.:i2502Q44145E-RF TesterID:Power Qing
Date: 31.MAR.2025 20:53:17

802.11n20_5320MHz

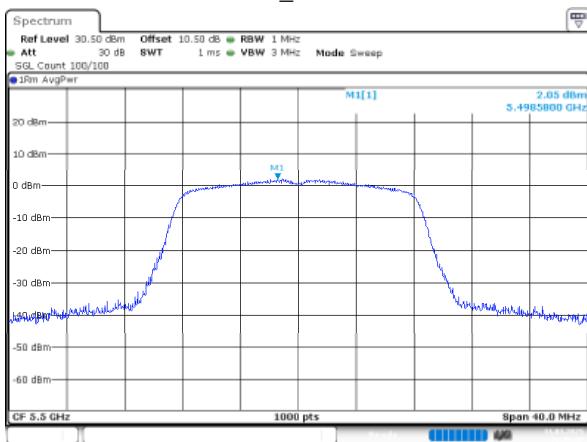

ProjectNo.:i2502Q44145E-RF TesterID:Power Qing
Date: 31.MAR.2025 20:53:14

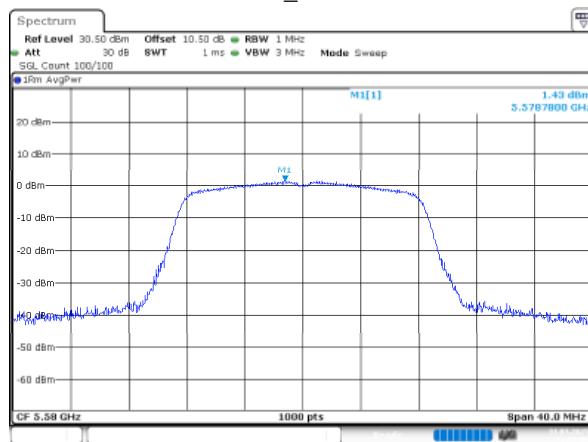
802.11n40_5270MHz

ProjectNo.:i2502Q44145E-RF TesterID:Power Qing
Date: 31.MAR.2025 20:54:17

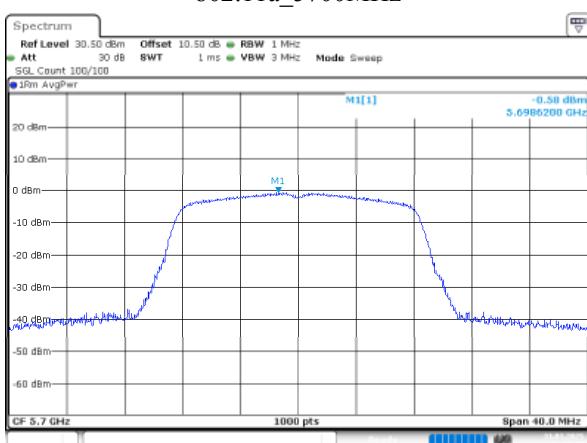
802.11n40_5310MHz

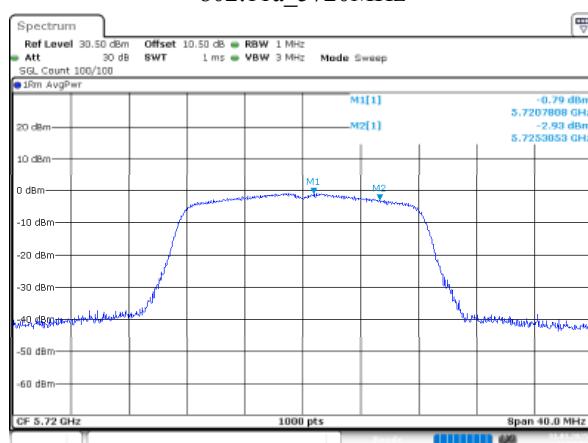
ProjectNo.:i2502Q44145E-RF TesterID:Power Qing
Date: 31.MAR.2025 20:54:34


