
 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 438

23.7 EIC Register Summary

Offset Name Bit Pos. 7 6 5 4 3 2 1 0
0x00 CTRLA 7:0 CKSEL ENABLE SWRST
0x01 NMICTRL 7:0 NMIASYNCH NMIFILTEN NMISENSE[2:0]
0x02 NMIFLAG 7:0 NMI
0x03 Reserved

0x04 SYNCBUSY

7:0 ENABLE SWRST
15:8

23:16
31:24

0x08 EVCTRL

7:0
15:8

23:16
31:24

0x0C INTENCLR

7:0
15:8

23:16
31:24

0x10 INTENSET

7:0
15:8

23:16
31:24

0x14 INTFLAG

7:0
15:8

23:16
31:24

0x18 ASYNCH

7:0
15:8

23:16
31:24

0x1C CONFIG

7:0 FILTEN1 SENSE1[2:0] FILTEN0 SENSE0[2:0]
15:8 FILTEN3 SENSE3[2:0] FILTEN2 SENSE2[2:0]

23:16
31:24

0x20
...

0x2F
Reserved

0x30 DEBOUNCEN

7:0
15:8

23:16
31:24

0x34 DPRESCALER

7:0
15:8

23:16 TICKON
31:24

0x38 PINSTATE

7:0
15:8

23:16
31:24

23.8 Register Description
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the
“Read-Synchronized” and/or “Write-Synchronized” property in each individual register description.

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 439

Some registers are enable-protected, meaning they can only be written when the module is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register
description.

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 440

23.8.1 Control A

Name:  CTRLA
Offset:  0x00
Reset:  0x00
Property:  PAC Write-Protection, Write-Synchronized

Bit 7 6 5 4 3 2 1 0
 CKSEL ENABLE SWRST

Access RW RW W
Reset 0 0 0

Bit 4 – CKSEL Clock Selection
The EIC can be clocked either by GCLK_EIC (when a frequency higher than 32.768 KHz is required for
filtering) or by CLK_ULP32K (when power consumption is the priority).
This bit is not Write-Synchronized.
Value Description
0 The EIC is clocked by GCLK_EIC.
1 The EIC is clocked by CLK_ULP32K.

Bit 1 – ENABLE Enable
Due to synchronization there is a delay between writing to CTRLA.ENABLE until the peripheral is
enabled/disabled. The value written to CTRLA.ENABLE will read back immediately and the Enable
bit in the Synchronization Busy register will be set (SYNCBUSY.ENABLE=1). SYNCBUSY.ENABLE will be
cleared when the operation is complete.
This bit is not Enable-Protected.
This bit is Write-Synchronized.
Value Description
0 The EIC is disabled.
1 The EIC is enabled.

Bit 0 – SWRST Software Reset
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit resets all registers in the EIC to their initial state, and the EIC will be disabled.
Writing a ‘1’ to CTRLA.SWRST will always take precedence, meaning that all other writes in the same
write operation will be discarded.
Due to synchronization there is a delay from writing CTRLA.SWRST until the Reset is complete.
CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the Reset is complete.
This bit is not Enable-Protected.
This bit is Write-Synchronized.
Value Description
0 There is no ongoing reset operation.
1 The reset operation is ongoing.

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 441

23.8.2 Non-Maskable Interrupt Control

Name:  NMICTRL
Offset:  0x01
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 NMIASYNCH NMIFILTEN NMISENSE[2:0]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 4 – NMIASYNCH NMI Asynchronous Edge Detection Mode
The NMI edge detection can be operated synchronously or asynchronously to the EIC clock.
Value Description
0 The NMI edge detection is synchronously operated.
1 The NMI edge detection is asynchronously operated.

Bit 3 – NMIFILTEN Non-Maskable Interrupt Filter Enable
Value Description
0 NMI filter is disabled.
1 NMI filter is enabled.

Bits 2:0 – NMISENSE[2:0] Non-Maskable Interrupt Sense Configuration
These bits define on which edge or level the NMI triggers.
Note: NMI cannot be triggered based on level but it is always based on edge.

Value Name Description
0x0 NONE No detection
0x1 RISE Rising-edge detection
0x2 FALL Falling-edge detection
0x3 BOTH Both-edge detection
0x4 HIGH High-level detection
0x5 LOW Low-level detection
0x6 - 0x7 – Reserved

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 442

23.8.3 Non-Maskable Interrupt Flag Status and Clear

Name:  NMIFLAG
Offset:  0x2
Reset:  0x00

Bit 7 6 5 4 3 2 1 0
 NMI

Access RW
Reset 0

Bit 0 – NMI Non-Maskable Interrupt
This flag is cleared by writing a '1' to it.
This flag is set when the NMI pin matches the NMI sense configuration, and will generate an
interrupt request.
Writing a '0' to this bit has no effect.

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 443

23.8.4 Synchronization Busy

Name:  SYNCBUSY
Offset:  0x04
Reset:  0x00000000

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 ENABLE SWRST

Access R R
Reset 0 0

Bit 1 – ENABLE Enable Synchronization Busy Status
Value Description
0 Write synchronization for CTRLA.ENABLE bit is complete.
1 Write synchronization for CTRLA.ENABLE bit is ongoing.

Bit 0 – SWRST Software Reset Synchronization Busy Status
Note:  During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description
0 Write synchronization for CTRLA.SWRST bit is complete.
1 Write synchronization for CTRLA.SWRST bit is ongoing.

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 444

23.8.5 Event Control

Name:  EVCTRL
Offset:  0x08
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 445

23.8.6 Interrupt Enable Clear

Name:  INTENCLR
Offset:  0x0C
Reset:  0x00000000
Property:  PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 446

23.8.7 Interrupt Enable Set

Name:  INTENSET
Offset:  0x10
Reset:  0x00000000
Property:  PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Clear (INTENCLR) register.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 447

23.8.8 Interrupt Flag Status and Clear

Name:  INTFLAG
Offset:  0x14
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 448

23.8.9 External Interrupt Asynchronous Mode

Name:  ASYNCH
Offset:  0x18
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 449

23.8.10 External Interrupt Sense Configuration

Name:  CONFIG
Offset:  0x1C
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 FILTEN3 SENSE3[2:0] FILTEN2 SENSE2[2:0]

Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 FILTEN1 SENSE1[2:0] FILTEN0 SENSE0[2:0]

Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0

Bits 3, 7, 11, 15 – FILTENx Filter Enable x [x=3..0]
Note:  The filter must be disabled if the asynchronous detection is enabled.

Value Description
0 Filter is disabled for EXTINT[x] input.
1 Filter is enabled for EXTINT[x] input.

Bits 0:2, 4:6, 8:10, 12:14 – SENSEx Input Sense Configuration x [x=3..0]
These bits define on which edge or level the interrupt or event for EXTINT[x] will be generated.
Value Name Description
0x0 NONE No detection
0x1 RISE Rising-edge detection
0x2 FALL Falling-edge detection
0x3 BOTH Both-edge detection
0x4 HIGH High-level detection
0x5 LOW Low-level detection
0x6 - 0x7 - Reserved

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 450

23.8.11 Debouncer Enable

Name:  DEBOUNCEN
Offset:  0x30
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 451

23.8.12 Debouncer Prescaler

Name:  DPRESCALER
Offset:  0x34
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 TICKON

Access RW
Reset 0

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

Bit 16 – TICKON Pin Sampler frequency selection
This bit selects the clock used for the sampling of bounce during transition detection.
Value Description
0 The bounce sampler is using GCLK_EIC.
1 The bounce sampler is using the low frequency clock.

 PIC32CX-BZ2 and WBZ45 Family
External Interrupt Controller (EIC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 452

23.8.13 Pin State

Name:  PINSTATE
Offset:  0x38
Reset:  0x00000000

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 453

24. Flash Memory
24.1 Overview

The PIC32CX-BZ2 devices contain a single bank of Flash memory with their Program Flash Memory
(PFM) partition and Boot Flash Memory (BFM) partition for storing user code or non-volatile data.
The Flash controller is used to access the Flash memory. The peripheral bus interface is used for
commands and configuration of the Flash controller.

24.2 Features
Flash Controller
• PB-Bridge-D interface that provides access to the Flash controller registers
• AHB Initiator for bus hosted reads the row programming data from SRAM
• Write Protect for Program Flash (PFM)

– Single page protection resolution
– Protect “Less Than” Address
– Protect “Greater Than or Equal to” Address

• Individual page write protection for boot Flash (BFM)
• Error-correction code (ECC) support
• Supports chip and page erase
• Supports Single Word, Quad Word and row program options
• Supports flash Erase/Retry to increase Retention and Endurance

Flash Memory
• 128-bit wide Flash Memory Access
• 4 Kbytes page size
• Row size is 1 KB (256 IW)
• Flash-based OTP (one-time-programmable) page

The Flash controller allows the Flash memory to be accessed through the following methods:

1. Run-Time Self-Programming (RTSP)
2. Serial Wire Debug (SWD) programming using DSU (See Device Service Unit (DSU) from Related

Links and PIC32CX-BZ2 Programming Specification.)

Related Links
12. Device Service Unit (DSU)

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 454

24.3 Functional Block Diagram
Figure 24-1. Flash Memory Block Diagram

11 10 01 00

NVMDATA3[31:0] NVMDATA2[31:0] NVMDATA1[31:0] NVMDATA0[31:0]

AH
B

Bu
ffe

r

 AHB
Initiator

0 1 0 1 0 1 0 1

pgm data 3 pgm data 2 pgm data 1 pgm data 0

Word/Quad word:0
Row:1

FC Program Data Buffer

Row/Quad word 0:NVMADDR[3:2]
Word:2'b0

NVMADDR[3:2]

NVMADDR[31:4]

ECC Parity/Control

Word 3 Word 2 Word 1 Word 0

Flash Controller

Flash Wrapper

Flash Memory

24.4 Flash Memory Addressing
Flash memory addressing uses physical addresses only. For more information on addressing, see
Product Memory Mapping Overview from Related Links.

Related Links
8. Product Memory Mapping Overview

24.5 Memory Configuration

24.5.1 Flash Memory Construction
Flash memory is divided into pages. A page is the smallest unit of memory that can be erased at
one time. Each page of memory is segmented into four rows. A row is the largest unit of memory
that can be programmed at one time. A row consists of 64 Quad (128-bit) Word. Each Quad Word
consists of a four instruction (32-bit) Word. Flash memory can be programmed in rows, Quad Word
(128-bit) or Single Word (32-bit) units.

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 455

Figure 24-2. Flash Construction

Page n

Flash Bank
Page 3

Page 2

Page 1

Page 0

Row 3

Row 1

Row 0

Each page consists
of 4 rows

Word 1 Word 0

QW 1

Flash Bank consisting of ‘n’ pages

Row 2

Each Quad Word consists
of 4 instruction (32-bit) word

Word 3

QW 63 QW 0

Each row consists of 64 quad (128-bit) words

24.5.2 Flash Memory Organization
The Device Flash memory is divided into two logical Flash partitions:

1. Main Program Flash Memory (PFM)
2. Boot/Configuration Flash Memory (BFM)

a. Boot Flash
b. Device/Boot Configuration – Device and boot configuration data
c. OTP (One Time Programmable) – User system calibration data

Each Flash section has a different protection status; refer to the following table.

Table 24-1. Protection Status
Flash Partition Memory Region Write Protection Erase Protection Chip Erase through

DSU

BFM Boot Flash Yes. Page-wise
Configurable

Yes. Page-wise
Configurable

Erased

Device/Boot
Configuration

Yes. Configurable Yes. Configurable Erased

OTP (One-Time-
Programmable)

Yes. Configurable Always Erase protected.
Can not be erased

Not Erased

PFM Program Flash Yes. Configurable Yes. Configurable Erased

24.6 Boot Flash Memory (BFM) Partitions
24.6.1 BFM Write Protection

Pages in the BFM regions can be protected individually using bits in the NVMLBWP register. At Reset,
all pages are in a write-protected state and must be disabled prior to performing any programming
operations on the BFM regions. There is also an unlock bit, ULOCK(NVMLBWP[31]), that is set at
Reset and can be cleared by the user software. When cleared, changes to write protection for that
region can no longer be made. Once cleared, the ULOCK bit can only be set by a Reset.

The NVMLBWP write-protect register can only be changed when the unlock sequence is followed.
See NVMKEY Register Unlocking Sequence from Related Links.

Related Links
24.11. NVMKEY Register Unlocking Sequence

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 456

24.7 Program Flash Memory (PFM) Partitions

24.7.1 PFM Write Protection
Write protection for the PFM region is implemented by pages, defined by the NVMPWPLT and
NVMPWPGTE registers. The NVMPWP* registers define an area within the program space (PFM) that
is write-protected. This write-protected address resolves to Flash page boundaries; therefore, the 12
LSBs for a 4 KB page Flash of any address written to the NVMPWP* registers are ignored. The width
of each NVMPWP* address register is determined by the size of the Flash. The NVMPWPLT register
is used to set the Program Flash pages lower than the provided address as write-protected. The
NVMPWPGTE register is used to set the Program Flash pages greater than or equal to the provided
address as write-protected. Therefore, a value of all 0s in the NVMPWPLT register and all 1s in the
NVMPWPGTE register results in no region of Flash being write-protected (default state at Reset).

There is also an unlock bit, ULOCK (NVMPWPLT [31] and NVMPWPGTE[31]), that is set at Reset and
can be cleared by the user software. When cleared, changes to the write-protection of the PFM
can no longer be made, including the ULOCK bit. The NVMPWPLT and NVMPWPGTE write-protected
register can only be changed when the unlock sequence is followed. See NVMKEY Register Unlocking
Sequence from Related Links.

Related Links
24.11. NVMKEY Register Unlocking Sequence

24.8 Error Correcting Code (ECC) and Flash Programming
The PIC32CX-BZ2 devices incorporate Error Correcting Code (ECC) features that detect and correct
errors resulting in extended Flash memory life. For more details on this feature, see Prefetch Cache
from Related Links.

ECC is implemented in 128-bit Quad Flash Words or 32-bit Single Word. As a result, when
programming Flash memory on a device where ECC is employed, the programming operation must
be, at minimum, four instruction Words or in groups of four instruction Words. This is the reason
that the Quad Word programming command exists and why row programming always programs
multiples of four Words.

For a given software application, ECC can be enabled at all times, disabled at all times or dynamically
enabled using the ECCCTL Configuration bits in the CFGCON0 register. When ECC is enabled at all
times, the Single Word NVMOP programming command does not function and the Quad Word is the
smallest unit of memory that can be programmed. When ECC is disabled or enabled dynamically,
both the Single Word and Quad Word programming NVMOP commands are functional and the
programming method used determines how ECC is handled.

In the case of dynamic ECC, if the memory was programmed with the Singe Word command, ECC
is turned off for that Word, and, when it is read, no error correction is performed. If the memory
was programmed with the Quad Word or Row Programming commands, ECC data is written and
tested for errors (and corrected if needed) when read. The following table describes the different
ECC scenarios.

Table 24-2. ECC Programming Summary
ECCCTL Setting Programming Operation Data Read

Single Word Write Quad Word Write Row Write

Disabled Allowed Allowed Allowed ECC is never applied on
a Flash read

Enabled Not allowed Allowed Allowed ECC is applied on every
Flash Word read

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 457

...........continued
ECCCTL Setting Programming Operation Data Read

Single Word Write Quad Word Write Row Write

Dynamic Allowed but when used,
the programmed word
is flagged to NOT USE
ECC

Writes ECC data
and flags programmed
words to USE ECC

Writes ECC data
and flags programmed
words to USE ECC

ECC is only applied on
words that are flagged
to USE ECC

Note: When using dynamic ECC, all non-ECC locations must be programmed with the 32-bit Word
programming command, while all ECC-enabled locations must be programmed with a 128-bit Quad
Word or Row programming command. Divisions between ECC and non-ECC memory must be on
even Quad Word boundaries (address bits 0 through 3 are equal to ‘0’).

Related Links
9. Prefetch Cache (PCHE)

24.9 Interrupts
An interrupt is generated when the WR bit is cleared by the Flash Controller upon completion of a
Flash program or erase operation. The interrupt event will cause a CPU interrupt if it was configured
and enabled in the Nested Interrupt Vector Controller. See Nested Vector Interrupt Controller (NVIC)
from Related Links for the vector mapping table. The interrupt occurs regardless of the outcome of
the program or erase operation, successful or unsuccessful. The only exception is the No Operation
(NOP) programming operation (NVMOP = 0), which is used to manually clear the error flags and
does not create an interrupt event on completion but does clear the WR bit.

The Flash Controller interrupts are not persistent, and, therefore, no additional steps are required to
clear the cause or source of the interrupt.

Once the Interrupt Controller is configured, the Flash event causes the CPU to jump to the vector
assigned to the Flash event. The CPU starts executing the code at the vector address. The user
software at this vector address must perform the required operations and, then, exit.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

24.9.1 Interrupts and CPU Stalling
Code cannot be fetched by the CPU from the same Flash bank, either BFM or PFM, that is the
target of the programming operation. When this operation is attempted, the CPU will cease to
execute code (stall) while the programming operation is in progress. CPU code execution does not
resume until the programming operation is complete, and, when this occurs, any pending interrupts,
including those from the Flash Controller, will be processed in order of priority.

Note: Code that is already loaded into the processor cache will continue to execute up to the
point where an attempt is made to fetch code or data from the same Flash bank as the active
programming operation. At this point the CPU will stall.

The stalling of the CPU can also be avoided by placing any needed executable code in SRAM during
Flash programming.

24.10 Error Detection
The NVMCON register includes two bits for detecting error conditions during a program or erase
operation. They are Low-Voltage detect error, LVDERR bit (NVMCON[12]), and Write Error, WRERR bit
(NVMCON[13]).

The WRERR is set each time the WR bit (NVMCON[15]) is set, initiating a programming operation.
When the Flash operation is complete, indicated by hardware clearing the value of the WR bit
(i.e., WR bit is set to ‘0’), hardware will update the value in the WRERR bit to indicate if an error
occurred. Firmware must check the value of the WR bit to see if the Flash operation completed

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 458

before checking the value of the WRERR bit. When the WRERR bit is set, any future attempt to
initiate programming or erase operation is ignored. WRERR must be cleared before commencing
Flash program or erase operations.

The LVDERR bit is set when a Brown-out Reset (BOR) occurs during a programming operation. The
only Reset that clears the LVDERR bit is a Power-on Reset (POR). Other Reset types do not affect the
LVDERR bit. When the LVDERR bit is set, any attempt to initiate programming or erase operation is
ignored. The LVDERR bit must be cleared before commencing Flash program or erase operations.

Both the WRERR and LVDERR bits must be cleared manually in software by initiating a Flash
operation (setting WR) referred to as NOP (0x00) (see the NVMOP bit fields).
Note: Executing the NVMOP NOP command clears WRERR, LVDERR and WR bits, but does not
generate an interrupt event on completion.

Table 24-3. Programming Error Cause and Effects
Cause of Error Effect on Programming Erase

Operation
Indication

A low-voltage event occurred during a
programming sequence.

The last programming or erase
operation may not have completed.

LVDERR = 1, WRERR = 1

A non-POR Reset occurred during
programming.

Programming or erase operation is
aborted.

WRERR = 1

Attempt to program or erase a page out
of the Flash memory range.

Erase or programming operation is not
initiated.

WRERR = 1

Attempt to erase or program a write-
protected PFM page.

Erase or programming operation is not
initiated.

WRERR = 1

Attempt to erase or program a write-
protected BFM page.

Operation occurs, but the page is not
programmed or erased.

WRERR = 0

Bus host error or row programming
data underrun error during
programming.

Programming or erase operation is
aborted.

WRERR = 1

24.11 NVMKEY Register Unlocking Sequence
Important register settings that could compromise the Flash memory if inadvertently changed are
protected by a register unlocking sequence. This feature is implemented using the NVMKEY register.
The NVMKEY register is a write-only register that is used to implement an unlock sequence to help
prevent accidental writes or erasures of Flash memory.

In some instances, the operation is also dependent on the setting of the WREN bit (NVMCON[14]), as
shown in the following table.

Table 24-4. NVMKEY Register Unlocking and WREN
Operation WREN Setting Unlock Sequence Required

Changing value of NVMOP[3:0]
(NVMCON[3:0])

0 No

Setting WR (NVMCON[15]) to start a
write or erase operation

1 Yes

Changing any fields in the NVMPWP*
register

— Yes

Changing any fields in the NVMLBWP
register

— Yes

The following steps must be followed in the exact order as shown to enable writes to registers that
require this unlock sequence:

1. Write 0x00000000 to NVMKEY.
2. Write 0xAA996655 to NVMKEY.

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 459

3. Write 0x556699AA to NVMKEY.
4. Write the value to the register NVMCON, NVMCON2, NVMPWP* or NVMLBWP requiring the

unlock sequence.

When using the unlock sequence to set or clear bits in the NVMCON register, as shown in Step 4,
Steps 2 through 4 must be executed without any other activity on the peripheral bus that is in use by
the Flash Controller. Interrupts and DMA transfers that access the same peripheral bus as the Flash
Controller must be disabled. In addition, the operation in Step 4 must be atomic. The Set, Clear and
Invert registers may be used, where applicable, for the target register in Step 4.

The following code shows code written in the C language to initiate a NVM Operation (NVMOP)
command. In this particular example, the WR bit is being set in the NVMCON register and, therefore,
must include the unlock sequence.

Initiate NVM Operation (System Unlock Sequence Example):
void NVMInitiateOperation(void)
{
 // Disable Interrupts
 asm volatile(“di%0” : “=r”(int_status));
 uint32_t globalInterruptState= __get_PRIMASK();
// Disable Interrupts
__disable_irq();
 NVMKEY = 0x0;
 NVMKEY = 0xAA996655;
 NVMKEY = 0x556699AA;
 NVMCONSET = 1 << 15;// must be an atomic instruction

 // Restore Interrupts
 __set_PRIMASK(globalInterruptState);
}

Note: Once the unlock codes are written to the NVMKEY register, the next activity on the same
peripheral bus as the Flash Controller will Reset the lock. As a result, only atomic operations can
be used. Use of the NVMCONSET register sets the WR bit in a single instruction without changing
other bits in the register. Using NVMCONbits.WR = 1 will fail, as this line of code compiles to a
read-modify-write sequence.

24.12 Word Programming
The smallest block of data that can be programmed in a single operation is one Flash write Word
(32-bit). The data to be programmed must be written to the NVMDATA0 register, and the address
of the Word must be loaded into the NVMADDR register before the programming sequence is
initiated. The instruction Word at the physical location pointed to by the NVMADDR register is,
then, programmed. Programming occurs on 32-bit Word boundaries; therefore, bits ‘0’ and ‘1’ of the
NVMADDR register are ignored.

When a Word is programmed, it must be erased before it can be programmed again, even if
changing a bit from an erased ‘1’ state to a ‘0’ state.

Word programming will only succeed if the target address is in a page that is not write-protected.
Programming to a write-protected PFM page will fail and result in the WRERR bit being set in the
NVMCON register. Programming a write-protected BFM page will fail but does not set the WRERR bit.

A programming sequence consists of the following steps:

1. Write 32-bit data to be programmed to the NVMDATA0 register.
2. Load the NVMADDR register with the address to be programmed.
3. Set the WREN bit = 1 and NVMOP bits = 1 in the NVMCON register. This defines and enables the

programming operation.
4. Initiate the programming operation. (See NVMKEY Register Unlocking Sequence from Related

Links.)

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 460

5. Monitor the WR bit of the NVMCON register to flag completion of the operation.
6. Clear the WREN bit in the NVMCON register.
7. Check for errors and process accordingly.

The following code shows code for Word programming, where a value of 0x12345678 is
programmed into location 0x1008000.

Word Programming Code Example:

…
// Set up Address and Data Registers
 NVMADDR= 0x1008000; // physical address
 NVMDATA0 = 0x12345678; // value

// set the operation, assumes WREN = 0
 NVMCONbits.NVMOP = 0x1; // NVMOP for Word programming

// Enable Flash for write operation and set the NVMOP
 NVMCONbits.WREN = 1;

// Start programming
 NVMInitiateOperation(); // see Initiate NVM Operation (Unlock Sequence
Example)

// Wait for WR bit to clear
 while (NVMCONbits.WR);

// Disable future Flash Write/Erase operations
 NVMCONbits.WREN = 0;

// Check Error Status
 if(NVMCON & 0x3000) // mask for WRERR and LVDERR
 {
 // process errors
 }
…

Related Links
24.11. NVMKEY Register Unlocking Sequence

24.13 Quad Word Programming
The process for Quad Word programming is identical to Word programming except that all four of
the NVMDATAx registers are used. The value of the NVMDATA0 register is programmed at address
NVMADDR, NVMDATA1 at NVMADDR + 0x4, NVMDATA2 at NVMADDR + 0x8, and NVMDATA3 at
address NVMDATA + 0xC.

Quad Word programming is always performed on a Quad Word boundary; therefore, NVMADDR
address bits 3 through 0 are ignored.

Quad Word programming will only succeed if the target address is in a page that is not write-
protected. When a Quad Word is programmed, it must be erased before any Word in it can be
programmed again, even if changing a bit from an erased ‘1’ state to a ‘0’ state.

Where a value of 0x11111111 is programmed into location 0x1008000, 0x22222222 into 0x1008004,
0x33333333 into 0x1008008, and 0x44444444 into location 0x100800C. Refer to the following code
example for details.

Quad Word Programming Code Example:
…

// Set up Address and Data Registers
 NVMADDR = 0x1008000; // physical address
 NVMDATA0 = 0x11111111; // value written to 0x1008000
 NVMDATA1 = 0x22222222; // value written to 0x1008004
 NVMDATA2 = 0x33333333; // value written to 0x1008008
 NVMDATA3 = 0x44444444; // value written to 0x100800C

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 461

// set the operation, assumes WREN = 0
 NVMCONbits.NVMOP = 0x2; // NVMOP for Quad Word programming

// Enable Flash for write operation and set the NVMOP
 NVMCONbits.WREN = 1;

// Start programming
 NVMInitiateOperation(); // see Initiate NVM Operation (Unlock Sequence Example)

// Wait for WR bit to clear
 while(NVMCON & NVMCON_WR);

// Disable future Flash Write/Erase operations
 NVMCONbits.WREN = 0;

// Check Error Status
 if(NVMCON & 0x3000) // mask for WRERR and LVDERR bits

24.14 Row Programming
The largest block of data that can be programmed is a row.

Unlike Word and Quad Word Programming where the data source is stored in SFR memory, Row
programming source data is stored in SRAM. The NVMSRCADDR register is a pointer to the physical
location of the source data for Row programming.

Like other Non-Volatile Memory (NVM) programming commands, the NVMADDR register points to
the target address of the operation. Row programming always occurs on row boundaries with the
row size of 1024, bits 0 through 9 of the NVMADDR register are ignored.

Row Word programming will only succeed if the target address is in a page that is not write-
protected. When a row is programmed, it must be erased before any Word in it can be programmed
again, even if changing a bit from an erased ‘1’ state to a ‘0’ state.

Array rowbuff is populated with data and programmed into a row located at physical address
0x1008000.

Note: When assigning the value to the NVMSRCADDR register, it must be converted to a physical
address.

Row Programming Code Example:
…

unsigned long rowbuff[256]; // example is for a 256 Word row size.
int x; // loop counter

// put some data in the source buffer
 for (x = 0; x < (sizeof(rowbuff) * sizeof (int)); x++)
 ((char *)rowbuff)[x] = x;

// set destination row address
 NVMADDR = 0x1008000; // row physical address

// set source address. Must be converted to a physical address.
 NVMSRCADDR = (unsigned int)((int)rowbuff & 0x1FFFFFF);

// define Flash operation
 NVMCONbits.NVMOP = 0x3; // NVMOP for Row programming

// Enable Flash Write
 NVMCONbits.WREN = 1;

// commence programming
 NVMInitiateOperation(); // see Initiate NVM Operation (Unlock Sequence
Example)

// Wait for WR bit to clear
 while(NVMCONbits.WR);

// Disable future Flash Write/Erase operations
 NVMCONbits.WREN = 0;

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 462

// Check Error Status
 if(NVMCON & 0x3000) // mask for WRERR and LVDERR bits
 {
 // process errors
 }
…

24.15 Page Erase
A Page Erase performs an erase of a single page of either PFM or BFM.

The page to be erased is selected using the NVMADDR register. Pages are always erased on page
boundaries; therefore, for a device with an instruction Word page size of 4096, bits 0 through 11 of
the NVMADDR register are ignored.

A Page Erase will only succeed if the target address is a page that is not write-protected. Erasing a
write-protected page will fail and result in the WRERR bit being set in the NVMCON register.

The following code shows the code for a single Page Erase operation at address 0x1008000.

Page Erase Code Example:
…

// set destination page address
 NVMADDR = 0x1008000; // page physical address

// define Flash operation
 NVMCONbits.NVMOP = 0x4; // NVMOP for Page Erase

// Enable Flash Write
 NVMCONbits.WREN = 1;

// commence programming
 NVMInitiateOperation(); // see Initiate NVM Operation (Unlock Sequence Example)

// Wait for WR bit to clear
 while(NVMCONbits.WR);

// Disable future Flash Write/Erase operations
 NVMCONbits.WREN = 0;

// Check Error Status
 if(NVMCON & 0x3000) // mask for WRERR and LVDERR bits
 {
 // process errors
 }

…

24.15.1 Page Erase Retry
Page Erase Retry is a method to improve the life of a Flash by attempting to erase again if the Page
Erase was not successful. Page Erase Retry can only be used for a Page Erase.

Page Erase Retry works by increasing the voltage used on the Flash when erasing. Initially, the
minimum voltage necessary is applied by setting the RETRY[1:0] bits (NVMCON2[9:8]) = 00. If the
page erase is not successful, the voltage may be increased by incrementing the setting of the
RETRY[1:0] bits.
Note: Each Flash page, as it ages and wears, may have different voltage requirements; therefore, a
higher setting on one Flash page does not indicate that the same setting must be used on all pages.

The maximum voltage for Page Erase is used when the RETRY[1:0] bits = 11. If Page Erase is not
successful after 7 trials, this means that the Flash for that page, or the Words that did not erase,
must be considered “non-functional”.

Together with the normal Page Erase controls, Page Erase Retry also uses the WS[4:0], CREAD1,
VREAD1 and RETRY[1:0] bits in the NVMCON2 register. The ERS[3:0] bits (NVMCON2[31:28]) are for
the benefit of software performing the programming sequence in the event that a drop in power
causes a BOR event but not a POR event.

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 463

Perform the following steps to set up a Page Erase Retry:
1. Set the NVMADDR register with the address of the page to be erased.
2. Execute the write unlock sequence.
3. Save the value of the NVMCON2 register.
4. Do the following in the NVMCON2 register:

a. Set the ERS[3:0] bits as desired.
b. Set the WS[4:0] bits per the description.
c. Set the VREAD1 bit to ‘1’.

d. Set the CREAD1 bit to ‘1’.

e. Set the RETRY[1:0] bits to ‘00’.

5. Run the unlock sequence using the Page Erase command to start the sequence.
6. Wait for the WR bit (NVMCON[15]) to be cleared by hardware.
7. Clear the WREN bit (NVMCON[14]).
8. Verify the erase using the CPU. To shorten the verify time, use CREAD1 = 1 to perform a

hardware compare to logic ‘1’ of each bit in the Flash Word including ECC. A successful compare
yields a read of 0x00000001 in the lowest addressed word in a Flash Word (128 bits). This is the
Compare Word. All other Words are 0x00010000. If any bit is logic ‘0’, all Words in the Flash Word
read 0x00000000. Remember to increment the address by the number of bytes in a Flash Word
between reads.

9. If all Compare Words verify correctly, the Page Erase Retry process is complete. Go to step 11.
10. If a Compare Word yields a read of 0x00000000, perform steps 4 through 9 up to six more times

with the following change to step 4:
a. Increment the RETRY[1:0] bits by one if the bit has not already reached the ‘11’ setting.

b. Maintain all other fields.
11. Restore the value of the NVMCON2 register, which was saved in step 3.

Notes: 
1. When the VREAD1 = 1, the Flash uses the WS[3:0] bits for Flash access wait state generation to

the panel selected by NVMADDR. Software is responsible for writing the VREAD1 bit back to ‘0’
when both erase and verify is complete.

2. The device configuration boot page (the page containing the DEVCFGx values) does not support
Page Erase Retry.

The following code provides code for a single page erase operation at address 0x1008000, where
Page Erase Retry is used.

Page Erase Retry Code Example:
uint32_tsaveNVMCON2;
uint32_t*cmpPtr;
uint8_terased;
uint8_ttryCount;

// set destination page address
 NVMADDR = 0x1008000; // Page physical address

// define flash operation
 NVMCONbits.NVMOP = 0x4; // NVMOP for Page Erase

// Unlock sequence
 NVMKEY = 0x0;
 NVMKEY = 0xAA996655;
 NVMKEY = 0x556699AA;

// save NVMCON2

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 464

 saveNVMCON2 = NVMCON2;

// set up Page Erase Retry
 NVMCON2bits.ERS = 0; // Stage 0 - SW use only
 NVMCON2bits.VREAD1 = 1;
 NVMCON2bits.CREAD1 = 1;
 NVMCON2bits.RETRY = 0b00;

 tryCount = 0; // Up to 4 attempts

 do {
 tryCount++;

 // commence programming
 NVMInitiateOperation();

 // Wait for WR bit to clear
 while(NVMCONbits.WR);

 // Turn off WREN
 NVMCONbits.WREN = 0;

 // Check that the page was erased
 erased = 1;
 cmpPtr = (uint32_t *)NVMADDR;
 erased &= (*cmpPtr == 0x00000001);
 cmpPtr++;
 erased &= (*cmpPtr == 0x00010000);
 cmpPtr++;
 erased &= (*cmpPtr == 0x00010000);
 cmpPtr++;
 erased &= (*cmpPtr == 0x00010000);

 if (!erased) {
 // Erase failed. Try with different settings.
 NVMCON2bits.RETRY++;

 NVMCONbits.NVMOP = 0x4;
 NVMCONbits.WREN = 1;
 }
 } while (!erased && (tryCount < 4));

// Restore settings
 NVMCON2 = saveNVMCON2;

24.16 Program Flash Memory (PFM) Erase
Program Flash memory can be erased entirely. All three discrete NVMOP values, 0111, 0110, 0101,
do the same operation of erase of entire Flash. When erasing the entire PFM area, in case of RTSP
(Run Time Self Programming), the code must be executing from BFM. When erasing the entire PFM
area, PFM write-protection must be completely disabled.

The following code shows code for erasing the entire Flash bank.

Program Flash Erase Code Example:
…

// define Flash operation
 NVMCONbits.NVMOP = 0x7; // NVMOP for entire PFM erase

// Enable Flash Write
 NVMCONbits.WREN = 1;

// commence programming
 NVMInitiateOperation(); // see Initiate NVM Operation (Unlock Sequence Example)

// Wait for WR bit to clear
 while(NVMCONbits.WR);

// Disable future Flash Write/Erase operations
 NVMCONbits.WREN = 0;

// Check Error Status
 if(NVMCON & 0x3000) // mask for WRERR and LVDERR bits
 {

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 465

 // process errors
 }

…

24.17 Pre-Program
The PIC32CX-BZ2 Flash supports an option to programming that increases endurance and retention.
This feature is called Pre-Program, and it requires the user to perform the programming operation
twice, first, with NVMCON2.NVMPREPG = 1 and, secondly, with NVMCON2.NVMPREPG = 0. Any of
the programming operations (Single, Quad, Row) can be performed with this method. In all other
respects, the SFR setup is identical. To use this feature, set or clear the NVMCON2.NVMPREPG
SFR bit prior to setting the NVMWR bit. Pre-Program, typically double, the native Endurance and
Retention of the Flash.

24.18 Device Code Protection bit (CP)
The PIC32CX-BZ2 family of devices features code protection, which, when enabled, prevents reading
of the Flash memory by an external programming device (SWD through DSU).

When code protection is enabled, it can only be disabled by erasing the device with the Chip Erase
command through an external programmer. See Device Service Unit (DSU) from Related Links.

When programming a device that has opted to utilize code protection, the external programming
device must perform verification prior to enabling code protection. Enabling code protection must
be the last step of the programming process. For the location of the code protection enable bits,
refer to PIC32CX-BZ2 Programming Specification and System Configuration Registers (CFG) from Related
Links.

Related Links
12. Device Service Unit (DSU)
18. System Configuration and Register Locking (CFG)

24.19 Operation in Power-Saving Modes
The Flash Controller does not operate in power-saving modes. If a WAIT instruction is encountered
when programming, the CPU will stop execution (stall), wait for the programming operation to
complete, then enter the Power-Saving mode.

24.20 Operation in Debug Mode
Programming operations will continue to completion if the processor execution is halted in Debug
mode.

24.21 Effects of Various Resets
Device Resets, other than a Power-on Reset (POR), reset the entire contents of the NVMPWP and
NVMLBWP registers. All other register content persists through a non-POR reset.

All Flash Controller registers are forced to their reset states upon a POR.

24.22 Control Registers
Note: The following conventions are used in the following registers:

• R = Readable bit
• W = Writable bit
• U = Unimplemented bit, read as ‘0’

• 1= Bit is set

• 0= Bit is cleared

• x = Bit is unknown

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 466

• -n = Value at POR
• HS = Hardware Set
• HC = Hardware Cleared

Note: All registers in this table have corresponding CLR, SET and INV registers at its virtual address,
plus an offset of 0x4, 0x8 and 0xC, respectively. See CLR, SET and INV Registers from Related Links.

Related Links
6.1.9. CLR, SET and INV Registers

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 467

24.22.1 Register Summary
The following registers provides a brief summary of the Flash programming-related registers.

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x00 NVMCON

7:0 NVMOP[3:0]
15:8 WR WREN WRERR LVDERR HTDPGM

23:16
31:24

0x04
...

0x0F
Reserved

0x10 NVMCON2

7:0 NVMPREPG
15:8 TEMP CREAD1 VREAD1 RETRY[1:0]

23:16 WS[4:0]
31:24 ERS[3:0] SLEEP

0x14
...

0x1F
Reserved

0x20 NVMKEY

7:0 NVMKEY[7:0]
15:8 NVMKEY[15:8]

23:16 NVMKEY[23:16]
31:24 NVMKEY[31:24]

0x24
...

0x2F
Reserved

0x30 NVMADDR

7:0 NVMADDR[7:0]
15:8 NVMADDR[15:8]

23:16 NVMADDR[23:16]
31:24 NVMADDR[31:24]

0x34
...

0x3F
Reserved

0x40 NVMDATA0

7:0 NVMDATA[7:0]
15:8 NVMDATA[15:8]

23:16 NVMDATA[23:16]
31:24 NVMDATA[31:24]

0x44
...

0x4F
Reserved

0x50 NVMDATA1

7:0 NVMDATA[7:0]
15:8 NVMDATA[15:8]

23:16 NVMDATA[23:16]
31:24 NVMDATA[31:24]

0x54
...

0x5F
Reserved

0x60 NVMDATA2

7:0 NVMDATA[7:0]
15:8 NVMDATA[15:8]

23:16 NVMDATA[23:16]
31:24 NVMDATA[31:24]

0x64
...

0x6F
Reserved

0x70 NVMDATA3

7:0 NVMDATA[7:0]
15:8 NVMDATA[15:8]

23:16 NVMDATA[23:16]
31:24 NVMDATA[31:24]

0x74
...

0xBF
Reserved

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 468

...........continued

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0xC0 NVMSRCADDR

7:0 NVMSRCADDR[7:0]
15:8 NVMSRCADDR[15:8]

23:16 NVMSRCADDR[23:16]
31:24 NVMSRCADDR[31:24]

0xC4
...

0xCF
Reserved

0xD0 NVMPWPLT

7:0 PWPLT[7:0]
15:8 PWPLT[15:8]

23:16 PWPLT[23:16]
31:24 ULOCK

0xD4
...

0xDF
Reserved

0xE0 NVMPWPGTE

7:0 PWPGTE[7:0]
15:8 PWPGTE[15:8]

23:16 PWPGTE[23:16]
31:24 ULOCK

0xE4
...

0xEF
Reserved

0xF0 NVMLBWP

7:0 LBWP[7:0]
15:8 LBWP[15:8]

23:16 LBWP[23:16]
31:24 ULOCK

24.22.2 Register Description
The following NVM control registers control the Flash program, erase and write protection
operations:

• NVMCON: Programming Control Register
– This register is the control register for Flash program/erase operations. The following are the

uses of this register:
• Selects the operation to be performed
• Initiates the operation
• Provides status of the result after completing the operation

• NVMCON2: Programming Control2 Register
– This register is the control and status register for Flash program/erase operations.

• NVMKEY: Programming Unlock Register
– This is a write-only register that helps to or that helps the user to implement an unlock

sequence to help prevent accidental writes/erasures of Flash memory and write permission
settings.

• NVMADDR: Flash Address Register
– This register stores the physical target address for row, Quad Double Word and Single

Double Word programming as well as page erasing.
• NVMDATAx: Flash Program Data Register (x = 0-3)

– These registers hold the data to be programmed during Flash Word program operations.
• NVMSRCADDR: Source Data Address Register

– This register points to the physical address of the data to be programmed when executing a
row program operation.

• NVMPWPLT: Flash Program Write Protect Lower Register
– This register sets the program flash pages lower than provided address as a write protected.

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 469

• NVMPWPGTE: Flash Program Write Protect Greater Register
– This register sets the program flash pages greater than provided address as a write

protected.
• NVMLBWP: Flash Boot Write Protect Register

– This register sets the boot flash partition pages as a write protected.

The following is the list of conventions available in the register description:

• – R = Readable bit
• – W = Writable bit
• – U = Unimplemented bit, read as ‘0’

• – -n = Value at POR
• – 1 = Bit is set

• – 0 = Bit is cleared

• – x = Bit is unknown

• HS = Hardware Set
• HC = Hardware Cleared

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 470

24.22.2.1 NVMCON – Programming Control Register

Name:  NVMCON
Offset:  0x00
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 WR WREN WRERR LVDERR HTDPGM

Access R/HS/HC R/W R/HS/HC R/HS/HC R/HS/HC
Reset 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 NVMOP[3:0]

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 15 – WR Write Control Bit(1)

Note: This field can only be modified when WREN = 1, TEMP = 1 and the NVMKEY unlock sequence
is satisfied.

Value Description
1 Initiate a Flash operation. Hardware clears this bit when the operation completes
0 Flash operation complete or inactive

Bit 14 – WREN Write Enable Bit(1)

Value Description
1 Enables writes to WR
0 Disables writes to WR

Bit 13 – WRERR Write Error Bit(1)

Note: Cleared by setting NVMOP == 0000b and initiating a Flash operation (WR).

Value Description
1 Program or erase sequence did not complete successfully
0 Program or erase sequence completed normally

Bit 12 – LVDERR Low Voltage Detect Error Bit(1)

The error is only captured for programming/erase operations (when WR = 1).
Note: Cleared by setting NVMOP == 0000b and initiating a Flash operation (WR).

Value Description
1 Low voltage is detected (possible data corruption if WRERR is set)
0 Normal voltage is detected

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 471

Bit 8 – HTDPGM High Temperature Detected during Program/Erase Operation bit
This status is only captured for programming/erase operations (when WR = 1).
Note: Cleared by setting NVMOP == 0000b and initiating a Flash operation (WR).

Value Description
1 High temperature is detected (possible data corruption, verify operation)
0 High temperature is not detected

Bits 3:0 – NVMOP[3:0] NVM Operation bits
These bits are only writable when WREN = 0.
Value Description
1111 Reserved
1110 Chip Erase Operation: Erases PFM, BFM (except configuration page) when accessed through SWD interface

only.
...
...
...
1000 Reserved
0111 Program erase operation: erase all of program Flash memory (PFM) (all pages must be unprotected)
0110 Upper program Flash memory erase operation: erases only the upper mapped region of program Flash (all

pages in that region must be unprotected). It is a single bank Flash in PIC32CX-BZ2; therefore, this NVMOP
performs the same as NVMOP = 0111.

0101 Lower program Flash memory erase operation: erases only the lower mapped region of program Flash (all
pages in that region must be unprotected). It is a single bank Flash in PIC32CX-BZ2; therefore, this NVMOP
performs the same as NVMOP = 0111.

0100 Page erase operation: erases the page selected by NVMADDR if it is not write-protected.
0011 Row program operation: programs the row selected by NVMADDR if it is not write-protected.
0010 Quad Word (128-bit) program operation: programs the 128-bit Flash Word selected by NVMADDR if it is not

write-protected.
0001 Word program operation: programs the Word selected by NVMADDR if it is not write-protected(2).
0000 No operation

Notes: 
1. These bits are reset by a POR only and are not affected by other Reset sources.
2. This operation results in a No Operation (NOP) when the Dynamic Flash ECC Configuration bits

= 00 (ECCCTL[1:0](CFGCON0[29:28])), which enables ECC at all times. For all other ECCCTL[1:0] bit
settings, this command will execute but will not write the ECC bits for the Word. It can cause DED
(Double-bit Error Detected) errors if dynamic Flash ECC is enabled (ECCCTL[1:0] = 01).

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 472

24.22.2.2 NVMCON2 – Programming Control 2 Register

Name:  NVMCON2
Offset:  0x10
Reset:  0x011F4000
Property:  -

Bit 31 30 29 28 27 26 25 24
 ERS[3:0] SLEEP

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 1

Bit 23 22 21 20 19 18 17 16
 WS[4:0]

Access R/W R/W R/W R/W R/W
Reset 1 1 1 1 1

Bit 15 14 13 12 11 10 9 8
 TEMP CREAD1 VREAD1 RETRY[1:0]

Access R R/W R/W R/W R/W
Reset 1 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 NVMPREPG

Access R/W
Reset 0

Bits 31:28 – ERS[3:0] Erase Retry State
These bits are used by software to track the software state of the erase retry procedure in the event
of a system Reset (NMCLR) or Brown-out Reset (BOR) event.

Bit 24 – SLEEP Power Down in Sleep mode
Note: This field can only be modified when the NVMKEY unlock sequence is satisfied.

Value Description
1 Configures Flash for power-down when the system is in Sleep mode
0 Configures Flash for standby when the system is in Sleep mode

Bits 20:16 – WS[4:0] Flash Access Wait State Control for VREAD1 = 1
Notes: 
1. When VREAD1 = 1, WS[4:0] only affects the memory containing NVMADDR[31:0].

2. This field can only be modified when the NVMKEY unlock sequence is satisfied.

Value Description
11111 31 wait states (32 total system clocks)
11110 30 wait states (31 total system clocks)
...
00010 2 wait states (3 total system clocks)
00001 1 wait state (2 total system clocks)
00000 0 wait state (1 total system clock)

Bit 14 – TEMP Operating Temperature Control bit

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 473

Bit 13 – CREAD1 Compare Read of Logic 1 bit
Compare read 1 causes all bits in a Flash Word (including ECC if it exists) to be evaluated during the
read. If all bits are ‘1’, the lowest Word in the Flash Word evaluates to 0x0000_0001, all other Words
are 0x0001_0000. If any bit is ‘0’, the read evaluates to 0x0000_0000 for all Words in the Flash Word.
Notes: 
1. When using erase retry in an ECC Flash system, CREAD1 = 1 must be used.

2. This field can only be modified when the NVMKEY unlock sequence is satisfied.

Value Description
1 Compare read enabled only if VREAD1 = 1
0 Compare read disabled

Bit 12 – VREAD1 Verify Read of logic 1 Control bit
Notes: 
1. When VREAD1 = 1, the Flash wait state control is from WS[4:0] for the memory containing

NVMADDR[31:0].
2. Using Page Erase Retry and Verify Read procedure increase the life of the Flash memory.
3. This field can only be modified when NVMCON.WR == 0 and the NVMKEY unlock sequence is

satisfied.

Value Description
1 Selects erase retry procedure with verify read
0 Selects single erase without verify read

Bits 9:8 – RETRY[1:0] Erase Retry Control bit, only used when VREAD1 = 1
Note: This field can only be modified when NVMCON.WR == 0.

Value Description
11 Erase strength for last retry cycle
10 Erase strength for third retry cycle
01 Erase strength for second retry cycle
00 Erase strength for first retry cycle

Bit 0 – NVMPREPG NVM Pre-Program Control Bit
Note: This field can only be modified when NVMCON.NVMWR= = 0.

Value Description
1 Program Operations include the Pre-Program step
0 Program Operations exclude the Pre-Program step

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 474

24.22.2.3 NVMKEY – Programming Unlock Register

Name:  NVMKEY
Offset:  0x20
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24
 NVMKEY[31:24]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 NVMKEY[23:16]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 NVMKEY[15:8]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 NVMKEY[7:0]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – NVMKEY[31:0] Unlock Register bits
These bits are write-only and read ‘0’ on any read.
Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the
program Flash.

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 475

24.22.2.4 NVMADDR – Flash Address Register

Name:  NVMADDR
Offset:  0x30
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24
 NVMADDR[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 NVMADDR[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 NVMADDR[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 NVMADDR[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – NVMADDR[31:0] Flash (Word) Address bits

Table 24-5. Flash (Word) Address Bits
NVMOP Flash Address Bits
Page Erase • Address identifies the page to erase

• Any address within a 4 Kbytes page boundary will cause
the page to be erased

Row program • Address identifies the row to program

• The value of the address must be aligned to a row
boundary

Word program • Address identifies the 32-bit Word to program

• NVMADDR[1:0] bits are ignored

• Must be aligned to a Word boundary
Quad Word program • Address identifies the 128-bit Quad Word to program

• NVMADDR[3:0] bits are ignored

• Must be aligned to a Quad Word boundary

Notes: 
1. Hardware prevents writes to this register when NVMCON.WR = 1.

2. For all other NVMOP[3:0] bit settings, the Flash address is ignored. For additional information on
these bits, see the NVMCON register from Related Links.

3. The bits in this register are reset by a POR only and are not affected by other Reset sources.

Related Links
24.22.2.1. NVMCON

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 476

24.22.2.5 NVMDATA0 – Flash Program Data Register 0

Name:  NVMDATA0
Offset:  0x40
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24
 NVMDATA[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 NVMDATA[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 NVMDATA[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 NVMDATA[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – NVMDATA[31:0] Flash Programming Data bits
The value in this register is written to Flash when a program operation is commanded.
• Single Word program (32-bit)

– Writes NVMDATA0 to the target Flash address defined in NVMADDR[31:2].
• Quad Word program (128-bit)

– Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATA0 to the target Flash address defined in
NVMADDR[31:4]. NVMDATA0 contains the Least Significant Instruction Word.

Notes: 
1. Hardware prevents writes to this register when NVMCON.WR = 1.

2. The bits in this register are reset on a POR only and are unaffected by other Reset sources.

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 477

24.22.2.6 NVMDATA1 – Flash Program Data Register 1

Name:  NVMDATA1
Offset:  0x50
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24
 NVMDATA[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 NVMDATA[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 NVMDATA[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 NVMDATA[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – NVMDATA[31:0] Flash Programming Data bits
The value in this register is written to Flash when a program operation is commanded.
• Single Word program (32-bit)

– Writes NVMDATA0 to the target Flash address defined in NVMADDR[31:2].
• Quad Word program (128-bit)

– Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATA0 to the target Flash address defined in
NVMADDR[31:4]. NVMDATA0 contains the Least Significant Instruction Word.

Notes: 
1. Hardware prevents writes to this register when NVMCON.WR = 1.

2. The bits in this register are reset on a POR only and are unaffected by other Reset sources.

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 478

24.22.2.7 NVMDATA2 – Flash Program Data Register 2

Name:  NVMDATA2
Offset:  0x60
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24
 NVMDATA[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 NVMDATA[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 NVMDATA[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 NVMDATA[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – NVMDATA[31:0] Flash Programming Data bits
The value in this register is written to Flash when a program operation is commanded.
• Single Word program (32-bit)

– Writes NVMDATA0 to the target Flash address defined in NVMADDR[31:2].
• Quad Word program (128-bit)

– Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATA0 to the target Flash address defined in
NVMADDR[31:4]. NVMDATA0 contains the Least Significant Instruction Word.

Notes: 
1. Hardware prevents writes to this register when NVMCON.WR = 1.

2. The bits in this register are reset on a POR only and are unaffected by other Reset sources.

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 479

24.22.2.8 NVMDATA3 – Flash Program Data Register 3

Name:  NVMDATA3
Offset:  0x70
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24
 NVMDATA[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 NVMDATA[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 NVMDATA[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 NVMDATA[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – NVMDATA[31:0] Flash Programming Data bits
The value in this register is written to Flash when a program operation is commanded.
• Single Word program (32-bit)

– Writes NVMDATA0 to the target Flash address defined in NVMADDR[31:2].
• Quad Word program (128-bit)

– Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATA0 to the target Flash address defined in
NVMADDR[31:4]. NVMDATA0 contains the Least Significant Instruction Word.

Notes: 
1. Hardware prevents writes to this register when NVMCON.WR = 1.

2. The bits in this register are reset on a POR only and are unaffected by other Reset sources.

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 480

24.22.2.9 NVMSRCADDR – Source Data Address Register

Name:  NVMSRCADDR
Offset:  0xC0
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24
 NVMSRCADDR[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 NVMSRCADDR[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 NVMSRCADDR[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 NVMSRCADDR[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – NVMSRCADDR[31:0] Source Data (Word) Address bits
This is the system physical Word address of the data (in DRM) to be programmed into the Flash
when NVMCON.NVMOP is set to row programming.
Notes: 
1. Hardware prevents writes to this register when NVMCON.WR = 1.

2. The bits in this register are reset on a POR only and are unaffected by other reset sources.

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 481

24.22.2.10 NVMPWPLT – Flash Program Write Protect Lower Register

Name:  NVMPWPLT
Offset:  0xD0
Reset:  0x80000000
Property:  -

Bit 31 30 29 28 27 26 25 24
 ULOCK

Access R/C
Reset 1

Bit 23 22 21 20 19 18 17 16
 PWPLT[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 PWPLT[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 PWPLT[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 31 – ULOCK NVMPWPLT Register Unlock bit
Notes: 
1. This field can only be modified when the NVMKEY unlock sequence is satisfied.
2. This field can be cleared at the same time as writing to PWPLT[23:0].

Value Description
1 NVMPWPLT register is not locked and can be modified
0 NVMPWPLT register is locked and cannot be modified

Bits 23:0 – PWPLT[23:0] Flash Program Write Protect Less Than Address
Pages at Flash addresses less than this value are write-protected.
Notes: 
1. This field can only be modified when the NVMKEY unlock sequence is satisfied, and ULOCK = 1.

2. This is a byte address force to align to page boundaries.

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 482

24.22.2.11 NVMPWPGTE – Flash Program Write Protect Greater Register

Name:  NVMPWPGTE
Offset:  0xE0
Reset:  0x80FFFFFF
Property:  -

Bit 31 30 29 28 27 26 25 24
 ULOCK

Access R/C
Reset 1

Bit 23 22 21 20 19 18 17 16
 PWPGTE[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 15 14 13 12 11 10 9 8
 PWPGTE[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0
 PWPGTE[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 31 – ULOCK NVMPWPGTE Register Unlock bit
Notes: 
1. This field can only be modified when the NVMKEY unlock sequence is satisfied.
2. This field can be cleared at the same time as writing to PWPGTE[23:0].

Value Description
1 NVMPWPGTE register is not locked and can be modified
0 NVMPWPGTE register is locked and cannot be modified

Bits 23:0 – PWPGTE[23:0] Flash Program Write Protect Address
Pages at Flash addresses greater than or equal to this value are write-protected.
Notes: 
1. This field can only be modified when the NVMKEY unlock sequence is satisfied and ULOCK = 1.

2. This is a byte address forced to align to page boundaries.

 PIC32CX-BZ2 and WBZ45 Family
Flash Memory

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 483

24.22.2.12 NVMLBWP – Flash Boot Write Protect Register

Name:  NVMLBWP
Offset:  0xF0
Reset:  0x80FFFFFF
Property:  -

Bit 31 30 29 28 27 26 25 24
 ULOCK

Access R/C
Reset 1

Bit 23 22 21 20 19 18 17 16
 LBWP[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 15 14 13 12 11 10 9 8
 LBWP[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0
 LBWP[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 31 – ULOCK Lower Boot Write Protect (LBWPn) Unlock bit
Notes: 
1. This field can only be modified when the NVMKEY unlock sequence is satisfied.
2. This field can be cleared at the same time as writing to LBWP[msb:lsb].

Value Description
1 LBWPn bits are not locked and can be modified
0 LBWPn bits are locked and cannot be modified

Bits 23:0 – LBWP[23:0] Boot Pages Write Protect bits
Notes: 
1. This field can only be modified when the NVMKEY unlock sequence is satisfied and ULOCK = 1.

2. The OTP page is always erase-protected and its associated LBWP bit is only for write-protection.

Value Description
1 Erase and write-protection for upper boot page n is enabled
0 Erase and write-protection for upper boot page n is disabled

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 484

25. Integrity Check Monitor (ICM)
25.1 Overview

The Integrity Check Monitor (ICM) is a DMA controller that performs hash calculation over multiple
memory regions using transfer descriptors located in memory (ICM Descriptor Area). The Hash
function is based on the Secure Hash Algorithm (SHA). The ICM controller integrates two modes of
operation. The first mode is used to hash a list of memory regions and save the digests to memory
(ICM Hash Area). The second mode is an active monitoring of the memory. In this mode, the hash
function is evaluated and compared to the digest located at a predefined memory address (ICM
Hash Area). If a mismatch occurs, an interrupt is raised.