802.11ac80_5290MHz

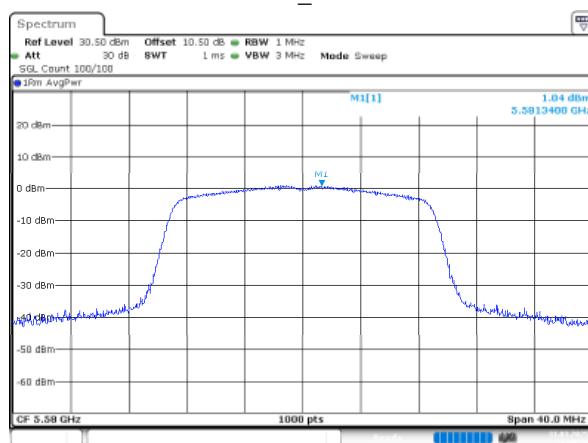

ProjectNo.:i2502Q44145E-RF TesterID:Power Qing
Date: 31.MAR.2025 20:54:58

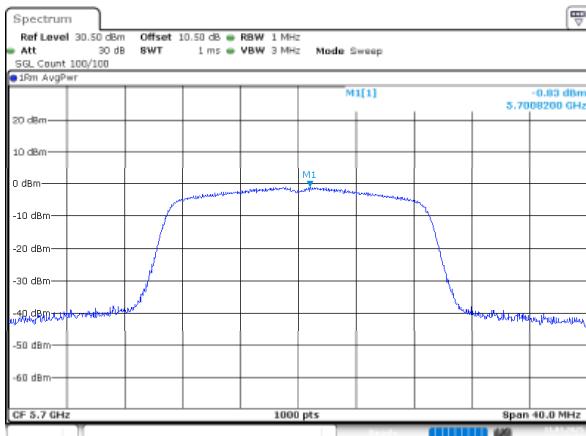
5470-5725MHz


802.11a_5500MHz

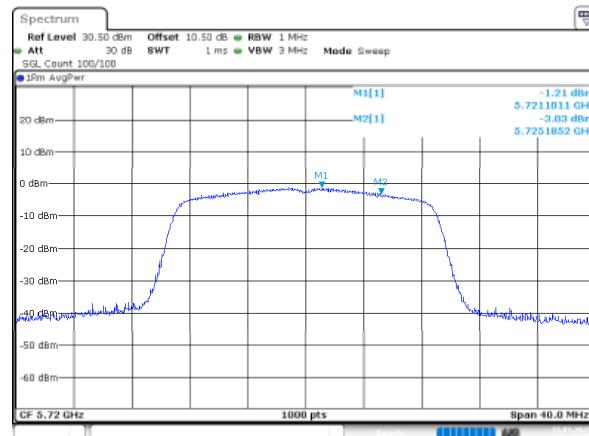

802.11a_5580MHz


802.11a_5700MHz

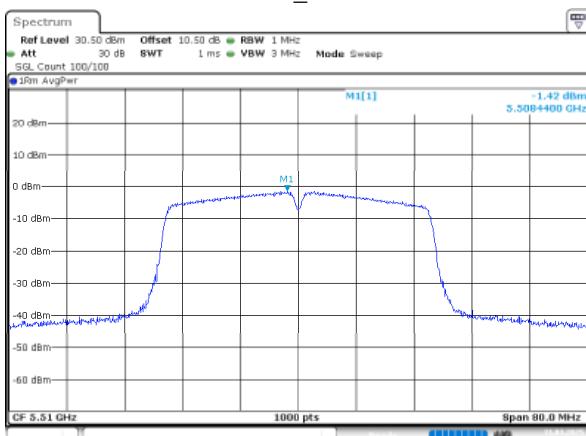

802.11a_5720MHz


802.11n20_5500MHz

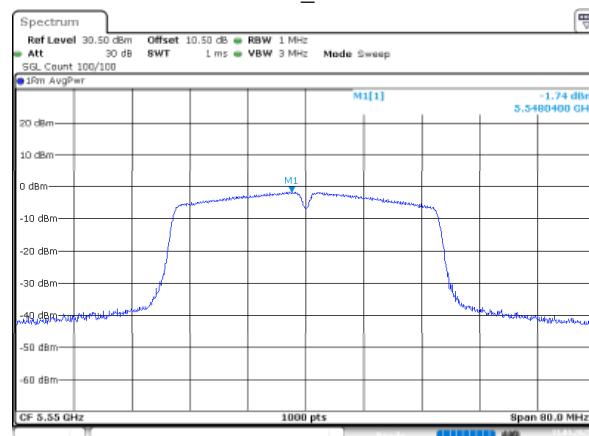
802.11n20_5580MHz



802.11n20_5700MHz


ProjectNo.:i2502Q44145E-RF Test on Tower Qing
Date: 31.MAR.2025 21:08:51

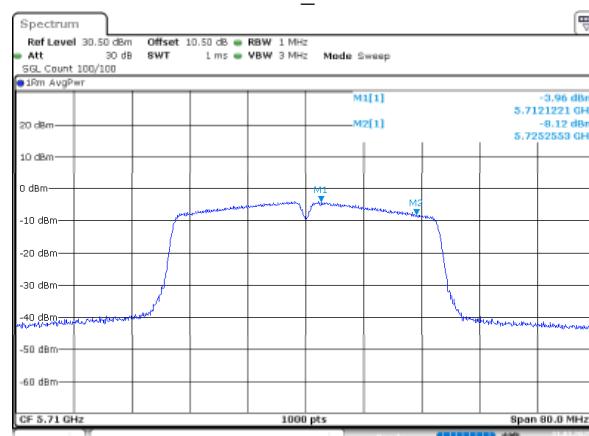
802.11n20_5720MHz


ProjectNo.:i2502Q44145E-RF Test on Tower Qing
Date: 31.MAR.2025 21:09:15

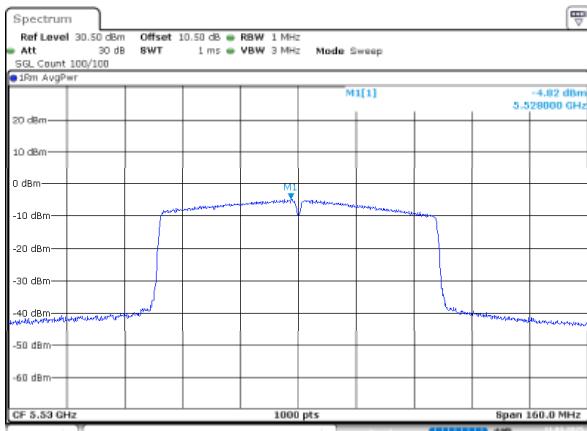
802.11n40_5510MHz

ProjectNo.:i2502Q44145E-RF Test on Tower Qing