25.2 Features
• DMA AHB manager interface
• Supports monitoring of up to four non-contiguous memory regions
• Supports block gathering using a linked list
• Supports Secure Hash Algorithm (SHA1, SHA256)
• Compliant with FIPS Publication 180-2
• Configurable processing period:

– When SHA1 algorithm is processed, the run-time period is either 85 or 209 clock cycles
– When SHA256 algorithm is processed, the run-time period is either 72 or 194 clock cycles

• Programmable bus burden

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 485

25.3 Block Diagram
Figure 25-1. Integrity Check Monitor Block Diagram

Integrity
Scheduler

SHA
Hash
Engine

Host
Interface

Context
Registers

Monitoring
FSM

Configuration
Registers

Host
DMA Interface

APB

Bus Layer

25.4 Signal Description
Not applicable.

25.5 Product Dependencies
In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

25.5.1 Power Management

25.5.2 Clocks
The ICM bus clocks (PB2_CLK) can be enabled and disabled in the CRU module or the PMD2.ICMMD
bit. For more details, see Peripheral Module Disable Register (PMD) from Related Links.

Related Links
20. Peripheral Module Disable Register (PMD)

25.5.3 DMA
Not applicable.

25.5.4 Events
Not applicable.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 486

25.5.5 Debug Operation
Not applicable.

25.6 Functional Description

25.6.1 Overview
The Integrity Check Monitor (ICM) is a DMA controller that performs SHA-based memory hashing
over memory regions. As shown in the Block Diagram (see Block Diagram from Related Links), it
integrates a DMA interface, a Monitoring Finite State Machine (FSM), an integrity scheduler, a set of
context registers, a SHA engine, an interface for configuration and status registers.

The SHA engine requires a message padded according to FIPS180-4 specification when used as a
SHA calculation unit only. Otherwise, if the ICM is used as an integrated check for memory content,
the padding is not mandatory. The SHA module produces an N-bit message digest each time a block
is read and a processing period ends. N is 160 for SHA1, 256 for SHA256.

When the ICM module is enabled, it sequentially retrieves a circular list of region descriptors from
the memory (Main List described in the following figure). Up to four regions may be monitored.
Each region descriptor is composed of four words indicating the layout of the memory region (see
Region Descriptor Structure from Related Links). It also contains the hashing engine configuration
on a per region basis. As soon as the descriptor is loaded from the memory and context registers
are updated with the data structure, the hashing operation starts. A programmable number of
blocks (see TRSIZE field of the RCTRL structure member) is transferred from the memory to the SHA
engine. When the desired number of blocks have transferred, the digest is either moved to memory
(Write Back function) or compared with a digest reference located in the system memory (Compare
function). If a digest mismatch occurs, an interrupt is triggered if enabled. The ICM module parses
through the region descriptor list until the end of the list, marked by an end of list bit set to one. To
continuously monitor the list of regions, the WRAP bit must be set to one in the last data structure,
and EOM must be cleared.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 487

Figure 25-2. ICM Region Descriptor and Hash Areas

 ICM Descriptor
 Area - Contiguous
Read-only Memory

Region 0
Descriptor

Region 1
Descriptor

Region N
Descriptor

WRAP=1

WRAP=0

WRAP=0

infinite loop
when wrap bit is set

End of Region 0

End of Region 1 List

End of Region N

Region 0 Hash

Region 1 Hash

Region N Hash

ICM Hash Area -
 Contiguous
Read-write once
 Memory

Main List

Secondary List

Each region descriptor supports gathering of data through the use of the Secondary List. Unlike the
Main List, the Secondary List cannot modify the configuration attributes of the region. When the end
of the Secondary List is encountered, the ICM returns to the Main List. Memory integrity monitoring
can be considered a background service, and the mandatory bandwidth is very limited. To limit the
ICM memory bandwidth, use the BBC field of the CFG register to control the ICM memory load.

Figure 25-3. Region Descriptor

End of Region 0
DSCR Region 0 Descriptor

Region 1 Descriptor

Region ADDR

Region CFG

Region CTRL

Region NEXT

0x000

0x004

0x008

0x00C

Optional Region 0 Secondary List

Region ADDR

Unused

Region CTRL

Region NEXT

0x000

0x004

0x008

0x00C

Region 2 Descriptor

Region 3 Descriptor

Main List

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 488

Related Links
25.3. Block Diagram
25.6.3. Region Descriptor Structure

25.6.2 ICM Hash Area
The ICM Hash Area is a contiguous area of system memory that the controller and the processor can
access. The physical location is configured in the ICM hash area start address register. This address
is a multiple of bytes. If the CDWBN bit of the context register is cleared (i.e., Write Back activated),
the ICM controller performs a digest write operation at the following starting location: *(HASH) +
(RID<<), where RID is the current region context identifier. If the CDWBN bit of the context register
is set (i.e., Digest Comparison activated), the ICM controller performs a digest read operation at the
same address.

25.6.2.1 Message Digest Example
Considering the following 512 bits message (example given in FIPS 180-4):

“616263800
00018”

The message is written to memory in a Little Endian (LE) system architecture.

Memory Address Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0

0x000 80 63 62 61

0x004–0x038 00 00 00 00

0x03C 18 00 00 00

The digest is stored at the memory location pointed at by the ICM_HASH pointer with a Region
Offset.

Memory Address Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0

0x000 36 3e 99 a9

0x004 6a 81 06 47

0x008 71 25 3e ba

0x00C 6c c2 50 78

0x010 9d d8 d0 9c

Memory Address Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0

0x000 22 7d 09 23

0x004 22 d8 05 34

0x008 77 a4 42 86

0x00C b3 55 a2 bd

0x010 e4 bc ad 2a

0x014 f7 b3 a0 bd

0x018 a7 9d 6c e3

Memory Address Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0

0x000 bf 16 78 ba

0x004 ea cf 01 8f

0x008 de 40 41 41

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 489

...........continued
Memory Address Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0

0x00C 23 22 ae 5d

0x010 a3 61 03 b0

0x014 9c 7a 17 96

0x018 61 ff 10 b4

0x01C ad 15 00 f2

Considering the following 1024 bits message (example given in FIPS 180-4):

“6162638000
00
00
0018”

The message is written to memory in a Little Endian (LE) system architecture.

Memory Address Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0

0x000 80 63 62 61

0x004–0x078 00 00 00 00

0x07C 18 00 00 00

25.6.3 Region Descriptor Structure
The ICM Region Descriptor Area is a contiguous area of system memory that the controller and the
processor can access. When the ICM controller is activated, the controller performs a descriptor
fetch operation at the DSCR address. If the Main List contains more than one descriptor (i.e., more
than one region is to be moderated), the fetch address is DSCR + RID<<4, where RID is the region
identifier.

Table 25-1. Region Descriptor Structure (Main List)
Offset Structure Member Name

DSCR+0x00+RID*(0x10) ICM Region Start Address RADDR

DSCR+0x04+RID*(0x10) ICM Region Configuration RCFG

DSCR+0x08+RID*(0x10) ICM Region Control RCTRL

DSCR+0x0C+RID*(0x10) ICM Region Next Address RNEXT

Example 25-1. ICM Monitoring of 3 Memory Data Blocks (Defined as 2 Regions)

The following figure shows the mandatory ICM settings to monitor three memory
data blocks of the system memory (defined as two regions), with one region being
not contiguous (two separate areas) and one contiguous memory area. For each said
region, the SHA algorithm may be independently selected (different for each region).
The wrap allows continuous monitoring.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 490

Figure 25-4. Example – Monitoring of 3 Memory Data Blocks (Defined as 2 Regions)

Reg
ion

 0

Data
 Bloc

k 1

System Memory, data areas

Reg
ion

 0

Data
 Bloc

k 0

Reg
ion

 1

Sing
le

Data

Bloc
k

Region 0
Main
Descriptor

System Memory, region descriptor structure

Region 1
Single
Descriptor

Region 0
Second
Descriptor

@md
@md+4
@md+8
@md+12
@md+16
@md+20
@md+24
@md+28

@sd
@sd+4
@sd+8
@sd+12

@r0db0

@r0db1

@r1d

NEXT=0

NEXT=@sd

NEXT=0

don’t care
@r0db1

@r0db0
wrap=0, etc

wrap=1, etc
@r1d

Size of
region1
block (S1)

Size of
region0
block 1
(S0B1)

Size of
region0
block 0
(S0B0)

S0B0

S1

S0B1

1
23

1

23

wrap=1 effect

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 491

25.6.3.1 Region Descriptor Structure Overview

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x00 RADDR

7:0 RADDR[7:0]
15:8 RADDR[15:8]

23:16 RADDR[23:16]
31:24 RADDR[31:24]

0x04 RCFG

7:0 WCIEN BEIEN DMIEN RHIEN EOM WRAP CDWBN
15:8 ALGO[2:0] PROCDLY SUIEN ECIEN

23:16
31:24

0x08 RCTRL

7:0 TRSIZE[7:0]
15:8 TRSIZE[15:8]

23:16
31:24

0x0C RNEXT

7:0
15:8

23:16
31:24

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 492

25.6.3.1.1 Region Start Address Structure Member

Name:  RADDR
Offset:  0x00
Reset:  0x00000000
Property:  Read/Write

Bit 31 30 29 28 27 26 25 24
 RADDR[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 RADDR[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 RADDR[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 RADDR[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – RADDR[31:0] Region Start Address
This field indicates the first byte address of the region

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 493

25.6.3.1.2 Region Configuration Structure Member

Name:  RCFG
Offset:  0x04
Reset:  0x00000000
Property:  Read/Write

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 ALGO[2:0] PROCDLY SUIEN ECIEN

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 1 1

Bit 7 6 5 4 3 2 1 0
 WCIEN BEIEN DMIEN RHIEN EOM WRAP CDWBN

Access R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 0 0 0

Bits 14:12 – ALGO[2:0] User SHA Algorithm
Value Name Description
0 SHA1 SHA1 algorithm processed
1 SHA256 SHA256 algorithm processed
Other - Reserved

Bit 10 – PROCDLY Processing Delay
For a given SHA algorithm, the runtime period has two possible lengths:

Table 25-2. SHA Processing Runtime Periods
Algorithm SHORTEST [number of cycles] LONGEST [number of cycles]
SHA1 85 209
SHA256 72 194

Value Name Description
0 SHORTEST SHA processing runtime is the shortest one
1 LONGEST SHA processing runtime is the longest one

Bit 9 – SUIEN Monitoring Status Updated Condition Interrupt Enable
0: The RSU flag is set when the corresponding descriptor is loaded from memory to ICM.
1: The RSU flag remains cleared even if the condition is met.

Bit 8 – ECIEN End Bit Condition Interrupt Enable
0: The REC flag is set when the descriptor having the EOM bit set is processed.
1: The REC flag remains cleared even if the setting condition is met.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 494

Bit 7 – WCIEN Wrap Condition Interrupt Disable
0: The RWC flag is set when the WRAP
1: The RWC flag remains cleared even if the setting condition is met.

Bit 6 – BEIEN Bus Error Interrupt Disable
0: The flag is set when an error is reported on the system bus by the bus MATRIX.
1: The flag remains cleared even if the setting condition is met.

Bit 5 – DMIEN Digest Mismatch Interrupt Disable
0: The RBE flag is set when the hash value just calculated from the processed region dffers from
expected hash value.
1: The RBE flag remains cleared even if the setting condition is met.

Bit 4 – RHIEN Region Hash Completed Interrupt Disable
0: The RHC flag is set when the field NEXT = 0 in a descriptor of the main or second list.
1: The RHC flag remains cleared even if the setting condition is met.

Bit 2 – EOM End of Monitoring
0: The current descriptor does not terminate the monitoring.
1: The current descriptor terminates the Main List. WRAP bit value has no effect.

Bit 1 – WRAP Wrap Command
0: The next region descriptor address loaded is the current region identifier descriptor address
incremented by 0x10.
1: The next region descriptor address loaded is DSCR.

Bit 0 – CDWBN Compare Digest or Write Back Digest
0: The digest is written to the Hash area.
1: The digest value is compared to the digest stored in the Hash area.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 495

25.6.3.1.3 Region Control Structure Member

Name:  RCTRL
Offset:  0x08
Reset:  0x00000000
Property:  R/W

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 TRSIZE[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 TRSIZE[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 15:0 – TRSIZE[15:0] Transfer Size for the Current Chunk of Data

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 496

25.6.3.1.4 Region Next Address Structure Member

Name:  RNEXT
Offset:  0x0C
Reset:  0x00000000
Property:  Read/Write

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

25.6.4 Using ICM as an SHA Engine
The ICM can be configured to only calculate a SHA1, SHA256 digest value.

25.6.4.1 Settings for Simple SHA Calculation
The start address of the system memory containing the data to hash must be configured in the
transfer descriptor of the DMA embedded in the ICM.

The transfer descriptor is a system memory area integer multiple of 4 x 32-bit word and the start
address of the descriptor must be configured in DSCR (the start address must be aligned on 64-
bytes; six LSB must be cleared). If the data to hash is already padded according to SHA standards,
only a single descriptor is required, and the EOM bit of RCFGn must be written to ‘1’. If the data to
hash does not contain a padding area, it is possible to define the padding area in another system
memory location, the ICM can be configured to automatically jump from a memory area to another
one by writing the descriptor register RNEXT with a value that differs from 0. Writing the RNEXT
register with the start address of the padding area forces the ICM to concatenate both areas, thus
providing the SHA result from the start address of the hash area configured in HASH.

Whether the system memory is configured as a single or multiple data block area, the bits CDWBN
and WRAP must be cleared in the region descriptor structure member RCFGn. The bits WBDIS,
EOMDIS, SLBDIS must be cleared in CFG.

Write the bits RHIEN and ECIEN in the Region Configuration Structure Member (RCFGn) to ‘0’:
• The flag RHC[i], ‘i’ being the region index, is set (if RHIEN is ‘0’) when the hash result is available at

address defined in HASH.
• The flag REC[i], ‘i’ being the region index, is set (if ECIEN is ‘0’) when the hash result is available at

the address defined in HASH.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 497

An interrupt is generated if the bit RHC[i] is written to ‘1’ in the IER (if RHC[i] is set in RCTRL of region
i) or if the bit REC[i] is written to ‘1’ in the IER (if REC[i] is set in RCTRL of region i).

25.6.4.2 Processing Period
The SHA engine processing period can be configured by writing to the Region Configuration
Structure Member register (RCFGn).

The short processing period allows to allocate bandwidth to the SHA module whereas the long
processing period allocates more bandwidth on the system bus to other applications.

In SHA mode, the shortest processing period is 85 clock cycles + 2 clock cycles for start command
synchronization. The longest period is 209 clock cycles + 2 clock cycles.

In SHA256 mode, the shortest processing period is 72 clock cycles + 2 clock cycles for start command
synchronization. The longest period is 194 clock cycles + 2 clock cycles.

25.6.5 ICM Automatic Monitoring Mode
The ASCD bit of the CFG register is used to activate the ICM Automatic Mode. When CFG.ASCD is set,
the ICM performs the following actions:

• The ICM controller passes through the Main List once with CDWBN bit in RCFGn at ‘0’ (in other
words, Write Back activated) and EOM bit in the RCFGn context register at ‘0’.

• When RCFGn.WRAP=1, the ICM controller enters active monitoring, with CDWBN bit in context
register now set, and EOM bit in context register cleared. Writing to the CDWBN and EOM bits in
RCFGn has no effect.

25.6.6 ICM Configuration Parameters
Transfer Type Main

List
RCFG RNEXT Comments

CDWBN WRAP EOM NEXT

Single
Region

Contiguous list of
blocks

Digest written to
memory

Monitoring disabled

1 item 0 0 1 0 The Main List contains
only one descriptor. The
Secondary List is empty
for that descriptor. The
digest is computed and
saved to memory.

Non-contiguous list of
blocks

Digest written to
memory

Monitoring disabled

1 item 0 0 1 Secondary
List address
of the
current
region
identifier

The Main List contains
only one descriptor. The
Secondary List describes
the layout of the non-
contiguous region.

Contiguous list of
blocks
Digest comparison
enabled
Monitoring enabled

1 item 1 1 0 0 When the hash
computation is
terminated, the digest is
compared with the one
saved in memory.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 498

...........continued
Transfer Type Main

List
RCFG RNEXT Comments

CDWBN WRAP EOM NEXT

Multiple
Regions

Contiguous list of
blocks
Digest written to
memory
Monitoring disabled

More
than one
item

0 0 1 for the
last, 0
otherwise

0 ICM passes through the
list once.

Contiguous list of
blocks

Digest comparison is
enabled

Monitoring is enabled

More
than one
item

1 1 for the
last, 0
otherwise

0 0 ICM performs active
monitoring of the regions.
If a mismatch occurs, an
interrupt is raised.

Non-contiguous list of
blocks
Digest is written to
memory
Monitoring is disabled

More
than one
item

0 0 1 Secondary
List address

ICM performs hashing
and saves digests to the
Hash area.

Non-contiguous list of
blocks
Digest comparison is
enabled

Monitoring is enabled

More
than one
item

1 1 0 Secondary
List address

ICM performs data
gathering on a per region
basis.

25.6.7 Security Features
When an undefined register access occurs, the URAD bit in the Interrupt Status Register (ISR) is set if
unmasked. Its source is then reported in the Undefined Access Status Register (UASR). Only the first
undefined register access is available through the UASR.URAT field.

Several kinds of unspecified register accesses can occur:

• Unspecified structure member set to one detected when the descriptor is loaded
• Configuration register (CFG) modified during active monitoring
• Descriptor register (DSCR) modified during active monitoring
• Hash register (HASH) modified during active monitoring
• Write-only register read access

The URAD bit and the URAT field can only be reset by writing a ‘1’ to the CTRL.SWRST bit.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 499

25.7 Register Summary - ICM

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x00 CFG

7:0 BBC[3:0] SLBDIS EOMDIS WBDIS
15:8 UALGO[2:0] UIHASH DUALBUFF ASCD

23:16
31:24

0x04 CTRL

7:0 REHASH[3:0] SWRST DISABLE ENABLE
15:8 RMEN[3:0] RMDIS[3:0]

23:16
31:24

0x08 SR

7:0 ENABLE
15:8 RMDIS[3:0] RAWRMDIS[3:0]

23:16
31:24

0x0C
...

0x0F
Reserved

0x10 IER

7:0 RDM[3:0] RHC[3:0]
15:8 RWC[3:0] RBE[3:0]

23:16 RSU[3:0] REC[3:0]
31:24 URAD

0x14 IDR

7:0 RDM[3:0] RHC[3:0]
15:8 RWC[3:0] RBE[3:0]

23:16 RSU[3:0] REC[3:0]
31:24 URAD

0x18 IMR

7:0 RDM[3:0] RHC[3:0]
15:8 RWC[3:0] RBE[3:0]

23:16 RSU[3:0] REC[3:0]
31:24 URAD

0x1C ISR

7:0 RDM[3:0] RHC[3:0]
15:8 RWC[3:0] RBE[3:0]

23:16 RSU[3:0] REC[3:0]
31:24 URAD

0x20 UASR

7:0 URAT[2:0]
15:8

23:16
31:24

0x24
...

0x2F
Reserved

0x30 DSCR

7:0 DASA[1:0]
15:8 DASA[9:2]

23:16 DASA[17:10]
31:24 DASA[25:18]

0x34 HASH

7:0
15:8

23:16
31:24

0x38 UIHVALx0

7:0 VAL[7:0]
15:8 VAL[15:8]

23:16 VAL[23:16]
31:24 VAL[31:24]

0x3C UIHVALx1

7:0 VAL[7:0]
15:8 VAL[15:8]

23:16 VAL[23:16]
31:24 VAL[31:24]

0x40 UIHVALx2

7:0 VAL[7:0]
15:8 VAL[15:8]

23:16 VAL[23:16]
31:24 VAL[31:24]

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 500

...........continued

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x44 UIHVALx3

7:0 VAL[7:0]
15:8 VAL[15:8]

23:16 VAL[23:16]
31:24 VAL[31:24]

0x48 UIHVALx4

7:0 VAL[7:0]
15:8 VAL[15:8]

23:16 VAL[23:16]
31:24 VAL[31:24]

0x4C UIHVALx5

7:0 VAL[7:0]
15:8 VAL[15:8]

23:16 VAL[23:16]
31:24 VAL[31:24]

0x50 UIHVALx6

7:0 VAL[7:0]
15:8 VAL[15:8]

23:16 VAL[23:16]
31:24 VAL[31:24]

0x54 UIHVALx7

7:0 VAL[7:0]
15:8 VAL[15:8]

23:16 VAL[23:16]
31:24 VAL[31:24]

25.8 Register Description
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register and the 8-bit halves of a 16-bit register can be
accessed directly.

Some registers are optionally write protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the “PAC Write-Protection” property in each individual register
description. For details, refer to 22.5.7. Register Access Protection.

Some registers are enable protected, meaning they can only be written when the peripheral is
disabled. Enable protection is denoted by the “Enable-Protected” property in each individual register
description.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 501

25.8.1 Configuration Register

Name:  CFG
Offset:  0x00
Reset:  0x0
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 UALGO[2:0] UIHASH DUALBUFF ASCD

Access - - - - - R/W
Reset 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 BBC[3:0] SLBDIS EOMDIS WBDIS

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bits 15:13 – UALGO[2:0] User SHA Algorithm
Value Name Description
0 SHA1 SHA1 algorithm processed
1 SHA256 SHA256 algorithm processed
Other - Reserved

Bit 12 – UIHASH User Initial Hash Value
Value Description
0 The secure hash standard provides the initial hash value.
1 The initial hash value is programmable. Field UALGO provides the SHA algorithm. The ALGO field of the RCFGn

structure member has no effect.

Bit 9 – DUALBUFF Dual Input Buffer
Value Description
0 Dual Input buffer mode is disabled.
1 Dual Input buffer mode is enabled (Better performances, higher bandwidth required on system bus).

Bit 8 – ASCD Automatic Switch To Compare Digest
Value Description
0 Automatic mode is disabled.
1 When this mode is enabled, the ICM controller automatically switches to active monitoring after the first Main

List pass. Both CDWBN and WBDIS bits have no effect. A ‘1’ must be written to the End of Monitoring bit in the
Region Configuration register (RCFG.EOM) to terminate the monitoring.

Bits 7:4 – BBC[3:0] Bus Burden Control
This field is used to control the burden of the ICM system bus. The number of system clock cycles
between the end of the current processing and the next block transfer is set to 2BBC. Up to 32768
cycles can be inserted.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 502

Bit 2 – SLBDIS Secondary List Branching Disable
Value Description
0 Branching to the Secondary List is permitted.
1 Branching to the Secondary List is forbidden. The NEXT field of the RNEXT structure member has no effect and

is always considered as zero.

Bit 1 – EOMDIS End of Monitoring Disable
Value Description
0 End of Monitoring is permitted.
1 End of Monitoring is forbidden. The EOM bit of the RCFG structure member has no effect.

Bit 0 – WBDIS Write Back Disable
When the Automatic Switch to Compare Digest bit of this register (CFG.ASCD) is written to ‘1’, this bit
value has no effect.
Value Description
0 Write Back Operations are permitted.
1 Write Back Operations are forbidden: Context register CDWBN bit is internally set to ‘1’ and cannot be modified

by a linked list element. The CDWBN bit of the RCFG structure member has no effect.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 503

25.8.2 Control Register

Name:  CTRL
Offset:  0x04
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 RMEN[3:0] RMDIS[3:0]

Access W W W W W W W W
Reset

Bit 7 6 5 4 3 2 1 0
 REHASH[3:0] SWRST DISABLE ENABLE

Access W W W W W W W
Reset 0 0

Bits 15:12 – RMEN[3:0] Region Monitoring Enable
Value Description
0 No effect.
1 When bit RMEN[i] is written to '1', the monitoring of region with identifier i is activated.

Bits 11:8 – RMDIS[3:0] Region Monitoring Disable
Value Description
0 No effect.
1 When REHASH[i] is written to '1', Region i digest is re-computed. This bit is only available when region

monitoring is disabled.

Bits 7:4 – REHASH[3:0] Recompute Internal Hash
Value Description
0 No effect.
1 When REHASH[i] is written to '1', Region i digest is re-computed. This bit is only available when region

monitoring is disabled.

Bit 2 – SWRST Software Reset
Value Description
0 No effect.
1 Resets the ICM controller.

Bit 1 – DISABLE ECM Disable
Value Description
0 No effect.
1 The ICM controller is disabled. If a region is activated, the region is terminated.

Bit 0 – ENABLE ICM Enable

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 504

Value Description
0 No effect.
1 The ICM controller is activated.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 505

25.8.3 Status Register

Name:  SR
Offset:  0x08
Property:  Read-Only

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 RMDIS[3:0] RAWRMDIS[3:0]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 ENABLE

Access R
Reset 0

Bits 15:12 – RMDIS[3:0] Region Monitoring Disabled Status
Value Description
0 Region i is being monitored (occurs after integrity check value has been calculated and written to Hash area).
1 Region i is not being monitored.

Bits 11:8 – RAWRMDIS[3:0] Region Monitoring Disabled Raw Status
Value Description
0 Region i monitoring has been activated by writing a 1 in RMEN[i] of CTRL
1 Region i monitoring has been deactivated by writing a 1 in RMDIS[i] of CTRL

Bit 0 – ENABLE ICM Controller Enable Register
Value Description
0 ICM controller is disabled.
1 ICM controller is activated.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 506

25.8.4 Interrupt Enable Register

Name:  IER
Offset:  0x10
Reset:  0x00000000
Property:  Write-Only

Bit 31 30 29 28 27 26 25 24
 URAD

Access W
Reset 0

Bit 23 22 21 20 19 18 17 16
 RSU[3:0] REC[3:0]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 RWC[3:0] RBE[3:0]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 RDM[3:0] RHC[3:0]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 24 – URAD Undefined Register Access Detection Interrupt Enable
0: No effect
1: The Undefined Register Access interrupt is enabled.

Bits 23:20 – RSU[3:0] Region Status Updated Interrupt Enable
0: No effect
1: When RSU[i] is written to ‘1’, the region i Status Updated interrupt is enabled.

Bits 19:16 – REC[3:0] Region End bit Condition Detected Interrupt Enable
0: No effect
1: When REC[i] is written to ‘1’, the region i End bit Condition interrupt is enabled.

Bits 15:12 – RWC[3:0] Region Wrap Condition detected Interrupt Enable
0: No effect
1: When RWC[i] is written to ‘1’, the Region i Wrap Condition interrupt is enabled.

Bits 11:8 – RBE[3:0] Region Bus Error Interrupt Enable
Value Description
0 No effect.
1 When RBE[i] is written to '1', the Region i Bus Error interrupt is enabled.

Bits 7:4 – RDM[3:0] Region Digest Mismatch Interrupt Enable
Value Description
0 No effect.
1 When RDM[i] is written to '1', the Region i Digest Mismatch interrupt is enabled.

Bits 3:0 – RHC[3:0] Region Hash Completed Interrupt Enable

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 507

Value Description
0 No effect.
1 When RHC[i] is written to '1', the Region i Hash Completed interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 508

25.8.5 Interrupt Disable Register

Name:  IDR
Offset:  0x14
Property:  Write-Only

Bit 31 30 29 28 27 26 25 24
 URAD

Access W
Reset

Bit 23 22 21 20 19 18 17 16
 RSU[3:0] REC[3:0]

Access W W W W W W W W
Reset

Bit 15 14 13 12 11 10 9 8
 RWC[3:0] RBE[3:0]

Access W W W W W W W W
Reset

Bit 7 6 5 4 3 2 1 0
 RDM[3:0] RHC[3:0]

Access W W W W W W W W
Reset

Bit 24 – URAD Undefined Register Access Detection Interrupt Disable
Value Description
0 No effect.
1 Undefined Register Access Detection interrupt is disabled.

Bits 23:20 – RSU[3:0] Region Status Updated Interrupt Disable
Value Description
0 No effect.
1 When RSU[i] is written to '1', the region i Status Updated interrupt is disabled.

Bits 19:16 – REC[3:0] Region End bit Condition detected Interrupt Disable
Value Description
0 No effect.
1 When REC[i] is written to '1', the region i End bit Condition interrupt is disabled.

Bits 15:12 – RWC[3:0] Region Wrap Condition Detected Interrupt Disable
Value Description
0 No effect.
1 When RWC[i] is written to '1', the Region i Wrap Condition interrupt is disabled.

Bits 11:8 – RBE[3:0] Region Bus Error Interrupt Disable
Value Description
0 No effect.
1 When RBE[i] is written to '1', the Region i Bus Error interrupt is disabled.

Bits 7:4 – RDM[3:0] Region Digest Mismatch Interrupt Disable
Value Description
0 No effect.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 509

Value Description
1 When RDM[i] is written to '1', the Region i Digest Mismatch interrupt is disabled.

Bits 3:0 – RHC[3:0] Region Hash Completed Interrupt Disable
Value Description
0 No effect.
1 When RHC[i] is written to '1', the Region i Hash Completed interrupt is disabled.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 510

25.8.6 Interrupt Mask Register

Name:  IMR
Offset:  0x18
Reset:  0x00000000
Property:  Read-Only

Bit 31 30 29 28 27 26 25 24
 URAD

Access R
Reset 0

Bit 23 22 21 20 19 18 17 16
 RSU[3:0] REC[3:0]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 RWC[3:0] RBE[3:0]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 RDM[3:0] RHC[3:0]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 24 – URAD Undefined Register Access Detection Interrupt Mask
Value Description
0 The interrupt is disabled.
1 The interrupt is enabled.

Bits 23:20 – RSU[3:0] Region Status Updated Interrupt Mask
Value Description
0 When RSU[i] is reading '0', the interrupt is disabled for region i.
1 When RSU[i] is reading '1', the interrupt is enabled for region i.

Bits 19:16 – REC[3:0] Region End bit Condition Detected Interrupt Mask
Value Description
0 When REC[i] is reading '0', the interrupt is disabled for region i.
1 When REC[i] is reading '1', the interrupt is enabled for region i.

Bits 15:12 – RWC[3:0] Region Wrap Condition Detected Interrupt Mask
Value Description
0 When RWC[i] is reading '0', the interrupt is disabled for region i.
1 When RWC[i] is reading '1', the interrupt is enabled for region i.

Bits 11:8 – RBE[3:0] Region Bus Error Interrupt Mask
Value Description
0 When RBE[i] is reading '0', the interrupt is disabled for region i.
1 When RBE[i] is reading '1', the interrupt is enabled for region i.

Bits 7:4 – RDM[3:0] Region Digest Mismatch Interrupt Mask

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 511

Value Description
0 When RDM[i] is reading '0', the interrupt is disabled for region i.
1 When RDM[i] is reading '1', the interrupt is enabled for region i.

Bits 3:0 – RHC[3:0] Region Hash Completed Interrupt Mask
Value Description
0 When RHC[i] is reading '0', the interrupt is disabled for region i.
1 When RHC[i] is reading '1', the interrupt is enabled for region i.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 512

25.8.7 Interrupt Status Register

Name:  ISR
Offset:  0x1C
Reset:  0x0
Property:  Read-Only

Bit 31 30 29 28 27 26 25 24
 URAD

Access R
Reset 0

Bit 23 22 21 20 19 18 17 16
 RSU[3:0] REC[3:0]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 RWC[3:0] RBE[3:0]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 RDM[3:0] RHC[3:0]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 24 – URAD Undefined Register Access Detection Status
The URAD bit is only reset by the SWRST bit in the CTRL register.
The Undefined Register Access Trace bit field in the Undefined Access Status Register (UASR.URAT)
indicates the unspecified access type.
Value Description
0 No undefined register access has been detected since the last SWRST.
1 At least one undefined register access has been detected since the last SWRST.

Bits 23:20 – RSU[3:0] Region Status Updated Detected
RSU[i] is set when a region status updated condition is detected.

Bits 19:16 – REC[3:0] Region End bit Condition Detected
REC[i] is set when an end bit condition is detected.

Bits 15:12 – RWC[3:0] Region Wrap Condition Detected
RWC[i] is set when a wrap condition is detected.

Bits 11:8 – RBE[3:0] Region Bus Error
RBE[i] is set when a bus error is detected while hashing memory region i.

Bits 7:4 – RDM[3:0] Region Digest Mismatch
RDM[i] is set when there is a digest comparison mismatch between the hash value of region i and
the reference value located in the Hash Area.

Bits 3:0 – RHC[3:0] Region Hash Completed
RHC[i] is set when the ICM has completed the region with identifier i.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 513

25.8.8 Undefined Access Status Register

Name:  UASR
Offset:  0x20
Reset:  0x0
Property:  Read-Only

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 URAT[2:0]

Access R R R
Reset 0 0 0

Bits 2:0 – URAT[2:0] Undefined Register Access Trace
Only the first Undefined Register Access Trace is available through the URAT field.
The URAT field is only reset by the Software Reset bit in the Control register (CTRL.SWRST).
Value Name Description
0 UNSPEC_STRUCT_MEMBER Unspecified structure member set to '1' detected when the descriptor is loaded.
1 ICM_CFG_MODIFIED CFG modified during active monitoring.
2 ICM_DSCR_MODIFIED DSCR modified during active monitoring.
3 ICM_HASH_MODIFIED HASH modified during active monitoring
4 READ_ACCESS Write-only register read access

Only the first Undefined Register Access Trace is available through the URAT field.

The URAT field is only reset by the SWRST bit in the CTRL register.

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 514

25.8.9 Descriptor Area Start Address Register

Name:  DSCR
Offset:  0x30
Reset:  0x0
Property:  -

Bit 31 30 29 28 27 26 25 24
 DASA[25:18]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 DASA[17:10]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 DASA[9:2]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 DASA[1:0]

Access R/W R/W
Reset 0 0

Bits 31:6 – DASA[25:0] Descriptor Area Start Address
The start address is a multiple of the total size of the data structure (64 bytes).

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 515

25.8.10 Hash Area Start Address Register

Name:  HASH
Offset:  0x34
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 516

25.8.11 User Initial Hash Value Register

Name:  UIHVALx
Offset:  0x38 + x*0x04 [x=0..7]
Reset:  0
Property:  -

Bit 31 30 29 28 27 26 25 24
 VAL[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 VAL[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 VAL[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 VAL[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – VAL[31:0] Initial Hash Value
When UIHASH bit of CFG register is set, the Initial Hash Value is user-programmable.
To meet the desired standard, use the following example values.
For UIHVAL0 field:

Example Comment
0x67452301 SHA1 algorithm
0x6A09E667 SHA256 algorithm

For UIHVAL1 field:

Example Comment
0xEFCDAB89 SHA1 algorithm
0xBB67AE85 SHA256 algorithm

For UIHVAL2 field:

Example Comment
0x98BADCFE SHA1 algorithm
0x3C6EF372 SHA256 algorithm

For UIHVAL3 field:

Example Comment
0x10325476 SHA1 algorithm
0xA54FF53A SHA256 algorithm

For UIHVAL4 field:

 PIC32CX-BZ2 and WBZ45 Family
Integrity Check Monitor (ICM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 517

Example Comment
0xC3D2E1F0 SHA1 algorithm
0x510E527F SHA256 algorithm

For UIHVAL5 field:

Example Comment
0x9B05688C SHA256 algorithm

For UIHVAL6 field:

Example Comment
0x1F83D9AB SHA256 algorithm

For UIHVAL7 field:

Example Comment
0x5BE0CD19 SHA256 algorithm

Example of Initial Value for SHA-1 Algorithm

Register Address Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0
0x000 UIHVAL0 01 23 45 67
0x004 UIHVAL1 89 ab cd ef
0x008 UIHVAL2 fe dc ba 98
0x00C UIHVAL3 76 54 32 10
0x010 UIHVAL4 f0 e1 d2 c3

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 518

26. Peripheral Access Controller (PAC)
26.1 Overview

The Peripheral Access Controller provides an interface for the locking and unlocking of peripheral
registers within the device. It reports all violations that could happen when accessing a peripheral:
write protected access, illegal access, enable protected access, access when clock synchronization or
software reset is on-going. These errors are reported in a unique interrupt flag for a peripheral. The
PAC module also reports errors occurring at the client bus level, when an access to a non-existing
address is detected.

Notes: 
1. The modules attached to the PB-PIC bridge and wireless subsystem as well as RTCC, DSCON,

PUKCC and ICM are excluded from the PAC. The protection mechanism described in the System
Configuration Registers (CFG) protects critical system registers (see System Configuration Registers
(CFG) from Related Links).

2. Traditional Peripheral Access Controller (PAC) documentation uses the terminology “Master”
and “Slave”. The equivalent Microchip terminology used in this document is “Host” and “Client”,
respectively.

Related Links
18. System Configuration and Register Locking (CFG)

26.2 Features
• Manages write protection access and reports access errors for the peripheral modules or

bridges.

26.3 Block Diagram
Figure 26-1. PAC Block Diagram

INTFLAG

PERIPHERAL m

PERIPHERAL 0

BUSn

BUS0

Peripheral ERROR

Peripheral ERROR

WRITE CONTROL

WRITE CONTROL

PAC CONTROL

PERIPHERAL m

PERIPHERAL 0

CLIENTs

PAC
IRQ

APB

Client ERROR

26.4 Product Dependencies
In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 519

26.4.1 IO Lines
Not applicable.

26.4.2 Power Management
The PAC can continue to operate in any Sleep mode where the selected source clock is running. The
PAC interrupts can be used to wake up the device from Sleep modes. The events can trigger other
operations in the system without exiting sleep modes.

26.4.3 DMA
Not applicable.

26.4.4 Interrupts
The interrupt request line is connected to the Interrupt Controller (NVIC). Using the PAC interrupt
requires the Interrupt Controller to be configured first.

Table 26-1. Interrupt Lines
Instances NVIC Line

PAC PACERR

26.4.5 Events
The events are connected to the Event System, which may need configuration. See Event System
(EVSYS) from Related Links.

Related Links
28. Event System (EVSYS)

26.4.6 Debug Operation
When the CPU is halted in Debug mode, write protection of all peripherals is disabled and the PAC
continues normal operation.

26.4.7 Register Access Protection
All registers with write access can be write-protected optionally by the Peripheral Access Controller
(PAC), except for the following PAC registers:

• Write Control (WRCTRL) register
• AHB Subordinate Bus Interrupt Flag Status and Clear (INTFLAGAHB) register
• Peripheral Interrupt Flag Status and Clear n (INTFLAG A/B/C...) registers

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the “PAC Write
Protection” property in each individual register description.

Note: PAC write protection does not apply to accesses through an external debugger.

26.5 Functional Description

26.5.1 Principle of Operation
The Peripheral Access Control module allows the user to set a write protection on peripheral
modules and generate an interrupt in case of a peripheral access violation. The peripheral’s
protection can be set, cleared or locked at the user discretion. A set of Interrupt Flag and Status
registers informs the user on the status of the violation in the peripherals. In addition, client bus
errors can be also reported in the cases where reserved area is accessed by the application.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 520

26.5.2 Basic Operation
26.5.2.1 Initialization, Enabling and Resetting

The PAC is always enabled after reset.

Only a hardware reset will reset the PAC module.

26.5.2.2 Operations
The PAC module allows the user to set, clear or lock the write protection status of all peripherals on
all Peripheral Bridges, except the peripherals on PB-PIC bus.

If a peripheral register violation occurs, the Peripheral Interrupt Flag n registers (INTFLAGn) are
updated to inform the user on the status of the violation in the peripherals connected to the
Peripheral Bridge n (n = A,B,C ...). The corresponding Peripheral Write Control Status n register
(STATUSn) gives the state of the write protection for all peripherals connected to the corresponding
Peripheral Bridge n. See Peripheral Access Errors from Related Links.

The PAC module also report the errors occurring at client bus level when an access to reserved
area is detected. AHB Subordinate Bus Interrupt Flag register (INTFLAGAHB) informs the user on the
status of the violation in the corresponding client. See AHB Subordinate Bus Errors from Related Links.

Related Links
26.5.2.3. Peripheral Access Errors
26.5.2.6. AHB Subordinate Bus Errors

26.5.2.3 Peripheral Access Errors
The following events will generate a Peripheral Access Error:

• Protected write: To avoid unexpected writes to a peripheral's registers, each peripheral can be
write protected. Only the registers denoted as “PAC Write-Protection” in the module’s datasheet
can be protected. If a peripheral is not write protected, write data accesses are performed
normally. If a peripheral is write protected and if a write access is attempted, data will not
be written and peripheral returns an access error. The corresponding interrupt flag bit in the
INTFLAGn register will be set.

• Illegal access: Access to an unimplemented register within the module.
• Synchronized write error: For write-synchronized registers an error will be reported if the register

is written while a synchronization is ongoing.

When any of the INTFLAGn registers bit are set, an interrupt will be requested if the PAC interrupt
enable bit is set.

26.5.2.4 Write Access Protection Management
Peripheral access control can be enabled or disabled by writing to the WRCTRL register.

The data written to the WRCTRL register is composed of two fields; WRCTRL.PERID and WRCTRL.KEY.
The WRCTRL.PERID is an unique identifier corresponding to a peripheral. The WRCTRL.KEY is a key
value that defines the operation to be done on the control access bit. These operations can be “clear
protection”, “set protection” and “set and lock protection bit”.

The “clear protection” operation will remove the write access protection for the peripheral selected
by WRCTRL.PERID. Write accesses are allowed for the registers in this peripheral.

The “set protection” operation will set the write access protection for the peripheral selected by
WRCTRL.PERID. Write accesses are not allowed for the registers with write protection property in this
peripheral.

The “set and lock protection” operation will set the write access protection for the peripheral
selected by WRCTRL.PERID and locks the access rights of the selected peripheral registers. The write
access protection will only be cleared by a hardware reset.

The peripheral access control status can be read from the corresponding STATUSn register.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 521

26.5.2.5 Write Access Protection Management Errors
Only word-wise writes to the WRCTRL register will effectively change the access protection. Other
type of accesses will have no effect and will cause a PAC write access error. This error is reported in
the INTFLAGA.PAC bit.

PAC also offers an additional safety feature for correct program execution with an interrupt
generated on double write clear protection or double write set protection. If a peripheral is write
protected and a subsequent set protection operation is detected then the PAC returns an error, and
similarly for a double clear protection operation.

In addition, an error is generated when writing a “set and lock” protection to a write-protected
peripheral or when a write access is done to a locked set protection. This can be used to ensure
that the application follows the intended program flow by always following a write protect with an
unprotect and conversely. However in applications where a write protected peripheral is used in
several contexts, for example, interrupt, care must be taken so that either the interrupt can not
happen while the main application or other interrupt levels manipulates the write protection status
or when the interrupt handler needs to unprotect the peripheral based on the current protection
status by reading the STATUS register.

The errors generated while accessing the PAC module registers (for example, key error, double
protect error and so on) will set the INTFLAGA.PAC flag.

26.5.2.6 AHB Subordinate Bus Errors
The PAC module reports errors occurring at the AHB Subordinate bus level. These errors are
generated when an access is performed at an address where no subordinate (bridge or peripheral)
is mapped. These errors are reported in the corresponding bits of the INTFLAGAHB register.

26.5.2.7 Generating Events
The PAC module can also generate an event when any of the Interrupt Flag registers bit are set. To
enable the PAC event generation, the control bit EVCTRL.ERREO must be set a '1'.

26.5.3 DMA Operation
Not applicable.

26.5.4 Interrupts
The PAC has the following interrupt source:

• Error (ERR): Indicates that a peripheral access violation occurred in one of the peripherals
controlled by the PAC module, or a bridge error occurred in one of the bridges reported by
the PAC

– This interrupt is a synchronous wake-up source

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag
Status and Clear (INTFLAGAHB and INTFLAGn) registers is set when the interrupt condition occurs.
Each interrupt can be individually enabled by writing a '1' to the corresponding bit in the Interrupt
Enable Set (INTENSET) register, and disabled by writing a '1' to the corresponding bit in the Interrupt
Enable Clear (INTENCLR) register.

An interrupt request is generated when the interrupt flag is set and the corresponding interrupt
is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is
disabled, or the PAC is reset. All interrupt requests from the peripheral are ORed together on system
level to generate one combined interrupt request to the NVIC. The user must read the INTFLAGAHB
and INTFLAGn registers to determine which interrupt condition is present.

Note that interrupts must be globally enabled for interrupt requests to be generated.

26.5.5 Events
The PAC can generate the following output event:

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 522

• Error (ERR): Generated when one of the interrupt flag registers bits is set

Writing a '1' to an Event Output bit in the Event Control Register (EVCTRL.ERREO) enables the
corresponding output event. Writing a '0' to this bit disables the corresponding output event.

26.5.6 Sleep Mode Operation
In Sleep mode, the PAC is kept enabled if an available bus host (CPU, DMA) is running. The PAC will
continue to catch access errors from the module and generate interrupts or events.

26.5.7 Synchronization
Not applicable.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 523

26.6 Register Summary

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x00 WRCTRL

7:0 PERID[7:0]
15:8 PERID[15:8]

23:16 KEY[7:0]
31:24

0x04 EVCTRL 7:0 ERREO
0x05

...
0x07

Reserved

0x08 INTENCLR 7:0 ERR
0x09 INTENSET 7:0 ERR
0x0A

...
0x0F

Reserved

0x10 INTFLAGAHB

7:0 PBBB PBAB PFLASH CFLASH SRAM3 SRAM2 SRAM1 SRAM0
15:8 QSPI PBPICB PBCB

23:16
31:24

0x14 INTFLAGA

7:0 TC2 TC1 TC0 SERCOM1 SERCOM0 EIC FREQM PAC
15:8 TCC2 TCC1 TCC0 TC3

23:16
31:24

0x18 INTFLAGB

7:0 RAMECC EVSYS DMAC DSU
15:8

23:16
31:24

0x1C INTFLAGC

7:0 AC CCL
15:8

23:16
31:24

0x20
...

0x33
Reserved

0x34 STATUSA

7:0 TC2 TC1 TC0 SERCOM1 SERCOM0 EIC FREQM PAC
15:8 TCC1 TC3

23:16
31:24

0x38 STATUSB

7:0 RAMECC EVSYS DMAC
15:8

23:16
31:24

0x3C STATUSC

7:0 AC CCL SERCOM3 SERCOM2
15:8

23:16
31:24

26.7 Register Description
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register and the 8-bit halves of a 16-bit register can be
accessed directly.

Some registers are optionally write protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the “PAC Write-Protection” property in each individual register
description. For details, refer to the related links.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 524

26.7.1 Write Control

Name:  WRCTRL
Offset:  0x00
Reset:  0x00000000
Property:  –

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 KEY[7:0]

Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 PERID[15:8]

Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 PERID[7:0]

Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0

Bits 23:16 – KEY[7:0] Peripheral Access Control Key
These bits define the peripheral access control key:
Value Name Description
0x0 OFF No action
0x1 CLEAR Clear the peripheral write control
0x2 SET Set the peripheral write control
0x3 LOCK Set and lock the peripheral write control until the next hardware reset

Bits 15:0 – PERID[15:0] Peripheral Identifier
The PERID represents the peripheral whose control is changed using the WRCTRL.KEY. The
Peripheral Identifier is calculated following formula:PERID = 32* BridgeNumber + N
Where BridgeNumber represents the Peripheral Bridge Number (0 for Peripheral Bridge A, 1 for
Peripheral Bridge B, etc). N represents the peripheral index from the respective Bridge Number:

Table 26-2. PERID Values
Periph. Bridge Name BridgeNumber PERID Values
A 0 0+N
B 1 32+N
C 2 64+N
D 3 96+N

Note: GMAC, ICM, SDHC, CAN and PCC peripherals do not support that feature.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 525

26.7.2 Event Control

Name:  EVCTRL
Offset:  0x04
Reset:  0x00
Property:  -

Bit 7 6 5 4 3 2 1 0
 ERREO

Access RW
Reset 0

Bit 0 – ERREO Peripheral Access Error Event Output
This bit indicates if the Peripheral Access Error Event Output is enabled or disabled. When enabled,
an event will be generated when one of the interrupt flag registers bits (INTFLAGAHB, INTFLAGn) is
set:
Value Description
0 Peripheral Access Error Event Output is disabled.
1 Peripheral Access Error Event Output is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 526

26.7.3 Interrupt Enable Clear

Name:  INTENCLR
Offset:  0x08
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit 7 6 5 4 3 2 1 0
 ERR

Access RW
Reset 0

Bit 0 – ERR Peripheral Access Error Interrupt Disable
This bit indicates that the Peripheral Access Error Interrupt is enabled and an interrupt request will
be generated when one of the interrupt flag registers bits (INTFLAGAHB, INTFLAGn) is set:
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the Peripheral Access Error interrupt Enable bit and disables the
corresponding interrupt request.
Value Description
0 Peripheral Access Error interrupt is disabled.
1 Peripheral Access Error interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 527

26.7.4 Interrupt Enable Set

Name:  INTENSET
Offset:  0x09
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set register (INTENCLR).

Bit 7 6 5 4 3 2 1 0
 ERR

Access RW
Reset 0

Bit 0 – ERR Peripheral Access Error Interrupt Enable
This bit indicates that the Peripheral Access Error Interrupt is enabled and an interrupt request will
be generated when one of the interrupt flag registers bits (INTFLAGAHB, INTFLAGn) is set:
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will set the Peripheral Access Error interrupt Enable bit and enables the
corresponding interrupt request.
Value Description
0 Peripheral Access Error interrupt is disabled.
1 Peripheral Access Error interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 528

26.7.5 Bridge Interrupt Flag Status

Name:  INTFLAGAHB
Offset:  0x10
Reset:  0x00000000
Property:  -

These flags are cleared by writing a ‘1’ to the corresponding bit.

These flags are set when an access error is detected by the corresponding AHB Subordinate, and will
generate an interrupt request if INTENCLR/SET.ERR is ‘1’.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 QSPI PBPICB PBCB

Access RW RW RW
Reset 0 0 0

Bit 7 6 5 4 3 2 1 0
 PBBB PBAB PFLASH CFLASH SRAM3 SRAM2 SRAM1 SRAM0

Access RW RW RW RW RW U U RW
Reset 0 0 0 0 0 0 0 0

Bit 10 – QSPI Interrupt Flag for QSPI
This flag is set when an access error is detected by the QSPI AHB Subordinate, and will generate an
interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ has no effect.
Writing a ‘1’ to this bit will clear the QSPI interrupt flag.

Bit 9 – PBPICB Interrupt Flag for PBPICB (PB-PIC-Bridge)
This flag is set when an access error is detected by the PBPICB AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ has no effect.
Writing a ‘1’ to this bit will clear the PBPICB interrupt flag.

Bit 8 – PBCB Interrupt Flag for PBCB (PB-Bridge-C)
This flag is set when an access error is detected by the PBCB AHB Subordinate, and will generate an
interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ has no effect.
Writing a ‘1’ to this bit will clear the PBCB interrupt flag.

Bit 7 – PBBB Interrupt Flag for PBBB (PB-Bridge-B)
This flag is set when an access error is detected by the PBBB AHB Subordinate, and will generate an
interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ has no effect.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 529

Writing a ‘1’ to this bit will clear the PBBB interrupt flag.

Bit 6 – PBAB Interrupt Flag for HPB1 (PB-Bridge-A)
This flag is set when an access error is detected by the PBAB AHB Subordinate, and will generate an
interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ has no effect.
Writing a ‘1’ to this bit will clear the PBAB interrupt flag.

Bit 5 – PFLASH Interrupt Flag for PFLASH (Peripheral Flash)
This flag is set when an access error is detected by the PFLASH AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ has no effect.
Writing a ‘1’ to this bit will clear the PFLASH interrupt flag.

Bit 4 – CFLASH Interrupt Flag for CFLASH (CPU Flash)
This flag is set when an access error is detected by the CFLASH AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ has no effect.
Writing a ‘1’ to this bit will clear the CFLASH interrupt flag.

Bit 3 – SRAM3 Interrupt Flag for SRAM3
This flag is set when an access error is detected by the SRAM3 AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ has no effect.
Writing a ‘1’ to this bit will clear the SRAM3 interrupt flag.

Bit 2 – SRAM2 Interrupt Flag for SRAM2
This flag is set when an access error is detected by the SRAM2 AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ has no effect.
Writing a ‘1’ to this bit will clear the SRAM2 interrupt flag.

Bit 1 – SRAM1 Interrupt Flag for SRAM1
This flag is set when an access error is detected by the SRAM1 AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ has no effect.
Writing a ‘1’ to this bit will clear the SRAM1 interrupt flag.

Bit 0 – SRAM0 Interrupt Flag for SRAM0
This flag is set when an access error is detected by the SRAM0 AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ has no effect.
Writing a ‘1’ to this bit will clear the SRAM0 interrupt flag.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 530

26.7.6 Peripheral Interrupt Flag Status – Bridge A

Name:  INTFLAGA
Offset:  0x14
Reset:  0x00000000
Property:  –

These flags are set when a Peripheral Access Error occurs while accessing the peripheral associated
with the respective INTFLAGx bit, and will generate an interrupt request if INTENCLR/SET.ERR is ‘1’.

Writing a ‘0’ to these bits has no effect.

Writing a ‘1’ to these bits will clear the corresponding INTFLAGx interrupt flag.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 TCC2 TCC1 TCC0 TC3

Access RW RW RW RW
Reset 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 TC2 TC1 TC0 SERCOM1 SERCOM0 EIC FREQM PAC

Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0

Bit 11 – TCC2 Interrupt Flag for TCC2
This bit is set when a Peripheral Access Error occurs while accessing the TCC2, and will generate an
interrupt request if SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 10 – TCC1 Interrupt Flag for TCC1
This bit is set when a Peripheral Access Error occurs while accessing the TCC1, and will generate an
interrupt request if SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 9 – TCC0 Interrupt Flag for TCC0
This bit is set when a Peripheral Access Error occurs while accessing the TCC0, and will generate an
interrupt request if SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 8 – TC3 Interrupt Flag for TC3
This bit is set when a Peripheral Access Error occurs while accessing the TC3, and will generate an
interrupt request if SET.ERR is ‘1’.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 531

Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 7 – TC2 Interrupt Flag for TC2
This bit is set when a Peripheral Access Error occurs while accessing the TC2, and will generate an
interrupt request if SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 6 – TC1 Interrupt Flag for TC1
This bit is set when a Peripheral Access Error occurs while accessing the TC1, and will generate an
interrupt request if SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 5 – TC0 Interrupt Flag for TC0
This bit is set when a Peripheral Write Access Error occurs while accessing the TC0, and will generate
an interrupt request if SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 4 – SERCOM1 Interrupt Flag for SERCOM1
This bit is set when a Peripheral Access Error occurs while accessing the SERCOM1, and will generate
an interrupt request if SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 3 – SERCOM0 Interrupt Flag for SERCOM0
This bit is set when a Peripheral Access Error occurs while accessing the SERCOM0, and will generate
an interrupt request if SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 2 – EIC Interrupt Flag for EIC
This bit is set when a Peripheral Access Error occurs while accessing the EIC, and will generate an
interrupt request if SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 1 – FREQM Interrupt Flag for FREQM
This bit is set when a Peripheral Access Error occurs while accessing the FREQM, and will generate
an interrupt request if SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 0 – PAC Interrupt Flag for PAC
This bit is set when a Peripheral Write Access Error occurs while accessing the PAC, and will generate
an interrupt request if SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 532

26.7.7 Peripheral Interrupt Flag Status – Bridge B

Name:  INTFLAGB
Offset:  0x18
Reset:  0x00000000
Property:  –

These flags are set when a Peripheral Access Error occurs while accessing the peripheral associated
with the respective INTFLAGx bit, and will generate an interrupt request if INTENCLR/SET.ERR is ‘1’.

Writing a ‘0’ to these bits has no effect.

Writing a ‘1’ to these bits will clear the corresponding INTFLAGx interrupt flag.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 RAMECC EVSYS DMAC DSU

Access RW RW RW RW
Reset 0 0 0 0

Bit 4 – RAMECC Interrupt Flag for RAMECC
This flag is set when a Peripheral Access Error occurs while accessing the RAMECC, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the RAMECC interrupt flag.

Bit 3 – EVSYS Interrupt Flag for EVSYS
This flag is set when a Peripheral Access Error occurs while accessing the EVSYS, and will generate an
interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the EVSYS interrupt flag.

Bit 2 – DMAC Interrupt Flag for DMAC
This flag is set when a Peripheral Access Error occurs while accessing the DMAC, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the DMAC interrupt flag.

Bit 0 – DSU Interrupt Flag for DSU
This flag is set when a Peripheral Access Error occurs while accessing the DSU, and will generate an
interrupt request if INTENCLR/SET.ERR is ‘1’.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 533

Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the DSU interrupt flag.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 534

26.7.8 Peripheral Interrupt Flag Status – Bridge C

Name:  INTFLAGC
Offset:  0x1C
Reset:  0x00000000
Property:  –

These flags are set when a Peripheral Access Error occurs while accessing the peripheral associated
with the respective INTFLAGx bit and will generate an interrupt request if INTENCLR/SET.ERR is ‘1’.

Writing a ‘0’ to these bits has no effect.

Writing a ‘1’ to these bits will clear the corresponding INTFLAGx interrupt flag.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 AC CCL

Access RW RW
Reset 0 0

Bit 7 – AC Interrupt Flag for AC
This flag is set when a Peripheral Access Error occurs while accessing the peripheral associated with
the AC and will generate an interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the AC interrupt flag.

Bit 6 – CCL Interrupt Flag for CCL
This flag is set when a Peripheral Access Error occurs while accessing the peripheral associated with
the CCL and will generate an interrupt request if INTENCLR/SET.ERR is ‘1’.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the CCL interrupt flag.

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 535

26.7.9 Peripheral Write Protection Status A

Name:  STATUSA
Offset:  0x34
Reset:  0x00010000
Property:  PAC Write-Protection

Writing to this register has no effect.

Reading STATUS register returns peripheral write protection status:

Value Description

0 Peripheral is not write protected.

1 Peripheral is write protected.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 TCC1 TC3

Access R R
Reset 0 0

Bit 7 6 5 4 3 2 1 0
 TC2 TC1 TC0 SERCOM1 SERCOM0 EIC FREQM PAC

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 10 – TCC1 TCC1 APB Protect Enable
Value Description
0 TCC1 is not write protected
1 TCC1 is write protected

Bit 8 – TC3 TC3 APB Protect Enable
Value Description
0 TC3 is not write protected
1 TC3 is write protected

Bit 7 – TC2 TC2 APB Protect Enable
Value Description
0 TC2 is not write protected
1 TC2 is write protected

Bit 6 – TC1 TC1 APB Protect Enable
Value Description
0 TC1 is not write protected
1 TC1 is write protected

Bit 5 – TC0 TC0 APB Protect Enable

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 536

Value Description
0 TC0 is not write protected
1 TC0 is write protected

Bit 4 – SERCOM1 SERCOM1 APB Protect Enable
Value Description
0 SERCOM1 is not write protected
1 SERCOM1 is write protected

Bit 3 – SERCOM0 SERCOM0 APB Protect Enable
Value Description
0 SERCOM0 is not write protected
1 SERCOM0 is write protected

Bit 2 – EIC EIC APB Protect Enable
Value Description
0 EIC is not write protected
1 EIC is write protected

Bit 1 – FREQM FREQM APB Protect Enable
Value Description
0 FREQM is not write protected
1 FREQM is write protected

Bit 0 – PAC PAC APB Protect Enable
Value Description
0 PAC is not write protected
1 PAC is write protected

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 537

26.7.10 Peripheral Write Protection Status – Bridge B

Name:  STATUSB
Offset:  0x38
Reset:  0x00000002
Property:  PAC Write-Protection

Writing to this register has no effect.

Reading STATUS register returns peripheral write protection status:

Value Description

0 Peripheral is not write protected.

1 Peripheral is write protected.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 RAMECC EVSYS DMAC

Access R R R
Reset 0 0 0

Bit 4 – RAMECC RAMECC APB Protect Enable
Value Description
0 RAMECC peripheral is not write protected
1 RAMECC peripheral is write protected

Bit 3 – EVSYS EVSYS APB Protect Enable
Value Description
0 EVSYS peripheral is not write protected
1 EVSYS peripheral is write protected

Bit 2 – DMAC DMAC APB Protect Enable
Value Description
0 DMAC peripheral is not write protected
1 DMAC peripheral is write protected

 PIC32CX-BZ2 and WBZ45 Family
Peripheral Access Controller (PAC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 538

26.7.11 Peripheral Write Protection Status – Bridge C

Name:  STATUSC
Offset:  0x3C
Reset:  0x00000000
Property:  PAC Write-Protection

Writing to this register has no effect.

Reading STATUS register returns peripheral write protection status:

Value Description

0 Peripheral is not write protected.

1 Peripheral is write protected.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 AC CCL SERCOM3 SERCOM2

Access R R R R
Reset 0 0 0 0

Bit 7 – AC AC APB Protection Enable
Value Description
0 Peripheral is not write protected
1 Peripheral is write protected

Bit 6 – CCL CCL APB Protection Enable
Value Description
0 Peripheral is not write protected
1 Peripheral is write protected

Bit 4 – SERCOM3 SERCOM3 APB Protection Enable
Value Description
0 Peripheral is not write protected
1 Peripheral is write protected

Bit 3 – SERCOM2 SERCOM2 APB Protection Enable
Value Description
0 Peripheral is not write protected
1 Peripheral is write protected

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 539

27. Frequency Meter (FREQM)
27.1 Overview

The Frequency Meter (FREQM) can be used to accurately measure the frequency of a clock by
comparing it to a known reference clock.

27.2 Features
• Ratio can be measured with 24-bit accuracy
• Accurately measures the frequency of an input clock with respect to a reference clock
• Reference clock can be selected from the available GCLK_FREQM_REF sources
• Measured clock can be selected from the available GCLK_FREQM_MSR sources

27.3 Block Diagram
Figure 27-1. FREQM Block Diagram

27.4 Signal Description
Not applicable.

27.5 Product Dependencies
In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

27.5.1 I/O Lines
The REFO lines (REFO[4:1]) can be used as measurement or reference clock sources. This requires
the I/O pins to be configured.

27.5.2 Power Management
The FREQM will continue to operate in idle sleep mode where the selected source clock is running.
The FREQM’s interrupts can be used to wake up the device from idle sleep mode. See Power
Management Unit (PMU) from Related Links for details on the different sleep modes.

Related Links
15. Power Management Unit (PMU)

27.5.3 Clocks
Two generic clocks are used by the FREQM: Reference Clock (GCLK_FREQM_REF) and Measurement
Clock (GCLK_FREQM_MSR).

GCLK_FREQM_REF is required to clock the internal reference timer, which acts as the frequency
reference.

GCLK_FREQM_MSR is required to clock a ripple counter for frequency measurement. These clocks
must be configured and enabled in the generic clock controller before using the FREQM.

27.5.4 DMA
Not applicable.

27.5.5 Interrupts
The interrupt request line is connected to the interrupt controller. Using FREQM interrupt requires
the interrupt controller to be configured first.

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 540

27.5.6 Events
Not applicable.

27.5.7 Debug Operation
When the CPU is halted in debug mode the FREQM continues its normal operation. The FREQM
cannot be halted when the CPU is halted in debug mode. If the FREQM is configured in a way that
requires it to be periodically serviced by the CPU, improper operation or data loss may result during
debugging.

27.5.8 Register Access Protection
All registers with write access can be write-protected optionally by the Peripheral Access Controller
(PAC), except the following registers:

• Control B register (CTRLB)
• Interrupt Flag Status and Clear register (INTFLAG)
• Status register (STATUS)

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

Write-protection does not apply to accesses through an external debugger.

27.6 Functional Description

27.6.1 Principle of Operation
FREQM counts the number of periods of the measured clock (GCLK_FREQM_MSR) with respect to
the reference clock (GCLK_FREQM_REF). The measurement is done for a period of REFNUM/fCLK_REF
and stored in the Value register (VALUE.VALUE). REFNUM is the number of Reference clock cycles
selected in the Configuration A register (CFGA.REFNUM).

The frequency of the measured clock, fCLK_MSR, is calculated byfCLK_MSR = VALUEREFNUM fCLK_REF . The error can be maximum two measured clock cycles.

27.6.2 Basic Operation

27.6.2.1 Initialization
Before enabling FREQM, the device and peripheral must be configured:
• Write the number of Reference clock cycles for which the measurement is to be done in the

Configuration A register (CFGA.REFNUM). This must be a non-zero number.

• Configuration A register (CFGA)

Enable-protection is denoted by the "Enable-Protected" property in the register description.

27.6.2.2 Enabling, Disabling and Resetting
The FREQM is enabled by writing a '1' to the Enable bit in the Control A register (CTRLA.ENABLE). The
peripheral is disabled by writing CTRLA.ENABLE=0.

The FREQM is reset by writing a '1' to the Software Reset bit in the Control A register (CTRLA.SWRST).
On software reset, all registers in the FREQM will be reset to their initial state, and the FREQM will be
disabled.

Then ENABLE and SWRST bits are write-synchronized.

Related Links
27.6.7. Synchronization

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 541

27.6.2.3 Measurement
In the Configuration A register, the Number of Reference Clock Cycles field (CFGA.REFNUM) selects
the duration of the measurement. The measurement is given in number of GCLK_FREQM_REF
periods.
Note: The REFNUM field must be written before the FREQM is enabled.

After the FREQM is enabled, writing a ‘1’ to the START bit in the Control B register (CTRLB.START)
starts the measurement. The BUSY bit in Status register (STATUS.BUSY) is set when the
measurement starts, and cleared when the measurement is complete.

There is also an interrupt request for Measurement Done: When the Measurement Done bit
in Interrupt Enable Set register (INTENSET.DONE) is ‘1’ and a measurement is finished, the
Measurement Done bit in the Interrupt Flag Status and Clear register (INTFLAG.DONE) will be set
and an interrupt request is generated.

The result of the measurement can be read from the Value register (VALUE.VALUE). The frequency of
the measured clock GCLK_FREQM_MSR is then:fCLK_MSR = VALUEREFNUM fCLK_REF
Notes: 
1. In order to make sure the measurement result (VALUE.VALUE[23:0]) is valid, the overflow status

(STATUS.OVF) must be checked.
2. Due to asynchronous operations, the VALUE Error measurement can be up to two samples.

If an overflow condition occurred, indicated by the overflow bit in the STATUS register (STATUS.OVF),
either the number of reference clock cycles must be reduced (CFGA.REFNUM) or a faster reference
clock must be configured. Once the configuration is adjusted, clear the overflow status by writing a
‘1’ to STATUS.OVF. Then, another measurement can be started by writing a ‘1’ to CTRLB.START.

Note: See CFGA, CTRLB, STATUS, INTENSET, INTFLAG, VALUE registers in the Register Summary - FREQM
from Related Links.

Related Links
27.7. Register Summary - FREQM

27.6.3 DMA Operation
Not applicable.

27.6.4 Interrupts
• DONE: A frequency measurement is done.

The interrupt flag in the Interrupt Flag Status and Clear INTLFLAG register is set when the interrupt
condition occurs. The interrupt can be enabled by writing a ‘1’ to the corresponding bit in the
Interrupt Enable Set register, and disabled by writing a ‘1’ to the corresponding bit in the Interrupt
Enable Clear (INTENCLR) register. The status of enabled interrupts can be read from either INTENSET
or INTENCLR.

An interrupt request is generated when the interrupt flag is set and the corresponding interrupt
is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt
is disabled, or the FREQM is reset. See INTLFLAG for details on how to clear interrupt flags. All
interrupt requests from the peripheral are ORed together on system level to generate one combined
interrupt request to the NVIC. The user must read the INTLFLAG register to determine which
interrupt condition is present.

This interrupt is a synchronous wake-up source.

Note: Interrupts must be globally enabled for interrupt requests to be generated.

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 542

27.6.5 Events
Not applicable.

27.6.6 Sleep Mode Operation
For lowest chip power consumption in sleep modes, FREQM must be disabled before entering a
Sleep mode.

27.6.7 Synchronization
Due to asynchronicity between the main clock domain and the peripheral clock domains, some
registers need to be synchronized when written or read.

The following bits and registers are write-synchronized:

• Software Reset bit in Control A register (CTRLA.SWRST)
• Enable bit in Control A register (CTRLA.ENABLE)

Required write synchronization is denoted by the "Write-Synchronized" property in the register
description.

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 543

27.7 Register Summary - FREQM

Offset Name Bit Pos. 7 6 5 4 3 2 1 0
0x00 CTRLA 7:0 ENABLE SWRST
0x01 CTRLB 7:0 START

0x02 CFGA
7:0 REFNUM[7:0]

15:8
0x04

...
0x07

Reserved

0x08 INTENCLR 7:0 DONE
0x09 INTENSET 7:0 DONE
0x0A INTFLAG 7:0 DONE
0x0B STATUS 7:0 OVF BUSY

0x0C SYNCBUSY

7:0 ENABLE SWRST
15:8

23:16
31:24

0x10 VALUE

7:0 VALUE[7:0]
15:8 VALUE[15:8]

23:16 VALUE[23:16]
31:24

27.8 Register Description
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the
“Read-Synchronized” and/or “Write-Synchronized” property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register
description.

Some registers are optionally write protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the “PAC Write-Protection” property in each individual register
description.

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 544

27.8.1 Control A

Name:  CTRLA
Offset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 ENABLE SWRST

Access R/W R/W
Reset 0 0

Bit 1 – ENABLE Enable
Due to synchronization there is delay from writing CTRLA.ENABLE until the peripheral is enabled
or disabled. The value written to CTRLA.ENABLE will read back immediately and the ENABLE bit in
the Synchronization Busy register (SYNCBUSY.ENABLE) will be set. SYNCBUSY.ENABLE will be cleared
when the operation is complete.
Value Description
0 The peripheral is disabled.
1 The peripheral is enabled.

Bit 0 – SWRST Software Reset
Writing a '0' to this bit has no effect.
Writing a '1' to this bit resets all registers in the FREQM to their initial state, and the FREQM will be
disabled. Writing a '1' to this bit will always take precedence, meaning that all other writes in the
same write-operation will be discarded.
Notes: 
1. When the CTRLA.SWRST is written, the user must poll the SYNCBUSY.SWRST bit to know when

the reset operation is complete.
2. During a SWRST, access to registers/bits without SWRST are disallowed until the

SYNCBUSY.SWRST is cleared by hardware.

Value Description
0 There is no ongoing Reset operation.
1 The Reset operation is ongoing.

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 545

27.8.2 Control B

Name:  CTRLB
Offset:  0x01
Reset:  0x00
Property:  –

Bit 7 6 5 4 3 2 1 0
 START

Access W
Reset 0

Bit 0 – START Start Measurement
Value Description
0 Writing a '0' has no effect.
1 Writing a '1' starts a measurement.

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 546

27.8.3 Configuration A

Name:  CFGA
Offset:  0x02
Reset:  0x0000
Property:  PAC Write-Protection, Enable-protected

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 REFNUM[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – REFNUM[7:0] Number of Reference Clock Cycles
Selects the duration of a measurement in number of CLK_FREQM_REF cycles. This must be a non-
zero value, i.e. 0x01 (one cycle) to 0xFF (255 cycles).

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 547

27.8.4 Interrupt Enable Clear

Name:  INTENCLR
Offset:  0x08
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 DONE

Access R/W
Reset 0

Bit 0 – DONE Measurement Done Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the Measurement Done Interrupt Enable bit, which disables the
Measurement Done interrupt.
Value Description
0 The Measurement Done interrupt is disabled.
1 The Measurement Done interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 548

27.8.5 Interrupt Enable Set

Name:  INTENSET
Offset:  0x09
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 DONE

Access R/W
Reset 0

Bit 0 – DONE Measurement Done Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will set the Measurement Done Interrupt Enable bit, which enables the
Measurement Done interrupt.
Value Description
0 The Measurement Done interrupt is disabled.
1 The Measurement Done interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 549

27.8.6 Interrupt Flag Status and Clear

Name:  INTFLAG
Offset:  0x0A
Reset:  0x00
Property:  –

Bit 7 6 5 4 3 2 1 0
 DONE

Access R/W
Reset 0

Bit 0 – DONE Mesurement Done
This flag is cleared by writing a ‘1’ to it.
This flag is set when a new measurement is completed.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit clears the DONE interrupt flag.

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 550

27.8.7 Status

Name:  STATUS
Offset:  0x0B
Reset:  0x00
Property:  –

Bit 7 6 5 4 3 2 1 0
 OVF BUSY

Access R/W R
Reset 0 0

Bit 1 – OVF Sticky Count Value Overflow
This bit is cleared by writing a '1' to it.
This bit is set when an overflow condition occurs to the value counter.
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the OVF status.

Bit 0 – BUSY FREQM Status
Value Description
0 No ongoing frequency measurement.
1 Frequency measurement is ongoing.

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 551

27.8.8 Synchronization Busy

Name:  SYNCBUSY
Offset:  0x0C
Reset:  0x00000000
Property:  –

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 ENABLE SWRST

Access R R
Reset 0 0

Bit 1 – ENABLE Enable
This bit is cleared when the synchronization of CTRLA.ENABLE is complete.
This bit is set when the synchronization of CTRLA.ENABLE is started.

Bit 0 – SWRST Synchronization Busy
This bit is cleared when the synchronization of CTRLA.SWRST is complete.
This bit is set when the synchronization of CTRLA.SWRST is started.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

 PIC32CX-BZ2 and WBZ45 Family
Frequency Meter (FREQM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 552

27.8.9 Value

Name:  VALUE
Offset:  0x10
Reset:  0x00000000
Property:  –

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 VALUE[23:16]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 VALUE[15:8]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 VALUE[7:0]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 23:0 – VALUE[23:0] Measurement Value
Result from measurement.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 553

28. Event System (EVSYS)
28.1 Overview

The Event System allows autonomous, low-latency, and configurable communication between
peripherals.

Several peripherals can be configured to generate and/or respond to signals known as events. The
exact condition to generate an event, or the action taken upon receiving an event, is specific to
each peripheral. Peripherals that respond to events are called event users. Peripherals that generate
events are called event generators. A peripheral can have one or more event generators and can
have one or more event users.

Communication is made without CPU intervention and without consuming system resources, such
as bus or RAM bandwidth. This reduces the load on the CPU and other system resources, compared
to a traditional interrupt-based system.

28.2 Features
• 32 configurable event channels:

– All channels can be connected to any event generator
– All channels provide a pure asynchronous path
– Twelve channels provide a resynchronized or synchronous path

• 69 event generators.
• 52 event users.
• Configurable edge detector.
• Peripherals can be event generators, event users, or both.
• SleepWalking and interrupt for operation in sleep modes.
• Software event generation.
• Each event user can choose which channel to respond to.
• Optional Static or Round-Robin interrupt priority arbitration.

28.3 Block Diagram
Figure 28-1. Event System Block Diagram

28.4 Product Dependencies
In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

28.4.1 I/O Lines
Not applicable.

28.4.2 Power Management
The EVSYS can be used to wake up the CPU from all sleep modes (Deep Sleep/BACKUP and Extreme
Deep Sleep/OFF Mode), even if the clock used by the EVSYS channel and the EVSYS bus clock are
disabled. See Power Management Unit (PMU) from Related Links for details on the different sleep
modes.

Although the clock for the EVSYS is stopped, the device still can wake up the EVSYS clock. Some
event generators can generate an event when their clocks are stopped. The generic clock for the
channel (GCLK_EVSYS_CHANNEL_n) will be restarted if that channel uses a synchronized path or a
resynchronized path. It does not need to wake the system from sleep.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 554

Related Links
15. Power Management Unit (PMU)

28.4.3 Clocks
Each EVSYS channel which can be configured as synchronous or resynchronized has a dedicated
generic clock (GCLK_EVSYS_CHANNEL_n). These are used for event detection and propagation for
each channel. These clocks must be configured and enabled in the generic clock controller before
using the EVSYS (see Clock and Reset (CRU) from Related Links).

Important: Only EVSYS channel 0 to 11 can be configured as synchronous or
resynchronized.

Related Links
13. Clock and Reset Unit (CRU)

28.4.4 DMA
Not applicable.

28.4.5 Interrupts
The interrupt request line is connected to the interrupt controller. Using the EVSYS interrupts
requires the interrupt controller to be configured first (see Nested Vector Interrupt Controller (NVIC)
from Related Links).

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

28.4.6 Events
Not applicable.

28.4.7 Debug Operation
When the CPU is halted in Debug mode, this peripheral will continue normal operation. If the
peripheral is configured to require periodical service by the CPU through interrupts or similar,
improper operation or data loss may result during debugging. This peripheral can be forced to halt
operation during debugging.

28.4.8 Register Access Protection
Registers with write access can be optionally write-protected by the Peripheral Access Controller
(PAC), except for the following:

• Channel Pending Interrupt (INTPEND)
• Channel n Interrupt Flag Status and Clear (CHINTFLAGn)

Note: Optional write protection is indicated by the "PAC Write Protection" property in the register
description.

Write protection does not apply for accesses through an external debugger.

28.4.9 Analog Connections
Not applicable.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 555

28.5 Functional Description
28.5.1 Principle of Operation

The Event System consists of channels which route the internal events from peripherals (generators)
to other internal peripherals. Each event generator can be selected as source for multiple channels,
but a channel cannot be set to use multiple event generators at the same time.

A channel path can be configured in asynchronous, synchronous or resynchronized mode of
operation. The mode of operation must be selected based on the requirements of the application.

When using synchronous or resynchronized path, the Event System includes options to transfer
events to users when rising, falling or both edges are detected on event generators.

See Channel Path from Related Links.

Related Links
28.5.2.6. Channel Path

28.5.2 Basic Operation
28.5.2.1 Initialization

Before enabling event routing within the system, the Event Users Multiplexer and Event Channels
must be selected in the Event System (EVSYS), and the two peripherals that generate and use the
event must be configured. Follow these steps to configure the event:
1. In the event generator peripheral, enable output of event by writing a '1' to the respective

Event Output Enable bit ("EO") in the peripheral's Event Control register, for example,
AC.EVCTRL.WINEO0, RTC.EVCTRL.OVFEO.

2. Configure the EVSYS:
a. Configure the Event User multiplexer by writing the respective EVSYS.USERm register, refer to

28.5.2.3. User Multiplexer Setup.
b. Configure the Event Channel by writing the respective EVSYS.CHANNELn register, refer to

28.5.2.4. Event System Channel.
3. Configure the action to be executed by the event user peripheral by writing to the Event Action

bits (EVACT) in the respective Event control register, for example, TC.EVCTRL.EVACT.
Note: This step is not applicable for all the peripherals.

4. In the event user peripheral, enable event input by writing a '1' to the respective Event
Input Enable bit ("EI") in the peripheral's Event Control register, for example, AC.EVCTRL.IVEI0,
ADC.EVCTRL.STARTEI.

28.5.2.2 Enabling, Disabling, and Resetting
The EVSYS is always enabled.

The EVSYS is reset by writing a ‘1’ to the Software Reset bit in the Control A register (CTRLA.SWRST).
All registers in the EVSYS will be reset to their initial state and all ongoing events will be canceled.

Refer to CTRLA.SWRST register for details.

28.5.2.3 User Multiplexer Setup
The user multiplexer defines the channel to be connected to which event user. Each user multiplexer
is dedicated to one event user. A user multiplexer receives all event channels output and must
be configured to select one of these channels, as shown in Block Diagram section. The channel is
selected with the Channel bit group in the User register (USERm.CHANNEL).

The user multiplexer must always be configured before the channel. A list of all available event users
is found in the User (USERm) register description.

Related Links
28.3. Block Diagram

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 556

28.5.2.4 Event System Channel
An event channel can select one event from a list of event generators. Depending on configuration,
the selected event could be synchronized, resynchronized or asynchronously sent to the users.
When synchronization or resynchronization is required, the channel includes an internal edge
detector, allowing the Event System to generate internal events when rising, falling or both edges
are detected on the selected event generator.

An event channel is able to generate internal events for the specific software commands. A channel
block diagram is shown in Block Diagram section.

Related Links
28.3. Block Diagram

28.5.2.5 Event Generators
Each event channel can receive the events form all event generators. All event generators are listed
in the Event Generator bit field in the Channel n register (CHANNELn.EVGEN). For details on event
generation, refer to the corresponding module chapter. The channel event generator is selected by
the Event Generator bit group in the Channel register (CHANNELn.EVGEN). By default, the channels
are not connected to any event generators (ie, CHANNELn.EVGEN = 0)

28.5.2.6 Channel Path
There are different ways to propagate the event from an event generator:

• Asynchronous path
• Resynchronized path

The path is decided by writing to the Path Selection bit group of the Channel register
(CHANNELn.PATH).

Asynchronous Path
When using the asynchronous path, the events are propagated from the event generator
to the event user without intervention from the Event System. The GCLK for this channel
(GCLK_EVSYS_CHANNEL_n) is not mandatory, meaning that an event will be propagated to the user
without any clock latency.

When the asynchronous path is selected, the channel cannot generate any interrupts, and the
Channel x Status register (CHSTATUSx) is always zero. The edge detection is not required and must
be disabled by software. Each peripheral event user has to select which event edge must trigger
internal actions. For further details, refer to each peripheral chapter description.

Resynchronized Path
The resynchronized path are used when the event generator and the event channel do not share the
same generator for the generic clock. When the resynchronized path is used, resynchronization of
the event from the event generator is done in the channel.

When the resynchronized path is used, the channel is able to generate interrupts. The channel
status bits in the Channel Status register (CHSTATUS) are also updated and available for use.

28.5.2.7 Edge Detection
When synchronous or resynchronized paths are used, edge detection must be enabled. The event
system can execute edge detection in three different ways:

• Generate an event only on the rising edge
• Generate an event only on the falling edge
• Generate an event on rising and falling edges.

Edge detection is selected by writing to the Edge Selection bit group of the Channel register
(CHANNELn.EDGSEL).

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 557

28.5.2.8 Event Latency
The latency from event generator to event user depends on the channel's configuration:

• Asynchronous Path: The maximum routing latency of an external event is related to the internal
signal routing and it is device dependent.

• Resynchronized Path: The maximum routing latency of an external event is three
GCLK_EVSYS_CHANNEL_n clock cycles.

The maximum propagation latency of a user event to the peripheral clock core domain is three
peripheral clock cycles.

The event generators, event channel and event user clocks ratio must be selected in relation with
the internal event latency constraints. Events propagation or event actions in peripherals may be
lost if the clock setup violates the internal latencies.

28.5.2.9 The Overrun Channel n Interrupt
The Overrun Channel n Interrupt flag in the Interrupt Flag Status and Clear register (INTFLAGn.OVR)
will be set, and the optional interrupt will be generated in the following cases:

• One or more event users on channel n is not ready when there is a new event
• An event occurs when the previous event on channel m has not been handled by all event users

connected to that channel

The flag will only be set when using resynchronized paths. In the case of asynchronous path, the
INTFLAGn.OVR is always read as zero.

28.5.2.10 The Event Detected Channel n Interrupt
The Event Detected Channel n Interrupt flag in the Interrupt Flag Status and Clear register
(INTFLAGn.EVD) is set when an event coming from the event generator configured on channel n
is detected.

The flag will only be set when using a resynchronized path. In the case of an asynchronous path, the
INTFLAGn.EVD is always zero.

28.5.2.11 Channel Status
The Channel Status register (CHSTATUS) shows the status of the channels when using a synchronous
or resynchronized path. There are two different status bits in CHSTATUS for each of the available
channels:

• The CHSTATUSn.BUSYCH bit will be set when an event on the corresponding channel n has not
been handled by all event users connected to that channel.

• The CHSTATUSn.RDYUSR bit will be set when all event users connected to the corresponding
channel are ready to handle incoming events on that channel.

28.5.2.12 Software Event
A software event can be initiated on a channel by writing a '1' to the Software Event bit in
the Channel register (SWEVT.CHANNELn). Then the software event can be serviced as any event
generator; i.e., when a bit is set to ‘1’, the corresponding event will be generated on the respective
channel.

28.5.2.13 Interrupt Status and Interrupts Arbitration
The Interrupt Status register stores all channels with pending interrupts, as shown below.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 558

Figure 28-2. Interrupt Status Register

CHINTFLAG31.OVR

CHINTENSET31.OVR

CHINTFLAG31.EVD

CHINTENSET31.EVD

CHINTFLAG0.OVR

CHINTENSET0.OVR

CHINTFLAG0.EVD

CHINTENSET0.EVD

31 0

INTSTATUS

130

The Event System can arbitrate between all channels with pending interrupts. The arbiter can be
configured to prioritize statically or dynamically the incoming events. The priority is evaluated each
time a new channel has an interrupt pending, or an interrupt has been cleared. The Channel
Pending Interrupt register (INTPEND) will provide the channel number with the highest interrupt
priority, and the corresponding channel interrupt flags and status bits.

By default, static arbitration is enabled (PRICTRL.RRENx is '0'), the arbiter will prioritize a low channel
number over a high channel number as shown below. When using the status scheme, there is a risk
of high channel numbers never being granted access by the arbiter. This can be avoided using a
dynamic arbitration scheme.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 559

Figure 28-3. Static Priority

Highest Channel

Lowest Channel Highest Priority

Lowest PriorityChannel N

Channel 0

Channel x+1

Channel x

.

.

.

.

.

.

The dynamic arbitration scheme available in the Event System is round-robin. Round-robin
arbitration is enabled by writing PRICTRL.RREN to one. With the round-robin scheme, the channel
number of the last channel being granted access will have the lowest priority the next time the
arbiter has to grant access to a channel, as shown below. The channel number of the last channel
being granted access, will be stored in the Channel Priority Number bit group in the Priority Control
register (PRICTRL.PRI).

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 560

Figure 28-4. Round-Robin Scheduling

Channel N Channel N

Channel 0

Channel x

Channel x+1

Channel x last acknowledge request Channel (x+1) last acknowledge request

Channel 0

Channel x

Channel x+1
Channel x+2

Lowest Priority
Highest Priority

Highest Priority
Lowest Priority

.

.

.

.

.

.

The Channel Pending Interrupt register (INTPEND) also offers the possibility to indirectly clear the
interrupt flags of a specific channel. Writing a flag to one in this register, will clear the corresponding
interrupt flag of the channel specified by the INTPEND.ID bits.

28.5.3 Interrupts
The EVSYS has the following interrupt sources for each channel:

• Overrun Channel n interrupt (OVR)
• Event Detected Channel n interrupt (EVD)

These interrupts events are asynchronous wake-up sources.

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the corresponding
Channel n Interrupt Flag Status and Clear (CHINTFLAG) register is set when the interrupt condition
occurs.

Note: Interrupts must be globally enabled to allow the generation of interrupt requests.

Each interrupt can be individually enabled by writing a '1' to the corresponding bit in the Channel n
Interrupt Enable Set (CHINTENSET) register, and disabled by writing a '1' to the corresponding bit in
the Channel n Interrupt Enable Clear (CHINTENCLR) register. An interrupt request is generated when
the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains
active until the interrupt flag is cleared, the interrupt is disabled or the Event System is reset. All
interrupt requests are ORed together on system level to generate one combined interrupt request
to the NVIC.

The user must read the Channel Interrupt Status (INTSTATUS) register to identify the channels with
pending interrupts, and must read the Channel n Interrupt Flag Status and Clear (CHINTFLAG)
register to determine which interrupt condition is present for the corresponding channel. It is
also possible to read the Interrupt Pending register (INTPEND), which provides the highest priority
channel with pending interrupt and the respective interrupt flags.

28.5.4 Sleep Mode Operation
The Event System can generate interrupts to wake up the device from Idle or Standby mode.

To be able to run in standby, the run in Standby bit in the Channel register (CHANNELn.RUNSTDBY)
must be set to '1'. When the Generic Clock On Demand bit in the Channel register

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 561

(CHANNELn.ONDEMAND) is set to '1' and the event generator is detected, the event channel will
request its clock (GCLK_EVSYS_CHANNEL_n). The event latency for a resynchronized channel path
will increase by two GCLK_EVSYS_CHANNEL_n clock (that is., up to five GCLK_EVSYS_CHANNEL_n
clock cycles).

A channel will behave differently in different sleep modes regarding to CHANNELn.RUNSTDBY and
CHANNELn.ONDEMAND:

Table 28-1. Event Channel Sleep Behavior
CHANNELn.PATH CHANNELn.

ONDEMAND
CHANNELn.
RUNSTDBY

Sleep Behavior

ASYNC 0 0 Only run in Idle mode if an event must be propagated.
Disabled in Standby mode.

SYNC/RESYNC 0 0 N/A. Works only in Active mode.

SYNC/RESYNC 0 1 Run in both Idle and Standby modes.

SYNC/RESYNC 1 0 Only run in Idle mode if an event must be propagated.
Disabled in Standby mode. Two GCLK_EVSYS_n latency
added in RESYNC path before the event is propagated
internally.

SYNC/RESYNC 1 1 Run in both Idle and Standby modes. Two
GCLK_EVSYS_n latency added in RESYNC path before
the event is propagated internally.

Note: The ONDEMAND and RUNSTDBY bits have no effect for channels when asynchronous path is
selected.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 562

28.6 Register Summary

Offset Name Bit Pos. 7 6 5 4 3 2 1 0
0x00 CTRLA 7:0 SWRST
0x01

...
0x03

Reserved

0x04 SWEVT

7:0 CHANNEL7 CHANNEL6 CHANNEL5 CHANNEL4 CHANNEL3 CHANNEL2 CHANNEL1 CHANNEL0
15:8 CHANNEL15 CHANNEL14 CHANNEL13 CHANNEL12 CHANNEL11 CHANNEL10 CHANNEL9 CHANNEL8

23:16 CHANNEL23 CHANNEL22 CHANNEL21 CHANNEL20 CHANNEL19 CHANNEL18 CHANNEL17 CHANNEL16
31:24 CHANNEL31 CHANNEL30 CHANNEL29 CHANNEL28 CHANNEL27 CHANNEL26 CHANNEL25 CHANNEL24

0x08 PRICTRL 7:0 RREN PRI[4:0]
0x09

...
0x0F

Reserved

0x10 INTPEND
7:0 ID[4:0]

15:8 BUSY READY EVD OVR
0x12

...
0x13

Reserved

0x14 INTSTATUS

7:0 CHINT7 CHINT6 CHINT5 CHINT4 CHINT3 CHINT2 CHINT1 CHINT0
15:8 CHINT11 CHINT10 CHINT9 CHINT8

23:16
31:24

0x18 BUSYCH

7:0 BUSYCH7 BUSYCH6 BUSYCH5 BUSYCH4 BUSYCH3 BUSYCH2 BUSYCH1 BUSYCH0
15:8 BUSYCH11 BUSYCH10 BUSYCH9 BUSYCH8

23:16
31:24

0x1C READYUSR

7:0 READYUSR7 READYUSR6 READYUSR5 READYUSR4 READYUSR3 READYUSR2 READYUSR1 READYUSR0
15:8 READYUSR11 READYUSR10 READYUSR9 READYUSR8

23:16
31:24

0x20 CHANNEL0

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x24 CHINTENCLR0 7:0 EVD OVR
0x25 CHINTENSET0 7:0 EVD OVR
0x26 CHINTFLAG0 7:0 EVD OVR
0x27 CHSTATUSn0 7:0 BUSYCH RDYUSR

0x28 CHANNEL1

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x2C CHINTENCLR1 7:0 EVD OVR
0x2D CHINTENSET1 7:0 EVD OVR
0x2E CHINTFLAG1 7:0 EVD OVR
0x2F CHSTATUSn1 7:0 BUSYCH RDYUSR

0x30 CHANNEL2

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x34 CHINTENCLR2 7:0 EVD OVR
0x35 CHINTENSET2 7:0 EVD OVR
0x36 CHINTFLAG2 7:0 EVD OVR
0x37 CHSTATUSn2 7:0 BUSYCH RDYUSR

0x38 CHANNEL3

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x3C CHINTENCLR3 7:0 EVD OVR
0x3D CHINTENSET3 7:0 EVD OVR

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 563

...........continued

Offset Name Bit Pos. 7 6 5 4 3 2 1 0
0x3E CHINTFLAG3 7:0 EVD OVR
0x3F CHSTATUSn3 7:0 BUSYCH RDYUSR

0x40 CHANNEL4

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x44 CHINTENCLR4 7:0 EVD OVR
0x45 CHINTENSET4 7:0 EVD OVR
0x46 CHINTFLAG4 7:0 EVD OVR
0x47 CHSTATUSn4 7:0 BUSYCH RDYUSR

0x48 CHANNEL5

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x4C CHINTENCLR5 7:0 EVD OVR
0x4D CHINTENSET5 7:0 EVD OVR
0x4E CHINTFLAG5 7:0 EVD OVR
0x4F CHSTATUSn5 7:0 BUSYCH RDYUSR

0x50 CHANNEL6

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x54 CHINTENCLR6 7:0 EVD OVR
0x55 CHINTENSET6 7:0 EVD OVR
0x56 CHINTFLAG6 7:0 EVD OVR
0x57 CHSTATUSn6 7:0 BUSYCH RDYUSR

0x58 CHANNEL7

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x5C CHINTENCLR7 7:0 EVD OVR
0x5D CHINTENSET7 7:0 EVD OVR
0x5E CHINTFLAG7 7:0 EVD OVR
0x5F CHSTATUSn7 7:0 BUSYCH RDYUSR

0x60 CHANNEL8

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x64 CHINTENCLR8 7:0 EVD OVR
0x65 CHINTENSET8 7:0 EVD OVR
0x66 CHINTFLAG8 7:0 EVD OVR
0x67 CHSTATUSn8 7:0 BUSYCH RDYUSR

0x68 CHANNEL9

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x6C CHINTENCLR9 7:0 EVD OVR
0x6D CHINTENSET9 7:0 EVD OVR
0x6E CHINTFLAG9 7:0 EVD OVR
0x6F CHSTATUSn9 7:0 BUSYCH RDYUSR

0x70 CHANNEL10

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x74 CHINTENCLR10 7:0 EVD OVR
0x75 CHINTENSET10 7:0 EVD OVR
0x76 CHINTFLAG10 7:0 EVD OVR
0x77 CHSTATUSn10 7:0 BUSYCH RDYUSR

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 564

...........continued

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x78 CHANNEL11

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x7C CHINTENCLR11 7:0 EVD OVR
0x7D CHINTENSET11 7:0 EVD OVR
0x7E CHINTFLAG11 7:0 EVD OVR
0x7F CHSTATUSn11 7:0 BUSYCH RDYUSR

0x80 CHANNEL12

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x84
...

0x87
Reserved

0x88 CHANNEL13

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x8C
...

0x8F
Reserved

0x90 CHANNEL14

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x94
...

0x97
Reserved

0x98 CHANNEL15

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x9C
...

0x9F
Reserved

0xA0 CHANNEL16

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0xA4
...

0xA7
Reserved

0xA8 CHANNEL17

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0xAC
...

0xAF
Reserved

0xB0 CHANNEL18

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0xB4
...

0xB7
Reserved

0xB8 CHANNEL19

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 565

...........continued

Offset Name Bit Pos. 7 6 5 4 3 2 1 0
0xBC

...
0xBF

Reserved

0xC0 CHANNEL20

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0xC4
...

0xC7
Reserved

0xC8 CHANNEL21

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0xCC
...

0xCF
Reserved

0xD0 CHANNEL22

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0xD4
...

0xD7
Reserved

0xD8 CHANNEL23

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0xDC
...

0xDF
Reserved

0xE0 CHANNEL24

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0xE4
...

0xE7
Reserved

0xE8 CHANNEL25

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0xEC
...

0xEF
Reserved

0xF0 CHANNEL26

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0xF4
...

0xF7
Reserved

0xF8 CHANNEL27

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0xFC
...

0xFF
Reserved

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 566

...........continued

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x0100 CHANNEL28

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x0104
...

0x0107
Reserved

0x0108 CHANNEL29

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x010C
...

0x010F
Reserved

0x0110 CHANNEL30

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x0114
...

0x0117
Reserved

0x0118 CHANNEL31

7:0 EVGEN[7:0]
15:8 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

23:16
31:24

0x011C
...

0x011F
Reserved

0x0120 USER0 7:0 CHANNEL[7:0]
...

0x0153 USER51 7:0 CHANNEL[7:0]

28.7 Register Description
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

For more details, see Register Access Protection and Peripheral Access Controller (PAC) from Related
Links.

Related Links
28.4.8. Register Access Protection
26. Peripheral Access Controller (PAC)

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 567

28.7.1 Control A

Name:  CTRLA
Offset:  0x00
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 SWRST

Access W
Reset 0

Bit 0 – SWRST Software Reset
Writing '0' to this bit has no effect.
Writing '1' to this bit resets all registers in the EVSYS to their initial state.
Note: Before applying a Software Reset it is recommended to disable the event generators.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 568

28.7.2 Software Event

Name:  SWEVT
Offset:  0x04
Reset:  0x00000000
Property:  PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
 CHANNEL31 CHANNEL30 CHANNEL29 CHANNEL28 CHANNEL27 CHANNEL26 CHANNEL25 CHANNEL24

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 CHANNEL23 CHANNEL22 CHANNEL21 CHANNEL20 CHANNEL19 CHANNEL18 CHANNEL17 CHANNEL16

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 CHANNEL15 CHANNEL14 CHANNEL13 CHANNEL12 CHANNEL11 CHANNEL10 CHANNEL9 CHANNEL8

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 CHANNEL7 CHANNEL6 CHANNEL5 CHANNEL4 CHANNEL3 CHANNEL2 CHANNEL1 CHANNEL0

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 –
CHANNELx Channel x Software Selection [x=0..7]

Writing a '0' to this bit has no effect.
Writing a '1' to this bit will trigger a software event for channel x.
These bits always return '0' when read.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 569

28.7.3 Priority Control

Name:  PRICTRL
Offset:  0x08
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 RREN PRI[4:0]

Access RW RW RW RW RW RW
Reset 0 0 0 0 0 0

Bit 7 – RREN Round-Robin Scheduling Enable
For details on scheduling schemes, refer to Interrupt Status and Interrupts Arbitration
Value Description
0 Static scheduling scheme for channels with level priority
1 Round-robin scheduling scheme for channels with level priority

Bits 4:0 – PRI[4:0] Channel Priority Number
When round-robin arbitration is enabled (PRICTRL.RREN=1) for priority level, this register holds the
channel number of the last EVSYS channel being granted access as the active channel with priority
level. The value of this bit group is updated each time the INTPEND or any of CHINTFLAG registers
are written.
When static arbitration is enabled (PRICTRL.RREN=0) for priority level, and the value of this bit group
is nonzero, it will not affect the static priority scheme.
This bit group is not reset when round-robin scheduling gets disabled (PRICTRL.RREN written to
zero).

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 570

28.7.4 Channel Pending Interrupt

Name:  INTPEND
Offset:  0x10
Reset:  0x4000

An interrupt that handles several channels must consult the INTPEND register to find out which
channel number has priority (ignoring/filtering each channel that has its own interrupt line). An
interrupt dedicated to only one channel must not use the INTPEND register.

Bit 15 14 13 12 11 10 9 8
 BUSY READY EVD OVR

Access R R RW RW
Reset 0 1 0 0

Bit 7 6 5 4 3 2 1 0
 ID[4:0]

Access RW RW RW RW RW
Reset 0 0 0 0 0

Bit 15 – BUSY Busy
This bit is read '1' when the event on a channel selected by Channel ID field (ID) has not been
handled by all the event users connected to this channel.

Bit 14 – READY Ready
This bit is read '1' when all event users connected to the channel selected by Channel ID field (ID) are
ready to handle incoming events on this channel.

Bit 9 – EVD Channel Event Detected
This flag is set on the next CLK_EVSYS_APB cycle when an event is being propagated through the
channel, and an interrupt request will be generated if CHINTENCLR/SET.EVD is '1'.
When the event channel path is asynchronous, the EVD bit will not be set.
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear it. It will also clear the corresponding flag in the Channel n
Interrupt Flag Status and Clear register (CHINTFLAGn) of this peripheral, where n is determined
by the Channel ID bit field (ID) in this register.

Bit 8 – OVR Channel Overrun
This flag is set on the next CLK_EVSYS cycle after an overrun channel condition occurs, and an
interrupt request will be generated if CHINTENCLR/SET.OVRx is '1'.
There are two possible overrun channel conditions:
• One or more of the event users on channel selected by Channel ID field (ID) are not ready when a

new event occurs
• An event happens when the previous event on channel selected by Channel ID field (ID) has not

yet been handled by all event users

When the event channel path is asynchronous, the OVR interrupt flag will not be set.
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear it. It will also clear the corresponding flag in the Channel n
Interrupt Flag Status and Clear register (CHINTFLAGn) of this peripheral, where n is determined
by the Channel ID bit field (ID) in this register.

Bits 4:0 – ID[4:0] Channel ID
These bits store the channel number of the highest priority.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 571

When the bits are written, indirect access to the corresponding Channel Interrupt Flag register is
enabled.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 572

28.7.5 Interrupt Status

Name:  INTSTATUS
Offset:  0x14
Reset:  0x00000000

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 CHINT11 CHINT10 CHINT9 CHINT8

Access R R R R
Reset 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 CHINT7 CHINT6 CHINT5 CHINT4 CHINT3 CHINT2 CHINT1 CHINT0

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 – CHINTx Channel x Pending Interrupt
This bit is set when Channel x has a pending interrupt.
This bit is cleared when the corresponding Channel x interrupts are disabled, or the source interrupt
sources are cleared.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 573

28.7.6 Busy Channels

Name:  BUSYCH
Offset:  0x18
Reset:  0x00000000

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 BUSYCH11 BUSYCH10 BUSYCH9 BUSYCH8

Access R R R R
Reset 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 BUSYCH7 BUSYCH6 BUSYCH5 BUSYCH4 BUSYCH3 BUSYCH2 BUSYCH1 BUSYCH0

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 – BUSYCHx Busy Channel x
This bit is set if an event occurs on channel x has not been handled by all event users connected to
channel x.
This bit is cleared when channel x is idle.
When the event channel x path is asynchronous, this bit is always read '0'.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 574

28.7.7 Ready Users

Name:  READYUSR
Offset:  0x1C
Reset:  111111111111

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 READYUSR11 READYUSR10 READYUSR9 READYUSR8

Access R R R R
Reset 1 1 1 1

Bit 7 6 5 4 3 2 1 0
 READYUSR7 READYUSR6 READYUSR5 READYUSR4 READYUSR3 READYUSR2 READYUSR1 READYUSR0

Access R R R R R R R R
Reset 1 1 1 1 1 1 1 1

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 – READYUSRn Ready User for Channel n
This bit is set when all event users connected to channel n are ready to handle incoming events on
channel n.
This bit is cleared when at least one of the event users connected to the channel is not ready.
When the event channel n path is asynchronous, this bit is always read zero.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 575

28.7.8 Channel n Control

Name:  CHANNEL
Offset:  0x20 + n*0x08 [n=0..31]
Reset:  0x00008000
Property:  PAC Write-Protection, Mix-Secure

This register allows the user to configure channel n. To write to this register, do a single, 32-bit write
of all the configuration data.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 ONDEMAND RUNSTDBY EDGSEL[1:0] PATH[1:0]

Access RW RW RW RW RW RW
Reset 1 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 EVGEN[7:0]

Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0

Bit 15 – ONDEMAND Generic Clock On Demand
Value Description
0 Generic clock for a channel is always on, if the channel is configured and generic clock source is enabled.
1 Generic clock is requested on demand while an event is handled

Bit 14 – RUNSTDBY Run in Standby
This bit is used to define the behavior during standby sleep mode.
Value Description
0 The channel is disabled in standby sleep mode.
1 The channel is not stopped in standby sleep mode and depends on the CHANNEL.ONDEMAND bit.

Bits 11:10 – EDGSEL[1:0] Edge Detection Selection
These bits set the type of edge detection to be used on the channel.
These bits must be written to zero when using the asynchronous path.
Value Name Description
0x0 NO_EVT_OUTPUT No event output when using the resynchronized path
0x1 RISING_EDGE Event detection only on the rising edge of the signal from the event generator
0x2 FALLING_EDGE Event detection only on the falling edge of the signal from the event generator
0x3 BOTH_EDGES Event detection on rising and falling edges of the signal from the event generator

Bits 9:8 – PATH[1:0] Path Selection
These bits are used to choose which path will be used by the selected channel.
Note: The path choice can be limited by the channel source (see USERm from Related Links).

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 576

Important: Only EVSYS channel 0 to 3 can be configured as synchronous or
resynchronized.

Value Name Description
0x1 RESYNCHRONIZED Resynchronized path
0x2 ASYNCHRONOUS Asynchronous path
Other - Reserved

Bits 7:0 – EVGEN[7:0] Event Generator Selection
These bits are used to choose the event generator to connect to the selected channel.

Table 28-2. Event Generator Selection
Value Name Description
0x00 - 0x07 RTC_PERx RTC period x=0..7
0x08 - 0x0B RTC_CMPx RTC comparison x=0..3
0x0C RTC_TAMPER RTC tamper detection
0x0D RTC_OVF RTC Overflow
0x0E - 0x11 EIC_EXTINTx EIC external interrupt x=0..3
0x12 - 0x15 DMAC_CHx DMA channel x=0..3
0x16 PAC_ACCERR PAC Acc. error
0x17 TCC0_OVF TCC0 Overflow
0x18 TCC0_TRG TCC0 Trigger Event
0x19 TCC0_CNT TCC0 Counter
0x1A-0x1F TCC0_MCx TCC0 Match/Compare x=0..5
0x20 TCC1_OVF TCC1 Overflow
0x21 TCC1_TRG TCC1 Trigger Event
0x22 TCC1_CNT TCC1 Counter
0x23 - 0x28 TCC1_MCx TCC1 Match/Compare x=0..5
0x29 TCC2_OVF TCC2 Overflow
0x2A TCC2_TRG TCC2 Trigger Event
0x2B TCC2_CNT TCC2 Counter
0x2C - 0x2D TCC2_MCx TCC2 Match/Compare x=0..1
0x2E TC0_OVF TC0 Overflow
0x2F-0x30 TC0_MCx TC0 Match/Compare x=0..1
0x31 TC1_OVF TC1 Overflow
0x32 - 0x33 TC1_MCx TC1 Match/Compare x=0..1
0x34 TC2_OVF TC2 Overflow
0x35 - 0x36 TC2_MCx TC2 Match/Compare x=0..1
0x37 TC3_OVF TC3 Overflow
0x38 - 0x39 TC3_MCx TC3 Match/Compare x=0..1
0x3A ADC_RESRDY ADC End-Of-Scan Ready Interrupt
0x3B - 0x3C Not used —
0x3D - 0x3E AC_COMPx AC Comparator, x=0..1
0x3F AC_WIN_0 AC0 Window
0x40 TRNG_READY TRNG ready
0x41 - 0x42 CCL_LUTOUTx CCL LUTOUT x-0..1
0x43 ZB_TX_TS_ACTIVE Zigbee Transmit Packet Active time
0x44 ZB_RX_TS_ACTIVE Zigbee Receive Packet Active time

Related Links
28.7.13. USERm

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 577

28.7.9 Channel n Interrupt Enable Clear

Name:  CHINTENCLR
Offset:  0x24 + n*0x08 [n=0..11]
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 EVD OVR

Access RW RW
Reset 0 0

Bit 1 – EVD Channel Event Detected Interrupt Disable
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the Event Detected Channel Interrupt Enable bit, which disables the
Event Detected Channel interrupt.
Value Description
0 The Event Detected Channel interrupt is disabled.
1 The Event Detected Channel interrupt is enabled.

Bit 0 – OVR Channel Overrun Interrupt Disable
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the Overrun Channel Interrupt Enable bit, which disables the
Overrun Channel interrupt.
Value Description
0 The Overrun Channel interrupt is disabled.
1 The Overrun Channel interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 578

28.7.10 Channel n Interrupt Enable Set

Name:  CHINTENSET
Offset:  0x25 + n*0x08 [n=0..11]
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 EVD OVR

Access RW RW
Reset 0 0

Bit 1 – EVD Channel Event Detected Interrupt Enable
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will set the Event Detected Channel Interrupt Enable bit, which enables the
Event Detected Channel interrupt.
Value Description
0 The Event Detected Channel interrupt is disabled.
1 The Event Detected Channel interrupt is enabled.

Bit 0 – OVR Channel Overrun Interrupt Enable
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will set the Overrun Channel Interrupt Enable bit, which enables the Overrun
Channel interrupt.
Value Description
0 The Overrun Channel interrupt is disabled.
1 The Overrun Channel interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 579

28.7.11 Channel n Interrupt Flag Status and Clear

Name:  CHINTFLAG
Offset:  0x26 + n*0x08 [n=0..11]
Reset:  0x00

Bit 7 6 5 4 3 2 1 0
 EVD OVR

Access RW RW
Reset 0 0

Bit 1 – EVD Channel Event Detected
This flag is set on the next CLK_EVSYS_APB cycle when an event is being propagated through the
channel, and an interrupt request will be generated if CHINTENCLR/SET.EVD is ‘1’.
When the event channel path is asynchronous, the EVD interrupt flag will not be set.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the Event Detected Channel interrupt flag.

Bit 0 – OVR Channel Overrun
This flag is set on the next CLK_EVSYS cycle after an overrun channel condition occurs, and an
interrupt request will be generated if CHINTENCLR/SET.OVR is ‘1’.
There are two possible overrun channel conditions:
• One or more of the event users on the channel are not ready when a new event occurs.
• An event happens when the previous event on channel has not yet been handled by all event

users.

When the event channel path is asynchronous, the OVR interrupt flag will not be set.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the Overrun Channel interrupt flag.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 580

28.7.12 Channel n Status

Name:  CHSTATUSn
Offset:  0x27 + n*0x08 [n=0..11]
Reset:  0x01

Bit 7 6 5 4 3 2 1 0
 BUSYCH RDYUSR

Access R R
Reset 0 0

Bit 1 – BUSYCH Busy Channel
This bit is cleared when channel is idle.
This bit is set if an event on channel has not been handled by all event users connected to channel.
When the event channel path is asynchronous, this bit is always read '0'.

Bit 0 – RDYUSR Ready User
This bit is cleared when at least one of the event users connected to the channel is not ready.
This bit is set when all event users connected to channel are ready to handle incoming events on the
channel.
When the event channel path is asynchronous, this bit is always read zero.

 PIC32CX-BZ2 and WBZ45 Family
Event System (EVSYS)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 581

28.7.13 Event User m

Name:  USERm
Offset:  0x0120 + m*0x01 [m=0..51]
Reset:  0x0
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 CHANNEL[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – CHANNEL[7:0] Channel Event Selection
These bits select channel n to connect to the event user m.
Note: A value x of this bit field selects channel n = x-1.

USERm UserMultiplexer Description PathType(1)

m = 0 RTC_TAMPER RTCTamper A, S, R
m = 1..8 DMAC_CH0..7 Channel0..7 S, R
m = 9 CM4_TRACE_START CM4trace start A, S, R
m = 10 CM4_TRACE_STOP CM4trace stop A, S, R
m = 11 CM4_TRACE_TRIG CM4trace trigger A, S, R
m = 12..13 TCC0EV0..1 TCC0 EVx A, S, R
m = 14..19 TCC0MC0..5 TCC0 MCx A, S, R
m = 20..21 TCC1EV0..1 TCC1 EVx A, S, R
m = 22..27 TCC1MC0..5 TCC1 MCx A, S, R
m = 28..29 TCC2EV0..1 TCC2 EVx A, S, R
m = 30..31 TCC2MC0..1 TCC2 MCx A, S, R
m = 32 TC0 EVU TC0 EVU A, S, R
m = 33 TC1 EVU TC1 EVU A, S, R
m = 34 TC2 EVU TC2 EVU A, S, R
m = 35 TC3 EVU TC3 EVU A, S, R
m = 36..47 ADC_TRIGGER5..16 ADC_TRIGGERx A
m = 48..49 AC_SOC0..1 AC_SOCx A, S, R
m = 50..51 CCL_LUTIN0..1 CCL_LUTINx A, S, R

1) A = Asynchronous path, S = Synchronous path, R = Resynchronized path
Value Description
11 12 bits (default)
10 10 bits
01 8 bits
00 6 bits

 PIC32CX-BZ2 and WBZ45 Family
Serial Communication Interface (SERCOM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 582

29. Serial Communication Interface (SERCOM)
29.1 Overview

There are instances of the Serial Communication interface (SERCOM) peripheral.

A SERCOM can be configured to support a number of modes: I2C, SPI and USART. When an
instance of SERCOM is configured and enabled, all of the resources of that SERCOM instance will
be dedicated to the selected mode.

The SERCOM serial engine consists of a transmitter and receiver, baud-rate generator and address
matching functionality. It can use the internal generic clock or an external clock. Using an external
clock allows the SERCOM to be operated in all Sleep modes.

Note: Traditional Serial Communication Interface documentation uses the terminology “Master”
and “Slave”. The equivalent Microchip terminology used in this document is “Host” and “Client”,
respectively.

Note: SERCOM3 (4th instance of SERCOM) is only supported using Peripheral Pin Select (PPS).

29.2 Features
• Interface for Configuring into one of the following (selected by CTRLA.MODE[2:0]):

– Inter-Integrated Circuit (I2C) two-wire serial interface
– System Management Bus (SMBus™) compatible
– Serial Peripheral Interface (SPI)
– Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

• Single Transmit Buffer and Double Receive Buffer
• Baud-rate Generator
• Address Match/mask Logic
• Operational in all Sleep modes with an External Clock Source
• Can be used with DMA

See the Related Links for full feature lists of the interface configurations.

29.3 Block Diagram
Figure 29-1. SERCOM Block Diagram

TX/RX DATACONTROL/STATUS

Mode n

SERCOM

BAUD/ADDR

Transmitter

Register Interface

Serial Engine

Receiver

Mode 0

Mode 1
Baud Rate
Generator

Address
Match

Mode Specific

PAD[3:0]

 PIC32CX-BZ2 and WBZ45 Family
Serial Communication Interface (SERCOM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 583

29.4 Signal Description
See the respective SERCOM mode chapters for details.

29.5 Product Dependencies
In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

29.5.1 I/O Lines
Using the SERCOM I/O lines requires the I/O pins to be configured using the System Configuration
registers or PPS registers.

The SERCOM has four internal pads, PAD[3:0], and the signals from I2C, SPI and USART are routed
through these SERCOM pads through a multiplexer. The configuration of the multiplexer is available
from the different SERCOM modes. Refer to the mode specific chapters for additional information.

29.5.2 Power Management
The SERCOM can operate in any Sleep mode provided the selected clock source is running. SERCOM
interrupts can be configured to wake the device from sleep modes.

29.5.3 Clocks
The SERCOM uses two generic clocks: GCLK_SERCOMx_CORE and
GCLK_SERCOMx_SLOWGCLK_SERCOMx_SLOW. The core clock (GCLK_SERCOMx_CORE) is required to
clock the SERCOM while working as a host. The slow clock (GCLK_SERCOMx_SLOW) is only required
for certain functions. See specific mode chapters for details.

These clocks must be configured and enabled in the Clock and Reset Unit (CRU) registers before
using the SERCOM.

The generic clocks are asynchronous to the bus clock (PBx_CLK). Therefore, writing to certain
registers will require synchronization between the clock domains.

29.5.4 DMA
The DMA request lines are connected to the DMA Controller (DMAC). The DMAC must be configured
before the SERCOM DMA requests are used.

29.5.5 Interrupts
The interrupt request line is connected to the Interrupt Controller (NVIC). The NVIC must be
configured before the SERCOM interrupts are used.

29.5.6 Events
Not applicable.

29.5.7 Debug Operation
When the CPU is halted in Debug mode, this peripheral will continue normal operation. If the
peripheral is configured to require periodical service by the CPU through interrupts or similar,
improper operation or data loss may result during debugging. This peripheral can be forced to halt
operation during debugging - refer to the Debug Control (DBGCTRL) register for details.