Date: 31.MAR.2025 21:10:00

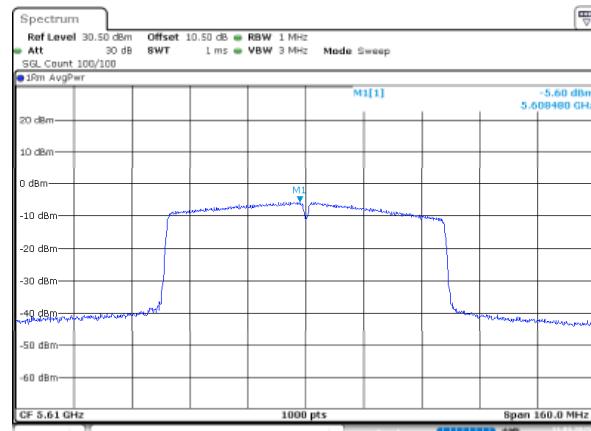
802.11n40_5550MHz


ProjectNo.:i2502Q44145E-RF Test on Tower Qing
Date: 31.MAR.2025 21:17:27

802.11n40_5670MHz

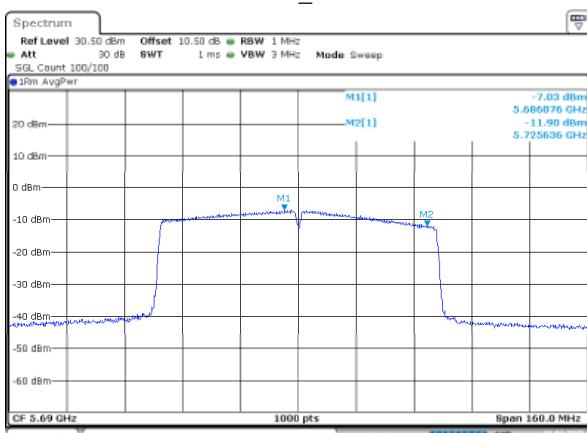

ProjectNo.:i2502Q44145E-RF Test on Tower Qing
Date: 31.MAR.2025 21:17:50

802.11n40_5710MHz

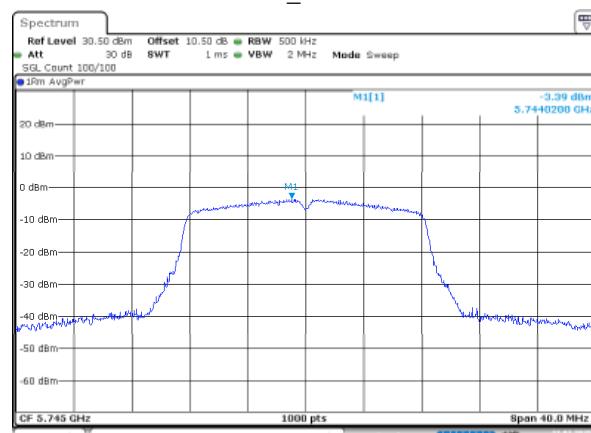


ProjectNo.:i2502Q44145E-RF Test on Tower Qing
Date: 31.MAR.2025 21:18:12

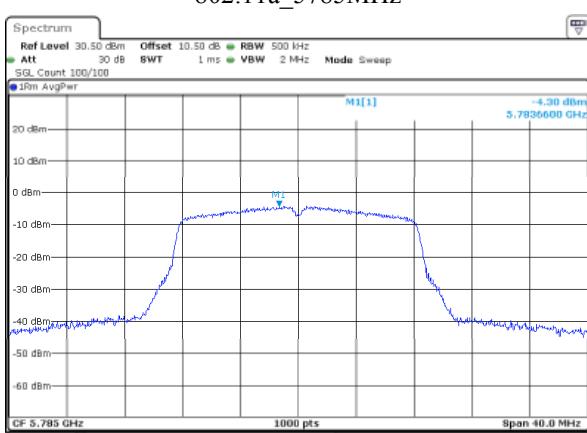
802.11ac80_5530MHz

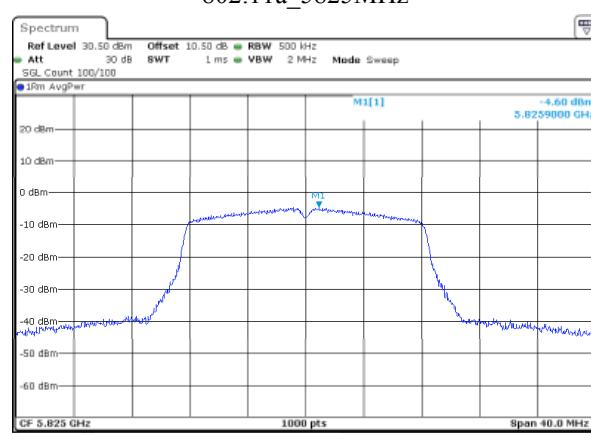


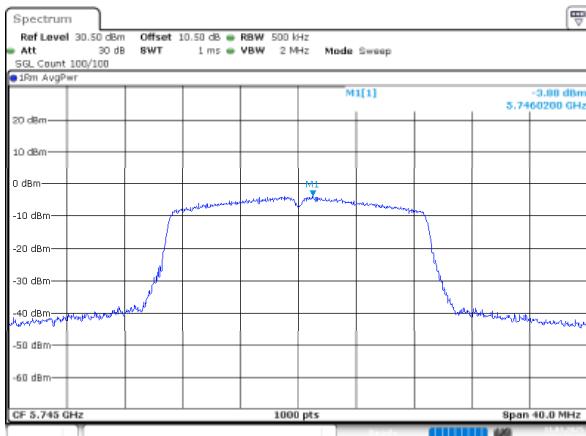
802.11ac80_5610MHz

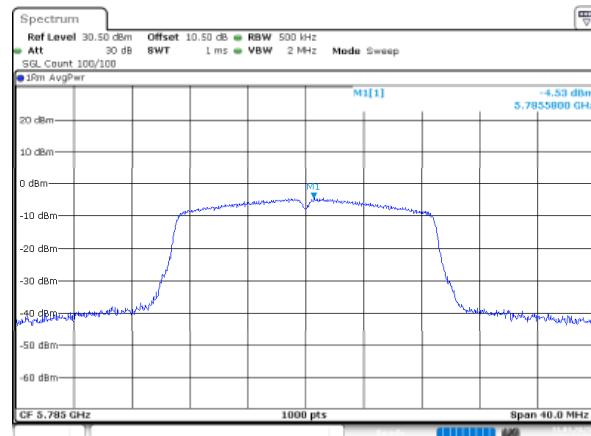


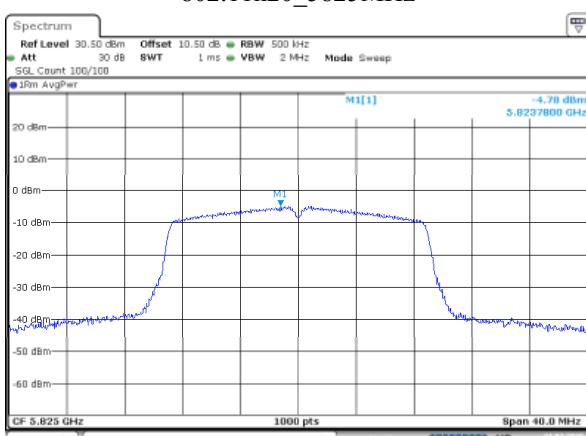
5725-5850MHz

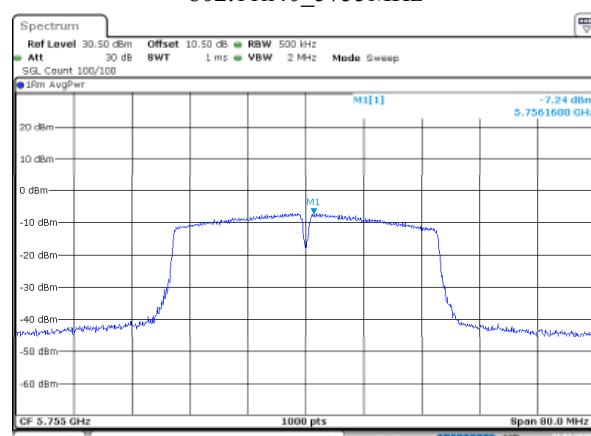

802.11ac80_5690MHz

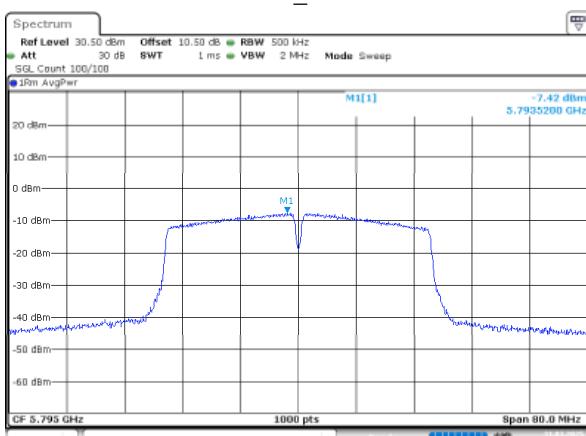

802.11a_5745MHz

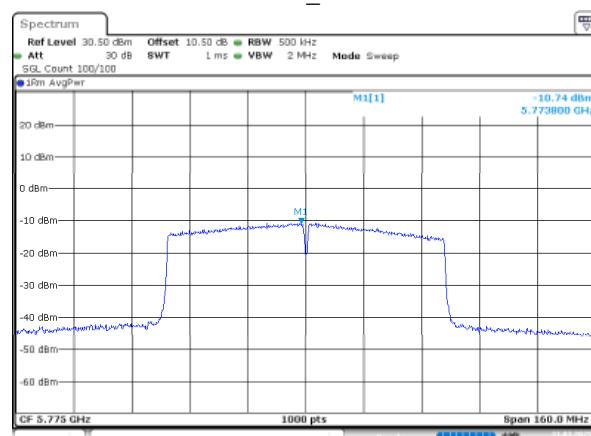

802.11a_5785MHz


802.11a_5825MHz


802.11n20_5745MHz


802.11n20_5785MHz


802.11n20_5825MHz


802.11n40_5755MHz

802.11n40_5795MHz

802.11ac80_5775MHz

5.7 Duty Cycle

Test Information:

Serial No.:	2YHK-5	Test Date:	2025/03/29~2025/06/04
Test Site:	RF	Test Mode:	Transmitting
Tester:	Tower Qing	Test Result:	N/A

Environmental Conditions:

Temperature: (°C)	23~26.1	Relative Humidity: (%)	37~69	ATM Pressure: (kPa)	100.4~101.5
-----------------------------	---------	--------------------------------------	-------	-------------------------------	-------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Coaxial Attenuator	10dB	F-08-EM512	2024/06/13	2025/06/12