29.5.8 Register Access Protection
Registers with write-access can be write-protected optionally by the Peripheral Access Controller
(PAC).

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

PAC write protection does not apply to accesses through an external debugger.

 PIC32CX-BZ2 and WBZ45 Family
Serial Communication Interface (SERCOM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 584

29.5.9 Analog Connections
Not applicable.

29.6 Functional Description

29.6.1 Principle of Operation
The basic structure of the SERCOM serial engine is shown in SERCOM Serial Engine. Labels in capital
letters are synchronous to the system clock and accessible by the CPU; labels in lowercase letters
can be configured to run on the GCLK_SERCOMx_CORE clock or an external clock.

Figure 29-2. SERCOM Serial Engine

Transmitter

Baud Rate Generator

Equal

Selectable
Internal Clk

(GCLK)

Ext Clk

Receiver

Address Match

Baud Rate Generator

TX Shift Register

RX Shift Register

RX BufferStatus

BAUD TX DATA ADDR/ADDRMASK

RX DATASTATUS

1/- /2- /16

The transmitter consists of a single write buffer and a Shift register.

The receiver consists of a one-level (I2C), or two-level (USART, SPI) receive buffer and a Shift register.

The baud-rate generator is capable of running on the GCLK_SERCOMx_CORE clock or an external
clock.

Address matching logic is included for SPI and I2C operation.

29.6.2 Basic Operation

29.6.2.1 Initialization
The SERCOM must be configured to the desired mode by writing the Operating Mode bits in the
Control A register (CTRLA.MODE) as shown in the table below.

Table 29-1. SERCOM Modes
CTRLA.MODE Description

0x0 USART with external clock

0x1 USART with internal clock

0x2 SPI in client operation

0x3 SPI in host operation

0x4 I2C client operation

0x5 I2C host operation

 PIC32CX-BZ2 and WBZ45 Family
Serial Communication Interface (SERCOM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 585

...........continued
CTRLA.MODE Description

0x6-0x7 Reserved

For further initialization information, see the respective SERCOM mode chapters:

29.6.2.2 Enabling, Disabling, and Resetting
This peripheral is enabled by writing '1' to the Enable bit in the Control A register (CTRLA.ENABLE),
and disabled by writing '0' to it.

Writing ‘1’ to the Software Reset bit in the Control A register (CTRLA.SWRST) will reset all registers of
this peripheral to their initial states, except the DBGCTRL register, and the peripheral is disabled.

Refer to the CTRLA register description for details.

Related Links
30.8.1. CTRLA

29.6.2.3 Clock Generation – Baud-Rate Generator
The baud-rate generator, as shown in the following figure, generates internal clocks for
asynchronous and synchronous communication. The output frequency (fBAUD) is determined by the
Baud register (BAUD) setting and the baud reference frequency (fref). The baud reference clock is the
serial engine clock, and it can be internal or external.

For asynchronous communication, the /16 (divide-by-16) output is used when transmitting, whereas
the /1 (divide-by-1) output is used while receiving.

For synchronous communication, the /2 (divide-by-2) output is used.

This functionality is automatically configured, depending on the selected operating mode.

Figure 29-3. Baud Rate Generator

Base
Period

Selectable
Internal Clk

(GCLK)

Ext Clk

CTRLA.MODE[0]

0

1

0

1

0

1

0

1

fref

Clock
Recovery

Tx Clk

Rx Clk

CTRLA.MODE

/2 /8

/1 /2 /16

Baud Rate Generator

The following table contains equations for the baud rate (in bits per second) and the BAUD register
value for each operating mode.

For asynchronous operation, there are two modes:
• Arithmetic mode: the BAUD register value is 16 bits (0 to 65,535)
• Fractional mode: the BAUD register value is 13 bits, while the fractional adjustment is 3 bits. In this

mode the BAUD setting must be greater than or equal to 1.

For synchronous operation, the BAUD register value is 8 bits (0 to 255).

 PIC32CX-BZ2 and WBZ45 Family
Serial Communication Interface (SERCOM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 586

Table 29-2. Baud Rate Equations
Operating Mode Condition Baud Rate (Bits Per Second) BAUD Register Value Calculation

Asynchronous
Arithmetic fBAUD ≤ fref16 fBAUD = fref16 1 − BAUD65536 BAUD = 65536 ⋅ 1 − S ⋅ fBAUDfref
Asynchronous
Fractional fBAUD ≤ frefS fBAUD = frefS ⋅ BAUD + FP8 BAUD = frefS ⋅ fBAUD − FP8
Synchronous fBAUD ≤ fref2 fBAUD = fref2 ⋅ BAUD + 1 BAUD = fref2 ⋅ fBAUD − 1

S - Number of samples per bit, which can be 16, 8, or 3.

The Asynchronous Fractional option is used for auto-baud detection.

The baud rate error is represented by the following formula:Error = 1 − ExpectedBaudRateActualBaudRate
29.6.3 Additional Features
29.6.3.1 Address Match and Mask

The SERCOM address match and mask feature is capable of matching either one address, two
unique addresses, or a range of addresses with a mask, based on the mode selected. The match
uses seven or eight bits, depending on the mode.

29.6.3.1.1 Address With Mask
An address written to the Address bits in the Address register (ADDR.ADDR), and a mask written to
the Address Mask bits in the Address register (ADDR.ADDRMASK) will yield an address match. All
bits that are masked are not included in the match. Note that writing the ADDR.ADDRMASK to 'all
zeros' will match a single unique address, while writing ADDR.ADDRMASK to 'all ones' will result in all
addresses being accepted.

Figure 29-4. Address With Mask

rx shift register

ADDRMASK

ADDR

== Match

29.6.3.1.2 Two Unique Addresses
The two addresses written to ADDR and ADDRMASK will cause a match.

 PIC32CX-BZ2 and WBZ45 Family
Serial Communication Interface (SERCOM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 587

Figure 29-5. Two Unique Addresses

ADDRMASK

rx shift register

ADDR

==

Match

==

29.6.3.1.3 Address Range
The range of addresses between and including ADDR.ADDR and ADDR.ADDRMASK will cause a
match. ADDR.ADDR and ADDR.ADDRMASK can be set to any two addresses, with ADDR.ADDR acting
as the upper limit and ADDR.ADDRMASK acting as the lower limit.

Figure 29-6. Address Range

ADDRMASK rx shift register ADDR == Match

29.6.4 DMA Operation
The available DMA interrupts and their depend on the operation mode of the SERCOM peripheral.
Refer to the Functional Description sections of the respective SERCOM mode.

29.6.5 Interrupts
Interrupt sources are mode specific. See the respective SERCOM mode chapters for details.

Each interrupt source has its own Interrupt flag.

The Interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG) will be set when the
Interrupt condition is met.

Each interrupt can be individually enabled by writing '1' to the corresponding bit in the Interrupt
Enable Set register (INTENSET), and disabled by writing '1' to the corresponding bit in the Interrupt
Enable Clear register (INTENCLR).

An interrupt request is generated when the Interrupt flag is set and the corresponding interrupt is
enabled. The interrupt request remains active until either the Interrupt flag is cleared, the interrupt
is disabled, or the SERCOM is reset. For details on clearing Interrupt flags, refer to the INTFLAG
register description.

The value of INTFLAG indicates which Interrupt condition occurred. The user must read the INTFLAG
register to determine which Interrupt condition is present.

Note: Interrupts must be globally enabled for interrupt requests to be generated.

Related Links
30.8.8. INTFLAG

29.6.6 Events
Not applicable.

29.6.7 Sleep Mode Operation
The peripheral can operate in any Sleep mode where the selected serial clock is running. This clock
can be external or generated by the internal baud-rate generator.

 PIC32CX-BZ2 and WBZ45 Family
Serial Communication Interface (SERCOM)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 588

The SERCOM interrupts can be used to wake-up the device from Sleep modes. Refer to the different
SERCOM mode chapters for details.

29.6.8 Synchronization
Due to asynchronicity between the main clock domain and the peripheral clock domains, some
registers need to be synchronized when written or read.

Required write synchronization is denoted by the "Write-Synchronized" property in the register
description.

Required read synchronization is denoted by the "Read-Synchronized" property in the register
description.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 589

30. SERCOM Synchronous and Asynchronous Receiver and Transmitter
(SERCOM USART)

30.1 Overview
The Universal Synchronous and Asynchronous Receiver and Transmitter (USART) is one of the
available modes in the Serial Communication Interface (SERCOM).

The USART uses the SERCOM transmitter and receiver (see USART Block Diagram in the Block Diagram
section from Related Links). Labels in uppercase letters are synchronous to PBx_CLK and accessible
for CPU. Labels in lowercase letters can be programmed to run on the internal generic clock or an
external clock.

The transmitter consists of a single write buffer, a Shift register, and control logic for different
frame formats. The write buffer supports data transmission without any delay between frames. The
receiver consists of a two-level receive buffer and a Shift register. Status information of the received
data is available for error checking. Data and clock recovery units ensure robust synchronization and
noise filtering during asynchronous data reception.

Note: Traditional Universal Synchronous and Asynchronous Receiver and Transmitter (USART)
documentation uses the terminology “Master” and “Slave”. The equivalent Microchip terminology
used in this document is “Commander” and “Responder”, respectively.

Related Links
30.3. Block Diagram

30.2 USART Features
• Full-duplex Operation
• Asynchronous (with Clock Reconstruction) or Synchronous Operation
• Internal or External Clock source for Asynchronous and Synchronous Operation
• Baud-rate Generator
• Supports Serial Frames with 5, 6, 7, 8 or 9 Data bits and 1 or 2 Stop bits
• Odd or Even Parity Generation and Parity Check
• Selectable LSB- or MSB-first Data Transfer
• Buffer Overflow and Frame Error Detection
• Noise Filtering, Including False Start bit Detection and Digital Low-pass Filter
• Collision Detection
• Can Operate in all Sleep modes
• Operation at Speeds up to Half the System Clock for Internally Generated Clocks
• Operation at Speeds up to the System Clock for Externally Generated Clocks
• RTS and CTS Flow Control
• IrDA Modulation and Demodulation up to 115.2 kbps
• LIN Commander Support
• LIN Responder Support

– Auto-baud and break character detection
• Start-of-frame detection
• Can work with DMA

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 590

30.3 Block Diagram
Figure 30-1. USART Block Diagram

GCLK
(internal)

XCK

BAUD

Baud Rate Generator

TX DATA

TX Shift Register

RX Shift Register

STATUS

Status

RX DATA

Two-level RX Buffer

TxD

RxD

CTRLA.MODE /1 - /2 - /16

CTRLA.MODE

30.4 Signal Description
Table 30-1. SERCOM USART Signals
Signal Name Type Description

PAD[3:0] Digital I/O General SERCOM pins

One signal can be mapped to one of several pins.

30.5 Product Dependencies
To use this peripheral, other parts of the system must be configured correctly, as described below.

30.5.1 I/O Lines
Using the USART’s I/O lines requires the I/O pins to be configured using the System Configuration
registers or PPS registers.

When the SERCOM is used in USART mode, the SERCOM controls the direction and value of the I/O
pins according to the table below. If the receiver or transmitter is disabled, these pins can be used
for other purposes.

Table 30-2. USART Pin Configuration
Pin Pin Configuration

TxD Output

RxD Input

XCK Output or input

The combined configuration of PORT and the Transmit Data Pinout and Receive Data Pinout bit
fields in the Control A register (CTRLA.TXPO and CTRLA.RXPO, respectively) will define the physical
position of the USART signals in the above table.

30.5.2 Power Management
This peripheral can continue to operate in any Sleep mode where its source clock is running. The
interrupts can wake-up the device from Sleep modes.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 591

30.5.3 Clocks
A generic clock (GCLK_SERCOMx_CORE) is required to clock the SERCOMx_CORE. This clock must be
configured and enabled in the CRU registers before using the SERCOMx_CORE. See Clock and Reset
(CRU) and Peripheral Module Disable Register (PMD) from Related Links.

This generic clock is asynchronous to the bus clock (PBx_CLK). Therefore, writing to certain registers
will require synchronization to the clock domains.

Related Links
20. Peripheral Module Disable Register (PMD)
13. Clock and Reset Unit (CRU)

30.5.4 DMA
The DMA request lines are connected to the DMA Controller (DMAC). To use DMA requests with
this peripheral, the DMAC must be configured first (see Direct Memory Access Controller (DMAC) from
Related Links).

Related Links
22. Direct Memory Access Controller (DMAC)

30.5.5 Interrupts
The interrupt request line is connected to the Interrupt Controller. In order to use interrupt requests
of this peripheral, the NVIC must be configured first. See Nested Vector Interrupt Controller (NVIC) from
Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)
30.8.8. INTFLAG

30.5.6 Events
Not applicable.

30.5.7 Debug Operation
When the CPU is halted in Debug mode, this peripheral will continue normal operation. If the
peripheral is configured to require periodical service by the CPU through interrupts or similar,
improper operation or data loss may result during debugging. This peripheral can be forced to halt
operation during debugging - refer to the Debug Control (DBGCTRL) register for details.

Related Links
30.8.12. DBGCTRL

30.5.8 Register Access Protection
Registers with write access can be write-protected optionally by the Peripheral Access Controller
(PAC).

PAC write protection is not available for the following registers:

• Interrupt Flag Clear and Status register (INTFLAG)
• Status register (STATUS)
• Data register (DATA)

Optional PAC write protection is denoted by the "PAC Write-Protection" property in each individual
register description.

Write-protection does not apply to accesses through an external debugger.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 592

30.5.9 Analog Connections
Not applicable.

30.6 Functional Description

30.6.1 Principle of Operation
The USART uses the following lines for data transfer:

• RxD for receiving
• TxD for transmitting
• XCK for the transmission clock in synchronous operation

USART data transfer is frame based. A serial frame consists of:

• 1 start bit
• From 5 to 9 data bits (MSB or LSB first)
• No, even or odd parity bit
• 1 or 2 stop bits

A frame starts with the Start bit followed by one character of Data bits. If enabled, the parity bit is
inserted after the Data bits and before the first Stop bit. After the stop bit(s) of a frame, either the
next frame can follow immediately, or the communication line can return to the Idle (high) state. The
figure below illustrates the possible frame formats. Values inside brackets ([x]) denote optional bits.

Figure 30-2. Frame Formats

Frame

(IDLE) St 0 1 2 3 4 [5] [6] [7] [8] [P] Sp1 [Sp2] [St/IDL]

St Start bit. Signal is always low.

n, [n] Data bits. 0 to [5..9]

[P] Parity bit. Either odd or even.

Sp, [Sp] Stop bit. Signal is always high.

IDLE No frame is transferred on the communication line. Signal is always high in this state.

30.6.2 Basic Operation

30.6.2.1 Initialization
The following registers are enable-protected, meaning they can only be written when the USART is
disabled (CTRL.ENABLE=0):

• Control A register (CTRLA), except the Enable (ENABLE) and Software Reset (SWRST) bits.
• Control B register (CTRLB), except the Receiver Enable (RXEN) and Transmitter Enable (TXEN) bits.
• Baud register (BAUD)

When the USART is enabled or is being enabled (CTRLA.ENABLE=1), any writing attempt to these
registers will be discarded. If the peripheral is being disabled, writing to these registers will be
executed after disabling is completed. Enable-protection is denoted by the "Enable-Protection"
property in the register description.

Before the USART is enabled, it must be configured by these steps:

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 593

1. Select either external (0x0) or internal clock (0x1) by writing the Operating Mode value in the
CTRLA register (CTRLA.MODE).

2. Select either Asynchronous (0) or Synchronous (1) Communication mode by writing the
Communication Mode bit in the CTRLA register (CTRLA.CMODE).

3. Select pin for receive data by writing the Receive Data Pinout value in the CTRLA register
(CTRLA.RXPO).

4. Select pads for the transmitter and external clock by writing the Transmit Data Pinout bit in the
CTRLA register (CTRLA.TXPO).

5. Configure the Character Size field in the CTRLB register (CTRLB.CHSIZE) for character size.
6. Set the Data Order bit in the CTRLA register (CTRLA.DORD) to determine MSB- or LSB-first data

transmission.
7. To use parity mode:

a. Enable Parity mode by writing 0x1 to the Frame Format field in the CTRLA register
(CTRLA.FORM).

b. Configure the Parity Mode bit in the CTRLB register (CTRLB.PMODE) for even or odd parity.
8. Configure the number of stop bits in the Stop Bit Mode bit in the CTRLB register

(CTRLB.SBMODE).
9. When using an internal clock, write the Baud register (BAUD) to generate the desired baud rate.
10. Enable the transmitter and receiver by writing '1' to the Receiver Enable and Transmitter Enable

bits in the CTRLB register (CTRLB.RXEN and CTRLB.TXEN).

30.6.2.2 Enabling, Disabling, and Resetting
This peripheral is enabled by writing '1' to the Enable bit in the Control A register (CTRLA.ENABLE),
and disabled by writing '0' to it.

Writing ‘1’ to the Software Reset bit in the Control A register (CTRLA.SWRST) will reset all registers of
this peripheral to their initial states, except the DBGCTRL register, and the peripheral is disabled.

Refer to the CTRLA register description for details.

Related Links
30.8.1. CTRLA

30.6.2.3 Clock Generation and Selection
For both Synchronous and Asynchronous modes, the clock used for shifting and sampling data can
be generated internally by the SERCOM baud-rate generator or supplied externally through the XCK
line.

The Synchronous mode is selected by writing a ‘1’ to the Communication Mode bit in the Control A
register (CTRLA.CMODE), the Asynchronous mode is selected by writing ‘0’ to CTRLA.CMODE.

The internal clock source is selected by writing ‘1’ to the Operation Mode bit field in the Control A
register (CTRLA.MODE), the external clock source is selected by writing ‘0’ to CTRLA.MODE.

The SERCOM baud-rate generator is configured as in the following figure.

In Asynchronous mode (CTRLA.CMODE=0), the 16-bit Baud register value is used.

In Synchronous mode (CTRLA.CMODE=1), the eight LSBs of the Baud register are used. For more
details on configuring the baud rate (see Clock Generation – Baud-Rate Generator from Related Links).

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 594

Figure 30-3. Clock Generation

XCK

CTRLA.MODE[0]

1
0

XCKInternal Clk
(GCLK) Baud Rate Generator

Base
Period

/2 /8

/2 /16/1

1
0

1
0

0
1

Tx Clk

Rx Clk

CTRLA.CMODE

Related Links
29.6.2.3. Clock Generation – Baud-Rate Generator

30.6.2.3.1 Synchronous Clock Operation
In Synchronous mode, the CTRLA.MODE bit field determines whether the transmission clock line
(XCK) serves either as input or output. The dependency between clock edges, data sampling, and
data change is the same for internal and external clocks. Data input on the RxD pin is sampled at the
opposite XCK clock edge when data is driven on the TxD pin.

The Clock Polarity bit in the Control A register (CTRLA.CPOL) selects which XCK clock edge is used for
RxD sampling, and which is used for TxD change:

When CTRLA.CPOL is '0', the data will be changed on the rising edge of XCK, and sampled on the
falling edge of XCK.

When CTRLA.CPOL is '1', the data will be changed on the falling edge of XCK, and sampled on the
rising edge of XCK.

Figure 30-4. Synchronous Mode XCK Timing

XCK

RxD / TxD

CTRLA.CPOL=1

Change

Sample

XCK

RxD / TxD

CTRLA.CPOL=0

Change

Sample

When the clock is provided through XCK (CTRLA.MODE=0x0), the Shift registers operate directly on
the XCK clock. This means that XCK is not synchronized with the system clock and, therefore, can
operate at frequencies up to the system frequency.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 595

30.6.2.4 Data Register
The USART Transmit Data register (TxDATA) and USART Receive Data register (RxDATA) share the
same I/O address, referred to as the Data register (DATA). Writing the DATA register will update the
TxDATA register. Reading the DATA register will return the contents of the RxDATA register.

30.6.2.5 Data Transmission
Data transmission is initiated by writing the data to be sent into the DATA register. Then, the data in
TxDATA will be moved to the Shift register when the Shift register is empty and ready to send a new
frame. After the Shift register is loaded with data, the data frame will be transmitted.

When the entire data frame including Stop bit(s) has been transmitted and no new data was
written to DATA, the Transmit Complete Interrupt flag in the Interrupt Flag Status and Clear register
(INTFLAG.TXC) will be set, and the optional interrupt will be generated.

The Data Register Empty flag in the Interrupt Flag Status and Clear register (INTFLAG.DRE) indicates
that the register is empty and ready for new data. The DATA register must be written to when
INTFLAG.DRE is set.

Disabling the Transmitter
The transmitter is disabled by writing ‘0’ to the Transmitter Enable bit in the CTRLB register
(CTRLB.TXEN).

Disabling the transmitter will complete only after any ongoing and pending transmissions are
completed, in other words, there is no data in the transmit shift register and TxDATA to transmit.

30.6.2.5.1 Disabling the Transmitter
The transmitter is disabled by writing '0' to the Transmitter Enable bit in the CTRLB register
(CTRLB.TXEN).

Disabling the transmitter will complete only after any ongoing and pending transmissions are
completed, that is, there is no data in the Transmit Shift register and TxDATA to transmit.

30.6.2.6 Data Reception
The receiver accepts data when a valid Start bit is detected. Each bit following the Start bit will be
sampled according to the baud rate or XCK clock, and shifted into the receive Shift register until the
first Stop bit of a frame is received. The second Stop bit will be ignored by the receiver.

When the first Stop bit is received and a complete serial frame is present in the Receive Shift
register, the contents of the Shift register will be moved into the two-level receive buffer. Then, the
Receive Complete Interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.RXC) will be
set, and the optional interrupt will be generated.

The received data can be read from the DATA register when the Receive Complete Interrupt flag is
set.

Disabling the Receiver
Writing '0' to the Receiver Enable bit in the CTRLB register (CTRLB.RXEN) will disable the receiver,
flush the two-level receive buffer, and data from ongoing receptions will be lost.

Error Bits
The USART receiver has three error bits in the Status (STATUS) register: Frame Error (FERR), Buffer
Overflow (BUFOVF), and Parity Error (PERR). Once an error happens, the corresponding error bit will
be set until it is cleared by writing ‘1’ to it. These bits are also cleared automatically when the receiver
is disabled.

There are two methods for buffer overflow notification, selected by the Immediate Buffer Overflow
Notification bit in the Control A register (CTRLA.IBON):

When CTRLA.IBON=1, STATUS.BUFOVF is raised immediately upon buffer overflow. Software can
then empty the receive FIFO by reading RxDATA, until the receiver complete interrupt flag
(INTFLAG.RXC) is cleared.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 596

When CTRLA.IBON=0, the buffer overflow condition is attending data through the receive FIFO. After
the received data is read, STATUS.BUFOVF will be set along with INTFLAG.RXC.

Asynchronous Data Reception
The USART includes a clock recovery and data recovery unit for handling asynchronous data
reception.

The clock recovery logic can synchronize the incoming asynchronous serial frames at the RxD pin to
the internally generated baud-rate clock.

The data recovery logic samples and applies a low-pass filter to each incoming bit, thereby
improving the noise immunity of the receiver.

Asynchronous Operational Range
The operational range of the asynchronous reception depends on the accuracy of the internal
baud-rate clock, the rate of the incoming frames, and the frame size (in number of bits). In addition,
the operational range of the receiver is depending on the difference between the received bit rate
and the internally generated baud rate. If the baud rate of an external transmitter is too high or too
low compared to the internally generated baud rate, the receiver will not be able to synchronize the
frames to the start bit.

There are two possible sources for a mismatch in baud rate: First, the reference clock will always
have some minor instability. Second, the baud-rate generator cannot always do an exact division
of the reference clock frequency to get the baud rate desired. In this case, the BAUD register value
must be set to give the lowest possible error, see Clock Generation – Baud-Rate Generator from
Related Links.

Recommended maximum receiver baud-rate errors for various character sizes are shown in the
table below.

Table 30-3. Asynchronous Receiver Error for 16-fold Oversampling
D
(Data bits+Parity)

RSLOW [%] RFAST [%] Max. total error [%] Recommended max. Rx error [%]

5 94.12 107.69 +5.88/-7.69 ±2.5

6 94.92 106.67 +5.08/-6.67 ±2.0

7 95.52 105.88 +4.48/-5.88 ±2.0

8 96.00 105.26 +4.00/-5.26 ±2.0

9 96.39 104.76 +3.61/-4.76 ±1.5

10 96.70 104.35 +3.30/-4.35 ±1.5

The following equations calculate the ratio of the incoming data rate and internal receiver baud rate:RSLOW = 16 D + 116 D + 1 + 6 , RFAST = 16 D + 216 D + 1 + 8
• RSLOW is the ratio of the slowest incoming data rate that can be accepted in relation to the

receiver baud rate
• RFAST is the ratio of the fastest incoming data rate that can be accepted in relation to the receiver

baud rate
• D is the sum of character size and parity size (D = 5 to 10 bits)

The recommended maximum Rx Error assumes that the receiver and transmitter equally divide the
maximum total error. Its connection to the SERCOM Receiver error acceptance is depicted in this
figure:

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 597

Figure 30-5. USART Rx Error Calculation

+ +
Error Max (%)

Error Min (%)

Baud Rate

SERCOM Receiver error acceptance
from RSLOW and RFAST formulas

Baud Generator offset error
depends on BAUD register value

+

Clock source error
Recommended max. Rx Error (%)

The recommendation values in the table above accommodate errors of the clock source and the
baud generator. The following figure gives an example for a baud rate of 3Mbps:

Figure 30-6. USART Rx Error Calculation Example

+ +

Error Max 3.3%

Error Min -4.35%

Baud Rate 2Mbps

SERCOM Receiver error acceptance
sampling = x16
data bits = 10

parity = 0
start bit = stop bit = 1

No baud generator offset error
Fbaud(2Mbps) = 32MHz *1(BAUD=0) /16

+

Recommended
max. Rx Error +/-1.5%

(example)

Error Max 3.3%

Error Min -4.35%

Error Max 3.0%

Error Min -4.05%

Transmitter Error*

Accepted
Receiver Error

security margin

*Transmitter Error depends on the external transmitter used in the application.
It is advised that it is within the Recommended max. Rx Error (+/-1.5% in this example).
Larger Transmitter Errors are acceptable but must lie within the Accepted Receiver Error.

Related Links
29.6.2.3. Clock Generation – Baud-Rate Generator

30.6.2.6.1 Disabling the Receiver
Writing '0' to the Receiver Enable bit in the CTRLB register (CTRLB.RXEN) will disable the receiver,
flush the two-level receive buffer, and data from ongoing receptions will be lost.

30.6.2.6.2 Error Bits
The USART receiver has three error bits in the Status (STATUS) register: Frame Error (FERR), Buffer
Overflow (BUFOVF), and Parity Error (PERR). Once an error happens, the corresponding error bit
will be set until it is cleared by writing ‘1’ to it. These bits are also cleared automatically when the
receiver is disabled.

There are two methods for buffer overflow notification, selected by the Immediate Buffer Overflow
Notification bit in the Control A register (CTRLA.IBON):

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 598

When CTRLA.IBON=1, STATUS.BUFOVF is raised immediately upon buffer overflow. Software can
then empty the receive FIFO by reading RxDATA, until the Receiver Complete Interrupt flag
(INTFLAG.RXC) is cleared.

When CTRLA.IBON=0, the Buffer Overflow condition is attending data through the receive FIFO,
which will then set the INTFLAG.ERROR bit. After the received data is read, STATUS.BUFOVF (and
INTFLAG.ERROR) will be set along with INTFLAG.RXC.

30.6.2.6.3 Asynchronous Data Reception
The USART includes a clock recovery and data recovery unit for handling asynchronous data
reception.

The clock recovery logic can synchronize the incoming asynchronous serial frames at the RxD pin to
the internally generated baud-rate clock.

The data recovery logic samples and applies a low-pass filter to each incoming bit, thereby
improving the noise immunity of the receiver.

30.6.2.6.4 Asynchronous Operational Range
The operational range of the asynchronous reception depends on the accuracy of the internal
baud-rate clock, the rate of the incoming frames, and the frame size (in number of bits). In addition,
the operational range of the receiver is depending on the difference between the received bit rate
and the internally generated baud rate. If the baud rate of an external transmitter is too high or too
low compared to the internally generated baud rate, the receiver will not be able to synchronize the
frames to the start bit.

There are two possible sources for a mismatch in baud rate: First, the reference clock will always
have some minor instability. Second, the baud-rate generator cannot always do an exact division
of the reference clock frequency to get the baud rate desired. In this case, the BAUD register value
must be set to give the lowest possible error (see Clock Generation – Baud-Rate Generator from
Related Links).

Recommended maximum receiver baud-rate errors for various character sizes are shown in the
following table.

Table 30-4. Asynchronous Receiver Error for 16-fold Oversampling
D
(Data bits+Parity)

RSLOW [%] RFAST [%] Max. total error [%] Recommended max. Rx error [%]

5 94.12 107.69 +5.88/-7.69 ±2.5

6 94.92 106.67 +5.08/-6.67 ±2.0

7 95.52 105.88 +4.48/-5.88 ±2.0

8 96.00 105.26 +4.00/-5.26 ±2.0

9 96.39 104.76 +3.61/-4.76 ±1.5

10 96.70 104.35 +3.30/-4.35 ±1.5

The following equations calculate the ratio of the incoming data rate and internal receiver baud rate:RSLOW = D + 1 SS − 1 + D ⋅ S + SF , RFAST = D + 2 SD + 1 S + SM
• RSLOW is the ratio of the slowest incoming data rate that can be accepted in relation to the

receiver baud rate
• RFAST is the ratio of the fastest incoming data rate that can be accepted in relation to the receiver

baud rate
• D is the sum of character size and parity size (D = 5 to 10 bits)
• S is the number of samples per bit (S = 16, 8 or 3)

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 599

• SF is the first sample number used for majority voting (SF = 7, 3 or 2) when CTRLA.SAMPA=0.
• SM is the middle sample number used for majority voting (SM = 8, 4 or 2) when CTRLA.SAMPA=0.

The recommended maximum Rx Error assumes that the receiver and transmitter equally divide the
maximum total error. Its connection to the SERCOM Receiver error acceptance is depicted in this
figure:

Figure 30-7. USART Rx Error Calculation

+ +
Error Max (%)

Error Min (%)

Baud Rate

SERCOM Receiver error acceptance
from RSLOW and RFAST formulas

Baud Generator offset error
depends on BAUD register value

+

Clock source error
Recommended max. Rx Error (%)

The recommendation values in the table above accommodate errors of the clock source and the
baud generator. The following figure gives an example for a baud rate of 3 Mbps:

Figure 30-8. USART Rx Error Calculation Example

+ +

Error Max 3.3%

Error Min -4.35%

Baud Rate 2Mbps

SERCOM Receiver error acceptance
sampling = x16
data bits = 10

parity = 0
start bit = stop bit = 1

No baud generator offset error
Fbaud(2Mbps) = 32MHz *1(BAUD=0) /16

+

Recommended
max. Rx Error +/-1.5%

(example)

Error Max 3.3%

Error Min -4.35%

Error Max 3.0%

Error Min -4.05%

Transmitter Error*

Accepted
Receiver Error

security margin

*Transmitter Error depends on the external transmitter used in the application.
It is advised that it is within the Recommended max. Rx Error (+/-1.5% in this example).
Larger Transmitter Errors are acceptable but must lie within the Accepted Receiver Error.

Related Links
29.6.2.3. Clock Generation – Baud-Rate Generator

30.6.3 Additional Features
30.6.3.1 Parity

Even or odd parity can be selected for error checking by writing 0x1 to the Frame Format bit field in
the Control A register (CTRLA.FORM).

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 600

If even parity is selected (CTRLB.PMODE=0), the Parity bit of an outgoing frame is '1' if the data
contains an odd number of bits that are '1', making the total number of '1' even.

If odd parity is selected (CTRLB.PMODE=1), the Parity bit of an outgoing frame is '1' if the data
contains an even number of bits that are '0', making the total number of '1' odd.

When parity checking is enabled, the parity checker calculates the parity of the data bits in incoming
frames and compares the result with the Parity bit of the corresponding frame. If a parity error is
detected, the Parity Error bit in the Status register (STATUS.PERR) is set.

30.6.3.2 Hardware Handshaking
The USART features an out-of-band hardware handshaking flow control mechanism, implemented
by connecting the RTS and CTS pins with the remote device, as shown in the figure below.

Figure 30-9. Connection with a Remote Device for Hardware Handshaking

RXD
CTS
RTS

USART

TXD
RTS
CTS

Remote
Device

TXD RXD

Hardware handshaking is only available in the following configuration:

• USART with internal clock (CTRLA.MODE=1),
• Asynchronous mode (CTRLA.CMODE=0), and
• Flow control pinout (CTRLA.TXPO=2).

When the receiver is disabled or the receive FIFO is full, the receiver will drive the RTS pin high. This
notifies the remote device to stop transfer after the ongoing transmission. Enabling and disabling
the receiver by writing to CTRLB.RXEN will set/clear the RTS pin after a synchronization delay. When
the receive FIFO goes full, RTS will be set immediately and the frame being received will be stored in
the Shift register until the receive FIFO is no longer full.

Figure 30-10. Receiver Behavior when Operating with Hardware Handshaking

RTS

Two-Level
Rx Buffer

RXD

RXEN

The current CTS Status is in the STATUS register (STATUS.CTS). Character transmission will start only
if STATUS.CTS=0. When CTS is set, the transmitter will complete the ongoing transmission and stop
transmitting.

Figure 30-11. Transmitter Behavior when Operating with Hardware Handshaking

CTS

TXD

30.6.3.3 IrDA Modulation and Demodulation
Transmission and reception can be encoded IrDA compliant up to 115.2 kb/s. IrDA modulation and
demodulation work in the following configuration:

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 601

• IrDA encoding enabled (CTRLB.ENC=1)
• Asynchronous mode (CTRLA.CMODE=0)
• 16x sample rate (CTRLA.SAMPR[0]=0)

During transmission, each low bit is transmitted as a high pulse. The pulse width is 3/16 of the baud
rate period, as illustrated in the following figure.

Figure 30-12. IrDA Transmit Encoding

IrDA encoded TXD

TXD

1 baud clock

3/16 baud clock

The reception decoder has two main functions:
• To synchronize the incoming data to the IrDA baud rate counter. Synchronization is performed at

the start of each zero pulse.
• To decode incoming Rx data. If a pulse width meets the minimum length set by configuration

(RXPL.RXPL), it is accepted. When the baud rate counter reaches its middle value (1/2 bit length),
it is transferred to the receiver.

Note: The polarity of the transmitter and receiver are opposite: During transmission, a ‘0’ bit is
transmitted as a ‘1’ pulse. During reception, an accepted ‘0’ pulse is received as a ‘0’ bit.

Example: The following figure illustrates reception where RXPL.RXPL is set to 19.
This indicates that the pulse width must be at least 20 SE clock cycles. When using
BAUD=0xE666 or 160 SE cycles per bit, this corresponds to 2/16 baud clock as
minimum pulse width required. In this case the first bit is accepted as a ‘0’, the
second bit is a ‘1’, and the third bit is also a ‘1’. A low pulse is rejected since it does
not meet the minimum requirement of 2/16 baud clock.

Figure 30-13. IrDA Receive Decoding

IrDA encoded RXD

RXD

Baud clock

20 SE clock cycles

0 0.5 1 1.5 2 2.5

30.6.3.4 Break Character Detection and Auto-Baud
Break character detection and auto-baud are available in this configuration:

• Auto-baud frame format (CTRLA.FORM = 0x04 or 0x05),
• Asynchronous mode (CTRLA.CMODE = 0),
• and 16x sample rate using fractional baud rate generation (CTRLA.SAMPR = 1).

The USART uses a break detection threshold of greater than 11 nominal bit times at the configured
baud rate. At any time, if more than 11 consecutive dominant bits are detected on the bus, the
USART detects a Break Field. When a break field has been detected, the Receive Break Interrupt Flag
(INTFLAG.RXBRK) is set and the USART expects the sync field character to be 0x55. This field is used
to update the actual baud rate in order to stay synchronized. If the received sync character is not
0x55, then the Inconsistent Sync Field error flag (STATUS.ISF) is set along with the Error Interrupt Flag
(INTFLAG.ERROR), and the baud rate is unchanged.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 602

After a break field is detected and the Start bit of the sync field is detected, a counter is started.
The counter is then incremented for the next 8 bit times of the sync field. At the end of these 8
bit times, the counter is stopped. At this moment, the 13 Most Significant bits of the counter (value
divided by 8) give the new clock divider (BAUD.BAUD), and the 3 Least Significant bits of this value
(the remainder) give the new Fractional Part (BAUD.FP).

When the sync field has been received, the clock divider (BAUD.BAUD) and the Fractional Part
(BAUD.FP) are updated after a synchronization delay. After the break and sync fields are received,
multiple characters of data can be received.

30.6.3.5 LIN Commander
LIN commander is available with the following configuration:

• LIN commander format (CTRLA.FORM = 0x02)
• Asynchronous mode (CTRLA.CMODE = 0)
• 16x sample rate using fractional baud rate generation (CTRLA.SAMPR = 1)

LIN frames start with a header transmitted by the commander. The header consists of the break,
sync, and identifier fields. After the commander transmits the header, the addressed responder will
respond with 1-8 bytes of data plus checksum.

Figure 30-14. LIN Frame Format
Header

Responder response
Break Sync ID

1-8 Data bytes Checksum

TxD

RxD

Using the LIN command field (CTRLB.LINCMD), the complete header can be automatically
transmitted, or software can control transmission of the various header components.

When CTRLB.LINCMD=0x1, software controls transmission of the LIN header. In this case, software
uses the following sequence.

• CTRLB.LINCMD is written to 0x1.
• DATA register written to 0x00. This triggers transmission of the break field by hardware. Note that

writing the DATA register with any other value will also result in the transmission of the break
field by hardware.

• DATA register written to 0x55. The 0x55 value (sync) is transmitted.
• DATA register written to the identifier. The identifier is transmitted.

When CTRLB.LINCMD=0x2, hardware controls transmission of the LIN header. In this case, software
uses the following sequence.

• CTRLB.LINCMD is written to 0x2.
• DATA register written to the identifier. This triggers transmission of the complete header by

hardware. First the break field is transmitted. Next, the sync field is transmitted, and finally the
identifier is transmitted.

In LIN commander mode, the length of the break field is programmable using the break length
field (CTRLC.BRKLEN). When the LIN header command is used (CTRLB.LINCMD=0x2), the delay
between the break and sync fields, in addition to the delay between the sync and ID fields are
configurable using the header delay field (CTRLC.HDRDLY). When manual transmission is used
(CTRLB.LINCMD=0x1), software controls the delay between break and sync.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 603

Figure 30-15. LIN Header Generation

Configurable
Break Field Length Sync Field Identifier Field

LIN Header

Configurable delay using CTRLC.HDRDLY

After header transmission is complete, the responder responds with 1-8 data bytes plus checksum.

30.6.3.6 Collision Detection
When the receiver and transmitter are connected either through pin configuration or externally,
transmit collision can be detected after selecting the Collision Detection Enable bit in the CTRLB
register (CTRLB.COLDEN=1). To detect collision, the receiver and transmitter must be enabled
(CTRLB.RXEN=1 and CTRLB.TXEN=1).

Collision detection is performed for each bit transmitted by comparing the received value with
the transmit value, as shown in the figure below. While the transmitter is idle (no transmission in
progress), characters can be received on RxD without triggering a collision.

Figure 30-16. Collision Checking
8-bit character, single stop bit

Collision checked

TXD

RXD

The next figure shows the conditions for a collision detection. In this case, the Start bit and the first
Data bit are received with the same value as transmitted. The second received Data bit is found to
be different than the transmitted bit at the detection point, which indicates a collision.

Figure 30-17. Collision Detected
Collision checked and ok

TXD

RXD

Collision detected

Tri-state

TXEN

When a collision is detected, the USART follows this sequence:
1. Abort the current transfer.
2. Flush the transmit buffer.
3. Disable transmitter (CTRLB.TXEN=0)

– This is done after a synchronization delay. The CTRLB Synchronization Busy bit
(SYNCBUSY.CTRLB) will be set until this is complete.

– After disabling, the TxD pin will be tri-stated.
4. Set the Collision Detected bit (STATUS.COLL) along with the Error Interrupt Flag (INTFLAG.ERROR).

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 604

5. Set the Transmit Complete Interrupt Flag (INTFLAG.TXC), since the transmit buffer no longer
contains data.

After a collision, software must manually enable the transmitter again before continuing, after
assuring that the CTRLB Synchronization Busy bit (SYNCBUSY.CTRLB) is not set.

30.6.3.7 Loop-Back Mode
For Loop-Back mode, configure the Receive Data Pinout (CTRLA.RXPO) and Transmit Data Pinout
(CTRLA.TXPO) to use the same data pins for transmit and receive. The loop-back is through the pad,
so the signal is also available externally.

30.6.3.8 Start-of-Frame Detection
The USART start-of-frame detector can wake up the CPU when it detects a Start bit. In Standby Sleep
mode, the internal fast start-up oscillator must be selected as the GCLK_SERCOMx_CORE source.

When a 1-to-0 transition is detected on RxD, the 8 MHz Internal Oscillator is powered up and the
USART clock is enabled. After start-up, the rest of the data frame can be received, provided that the
baud rate is slow enough in relation to the fast start-up internal oscillator start-up time. See Electrical
Characteristics from Related Links for details. The start-up time of this oscillator varies with supply
voltage and temperature.

The USART start-of-frame detection works both in Asynchronous and Synchronous modes. It
is enabled by writing ‘1’ to the Start of Frame Detection Enable bit in the Control B register
(CTRLB.SFDE).

If the Receive Start Interrupt Enable bit in the Interrupt Enable Set register (INTENSET.RXS) is set, the
Receive Start interrupt is generated immediately when a start is detected.

When using start-of-frame detection without the Receive Start interrupt, start detection will force the
8 MHz internal oscillator and USART clock active while the frame is being received. In this case, the
CPU will not wake up until the receive complete interrupt is generated.

Related Links
43. Electrical Characteristics

30.6.3.9 Sample Adjustment
In asynchronous mode (CTRLA.CMODE = 0), three samples in the middle are used to determine the
value based on majority voting. The three samples used for voting can be selected using the Sample
Adjustment bit field in the Control A register (CTRLA.SAMPA). When CTRLA.SAMPA = 0, samples 7-8-9
are used for 16x oversampling, and samples 3-4-5 are used for 8x oversampling.

Note: In full asynchronous mode, the start of frame may not occur at the UART clock reference
rising edge meaning the counter can start incrementing from 0 to 1 in less than one UART clock
reference period. The counter will then continue to increment at each positive edge of the UART
clock reference regardless of the incoming bits.

30.6.4 DMA, Interrupts and Events

30.6.4.1 DMA Operation
The USART generates the following DMA requests:

30.6.4.2 Interrupts
The USART has the following interrupt sources. These are asynchronous interrupts, and can wake-up
the device from any Sleep mode:

• Data Register Empty (DRE)
• Receive Complete (RXC)
• Transmit Complete (TXC)

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 605

• Receive Start (RXS)
• Clear to Send Input Change (CTSIC)
• Received Break (RXBRK)
• Error (ERROR)

Each interrupt source has its own Interrupt flag. The Interrupt flag in the Interrupt Flag Status
and Clear register (INTFLAG) will be set when the Interrupt condition is met. Each interrupt can
be individually enabled by writing '1' to the corresponding bit in the Interrupt Enable Set register
(INTENSET), and disabled by writing '1' to the corresponding bit in the Interrupt Enable Clear register
(INTENCLR). The status of enabled interrupts can be read from either INTENSET or INTENCLR.

An interrupt request is generated when the Interrupt flag is set and if the corresponding interrupt is
enabled. The interrupt request remains active until either the Interrupt flag is cleared, the interrupt
is disabled, or the USART is reset. For details on clearing Interrupt flags, see INTFLAG from Related
Links.

The value of INTFLAG indicates which interrupt is executed. Note that interrupts must be globally
enabled for interrupt requests. See Nested Vector Interrupt Controller (NVIC) from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)
30.8.8. INTFLAG

30.6.4.3 Events
Not applicable.

30.6.5 Sleep Mode Operation
The behavior in Sleep mode is depending on the clock source and the Run In Standby bit in the
Control A register (CTRLA.RUNSTDBY):
• Internal clocking, CTRLA.RUNSTDBY=1: GCLK_SERCOMx_CORE can be enabled in all Sleep modes.

Any interrupt can wake-up the device.
• External clocking, CTRLA.RUNSTDBY=1: The Receive Complete interrupt(s) can wake-up the

device.
• Internal clocking, CTRLA.RUNSTDBY=0: Internal clock will be disabled, after any ongoing transfer

was completed. The Receive Complete interrupt(s) can wake-up the device.
• External clocking, CTRLA.RUNSTDBY=0: External clock will be disconnected, after any ongoing

transfer was completed. All reception will be dropped.

30.6.6 Synchronization
Due to asynchronicity between the main clock domain and the peripheral clock domains, some
registers need to be synchronized when written or read.

The following bits are synchronized when written:

• Software Reset bit in the CTRLA register (CTRLA.SWRST)
• Enable bit in the CTRLA register (CTRLA.ENABLE)
• Receiver Enable bit in the CTRLB register (CTRLB.RXEN)
• Transmitter Enable bit in the Control B register (CTRLB.TXEN)

Note: CTRLB.RXEN is write-synchronized somewhat differently. See also 30.8.2. CTRLB for details.

Required write synchronization is denoted by the "Write-Synchronized" property in the register
description.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 606

30.7 Register Summary

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x00 CTRLA

7:0 RUNSTDBY MODE[2:0] ENABLE SWRST
15:8 SAMPR[2:0] IBON

23:16 SAMPA[1:0] RXPO[1:0] TXPO[1:0]
31:24 DORD CPOL CMODE FORM[3:0]

0x04 CTRLB

7:0 SBMODE CHSIZE[2:0]
15:8 PMODE ENC COLDEN

23:16 RXEN TXEN
31:24

0x08 CTRLC

7:0
15:8

23:16
31:24

0x0C BAUD
7:0 BAUD[7:0]

15:8 BAUD[15:8]
0x0E RXPL 7:0 RXPL[7:0]
0x0F

...
0x13

Reserved

0x14 INTENCLR 7:0 ERROR RXBRK CTSIC RXC TXC DRE
0x15 Reserved
0x16 INTENSET 7:0 ERROR RXBRK CTSIC RXC TXC DRE
0x17 Reserved
0x18 INTFLAG 7:0 ERROR RXBRK CTSIC RXC TXC DRE
0x19 Reserved

0x1A STATUS
7:0 TXE COLL ISF CTS BUFOVF FERR PERR

15:8

0x1C SYNCBUSY

7:0 CTRLB ENABLE SWRST
15:8

23:16
31:24

0x20
...

0x27
Reserved

0x28 DATA

7:0 DATA[7:0]
15:8 DATA[15:8]

23:16 DATA[23:16]
31:24 DATA[31:24]

0x2C
...

0x2F
Reserved

0x30 DBGCTRL 7:0 DBGSTOP

30.8 Register Description
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the
“Read-Synchronized” and/or “Write-Synchronized” property in each individual register description.

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register
description.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 607

30.8.1 Control A

Name:  CTRLA
Offset:  0x00
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit 31 30 29 28 27 26 25 24
 DORD CPOL CMODE FORM[3:0]

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 SAMPA[1:0] RXPO[1:0] TXPO[1:0]

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 SAMPR[2:0] IBON

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 RUNSTDBY MODE[2:0] ENABLE SWRST

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 30 – DORD Data Order
This bit selects the data order when a character is shifted out from the Data register.
This bit is not synchronized.
Value Description
0 MSB is transmitted first.
1 LSB is transmitted first.

Bit 29 – CPOL Clock Polarity
This bit selects the relationship between data output change and data input sampling in
synchronous mode.
This bit is not synchronized.

CPOL TxD Change RxD Sample
0x0 Rising XCK edge Falling XCK edge
0x1 Falling XCK edge Rising XCK edge

Bit 28 – CMODE Communication Mode
This bit selects asynchronous or synchronous communication.
This bit is not synchronized.
Value Description
0 Asynchronous communication.
1 Synchronous communication.

Bits 27:24 – FORM[3:0] Frame Format
These bits define the frame format.
These bits are not synchronized.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 608

FORM[3:0] Description
0x0 USART frame
0x1 USART frame with parity
0x4 Auto-baud (LIN Responder) - break detection and auto-baud.
0x5 Auto-baud - break detection and auto-baud with parity

Bits 23:22 – SAMPA[1:0] Sample Adjustment
These bits define the sample adjustment.
These bits are not synchronized.

SAMPA[1:0] 16x Over-sampling (CTRLA.SAMPR=0 or 1) 8x Over-sampling (CTRLA.SAMPR=2 or 3)
0x0 7-8-9 3-4-5
0x1 9-10-11 4-5-6
0x2 11-12-13 5-6-7
0x3 13-14-15 6-7-8

Bits 21:20 – RXPO[1:0] Receive Data Pinout
These bits define the receive data (RxD) pin configuration.
These bits are not synchronized.

RXPO[1:0] Name Description
0x0 PAD[0] SERCOM PAD[0] is used for data reception
0x1 PAD[1] SERCOM PAD[1] is used for data reception
0x2 PAD[2] SERCOM PAD[2] is used for data reception
0x3 PAD[3] SERCOM PAD[3] is used for data reception

Bits 17:16 – TXPO[1:0] Transmit Data Pinout
These bits define the transmit data (TxD) and XCK pin configurations.
This bit is not synchronized.

Bits 15:13 – SAMPR[2:0] Sample Rate
These bits select the sample rate.
These bits are not synchronized.

SAMPR[2:0] Description
0x0 16x over-sampling using arithmetic baud rate generation.
0x1 16x over-sampling using fractional baud rate generation.
0x2 8x over-sampling using arithmetic baud rate generation.
0x3 8x over-sampling using fractional baud rate generation.
0x4 3x over-sampling using arithmetic baud rate generation.
0x5-0x7 Reserved

Bit 8 – IBON Immediate Buffer Overflow Notification
This bit controls when the buffer overflow status bit (STATUS.BUFOVF) is asserted when a buffer
overflow occurs.
This bit is not synchronized.
Value Description
0 STATUS.BUFOVF is asserted when it occurs in the data stream.
1 STATUS.BUFOVF is asserted immediately upon buffer overflow.

Bit 7 – RUNSTDBY Run In Standby
This bit defines the functionality in standby sleep mode.
This bit is not synchronized.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 609

RUNSTDBY External Clock Internal Clock
0x0 External clock is disconnected when

ongoing transfer is finished. All
reception is dropped.

Generic clock is disabled when ongoing transfer is finished. The device
will not wake up on Transfer Complete interrupt unless the appropriate
ONDEMAND bits are set in the clocking chain.

0x1 Wake on Receive Complete interrupt. Generic clock is enabled in all sleep modes. Any interrupt can wake up
the device.

Bits 4:2 – MODE[2:0] Operating Mode
These bits select the USART serial communication interface of the SERCOM.
These bits are not synchronized.
Value Description
0x0 USART with external clock
0x1 USART with internal clock

Bit 1 – ENABLE Enable
Due to synchronization, there is delay from writing CTRLA.ENABLE until the peripheral is
enabled/disabled. The value written to CTRLA.ENABLE will read back immediately and the Enable
Synchronization Busy bit in the Synchronization Busy register (SYNCBUSY.ENABLE) will be set.
SYNCBUSY.ENABLE is cleared when the operation is complete.
This bit is not enable-protected.
Value Description
0 The peripheral is disabled or being disabled.
1 The peripheral is enabled or being enabled.

Bit 0 – SWRST Software Reset
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit resets all registers in the SERCOM, except DBGCTRL, to their initial state, and the
SERCOM will be disabled.
Writing ‘1’ to CTRLA.SWRST will always take precedence, meaning that all other writes in the same
write-operation will be discarded. Any register write access during the ongoing reset will result in an
APB error. Reading any register will return the reset value of the register.
Due to synchronization, there is a delay from writing CTRLA.SWRST until the reset is complete.
CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the reset is complete.
This bit is not enable-protected.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description
0 There is no reset operation ongoing.
1 The reset operation is ongoing.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 610

30.8.2 Control B

Name:  CTRLB
Offset:  0x04
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 RXEN TXEN

Access R/W R/W
Reset 0 0

Bit 15 14 13 12 11 10 9 8
 PMODE ENC COLDEN

Access R/W R/W R/W
Reset 0 0 0

Bit 7 6 5 4 3 2 1 0
 SBMODE CHSIZE[2:0]

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 17 – RXEN Receiver Enable
Writing ‘0’ to this bit will disable the USART receiver. Disabling the receiver will flush the receive
buffer and clear the FERR, PERR and BUFOVF bits in the STATUS register.
Writing ‘1’ to CTRLB.RXEN when the USART is disabled will set CTRLB.RXEN immediately. When the
USART is enabled, CTRLB.RXEN will be cleared, and SYNCBUSY.CTRLB will be set and remain set until
the receiver is enabled. When the receiver is enabled, CTRLB.RXEN will read back as ‘1’.
Writing ‘1’ to CTRLB.RXEN when the USART is enabled will set SYNCBUSY.CTRLB, which will remain set
until the receiver is enabled, and CTRLB.RXEN will read back as ‘1’.
This bit is not enable-protected.
Value Description
0 The receiver is disabled or being enabled.
1 The receiver is enabled or will be enabled when the USART is enabled.

Bit 16 – TXEN Transmitter Enable
Writing ‘0’ to this bit will disable the USART transmitter. Disabling the transmitter will not become
effective until ongoing and pending transmissions are completed.
Writing ‘1’ to CTRLB.TXEN when the USART is disabled will set CTRLB.TXEN immediately. When the
USART is enabled, CTRLB.TXEN will be cleared, and SYNCBUSY.CTRLB will be set and remain set until
the transmitter is enabled. When the transmitter is enabled, CTRLB.TXEN will read back as ‘1’.
Writing ‘1’ to CTRLB.TXEN when the USART is enabled will set SYNCBUSY.CTRLB, which will remain set
until the transmitter is enabled, and CTRLB.TXEN will read back as ‘1’.
This bit is not enable-protected.
Value Description
0 The transmitter is disabled or being enabled.
1 The transmitter is enabled or will be enabled when the USART is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 611

Bit 13 – PMODE Parity Mode
This bit selects the type of parity used when parity is enabled (CTRLA.FORM is ‘1’). The transmitter
will automatically generate and send the parity of the transmitted data bits within each frame. The
receiver will generate a parity value for the incoming data and parity bit, compare it to the parity
mode and, if a mismatch is detected, STATUS.PERR will be set.
This bit is not synchronized.
Value Description
0 Even parity.
1 Odd parity.

Bit 10 – ENC Encoding Format
This bit selects the data encoding format.
This bit is not synchronized.
Value Description
0 Data is not encoded.
1 Data is IrDA encoded.

Bit 8 – COLDEN Collision Detection Enable
This bit enables collision detection.
This bit is not synchronized.
Value Description
0 Collision detection is not enabled.
1 Collision detection is enabled.

Bit 6 – SBMODE Stop Bit Mode
This bit selects the number of stop bits transmitted.
This bit is not synchronized.
Value Description
0 One stop bit.
1 Two stop bits.

Bits 2:0 – CHSIZE[2:0] Character Size
These bits select the number of bits in a character.
These bits are not synchronized.

CHSIZE[2:0] Description
0x0 8 bits
0x1 9 bits
0x2-0x4 Reserved
0x5 5 bits
0x6 6 bits
0x7 7 bits

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 612

30.8.3 Control C

Name:  CTRLC
Offset:  0x08
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 613

30.8.4 Baud

Name:  BAUD
Offset:  0x0C
Reset:  0x0000
Property:  Enable-Protected, PAC Write-Protection

Bit 15 14 13 12 11 10 9 8
 BAUD[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 BAUD[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 15:0 – BAUD[15:0] Baud Value
Arithmetic Baud Rate Generation (CTRLA.SAMPR[0]=0):
These bits control the clock generation, as described in the SERCOM Baud Rate section.
If Fractional Baud Rate Generation (CTRLA.SAMPR[0]=1 or =3) bit positions 15 to 13 are replaced
by FP[2:0] Fractional Part:
• Bits 15:13 - FP[2:0]: Fractional Part

These bits control the clock generation, as described in the SERCOM Clock Generation – Baud-Rate
Generator section.

• Bits 12:0 - BAUD[12:0]: Baud Value
These bits control the clock generation, as described in the SERCOM Clock Generation – Baud-Rate
Generator section.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 614

30.8.5 Receive Pulse Length Register

Name:  RXPL
Offset:  0x0E
Reset:  0x00
Property:  Enable-Protected, PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 RXPL[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – RXPL[7:0] Receive Pulse Length
When the encoding format is set to IrDA (CTRLB.ENC=1), these bits control the minimum pulse
length that is required for a pulse to be accepted by the IrDA receiver with regards to the serial
engine clock period SEper.PULSE ≥ RXPL + 1 ⋅ SEper

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 615

30.8.6 Interrupt Enable Clear

Name:  INTENCLR
Offset:  0x14
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit 7 6 5 4 3 2 1 0
 ERROR RXBRK CTSIC RXC TXC DRE

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 7 – ERROR Error Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Error Interrupt Enable bit, which disables the Error interrupt.
Value Description
0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 5 – RXBRK Receive Break Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Receive Break Interrupt Enable bit, which disables the Receive
Break interrupt.
Value Description
0 Receive Break interrupt is disabled.
1 Receive Break interrupt is enabled.