R&S	Spectrum Analyzer	FSV40	101589	2024/09/05	2025/09/04

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:**5150-5250MHz**

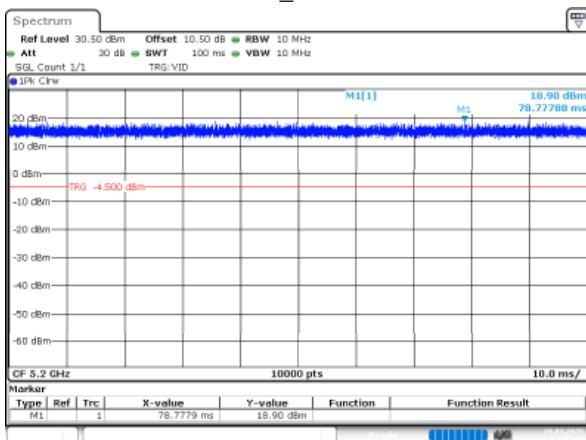
Mode	Test Frequency (MHz)	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor(dB)	1/Ton (Hz)	VBW Setting (kHz)
802.11a	5200	100	100	100	0	NA	0.010
802.11n20	5200	100	100	100	0	NA	0.010
802.11n40	5190	100	100	100	0	NA	0.010
802.11ac80	5210	100	100	100	0	NA	0.010

5250-5350MHz

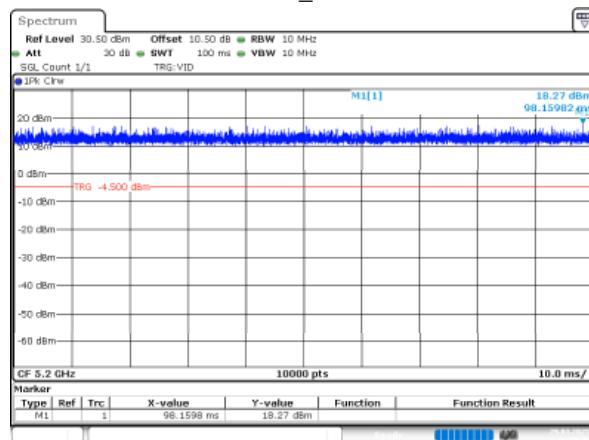
Mode	Test Frequency (MHz)	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor(dB)	1/Ton (Hz)	VBW Setting (kHz)
802.11a	5280	100	100	100	0	NA	0.010
802.11n20	5280	100	100	100	0	NA	0.010
802.11n40	5310	100	100	100	0	NA	0.010
802.11ac80	5290	100	100	100	0	NA	0.010

5470-5725MHz

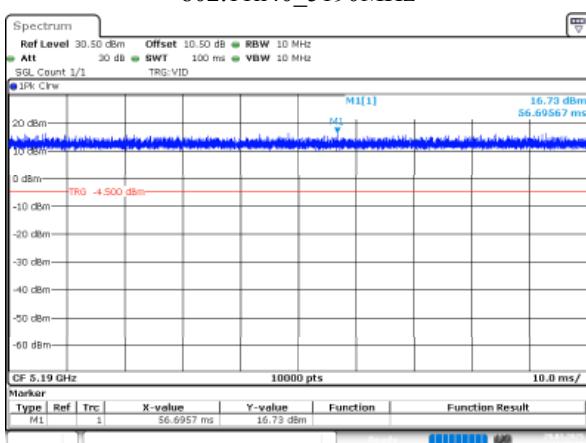
Mode	Test Frequency (MHz)	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor(dB)	1/Ton (Hz)	VBW Setting (kHz)
802.11a	5700	100	100	100	0	NA	0.010
802.11n20	5700	100	100	100	0	NA	0.010
802.11n40	5670	100	100	100	0	NA	0.010
802.11ac80	5610	100	100	100	0	NA	0.010

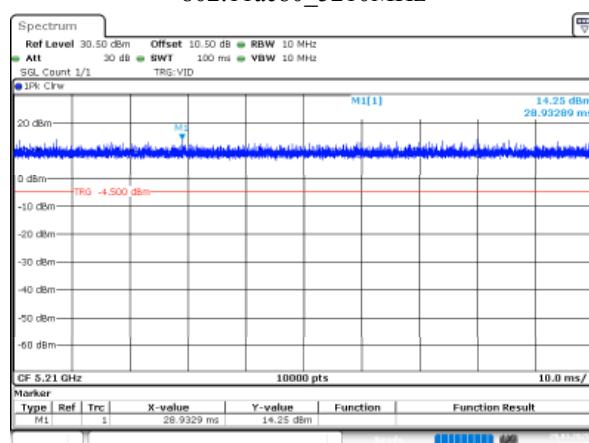

5725-5850MHz

Mode	Test Frequency (MHz)	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor(dB)	1/Ton (Hz)	VBW Setting (kHz)
802.11a	5785	100	100	100	0	NA	0.010
802.11n20	5785	100	100	100	0	NA	0.010
802.11n40	5755	100	100	100	0	NA	0.010
802.11ac80	5775	100	100	100	0	NA	0.010