Bit 4 – CTSIC Clear to Send Input Change Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Clear To Send Input Change Interrupt Enable bit, which disables
the Clear To Send Input Change interrupt.
Value Description
0 Clear To Send Input Change interrupt is disabled.
1 Clear To Send Input Change interrupt is enabled.

Bit 2 – RXC Receive Complete Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Receive Complete Interrupt Enable bit, which disables the Receive
Complete interrupt.
Value Description
0 Receive Complete interrupt is disabled.
1 Receive Complete interrupt is enabled.

Bit 1 – TXC Transmit Complete Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Transmit Complete Interrupt Enable bit, which disables the Receive
Complete interrupt.
Value Description
0 Transmit Complete interrupt is disabled.
1 Transmit Complete interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 616

Bit 0 – DRE Data Register Empty Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Data Register Empty Interrupt Enable bit, which disables the Data
Register Empty interrupt.
Value Description
0 Data Register Empty interrupt is disabled.
1 Data Register Empty interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 617

30.8.7 Interrupt Enable Set

Name:  INTENSET
Offset:  0x16
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit 7 6 5 4 3 2 1 0
 ERROR RXBRK CTSIC RXC TXC DRE

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 7 – ERROR Error Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.
Value Description
0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 5 – RXBRK Receive Break Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Receive Break Interrupt Enable bit, which enables the Receive Break
interrupt.
Value Description
0 Receive Break interrupt is disabled.
1 Receive Break interrupt is enabled.

Bit 4 – CTSIC Clear to Send Input Change Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Clear To Send Input Change Interrupt Enable bit, which enables the
Clear To Send Input Change interrupt.
Value Description
0 Clear To Send Input Change interrupt is disabled.
1 Clear To Send Input Change interrupt is enabled.

Bit 2 – RXC Receive Complete Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Receive Complete Interrupt Enable bit, which enables the Receive
Complete interrupt.
Value Description
0 Receive Complete interrupt is disabled.
1 Receive Complete interrupt is enabled.

Bit 1 – TXC Transmit Complete Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Transmit Complete Interrupt Enable bit, which enables the Transmit
Complete interrupt.
Value Description
0 Transmit Complete interrupt is disabled.
1 Transmit Complete interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 618

Bit 0 – DRE Data Register Empty Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Data Register Empty Interrupt Enable bit, which enables the Data
Register Empty interrupt.
Value Description
0 Data Register Empty interrupt is disabled.
1 Data Register Empty interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 619

30.8.8 Interrupt Flag Status and Clear

Name:  INTFLAG
Offset:  0x18
Reset:  0x00
Property:  -

Bit 7 6 5 4 3 2 1 0
 ERROR RXBRK CTSIC RXC TXC DRE

Access R/W R/W R/W R R/W R
Reset 0 0 0 0 0 0

Bit 7 – ERROR Error
This flag is cleared by writing '1' to it.
This bit is set when any error is detected. Errors that will set this flag have corresponding status flags
in the STATUS register. Errors that will set this flag are COLL, ISF, BUFOVF, FERR, and PERR.Writing '0'
to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 5 – RXBRK Receive Break
This flag is cleared by writing '1' to it.
This flag is set when auto-baud is enabled (CTRLA.FORM) and a break character is received.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 4 – CTSIC Clear to Send Input Change
This flag is cleared by writing a '1' to it.
This flag is set when a change is detected on the CTS pin.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 2 – RXC Receive Complete
This flag is cleared by reading the Data register (DATA) or by disabling the receiver.
This flag is set when there are unread data in DATA.
Writing '0' to this bit has no effect.
Writing '1' to this bit has no effect.

Bit 1 – TXC Transmit Complete
This flag is cleared by writing '1' to it or by writing new data to DATA.
This flag is set when the entire frame in the Transmit Shift register has been shifted out and there
are no new data in DATA.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 0 – DRE Data Register Empty
This flag is cleared by writing new data to DATA.
This flag is set when DATA is empty and ready to be written.
Writing '0' to this bit has no effect.
Writing '1' to this bit has no effect.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 620

30.8.9 Status

Name:  STATUS
Offset:  0x1A
Reset:  0x0000
Property:  -

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 TXE COLL ISF CTS BUFOVF FERR PERR

Access R/W R/W R/W R R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 6 – TXE Transmitter Empty
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear it.

Bit 5 – COLL Collision Detected
This bit is cleared by writing '1' to the bit or by disabling the receiver.
This bit is set when collision detection is enabled (CTRLB.COLDEN) and a collision is detected.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear it.

Bit 4 – ISF Inconsistent Sync Field
This bit is cleared by writing '1' to the bit or by disabling the receiver.
This bit is set when the frame format is set to auto-baud (CTRLA.FORM) and a sync field not equal to
0x55 is received.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear it.

Bit 3 – CTS Clear to Send
This bit indicates the current level of the CTS pin when flow control is enabled (CTRLA.TXPO).
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit has no effect.

Bit 2 – BUFOVF Buffer Overflow
Reading this bit before reading the Data register will indicate the error status of the next character
to be read.
This bit is cleared by writing ‘1’ to the bit or by disabling the receiver.
This bit is set when a buffer overflow condition is detected. A buffer overflow occurs when the
receive buffer is full, there is a new character waiting in the receive shift register and a new start bit
is detected.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear it.

Bit 1 – FERR Frame Error
Reading this bit before reading the Data register will indicate the error status of the next character
to be read.
This bit is cleared by writing '1' to the bit or by disabling the receiver.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 621

This bit is set if the received character had a frame error, i.e., when the first stop bit is zero.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear it.

Bit 0 – PERR Parity Error
Reading this bit before reading the Data register will indicate the error status of the next character
to be read.
This bit is cleared by writing ‘1’ to the bit or by disabling the receiver.
This bit is set if parity checking is enabled (CTRLA.FORM is 0x1, 0x5) and a parity error is detected.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear it.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 622

30.8.10 Synchronization Busy

Name:  SYNCBUSY
Offset:  0x1C
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 CTRLB ENABLE SWRST

Access R R R
Reset 0 0 0

Bit 2 – CTRLB CTRLB Synchronization Busy
Writing to the CTRLB register when the SERCOM is enabled requires synchronization. When writing
to CTRLB the SYNCBUSY.CTRLB bit will be set until synchronization is complete. If CTRLB is written
while SYNCBUSY.CTRLB is asserted, an APB error will be generated.
Value Description
0 CTRLB synchronization is not busy.
1 CTRLB synchronization is busy.

Bit 1 – ENABLE SERCOM Enable Synchronization Busy
Enabling and disabling the SERCOM (CTRLA.ENABLE) requires synchronization. When written, the
SYNCBUSY.ENABLE bit will be set until synchronization is complete.
Value Description
0 Enable synchronization is not busy.
1 Enable synchronization is busy.

Bit 0 – SWRST Software Reset Synchronization Busy
Resetting the SERCOM (CTRLA.SWRST) requires synchronization. When written, the
SYNCBUSY.SWRST bit will be set until synchronization is complete.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description
0 SWRST synchronization is not busy.
1 SWRST synchronization is busy.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 623

30.8.11 Data

Name:  DATA
Offset:  0x28
Reset:  0x0000
Property:  -

Bit 31 30 29 28 27 26 25 24
 DATA[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 DATA[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 DATA[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 DATA[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – DATA[31:0] Data
Reading these bits will return the contents of the Receive Data register. The register must be read
only when the Receive Complete Interrupt Flag bit in the Interrupt Flag Status and Clear register
(INTFLAG.RXC) is set. The status bits in STATUS must be read before reading the DATA value in order
to get any corresponding error.
Writing these bits will write the Transmit Data register. This register must be written only when the
Data Register Empty Interrupt Flag bit in the Interrupt Flag Status and Clear register (INTFLAG.DRE) is
set.
Reads and writes are 32-bit or CTLB.CHSIZE based on the CTRLC.DATA32B setting.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Synchronous and Asynchronous Receiver and Transmitter (SERCOM USART)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 624

30.8.12 Debug Control

Name:  DBGCTRL
Offset:  0x30
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 DBGSTOP

Access R/W
Reset 0

Bit 0 – DBGSTOP Debug Stop Mode
This bit controls the baud-rate generator functionality when the CPU is halted by an external
debugger.
Value Description
0 The baud-rate generator continues normal operation when the CPU is halted by an external debugger.
1 The baud-rate generator is halted when the CPU is halted by an external debugger.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 625

31. SERCOM Serial Peripheral Interface (SERCOM SPI)
31.1 Overview

The Serial Peripheral Interface (SPI) is one of the available modes in the Serial Communication
Interface (SERCOM).

The SPI uses the SERCOM transmitter and receiver configured as shown in the Block Diagram (see
Full-Duplex SPI Host Client Interconnection in the Block Diagram from Related Links). Each side, host
and client, depicts a separate SPI containing a Shift register, a transmit buffer and a two-level receive
buffer. In addition, the SPI host uses the SERCOM baud-rate generator, while the SPI Client can
use the SERCOM address match logic. Labels in capital letters are synchronous to PBx_CLK and
accessible by the CPU, while labels in lowercase letters are synchronous to the SCK clock.

Note: Traditional Serial Peripheral Interface (SPI) documentation uses the terminology “Master”
and “Slave”. The equivalent Microchip terminology used in this document is “Host” and “Client”,
respectively.

Related Links
31.3. Block Diagram

31.2 Features
SERCOM SPI includes the following features:

• Full-duplex, four-wire interface (MISO, MOSI, SCK, SS)
• One-level transmit buffer, two-level receive buffer
• Supports all four SPI modes of operation
• Single data direction operation allows alternate function on MISO or MOSI pin
• Selectable LSB- or MSB-first data transfer
• Can be used with DMA
• Host operation:

– Serial clock speed up to half the system clock
– 8-bit clock generator
– Hardware controlled SS

• Client operation:
– Serial clock speed up to half the system clock
– Optional 8-bit address match operation
– Operation in all sleep modes
– Wake on SS transition

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 626

31.3 Block Diagram
Figure 31-1. Full-Duplex SPI Host Client Interconnection

BAUD

baud rate generator

Tx DATA

shift register

rx buffer

Rx DATA

Host Client

Tx DATA

shift register

rx buffer

Rx DATA

SCK
SS

MISO

MOSI

ADDR/ADDRMASK

==
Address Match

31.4 Signal Description
Table 31-1. SERCOM SPI Signals
Signal Name Type Description

PAD[3:0] Digital I/O General SERCOM pins

One signal can be mapped to one of several pins.

31.5 Product Dependencies
In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

31.5.1 I/O Lines
In order to use the SERCOM’s I/O lines, the I/O pins must be configured using the System
Configuration registers or PPS registers.

When the SERCOM is configured for SPI operation, the SERCOM controls the direction and value
of the I/O pins according to the following table. Both PORT Control bits PINCFGn.PULLEN and
PINCFGn.DRVSTR are still effective. If the receiver is disabled, the data input pin can be used for
other purposes. In Host mode, the Client Select line (SS) is hardware controlled when the Host Client
Select Enable bit in the Control B register (CTRLB.MSSEN) is͑ ‘1’.

Table 31-2. SPI Pin Configuration
Pin Host SPI Client SPI

MOSI Output Input

MISO Input Output

SCK Output Input

The combined configuration of PORT, the Data In Pinout and the Data Out Pinout bit groups in the
Control A register (CTRLA.DIPO and CTRLA.DOPO) define the physical position of the SPI signals in
the table above.

31.5.2 Power Management
This peripheral can continue to operate in any Sleep mode where its source clock is running. The
interrupts can wake-up the device from Sleep modes.

31.5.3 Clocks
A generic clock (GCLK_SERCOMx_CORE) is required to clock the SPI. This clock must be configured
and enabled in the Clock and Reset Unit (CRU) and Configuration (CFG.CFGPCLKGEN1) registers
before using the SPI.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 627

This generic clock is asynchronous to the bus clock (PBx_CLK). Therefore, writes to certain registers
will require synchronization to the clock domains.

31.5.4 DMA
The DMA request lines are connected to the DMA Controller (DMAC). To use DMA requests with
this peripheral, the DMAC must be configured first (see Direct Memory Access Controller (DMAC) from
Related Links).

Related Links
22. Direct Memory Access Controller (DMAC)

31.5.5 Interrupts
The interrupt request line is connected to the Interrupt Controller. In order to use interrupt requests
of this peripheral, the Interrupt Controller (NVIC) must be configured first. See Nested Vector Interrupt
Controller (NVIC) from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

31.5.6 Events
Not applicable.

31.5.7 Debug Operation
When the CPU is halted in Debug mode, this peripheral will continue normal operation. If the
peripheral is configured to require periodical service by the CPU through interrupts or similar,
improper operation or data loss may result during debugging. This peripheral can be forced to halt
operation during debugging - refer to the Debug Control (DBGCTRL) register for details.

Related Links
31.8.11. DBGCTRL

31.5.8 Register Access Protection
Registers with write access can be write-protected optionally by the Peripheral Access Controller
(PAC).

PAC write protection is not available for the following registers:

• Interrupt Flag Clear and Status register (INTFLAG)
• Status register (STATUS)
• Data register (DATA)

Optional PAC write protection is denoted by the "PAC Write-Protection" property in each individual
register description.

Write-protection does not apply to accesses through an external debugger.

31.5.9 Analog Connections
Not applicable.

31.6 Functional Description

31.6.1 Principle of Operation
The SPI is a high-speed synchronous data transfer interface. It allows high-speed communication
between the device and peripheral devices.

The SPI can operate as Host or Client. As Host, the SPI initiates and controls all data transactions.
The SPI is single buffered for transmitting and double buffered for receiving.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 628

When transmitting data, the Data register can be loaded with the next character to be transmitted
during the current transmission.

When receiving, the data is transferred to the two-level receive buffer, and the receiver is ready for a
new character.

The SPI transaction format is shown in SPI Transaction Format. Each transaction can contain one or
more characters. The character size is configurable, and can be either 8 or 9 bits.

Figure 31-2. SPI Transaction Format

Character

Transaction

MOSI/MISO Character 0 Character 1 Character 2

SS

The SPI Host must pull the SPI select line (SS) of the desired Client low to initiate a transaction. The
Host and Client prepare data to send via their respective Shift registers, and the Host generates the
serial clock on the SCK line.

Data are always shifted from Host to Client on the Host Output Client Input line (MOSI); data is
shifted from Client to Host on the Host Input Client Output line (MISO).

Each time character is shifted out from the Host, a character will be shifted out from the Client
simultaneously. To signal the end of a transaction, the Host will pull the SS line high

31.6.2 Basic Operation
31.6.2.1 Initialization

The following registers are enable-protected, meaning that they can only be written when the SPI is
disabled (CTRL.ENABLE=0):

• Control A register (CTRLA), except Enable (CTRLA.ENABLE) and Software Reset (CTRLA.SWRST)
• Control B register (CTRLB), except Receiver Enable (CTRLB.RXEN)
• Baud register (BAUD)
• Address register (ADDR)

When the SPI is enabled or is being enabled (CTRLA.ENABLE=1), any writing to these registers will be
discarded.

When the SPI is being disabled, writing to these registers will be completed after the disabling.

Enable-protection is denoted by the Enable-Protection property in the register description.

Initialize the SPI by following these steps:
1. Select SPI mode in host/client operation in the Operating Mode bit group in the CTRLA register

(CTRLA.MODE= 0x2 or 0x3).
2. Select Transfer mode for the Clock Polarity bit and the Clock Phase bit in the CTRLA register

(CTRLA.CPOL and CTRLA.CPHA) if desired.
3. Select the Frame Format value in the CTRLA register (CTRLA.FORM).
4. Configure the Data In Pinout field in the Control A register (CTRLA.DIPO) for SERCOM pads of the

receiver.
5. Configure the Data Out Pinout bit group in the Control A register (CTRLA.DOPO) for SERCOM

pads of the transmitter.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 629

6. Select the Character Size value in the CTRLB register (CTRLB.CHSIZE).
7. Write the Data Order bit in the CTRLA register (CTRLA.DORD) for data direction.
8. If the SPI is used in Host mode:

a. Select the desired baud rate by writing to the Baud register (BAUD).
b. If Hardware SS control is required, write '1' to the Host SPI Select Enable bit in CTRLB register

(CTRLB.MSSEN).
9. Enable the receiver by writing the Receiver Enable bit in the CTRLB register (CTRLB.RXEN=1).

31.6.2.2 Enabling, Disabling, and Resetting
This peripheral is enabled by writing '1' to the Enable bit in the Control A register (CTRLA.ENABLE),
and disabled by writing '0' to it.

Writing ‘1’ to the Software Reset bit in the Control A register (CTRLA.SWRST) will reset all registers of
this peripheral to their initial states, except the DBGCTRL register, and the peripheral is disabled.

Refer to the CTRLA register description for details.

Related Links
31.8.1. CTRLA

31.6.2.3 Clock Generation
In the SPI host operation (CTRLA.MODE = 0x3), the serial clock (SCK) is generated internally by the
SERCOM Baud Rate Generator (BRG).

In the SPI mode, the BRG is set to Synchronous mode. The 8-bit Baud register (BAUD) value is used
for generating SCK and clocking the Shift register (see Clock Generation – Baud-Rate Generator from
Related Links).

In the SPI client operation (CTRLA.MODE = 0x2), the clock is provided by an external host on the SCK
pin. This clock is used to clock the SPI Shift register.

Related Links
29.6.2.3. Clock Generation – Baud-Rate Generator

31.6.2.4 Data Register
The SPI Transmit Data register (TxDATA) and SPI Receive Data register (RxDATA) share the same I/O
address, referred to as the SPI Data register (DATA). Writing DATA register will update the Transmit
Data register. Reading the DATA register will return the contents of the Receive Data register.

31.6.2.5 SPI Transfer Modes
There are four combinations of SCK phase and polarity to transfer serial data. The SPI Data Transfer
modes are shown in SPI Transfer Modes (Table) and SPI Transfer Modes (Figure).

SCK phase is configured by the Clock Phase bit in the CTRLA register (CTRLA.CPHA). SCK polarity is
programmed by the Clock Polarity bit in the CTRLA register (CTRLA.CPOL). Data bits are shifted out
and latched in on opposite edges of the SCK signal. This ensures sufficient time for the data signals
to stabilize.

Table 31-3. SPI Transfer Modes
Mode CPOL CPHA Leading Edge Trailing Edge

0 0 0 Rising, sample Falling, setup

1 0 1 Rising, setup Falling, sample

2 1 0 Falling, sample Rising, setup

3 1 1 Falling, setup Rising, sample

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 630

Note: 
Leading edge is the first clock edge in a clock cycle.

Trailing edge is the second clock edge in a clock cycle.

Figure 31-3. SPI Transfer Modes

Bit 1
Bit 6

LSB
MSB

Mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN
CHANGE 0
MISO PIN

Mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

Mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN
CHANGE 0
MISO PIN

Mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)

31.6.2.6 Transferring Data
31.6.2.6.1 Host

In Host mode (CTRLA.MODE=0x3), when Host SPI Select Enable (CTRLB.MSSEN) is ‘1’, hardware will
control the SS line.

When Host SPI Select Enable (CTRLB.MSSEN) is '0', the SS line must be configured as an output.
SS can be assigned to any general purpose I/O pin. When the SPI is ready for a data transaction,
software must pull the SS line low.

When writing a character to the Data register (DATA), the character will be transferred to the Shift
register. Once the content of TxDATA has been transferred to the Shift register, the Data Register
Empty flag in the Interrupt Flag Status and Clear register (INTFLAG.DRE) will be set. And a new
character can be written to DATA.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 631

Each time one character is shifted out from the Host, another character will be shifted in from the
Client simultaneously. If the receiver is enabled (CTRLA.RXEN=1), the contents of the Shift register
will be transferred to the two-level receive buffer. The transfer takes place in the same clock cycle as
the last data bit is shifted in. And the Receive Complete Interrupt flag in the Interrupt Flag Status and
Clear register (INTFLAG.RXC) will be set. The received data can be retrieved by reading DATA.

When the last character has been transmitted and there is no valid data in DATA, the Transmit
Complete Interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.TXC) will be set.
When the transaction is finished, the Host must pull the SS line high to notify the Client. If Host SPI
Select Enable (CTRLB.MSSEN) is set to '0', the software must pull the SS line high.

31.6.2.6.2 Client
In Client mode (CTRLA.MODE = 0x2), the SPI interface will remain inactive with the MISO line
tri-stated as long as the SS pin is pulled high. Software may update the contents of DATA at any time
as long as the Data Register Empty flag in the Interrupt Status and Clear register (INTFLAG.DRE) is
set.

When SS is pulled low and SCK is running, the client will sample and shift out data according to the
Transaction mode set. Once the content of TxDATA is loaded into the Shift register, INTFLAG.DRE will
be set and new data can be written to DATA.

Similar to the host, the client will receive one character for each character transmitted. A character
will be transferred into the two-level receive buffer within the same clock cycle its last data bit is
received. The received character can be retrieved from DATA when the Receive Complete interrupt
flag (INTFLAG.RXC) is set.

When the host pulls the SS line high, the transaction is done and the Transmit Complete Interrupt
flag in the Interrupt Flag Status and Clear register (INTFLAG.TXC) will be set.

After DATA is written it takes up to three SCK clock cycles until the content of DATA is ready to be
loaded into the Shift register on the next character boundary. As a consequence, the first character
transferred in a SPI transaction will not be the content of DATA. This can be avoided by using the
preloading feature (see Preloading of the Client Shift Register from Related Links).

When transmitting several characters in one SPI transaction, the data has to be written into DATA
register with at least three SCK clock cycles left in the current character transmission. If this criteria is
not met, the previously received character will be transmitted.

Once the DATA register is empty, it takes three CLK_SERCOM_APB cycles for INTFLAG.DRE to be set.

Related Links
31.6.3.2. Preloading of the Client Shift Register

31.6.2.7 Receiver Error Bit
The SPI receiver has one error bit: the Buffer Overflow bit (BUFOVF), which can be read from the
Status register (STATUS). Once an error happens, the bit will stay set until it is cleared by writing '1' to
it. The bit is also automatically cleared when the receiver is disabled.

There are two methods for buffer overflow notification, selected by the immediate Buffer Overflow
Notification bit in the Control A register (CTRLA.IBON):

If CTRLA.IBON=1, STATUS.BUFOVF is raised immediately upon buffer overflow. Software can then
empty the receive FIFO by reading RxDATA until the receiver complete Interrupt flag in the Interrupt
Flag Status and Clear register (INTFLAG.RXC) goes low.

If CTRLA.IBON=0, the Buffer Overflow condition travels with data through the receive FIFO. After the
received data is read, STATUS.BUFOVF and INTFLAG.ERROR will be set along with INTFLAG.RXC, and
RxDATA will be zero.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 632

31.6.3 Additional Features
31.6.3.1 Address Recognition

When the SPI is configured for client operation (CTRLA.MODE=0x2) with address recognition
(CTRLA.FORM is 0x2), the SERCOM address recognition logic is enabled: the first character in a
transaction is checked for an address match.

If there is a match, the Receive Complete Interrupt flag in the Interrupt Flag Status and Clear register
(INTFLAG.RXC) is set, the MISO output is enabled, and the transaction is processed. If the device is in
Sleep mode, an address match can wake-up the device in order to process the transaction.

If there is no match, the complete transaction is ignored.

If a 9-bit frame format is selected, only the lower 8 bits of the Shift register are checked against the
Address register (ADDR).

Preload must be disabled (CTRLB.PLOADEN=0) in order to use this mode.

Related Links
29.6.3.1. Address Match and Mask

31.6.3.2 Preloading of the Client Shift Register
When starting a transaction, the client will first transmit the contents of the shift register before
loading new data from DATA. The first character sent can be either the reset value of the shift
register (if this is the first transmission since the last reset) or the last character in the previous
transmission.

Preloading can be used to preload data into the shift register while SS is high: this eliminates
sending a dummy character when starting a transaction. If the shift register is not preloaded, the
current contents of the shift register will be shifted out.

Only one data character will be preloaded into the shift register while the synchronized SS signal is
high. If the next character is written to DATA before SS is pulled low, the second character will be
stored in DATA until transfer begins.

For proper preloading, sufficient time must elapse between SS going low and the first SCK sampling
edge, as shown in the following figure. For timing details, see Electrical Characteristics from Related
Links.

Preloading is enabled by writing ‘1’ to the Client Data Preload Enable bit in the CTRLB register
(CTRLB.PLOADEN).

Figure 31-4. Timing Using Preloading

SS

SS synchronized
to system domain

SCK
 Synchronization
to system domain

MISO to SCK
 setup time

Required SS-to-SCK time
 using PRELOADEN

Related Links
43. Electrical Characteristics

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 633

31.6.3.3 Host with Several Clients
If the bus consists of several SPI clients, a SPI host can use general purpose I/O pins to control the
SS line to each of the clients on the bus, as shown in the following figure. In this configuration, the
single selected SPI client will drive the tri-state MISO line.

Figure 31-5. Multiple Clients in Parallel

MOSI
MISO
SCK
SS

 MOSI
 MISO
 SCK
 SS[0]

MOSI
MISO
SCK
SS

 SS[n-1]

shift register shift register

shift register

SPI Host

SPI Client 0

SPI Client n-1

Another configuration is multiple clients in series, as shown in the following figure. In this
configuration, all n attached clients are connected in series. A common SS line is provided to all
clients, enabling them simultaneously. The host must shift n characters for a complete transaction.
The SS line is controlled by a normal GPIO.

Figure 31-6. Multiple Clients in Series

MOSI
MISO
 SCK
 SS

MOSI
MISO
SCK
SS

MOSI
MISO
SCK
SS

shift register shift register

shift register

SPI Host SPI Client 0

SPI Client n-1

31.6.3.4 Loop-Back Mode
For Loop-back mode, configure the Data In Pinout (CTRLA.DIPO) and Data Out Pinout (CTRLA.DOPO)
to use the same data pins for transmit and receive. The loop-back is through the pad, so the signal is
also available externally.

31.6.3.5 Hardware Controlled SS
In Host mode, a single SS chip select can be controlled by hardware by writing the Host SPI Select
Enable (CTRLB.MSSEN) bit to '1'. In this mode, the SS pin is driven low for a minimum of one baud
cycle before transmission begins, and stays low for a minimum of one baud cycle after transmission
completes. The SS pin will always be driven high for a minimum of one baud cycle between each
data sent.

In Hardware Controlled SS, the time T is between one and two baud cycles depending on the SPI
Transfer mode.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 634

Figure 31-7. Hardware Controlled SS

SS

SCK

T

T = 1 to 2 baud cycles

T T TT

When CTRLB.MSSEN=0, the SS pin(s) is/are controlled by user software and normal GPIO.

31.6.3.6 SPI Select Low Detection
In Client mode, the SPI can wake the CPU when the SPI Select (SS) goes low. When the SPI Select Low
Detect is enabled (CTRLB.SSDE=1), a high-to-low transition will set the SPI Select Low Interrupt flag
(INTFLAG.SSL) and the device will wake-up if applicable.

31.6.3.7 Host Inter-Character Spacing
When configured as host, inter-character spacing can be increased by writing a non-zero value
to the Inter-Character Spacing bit field in the Control C register (CTRLC.ICSPACE). When non-zero,
CTRLC.ICSPACE represents the minimum number of baud cycles that the SCK clock line does not
toggle and the next character is stalled.

The figure gives an example for CTRLC.ICSPACE=4; In this case, the SCK is inactive for 4 baud cycles.

Figure 31-8. Four Cycle Inter-Character Spacing Example

SCK

T = 1 baud cycle

T T T T

31.6.3.8 32-bit Extension
For better system bus utilization, 32-bit data receive and transmit can be enabled by writing to the
Data 32-bit bit field in the Control C register (CTRLC.DATA32B=1). When enabled, write and read
transaction to/from the DATA register are 32 bit in size.

If frames are not multiples of 4 Bytes, the Length Counter (LENGTH.LEN) and Length Enable
(LENGTH.LENEN) must be configured before data transfer begins. LENGTH.LEN must be enabled
only when CTRLC.DATA32B is enabled.

The following figure shows the order of transmit and receive when using 32-bit mode. Bytes are
transmitted or received and stored in order from 0 to 3.

Only 8-bit character size is supported.

Figure 31-9. 32-bit Extension Byte Ordering

BYTE0BYTE1BYTE2BYTE3APB Write/Read
31 0Bit Position

32-bit Extension Client Operation
The following figure shows a transaction with 32-bit Extension enabled (CTRLC.DATA32B=1). When
address recognition is enabled (CTRLA.FORM=0x2) and there is an address match, the address is
loaded into the FIFO as Byte zero and data begins with Byte 1. INTFLAGS.RXC will then be raised for

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 635

every 4 Bytes transferred. For transmit, there is a 32-bit holding buffer in the core domain. Once
DATA has been registered in the core domain, INTFLAG.DRE will be raised, so that the next 32 bits
can be written to the DATA register.

Figure 31-10. 32-bit Extension Client Operation

Byte 0ADDRESS S
W

RXC interrupt

S
W

RXC interrupt

Byte 1 Byte 2 Byte 3

When utilizing the length counter, the LENGTH register must be written before the frame begins.
If the frame length while SS is low is not a multiple of LENGTH.LEN Bytes, the Length Error Status
bit (STATUS.LENERR) is raised. If LENGTH.LEN is not a multiple of 4 Bytes, the final INTFLAG.RXC
interrupt will be raised when the last Byte is received.

The length count is based on the received Bytes, or the number of clocks if the receiver is not
enabled. If pre-loading is disabled and DATA is written to for transmit before SCK starts, transmitted
data will be delayed by one Byte, but the length counter will still increment for the first (empty) Byte
transmission. When the counter reaches LENGTH.LEN, the internal length counter, Rx Byte counter,
and Tx Byte counter are reset. If multiple lengths are to be transmitted, INTFLAG.TXC must go high
before writing DATA for subsequent lengths.

If there is a Length Error (STATUS.LENERR), the remaining Bytes in the length will be transmitted at
the beginning of the next frame. If this is not desired, the SERCOM must be disabled and re-enabled
in order to flush the Tx and Rx pipelines.

Writing the LENGTH register while a frame is in progress will produce unpredictable results. If
LENGTH.LENEN is not configured and a frame is not a multiple of 4 Bytes (while SS is low), the
remainder will be transmitted in the next frame.

32-bit Extension Host Operation
When using the SPI configured as Host, the Length and the Length Enable bit fields (LENGTH.LEN
and LENGTH.LENEN) must be written before the frame begins. When LENGTH.LENEN is written to
'1', the value of LENGTH.LEN determines the number of data bytes in the transaction from 1 to 255.

For receive data, INTFLAG.RXC is raised every 4 Bytes received. If LENGTH.LEN is not a multiple of 4
Bytes, the final INTFLAG.RXC is set when the final byte is received.

For transmit, there is a holding buffer for the 32-bit data in the core domain. Once DATA has been
registered in the core domain, INTFLAG.DRE will be raised so that the next 32 bits can be written to
the DATA register.

If multiple lengths are to be transmitted, INTFLAG.TXC must go high before writing DATA for
subsequent lengths.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 636

31.6.4 DMA, Interrupts, and Events

Table 31-4. Module Request for SERCOM SPI
Condition Request

DMA Interrupt Event

Data Register Empty (DRE) Yes
(request cleared when data is
written)

Yes NA

Receive Complete (RXC) Yes
(request cleared when data is
read)

Yes

Transmit Complete (TXC) NA Yes

Client Select low (SSL) NA Yes

Error (ERROR) NA Yes

31.6.4.1 DMA Operation
The SPI generates the following DMA requests:

31.6.4.2 Interrupts
The SPI has the following interrupt sources. These are asynchronous interrupts, and can wake-up
the device from any Sleep mode:

• Data Register Empty (DRE)
• Receive Complete (RXC)
• Transmit Complete (TXC)
• SPI Select Low (SSL)
• Error (ERROR)

Each interrupt source has its own Interrupt flag. The Interrupt flag in the Interrupt Flag Status
and Clear register (INTFLAG) will be set when the Interrupt condition is met. Each interrupt can
be individually enabled by writing ‘1’ to the corresponding bit in the Interrupt Enable Set register
(INTENSET), and disabled by writing ‘1’ to the corresponding bit in the Interrupt Enable Clear register
(INTENCLR). The status of enabled interrupts can be read from either INTENSET or INTENCLR.

An interrupt request is generated when the Interrupt flag is set and if the corresponding interrupt
is enabled. The interrupt request remains active until either the Interrupt flag is cleared, the
interrupt is disabled, or the SPI is reset. For details on clearing Interrupt flags, see INTFLAG register
description.

The value of INTFLAG indicates which interrupt is executed. Note that interrupts must be globally
enabled for interrupt requests. See Nested Vector Interrupt Controller (NVIC) from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

31.6.4.3 Events
Not applicable.

31.6.5 Sleep Mode Operation
The behavior in sleep mode is depending on the Host/Client configuration and the Run In Standby
bit in the Control A register (CTRLA.RUNSTDBY):

• Host operation, CTRLA.RUNSTDBY=1: The peripheral clock GCLK_SERCOM_CORE will continue
to run in idle sleep mode and in standby sleep mode. Any interrupt can wake up the device.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 637

• Host operation, CTRLA.RUNSTDBY=0: GLK_SERCOMx_CORE will be disabled after the ongoing
transaction is finished. Any interrupt can wake up the device.

• Client operation, CTRLA.RUNSTDBY=1: The Receive Complete interrupt can wake up the device
• Client operation, CTRLA.RUNSTDBY=0: All reception will be dropped, including the ongoing

transaction

31.6.6 Synchronization
Due to asynchronicity between the main clock domain and the peripheral clock domains, some
registers need to be synchronized when written or read.

The following bits are synchronized when written:

• Software Reset bit in the CTRLA register (CTRLA.SWRST)
• Enable bit in the CTRLA register (CTRLA.ENABLE)
• Receiver Enable bit in the CTRLB register (CTRLB.RXEN)

Note: CTRLB.RXEN is write-synchronized somewhat differently. See CTRLB register from Related
Links.

Required write synchronization is denoted by the "Write-Synchronized" property in the register
description.

Related Links
31.8.2. CTRLB

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 638

31.7 Register Summary

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x00 CTRLA

7:0 RUNSTDBY MODE[2:0] ENABLE SWRST
15:8 IBON

23:16 DIPO[1:0] DOPO[1:0]
31:24 DORD CPOL CPHA FORM[3:0]

0x04 CTRLB

7:0 PLOADEN CHSIZE[2:0]
15:8 AMODE[1:0] MSSEN SSDE

23:16 RXEN
31:24

0x08
...

0x0B
Reserved

0x0C BAUD 7:0 BAUD[7:0]
0x0D

...
0x13

Reserved

0x14 INTENCLR 7:0 ERROR SSL RXC TXC DRE
0x15 Reserved
0x16 INTENSET 7:0 ERROR SSL RXC TXC DRE
0x17 Reserved
0x18 INTFLAG 7:0 ERROR SSL RXC TXC DRE
0x19 Reserved

0x1A STATUS
7:0 BUFOVF

15:8

0x1C SYNCBUSY

7:0 CTRLB ENABLE SWRST
15:8

23:16
31:24

0x20
...

0x23
Reserved

0x24 ADDR

7:0 ADDR[7:0]
15:8

23:16 ADDRMASK[7:0]
31:24

0x28 DATA

7:0 DATA[7:0]
15:8 DATA[15:8]

23:16 DATA[23:16]
31:24 DATA[31:24]

0x2C
...

0x2F
Reserved

0x30 DBGCTRL 7:0 DBGSTOP

31.8 Register Description
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the
“Read-Synchronized” and/or “Write-Synchronized” property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register
description.

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

See Peripheral Access Controller (PAC) from Related Links.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 639

Related Links
26. Peripheral Access Controller (PAC)

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 640

31.8.1 Control A

Name:  CTRLA
Offset:  0x00
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit 31 30 29 28 27 26 25 24
 DORD CPOL CPHA FORM[3:0]

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 DIPO[1:0] DOPO[1:0]

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 IBON

Access R/W
Reset 0

Bit 7 6 5 4 3 2 1 0
 RUNSTDBY MODE[2:0] ENABLE SWRST

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 30 – DORD Data Order
This bit selects the data order when a character is shifted out from the shift register.
This bit is not synchronized.
Value Description
0 MSB is transferred first.
1 LSB is transferred first.

Bit 29 – CPOL Clock Polarity
In combination with the Clock Phase bit (CPHA), this bit determines the SPI transfer mode.
This bit is not synchronized.
Value Description
0 SCK is low when idle. The leading edge of a clock cycle is a rising edge, while the trailing edge is a falling edge.
1 SCK is high when idle. The leading edge of a clock cycle is a falling edge, while the trailing edge is a rising edge.

Bit 28 – CPHA Clock Phase
In combination with the Clock Polarity bit (CPOL), this bit determines the SPI transfer mode.
This bit is not synchronized.

Mode CPOL CPHA Leading Edge Trailing Edge
0x0 0 0 Rising, sample Falling, change
0x1 0 1 Rising, change Falling, sample
0x2 1 0 Falling, sample Rising, change
0x3 1 1 Falling, change Rising, sample

Value Description
0 The data is sampled on a leading SCK edge and changed on a trailing SCK edge.
1 The data is sampled on a trailing SCK edge and changed on a leading SCK edge.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 641

Bits 27:24 – FORM[3:0] Frame Format
This bit field selects the various frame formats supported by the SPI in client mode. When the 'SPI
frame with address' format is selected, the first byte received is checked against the ADDR register.

FORM[3:0] Name Description
0x0 SPI SPI frame
0x1 — Reserved
0x2 SPI_ADDR SPI frame with address
0x3-0xF — Reserved

Bits 21:20 – DIPO[1:0] Data In Pinout
These bits define the data in (DI) pad configurations.
In host operation, DI is MISO.
In client operation, DI is MOSI.
These bits are not synchronized.

DIPO[1:0] Name Description
0x0 PAD[0] SERCOM PAD[0] is used as data input
0x1 PAD[1] SERCOM PAD[1] is used as data input
0x2 PAD[2] SERCOM PAD[2] is used as data input
0x3 PAD[3] SERCOM PAD[3] is used as data input

Bits 17:16 – DOPO[1:0] Data Out Pinout
This bit defines the available pad configurations for data out (DO), the serial clock (SCK) and the SPI
Select (SS). In Client operation, the SPI Select line (SS) is controlled by DOPO. In host operation, the
SPI Select line (SS) is either controlled by DOPO when CTRLB.MSSEN=1, or by a GPIO driven by the
application when CTRLB.MSSEN=0.
In host operation, DO is MOSI.
In client operation, DO is MISO.
These bits are not synchronized.

DOPO DO SCK Client SS Host SS (MSSEN = 1) Host SS (MSSEN = 0)
0x0 PAD[0] PAD[1] PAD[2] PAD[2] Any GPIO configured by the application
0x2 PAD[3] PAD[1] PAD[2] PAD[2] Any GPIO configured by the application

Bit 8 – IBON Immediate Buffer Overflow Notification
This bit controls when the Buffer Overflow Status bit (STATUS.BUFOVF) is set when a buffer overflow
occurs.
This bit is not synchronized.
Value Description
0 STATUS.BUFOVF is set when it occurs in the data stream.
1 STATUS.BUFOVF is set immediately upon buffer overflow.

Bit 7 – RUNSTDBY Run In Standby
This bit defines the functionality in Standby mode.
These bits are not synchronized.

RUNSTDBY Client Host
0x0 Disabled. All reception is dropped, including the

ongoing transaction.
Generic clock is disabled when ongoing transaction is
finished. All interrupts can wake up the device.

0x1 Ongoing transaction continues, wake on Receive
Complete interrupt.

Generic clock is enabled while in sleep modes. All
interrupts can wake up the device.

Bits 4:2 – MODE[2:0] Operating Mode
These bits must be written to 0x2 or 0x3 to select the SPI serial communication interface of the
SERCOM.
0x2: SPI client operation

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 642

0x3: SPI host operation
These bits are not synchronized.

Bit 1 – ENABLE Enable
Due to synchronization, there is delay from writing CTRLA.ENABLE until the peripheral is
enabled/disabled. The value written to CTRL.ENABLE will read back immediately and the
Synchronization Enable Busy bit in the Synchronization Busy register (SYNCBUSY.ENABLE) will be
set. SYNCBUSY.ENABLE is cleared when the operation is complete.
This bit is not enable-protected.
Value Description
0 The peripheral is disabled or being disabled.
1 The peripheral is enabled or being enabled.

Bit 0 – SWRST Software Reset
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit resets all registers in the SERCOM, except DBGCTRL, to their initial state, and the
SERCOM will be disabled.
Writing ‘1’ to CTRL.SWRST will always take precedence, meaning that all other writes in the same
write-operation will be discarded. Any register write access during the ongoing reset will result in an
APB error. Reading any register will return the reset value of the register.
Due to synchronization, there is a delay from writing CTRLA.SWRST until the reset is complete.
CTRLA.SWRST and SYNCBUSY. SWRST will both be cleared when the reset is complete.
This bit is not enable-protected.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description
0 There is no reset operation ongoing.
1 The reset operation is ongoing.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 643

31.8.2 Control B

Name:  CTRLB
Offset:  0x04
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 RXEN

Access R/W
Reset 0

Bit 15 14 13 12 11 10 9 8
 AMODE[1:0] MSSEN SSDE

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 PLOADEN CHSIZE[2:0]

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 17 – RXEN Receiver Enable
Writing ‘0’ to this bit will disable the SPI receiver immediately. The receive buffer will be flushed, data
from ongoing receptions will be lost and STATUS.BUFOVF will be cleared.
Writing ‘1’ to CTRLB.RXEN when the SPI is disabled will set CTRLB.RXEN immediately. When the SPI is
enabled, CTRLB.RXEN will be cleared, SYNCBUSY.CTRLB will be set and remain set until the receiver is
enabled. When the receiver is enabled CTRLB.RXEN will read back as ‘1’.
Writing ‘1’ to CTRLB.RXEN when the SPI is enabled will set SYNCBUSY.CTRLB, which will remain set
until the receiver is enabled, and CTRLB.RXEN will read back as ‘1’.
This bit is not enable-protected.
Value Description
0 The receiver is disabled.
1 The receiver is enabled or it will be enabled when SPI is enabled.

Bits 15:14 – AMODE[1:0] Address Mode
These bits set the Client Addressing mode when the frame format (CTRLA.FORM) with address is
used. They are unused in Host mode.
These bits are not synchronized.

AMODE[1:0] Name Description
0x0 MASK ADDRMASK is used as a mask to the ADDR register
0x1 2_ADDRS The client responds to the two unique addresses in ADDR and ADDRMASK
0x2 RANGE The client responds to the range of addresses between and including ADDR and ADDRMASK. ADDR

is the upper limit
0x3 — Reserved

Bit 13 – MSSEN Host SPI Select Enable
This bit enables hardware SPI Select (SS) control.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 644

This bit is not synchronized.
Value Description
0 Hardware SS control is disabled.
1 Hardware SS control is enabled.

Bit 9 – SSDE SPI Select Low Detect Enable
This bit enables wake-up when the SPI Select (SS) pin transitions from high-to-low.
This bit is not synchronized.
Value Description
0 SS low detector is disabled.
1 SS low detector is enabled.

Bit 6 – PLOADEN Client Data Preload Enable
Setting this bit will enable preloading of the Client Shift register when there is no transfer in
progress. If the SS line is high when DATA is written, it will be transferred immediately to the Shift
register.
This bit is not synchronized.

Bits 2:0 – CHSIZE[2:0] Character Size
These bits are not synchronized.

CHSIZE[2:0] Name Description
0x0 8BIT 8 bits
0x1 9BIT 9 bits
0x2-0x7 — Reserved

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 645

31.8.3 Baud Rate

Name:  BAUD
Offset:  0x0C
Reset:  0x00
Property:  PAC Write-Protection, Enable-Protected

Bit 7 6 5 4 3 2 1 0
 BAUD[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – BAUD[7:0] Baud Register
These bits control the clock generation, as described in the SERCOM Clock Generation – Baud-Rate
Generator.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 646

31.8.4 Interrupt Enable Clear

Name:  INTENCLR
Offset:  0x14
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to disable an interrupt without read-modify-write operation. Changes in
this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit 7 6 5 4 3 2 1 0
 ERROR SSL RXC TXC DRE

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 7 – ERROR Error Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Error Interrupt Enable bit, which disables the Error interrupt.
Value Description
0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 3 – SSL Client Select Low Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Client Select Low Interrupt Enable bit, which disables the Client
Select Low interrupt.
Value Description
0 Client Select Low interrupt is disabled.
1 Client Select Low interrupt is enabled.

Bit 2 – RXC Receive Complete Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Receive Complete Interrupt Enable bit, which disables the Receive
Complete interrupt.
Value Description
0 Receive Complete interrupt is disabled.
1 Receive Complete interrupt is enabled.

Bit 1 – TXC Transmit Complete Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Transmit Complete Interrupt Enable bit, which disable the Transmit
Complete interrupt.
Value Description
0 Transmit Complete interrupt is disabled.
1 Transmit Complete interrupt is enabled.

Bit 0 – DRE Data Register Empty Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Data Register Empty Interrupt Enable bit, which disables the Data
Register Empty interrupt.
Value Description
0 Data Register Empty interrupt is disabled.
1 Data Register Empty interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 647

31.8.5 Interrupt Enable Set

Name:  INTENSET
Offset:  0x16
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to disable an interrupt without read-modify-write operation. Changes in
this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit 7 6 5 4 3 2 1 0
 ERROR SSL RXC TXC DRE

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 7 – ERROR Error Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.
Value Description
0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 3 – SSL Client Select Low Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will set the Client Select Low Interrupt Enable bit, which enables the Client Select
Low interrupt.
Value Description
0 Client Select Low interrupt is disabled.
1 Client Select Low interrupt is enabled.

Bit 2 – RXC Receive Complete Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will set the Receive Complete Interrupt Enable bit, which enables the Receive
Complete interrupt.
Value Description
0 Receive Complete interrupt is disabled.
1 Receive Complete interrupt is enabled.

Bit 1 – TXC Transmit Complete Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will set the Transmit Complete Interrupt Enable bit, which enables the Transmit
Complete interrupt.
Value Description
0 Transmit Complete interrupt is disabled.
1 Transmit Complete interrupt is enabled.

Bit 0 – DRE Data Register Empty Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will set the Data Register Empty Interrupt Enable bit, which enables the Data
Register Empty interrupt.
Value Description
0 Data Register Empty interrupt is disabled.
1 Data Register Empty interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 648

31.8.6 Interrupt Flag Status and Clear

Name:  INTFLAG
Offset:  0x18
Reset:  0x00
Property:  -

Bit 7 6 5 4 3 2 1 0
 ERROR SSL RXC TXC DRE

Access R/W R/W R R/W R
Reset 0 0 0 0 0

Bit 7 – ERROR Error
This flag is cleared by writing '1' to it.
This bit is set when any error is detected. Errors that will set this flag have corresponding Status flags
in the STATUS register. The BUFOVF error will set this Interrupt flag.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 3 – SSL SPI Select Low
This flag is cleared by writing '1' to it.
This bit is set when a high to low transition is detected on the SS pin in Client mode and SPI Select
Low Detect (CTRLB.SSDE) is enabled.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 2 – RXC Receive Complete
This flag is cleared by reading the Data (DATA) register or by disabling the receiver.
This flag is set when there are unread data in the receive buffer. If address matching is enabled, the
first data received in a transaction will be an address.
Writing '0' to this bit has no effect.
Writing '1' to this bit has no effect.

Bit 1 – TXC Transmit Complete
This flag is cleared by writing '1' to it or by writing new data to DATA.
In Host mode, this flag is set when the data have been shifted out and there are no new data in
DATA.
In Client mode, this flag is set when the SS pin is pulled high. If address matching is enabled, this flag
is only set if the transaction was initiated with an address match.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 0 – DRE Data Register Empty
This flag is cleared by writing new data to DATA.
This flag is set when DATA is empty and ready for new data to transmit.
Writing '0' to this bit has no effect.
Writing '1' to this bit has no effect.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 649

31.8.7 Status

Name:  STATUS
Offset:  0x1A
Reset:  0x0000
Property:  –

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 BUFOVF

Access R/W
Reset 0

Bit 2 – BUFOVF Buffer Overflow
Reading this bit before reading DATA will indicate the error status of the next character to be read.
This bit is cleared by writing ‘1’ to the bit or by disabling the receiver.
This bit is set when a Buffer Overflow condition is detected. See CTRLA from Related Links for
overflow handling.
When set, the corresponding RxDATA will be zero.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear it.
Value Description
0 No Buffer Overflow has occurred.
1 A Buffer Overflow has occurred.

Related Links
31.8.1. CTRLA

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 650

31.8.8 Synchronization Busy

Name:  SYNCBUSY
Offset:  0x1C
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 CTRLB ENABLE SWRST

Access R R R
Reset 0 0 0

Bit 2 – CTRLB CTRLB Synchronization Busy
Writing to the CTRLB when the SERCOM is enabled requires synchronization. Ongoing
synchronization is indicated by SYNCBUSY.CTRLB=1 until synchronization is complete. If CTRLB is
written while SYNCBUSY.CTRLB=1, an APB error will be generated.
Value Description
0 CTRLB synchronization is not busy.
1 CTRLB synchronization is busy.

Bit 1 – ENABLE SERCOM Enable Synchronization Busy
Enabling and disabling the SERCOM (CTRLA.ENABLE) requires synchronization. Ongoing
synchronization is indicated by SYNCBUSY.ENABLE=1 until synchronization is complete.
Value Description
0 Enable synchronization is not busy.
1 Enable synchronization is busy.

Bit 0 – SWRST Software Reset Synchronization Busy
Resetting the SERCOM (CTRLA.SWRST) requires synchronization. Ongoing synchronization is
indicated by SYNCBUSY.SWRST=1 until synchronization is complete.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description
0 SWRST synchronization is not busy.
1 SWRST synchronization is busy.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 651

31.8.9 Address

Name:  ADDR
Offset:  0x24
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 ADDRMASK[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 ADDR[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:16 – ADDRMASK[7:0] Address Mask
These bits hold the address mask when the transaction format with address is used (CTRLA.FORM,
CTRLB.AMODE).

Bits 7:0 – ADDR[7:0] Address
These bits hold the address when the transaction format with address is used (CTRLA.FORM,
CTRLB.AMODE).

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 652

31.8.10 Data

Name:  DATA
Offset:  0x28
Reset:  0x0000
Property:  –

Bit 31 30 29 28 27 26 25 24
 DATA[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 DATA[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 DATA[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 DATA[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – DATA[31:0] Data
Reading these bits will return the contents of the receive data buffer. The register must be read
only when the Receive Complete Interrupt Flag bit in the Interrupt Flag Status and Clear register
(INTFLAG.RXC) is set.
Writing these bits will write the transmit data buffer. This register must be written only when the
Data Register Empty Interrupt Flag bit in the Interrupt Flag Status and Clear register (INTFLAG.DRE) is
set.
Reads and writes are 32-bit or CTLB.CHSIZE based on the CTRLC.DATA32B setting.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Serial Peripheral Interface (SERCOM SPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 653

31.8.11 Debug Control

Name:  DBGCTRL
Offset:  0x30
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 DBGSTOP

Access R/W
Reset 0

Bit 0 – DBGSTOP Debug Stop Mode
This bit controls the functionality when the CPU is halted by an external debugger.
Value Description
0 The baud-rate generator continues normal operation when the CPU is halted by an external debugger.
1 The baud-rate generator is halted when the CPU is halted by an external debugger.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 654

32. SERCOM Inter-Integrated Circuit (SERCOM I2C)
32.1 Overview

The Inter-Integrated Circuit (I2C) interface is one of the available modes in the serial communication
interface (SERCOM).

The I2C interface uses the SERCOM transmitter and receiver configured as shown in Figure 32-1.
Labels in capital letters are registers accessible by the CPU, while lowercase labels are internal to the
SERCOM.

A SERCOM instance can be configured to be either an I2C host or an I2C client. Both host and client
have an interface containing a shift register, a transmit buffer and a receive buffer. In addition, the
I2C host uses the SERCOM baud-rate generator, while the I2C client uses the SERCOM address match
logic.

Note: Traditional Inter-Integrated Circuit (I2C) documentation uses the terminology “Master” and
“Slave”. The equivalent Microchip terminology used in this document is “Host” and “Client”,
respectively.

32.2 Features
SERCOM I2C includes the following features:

• Host or Client Operation
• Can be used with DMA
• Philips I2C Compatible
• SMBus Compatible
• PMBus™ Compatible
• Support of 100 kHz and 400 kHz, 1 MHz I2C mode
• 4-Wire Operation Supported
• Physical interface includes:

– Slew-rate limited outputs
– Filtered inputs

• Client Operation:
– Operation in all Sleep modes
– Wake-up on address match
– 7-bit Address match in hardware for:
– • Unique address and/or 7-bit general call address

• Address range
• Two unique addresses can be used with DMA

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 655

32.3 Block Diagram
Figure 32-1. I2C Single-Host Single-Client Interconnection

BAUD TxDATA

RxDATA

baud rate generator SCL hold low

shift register

TxDATA

RxDATA

shift register

0 0

0 0
SCL hold low

ADDR/ADDRMASK

==

SDA

SCL

Host Client

32.4 Signal Description
Signal Name Type Description

PAD[0] Digital I/O SDA

PAD[1] Digital I/O SCL

PAD[2] Digital I/O SDA_OUT (4-wire operation)

PAD[3] Digital I/O SCL_OUT (4-wire operation)

One signal can be mapped on several pins.

Not all the pins are I2C pins.

Related Links
32.6.3.3. 4-Wire Mode

32.5 Product Dependencies
In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

32.5.1 I/O Lines
In order to use the SERCOM’s I/O lines, the I/O pins must be configured using the System
Configuration registers only. I2C does not operate through PPS. See DEVCFG1 configuration bits
SCOMn_HSEN in Configuration Bits Fuses and also CFGCON1 SCOMn_HSEN in CFGCON1(L) register.
See CFGCON1(L) register from Related Links.

When the SERCOM is used in I2C mode, the SERCOM controls the direction and value of the I/O
pins. In I2C mode pull-up resistors are disabled. External pull-up resistors are required for proper
function.

Related Links
18.4.2. CFGCON1(L)

32.5.2 Power Management
This peripheral can continue to operate in any Sleep mode where its source clock is running. The
interrupts can wake-up the device from Sleep modes.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 656

32.5.3 Clocks
Two generic clocks are used by SERCOM, GCLK_SERCOMx_CORE and GCLK_SERCOMx_SLOW. The
core clock (GCLK_SERCOMx_CORE) can clock the I2C when working as a host. The slow clock
(GCLK_SERCOMx_SLOW) is required only for certain functions, e.g., SMBus timing. These two clocks
must be configured and enabled in the CRU registers before using the I2C.

These generic clocks are asynchronous to the bus clock (PBx_CLK). Due to this asynchronicity, writes
to certain registers will require synchronization between the clock domains.

32.5.4 DMA
The DMA request lines are connected to the DMA Controller (DMAC). To use DMA requests with
this peripheral, the DMAC must be configured first (see Direct Memory Access Controller (DMAC) from
Related Links).

Related Links
22. Direct Memory Access Controller (DMAC)

32.5.5 Interrupts
The interrupt request line is connected to the Interrupt Controller. In order to use interrupt requests
of this peripheral, the Interrupt Controller (NVIC) must be configured first. See Nested Vector Interrupt
Controller (NVIC) from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

32.5.6 Events
Not applicable.

32.5.7 Debug Operation
When the CPU is halted in Debug mode, this peripheral will continue normal operation. If the
peripheral is configured to require periodical service by the CPU through interrupts or similar,
improper operation or data loss may result during debugging. This peripheral can be forced to halt
operation during debugging - refer to the Debug Control (DBGCTRL) register for details.

Related Links
32.10.11. DBGCTRL

32.5.8 Register Access Protection
Registers with write access can be write-protected optionally by the Peripheral Access Controller
(PAC).

PAC write protection is not available for the following registers:

• Interrupt Flag Clear and Status register (INTFLAG)
• Status register (STATUS)
• Data register (DATA)
• Address register (ADDR) in Host mode

Optional PAC write protection is denoted by the "PAC Write-Protection" property in each individual
register description.

Write-protection does not apply to accesses through an external debugger.

32.5.9 Analog Connections
Not applicable.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 657

32.6 Functional Description

32.6.1 Principle of Operation
The I2C interface uses two physical lines for communication:
• Serial Data Line (SDA) for data transfer
• Serial Clock Line (SCL) for the bus clock

A transaction starts with the I2C host sending the Start condition, followed by a 7-bit address and a
direction bit (read or write to/from the client).

The addressed I2C client will then Acknowledge (ACK) the address, and data packet transactions can
begin. Every 9-bit data packet consists of 8 data bits followed by a one-bit reply indicating whether
the data was acknowledged or not.

If a data packet is Not Acknowledged (NACK), whether by the I2C client or host, the I2C host takes
action by either terminating the transaction by sending the Stop condition, or by sending a repeated
start to transfer more data.

The figure below illustrates the possible transaction formats and Transaction Diagram Symbols
explains the transaction symbols. These symbols will be used in the following descriptions.

Figure 32-2. Transaction Diagram Symbols

S

Sr

A

A

R

W

P

START condition

repeated START condition

STOP condition

Host driving bus

Client driving bus

Either Host or Client driving bus

Acknowledge (ACK)

Not Acknowledge (NACK)

Host Read

Host Write

Bus Driver Special Bus Conditions

Data Package Direction Acknowledge

'1'

'0'

'0'

'1'

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 658

Figure 32-3. Basic I2C Transaction Diagram

SDA

SCL

S ADDRESS R/W ACK DATA ACK DATA ACK/NACK

6..0 7..0 7..0

P

S ADDRESS R/W A DATA PA DATA A/A

Direction

Address Packet Data Packet #0 Data Packet #1

Transaction

32.6.2 Basic Operation
32.6.2.1 Initialization

The following registers are enable-protected, meaning they can be written only when the I2C
interface is disabled (CTRLA.ENABLE is ‘0’):
• Control A register (CTRLA), except Enable (CTRLA.ENABLE) and Software Reset (CTRLA.SWRST) bits
• Control B register (CTRLB), except Acknowledge Action (CTRLB.ACKACT) and Command

(CTRLB.CMD) bits
• Baud register (BAUD)
• Address register (ADDR) in client operation.