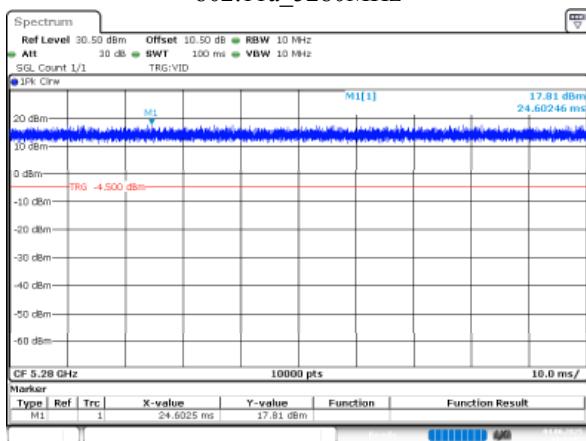

Duty Cycle = Ton/(Ton+Toff)*100%

5150-5250MHz

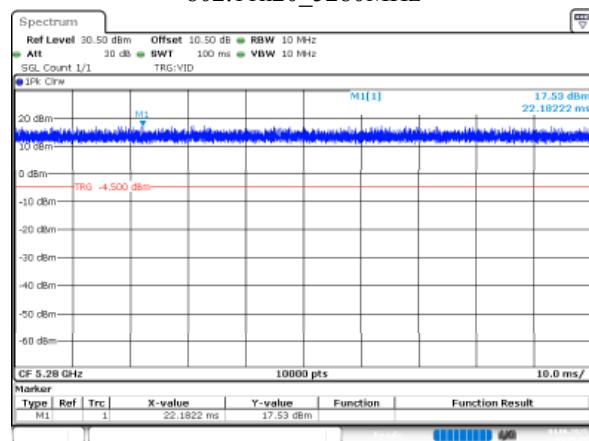

802.11a_5200MHz


802.11n20_5200MHz

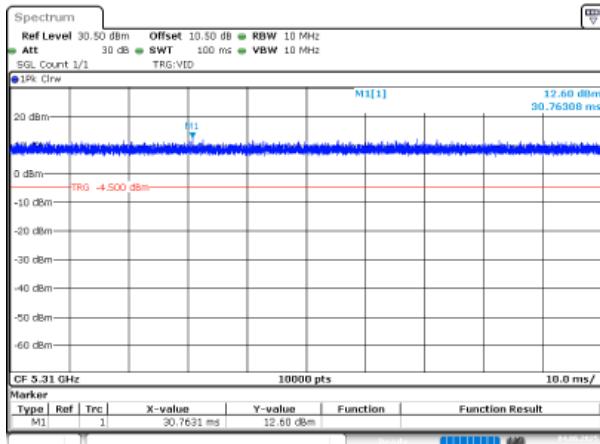
802.11n40_5190MHz

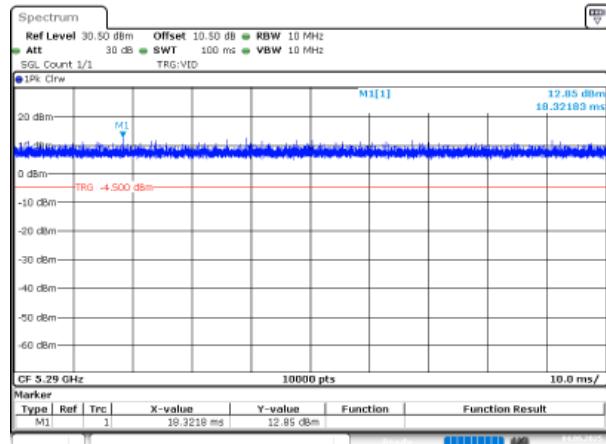


802.11ac80_5210MHz

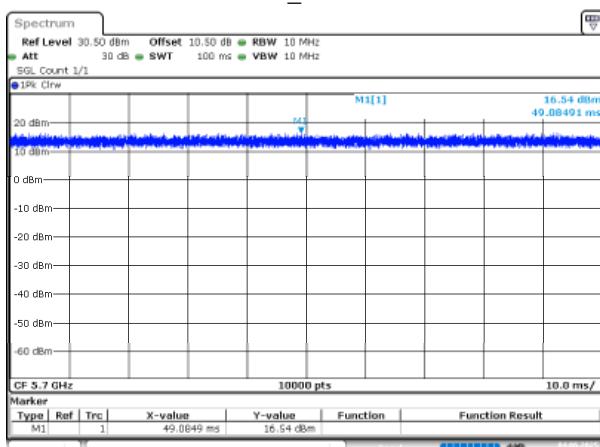


5250-5350MHz

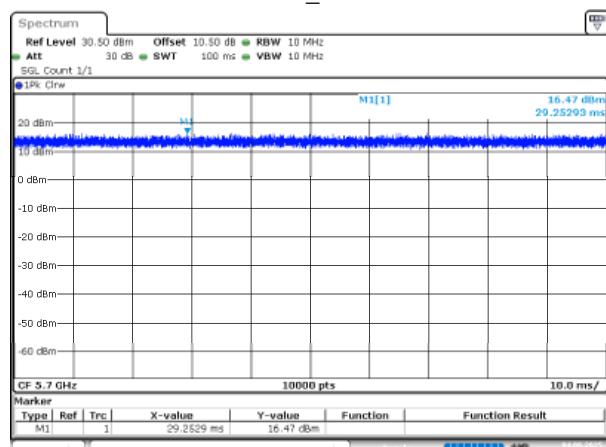

802.11a_5280MHz


802.11n20_5280MHz

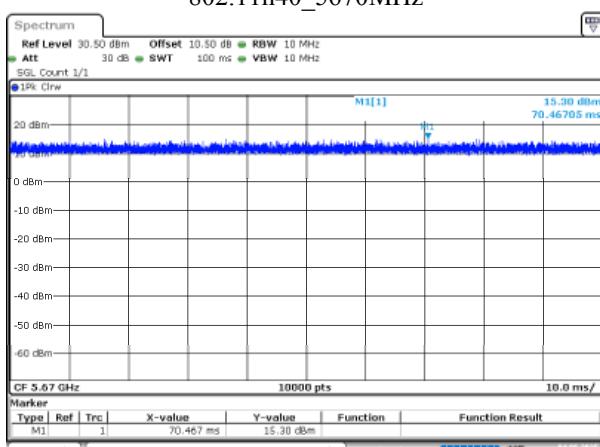
802.11n40_5310MHz

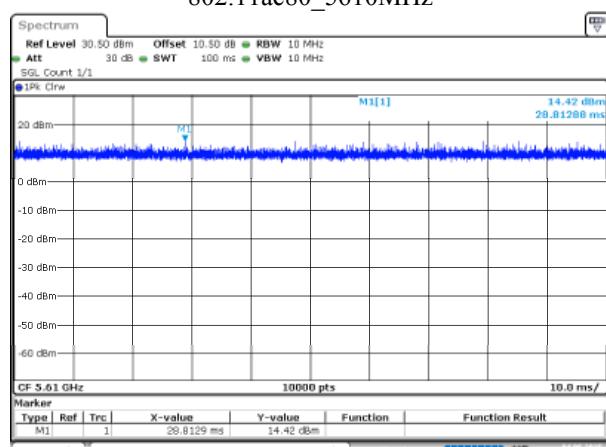


802.11ac80_5290MHz

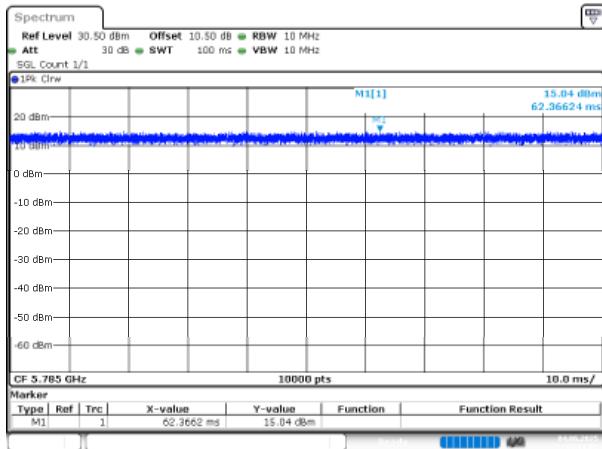


5470-5725MHz

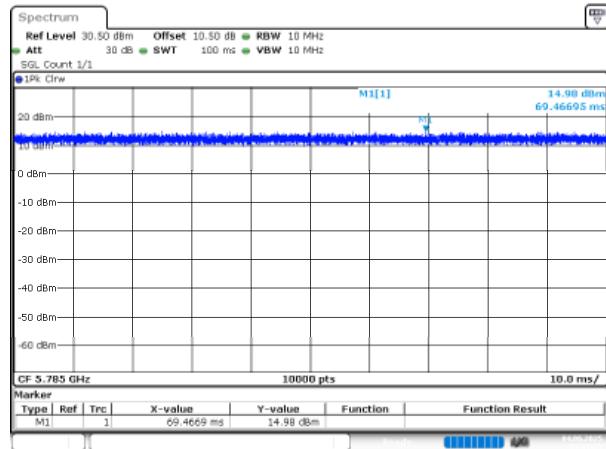

802.11a_5700MHz


802.11n20_5700MHz

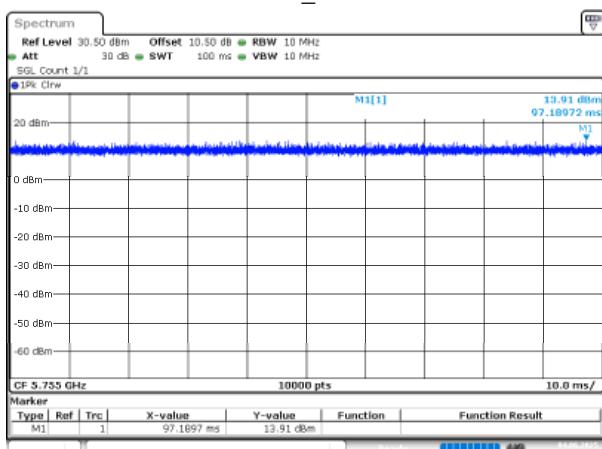
802.11n40_5670MHz

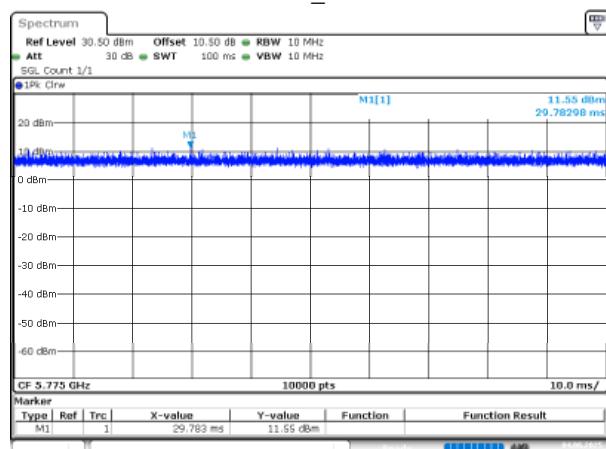


802.11ac80_5610MHz



5725-5850MHz


802.11a_5785MHz


802.11n20_5785MHz

802.11n40_5755MHz

802.11ac80_5775MHz

EXHIBIT A - EUT PHOTOGRAPHS

Please refer to the attachment 2502Q44145E-RF-EXP EUT EXTERNAL PHOTOGRAPHS and 2502Q44145E-RF-INP EUT INTERNAL PHOTOGRAPHS.

EXHIBIT B - TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2502Q44145E-RF-00D-TSP TEST SETUP PHOTOGRAPHS.

***** END OF REPORT *****