When the I2C is enabled or is being enabled (CTRLA.ENABLE=1), writing to these registers will be
discarded. If the I2C is being disabled, writing to these registers will be completed after the disabling.

Enable-protection is denoted by the "Enable-Protection" property in the register description.

Before the I2C is enabled it must be configured as outlined by the following steps:
1. Select I2C Host or Client mode by writing 0x4 (Client mode) or 0x5 (Host mode) to the Operating

Mode bits in the CTRLA register (CTRLA.MODE).
2. If desired, select the SDA Hold Time value in the CTRLA register (CTRLA.SDAHOLD).
3. If desired, enable smart operation by setting the Smart Mode Enable bit in the CTRLB register

(CTRLB.SMEN).
4. If desired, enable SCL low time-out by setting the SCL Low Time-Out bit in the Control A register

(CTRLA.LOWTOUT).
5. In Host mode:

a. Select the inactive bus time-out in the Inactive Time-Out bit group in the CTRLA register
(CTRLA.INACTOUT).

b. Write the Baud Rate register (BAUD) to generate the desired baud rate.

In Client mode:
a. Configure the address match configuration by writing the Address Mode value in the CTRLB

register (CTRLB.AMODE).
b. Set the Address and Address Mask value in the Address register (ADDR.ADDR and

ADDR.ADDRMASK) according to the address configuration.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 659

32.6.2.2 Enabling, Disabling, and Resetting
This peripheral is enabled by writing '1' to the Enable bit in the Control A register (CTRLA.ENABLE),
and disabled by writing '0' to it.

Writing ‘1’ to the Software Reset bit in the Control A register (CTRLA.SWRST) will reset all registers of
this peripheral to their initial states, except the DBGCTRL register, and the peripheral is disabled.

32.6.2.3 I2C Bus State Logic
The Bus state logic includes several logic blocks that continuously monitor the activity on the I2C bus
lines in all Sleep modes with running GCLK_SERCOM_x clocks. The start and stop detectors and the
bit counter are all essential in the process of determining the current Bus state. The Bus state is
determined according to Bus State Diagram. Software can get the current Bus state by reading the
Host Bus State bits in the Status register (STATUS.BUSSTATE). The value of STATUS.BUSSTATE in the
figure is shown in binary.

Figure 32-4. Bus State Diagram

RESET

Write ADDR to generate
Start Condition

IDLE
(0b01)

Start Condition

BUSY
(0b11)Timeout or Stop Condition

UNKNOWN
(0b00)

OWNER
(0b10)

Lost Arbitration

R
epeated

Start C
ondition

Write ADDR to generate
Repeated Start Condition

Stop Condition

Timeout or Stop Condition

The Bus state machine is active when the I2C host is enabled.

After the I2C host has been enabled, the Bus state is UNKNOWN (0b00). From the UNKNOWN state,
the bus will transition to IDLE (0b01) by either:
• Forcing by writing 0b01 to STATUS.BUSSTATE
• A Stop condition is detected on the bus
• If the inactive bus time-out is configured for SMBus compatibility (CTRLA.INACTOUT) and a time-

out occurs.

Note: Once a known Bus state is established, the Bus state logic will not re-enter the UNKNOWN
state.

When the bus is IDLE it is ready for a new transaction. If a Start condition is issued on the bus by
another I2C host in a multi-host setup, the bus becomes BUSY (0b11). The bus will re-enter IDLE
either when a Stop condition is detected, or when a time-out occurs (inactive bus time-out needs to
be configured).

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 660

If a Start condition is generated internally by writing the Address bit group in the Address register
(ADDR.ADDR) while IDLE, the OWNER state (0b10) is entered. If the complete transaction was
performed without interference, i.e., arbitration was not lost, the I2C host can issue a Stop condition,
which will change the Bus state back to IDLE.

However, if a packet collision is detected while in OWNER state, the arbitration is assumed lost
and the Bus state becomes BUSY until a Stop condition is detected. A repeated Start condition will
change the Bus state only if arbitration is lost while issuing a repeated start.

Note: Violating the protocol may cause the I2C to hang. If this happens it is possible to recover from
this state by a software Reset (CTRLA.SWRST='1').

32.6.2.4 I2C Host Operation
The I2C host is byte-oriented and interrupt based. The number of interrupts generated is kept at a
minimum by automatic handling of most incidents. The software driver complexity and code size are
reduced by auto-triggering of operations, and a Special Smart mode, which can be enabled by the
Smart Mode Enable bit in the Control A register (CTRLA.SMEN).

The I2C host has two interrupt strategies.

When SCL Stretch Mode (CTRLA.SCLSM) is '0', SCL is stretched before or after the Acknowledge bit .
In this mode the I2C host operates according to I2C Host Behavioral Diagram (SCLSM=0) as shown in
the following figure. The circles labeled "Mn" (M1, M2..) indicate the nodes the bus logic can jump to,
based on software or hardware interaction.

This diagram is used as reference for the description of the I2C host operation throughout the
document.

Figure 32-5. I2C Host Behavioral Diagram (SCLSM=0)

IDLE S BUSYBUSY P

Sr

P

M3

M3

M2

M2

M1

M1

R DATA

Wait for
IDLE

ADDRESS

W

A/ADATA

APPLICATION

SW

SW

Sr

P

M3

M2

BUSY M4ASW

A/A

A/A

A/A

M4

A

IDLE

IDLE

CLIENT BUS INTERRUPT + SCL HOLD

HOST BUS INTERRUPT + SCL HOLD

SW

SW

SW

BUSYR/W

SW Software interaction

A

A

R/W

BUSY M4

The host provides data on the bus

Addressed client provides data on the bus

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 661

In the second strategy (CTRLA.SCLSM=1), interrupts only occur after the ACK bit, as in Host Behavioral
Diagram (SCLSM=1) shown in the following figure. This strategy can be used when it is not necessary
to check DATA before acknowledging.

Figure 32-6. I2C Host Behavioral Diagram (SCLSM=1)

IDLE S BUSYBUSY P

Sr

P

M3

M3

M2

M2

M1

M1

R DATA

W

A/ADATA

APPLICATION

SW

SW

Sr

P

M3

M2

BUSY M4SW

A/A

M4

A

IDLE

IDLE

Host Bus INTERRUPT + SCL HOLD

SW

SW

SW

BUSYR/W

A

A

R/W

BUSY M4

SW Software interaction

The host provides data on the bus

Addressed client provides data on the bus

Client Bus INTERRUPT + SCL HOLD

Wait for
IDLE

ADDRESS

32.6.2.4.1 Host Clock Generation
The SERCOM peripheral supports several I2C bidirectional modes:
• Standard mode (Sm) up to 100 kHz
• Fast mode (Fm) up to 400 kHz
• Fast mode Plus (Fm+) up to 1 MHz

The Host clock configuration for Sm, Fm and Fm+ are described in Clock Generation (Standard-Mode,
Fast-Mode and Fast-Mode Plus) as follows.

Clock Generation (Standard-Mode, Fast-Mode, and Fast-Mode Plus)
In I2C Sm, Fm, and Fm+ mode, the Host clock (SCL) frequency is determined as described in this
section:

The low (TLOW) and high (THIGH) times are determined by the Baud Rate register (BAUD), while the
rise (TRISE) and fall (TFALL) times are determined by the bus topology. Because of the wired-AND logic
of the bus, TFALL will be considered as part of TLOW. Likewise, TRISE will be in a state between TLOW and
THIGH until a high state has been detected.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 662

Figure 32-7. SCL Timing

TSU;STO THD;STA

TBUF TFALL

TLOW

TRISE

THIGH

SCL

SDA

P S

TSU;STA

Sr

The following parameters are timed using the SCL low time period TLOW. This comes from the Host
Baud Rate Low bit group in the Baud Rate register (BAUD.BAUDLOW). When BAUD.BAUDLOW=0, or
the Host Baud Rate bit group in the Baud Rate register (BAUD.BAUD) determines it.
• TLOW – Low period of SCL clock
• TSU;STO – Set-up time for stop condition
• TBUF – Bus free time between stop and start conditions
• THD;STA – Hold time (repeated) start condition
• TSU;STA – Set-up time for repeated start condition
• THIGH is timed using the SCL high time count from BAUD.BAUD
• TRISE is determined by the bus impedance; for internal pull-ups.
• TFALL is determined by the open-drain current limit and bus impedance; can typically be regarded

as zero.

The SCL frequency is given by:fSCL = 1TLOW + THIGH + TRISE
When BAUD.BAUDLOW is zero, the BAUD.BAUD value is used to time both SCL high and SCL low. In
this case the following formula will give the SCL frequency:fSCL = fGCLK10 + 2BAUD + fGCLK ⋅ TRISE
When BAUD.BAUDLOW is non-zero, the following formula determines the SCL frequency:fSCL = fGCLK10 + BAUD + BAUDLOW + fGCLK ⋅ TRISE
The following formulas can determine the SCL TLOW and THIGH times:TLOW = BAUDLOW + 5fGCLKTHIGH = BAUD + 5fGCLK
Note: The I2C standard Fm+ (Fast-mode plus) requires a nominal high to low SCL ratio of 1:2,
and BAUD must be set accordingly. At a minimum, BAUD.BAUD and/or BAUD.BAUDLOW must be
non-zero.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 663

Start-up Timing: The minimum time between SDA transition and SCL rising edge is 6 APB cycles
when the DATA register is written in smart mode. If a greater start-up time is required due to long
rise times, the time between DATA write and IF clear must be controlled by software.
Note: When timing is controlled by user, the Smart Mode cannot be enabled.

32.6.2.4.2 Transmitting Address Packets
The I2C host starts a bus transaction by writing the I2C client address to ADDR.ADDR and the
direction bit, as described in Principle of Operation, see Principle of Operation from Related Links. If
the bus is busy, the I2C host will wait until the bus becomes idle before continuing the operation.
When the bus is idle, the I2C host will issue a start condition on the bus. The I2C host will then
transmit an address packet using the address written to ADDR.ADDR. After the address packet has
been transmitted by the I2C host, one of four cases will arise according to arbitration and transfer
direction.

Case 1: Arbitration lost or bus error during address packet transmission

If arbitration was lost during transmission of the address packet, the Host on Bus bit in the Interrupt
Flag Status and Clear register (INTFLAG.MB) and the Arbitration Lost bit in the Status register
(STATUS.ARBLOST) are both set. Serial data output to SDA is disabled, and the SCL is released, which
disables clock stretching. In effect the I2C host is no longer allowed to execute any operation on the
bus until the bus is idle again. A bus error will behave similarly to the Arbitration Lost condition. In
this case, the MB Interrupt flag and Host Bus Error bit in the Status register (STATUS.BUSERR) are
both set in addition to STATUS.ARBLOST.

The Host Received Not Acknowledge bit in the Status register (STATUS.RXNACK) will always contain
the last successfully received acknowledge or not acknowledge indication.

In this case, software will typically inform the application code of the condition and then clear the
Interrupt flag before exiting the interrupt routine. No other flags have to be cleared at this moment,
because all flags will be cleared automatically the next time the ADDR.ADDR register is written.

Case 2: Address packet transmit complete – No ACK received

If there is no I2C client device responding to the address packet, then the INTFLAG.MB Interrupt flag
and STATUS.RXNACK will be set. The clock hold is active at this point, preventing further activity on
the bus.

The missing ACK response can indicate that the I2C client is busy with other tasks or sleeping.
Therefore, it is not able to respond. In this event, the next step can be either issuing a Stop condition
(recommended) or resending the address packet by a repeated Start condition. When using SMBus
logic, the client must ACK the address. If there is no response, it means that the client is not available
on the bus.

Case 3: Address packet transmit complete – Write packet, Host on Bus set

If the I2C host receives an acknowledge response from the I2C client, INTFLAG.MB will be set and
STATUS.RXNACK will be cleared. The clock hold is active at this point, preventing further activity on
the bus.

In this case, the software implementation becomes highly protocol dependent. Three possible
actions can enable the I2C operation to continue:
• Initiate a data transmit operation by writing the data byte to be transmitted into DATA.DATA.
• Transmit a new address packet by writing ADDR.ADDR. A repeated Start condition will

automatically be inserted before the address packet.
• Issue a Stop condition, consequently terminating the transaction.

Case 4: Address packet transmit complete – Read packet, Client on Bus set

If the I2C host receives an ACK from the I2C client, the I2C host proceeds to receive the next byte of
data from the I2C client. When the first data byte is received, the Client on Bus bit in the Interrupt

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 664

Flag register (INTFLAG.SB) will be set and STATUS.RXNACK will be cleared. The clock hold is active at
this point, preventing further activity on the bus.

In this case, the software implementation becomes highly protocol dependent. Three possible
actions can enable the I2C operation to continue:
• Let the I2C host continue to read data by acknowledging the data received. ACK can be sent by

software, or automatically in Smart mode.
• Transmit a new address packet.
• Terminate the transaction by issuing a Stop condition.

Note: An ACK or NACK will be automatically transmitted if Smart mode is enabled. The
Acknowledge Action bit in the Control B register (CTRLB.ACKACT) determines whether ACK or NACK
must be sent.

Related Links
32.6.1. Principle of Operation

32.6.2.4.3 Transmitting Data Packets
When an address packet with direction Host Write (see Figure 32-3) was transmitted successfully ,
INTFLAG.MB will be set. The I2C host will start transmitting data via the I2C bus by writing to
DATA.DATA, and monitor continuously for packet collisions.

If a collision is detected, the I2C host will lose arbitration and STATUS.ARBLOST will be set. If the
transmit was successful, the I2C host will receive an ACK bit from the I2C client, and STATUS.RXNACK
will be cleared. INTFLAG.MB will be set in both cases, regardless of arbitration outcome.

It is recommended to read STATUS.ARBLOST and handle the arbitration lost condition in the
beginning of the I2C Host on Bus interrupt. This can be done as there is no difference between
handling address and data packet arbitration.

STATUS.RXNACK must be checked for each data packet transmitted before the next data packet
transmission can commence. The I2C host is not allowed to continue transmitting data packets if a
NACK is received from the I2C client.

32.6.2.4.4 Receiving Data Packets (SCLSM=0)
When INTFLAG.SB is set, the I2C host will already have received one data packet. The I2C host must
respond by sending either an ACK or NACK. Sending a NACK may be unsuccessful when arbitration
is lost during the transmission. In this case, a lost arbitration will prevent setting INTFLAG.SB.
Instead, INTFLAG.MB will indicate a change in arbitration. Handling of lost arbitration is the same as
for data bit transmission.

32.6.2.4.5 Receiving Data Packets (SCLSM=1)
When INTFLAG.SB is set, the I2C host will already have received one data packet and transmitted an
ACK or NACK, depending on CTRLB.ACKACT. At this point, CTRLB.ACKACT must be set to the correct
value for the next ACK bit, and the transaction can continue by reading DATA and issuing a command
if not in the Smart mode.

32.6.2.4.6 10-Bit Addressing
When 10-bit addressing is enabled by the Ten Bit Addressing Enable bit in the Address register
(ADDR.TENBITEN=1) and the Address bit field ADDR.ADDR is written, the two address bytes will
be transmitted, see 10-bit Address Transmission for a Read Transaction. The addressed client
acknowledges the two address bytes, and the transaction continues. Regardless of whether the
transaction is a read or write, the host must start by sending the 10-bit address with the direction bit
(ADDR.ADDR[0]) being zero.

If the host receives a NACK after the first byte, the Write Interrupt flag will be raised and the
STATUS.RXNACK bit will be set. If the first byte is acknowledged by one or more clients, then the
host will proceed to transmit the second address byte and the host will first see the Write Interrupt
flag after the second byte is transmitted. If the transaction direction is read-from-client, the 10-bit

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 665

address transmission must be followed by a repeated start and the first 7 bits of the address with
the read/write bit equal to '1'.

Figure 32-8. 10-bit Address Transmission for a Read Transaction

S AW addr[7:0] A11110 addr[9:8] Sr AR

1
S
W 11110 addr[9:8]

MB INTERRUPT

This implies the following procedure for a 10-bit read operation:
1. Write the 10-bit address to ADDR.ADDR[10:1]. ADDR.TENBITEN must be '1', the direction bit

(ADDR.ADDR[0]) must be '0' (can be written simultaneously with ADDR).
2. Once the Host on Bus interrupt is asserted, Write ADDR[7:0] register to '11110 address[9:8] 1'.

ADDR.TENBITEN must be cleared (can be written simultaneously with ADDR).
3. Proceed to transmit data.

32.6.2.5 I2C Client Operation
The I2C client is byte-oriented and interrupt-based. The number of interrupts generated is kept at a
minimum by automatic handling of most events. The software driver complexity and code size are
reduced by auto-triggering of operations, and a special smart mode, which can be enabled by the
Smart Mode Enable bit in the Control A register (CTRLA.SMEN).

The I2C client has two interrupt strategies.

When SCL Stretch Mode bit (CTRLA.SCLSM) is '0', SCL is stretched before or after the acknowledge
bit. In this mode, the I2C client operates according to I2C Client Behavioral Diagram (SCLSM=0) as
shown in the following figure. The circles labelled "Sn" (S1, S2..) indicate the nodes the bus logic can
jump to, based on software or hardware interaction.

This diagram is used as reference for the description of the I2C client operation throughout the
document.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 666

Figure 32-9. I2C Client Behavioral Diagram (SCLSM=0)

S

S3

ADDRESSS2 A

S1

R

W

DATA A/A

DATA

P S2

Sr S3

P S2

Sr S3

A

S
W

S
W

S
W

S
W

A A/A

A S1

S
W

Interrupt on STOP
Condition Enabled

S1

S
W Software interaction

AMATCH INTERRUPT DRDY INTERRUPT

PREC INTERRUPT

The host provides data on the bus

Addressed client provides data on the bus

In the second strategy (CTRLA.SCLSM=1), interrupts only occur after the ACK bit is sent as shown
in the following figure I2C Client Behavioral Diagram (SCLSM=1). This strategy can be used when it is
not necessary to check DATA before acknowledging. For host reads, an address and data interrupt
will be issued simultaneously after the address acknowledge. However, for host writes, the first data
interrupt will be seen after the first data byte has been received by the client and the acknowledge
bit has been sent to the host.

Figure 32-10. I2C Client Behavioral Diagram (SCLSM=1)

S

S3

ADDRESSS2 R

W

DATA A/A

DATA

P S2

Sr S3

P S2

Sr S3

S
W

S
W

S
WA/A

S
W

Interrupt on STOP
Condition Enabled

S1

S
W Software interaction

A/A

A/A

PREC INTERRUPT

AMATCH INTERRUPT (+ DRDY INTERRUPT in Host Read mode) DRDY INTERRUPT

The host provides data on the bus

Addressed client provides data on the bus

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 667

32.6.2.5.1 Receiving Address Packets (SCLSM=0)
When CTRLA.SCLSM=0, the I2C client stretches the SCL line according to Figure 32-9. When the I2C
client is properly configured, it will wait for a Start condition.

When a Start condition is detected, the successive address packet will be received and checked by
the address match logic. If the received address is not a match, the packet will be rejected, and the
I2C client will wait for a new Start condition. If the received address is a match, the Address Match bit
in the Interrupt Flag register (INTFLAG.AMATCH) will be set.

SCL will be stretched until the I2C client clears INTFLAG.AMATCH. As the I2C client holds the clock by
forcing SCL low, the software has unlimited time to respond.

The direction of a transaction is determined by reading the Read/Write Direction bit in the Status
register (STATUS.DIR). This bit will be updated only when a valid address packet is received.

If the Transmit Collision bit in the Status register (STATUS.COLL) is set, this indicates that the last
packet addressed to the I2C client had a packet collision. A collision causes the SDA and SCL lines to
be released without any notification to software. Therefore, the next AMATCH interrupt is the first
indication of the previous packet’s collision. Collisions are intended to follow the SMBus Address
Resolution Protocol (ARP).

After the address packet has been received from the I2C host, one of two cases will arise based on
transfer direction.

Case 1: Address packet accepted – Read flag set

The STATUS.DIR bit is ‘1’, indicating an I2C host read operation. The SCL line is forced low, stretching
the bus clock. If an ACK is sent, I2C client hardware will set the Data Ready bit in the Interrupt Flag
register (INTFLAG.DRDY), indicating data are needed for transmit. If a NACK is sent, the I2C client will
wait for a new Start condition and address match.

Typically, software will immediately acknowledge the address packet by sending an ACK/NACK bit.
The I2C client Command bit field in the Control B register (CTRLB.CMD) can be written to '0x3'
for both read and write operations as the command execution is dependent on the STATUS.DIR
bit. Writing ‘1’ to INTFLAG.AMATCH will also cause an ACK/NACK to be sent corresponding to the
CTRLB.ACKACT bit.

Case 2: Address packet accepted – Write flag set

The STATUS.DIR bit is cleared, indicating an I2C host write operation. The SCL line is forced low,
stretching the bus clock. If an ACK is sent, the I2C client will wait for data to be received. Data,
repeated start or stop can be received.

If a NACK is sent, the I2C client will wait for a new Start condition and address match. Typically,
software will immediately acknowledge the address packet by sending an ACK/NACK. The I2C client
command CTRLB.CMD = 3 can be used for both read and write operation as the command execution
is dependent on STATUS.DIR.

Writing ‘1’ to INTFLAG.AMATCH will also cause an ACK/NACK to be sent corresponding to the
CTRLB.ACKACT bit.

32.6.2.5.2 Receiving Address Packets (SCLSM=1)
When SCLSM=1, the I2C client will stretch the SCL line only after an ACK (see Figure 32-10). When the
I2C client is properly configured, it will wait for a Start condition to be detected.

When a Start condition is detected, the successive address packet will be received and checked by
the address match logic.

If the received address is not a match, the packet will be rejected and the I2C client will wait for a
new Start condition.

If the address matches, the acknowledge action as configured by the Acknowledge Action bit Control
B register (CTRLB.ACKACT) will be sent and the Address Match bit in the Interrupt Flag register

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 668

(INTFLAG.AMATCH) is set. SCL will be stretched until the I2C client clears INTFLAG.AMATCH. As the
I2C client holds the clock by forcing SCL low, the software is given unlimited time to respond to the
address.

The direction of a transaction is determined by reading the Read/Write Direction bit in the Status
register (STATUS.DIR). This bit will be updated only when a valid address packet is received.

If the Transmit Collision bit in the Status register (STATUS.COLL) is set, the last packet addressed to
the I2C client had a packet collision. A collision causes the SDA and SCL lines to be released without
any notification to software. The next AMATCH interrupt is, therefore, the first indication of the
previous packet’s collision. Collisions are intended to follow the SMBus Address Resolution Protocol
(ARP).

After the address packet has been received from the I2C host, INTFLAG.AMATCH can be set to ‘1’ to
clear it.

32.6.2.5.3 Receiving and Transmitting Data Packets
After the I2C client has received an address packet, it will respond according to the direction either
by waiting for the data packet to be received or by starting to send a data packet by writing to
DATA.DATA. When a data packet is received or sent, INTFLAG.DRDY will be set. After receiving data,
the I2C client will send an acknowledge according to CTRLB.ACKACT.

Case 1: Data received

INTFLAG.DRDY is set, and SCL is held low, pending for SW interaction.

Case 2: Data sent

When a byte transmission is successfully completed, the INTFLAG.DRDY Interrupt flag is set. If NACK
is received, indicated by STATUS.RXNACK=1, the I2C client must expect a stop or a repeated start to
be received. The I2C client must release the data line to allow the I2C host to generate a stop or
repeated start. Upon detecting a Stop condition, the Stop Received bit in the Interrupt Flag register
(INTFLAG.PREC) will be set and the I2C client will return to IDLE state.

32.6.2.5.4 PMBus Group Command
When the PMBus Group Command bit in the CTRLB register is set (CTRLB.GCMD=1) and 7-bit
addressing is used, INTFLAG.PREC will be set if the client has been addressed since the last
STOP condition. When CTRLB.GCMD=0, a STOP condition without address match will not set
INTFLAG.PREC.

The group command protocol is used to send commands to more than one device. The commands
are sent in one continuous transmission with a single STOP condition at the end. When the STOP
condition is detected by the clients addressed during the group command, they all begin executing
the command they received.

The following figure shows an example where this client, bearing ADDRESS 1, is addressed after
a repeated START condition. There can be multiple clients addressed before and after this client.
Eventually, at the end of the group command, a single STOP is generated by the host. At this point a
STOP interrupt is asserted.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 669

Figure 32-11. PMBus Group Command Example

AS A

n BytesWADDRESS 0

Command/Data

ASr A n BytesW
ADDRESS 1
(this client)

Command/Data

S
W

S
W

ASr A n BytesWADDRESS 2

Command/Data

P S
W

AMATCH INTERRUPT DRDY INTERRUPT

PREC INTERRUPT

32.6.3 Additional Features
32.6.3.1 SMBus

The I2C includes three hardware SCL low time-outs which allow a time-out to occur for SMBus SCL
low time-out, host extend time-out, and client extend time-out. This allows for SMBus functionality
These time-outs are driven by the GCLK_SERCOM_SLOW clock. The GCLK_SERCOM_SLOW clock is
used to accurately time the time-out and must be configured to use a 32.768 kHz oscillator. The I2C
interface also allows for a SMBus compatible SDA hold time.

• TTIMEOUT: SCL low time of 25..35ms – Measured for a single SCL low period. It is enabled by
CTRLA.LOWTOUTEN

• TLOW:SEXT: Cumulative clock low extend time of 25 ms – Measured as the cumulative SCL low
extend time by a client device in a single message from the initial START to the STOP. It is enabled
by CTRLA.SEXTTOEN.

• TLOW:MEXT: Cumulative clock low extend time of 10 ms – Measured as the cumulative SCL low
extend time by the host device within a single byte from START-to-ACK, ACK-to-ACK, or ACK-to-
STOP. It is enabled by CTRLA.MEXTTOEN.

32.6.3.2 Smart Mode
The I2C interface has a Smart mode that simplifies application code and minimizes the user
interaction needed to adhere to the I2C protocol. The Smart mode accomplishes this by
automatically issuing an ACK or NACK (based on the content of CTRLB.ACKACT) as soon as
DATA.DATA is read.

32.6.3.3 4-Wire Mode
Writing a '1' to the Pin Usage bit in the Control A register (CTRLA.PINOUT) will enable 4-Wire mode
operation. In this mode, the internal I2C tri-state drivers are bypassed, and an external I2C compliant
tri-state driver is needed when connecting to an I2C bus.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 670

Figure 32-12. I2C Pad Interface

SCL/SDA
pad

I2C
Driver

SCL_OUT/
SDA_OUT

padPINOUT

PINOUT

SCL_IN/
SDA_IN

SCL_OUT/
SDA_OUT

32.6.3.4 Quick Command
Setting the Quick Command Enable bit in the Control B register (CTRLB.QCEN) enables quick
command. When quick command is enabled, the corresponding Interrupt flag (INTFLAG.SB or
INTFLAG.MB) is set immediately after the client acknowledges the address. At this point, the
software can either issue a Stop command or a repeated start by writing CTRLB.CMD or ADDR.ADDR.

32.6.3.5 32-bit Extension
For better system bus utilization, 32-bit data receive and transmit can be enabled by writing to the
Data 32-bit bit field in the Control C register (CTRLC.DATA32B=1). When enabled, write and read
transaction to/from the DATA register are 32 bit in size.

If frames are not multiples of 4 Bytes, the Length Counter (LENGTH.LEN) and Length Enable
(LENGTH.LENEN) must be configured before data transfer begins. LENGTH.LEN must be enabled
only when CTRLC.DATA32B is enabled.

The following figure shows the order of transmit and receive when using 32-bit mode. Bytes are
transmitted or received and stored in order from 0 to 3.

Figure 32-13. 32-bit Extension Byte Ordering

BYTE0BYTE1BYTE2BYTE3APB Write/Read
31 0Bit Position

32-bit Extension Client Operation
The following figure shows a transaction with 32-bit Extension enabled (CTRLC.DATA32B=1). In
client operation, the Address Match interrupt in the Interrupt Flag Status and Clear register
(INTFLAG.AMATCH) is set after the address is received and available in the DATA register. The Data
Ready interrupt (INTFLAG.DRDY) will then be raised for every 4 Bytes transferred.

Figure 32-14. 32-bit Extension Client Operation

S A Byte 0WADDRESS
S
W

CLIENT ADDRESS
INTERRUPT

S
W

CLIENT DATA
INTERRUPT

A Byte 1 A Byte 2 A Byte 3

The LENGTH register can be written before the frame begins, or when the AMATCH interrupt is set.
If the frame size is not LENGTH.LEN Bytes, the Length Error status bit (STATUS.LENERR) is raised. If
LENGTH.LEN is not a multiple of 4 Bytes, the final INTFLAG.DRDY interrupt is raised when the last
Byte is received for host reads. For host writes, the last data byte will be automatically NACKed. On
address recognition, the internal length counter is reset in preparation for the incoming frame.

High Speed transactions start with a Full Speed Host Code. When a Host Code is detected, no data
is received and the next expected operation is a repeated start. For this reason, the length is not

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 671

counted after a Host Code is received. In this case, no Length Error (STATUS.LENERR) is registered,
regardless of the LENGTH.LENEN setting.

When SCL clock stretch mode is selected (CTRLA.SCLSM=1) and the transaction is a host write, the
selected Acknowledge Action (CTRLB.ACKACT) will only be used to ACK/NACK each 4th byte. All other
bytes are ACKed. This allows the user to write CTRLB.ACKACT=1 in the final interrupt, so that the last
byte in a 32-bit word will be NACKed.

Writing to the LENGTH register while a frame is in progress will produce unpredictable results. If
LENGTH.LENEN is not set and a frame is not a multiple of 4 Bytes, the remainder will be lost.

32-bit Extension Host Operation
When using the I2C configured as Host, the Address register must be written with the desired
address (ADDR.ADDR), and optionally, the transaction Length and transaction Length Enable bits
(ADDR.LEN and ADDR.LENEN) can be written. When ADDR.LENEN is written to '1' along with
ADDR.ADDR, ADDR.LEN determines the number of data bytes in the transaction from 0 to 255.
Then, the ADDR.LEN bytes are transferred, followed by an automatically generated NACK (for host
reads) and a STOP.

The INTFLAG.SB or INTFLAG.MB are raised for every 4 Bytes transferred. If the transaction is a host
read and ADDR.LEN is not a multiple of 4 Bytes, the final INTFLAG.SB is set when the last byte is
received.

When SCL clock stretch mode is enabled (CTRLA.SCLSM=1) and the transaction is a host read, the
selected Acknowledge Action (CTRLB.ACKACT) will only be used to ACK/NACK each 4th Byte. All other
bytes are ACKed. This allows the user to set CTRLB.ACKACT=1 in the final interrupt, so that the last
byte in a 32-bit word will be NACKed.

If a NACK is received by the client for a host write transaction before ADDR.LEN bytes, a STOP
will be automatically generated, and the length error (STATUS.LENERR) is raised along with the
INTFLAG.ERROR interrupt.

32.6.4 DMA, Interrupts and Events
Each interrupt source has its own Interrupt flag. The Interrupt flag in the Interrupt Flag Status
and Clear register (INTFLAG) will be set when the Interrupt condition is meet. Each interrupt can
be individually enabled by writing ‘1’ to the corresponding bit in the Interrupt Enable Set register
(INTENSET), and disabled by writing ‘1’ to the corresponding bit in the Interrupt Enable Clear register
(INTENCLR). An interrupt request is generated when the Interrupt flag is set and the corresponding
interrupt is enabled. The interrupt request is active until the Interrupt flag is cleared, the interrupt is
disabled or the I2C is reset. See the INTFLAG (Client) or INTFLAG (Host) register for details on how to
clear Interrupt flags.

Table 32-1. Module Request for SERCOM I2C Client
Condition Request

DMA Interrupt Event

Data needed for transmit (TX) (Client
Transmit mode)

Yes
(request cleared
when data is written)

— NA

Data received (RX) (Client Receive mode) Yes
(request cleared
when data is read)

—

Data Ready (DRDY) — Yes

Address Match (AMATCH) — Yes

Stop received (PREC) — Yes

Error (ERROR) — Yes

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 672

Table 32-2. Module Request for SERCOM I2C Host
Condition Request

DMA Interrupt Event

Data needed for transmit (TX) (Host
Transmit mode)

Yes
(request cleared when
data is written)

— NA

Data needed for transmit (RX) (Host
Transmit mode)

Yes
(request cleared when
data is read)

—

Host on Bus (MB) — Yes

Stop received (SB) — Yes

Error (ERROR) — Yes

32.6.4.1 DMA Operation
Smart mode must be enabled for DMA operation in the Control B register by writing CTRLB.SMEN=1.

32.6.4.1.1 Client DMA
When using the I2C client with DMA, an address match will cause the address Interrupt flag
(INTFLAG.ADDRMATCH) to be raised. After the interrupt has been serviced, data transfer will be
performed through DMA.

The I2C client generates the following requests:

32.6.4.1.2 Host DMA
When using the I2C host with DMA, the ADDR register must be written with the desired address
(ADDR.ADDR), transaction length (ADDR.LEN), and transaction length enable (ADDR.LENEN). When
ADDR.LENEN is written to 1 along with ADDR.ADDR, ADDR.LEN determines the number of data bytes
in the transaction from 0 to 255. DMA is then used to transfer ADDR.LEN bytes followed by an
automatically generated NACK (for host reads) and a STOP.

If a NACK is received by the client for a host write transaction before ADDR.LEN bytes, a STOP
will be automatically generated and the length error (STATUS.LENERR) will be raised along with the
INTFLAG.ERROR interrupt.

The I2C host generates the following requests:

32.6.4.2 Interrupts
The I2C client has the following interrupt sources. These are asynchronous interrupts. They can
wake-up the device from any Sleep mode:

• Error (ERROR)
• Data Ready (DRDY)
• Address Match (AMATCH)
• Stop Received (PREC)

The I2C host has the following interrupt sources. These are asynchronous interrupts. They can
wake-up the device from any Sleep mode:

• Error (ERROR)
• Client on Bus (SB)
• Host on Bus (MB)

Each interrupt source has its own Interrupt flag. The Interrupt flag in the Interrupt Flag Status
and Clear register (INTFLAG) will be set when the Interrupt condition is met. Each interrupt can
be individually enabled by writing ‘1’ to the corresponding bit in the Interrupt Enable Set register
(INTENSET), and disabled by writing ‘1’ to the corresponding bit in the Interrupt Enable Clear register
(INTENCLR).

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 673

The status of enabled interrupts can be read from either INTENSET or INTENCLR. An interrupt
request is generated when the Interrupt flag is set and the corresponding interrupt is enabled. The
interrupt request remains active until the Interrupt flag is cleared, the interrupt is disabled or the I2C
is reset. For details on how to clear Interrupt flags, see INTFLAG register from Related Links.

The value of INTFLAG indicates which interrupt is executed. Note that interrupts must be globally
enabled for interrupt requests. See Nested Vector Interrupt Controller (NVIC) from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)
32.10.6. INTFLAG

32.6.4.3 Events
Not applicable.

32.6.5 Sleep Mode Operation
I2C Host Operation

The generic clock (GCLK_SERCOMx_CORE) will continue to run in idle sleep mode. If the Run In
Standby bit in the Control A register (CTRLA.RUNSTDBY) is '1', the GLK_SERCOMx_CORE will also run
in Standby Sleep mode. Any interrupt can wake-up the device.

If CTRLA.RUNSTDBY=0, the GLK_SERCOMx_CORE will be disabled after any ongoing transaction is
finished. Any interrupt can wake-up the device.

I2C Client Operation

Writing CTRLA.RUNSTDBY=1 will allow the Address Match interrupt to wake-up the device.

When CTRLA.RUNSTDBY=0, all receptions will be dropped.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 674

32.7 Register Summary - I2C Client

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x00 CTRLA

7:0 RUNSTDBY MODE[2:0] ENABLE SWRST
15:8

23:16 SEXTTOEN SDAHOLD[1:0] PINOUT
31:24 LOWTOUT SCLSM SPEED[1:0]

0x04 CTRLB

7:0
15:8 AMODE[1:0] AACKEN GCMD SMEN

23:16 ACKACT CMD[1:0]
31:24

0x08 CTRLC

7:0
15:8

23:16
31:24 DATA32B

0x0C
...

0x13
Reserved

0x14 INTENCLR 7:0 ERROR DRDY AMATCH PREC
0x15 Reserved
0x16 INTENSET 7:0 ERROR DRDY AMATCH PREC
0x17 Reserved
0x18 INTFLAG 7:0 ERROR DRDY AMATCH PREC
0x19 Reserved

0x1A STATUS
7:0 CLKHOLD LOWTOUT SR DIR RXNACK COLL BUSERR

15:8 LENERR SEXTTOUT

0x1C SYNCBUSY

7:0 ENABLE SWRST
15:8

23:16
31:24

0x20
...

0x23
Reserved

0x24 ADDR

7:0 ADDR[6:0] GENCEN
15:8 ADDR[9:7]

23:16 ADDRMASK[6:0]
31:24 ADDRMASK[9:7]

0x28 DATA

7:0 DATA[7:0]
15:8 DATA[15:8]

23:16 DATA[23:16]
31:24 DATA[31:24]

32.8 Register Description - I2C Client
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the “PAC Write-Protection” property in each individual register
description.

Some registers are synchronized when read and/or written. Synchronization is denoted by the
“Write-Synchronized” or the “Read-Synchronized” property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the peripheral is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register
description.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 675

32.8.1 Control A

Name:  CTRLA
Offset:  0x00
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit 31 30 29 28 27 26 25 24
 LOWTOUT SCLSM SPEED[1:0]

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 SEXTTOEN SDAHOLD[1:0] PINOUT

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 RUNSTDBY MODE[2:0] ENABLE SWRST

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 30 – LOWTOUT SCL Low Time-Out
This bit enables the SCL low time-out. If SCL is held low for 25 ms-35 ms, the client will release its
clock hold, if enabled, and reset the internal state machine. Any interrupt flags set at the time of
time-out will remain set.
This bit is not synchronized.
Value Description
0 Time-out disabled.
1 Time-out enabled.

Bit 27 – SCLSM SCL Clock Stretch Mode
This bit controls when SCL will be stretched for software interaction.
This bit is not synchronized.
Value Description
0 SCL stretch according to Figure 32-9
1 SCL stretch only after ACK bit according to Figure 32-10

Bits 25:24 – SPEED[1:0] Transfer Speed
These bits define bus speed.
These bits are not synchronized.
Value Description
0x0 Standard-mode (Sm) up to 100 kHz and Fast-mode (Fm) up to 400 kHz
0x1 Fast-mode Plus (Fm+) up to 1 MHz
0x2 Reserved
0x3 Reserved

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 676

Bit 23 – SEXTTOEN Client SCL Low Extend Time-Out
This bit enables the client SCL low extend time-out. If SCL is cumulatively held low for greater than
25 ms from the initial START to a STOP, the client will release its clock hold if enabled and reset the
internal state machine. Any interrupt flags set at the time of time-out will remain set. If the address
was recognized, PREC will be set when a STOP is received.
This bit is not synchronized.
Value Description
0 Time-out disabled
1 Time-out enabled

Bits 21:20 – SDAHOLD[1:0] SDA Hold Time
These bits define the SDA hold time with respect to the negative edge of SCL.
These bits are not synchronized.
Value Name Description
0x0 DIS Disabled
0x1 75 50-100ns hold time
0x2 450 300-600ns hold time
0x3 600 400-800ns hold time

Bit 16 – PINOUT Pin Usage
This bit sets the pin usage to either two- or four-wire operation:
This bit is not synchronized.
Value Description
0 4-wire operation disabled
1 4-wire operation enabled

Bit 7 – RUNSTDBY Run in Standby
This bit defines the functionality in standby sleep mode.
This bit is not synchronized.
Value Description
0 Disabled – All reception is dropped.
1 Wake on address match, if enabled.

Bits 4:2 – MODE[2:0] Operating Mode
These bits must be written to 0x04 to select the I2C client serial communication interface of the
SERCOM.
These bits are not synchronized.

Bit 1 – ENABLE Enable
Due to synchronization, there is delay from writing CTRLA.ENABLE until the peripheral is
enabled/disabled. The value written to CTRL.ENABLE will read back immediately and the Enable
Synchronization Busy bit in the Synchronization Busy register (SYNCBUSY.ENABLE) will be set.
SYNCBUSY.ENABLE will be cleared when the operation is complete.
This bit is not enable-protected.
Value Description
0 The peripheral is disabled or being disabled.
1 The peripheral is enabled.

Bit 0 – SWRST Software Reset
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit resets all registers in the SERCOM, except DBGCTRL, to their initial state, and the
SERCOM will be disabled.
Writing ‘1’ to CTRLA.SWRST will always take precedence, meaning that all other writes in the same
write-operation will be discarded. Any register write access during the ongoing reset will result in an
APB error. Reading any register will return the reset value of the register.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 677

Due to synchronization, there is a delay from writing CTRLA.SWRST until the reset is complete.
CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the reset is complete.
This bit is not enable-protected.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description
0 There is no reset operation ongoing.
1 The reset operation is ongoing.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 678

32.8.2 Control B

Name:  CTRLB
Offset:  0x04
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 ACKACT CMD[1:0]

Access R/W W W
Reset 0 0 0

Bit 15 14 13 12 11 10 9 8
 AMODE[1:0] AACKEN GCMD SMEN

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

Access
Reset

Bit 18 – ACKACT Acknowledge Action
This bit defines the client's acknowledge behavior after an address or data byte is received from
the host. The acknowledge action is executed when a command is written to the CMD bits. If smart
mode is enabled (CTRLB.SMEN=1), the acknowledge action is performed when the DATA register is
read.
ACKACT shall not be updated more than once between each peripheral interrupts request.
This bit is not enable-protected.
Value Description
0 Send ACK
1 Send NACK

Bits 17:16 – CMD[1:0] Command
This bit field triggers the client operation as the below. The CMD bits are strobe bits, and
always read as zero. The operation is dependent on the client interrupt flags, INTFLAG.DRDY and
INTFLAG.AMATCH, in addition to STATUS.DIR.
All interrupt flags (INTFLAG.DRDY, INTFLAG.AMATCH and INTFLAG.PREC) are automatically cleared
when a command is given.
This bit is not enable-protected.

Table 32-3. Command Description
CMD[1:0] DIR Action
0x0 X (No action)
0x1 X (Reserved)
0x2 Used to complete a transaction in response to a data interrupt (DRDY)

0 (Host write) Execute acknowledge action succeeded by waiting for any start (S/Sr) condition
1 (Host read) Wait for any start (S/Sr) condition

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 679

...........continued
CMD[1:0] DIR Action
0x3 Used in response to an address interrupt (AMATCH)

0 (Host write) Execute acknowledge action succeeded by reception of next byte
1 (Host read) Execute acknowledge action succeeded by client data interrupt
Used in response to a data interrupt (DRDY)
0 (Host write) Execute acknowledge action succeeded by reception of next byte
1 (Host read) Execute a byte read operation followed by ACK/NACK reception

Bits 15:14 – AMODE[1:0] Address Mode
These bits set the addressing mode.
Value Name Description
0x0 MASK The client responds to the address written in ADDR.ADDR masked by the value in ADDR.ADDRMASK.
0x1 2_ADDRS The client responds to the two unique addresses in ADDR.ADDR and ADDR.ADDRMASK.
0x2 RANGE The client responds to the range of addresses between and including ADDR.ADDR and

ADDR.ADDRMASK. ADDR.ADDR is the upper limit.
0x3 — Reserved.

Bit 10 – AACKEN Automatic Acknowledge Enable
This bit enables the address to be automatically acknowledged if there is an address match.
Value Description
0 Automatic acknowledge is disabled.
1 Automatic acknowledge is enabled.

Bit 9 – GCMD PMBus Group Command
This bit enables PMBus group command support. When enabled, the Stop Received interrupt flag
(INTFLAG.PREC) will be set when a STOP condition is detected if the client has been addressed since
the last STOP condition on the bus.
Value Description
0 Group command is disabled.
1 Group command is enabled.

Bit 8 – SMEN Smart Mode Enable
When smart mode is enabled, data is acknowledged automatically when DATA.DATA is read.
Value Description
0 Smart mode is disabled.
1 Smart mode is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 680

32.8.3 Control C

Name:  CTRLC
Offset:  0x08
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24
 DATA32B

Access R/W
Reset 0

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

Bit 24 – DATA32B Data 32 Bit
This bit enables 32-bit data writes and reads to/from the DATA register.
Value Description
0 Data transaction to/from DATA are 8-bit in size
1 Data transaction to/from DATA are 32-bit in size

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 681

32.8.4 Interrupt Enable Clear

Name:  INTENCLR
Offset:  0x14
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit 7 6 5 4 3 2 1 0
 ERROR DRDY AMATCH PREC

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 – ERROR Error Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Error Interrupt Enable bit, which disables the Error interrupt.
Value Description
0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 2 – DRDY Data Ready Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Data Ready bit, which disables the Data Ready interrupt.
Value Description
0 The Data Ready interrupt is disabled.
1 The Data Ready interrupt is enabled.

Bit 1 – AMATCH Address Match Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Address Match Interrupt Enable bit, which disables the Address
Match interrupt.
Value Description
0 The Address Match interrupt is disabled.
1 The Address Match interrupt is enabled.

Bit 0 – PREC Stop Received Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Stop Received Interrupt Enable bit, which disables the Stop
Received interrupt.
Value Description
0 The Stop Received interrupt is disabled.
1 The Stop Received interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 682

32.8.5 Interrupt Enable Set

Name:  INTENSET
Offset:  0x16
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit 7 6 5 4 3 2 1 0
 ERROR DRDY AMATCH PREC

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 – ERROR Error Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.
Value Description
0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 2 – DRDY Data Ready Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Data Ready bit, which enables the Data Ready interrupt.
Value Description
0 The Data Ready interrupt is disabled.
1 The Data Ready interrupt is enabled.

Bit 1 – AMATCH Address Match Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Address Match Interrupt Enable bit, which enables the Address
Match interrupt.
Value Description
0 The Address Match interrupt is disabled.
1 The Address Match interrupt is enabled.

Bit 0 – PREC Stop Received Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Stop Received Interrupt Enable bit, which enables the Stop Received
interrupt.
Value Description
0 The Stop Received interrupt is disabled.
1 The Stop Received interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 683

32.8.6 Interrupt Flag Status and Clear

Name:  INTFLAG
Offset:  0x18
Reset:  0x00
Property:  -

Bit 7 6 5 4 3 2 1 0
 ERROR DRDY AMATCH PREC

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 – ERROR Error
This bit is set when any error is detected. Errors that will set this flag have corresponding status
flags in the STATUS register. The corresponding bits in STATUS are SEXTTOUT, LOWTOUT, COLL and
BUSERR.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the flag.

Bit 2 – DRDY Data Ready
This flag is set when a I2C client byte transmission is successfully completed.
The flag is cleared by hardware when either:
• Writing to the DATA register.
• Reading the DATA register with Smart mode enabled.
• Writing a valid command to the CMD register.

Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Data Ready Interrupt flag.

Bit 1 – AMATCH Address Match
This flag is set when the I2C client address match logic detects that a valid address has been
received.
The flag is cleared by hardware when CTRL.CMD is written.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Address Match Interrupt flag. When cleared, an ACK/NACK will be
sent according to CTRLB.ACKACT.

Bit 0 – PREC Stop Received
This flag is set when a Stop condition is detected for a transaction being processed. A Stop condition
detected between a bus host and another client will not set this flag, unless the PMBus Group
Command is enabled in the Control B register (CTRLB.GCMD=1).
This flag is cleared by hardware after a command is issued on the next address match.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Stop Received Interrupt flag.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 684

32.8.7 Status

Name:  STATUS
Offset:  0x1A
Reset:  0x0000
Property:  -

Bit 15 14 13 12 11 10 9 8
 LENERR SEXTTOUT

Access R/W R/W
Reset 0 0

Bit 7 6 5 4 3 2 1 0
 CLKHOLD LOWTOUT SR DIR RXNACK COLL BUSERR

Access R R/W R R R R/W R/W
Reset 0 0 0 0 0 0 0

Bit 11 – LENERR Transaction Length Error
This bit is set when the length counter is enabled (LENGTH.LENEN) and a STOP or repeated START is
received before or after the length in LENGTH.LEN is reached.
This bit is cleared automatically if responding to a new start condition with ACK or NACK (write 3 to
CTRLB.CMD) or when INTFLAG.AMATCH is cleared.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the status.
Value Description
0 No length error has occurred.
1 Length error has occurred.

Bit 9 – SEXTTOUT Client SCL Low Extend Time-Out
This bit is set if a client SCL low extend time-out occurs.
This bit is cleared automatically if responding to a new start condition with ACK or NACK (write 3 to
CTRLB.CMD) or when INTFLAG.AMATCH is cleared.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the status.
Value Description
0 No SCL low extend time-out has occurred.
1 SCL low extend time-out has occurred.

Bit 7 – CLKHOLD Clock Hold
The client Clock Hold bit (STATUS.CLKHOLD) is set when the client is holding the SCL line low,
stretching the I2C clock. Software must consider this bit a read-only status flag that is set when
INTFLAG.DRDY or INTFLAG.AMATCH is set.
This bit is automatically cleared when the corresponding interrupt is also cleared.

Bit 6 – LOWTOUT SCL Low Time-out
This bit is set if an SCL low time-out occurs.
This bit is cleared automatically if responding to a new start condition with ACK or NACK (write 3 to
CTRLB.CMD) or when INTFLAG.AMATCH is cleared.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the status.
Value Description
0 No SCL low time-out has occurred.
1 SCL low time-out has occurred.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 685

Bit 4 – SR Repeated Start
When INTFLAG.AMATCH is raised due to an address match, SR indicates a repeated start or start
condition.
This flag is only valid while the INTFLAG.AMATCH flag is one.
Value Description
0 Start condition on last address match
1 Repeated start condition on last address match

Bit 3 – DIR Read / Write Direction
The Read/Write Direction (STATUS.DIR) bit stores the direction of the last address packet received
from a host .
Value Description
0 Host write operation is in progress.
1 Host read operation is in progress.

Bit 2 – RXNACK Received Not Acknowledge
This bit indicates whether the last data packet sent was acknowledged or not.
Value Description
0 Host responded with ACK.
1 Host responded with NACK.

Bit 1 – COLL Transmit Collision
If set, the I2C client was not able to transmit a high data or NACK bit, the I2C client will immediately
release the SDA and SCL lines and wait for the next packet addressed to it.
This flag is intended for the SMBus address resolution protocol (ARP). A detected collision in non-
ARP situations indicates that there has been a protocol violation, and must be treated as a bus error.
Note: This status will not trigger any interrupt, and must be checked by software to verify that the
data were sent correctly. This bit is cleared automatically if responding to an address match with an
ACK or a NACK (writing 0x3 to CTRLB.CMD), or INTFLAG.AMATCH is cleared.

Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the status.
Value Description
0 No collision detected on last data byte sent.
1 Collision detected on last data byte sent.

Bit 0 – BUSERR Bus Error
The Bus Error bit (STATUS.BUSERR) indicates that an illegal bus condition has occurred on the
bus, regardless of bus ownership. An illegal bus condition is detected if a protocol violating start,
repeated start or stop is detected on the I2C bus lines. A start condition directly followed by a stop
condition is one example of a protocol violation. If a time-out occurs during a frame, this is also
considered a protocol violation, and will set STATUS.BUSERR.
This bit is cleared automatically if responding to an address match with an ACK or a NACK (writing
0x3 to CTRLB.CMD) or INTFLAG.AMATCH is cleared.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the status.
Value Description
0 No bus error detected.
1 Bus error detected.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 686

32.8.8 Synchronization Busy

Name:  SYNCBUSY
Offset:  0x1C
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 ENABLE SWRST

Access R R
Reset 0 0

Bit 1 – ENABLE SERCOM Enable Synchronization Busy
Enabling and disabling the SERCOM (CTRLA.ENABLE) requires synchronization. Ongoing
synchronization is indicated by SYNCBUSY.ENABLE = 1 until synchronization is complete.
Value Description
0 Enable synchronization is not busy.
1 Enable synchronization is busy.

Bit 0 – SWRST Software Reset Synchronization Busy
Resetting the SERCOM (CTRLA.SWRST) requires synchronization. Ongoing synchronization is
indicated by SYNCBUSY.SWRST = 1 until synchronization is complete.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description
0 SWRST synchronization is not busy.
1 SWRST synchronization is busy.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 687

32.8.9 Address

Name:  ADDR
Offset:  0x24
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24
 ADDRMASK[9:7]

Access R/W R/W R/W
Reset 0 0 0

Bit 23 22 21 20 19 18 17 16
 ADDRMASK[6:0]

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 ADDR[9:7]

Access R/W R/W R/W
Reset 0 0 0

Bit 7 6 5 4 3 2 1 0
 ADDR[6:0] GENCEN

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 26:17 – ADDRMASK[9:0] Address Mask
These bits act as a second address match register, an address mask register or the lower limit of an
address range, depending on the CTRLB.AMODE setting.

Bits 10:1 – ADDR[9:0] Address
These bits contain the I2C client address used by the client address match logic to determine if a
host has addressed the client.
When using 7-bit addressing, the client address is represented by ADDR[6:0].
When the address match logic detects a match, INTFLAG.AMATCH is set and STATUS.DIR is updated
to indicate whether it is a read or a write transaction.

Bit 0 – GENCEN General Call Address Enable
A general call address is an address consisting of all-zeroes, including the direction bit (host write).
Value Description
0 General call address recognition disabled.
1 General call address recognition enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 688

32.8.10 Data

Name:  DATA
Offset:  0x28
Reset:  0x00000000
Property:  Read/Write

Bit 31 30 29 28 27 26 25 24
 DATA[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 DATA[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 DATA[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 DATA[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – DATA[31:0] Data
The client data register I/O location (DATA.DATA) provides access to the host transmit and receive
data buffers. Reading valid data or writing data to be transmitted can be successfully done only
when SCL is held low by the client (STATUS.CLKHOLD is set). An exception occurs when reading the
last data byte after the stop condition has been received.
Accessing DATA.DATA auto-triggers I2C bus operations. The operation performed depends on the
state of CTRLB.ACKACT, CTRLB.SMEN and the type of access (read/write).
When CTRLC.DATA32B=1, read and write transactions from/to the DATA register are 32 bit in size.
Otherwise, reads and writes are 8 bit.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 689

32.9 Register Summary - I2C Host

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x00 CTRLA

7:0 RUNSTDBY MODE[2:0] ENABLE SWRST
15:8

23:16 SEXTTOEN MEXTTOEN SDAHOLD[1:0] PINOUT
31:24 LOWTOUT INACTOUT[1:0] SCLSM SPEED[1:0]

0x04 CTRLB

7:0
15:8 QCEN SMEN

23:16 ACKACT CMD[1:0]
31:24

0x08
...

0x0B
Reserved

0x0C BAUD

7:0 BAUD[7:0]
15:8 BAUDLOW[7:0]

23:16
31:24

0x10
...

0x13
Reserved

0x14 INTENCLR 7:0 ERROR SB MB
0x15 Reserved
0x16 INTENSET 7:0 ERROR SB MB
0x17 Reserved
0x18 INTFLAG 7:0 ERROR SB MB
0x19 Reserved

0x1A STATUS
7:0 CLKHOLD LOWTOUT BUSSTATE[1:0] RXNACK ARBLOST BUSERR

15:8 LENERR SEXTTOUT MEXTTOUT

0x1C SYNCBUSY

7:0 SYSOP ENABLE SWRST
15:8

23:16
31:24

0x20
...

0x23
Reserved

0x24 ADDR

7:0 ADDR[7:0]
15:8 TENBITEN LENEN ADDR[10:8]

23:16 LEN[7:0]
31:24

0x28 DATA

7:0 DATA[7:0]
15:8 DATA[15:8]

23:16 DATA[23:16]
31:24 DATA[31:24]

0x2C
...

0x2F
Reserved

0x30 DBGCTRL 7:0 DBGSTOP

32.10 Register Description – I2C Host
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the “PAC Write-Protection” property in each individual register
description.

Some registers are synchronized when read and/or written. Synchronization is denoted by the
“Write-Synchronized” or the “Read-Synchronized” property in each individual register description.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 690

Some registers are enable-protected, meaning they can only be written when the peripheral is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register
description.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 691

32.10.1 Control A

Name:  CTRLA
Offset:  0x00
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit 31 30 29 28 27 26 25 24
 LOWTOUT INACTOUT[1:0] SCLSM SPEED[1:0]

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 SEXTTOEN MEXTTOEN SDAHOLD[1:0] PINOUT

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 RUNSTDBY MODE[2:0] ENABLE SWRST

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 30 – LOWTOUT SCL Low Time-Out
This bit enables the SCL low time-out. If SCL is held low for 25ms-35ms, the host will release its
clock hold, if enabled, and complete the current transaction. A stop condition will automatically be
transmitted.
INTFLAG.SB or INTFLAG.MB will be set as normal, but the clock hold will be released. The
STATUS.LOWTOUT and STATUS.BUSERR status bits will be set.
This bit is not synchronized.
Value Description
0 Time-out disabled.
1 Time-out enabled.

Bits 29:28 – INACTOUT[1:0] Inactive Time-Out
If the inactive bus time-out is enabled and the bus is inactive for longer than the time-out setting,
the bus state logic will be set to idle. An inactive bus arise when either an I2C host or client is holding
the SCL low.
Enabling this option is necessary for SMBus compatibility, but can also be used in a non-SMBus
set-up.
Calculated time-out periods are based on a 100kHz baud rate.
These bits are not synchronized.
Value Name Description
0x0 DIS Disabled
0x1 55US 5-6 SCL cycle time-out (50-60µs)
0x2 105US 10-11 SCL cycle time-out (100-110µs)
0x3 205US 20-21 SCL cycle time-out (200-210µs)

Bit 27 – SCLSM SCL Clock Stretch Mode
This bit controls when SCL will be stretched for software interaction.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 692

This bit is not synchronized.
Value Description
0 SCL stretch according to Figure 32-5
1 SCL stretch only after ACK bit, Figure 32-6

Bits 25:24 – SPEED[1:0] Transfer Speed
These bits define bus speed.
These bits are not synchronized.
Value Description
0x0 Standard-mode (Sm) up to 100 kHz and Fast-mode (Fm) up to 400 kHz
0x1 Fast-mode Plus (Fm+) up to 1 MHz
0x2 Reserved
0x3 Reserved

Bit 23 – SEXTTOEN Client SCL Low Extend Time-Out
This bit enables the client SCL low extend time-out. If SCL is cumulatively held low for greater than
25ms from the initial START to a STOP, the host will release its clock hold if enabled, and complete
the current transaction. A STOP will automatically be transmitted.
SB or MB will be set as normal, but CLKHOLD will be release. The MEXTTOUT and BUSERR status bits
will be set.
This bit is not synchronized.
Value Description
0 Time-out disabled
1 Time-out enabled

Bit 22 – MEXTTOEN Host SCL Low Extend Time-Out
This bit enables the host SCL low extend time-out. If SCL is cumulatively held low for greater than
10ms from START-to-ACK, ACK-to-ACK, or ACK-to-STOP the host will release its clock hold if enabled,
and complete the current transaction. A STOP will automatically be transmitted.
SB or MB will be set as normal, but CLKHOLD will be released. The MEXTTOUT and BUSERR status
bits will be set.
This bit is not synchronized.
Value Description
0 Time-out disabled
1 Time-out enabled

Bits 21:20 – SDAHOLD[1:0] SDA Hold Time
These bits define the SDA hold time with respect to the negative edge of SCL.
These bits are not synchronized.
Value Name Description
0x0 DIS Disabled
0x1 75NS 50-100ns hold time
0x2 450NS 300-600ns hold time
0x3 600NS 400-800ns hold time

Bit 16 – PINOUT Pin Usage
This bit set the pin usage to either two- or four-wire operation:
This bit is not synchronized.
Value Description
0 4-wire operation disabled.
1 4-wire operation enabled.

Bit 7 – RUNSTDBY Run in Standby
This bit defines the functionality in standby sleep mode.
This bit is not synchronized.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 693

Value Description
0 GCLK_SERCOMx_CORE is disabled and the I2C host will not operate in standby sleep mode.
1 GCLK_SERCOMx_CORE is enabled in all sleep modes.

Bits 4:2 – MODE[2:0] Operating Mode
These bits must be written to 0x5 to select the I2C host serial communication interface of the
SERCOM.
These bits are not synchronized.

Bit 1 – ENABLE Enable
Due to synchronization, there is delay from writing CTRLA.ENABLE until the peripheral is
enabled/disabled. The value written to CTRL.ENABLE will read back immediately and the
Synchronization Enable Busy bit in the Synchronization Busy register (SYNCBUSY.ENABLE) will be
set. SYNCBUSY.ENABLE will be cleared when the operation is complete.
This bit is not enable-protected.
Value Description
0 The peripheral is disabled or being disabled.
1 The peripheral is enabled.

Bit 0 – SWRST Software Reset
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit resets all registers in the SERCOM, except DBGCTRL, to their initial state, and the
SERCOM will be disabled.
Writing ‘1’ to CTRLA.SWRST will always take precedence, meaning that all other writes in the same
write-operation will be discarded. Any register write access during the ongoing reset will result in an
APB error. Reading any register will return the reset value of the register.
Due to synchronization there is a delay from writing CTRLA.SWRST until the reset is complete.
CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the reset is complete.
This bit is not enable-protected.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description
0 There is no reset operation ongoing.
1 The reset operation is ongoing.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 694

32.10.2 Control B

Name:  CTRLB
Offset:  0x04
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 ACKACT CMD[1:0]

Access R/W W W
Reset 0 0 0

Bit 15 14 13 12 11 10 9 8
 QCEN SMEN

Access R/W R/W
Reset 0 0

Bit 7 6 5 4 3 2 1 0

Access
Reset

Bit 18 – ACKACT Acknowledge Action
This bit defines the I2C Host's acknowledge behavior after a data byte is received from the I2C Client.
The acknowledge action is executed when a command is written to CTRLB.CMD, or if Smart mode is
enabled (CTRLB.SMEN is written to one), when DATA.DATA is read.
This bit is not enable-protected.
This bit is not write-synchronized.
Value Description
0 Send ACK.
1 Send NACK.

Bits 17:16 – CMD[1:0] Command
Writing these bits triggers a Host operation as described below. The CMD bits are strobe bits, and
always read as zero. The acknowledge action is only valid in Host Read mode. In Host Write mode, a
command will only result in a repeated Start or Stop condition. The CTRLB.ACKACT bit and the CMD
bits can be written at the same time, and then the acknowledge action will be updated before the
command is triggered.
Commands can only be issued when either the Client on Bus Interrupt flag (INTFLAG.SB) or Host on
Bus Interrupt flag (INTFLAG.MB) is '1'.
If CMD 0x1 is issued, a repeated start will be issued followed by the transmission of the current
address in ADDR.ADDR. If another address is desired, ADDR.ADDR must be written instead of the
CMD bits. This will trigger a repeated start followed by transmission of the new address.
Issuing a command will set the System Operation bit in the Synchronization Busy register
(SYNCBUSY.SYSOP).

Table 32-4. Command Description
CMD[1:0] Direction Action
0x0 X (No action)

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 695

...........continued
CMD[1:0] Direction Action
0x1 X Execute acknowledge action succeeded by repeated Start
0x2 0 (Write) No operation

1 (Read) Execute acknowledge action succeeded by a byte read operation
0x3 X Execute acknowledge action succeeded by issuing a Stop condition

These bits are not enable-protected.

Bit 9 – QCEN Quick Command Enable
This bit is not write-synchronized.
Value Description
0 Quick Command is disabled.
1 Quick Command is enabled.

Bit 8 – SMEN Smart Mode Enable
When Smart mode is enabled, acknowledge action is sent when DATA.DATA is read.
This bit is not write-synchronized.
Value Description
0 Smart mode is disabled.
1 Smart mode is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 696

32.10.3 Baud Rate

Name:  BAUD
Offset:  0x0C
Reset:  0x0000
Property:  PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 BAUDLOW[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 BAUD[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 15:8 – BAUDLOW[7:0] Host Baud Rate Low
If this bit field is non-zero, the SCL low time will be described by the value written.
For more details on how to calculate the frequency, see Clock Generation – Baud-Rate Generator from
Related Links.

Bits 7:0 – BAUD[7:0] Host Baud Rate
This bit field is used to derive the SCL high time if BAUD.BAUDLOW is non-zero. If BAUD.BAUDLOW is
zero, BAUD will be used to generate both high and low periods of the SCL.
For more details on how to calculate the frequency, see Clock Generation – Baud-Rate Generator from
Related Links.
Related Links
29.6.2.3. Clock Generation – Baud-Rate Generator

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 697

32.10.4 Interrupt Enable Clear

Name:  INTENCLR
Offset:  0x14
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit 7 6 5 4 3 2 1 0
 ERROR SB MB

Access R/W R/W R/W
Reset 0 0 0

Bit 7 – ERROR Error Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Error Interrupt Enable bit, which disables the Error interrupt.
Value Description
0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 1 – SB Client on Bus Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Client on Bus Interrupt Enable bit, which disables the Client on Bus
interrupt.
Value Description
0 The Client on Bus interrupt is disabled.
1 The Client on Bus interrupt is enabled.

Bit 0 – MB Host on Bus Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Host on Bus Interrupt Enable bit, which disables the Host on Bus
interrupt.
Value Description
0 The Host on Bus interrupt is disabled.
1 The Host on Bus interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 698

32.10.5 Interrupt Enable Set

Name:  INTENSET
Offset:  0x16
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit 7 6 5 4 3 2 1 0
 ERROR SB MB

Access R/W R/W R/W
Reset 0 0 0

Bit 7 – ERROR Error Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.
Value Description
0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 1 – SB Client on Bus Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Client on Bus Interrupt Enable bit, which enables the Client on Bus
interrupt.
Value Description
0 The Client on Bus interrupt is disabled.
1 The Client on Bus interrupt is enabled.

Bit 0 – MB Host on Bus Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Host on Bus Interrupt Enable bit, which enables the Host on Bus
interrupt.
Value Description
0 The Host on Bus interrupt is disabled.
1 The Host on Bus interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 699

32.10.6 Interrupt Flag Status and Clear

Name:  INTFLAG
Offset:  0x18
Reset:  0x00
Property:  -

Bit 7 6 5 4 3 2 1 0
 ERROR SB MB

Access R/W R/W R/W
Reset 0 0 0

Bit 7 – ERROR Error
This flag is cleared by writing '1' to it.
This bit is set when any error is detected. Errors that will set this flag have corresponding status bits
in the STATUS register. These status bits are LENERR, SEXTTOUT, MEXTTOUT, LOWTOUT, ARBLOST,
and BUSERR.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 1 – SB Client on Bus
The Client on Bus flag (SB) is set when a byte is successfully received in Host Read mode, for
example, no arbitration lost or bus error occurred during the operation. When this flag is set, the
host forces the SCL line low, stretching the I2C clock period. The SCL line will be released and SB will
be cleared on one of the following actions:
• Writing to ADDR.ADDR
• Writing to DATA.DATA
• Reading DATA.DATA when Smart mode is enabled (CTRLB.SMEN)
• Writing a valid command to CTRLB.CMD

Writing '1' to this bit location will clear the SB flag. The transaction will not continue or be terminated
until one of the above actions is performed.
Writing '0' to this bit has no effect.

Bit 0 – MB Host on Bus
This flag is set when a byte is transmitted in Host Write mode. The flag is set regardless of the
occurrence of a bus error or an Arbitration Lost condition. MB is also set when arbitration is lost
during sending of NACK in Host Read mode, or when issuing a Start condition if the bus state is
unknown. When this flag is set and arbitration is not lost, the host forces the SCL line low, stretching
the I2C clock period. The SCL line will be released and MB will be cleared on one of the following
actions:
• Writing to ADDR.ADDR
• Writing to DATA.DATA
• Reading DATA.DATA when Smart mode is enabled (CTRLB.SMEN)
• Writing a valid command to CTRLB.CMD

Writing '1' to this bit location will clear the MB flag. The transaction will not continue or be
terminated until one of the above actions is performed.
Writing '0' to this bit has no effect.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 700

32.10.7 Status

Name:  STATUS
Offset:  0x1A
Reset:  0x0000
Property:  Write-Synchronized

Bit 15 14 13 12 11 10 9 8
 LENERR SEXTTOUT MEXTTOUT

Access R/W R/W R/W
Reset 0 0 0

Bit 7 6 5 4 3 2 1 0
 CLKHOLD LOWTOUT BUSSTATE[1:0] RXNACK ARBLOST BUSERR

Access R R/W R/W R/W R R/W R/W
Reset 0 0 0 0 0 0 0

Bit 10 – LENERR Transaction Length Error
This bit is set when automatic length is used for a DMA transaction and the client sends a NACK
before ADDR.LEN bytes have been written by the host.
Writing '1' to this bit location will clear STATUS.LENERR. This flag is automatically cleared when
writing to the ADDR register.
Writing '0' to this bit has no effect.
This bit is not write-synchronized.

Bit 9 – SEXTTOUT Client SCL Low Extend Time-Out
This bit is set if a client SCL low extend time-out occurs.
This bit is automatically cleared when writing to the ADDR register.
Writing '1' to this bit location will clear SEXTTOUT. Normal use of the I2C interface does not require
the SEXTTOUT flag to be cleared by this method.
Writing '0' to this bit has no effect.
This bit is not write-synchronized.

Bit 8 – MEXTTOUT Host SCL Low Extend Time-Out
This bit is set if a Host SCL low time-out occurs.
Writing '1' to this bit location will clear STATUS.MEXTTOUT. This flag is automatically cleared when
writing to the ADDR register.
Writing '0' to this bit has no effect.
This bit is not write-synchronized.

Bit 7 – CLKHOLD Clock Hold
This bit is set when the host is holding the SCL line low, stretching the I2C clock. Software must
consider this bit when INTFLAG.SB or INTFLAG.MB is set.
This bit is cleared when the corresponding Interrupt flag is cleared and the next operation is given.
Writing '0' to this bit has no effect.
Writing '1' to this bit has no effect.
This bit is not write-synchronized.

Bit 6 – LOWTOUT SCL Low Time-Out
This bit is set if an SCL low time-out occurs.
Writing '1' to this bit location will clear this bit. This flag is automatically cleared when writing to the
ADDR register.
Writing '0' to this bit has no effect.
This bit is not write-synchronized.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 701

Bits 5:4 – BUSSTATE[1:0] Bus State
These bits indicate the current I2C Bus state.
When in UNKNOWN state, writing 0x1 to BUSSTATE forces the bus state into the IDLE state. The bus
state cannot be forced into any other state.
Writing BUSSTATE to idle will set SYNCBUSY.SYSOP.
Value Name Description
0x0 UNKNOWN The Bus state is unknown to the I2C host and will wait for a Stop condition to be detected or wait

to be forced into an Idle state by software
0x1 IDLE The Bus state is waiting for a transaction to be initialized
0x2 OWNER The I2C host is the current owner of the bus
0x3 BUSY Some other I2C host owns the bus

Bit 2 – RXNACK Received Not Acknowledge
This bit indicates whether the last address or data packet sent was acknowledged or not.
Writing '0' to this bit has no effect.
Writing '1' to this bit has no effect.
This bit is not write-synchronized.
Value Description
0 Client responded with ACK.
1 Client responded with NACK.

Bit 1 – ARBLOST Arbitration Lost
This bit is set if arbitration is lost while transmitting a high data bit or a NACK bit, or while issuing a
Start or Repeated Start condition on the bus. The Host on Bus Interrupt flag (INTFLAG.MB) will be set
when STATUS.ARBLOST is set.
Writing the ADDR.ADDR register will automatically clear STATUS.ARBLOST.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear it.
This bit is not write-synchronized.

Bit 0 – BUSERR Bus Error
This bit indicates that an illegal Bus condition has occurred on the bus, regardless of bus ownership.
An illegal Bus condition is detected if a protocol violating start, repeated start or stop is detected on
the I2C bus lines. A Start condition directly followed by a Stop condition is one example of a protocol
violation. If a time-out occurs during a frame, this is also considered a protocol violation, and will set
BUSERR.
If the I2C host is the bus owner at the time a bus error occurs, STATUS.ARBLOST and INTFLAG.MB will
be set in addition to BUSERR.
Writing the ADDR.ADDR register will automatically clear the BUSERR flag.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear it.
This bit is not write-synchronized.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 702

32.10.8 Synchronization Busy

Name:  SYNCBUSY
Offset:  0x1C
Reset:  0x00000000

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 SYSOP ENABLE SWRST

Access R R R
Reset 0 0 0

Bit 2 – SYSOP System Operation Synchronization Busy
Value Description
0 System operation synchronization is not busy.
1 System operation synchronization is busy.

Bit 1 – ENABLE SERCOM Enable Synchronization Busy
Enabling and disabling the SERCOM (CTRLA.ENABLE) requires synchronization. When written, the
SYNCBUSY.ENABLE bit will be set until synchronization is complete.
Value Description
0 Enable synchronization is not busy.
1 Enable synchronization is busy.

Bit 0 – SWRST Software Reset Synchronization Busy
Resetting the SERCOM (CTRLA.SWRST) requires synchronization. When written, the
SYNCBUSY.SWRST bit will be set until synchronization is complete.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description
0 SWRST synchronization is not busy.
1 SWRST synchronization is busy.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 703

32.10.9 Address

Name:  ADDR
Offset:  0x24
Reset:  0x0000
Property:  Write-Synchronized

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 LEN[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 TENBITEN LENEN ADDR[10:8]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 ADDR[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:16 – LEN[7:0] Transaction Length
These bits define the transaction length of a DMA transaction from 0 to 255 bytes. The Transfer
Length Enable (LENEN) bit must be written to '1' in order to use DMA.

Bit 15 – TENBITEN Ten Bit Addressing Enable
This bit enables 10-bit addressing. This bit can be written simultaneously with ADDR to indicate a
10-bit or 7-bit address transmission.
Value Description
0 10-bit addressing disabled.
1 10-bit addressing enabled.

Bit 13 – LENEN Transfer Length Enable
Value Description
0 Automatic transfer length disabled.
1 Automatic transfer length enabled.

Bits 10:0 – ADDR[10:0] Address
When ADDR is written, the consecutive operation will depend on the bus state:
UNKNOWN: INTFLAG.MB and STATUS.BUSERR are set, and the operation is terminated.
BUSY: The I2C host will await further operation until the bus becomes IDLE.
IDLE: The I2C host will issue a start condition followed by the address written in ADDR. If the address
is acknowledged, SCL is forced and held low, and STATUS.CLKHOLD and INTFLAG.MB are set.
OWNER: A repeated start sequence will be performed. If the previous transaction was a read, the
acknowledge action is sent before the repeated start bus condition is issued on the bus. Writing
ADDR to issue a repeated start is performed while INTFLAG.MB or INTFLAG.SB is set.
STATUS.BUSERR, STATUS.ARBLOST, INTFLAG.MB and INTFLAG.SB will be cleared when ADDR is
written.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 704

The ADDR register can be read at any time without interfering with ongoing bus activity, as a read
access does not trigger the host logic to perform any bus protocol related operations.
The I2C host control logic uses bit 0 of ADDR as the bus protocol’s read/write flag (R/W); 0 for write
and 1 for read.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 705

32.10.10 Data

Name:  DATA
Offset:  0x28
Reset:  0x00000000
Property:  Read/Write

Bit 31 30 29 28 27 26 25 24
 DATA[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 DATA[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 DATA[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 DATA[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – DATA[31:0] Data
The host data register I/O location (DATA) provides access to the host transmit and receive data
buffers. Reading valid data or writing data to be transmitted can be successfully done only when SCL
is held low by the host (STATUS.CLKHOLD is set). An exception is reading the last data byte after the
stop condition has been sent.
Accessing DATA.DATA auto-triggers I2C bus operations. The operation performed depends on the
state of CTRLB.ACKACT, CTRLB.SMEN and the type of access (read/write).
When CTRLC.DATA32B=1, read and write transactions from/to the DATA register are 32 bit in size.
Otherwise, reads and writes are 8 bit.

 PIC32CX-BZ2 and WBZ45 Family
SERCOM Inter-Integrated Circuit (SERCOM I2C)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 706

32.10.11 Debug Control

Name:  DBGCTRL
Offset:  0x30
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 DBGSTOP

Access R/W
Reset 0

Bit 0 – DBGSTOP Debug Stop Mode
This bit controls functionality when the CPU is halted by an external debugger.
Value Description
0 The baud-rate generator continues normal operation when the CPU is halted by an external debugger.
1 The baud-rate generator is halted when the CPU is halted by an external debugger.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 707

33. Quad Serial Peripheral Interface (QSPI)
33.1 Overview

The Quad SPI Interface (QSPI) circuit is a synchronous serial data link that provides communication
with external devices in Host mode.

The QSPI can be used in “SPI mode” to interface serial peripherals, such as ADCs, DACs, LCD
controllers and sensors, or in “Serial Memory Mode” to interface serial Flash memories.

The QSPI allows the system to execute code directly from a serial Flash memory (XIP) without code
shadowing to SRAM. The serial Flash memory mapping is seen in the system as other memories
(ROM, SRAM, DRAM, embedded Flash memories, etc.,).

With the support of the quad-SPI protocol, the QSPI allows the system to use high performance
serial Flash memories which are small and inexpensive, in place of larger and more expensive
parallel Flash memories.

Note: Traditional Quad SPI Interface (QSPI) documentation uses the terminology “Master” and
“Slave”. The equivalent Microchip terminology used in this document is “Host” and “Client”
respectively.

33.2 Features
• Host SPI Interface:

– Programmable clock phase and clock polarity
– Programmable transfer delays between consecutive transfers, between clock and data,

between deactivation and activation of chip select (CS)
• SPI Mode:

– To use serial peripherals, such as ADCs, DACs, LCD controllers, and sensors
– 8-bit, 16-bit, or 32-bit programmable data length

• Serial Memory Mode:
– To use serial Flash memories operating in single-bit SPI, Dual SPI and Quad SPI
– Supports “execute in place” (XIP). The system can execute code directly from a Serial Flash

memory
– Flexible instruction register, to be compatible with all serial Flash memories
– 32-bit Address mode (default is 24-bit address) to support serial Flash memories larger than

128 Mbit
– Continuous Read mode
– Scrambling/Unscrambling “On-the-Fly”
– Double data rate support

• Connection to DMA Channel Capabilities Optimizes Data Transfers
– One channel for the receiver and one channel for the transmitter

• Register Write Protection

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 708

33.3 Block Diagram
Figure 33-1. QSPI Block Diagram

DMA

Peripheral
Bridge

APB

AHB
MATRIX

CPU

PBx_CLK

QSPI

Interrupt Control

QSPI Interrupt

SCK

MOSI/DATA0

MISO/DATA1

DATA2

DATA3

CS

Clock Source
Generator

(CLK_GEN)

(CLK_QSPI_APB)

sys_clk
(CLK_QSPI_AHB)

33.4 Signal Description
Table 33-1. Quad-SPI Signals
Signal Description Type

SCK Serial Clock Output

CS Chip Select Output

MOSI(DATA0) Data Output (Data Input Output 0) Output (Input/Output)

MISO(DATA1) Data Input (Data Input Output 1) Input (Input/Output)

DATA2 Data Input Output 2 Input/Output

DATA3 Data Input Output 3 Input/Output

Notes: 
1. MOSI and MISO are used for single-bit SPI operation.
2. DATA0-DATA1 are used for Dual SPI operation.
3. DATA0-DATA3 are used for Quad SPI operation.

See I/O Ports and Peripheral Pin Select (PPS) from Related Links for details on the pin mapping for the
QSPI peripheral.

Related Links
6. I/O Ports and Peripheral Pin Select (PPS)

33.5 Product Dependencies
In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

33.5.1 I/O Lines
Using the QSPI I/O lines requires the I/O pins to be configured.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 709

33.5.2 Power Management
The QSPI will continue to operate in any Sleep mode where the selected source clock is running. The
QSPI interrupts can be used to wake up the device from sleep modes. See Power Management Unit
(PMU) from Related Links for details on the different sleep modes.

Related Links
15. Power Management Unit (PMU)

33.5.3 Clocks
An AHB clock (CLK_QSPI_AHB) is required to clock the QSPI. This clock can be enabled and disabled
in the CRU.

A FAST clock (CLK_QSPI2X_AHB) is required to clock the QSPI. This clock can be enabled and disabled
in the CFGCON1 register, bit 29 (CFGCON1.QSPIDDRM). When using QSPI DDR mode, the System
Clock (SYS_CLK) must be <= 48 MHz.

Figure 33-2. QSPI Clock Organization

QSPI

CPU Clock
Domain: fCPU

HS Clock
Domain: fHS

CLK_QSPI2X_AHB

CLK_QSPI_AHB

CLK_QSPI_APB

Important:  The CLK_QSPI2x_AHB must be 2 times faster to CLK_QSPI_AHB when
the QSPI is operated in DDR mode. In SDR, the CLK_QSPI2x_AHB is not used.

CLK_QSPI_APB, CLK_QSPI_AHB and CLK_QSPI2X_AHB, respectively, are all synchronous but can be
divided by a prescaler and may run even when the module clock is turned off.

33.5.4 DMA
The DMA request lines are connected to the DMA Controller (DMAC). Using the QSPI DMA requests
requires the DMA Controller to be configured first.

Note: DMAC write access must be 32-bit aligned. If a single byte is to be written in a 32-bit word, the
rest of the word must be filled with 'ones'.

33.5.5 Interrupts
The interrupt request lines are connected to the interrupt controller. Using the QSPI interrupts
requires the interrupt controller to be configured first. See Nested Vector Interrupt Controller (NVIC)
from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

33.5.6 Events
Not applicable.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 710

33.5.7 Debug Operation
When the CPU is halted in debug mode the QSPI continues normal operation. If the QSPI is
configured in a way that requires it to be periodically serviced by the CPU through interrupts or
similar, improper operation or data loss may result during debugging.

33.5.8 Register Access Protection
All registers with write-access are optionally write-protected by the peripheral access controller
(PAC), except the following registers:

• Control A (CTRLA) register
• Transmit Data (TXDATA) register
• Interrupt Flag Status and Clear (INTFLAG) register
• Scrambling Key (SCRAMBKEY) register

PAC write-protection is denoted by the ‘PAC Write-Protection’ property in the register description.

Write-protection does not apply to accesses through an external debugger.

33.6 Functional Description

33.6.1 Principle of Operation
The QSPI is a high-speed synchronous data transfer interface. It allows high-speed communication
between the device and peripheral or serial memory devices.

The QSPI operates as a host. It initiates and controls all data transactions.

When transmitting, the TXDATA register can be loaded with the next character to be transmitted
during the current transmission.

When receiving, the data is transferred to the RXDATA register, and the receiver is ready for a new
character.

33.6.2 Basic Operation
33.6.2.1 Initialization

After Power-On Reset, this peripheral is enabled .

33.6.2.2 Enabling, Disabling and Resetting
The peripheral is enabled by writing a ‘1’ to the Enable bit in the Control A register (CTRLA.ENABLE).

The peripheral is disabled by writing a ‘0’ to CTRLA.ENABLE.

The peripheral is reset by writing a ‘1’ to the Software Reset bit (CTRLA.SWRST).

33.6.3 Transfer Data Rate
By default, the QSPI module is enabled in single data rate mode. In this operating mode, the
CLK_QSPI2X_AHB clock is not used and must be disabled.

The dual data rate operating mode is enabled by writing a ‘1’ to the Double Data Rate Enable bit
in the CFGCON1 register (CFGCON1.QSPIDDRM). This operating mode requires the CLK_QSPI2X_AHB
clock and must be enabled before writing the DDREN bit.

33.6.4 Serial Clock Baud Rate
The QSPI Baud rate clock is generated by dividing the module clock (CLK_QSPI_AHB) by a value
between 1 and 255.

This allows a maximum operating baud rate at up to Host Clock and a minimum operating baud rate
of CLK_QSPI_AHB divided by 255.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 711

33.6.5 Serial Clock Phase and Polarity
Four combinations of polarity and phase are available for data transfers. Writing the Clock Polarity
bit in the QSPI Baud register (BAUD.CPOL) selects the polarity. The Clock Phase bit in the BAUD
register programs the clock phase (BAUD.CPHA). These two parameters determine the edges of the
clock signal on which data is driven and sampled. Each of the two parameters has two possible
states, resulting in four possible combinations
Note:  The polarity/phase combinations are incompatible. Thus, the interfaced client must use the
same parameter values to communicate.

Table 33-2. SPI Transfer Mode
Clock Mode BAUD.CPOL BAUD.CPHA Shift SCK Edge Capture SCK Edge SCK Inactive Level

0 0 0 Falling Rising Low

1 0 1 Rising Falling Low

2 1 0 Rising Falling High

3 1 1 Falling Rising High

Figure 33-3. QSPI Transfer Modes (BAUD.CPHA = 0, 8-bit transfer)

*

SCK Cycle (for reference) 1 2 3 4 5 6 7 8

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(from host)

MISO
(from client)

CS
(to client)

LSBMSB 123456

LSBMSB 123456

* Not defined, but normally MSB of previous character received

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 712

Figure 33-4. QSPI Transfer Modes (BAUD.CPHA = 1, 8-bit transfer)

*

SCK Cycle (for reference) 1 2 3 4 5 6 7 8

SCK
(CPOL = 0)

MOSI
(from host)

MISO
(from client)

CS
(to client)

* Not defined, but normally LSB of previous character received

LSBMSB 123456

LSBMSB 123456

33.6.6 Transfer Delays
The QSPI supports several consecutive transfers while the chip select is active. Three delays can be
programmed to modify the transfer waveforms:

• The delay between the inactivation and the activation of CS is programmed by writing the
Minimum Inactive CS Delay bit field in the Control B register (CTRLB.DLYCS), allowing to tune
the minimum time of CS at high level.

• The delay between consecutive transfers is programmed by writing the Delay Between
Consecutive Transfers bit field in the Control B register (CTRLB.DLYBCT), allowing to insert a delay
between two consecutive transfers. In Serial Memory mode, this delay is not programmable and
DLYBCT settings are ignored.

• The delay before SCK is programmed by writing the Delay Before SCK bit field in the BAUD
register (BAUD.DLYBS), allowing to delay the start of SPCK after the chip select has been asserted.

These delays allow the QSPI to be adapted to the interfaced peripherals and their speed and bus
release time.

Figure 33-5. Programmable Delay

DLYCS DLYBS DLYBCT DLYBCTSCK

CS

33.6.7 QSPI SPI Mode
In this mode, the QSPI acts as a regular SPI Host.

To activate this mode, the MODE bit in the Control B register must be cleared (CTRLB.MODE=0).

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 713

33.6.7.1 SPI Mode Operations
The QSPI in standard SPI mode operates on the clock generated by the internal programmable baud
rate generator. It fully controls the data transfers to and from the client connected to the SPI bus.
The QSPI drives the chip select line to the client (CS) and the serial clock signal (SCK).

The QSPI features a single internal shift register and two holding registers: the Transmit Data
Register (TXDATA) and the Receive Data Register (RXDATA). The holding registers maintain the data
flow at a constant rate.

After enabling the QSPI, a data transfer begins when the processor writes to the TXDATA. The written
data is immediately transferred into the internal shift register and transfer on the SPI bus starts.
While the data in the internal shift register is shifted on the MOSI line, the MISO line is sampled and
shifted into the internal shift register. Receiving data cannot occur without transmitting data.

If new data is written in TXDATA during the transfer, it stays in TXDATA until the current transfer is
completed. Then, the received data is transferred from the internal shift register to the RXDATA, the
data in TXDATA is loaded into the internal shift register, and a new transfer starts.

The transfer of data written in TXDATA in the internal shift register is indicated by the Transmit Data
Register Empty (DRE) bit in the Interrupt Flag Status and Clear register (INTFLAG.DRE). When new
data is written in TXDATA, this bit is cleared. The DRE bit is used to trigger the Transmit DMA channel.

The end of transfer is indicated by the Transmission Complete flag (INTFLAG.TXC). If the transfer
delay for the last transfer was configured to be greater than 0 (CTRLB.DLYBCT), TXC is set after the
completion of the delay. The module clock (CLK_QSPI_AHB) can be switched off at this time.

Ongoing transfer of received data from the internal shift register into RXDATA is indicated by the
Receive Data Register Full flag (INTFLAG.RXC). When the received data is read, the RXC bit is cleared.

If the RXDATA has not been read before new data is received, the Overrun Error flag in INTFLAG
register (INTFLAG.ERROR) is set. As long as this flag is set, data is loaded in RXDATA.

The SPI Mode Block Diagram shows a flow chart describing how transfers are handled.

33.6.7.2 SPI Mode Block Diagram

Figure 33-6. SPI Mode Block Diagram

Shift Register MOSILSB MSB
MISO

RXDATA
DATA

Serial
Clock

DRE
TXDATA

DATA

RXC
ERROR

BAUD

CPOL
CPHA

Baud Rate Generator

BAUD
BAUD

CTRLB
DATALEN

Chip Select Controller CS

CTRLB

SCKPeripheral Clock

CSMODE

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 714

33.6.7.3 SPI Mode Flow Diagram

Figure 33-7. SPI Mode Flow Diagram

QSI Enable

1

CS = 0

CS = 1

Delay DLYCS

Delay DLYBCT

0

DRE ?
1

0

Delay DLYBS

Data Transfer

DRE ?

RXDATA = Serializer
RXC = 1

Serializer = TXDATA
DRE = 1

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 715

Figure 33-8. Interrupt Flags Behaviour

SCK

CS

MOSI
(from host)

DRE

RXC

MISO
(from client)

LSBMSB 123456

LSBMSB 123456

1 2 3 4 5 6 7 8

Write in TXDATA RXDATA Read

TXC

Shift register empty

33.6.7.4 Peripheral Deselection with DMA
When the Direct Memory Access Controller is used, the Chip Select line will remain low during the
whole transfer because the Transmit Data Register Empty flag in the Interrupt Flag Status and Clear
register (INTFLAG.DRE) is managed by the DMA itself. The reloading of the TXDATA by the DMA is
done as soon as the INTFLAG.DRE flag is set. In this case, setting the Chip Select mode bit field in the
Control B register (CTRLB.CSMODE) to 0x1 is not mandatory.

However, it may happen that when other DMA channels connected to other peripherals are in use
as well, the QSPI DMA could be delayed by another DMA transfer with a higher priority on the bus.
Having DMA buffers in slower memories, like Flash memory or SDRAM (compared to fast internal
SRAM), may lengthen the reload time of the TXDATA by the DMA as well. This means that TXDATA
might not be reloaded in time to keep the Chip Select line low. In this case, the Chip Select line may
toggle between data transfer and some SPI Client devices, and the communication might get lost.
Writing CTRLB.CSMODE=0x1 can prevent this loss.

When CTRLB.CSMODE=0x0, the CS does not rise in all cases between two transfers on the same
peripheral. During a transfer on a Chip Select, the INTFLAG.DRE flag is raised as soon as the content
of the TXDATA is transferred into the internal shifter. When this flag is detected, the TXDATA can
be reloaded. If this reload occurs before the end of the current transfer and if the next transfer
is performed on the same Chip Select as the current transfer, the Chip Select is not de-asserted
between the two transfers. This may lead to difficulties for interfacing with some serial peripherals
requiring the Chip Select to be de-asserted after each transfer. To facilitate interfacing with such
devices, it is recommended to write CTRLB.CSMODE to 0x2.

33.6.7.5 Peripheral Deselection without DMA
During multiple data transfers on a Chip Select without the DMA, the TXDATA is loaded by the
processor, and the Transmit Data Register Empty flag in the Interrupt Flag Status and Clear register
(INTFLAG.DRE) rises as soon as the content of the RXDATA is transferred into the internal shift
register. When this flag is detected high, the TXDATA can be reloaded. If this reload-by-processor
occurs before the end of the current transfer and if the next transfer is performed on the same Chip
Select as the current transfer, the Chip Select is not de-asserted between the two transfers.

Depending on the application software handling the flags or servicing other interrupts or other
tasks, the processor may not reload the TXDATA in time to keep the Chip Select active (low). A null

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 716

Delay Between Consecutive Transfer bit field value in the CTRLB register (CTRLB.DLYBCT) will give
even less time for the processor to reload the TXDATA. With some SPI client peripherals, requiring
the Chip Select line to remain active (low) during a full set of transfers might lead to communication
errors.

To facilitate interfacing with such devices, the Chip Select Mode bit field in the CTRLB register
(CTRLB.CSMODE) can be written to 0x1. This allows the Chip Select lines to remain in their current
state (low = active) until the end of transfer is indicated by the Last Transfer bit in the CTRLA register
(CTRLA.LASTXFER). Even if the TXDATA is not reloaded, the Chip Select will remain active. To have the
Chip Select line rise at the end of the last data transfer, the LASTXFER bit in the CTRLA must be set
before writing the last data to transmit into the TXDATA.

33.6.8 QSPI Serial Memory Mode
In this mode the QSPI acts as a serial Flash memory controller. The QSPI can be used to read data
from the serial Flash memory allowing the CPU to execute code from it (XIP execute in place). The
QSPI can also be used to control the serial Flash memory (Program, Erase, Lock, and so on) by
sending specific commands. In this mode, the QSPI is compatible with single-bit SPI, Dual-SPI and
Quad-SPI protocols.

To activate this mode, the MODE bit in Control B register must be set to one (CTRLB.MODE = 1).

In serial memory mode, data cannot be transferred by the TXDATA and the RXDATA, but by writing or
reading the QSPI memory space (0x0400 0000 – 0x0500 0000).

Important: QSPI memory space region can be cached to improve data transfer
speed.
However, external Flash devices which have command/status registers mapped in
the QSPI memory space region must be managed carefully by applying any one of
the following configurations:

• Data cache must be disabled.
• If data cache is required, then cache line must be invalidated before reading

the status register.

33.6.8.1 Instruction Frame
In order to control serial Flash memories, the QSPI is able to sent instructions by the SPI bus (ex:
READ, PROGRAM, ERASE, LOCK, etc.). Because instruction set implemented in serial Flash memories
is memory vendor dependent, the QSPI includes a complete instruction registers, which makes it
very flexible and compatible with all serial Flash memories.

An instruction frame includes:

• An instruction code (size: 8 bits): The instruction can be optional in some cases
• An address (size: 24 bits or 32 bits): The address is optional but is required by instructions such

as READ, PROGRAM, ERASE, LOCK. By default the address is 24 bits long, but it can be 32 bits long
to support serial Flash memories larger than 128 Mbit (16 Mbyte).

• An option code (size: 1/2/4/8 bits): The option code is optional but is useful for activate the
“XIP mode” or the “Continuous Read Mode” for READ instructions, in some serial Flash memory
devices. These modes allow to improve the data read latency.

• Dummy cycles: Dummy cycles are optional but required by some READ instructions
• Data bytes are optional: Data bytes are present for data transfer instructions such as READ or

PROGRAM

The instruction code, the address/option and the data can be sent with Single-bit SPI, Dual SPI or
Quad SPI protocols.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 717

Figure 33-9. Instruction Frame

CS

Data

DATA1

DATA2

DATA3
Dummy cyclesAddress Option

A23

A22

A21

A20

A19

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

O7

O6

O5

O4

O3

O2

O1

O0

D7

D6

D5

D4

D3

D2

D1

D0

D7

D6

D5

D4

D3

D2

D1

D0DATA0

SCK

Instruction EBh

33.6.8.2 Instruction Frame Sending
To send an instruction frame, the user must first configure the address to send by writing the field
ADDR in the Instruction Address Register (INSTRADDR.ADDR). This step is required if the instruction
frame includes an address and no data. When data is present, the address of the instruction is
defined by the address of the data accesses in the QSPI memory space, and not by the INSTRADDR
register.

If the instruction frame includes the instruction code and/or the option code, the user must
configure the instruction code and/or the option code to send by writing the fields INST and
OPTCODE bit fields in the Instruction Control Register (INSTRCTRL.OPTCODE, INSTRCTRL.INSTR).

Then, the user must write the Instruction Frame Register (INSTRFRAME) to configure the instruction
frame depending on which instruction must be sent. If the instruction frame does not include data,
writing in this register triggers the send of the instruction frame in the QSPI. If the instruction frame
includes data, the send of the instruction frame is triggered by the first data access in the QSPI
memory space.

The instruction frame is configured by the following bits and fields of INSTRFRAME:

• WIDTH field is used to configure which data lanes are used to send the instruction code, the
address, the option code and to transfer the data. It is possible to use two unidirectional data
lanes (MISO-MOSI Single-bit SPI), two bidirectional data lanes (DATA0 - DATA1 Dual SPI) or four
bidirectional data lanes (DATA0 - DATA3).

Table 33-3. WIDTH Encoding
INSTRFRAME Instruction Address/Option Data

0 Single-bit SPI Single-bit SPI Single-bit SPI

1 Single-bit SPI Single-bit SPI Dual SPI

2 Single-bit SPI Single-bit SPI Quad SPI

3 Single-bit SPI Dual SPI Dual SPI

4 Single-bit SPI Quad SPI Quad SPI

5 Dual SPI Dual SPI Dual SPI

6 Quad SPI Quad SPI Quad SPI

7 Reserved

• INSTREN bit enables sending an instruction code
• ADDREN bit enables sending of an address after the instruction code
• OPTCODEEN bit enables sending of an option code after the address
• DATAEN bit enables the transfer of data (READ or PROGRAM instruction)
• OPTCODELEN field configures the option code length (0 -> 1-bit / 1 -> 2-bit / 2 -> 4-bit / 3 -> 8-bit).

The value written in OPTCODELEN must be consistent with value written in the field WIDTH. For

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 718

example: OPTCODELEN = 0 (1-bit option code) is not coherent with WIDTH = 6 (option code sent
with QuadSPI protocol, thus the minimum length of the option code is 4-bit).

• ADDRLEN bit configures the address length (0 -> 24 bits / 1-> 32 bits)
• TFRTYPE field defines which type of data transfer must be performed
• DUMMYLEN field configures the number of dummy cycles when reading data from the serial

Flash memory. Between the address/option and the data, with some instructions, dummy cycles
are inserted by the serial Flash memory.

If data transfer is enabled, the user can access the serial memory by reading or writing the QSPI
memory space following these rules:

• Reading from the serial memory, but not memory data (for example reading the JEDEC-ID or the
STATUS), requires TFRTYPE to be written to 0x0

• Reading from the serial memory, and particularly memory data, requires TFRTYPE to be written
to '1'

• Writing to the serial memory, but not memory data (for example writing the configuration or
STATUS), requires TFRTYPE to be written to 0x2

• Writing to the serial memory, and particularly memory data, requires TFRTYPE to be written to
0x3

If TFRTYP has a value other than 0x1 and CTRLB.SMEMREG=0, the address sent in the instruction
frame is the address of the first system bus accesses. The addresses of the subsequent access
actions are not used by the QSPI. At each system bus access, an SPI transfer is performed with the
same size. For example, a half-word system bus access leads to a 16-bit SPI transfer, and a byte
system bus access leads to an 8-bit SPI transfer.

If CTRLB.SMEMREG=1, accesses are made via the QSPI registers and the address sent in the
instruction frame is the address defined in the INSTRADDR register. Each time the INSTRFRAME
or TXDATA registers are written, an SPI transfer is performed with a byte size. Another byte is read
each time RXDATA register is read or written each time TXDATA register is written. The SPI transfer
ends by writing the LASTXFER bit in Control A register (CTRLA.LASTXFER).

If TFRTYP=0x1, the address of the first instruction frame is the one of the first read access in
the QSPI memory space. Each time the read accesses become non-sequential (addresses are not
consecutive), a new instruction frame is sent with the last system bus access address. In this way,
the system can read data at a random location in the serial memory. The size of the SPI transfers
may differ from the size of the system bus read accesses.

When data transfer is not enabled, the end of the instruction frame is indicated when the INSTREND
interrupt flag in the INTFLAG register is set. When data transfer is enabled, the user must indicate
when data transfer is completed in the QSPI memory space by setting the bit LASTXFR in the CTRLA.
The end of the instruction frame is indicated when the INSTREND interrupt flag in the INTFLAG
register is set.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 719

Figure 33-10. Instruction Transmission Flow Diagram

Instruction frame
with address

?

Read memory
transfer

(TFRTYP = 1)
?

Read DATA in the QSPI AHB
memory space.

If accesses are not sequential
 a new instruction is sent

automatically.

Yes

No

Read/Write DATA in the QSPI
AHB memory space.

Address of accesses are not
used by the QSPI.

No

Yes

Yes

No

START

END

Write the address
in INSTRADDR

Yes

No

Yes

No

Instruction frame

but no data
?

with address

Instruction frame

option code
?

with instruction code and/or

Write the instruction code
and/or the option code

in INSTRCTRL

Instruction frame

?
with data

Configure and send instruction
frame by writing INSTRFRAME

Read INSTRFRAME
to synchronize APB and AHB

accesses

Read/Write DATA in the QSPI
AHB memory space

 (SMEMREG = 0) or APB
register space (SMEMREG = 1).
The address of the first access

is sent after the instruction code.

Write CTRLA.LASTXFR to 1
when all data have been

transferred.

Wait for INTFLAG.INSTREND
to rise by polling or interrupt.

Depending on CSMODE configuration

to rise by polling or interrupt.
wait for INTFLAG.CSRISE

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 720

33.6.8.3 Read Memory Transfer
The user can access the data of the serial memory by sending an instruction with DATAEN=1 and
TFRTYP=0x1 in the Instruction Frame register (INSTRFRAME).

In this mode the QSPI is able to read data at random address into the serial Flash memory, allowing
the CPU to execute code directly from it (XIP execute-in-place).

In order to fetch data, the user must first configure the instruction frame by writing the
INSTRFRAME. Then data can be read at any address in the QSPI address space mapping. The
address of the system bus read accesses match the address of the data inside the serial Flash
memory.

When Fetch Mode is enabled, several instruction frames can be sent before writing the bit LASTXFR
in the CTRLA. Each time the system bus read accesses become non-sequential (addresses are not
consecutive), a new instruction frame is sent with the corresponding address.

33.6.8.4 Continuous Read Mode
The QSPI is compatible with Continuous Read Mode (CRM) which is implemented in some Serial
Flash memories.

The CRM allows to reduce the instruction overhead by excluding the instruction code from the
instruction frame. When CRM is activated in a Serial Flash memory (by a specific option code), the
instruction code is stored in the memory. For the next instruction frames, the instruction code is not
required, as the memory uses the stored one.

In the QSPI, CRM is used when reading data from the memory (INSTFRAME.TFRTYPE=0x1). The
addresses of the system bus read accesses are often non-sequential, this leads to many instruction
frames with always the same instruction code. By disabling the sending of the instruction code, the
CRM reduces the access time of the data.

To be functional, this mode must be enabled in both the QSPI and the Serial Flash memory. The CRM
is enabled in the QSPI by setting the CRM bit in the INSTRFRAME register (INSTFRAME.CRMODE=1,
INSTFRAME.TFRTYPE must be 0x1). The CRM is enabled in the Serial Flash memory by sending a
specific option code.

If CRM is not supported by the Serial Flash memory or disabled, the CRMODE bit
must not be set. Otherwise, data read out the Serial Flash memory is not valid.

Figure 33-11. Continuous Read Mode
CS

Data

DATA1

DATA2

DATA3

Option
to activate the

Continuous Read Mode
in the serial flash memory

A23

A22

A21

A20

A19

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

O7

O6

O5

O4

O3

O2

O1

O0

D7

D6

D5

D4

D3

D2

D1

D0

D7

D6

D5

D4

D3

D2

D1

D0

Address
Instruction code is not

required

Option
A23

A22

A21

A20

A19

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

O7

O6

O5

O4

O3

O2

O1

O0

Data
D7

D6

D5

D4

D3

D2

D1

D0

Address

DATA0

SCK

Instruction

33.6.8.5 Instruction Frame Transmission Examples
All waveforms in the following examples describe SPI transfers in SPI Clock mode 0 (BAUD.CPOL=0
and BAUD.CPHA=0). All system bus accesses described below refer to the system bus address phase.
System bus wait cycles and system bus data phases are not shown.

Example 33-1. Example 1

Instruction in Single-bit SPI, without address, without option, without data.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 721

Command: CHIP ERASE (C7h).

• Write 0x0000_00C7 to INSTRCTRL register
• Write 0x0000_0010 to INSTRFRAME register
• Wait for INTFLAG.INSTREND to rise

Figure 33-12. Instruction Transmission Waveform 1

Write INSTRFRAME

INTFLAG.INSTREND
Instruction C7h

CS

SCK

MOSI / DATA0

Example 33-2. Example 2

Instruction in Quad SPI, without address, without option, without data.

Command: POWER DOWN (B9h)

• Write 0x0000_00B9 to INSTRCTRL register
• Write 0x0000_0016 to INSTRFRAME register
• Wait for INTFLAG.INSTREND to rise

Figure 33-13. Instruction Transmission Waveform 2

Write INSTRFRAME

CS

INTFLAG.INSTREND
Instruction B9h

SCK

DATA0

DATA1

DATA2

DATA3

Example 33-3. Example 3

Instruction in Single-bit SPI, with address in Single-bit SPI, without option, without
data.

Command: BLOCK ERASE (20h)

• Write the address (of the block to erase) to QSPI_AR
• Write 0x0000_0020 to INSTRCTRL register
• Write 0x0000_0030 toINSTRFRAME register
• Wait for INTFLAG.INSTREND to rise

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 722

Figure 33-14. Instruction Transmission Waveform 3

CS

Write INSTRFRAME

Address
A23 A22 A21 A20 A3 A2 A1 A0

INTFLAG.INSTREND

Write INSTRADDR

SCK

MOSI / DATA0
Instruction 20h

Example 33-4. Example 4

Instruction in Single-bit SPI, without address, without option, with data write in
Single-bit SPI.

Command: SET BURST (77h)

• Write 0x0000_0077 to INSTRCTRL register.
• Write 0x0000_2090 to INSTRFRAME register.
• Read INSTRFRAME register (dummy read) to synchronize system bus accesses.
• Write data to the system bus memory space (0x0400_0000–0x0500_0000). The

address of the system bus write accesses is not used.
• Write the LASTXFR bit in CTRLA register to '1'.
• Wait for INTFLAG.INSTREND to rise.

Figure 33-15. Instruction Transmission Waveform 4

CS

Data
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

INTFLAG.INSTREND

Write AHB

Set CTRLA.LASTXFER

Write INSTRFRAME

Instruction 77h

SCK

MOSI / DATA0

Example 33-5. Example 5

Instruction in Single-bit SPI, with address in Dual SPI, without option, with data write
in Dual SPI.

Command: BYTE/PAGE PROGRAM (02h)

• Write 0x0000_0002 to INSTRCTRL register.
• Write 0x0000_30B3 to INSTRFRAME register.
• Read INSTRFRAME register (dummy read) to synchronize system bus accesses.
• Write data to the QSPI system bus memory space (0x040 00000–0x0500_0000).

The address of the first system bus write access is sent in the instruction frame.
The address of the next system bus write accesses is not used.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 723

• Write LASTXFR bit in CTRLA register to '1'.
• Wait for INTFLAG.INSTREND to rise.

Figure 33-16. Instruction Transmission Waveform 5

Data
DATA1

DATA0

SCK

Instruction 02h
D7

D6

D5

D4

D3

D2

D1

D0

D7

D6

D5

D4

D3

D2

D1

D0

Write AHB

A23

A22

A21

A20

A19

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

Address

Set CTRLA.LASTXFER

Write INSTRFRAME

CS

INTFLAG.INSTREND

Example 33-6. Example 6

Instruction in Single-bit SPI, with address in Single-bit SPI, without option, with data
read in Quad SPI, with eight dummy cycles.

Command: QUAD_OUTPUT READ ARRAY (6Bh)

• Write 0x0000_006B to INSTRCTRL register.
• Write 0x0008_10B2 ti INSTRFRAME register.
• Read QSPI_IR (dummy read) to synchronize system bus accesses.
• Read data from the QSPI system bus memory space (0x040 00000–0x0500_0000).

The address of the first system bus read access is sent in the instruction frame.
The address of the next system bus read accesses is not used.

• Write the LASTXFR bit in CTRLA register to '1'.
• Wait for INTFLAG.INSTREND to rise.

Figure 33-17. Instruction Transmission Waveform 6

Data

DATA1

DATA2

DATA3
Dummy cycles

A23 A22 A21 A20 A3 A2 A1 A0

Address
D7

D6

D5

D4

D3

D2

D1

D0

D7

D6

D5

D4

D3

D2

D1

D0

Read AHB

Set CTRLA.LASTXFER

Write INSTRFRAME

CS

INTFLAG.INSTREND

SCK

DATA0

Instruction 6Bh

Example 33-7. Example 7

Instruction in Single-bit SPI, with address and option in Quad SPI, with data read
from Quad SPI, with four dummy cycles, with fetch and continuous read.

Command: FAST READ QUAD I/O (EBh) - 8-BIT OPTION (0x30h)

• Write 0x0030_00EB to INSTRCTRL register.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 724

• Write 0x0004_33F4 to INSTRFRAME register.
• Read INSTRFRAME register (dummy read) to synchronize system bus accesses.
• Read data from the QSPI system bus memory space (0x040 00000–0x0500_0000).

Fetch is enabled, the address of the system bus read accesses is always used.
• Write LASTXFR bit in CTRLA register to '1'.
• Wait for INTFLAG.INSTREND to rise.

Figure 33-18. Instruction Transmission Waveform 7

DataDummy cyclesAddress Option
A23

A22

A21

A20

A19

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

O7

O6

O5

O4

O3

O2

O1

O0

D7

D6

D5

D4

D3

D2

D1

D0

D7

D6

D5

D4

D3

D2

D1

D0

Address Option
A23

A22

A21

A20

A19

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

O7

O6

O5

O4

O3

O2

O1

O0

Dummy cycles Data
D7

D6

D5

D4

D3

D2

D1

D0

Read AHB

DATA1

DATA2

DATA3

Write INSTRFRAME

CS

SCK

DATA0

Instruction EBh

Example 33-8. Example 8

Instruction in Quad SPI, with address in Quad SPI, without option, with data read
from Quad SPI, with two dummy cycles, with fetch.

Command: HIGH-SPEED READ (0Bh)

• Write 0x0000_000B to INSTRCTRL register.
• Write 0x0002_20B6 to INSTRFRAME register.
• Read INSTRFRAME register (dummy read) to synchronize system bus accesses.
• Read data in the QSPI system bus memory space (0x040 00000–0x0500_0000).

Fetch is enabled, the address of the system bus read accesses is always used.
• Write LASTXFR bit in CTRLA register to '1'.
• Wait for INTFLAG.INSTREND to rise.

Figure 33-19. Instruction Transmission Waveform 8

DataDummy cyclesAddress
A23

A22

A21

A20

A19

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

D7

D6

D5

D4

D3

D2

D1

D0

D7

D6

D5

D4

D3

D2

D1

D0

Instruction 0Bh DataDummy cyclesAddress
A23

A22

A21

A20

A19

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

D7

D6

D5

D4

D3

D2

D1

D0

Read AHB

Write INSTRFRAME

DATA1

DATA2

DATA3
Instruction 0Bh

CS

SCK

DATA0

33.6.9 Scrambling/Unscrambling Function
The scrambling/unscrambling function cannot be performed on devices other than memories. Data
is scrambled when written to memory and unscrambled when data is read.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 725

The external data lines can be scrambled to prevent intellectual property data located in off-chip
memories from being easily recovered by analyzing data at the package pin level of either the
micro-controller or the QSPI client device (e.g., memory).

The scrambling/unscrambling function can be enabled by writing a ‘1’ to the ENABLE bit in the
Scrambling Control register (SCRAMBCTRL.ENABLE).

The scrambling and unscrambling are performed on-the-fly without impacting the throughput.

The scrambling method depends on the user-configurable Scrambling User Key in the Scrambling
Key register (SCRAMBKEY.KEY). This register is only accessible in Write mode.

By default, the scrambling and unscrambling algorithm includes the scrambling user
key, plus a device-dependent random value. This random value is not included when
the Scrambling/Unscrambling Random Value Disable bit in the Scrambling Mode register
(SCRAMBCTRL.RANDOMDIS) is written to ‘1’.

The random value is neither user-configurable nor readable. If SCRAMBCTRL.RANDOMDIS=0, data
scrambled by a given circuit cannot be unscrambled by a different circuit.

If SCRAMBCTRL.RANDOMDIS=1, the scrambling/unscrambling algorithm includes only the
scrambling user key, making it possible to manage data by different circuits.

The scrambling user key must be securely stored in a reliable Non-Volatile Memory to recover data
from the off-chip memory. Any data scrambled with a given key cannot be recovered if the key is
lost.

33.6.10 DMA Operation
The QSPI generates the following DMA requests:

• Data received (RX): The request is set when data is available in the RXDATA register, and cleared
when RXDATA is read.

• Data transmit (TX): The request is set when the transmit buffer (TXDATA) is empty, and cleared
when TXDATA is written.

Note: If DMA and RX memory modes are selected, a QSPI memory space read operation is required
to force the first triggering.

If the CPU accesses the registers which are source of DMA request set/clear condition, the DMA
request can be lost or the DMA transfer can be corrupted.

33.6.11 Interrupts
The QSPI has the following interrupt source:

• Interrupt Request (INTREQ): Indicates that at least one bit in the Interrupt Flag Status and Clear
register (INTFLAG) is set to '1'.

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt
Flag Status and Clear (INTFLAG) register is set when the interrupt condition occurs. Each interrupt
can be individually enabled by writing a '1' to the corresponding bit in the Interrupt Enable Set
(INTENSET) register, and disabled by writing a '1' to the corresponding bit in the Interrupt Enable
Clear (INTENCLR) register. An interrupt request is generated when the interrupt flag is set and the
corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is
cleared, the interrupt is disabled, or the QSPI is reset. All interrupt requests from the peripheral are
ORed together on system level to generate one combined interrupt request to the NVIC. The user
must read the INTFLAG register to determine which interrupt condition is present.

Note that interrupts must be globally enabled for interrupt requests to be generated.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 726

33.7 Register Summary

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x00 CTRLA

7:0 ENABLE SWRST
15:8

23:16
31:24 LASTXFER

0x04 CTRLB

7:0 CSMODE[1:0] SMEMREG WDRBT LOOPEN MODE
15:8 DATALEN[3:0]

23:16 DLYBCT[7:0]
31:24 DLYCS[7:0]

0x08 BAUD

7:0 CPHA CPOL
15:8 BAUD[7:0]

23:16 DLYBS[7:0]
31:24

0x0C RXDATA

7:0 DATA[7:0]
15:8 DATA[15:8]

23:16
31:24

0x10 TXDATA

7:0 DATA[7:0]
15:8 DATA[15:8]

23:16
31:24

0x14 INTENCLR

7:0 ERROR TXC DRE RXC
15:8 INSTREND CSRISE

23:16
31:24

0x18 INTENSET

7:0 ERROR TXC DRE RXC
15:8 INSTREND CSRISE

23:16
31:24

0x1C INTFLAG

7:0 ERROR TXC DRE RXC
15:8 INSTREND CSRISE

23:16
31:24

0x20 STATUS

7:0 ENABLE
15:8 CSSTATUS

23:16
31:24

0x24
...

0x2F
Reserved

0x30 INSTRADDR

7:0 ADDR[7:0]
15:8 ADDR[15:8]

23:16 ADDR[23:16]
31:24 ADDR[31:24]

0x34 INSTRCTRL

7:0 INSTR[7:0]
15:8

23:16 OPTCODE[7:0]
31:24

0x38 INSTRFRAME

7:0 DATAEN OPTCODEEN ADDREN INSTREN WIDTH[2:0]
15:8 DDREN CRMODE TFRTYPE[1:0] ADDRLEN OPTCODELEN[1:0]

23:16 DUMMYLEN[4:0]
31:24

0x3C
...

0x3F
Reserved

0x40 SCRAMBCTRL

7:0 RANDOMDIS ENABLE
15:8

23:16
31:24

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 727

...........continued

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x44 SCRAMBKEY

7:0 KEY[7:0]
15:8 KEY[15:8]

23:16 KEY[23:16]
31:24 KEY[31:24]

33.8 Register Description
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

See Peripheral Access Controller (PAC) from Related Links.

Some registers are enable-protected, meaning they can only be written when the QSPI is
disabled. Enable-protection is denoted by the Enable-protected property in each individual register
description.

Related Links
26. Peripheral Access Controller (PAC)

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 728

33.8.1 Control A

Name:  CTRLA
Offset:  0x00
Reset:  0x00000000
Property:  -

Control A

Bit 31 30 29 28 27 26 25 24
 LASTXFER

Access W
Reset 0

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 ENABLE SWRST

Access W W
Reset 0 0

Bit 24 – LASTXFER Last Transfer
0: No effect.
1: The chip select will be de-asserted after the character written in TD has been transferred.

Bit 1 – ENABLE Enable
Writing a '0' to this bit disables the QSPI.
Writing a '1' to this bit enables the QSPI to transfer and receive data.
As soon as ENABLE is reset, QSPI finishes its transfer.
All pins are set in input mode and no data is received or transmitted.
If a transfer is in progress, the transfer is finished before the QSPI is disable.

Bit 0 – SWRST Software Reset
Writing a '0' to this bit has no effect.
Writing a '1' to this bit resets the QSPI. A software-triggered hardware reset of the QSPI interface is
performed.
DMAC channels are not affected by software reset.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 729

33.8.2 Control B

Name:  CTRLB
Offset:  0x04
Reset:  0x00000000
Property:  PAC Write-Protection

Control B

Bit 31 30 29 28 27 26 25 24
 DLYCS[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 DLYBCT[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 DATALEN[3:0]

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 CSMODE[1:0] SMEMREG WDRBT LOOPEN MODE

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bits 31:24 – DLYCS[7:0] Minimum Inactive CS Delay
This bit field defines the minimum delay between the inactivation and the activation of CS. The
DLYCS time guarantees the client minimum deselect time.
If DLYCS is 0x00, one CLK_QSPI_AHB period will be inserted by default.
Otherwise, the following equation determines the delay:
DLYCS = Minimum inactive × fperipheral clock

Bits 23:16 – DLYBCT[7:0] Delay Between Consecutive Transfers
This field defines the delay between two consecutive transfers with the same peripheral without
removing the chip select. The delay is always inserted after each transfer and before removing the
chip select if needed.
When DLYBCT=0x00, no delay between consecutive transfers is inserted and the clock keeps its duty
cycle over the character transfers. In Serial Memory mode (MODE=1), DLYBCT is ignored and no
delay is inserted. Otherwise, the following equation determines the delay:
DLYBCT = (Delay Between Consecutive Transfers × fperipheral clock) / 32

Bits 11:8 – DATALEN[3:0] Data Length
The DATALEN field determines the number of data bits transferred. Reserved values must not be
used.
Value Name Description
0x0 8BITS 8-bits transfer
0x1 9BITS 9-bits transfer
0x2 10BITS 10-bits transfer
0x3 11BITS 11-bits transfer
0x4 12BITS 12-bits transfer
0x5 13BITS 13-bits transfer

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 730

Value Name Description
0x6 14BITS 14-bits transfer
0x7 15BITS 15-bits transfer
0x8 16BITS 16-bits transfer
0x9-0xF Reserved

Bits 5:4 – CSMODE[1:0] Chip Select Mode
The CSMODE field determines how the chip select is de-asserted.
Value Name Description
0x0 NORELOAD The chip select is de-asserted if TD has not been reloaded before the end of the current

transfer.
0x1 LASTXFER The chip select is de-asserted when the bit LASTXFER is written at 1 and the character written

in TD has been transferred.
0x2 SYSTEMATICALLY The chip select is de-asserted systematically after each transfer.
0x3 Reserved

Bit 3 – SMEMREG Serial Memory Register Mode
Value Description
0 Serial memory registers are written via AHB access.
1 Serial memory registers are written via APB access. Reset the QSPI.

Bit 2 – WDRBT Wait Data Read Before Transfer
This bit determines the Wait Data Read Before Transfer option.

Bit 1 – LOOPEN Local Loopback Enable
This bit defines if the Local Loopback is enabled or disabled.
LOOPEN controls the local loopback on the data serializer for testing in SPI Mode only. (MISO is
internally connected on MOSI).
Value Description
0 Local Loopback is disabled.
1 Local Loopback is enabled.

Bit 0 – MODE Serial Memory Mode
This bit defines if the QSPI is in SPI Mode or Serial Memory Mode.
Value Name Description
0 SPI SPI operating mode
1 MEMORY Serial Memory operating mode

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 731

33.8.3 Baud Rate

Name:  BAUD
Offset:  0x08
Reset:  0x00000000
Property:  PAC Write-Protection

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 DLYBS[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 BAUD[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 CPHA CPOL

Access R/W R/W
Reset 0 0

Bits 23:16 – DLYBS[7:0] Delay Before SCK
This field defines the delay from CS valid to the first valid SCK transition.
When DLYBS equals zero, the CS valid to SCK transition is 1/2 the SCK clock period.
Otherwise, the following equation determines the delay:

Equation 33-1. Delay Before SCKDelay Before SCK = DLYBSMCK
Bits 15:8 – BAUD[7:0] Serial Clock Baud Rate

The QSPI uses a modulus counter to derive the SCK baud rate from the module clock (MCK)
CLK_QSPI_AHB. The Baud rate is selected by writing a value from 1 to 255 in the BAUD field. The
following equation determines the SCK baud rate:

Equation 33-2. SCK Baud RateSCK Baud Rate = MCKBAUD + 1
Bit 1 – CPHA Clock Phase

CPHA determines which edge of SCK causes data to change and which edge causes data to be
captured. CPHA is used with CPOL to produce the required clock/data relationship between host and
client devices.
Value Description
0 Data is captured on the leading edge of SCK and changed on the following edge of SCK.
1 Data is changed on the leading edge of SCK and captured on the following edge of SCK.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 732

Bit 0 – CPOL Clock Polarity
CPOL is used to determine the inactive state value of the serial clock (SCK). It is used with CPHA to
produce the required clock/data relationship between host and client devices.
Value Description
0 The inactive state value of SCK is logic level zero.
0 The inactive state value of SCK is logic level 'one'.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 733

33.8.4 Receive Data

Name:  RXDATA
Offset:  0x0C
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 DATA[15:8]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 DATA[7:0]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 15:0 – DATA[15:0] Receive Data
Data received by the QSPI is stored in this register right-justified. Unused bits read zero.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 734

33.8.5 Transmit Data

Name:  TXDATA
Offset:  0x10
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 DATA[15:8]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 DATA[7:0]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bits 15:0 – DATA[15:0] Transmit Data
Data to be transmitted by the QSPI is stored in this register. Information to be transmitted must be
written to the transmit data register in a right-justified format.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 735

33.8.6 Interrupt Enable Clear

Name:  INTENCLR
Offset:  0x14
Reset:  0x00000000
Property:  PAC Write-Protection

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 INSTREND CSRISE

Access R/W R/W
Reset 0 0

Bit 7 6 5 4 3 2 1 0
 ERROR TXC DRE RXC

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 10 – INSTREND Instruction End Interrupt Disable
Writing a '0' to this bit has no effect.
Writing a '1' will clear the corresponding interrupt request.
Value Description
0 The INSTREND interrupt is disabled.
1 The INSTREND interrupt is enabled.

Bit 8 – CSRISE Chip Select Rise Interrupt Disable
Writing a '0' to this bit has no effect.
Writing a '1' will clear the corresponding interrupt request.
Value Description
0 The CSRISE interrupt is disabled.
1 The CSRISE interrupt is enabled.

Bit 3 – ERROR Overrun Error Interrupt Disable
Writing a '0' to this bit has no effect.
Writing a '1' will clear the corresponding interrupt request.
Value Description
0 The ERROR interrupt is disabled.
1 The ERROR interrupt is enabled.

Bit 2 – TXC Transmission Complete Interrupt Disable
Writing a '0' to this bit has no effect.
Writing a '1' will clear the corresponding interrupt request.
Value Description
0 The TXC interrupt is disabled.
1 The TXC interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 736

Bit 1 – DRE Transmit Data Register Empty Interrupt Disable
Writing a '0' to this bit has no effect.
Writing a '1' will clear the corresponding interrupt request.
Value Description
0 The DRE interrupt is disabled.
1 The DRE interrupt is enabled.

Bit 0 – RXC Receive Data Register Full Interrupt Disable
Writing a '0' to this bit has no effect.
Writing a '1' will clear the corresponding interrupt request.
Value Description
0 The RXC interrupt is disabled.
1 The RXC interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 737

33.8.7 Interrupt Enable Set

Name:  INTENSET
Offset:  0x18
Reset:  0x00000000
Property:  PAC Write-Protection

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 INSTREND CSRISE

Access R/W R/W
Reset 0 0

Bit 7 6 5 4 3 2 1 0
 ERROR TXC DRE RXC

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 10 – INSTREND Instruction End Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' will set the corresponding interrupt request.
Value Description
0 The INSTREND interrupt is disabled.
1 The INSTREND interrupt is enabled.

Bit 8 – CSRISE Chip Select Rise Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' will set the corresponding interrupt request.
Value Description
0 The CSRISE interrupt is disabled.
1 The CSRISE interrupt is enabled.

Bit 3 – ERROR Overrun Error Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' will set the corresponding interrupt request.
Value Description
0 The ERROR interrupt is disabled.
1 The ERROR interrupt is enabled.

Bit 2 – TXC Transmission Complete Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' will set the corresponding interrupt request.
Value Description
0 The TXC interrupt is disabled.
1 The TXC interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 738

Bit 1 – DRE Transmit Data Register Empty Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' will set the corresponding interrupt request.
Value Description
0 The DRE interrupt is disabled.
1 The DRE interrupt is enabled.

Bit 0 – RXC Receive Data Register Full Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' will set the corresponding interrupt request.
Value Description
0 The RXC interrupt is disabled.
1 The RXC interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 739

33.8.8 Interrupt Flag Status and Clear

Name:  INTFLAG
Offset:  0x1C
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 INSTREND CSRISE

Access R/W R/W
Reset 0 0

Bit 7 6 5 4 3 2 1 0
 ERROR TXC DRE RXC

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 10 – INSTREND Instruction End
This bit is set when an Instruction End has been detected.
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the flag.

Bit 8 – CSRISE Chip Select Rise
The bit is set when a Chip Select Rise has been detected.
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the flag.

Bit 3 – ERROR Overrun Error
This bit is set when an ERROR has occurred.
An ERROR occurs when RXDATA is loaded at least twice from the serializer.
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the flag.

Bit 2 – TXC Transmission Complete
0: As soon as data is written in TXDATA.
1: TXDATA and internal shifter are empty. If a transfer delay has been defined, TXC is set after the
completion of such delay.

Bit 1 – DRE Transmit Data Register Empty
0: Data has been written to TXDATA and not yet transferred to the serializer.
1: The last data written in the TXDATA has been transferred to the serializer.
This bit is '0' when the QSPI is disabled or at reset.
The bit is set as soon as ENABLE bit is set.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 740

Bit 0 – RXC Receive Data Register Full
0: No data has been received since the last read of RXDATA.
1: Data has been received and the received data has been transferred from the serializer to RXDATA
since the last read of RXDATA.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 741

33.8.9 Status

Name:  STATUS
Offset:  0x20
Reset:  0x00000200
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 CSSTATUS

Access R
Reset 1

Bit 7 6 5 4 3 2 1 0
 ENABLE

Access R
Reset 0

Bit 9 – CSSTATUS Chip Select
Value Description
0 Chip Select is asserted.
1 Chip Select is not asserted.

Bit 1 – ENABLE Enable
Value Description
0 QSPI is disabled.
1 QSPI is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 742

33.8.10 Instruction Address

Name:  INSTRADDR
Offset:  0x30
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24
 ADDR[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 ADDR[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 ADDR[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 ADDR[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – ADDR[31:0] Instruction Address
Address to send to the serial Flash memory in the instruction frame.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 743

33.8.11 Instruction Code

Name:  INSTRCTRL
Offset:  0x34
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 OPTCODE[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 INSTR[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:16 – OPTCODE[7:0] Option Code
These bits define the option code to send to the serial flash memory.

Bits 7:0 – INSTR[7:0] Instruction Code
Instruction code to send to the serial flash memory.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 744

33.8.12 Instruction Frame

Name:  INSTRFRAME
Offset:  0x38
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 DUMMYLEN[4:0]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 DDREN CRMODE TFRTYPE[1:0] ADDRLEN OPTCODELEN[1:0]

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 DATAEN OPTCODEEN ADDREN INSTREN WIDTH[2:0]

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bits 20:16 – DUMMYLEN[4:0] Dummy Cycles Length
The DUMMYLEN field defines the number of dummy cycles required by the serial Flash memory
before data transfer.

Bit 15 – DDREN Double Data Rate Enable
Note: Double Data Rate operating is only supported in Read.

Value Description
0 Double Data Rate operating mode is disabled.
1 Double Data Rate operating mode is enabled.

Bit 14 – CRMODE Continuous Read Mode
This bit defines if the Continuous Read Mode is enabled or disabled.
Value Description
0 Continuous Read Mode is disabled.
1 Continuous Read Mode is enabled.

Bits 13:12 – TFRTYPE[1:0] Data Transfer Type
These bits define the data type transfer.
Value Name Description
0x0 READ Read transfer from the serial memory.Scrambling is not performed.Read at random location

(fetch) in the serial flash memory is not possible.
0x1 READMEMORY Read data transfer from the serial memory.If enabled, scrambling is performed.Read at

random location (fetch) in the serial flash memory is possible.
0x2 WRITE Write transfer into the serial memory.Scrambling is not performed.
0x3 WRITEMEMORY Write data transfer into the serial memory. If enabled, scrambling is performed.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 745

Bit 10 – ADDRLEN Address Length
The ADDRLEN bit determines the length of the address.
Value Name Description
0x0 24BITS 24-bits address length
0x1 32BITS 32-bits address length

Bits 9:8 – OPTCODELEN[1:0] Option Code Length
The OPTCODELEN field determines the length of the option code. The value written in OPTCODELEN
must be coherent with value written in the field WIDTH. For example: OPTCODELEN=0 (1-bit option
code) is not coherent with WIDTH=6 (option code sent with QuadSPI protocol, thus the minimum
length of the option code is 4-bit).
Value Name Description
0x0 1BIT 1-bit length option code
0x1 2BITS 2-bits length option code
0x2 4BITS 4-bits length option code
0x3 8BITS 8-bits length option code

Bit 7 – DATAEN Data Enable
Value Description
0 No data is sent/received to/from the serial flash memory.
1 Data is sent/received to/from the serial flash memory.

Bit 6 – OPTCODEEN Option Enable
Value Description
0 The option is not sent to the serial flash memory
1 The option is sent to the serial flash memory.

Bit 5 – ADDREN Address Enable
Value Description
0 The transfer address is not sent to the serial flash memory.
1 The transfer address is sent to the serial flash memory.

Bit 4 – INSTREN Instruction Enable
Value Description
0 The instruction is not sent to the serial flash memory.
1 The instruction is sent to the serial flash memory.

Bits 2:0 – WIDTH[2:0] Instruction Code, Address, Option Code and Data Width
This field defines the width of the instruction code, the address, the option and the data.
Value Name Description
0x0 SINGLE_BIT_SPI Instruction: Single-bit SPI / Address-Option: Single-bit SPI / Data: Single-bit SPI
0x1 DUAL_OUTPUT Instruction: Single-bit SPI / Address-Option: Single-bit SPI / Data: Dual SPI
0x2 QUAD_OUTPUT Instruction: Single-bit SPI / Address-Option: Single-bit SPI / Data: Quad SPI
0x3 DUAL_IO Instruction: Single-bit SPI / Address-Option: Dual SPI / Data: Dual SPI
0x4 QUAD_IO Instruction: Single-bit SPI / Address-Option: Quad SPI / Data: Quad SPI
0x5 DUAL_CMD Instruction: Dual SPI / Address-Option: Dual SPI / Data: Dual SPI
0x6 QUAD_CMD Instruction: Quad SPI / Address-Option: Quad SPI / Data: Quad SPI
0x7 Reserved

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 746

33.8.13 Scrambling Mode

Name:  SCRAMBCTRL
Offset:  0x40
Reset:  0x00000000
Property:  PAC Write-Protection

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 RANDOMDIS ENABLE

Access R/W R/W
Reset 0 0

Bit 1 – RANDOMDIS Scrambling/Unscrambling Random Value Disable
Value Description
0 The scrambling/unscrambling algorithm includes the scrambling user key plus a random value that may differ

from chip to chip.
1 The scrambling/unscrambling algorithm includes only the scrambling user key.

Bit 0 – ENABLE Scrambling/Unscrambling Enable
This bit defines if the scrambling/unscrambling is enabled or disabled.
Value Description
0 Scrambling/unscrambling is disabled.
1 Scrambling/unscrambling is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Quad Serial Peripheral Interface (QSPI)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 747

33.8.14 Scrambling Key

Name:  SCRAMBKEY
Offset:  0x44
Reset:  0x00000000
Property:  PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
 KEY[31:24]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 KEY[23:16]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 KEY[15:8]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 KEY[7:0]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – KEY[31:0] Scrambling User Key
This field defines the user key value.

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 748

34. Configurable Custom Logic (CCL)
34.1 Overview

The Configurable Custom Logic (CCL) is a programmable logic peripheral which can be connected
to the device pins, to events, or to other internal peripherals. This allows the user to eliminate logic
gates for simple glue logic functions on the PCB.

Each LookUp Table (LUT) consists of three inputs, a truth table, an optional synchronizer/filter,
and an optional edge detector. Each LUT can generate an output as a user programmable logic
expression with three inputs. Inputs can be individually masked.

The output can be combinatorially generated from the inputs, and can be filtered to remove
spikes. Optional sequential logic can be used. The inputs of the sequential module are individually
controlled by two independent, adjacent LUT (LUT0/LUT1) outputs, enabling complex waveform
generation.

34.2 Features
• Glue logic for general purpose PCB design
• Two programmable Look-up Tables (LUTs)
• Combinatorial logic functions: AND, NAND, OR, NOR, XOR, XNOR, NOT
• Sequential logic functions: Gated D Flip-Flop, JK Flip-Flop, gated D Latch, RS Latch
• Flexible LUT inputs selection:

– I/Os
– Events
– Internal peripherals
– Subsequent LUT output

• Output can be connected to the I/O pins or the Event System
• Optional synchronizer, filter or edge detector available on each LUT output

34.3 Block Diagram
Figure 34-1. Configurable Custom Logic

Edge DetectorFilter / Synch
Truth Table 8

CLR CLR Sequential
CLR

Internal

Events

I/O

Peripherals

LUTCTRL0
(ENABLE)

LUTCTRL0
(EDGESEL)

LUTCTRL0
(FILTSEL)

LUTCTRL0
(INSEL)

SEQCTRL
(SEQSEL0)

CTRL
(ENABLE)

D Q
CLK_CCL_APB

GCLK_CCL

LUT0

Edge DetectorFilter / Synch
Truth Table 8

CLR CLR

Internal

Events

I/O

Peripherals

LUTCTRL1
(ENABLE)

LUTCTRL1
(EDGESEL)

LUTCTRL1
(FILTSEL)

LUTCTRL1
(INSEL)

D Q
CLK_CCL_APB

GCLK_CCL

LUT1

CTRL
(ENABLE)

UNIT 0

OUT1

Event System

I/O

OUT0

Event System

I/O

UNIT 1

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 749

34.4 Signal Description
Pin Name Type Description

OUT[1:0] Digital output Output from lookup table

IN[5:0] Digital input Input to lookup table

For details on the pin mapping for this peripheral, see I/O Ports and Peripheral Pin Select (PPS) from
Related Links. One signal can be mapped on several pins.

Related Links
6. I/O Ports and Peripheral Pin Select (PPS)

34.5 Product Dependencies
In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

34.5.1 I/O Lines
The CCL can take inputs and generate output through I/O pins. For this to function properly, the I/O
pins must be configured to be used by a Look Up Table (LUT).

34.5.2 Power Management
This peripheral can continue to operate in any Sleep mode where its source clock is running. Events
connected to the event system can trigger other operations in the system without exiting Sleep
modes.

34.5.3 Clocks
A generic clock (GCLK_CCL) is optionally required to clock the CCL. This clock must be configured and
enabled in the Generic Clock Controller (GCLK) before using input events, filter, edge detection or
sequential logic. GCLK_CCL is required when input events, a filter, an edge detector or a sequential
sub-module is enabled.

This generic clock is asynchronous to the user interface clock (PB2_CLK).

34.5.4 DMA
Not applicable.

34.5.5 Interrupts
Not applicable.

34.5.6 Events
The CCL can use events from other peripherals and generate events that can be used by other
peripherals. For this feature to function, the events have to be configured properly. Refer to the
Related Links below for more information about the event users and event generators.

Related Links
28. Event System (EVSYS)

34.5.7 Debug Operation
When the CPU is halted in Debug mode the CCL continues normal operation. However, the CCL
cannot be halted when the CPU is halted in Debug mode. If the CCL is configured in a way that
requires it to be periodically serviced by the CPU, improper operation or data loss may result during
debugging.

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 750

34.5.8 Register Access Protection
All registers with write access can be write-protected optionally by the Peripheral Access Controller
(PAC). See Peripheral Access Controller (PAC) from Related Links.

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

PAC write protection does not apply to accesses through an external debugger.

Related Links
26. Peripheral Access Controller (PAC)

34.5.9 Analog Connections
Not applicable.

34.6 Functional Description

34.6.1 Principle of Operation
Configurable Custom Logic (CCL) is a programmable logic block that can use the device port pins,
internal peripherals, and the internal Event System as both input and output channels. The CCL can
serve as glue logic between the device and external devices. The CCL can eliminate the need for
external logic component and can also help the designer overcome challenging real-time constrains
by combining core independent peripherals in clever ways to handle the most time critical parts of
the application independent of the CPU.

34.6.2 Operation

34.6.2.1 Initialization
The following bits are enable-protected, meaning that they can only be written when the
corresponding even LUT is disabled (LUTCTRLx.ENABLE=0):

• Sequential Selection bits in the Sequential Control x (SEQCTRLx.SEQSEL) register

The following registers are enable-protected, meaning that they can only be written when the
corresponding LUT is disabled (LUTCTRLx.ENABLE=0):

• LUT Control x (LUTCTRLx) register, except the ENABLE bit

Enable-protected bits in the LUTCTRLx registers can be written at the same time as
LUTCTRLx.ENABLE is written to '1', but not at the same time as LUTCTRLx.ENABLE is written to
'0'.

Enable-protection is denoted by the Enable-Protected property in the register description.

34.6.2.2 Enabling, Disabling, and Resetting
The CCL is enabled by writing a '1' to the Enable bit in the Control register (CTRL.ENABLE). The CCL is
disabled by writing a '0' to CTRL.ENABLE.

Each LUT is enabled by writing a '1' to the Enable bit in the LUT Control x register
(LUTCTRLx.ENABLE). Each LUT is disabled by writing a '0' to LUTCTRLx.ENABLE.

The CCL is reset by writing a '1' to the Software Reset bit in the Control register (CTRL.SWRST).
All registers in the CCL will be reset to their initial state, and the CCL will be disabled. Refer to
34.8.1. CTRL for details.

34.6.2.3 Lookup Table Logic
The lookup table in each LUT unit can generate any logic expression OUT as a function of three
inputs (IN[2:0]), as shown in Figure 34-2. One or more inputs can be masked. The truth table for the
expression is defined by TRUTH bits in LUT Control x register (LUTCTRLx.TRUTH).

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 751

Figure 34-2. Truth Table Output Value Selection

TRUTH[0]
TRUTH[1]
TRUTH[2]
TRUTH[3]
TRUTH[4]
TRUTH[5]
TRUTH[6]
TRUTH[7]

OUT

IN[2:0]

LUTCTRL
(ENABLE)

LUT

Table 34-1. Truth Table of LUT
IN[2] IN[1] IN[0] OUT

0 0 0 TRUTH[0]

0 0 1 TRUTH[1]

0 1 0 TRUTH[2]

0 1 1 TRUTH[3]

1 0 0 TRUTH[4]

1 0 1 TRUTH[5]

1 1 0 TRUTH[6]

1 1 1 TRUTH[7]

34.6.2.4 Truth Table Inputs Selection
Input Overview
The inputs can be individually:

• Masked
• Driven by peripherals:

– Analog comparator output (AC)
– Timer/Counters waveform outputs (TC)
– Serial Communication output transmit interface (SERCOM)

• Driven by internal events from Event System
• Driven by other CCL sub-modules

The Input Selection for each input ‘y’ of LUT x is configured by writing the Input ‘y’ Source Selection
bit in the LUT x Control register (LUTCTRLx.INSELy).

Masked Inputs (MASK)
When a LUT input is masked (LUTCTRLx.INSELy = MASK), the corresponding TRUTH input (IN) is
internally tied to zero, as shown in this figure:

Figure 34-3. Masked Input Selection

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 752

Internal Feedback Inputs (FEEDBACK)
When selected (LUTCTRLx.INSELy = FEEDBACK), the Sequential (SEQ) output is used as input for the
corresponding LUT.

The output from an internal sequential sub-module can be used as input source for the LUT, see
figure below for an example for LUT0 and LUT1. The sequential selection for each LUT follows the
formula:IN 2N i = SEQ NIN 2N+1 i = SEQ N
With N representing the sequencer number and i=0,1,2 representing the LUT input index.

See Sequential Logic from Related Links.

Figure 34-4. Feedback Input Selection

Linked LUT (LINK)
When selected (LUTCTRLx.INSELy=LINK), the subsequent LUT output is used as the LUT input (for
example, LUT2 is the input for LUT1), as shown in the figure below:

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 753

Figure 34-5. Linked LUT Input Selection

CTRL
(ENABLE)

LUT0 SEQ 0

LUT1

CTRL
(ENABLE)

LUT2 SEQ 1

LUT3

CTRL
(ENABLE)

LUT(2n – 2) SEQ n

LUT(2n-1)

Internal Events Inputs Selection (EVENT)
Asynchronous events from the Event System can be used as input selection, as shown in the
following figure. For each LUT, one event input line is available and can be selected on each LUT
input. Before enabling the event selection by writing LUTCTRLx.INSELy=EVENT, the Event System
must be configured first.

By default, CCL includes an edge detector. When the event is received, an internal strobe is
generated when a rising edge is detected. The pulse duration is one GCLK_CCL clock cycle. Writing
the LUTCTRLx.INSELy=ASYNCEVENT will disable the edge detector. In this case, it is possible to
combine an asynchronous event input with any other input source. This is typically useful with event
levels inputs for example, (external I/O pin events). The following steps ensure proper operation:

1. Enable the GCLK_CCL clock.
2. Configure the Event System to route the event asynchronously.
3. Select the event input type (LUTCTRLx.INSEL = ASYNCEVENT).
4. If a strobe must be generated on the event input falling edge, write a '1' to the Inverted Event

Input Enable bit in the LUT Control register (LUTCTRLx.INVEI) .
5. Enable the event input by writing the Event Input Enable bit in the LUT Control register

(LUTCTRLx.LUTEI) to '1'.

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 754

Figure 34-6. Event Input Selection

I/O Pin Inputs (IO)
When the I/O pin is selected as LUT input (LUTCTRLx.INSELy = IO), the corresponding LUT input will
be connected to the pin, as shown in the figure below.

Figure 34-7. I/O Pin Input Selection

Analog Comparator Inputs (AC)
The AC outputs can be used as input source for the LUT (LUTCTRLx.INSELy=AC).

The analog comparator outputs are distributed following the formula:IN N i = AC N% ComparatorOutput_Number
With N representing the LUT number and i=[0,1,2] representing the LUT input index.

Before selecting the comparator output, the AC must be configured first.

Figure 34-8. AC Input Selection

Timer/Counter Inputs (TC)
The TC waveform output WO[0] can be used as input source for the LUT (LUTCTRLx.INSELy = TC).
Only consecutive instances of the TC, that is, TCx and the subsequent TC(x+1), are available as
default and alternative TC selections (for example, TC0 and TC1 are sources for LUT0, TC1 and
TC2 are sources for LUT1). See the figure below for an example for LUT0. More general, the Timer/
Counter selection for each LUT follows the formula:IN N i = DefaultTC N% TC_Instance_NumberIN N i = AlternativeTC N + 1 % TC_Instance_Number
Where N represents the LUT number and i represents the LUT input index (i=0,1,2).

Before selecting the waveform outputs, the TC must be configured first.

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 755

Figure 34-9. TC Input Selection

Timer/Counter for Control Application Inputs (TCC)
The TCC waveform outputs can be used as input source for the LUT. Only WO[2:0] outputs can be
selected and routed to the respective LUT input (that is, IN0 is connected to WO0, IN1 to WO1, and
IN2 to WO2), as shown in the figure below.

Before selecting the waveform outputs, the TCC must be configured first.

Figure 34-10. TCC Input Selection

OUT0

Serial Communication Output Transmit Inputs (SERCOM)
The serial engine transmitter output from Serial Communication Interface (SERCOM TX, TXd for
USART, MOSI for SPI) can be used as input source for the LUT. The figure below shows an example
for LUT0 and LUT1. The SERCOM selection for each LUT follows the formula:IN N i = SERCOM[N% SERCOM_Instance_Number
With N representing the LUT number and i=0,1,2 representing the LUT input index.

Before selecting the SERCOM as input source, the SERCOM must be configured first: the SERCOM TX
signal must be output on SERCOMn/pad[0], which serves as input pad to the CCL.

Figure 34-11. SERCOM Input Selection

Related Links
34.6.2.7. Sequential Logic

34.6.2.5 Filter
By default, the LUT output is a combinatorial function of the LUT inputs. This may cause some short
glitches when the inputs change value. These glitches can be removed by clocking through filters, if
demanded by application needs.

The Filter Selection bits in LUT Control register (LUTCTRLx.FILTSEL) define the synchronizer or digital
filter options. When a filter is enabled, the OUT output will be delayed by two to five GCLK cycles.
One APB clock after the corresponding LUT is disabled, all internal filter logic is cleared.
Note: Events used as LUT input will also be filtered, if the filter is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 756

Figure 34-12. Filter

D Q

R

D Q

R

D Q

R

D Q

R

FILTSEL

OUT

Input

GCLK_CCL
CLR

G

34.6.2.6 Edge Detector
The edge detector can be used to generate a pulse when detecting a rising edge on its input. To
detect a falling edge, the TRUTH table must be inverted.

The edge detector is enabled by writing ‘1’ to the Edge Selection bit in LUT Control register
(LUTCTRLx.EDGESEL). In order to avoid unpredictable behavior, either the filter or synchronizer must
be enabled.

Edge detection is disabled by writing a ‘0’ to LUTCTRLx.EDGESEL. After disabling a LUT, the
corresponding internal Edge Detector logic is cleared one APB clock cycle later.

Figure 34-13. Edge Detector

34.6.2.7 Sequential Logic
Each LUT pair can be connected to the internal sequential logic, which can be configured to work
as D flip flop, JK flip flop, gated D-latch or RS-latch by writing the Sequential Selection bits on the
corresponding Sequential Control x register (SEQCTRLx.SEQSEL). Before using sequential logic, the
GCLK_CCL clock and optionally each LUT filter or edge detector must be enabled.

Note: While configuring the sequential logic, the even LUT must be disabled. When configured, the
even LUT must be enabled.

Gated D Flip-Flop (DFF)
When the DFF is selected, the D-input is driven by the even LUT output LUT0, and the G-input is
driven by the odd LUT output LUT1, as shown in the following figure.

Figure 34-14. D Flip Flop

0

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 757

When the even LUT is disabled LUTCTRL0.ENABLE=0, the flip-flop is asynchronously cleared. The
reset command (R) is kept enabled for one APB clock cycle. In all other cases, the flip-flop output
(OUT) is refreshed on rising edge of the GCLK_CCL, as shown in the following table.

Table 34-2. DFF Characteristics
R G D OUT

1 X X Clear

0 1 1 Set

0 Clear

0 X Hold state (no change)

JK Flip-Flop (JK)
When this configuration is selected, the J-input is driven by the even LUT output LUT0, and the
K-input is driven by the odd LUT output LUT1, as shown in the following figure.

Figure 34-15. JK Flip Flop

0

When the even LUT is disabled LUTCTRL0.ENABLE=0, the flip-flop is asynchronously cleared. The
reset command (R) is kept enabled for one APB clock cycle. In all other cases, the flip-flop output
(OUT) is refreshed on rising edge of the GCLK_CCL, as shown in the following table.

Table 34-3. JK Characteristics
R J K OUT

1 X X Clear

0 0 0 Hold state (no change)

0 0 1 Clear

0 1 0 Set

0 1 1 Toggle

Gated D-Latch (DLATCH)
When the DLATCH is selected, the D-input is driven by the even LUT output LUT0, and the G-input is
driven by the odd LUT output LUT1, as shown in the following figure.

Figure 34-16. D-Latch

D Q

G

OUTeven LUT

odd LUT

When the even LUT is disabled LUTCTRL0.ENABLE=0, the latch output will be cleared. The G-input is
forced enabled for one more APB clock cycle, and the D-input to zero. In all other cases, the latch
output (OUT) is refreshed as shown in the following table.

Table 34-4. D-Latch Characteristics
G D OUT

0 X Hold state (no change)

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 758

...........continued
G D OUT

1 0 Clear

1 1 Set

RS Latch (RS)
When this configuration is selected, the S-input is driven by the even LUT output LUT0, and the
R-input is driven by the odd LUT output LUT1, as shown in the following figure.

Figure 34-17. RS-Latch

S Q

R

OUTeven LUT

odd LUT

When the even LUT is disabled LUTCTRL0.ENABLE=0, the latch output will be cleared. The R-input is
forced enabled for one more APB clock cycle and S-input to zero. In all other cases, the latch output
(OUT) is refreshed as shown in the following table.

Table 34-5. RS-Latch Characteristics
S R OUT

0 0 Hold state (no change)

0 1 Clear

1 0 Set

1 1 Forbidden state

34.6.3 Events
The CCL can generate the following output events:

• LUTn where n=0-1: Lookup Table Output Value

Writing a '1' to the LUT Control Event Output Enable bit (LUTCTRL.LUTEO) enables the corresponding
output event. Writing a '0' to this bit disables the corresponding output event.

The CCL can take the following actions on an input event:

• INSELx where x=0-2: The event is used as input for the TRUTH table. For additional information,
refer to 34.5.6. Events.

Writing a '1' to the LUT Control Event Input Enable bit (LUTCTRL.LUTEI) enables the corresponding
action on input event. Writing a '0' to this bit disables the corresponding action on input event.

Related Links
28. Event System (EVSYS)

34.6.4 Sleep Mode Operation
When using the GCLK_CCL internal clocking, writing the Run In Standby bit in the Control register
(CTRL.RUNSTDBY) to '1' will allow GCLK_CCL to be enabled in Standby Sleep mode.

If CTRL.RUNSTDBY=0, the GCLK_CCL will be disabled in Standby Sleep mode. If the Filter, Edge
Detector or Sequential logic are enabled, the LUT output will be forced to zero in STANDBY mode.
In all other cases, the TRUTH table decoder will continue operation and the LUT output will be
refreshed accordingly.

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 759

34.7 Register Summary

Offset Name Bit Pos. 7 6 5 4 3 2 1 0
0x00 CTRL 7:0 RUNSTDBY ENABLE SWRST
0x01

...
0x03

Reserved

0x04 SEQCTRLX 7:0 SEQSEL[3:0]
0x05

...
0x07

Reserved

0x08 LUTCTRL0

7:0 EDGESEL FILTSEL[1:0] ENABLE
15:8 INSEL1[3:0] INSEL0[3:0]

23:16 LUTEO LUTEI INVEI INSEL2[3:0]
31:24 TRUTH[7:0]

0x0C LUTCTRL1

7:0 EDGESEL FILTSEL[1:0] ENABLE
15:8 INSEL1[3:0] INSEL0[3:0]

23:16 LUTEO LUTEI INVEI INSEL2[3:0]
31:24 TRUTH[7:0]

34.8 Register Description
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register and the 8-bit halves of a 16-bit register can be
accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the "PAC Write-Protection" property in each individual register
description. See Register Access Protection from Related Links.

Some registers are enable protected, meaning they can only be written when the peripheral is
disabled. Enable protection is denoted by the “Enable-Protected” property in each individual register
description.

Related Links
34.5.8. Register Access Protection

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 760

34.8.1 Control

Name:  CTRL
Offset:  0x00
Reset:  0x00
Property:  PAC Write-Protection

Note: CTRL register (except the bits ENABLE & SWRST) is Enable Protected when CCL.CTRL.ENABLE =
1.

Bit 7 6 5 4 3 2 1 0
 RUNSTDBY ENABLE SWRST

Access R/W R/W W
Reset 0 0 0

Bit 6 – RUNSTDBY Run in Standby
This bit indicates if the GCLK_CCL clock must be kept running in standby mode. The setting is
ignored for configurations where the generic clock is not required. For details refer to 34.6.4. Sleep
Mode Operation.

Important: This bit must be written before enabling the CCL.

Value Description
0 Generic clock is not required in standby sleep mode.
1 Generic clock is required in standby sleep mode.

Bit 1 – ENABLE Enable
Value Description
0 The peripheral is disabled.
1 The peripheral is enabled.

Bit 0 – SWRST Software Reset
Writing a '0' to this bit has no effect.
Writing a '1' to this bit resets all registers in the CCL to their initial state.
Value Description
0 There is no reset operation ongoing.
1 The reset operation is ongoing.

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 761

34.8.2 Sequential Control X

Name:  SEQCTRLX
Offset:  0x04
Reset:  0x00
Property:  PAC Write-Protection, Enable-protected

Note: SEQCTRLX register is Enable-protected when CCL.LUTCTRL0.ENABLE = 1.

Bit 7 6 5 4 3 2 1 0
 SEQSEL[3:0]

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bits 3:0 – SEQSEL[3:0] Sequential Selection
These bits select the sequential configuration:
Sequential Selection
Value Name Description
0x0 DISABLE Sequential logic is disabled
0x1 DFF D flip flop
0x2 JK JK flip flop
0x3 LATCH D latch
0x4 RS RS latch
0x5 - 0xF — Reserved

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 762

34.8.3 LUT Control n

Name:  LUTCTRL
Offset:  0x08 + n*0x04 [n=0..1]
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-protected

Note: The LUTCTRLn register is Enable Protected when CCL.LUTCTRLn.ENABLE = 1.

Bit 31 30 29 28 27 26 25 24
 TRUTH[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 LUTEO LUTEI INVEI INSEL2[3:0]

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 INSEL1[3:0] INSEL0[3:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 EDGESEL FILTSEL[1:0] ENABLE

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bits 31:24 – TRUTH[7:0] Truth Table
These bits define the value of truth logic as a function of inputs IN[2:0].

Bit 22 – LUTEO LUT Event Output Enable
Value Description
0 LUT event output is disabled.
1 LUT event output is enabled.

Bit 21 – LUTEI LUT Event Input Enable
Value Description
0 LUT incoming event is disabled.
1 LUT incoming event is enabled.

Bit 20 – INVEI Inverted Event Input Enable
Value Description
0 Incoming event is not inverted.
1 Incoming event is inverted.

Bits 8:11, 12:15, 16:19 – INSELx LUT Input x Source Selection
These bits select the LUT input x source.
Value Name Description
0x0 MASK Masked input
0x1 FEEDBACK Feedback input source
0x2 LINK Linked LUT input source
0x3 EVENT Event input source
0x4 IO I/O pin input source

 PIC32CX-BZ2 and WBZ45 Family
Configurable Custom Logic (CCL)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 763

Value Name Description
0x5 AC AC input source: CMP[0] (LUT0) / CMP[1] (LUT1)
0x6 TC TC input source: TC0 WO[0] (LUT0) / TC1 WO[0] (LUT1)
0x7 ALTTC Alternative TC input source: TC1 WO[0] (LUT0) / TC2 WO[0] (LUT1)
0x8 TCC TCC input source: TCC0 (LUT0) / TCC1 (LUT1)
0x9 SERCOM SERCOM input source: SERCOM0 PAD0 (LUT0) / SERCOM1 PAD0 (LUT1)
0xA ALT2TC 1'b0
0xB ASYNCEVENT 1'b0
0xC - 0xF Reserved Reserved

Bit 7 – EDGESEL Edge Selection
Value Description
0 Edge detector is disabled.
1 Edge detector is enabled.

Bits 5:4 – FILTSEL[1:0] Filter Selection
These bits select the LUT output filter options:
Filter Selection
Value Name Description
0x0 DISABLE Filter disabled
0x1 SYNCH Synchronizer enabled
0x2 FILTER Filter enabled
0x3 — Reserved

Bit 1 – ENABLE LUT Enable
Note: Prevents/protects write access to the other bits in the LUTCTRL registers.

Value Description
0 The LUT is disabled.
1 The LUT is enabled.

 PIC32CX-BZ2 and WBZ45 Family
True Random Number Generator (TRNG)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 764

35. True Random Number Generator (TRNG)
35.1 Overview

The True Random Number Generator (TRNG) generates unpredictable random numbers that are not
generated by an algorithm.

35.2 Features
• Provides a 32-bit random number for every 84-clock cycles,

35.3 Block Diagram
Figure 35-1. TRNG Block Diagram.

CLKGEN User Interface Entropy Source

Control Logic

TRNG Interrupt
Controller

APB

Event
Controller

35.4 Signal Description
Not applicable.

35.5 Product Dependencies
In order to use this peripheral, other parts of the system must be configured correctly, as described
as follows.

35.5.1 I/O Lines
Not applicable.

35.5.2 Power Management
The functioning of TRNG depends on the Sleep mode of the device.

The TRNG interrupts can be used to wake up the device from sleep modes. Events connected to the
event system can trigger other operations in the system without exiting sleep modes.

Related Links
35.6.5. Sleep Mode Operation

35.5.3 Clocks
The TRNG bus clock () can be enabled and disabled in the CRU module or PMD3.RNGMD bit (see
Peripheral Module Disable Register (PMD) from Related Links).

Related Links
20. Peripheral Module Disable Register (PMD)

35.5.4 DMA
Not applicable.

 PIC32CX-BZ2 and WBZ45 Family
True Random Number Generator (TRNG)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 765

35.5.5 Interrupts
The interrupt request line is connected to the interrupt controller. Using the TRNG interrupt(s)
requires the interrupt controller to be configured first. See Nested Vector Interrupt Controller (NVIC)
from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

35.5.6 Events
TRNG can generate Events that are used by the Event System (EVSYS) and EVSYS users.

TRNG cannot use any Events from other peripherals, as it is not an Event User.

Related Links
28. Event System (EVSYS)

35.5.7 Debug Operation
When the CPU is halted in debug mode the TRNG continues normal operation. If the TRNG is
configured in a way that requires it to be periodically serviced by the CPU through interrupts or
similar, improper operation or data loss may result during debugging.

35.5.8 Register Access Protection
All registers with write access are optionally write-protected by the Peripheral Access Controller
(PAC), except the following register:

• Interrupt Flag Status and Clear (INTFLAG) register

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

35.5.9 Analog Connections
Not applicable.

35.6 Functional Description

35.6.1 Principle of Operation
When the TRNG is enabled, the peripheral starts providing new 32-bit random numbers every 84
PB2_CLK clock cycles.

The TRNG can be configured to generate an interrupt or event when a new random number is
available.

Figure 35-2. TRNG Data Generation Sequence

84 clock cycles 84 clock cycles84 clock cycles

Read TRNG_ISR

Read DATA

Read TRNG_ISR

Read DATA

Clock

Interrupt

ENABLE

 PIC32CX-BZ2 and WBZ45 Family
True Random Number Generator (TRNG)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 766

35.6.2 Basic Operation
35.6.2.1 Initialization

To operate the TRNG, do the following:
• Ensure PB2_CLK is enabled in the CRU and TRNG is enabled in the PMD3 register, PMD3.RNGMD

bit.
• Optional: Enable the output event by writing a ‘1’ to the EVCTRL.DATARDYEO bit.

• Optional: Enable the TRNG to Run in Standby sleep mode by writing a ‘1’ to CTRLA.RUNSTDBY.

• Enable the TRNG operation by writing a ‘1’ to CTRLA.ENABLE.

35.6.2.2 Enabling, Disabling and Resetting
The TRNG is enabled by writing '1' to the Enable bit in the Control A register (CTRLA.ENABLE). The
TRNG is disabled by writing a zero to CTRLA.ENABLE.

35.6.3 Interrupts
The TRNG has the following interrupt source:

• Data Ready (DATARDY): Indicates that a new random number is available in the DATA register and
ready to be read.
This interrupt is a synchronous wake-up source. See Sleep Mode Controller for details.

The interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag
Status and Clear register (INTFLAG.DATARDY) is set to ‘1’ when the interrupt condition occurs. The
interrupt can be enabled by writing a ‘1’ to the corresponding bit in the Interrupt Enable Set register
(INTENSET.DATARDY), and disabled by writing a ‘1’ to the corresponding bit in the Interrupt Enable
Clear (INTENCLR) register.

An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is
enabled. The interrupt request remains active until the interrupt flag is cleared, or the interrupt is
disabled. See INTFLAG register from Related Links for details on how to clear interrupt flags.

Note that interrupts must be globally enabled for interrupt requests to be generated.

Related Links
35.8.5. INTFLAG

35.6.4 Events
The TRNG can generate the following output event:

• Data Ready (DATARDY): Generated when a new random number is available in the DATA register.

Writing '1' to the Data Ready Event Output bit in the Event Control Register (EVCTRL.DATARDYEO)
enables the DTARDY event. Writing a '0' to this bit disables the corresponding output event. Refer to
EVSYS – Event System for details on configuring the Event System.

Related Links
28. Event System (EVSYS)

35.6.5 Sleep Mode Operation
The Run in Standby bit in Control A register (CTRLA.RUNSTDBY) controls the behavior of the TRNG
during standby sleep mode:

When this bit is '0', the TRNG is disabled during sleep, but maintains its current configuration.

When this bit is '1', the TRNG continues to operate during sleep and any enabled TRNG interrupt
source can wake up the CPU.

 PIC32CX-BZ2 and WBZ45 Family
True Random Number Generator (TRNG)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 767

35.7 Register Summary

Offset Name Bit Pos. 7 6 5 4 3 2 1 0
0x00 CTRLA 7:0 RUNSTDBY ENABLE
0x01

...
0x03

Reserved

0x04 EVCTRL 7:0 DATARDYEO
0x05

...
0x07

Reserved

0x08 INTENCLR 7:0 DATARDY
0x09 INTENSET 7:0 DATARDY
0x0A INTFLAG 7:0 DATARDY
0x0B

...
0x1F

Reserved

0x20 DATA

7:0 DATA[7:0]
15:8 DATA[15:8]

23:16 DATA[23:16]
31:24 DATA[31:24]

35.8 Register Description
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the
“Read-Synchronized” and/or “Write-Synchronized” property in each individual register description.

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register
description.

 PIC32CX-BZ2 and WBZ45 Family
True Random Number Generator (TRNG)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 768

35.8.1 Control A

Name:  CTRLA
Offset:  0x00
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 RUNSTDBY ENABLE

Access R/W R/W
Reset 0 0

Bit 6 – RUNSTDBY Run in Standby
This bit controls how the TRNG behaves during standby sleep mode:
Value Description
0 The TRNG is halted during standby sleep mode.
1 The TRNG is not stopped in standby sleep mode.

Bit 1 – ENABLE Enable
Value Description
0 The TRNG is disabled.
1 The TRNG is enabled.

 PIC32CX-BZ2 and WBZ45 Family
True Random Number Generator (TRNG)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 769

35.8.2 Event Control

Name:  EVCTRL
Offset:  0x04
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 DATARDYEO

Access R/W
Reset 0

Bit 0 – DATARDYEO Data Ready Event Output
This bit indicates whether the Data Ready event output is enabled and whether an output event will
be generated when a new random value is ready.
Value Description
0 Data Ready event output is disabled and an event will not be generated.
1 Data Ready event output is enabled and an event will be generated.

 PIC32CX-BZ2 and WBZ45 Family
True Random Number Generator (TRNG)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 770

35.8.3 Interrupt Enable Clear

Name:  INTENCLR
Offset:  0x08
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set (INTENSET) register.

Bit 7 6 5 4 3 2 1 0
 DATARDY

Access R/W
Reset 0

Bit 0 – DATARDY Data Ready Interrupt Enable
Writing a '1' to this bit will clear the Data Ready Interrupt Enable bit, which disables the
corresponding interrupt request.
Value Description
0 The DATARDY interrupt is disabled.
1 The DATARDY interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
True Random Number Generator (TRNG)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 771

35.8.4 Interrupt Enable Set

Name:  INTENSET
Offset:  0x09
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Clear (INTENCLR) register.

Bit 7 6 5 4 3 2 1 0
 DATARDY

Access R/W
Reset 0

Bit 0 – DATARDY Data Ready Interrupt Enable
Writing a '1' to this bit will set the Data Ready Interrupt Enable bit, which enables the corresponding
interrupt request.
Value Description
0 The DATARDY interrupt is disabled.
1 The DATARDY interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
True Random Number Generator (TRNG)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 772

35.8.5 Interrupt Flag Status and Clear

Name:  INTFLAG
Offset:  0x0A
Reset:  0x00
Property:  -

Bit 7 6 5 4 3 2 1 0
 DATARDY

Access R/W
Reset 0

Bit 0 – DATARDY Data Ready
This flag is set when a new random value is generated, and an interrupt will be generated if
INTENCLR/SET.DATARDY=1.
This flag is cleared by writing a ‘1’ to the flag or by reading the DATA register. Writing a ‘0’ to this bit
has no effect.

 PIC32CX-BZ2 and WBZ45 Family
True Random Number Generator (TRNG)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 773

35.8.6 Output Data

Name:  DATA
Offset:  0x20
Reset:  -
Property:  -

Bit 31 30 29 28 27 26 25 24
 DATA[31:24]

Access R R R R R R R R
Reset – – – – – – – –

Bit 23 22 21 20 19 18 17 16
 DATA[23:16]

Access R R R R R R R R
Reset – – – – – – – –

Bit 15 14 13 12 11 10 9 8
 DATA[15:8]

Access R R R R R R R R
Reset – – – – – – – –

Bit 7 6 5 4 3 2 1 0
 DATA[7:0]

Access R R R R R R R R
Reset – – – – – – – –

Bits 31:0 – DATA[31:0] Output Data
These bits hold the 32-bit randomly generated output data.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 774

36. Advanced Encryption Standard (AES)
36.1 Overview

The Advanced Encryption Standard peripheral (AES) provides a means for symmetric-key encryption
of 128-bit blocks, in compliance to NIST specifications.

The symmetric-key algorithm requires the same key for both encryption and decryption.

Different key sizes are supported. The key size determines the number of repetitions of
transformation rounds that convert the input (called the "plaintext") into the final output
("ciphertext"). The number of rounds of repetition is as follows:
• 10 rounds of repetition for 128-bit keys
• 12 rounds of repetition for 192-bit keys
• 14 rounds of repetition for 256-bit keys

36.2 Features
• Compliant with FIPS Publication 197, Advanced Encryption Standard (AES)
• 128/192/256 bit cryptographic key supported
• Encryption time of 57/67/77 cycles with 128-bit/192-bit/256-bit cryptographic key
• Five confidentiality modes of operation as recommended in NIST Special Publication 800-38A
• Electronic Code Book (ECB)
• Cipher Block Chaining (CBC)
• Cipher Feedback (CFB)
• Output Feedback (OFB)
• Counter (CTR)
• Supports Counter with CBC-MAC (CCM/CCM*) mode for authenticated encryption
• 8, 16, 32, 64, 128-bit data sizes possible in CFB mode
• Galois Counter mode (GCM) encryption and authentication

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 775

36.3 Block Diagram
Figure 36-1. AES Block Diagram

ADD ROUND KEY

SUBBYTES

SHIFT ROWS

MIX COLUMNS

ADD ROUND KEY

SUBBYTES

SHIFT ROWS

ADD ROUND KEY

Nr-1 rounds

EN
C

RY
PT

IO
N

R
O

U
N

D
PLAINTEXT

FI
NA

L
R

O
U

N
D

CIPHERTEXT

ENCRYPTION

Nr-1 rounds

ADD ROUND KEY

INV SHIFT ROWS

INV SUBBYTES

ADD ROUND KEY

INV MIX COLUMNS

INV SHIFT ROWS

INV SUBBYTES

ADD ROUND KEY

DE
CR

YP
TI

O
N

RO
UN

D

CIPHERTEXT

FI
N

AL
R

O
U

ND

PLAINTEXT

DECRYPTION

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 776

36.4 Signal Description
Not applicable.

36.5 Product Dependencies
In order to use this AES module, other parts of the system must be configured correctly, as
described below.

36.5.1 I/O Lines
Not applicable.

36.5.2 Power Management
The AES will continue to operate in Standby sleep mode, if it's source clock is running.

The AES interrupts can be used to wake up the device from Standby sleep mode. Refer to the Power
Manager chapter for details on the different sleep modes.

AES is clocked only on the following conditions:

• When the DMA is enabled.
• Whenever there is an APB access for any read and write operation to the AES registers. (Not in

Standby sleep mode.)
• When the AES is enabled & encryption/decryption is ongoing.

Related Links
15. Power Management Unit (PMU)

36.5.3 Clocks
The AES bus clock (PB2_CLK) can be enabled and disabled in the CRU module.

36.5.4 DMA
The AES has two DMA request lines; one for input data and one for output data. They are both
connected to the DMA Controller (DMAC). These DMA request triggers will be acknowledged by the
DMAC ACK signals. Using the AES DMA requests requires the DMA Controller to be configured first.
See Direct Memory Access Controller (DMAC) from Related Links.

Related Links
22. Direct Memory Access Controller (DMAC)

36.5.5 Interrupts
The interrupt request line is connected to the interrupt controller. Using the AES interrupt requires
the interrupt controller to be configured first. Refer to the Processor and Architecture chapter for
details.

All the AES interrupts are synchronous wake-up sources. See Sleep Mode Controller for details.

Related Links
10. Processor and Architecture

36.5.6 Events
Not applicable.

36.5.7 Debug Operation
When the CPU is halted in debug mode, the AES module continues normal operation. If the AES
module is configured in a way that requires it to be periodically serviced by the CPU through
interrupts or similar, improper operation or data loss may result during debugging. The AES module
can be forced to halt operation during debugging.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 777

36.5.8 Register Access Protection
All registers with write access are optionally write-protected by the peripheral access controller
(PAC), except the following register:

• Interrupt Flag Register (INTFLAG)

Write protection is denoted by the Write-Protected property in the register description.

Write protection does not apply to accesses through an external debugger. See Peripheral Access
Controller (PAC) from Related Links.

Related Links
26. Peripheral Access Controller (PAC)

36.5.9 Analog Connections
Not applicable.

36.6 Functional Description

36.6.1 Principle of Operation
The following is a high level description of the algorithm. These are the steps:

• KeyExpansion: Round keys are derived from the cipher key using Rijndael's key schedule.
• InitialRound:

– AddRoundKey: Each byte of the state is combined with the round key using bitwise XOR.
• Rounds:

– SubBytes: A non-linear substitution step where each byte is replaced with another according
to a lookup table.

– ShiftRows: A transposition step where each row of the state is shifted cyclically a certain
number of steps.

– MixColumns: A mixing operation which operates on the columns of the state, combining the
four bytes in each column.

– AddRoundKey
• Final Round (no MixColumns):

– SubBytes
– ShiftRows
– AddRoundKey

The relationship between the module's clock frequency and throughput (in bytes per second) is
given by:

Clock Frequency = (Throughput/2) x (Nr+1) for 2 byte parallel processing

Clock Frequency = (Throughput/4) x (Nr+1) for 4 byte parallel processing

where Nr is the number of rounds, depending on the key length.

36.6.2 Basic Operation
36.6.2.1 Initialization

The following register is enable-protected:

• Control A (CTRLA)

Enable-protection is denoted by the Enable-Protected property in the register description.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 778

36.6.2.2 Enabling, Disabling, and Resetting
The AES module is enabled by writing a one to the Enable bit in the Control A register
(CTRLA.ENABLE). The module is disabled by writing a zero to CTRLA.ENABLE. The module is reset
by writing a one to the Software Reset bit in the Control A register (CTRLA.SWRST).

36.6.2.3 Basic Programming
The CIPHER bit in the Control A Register (CTRLA.CIPHER) allows selection between the encryption
and the decryption processes. The AES is capable of using cryptographic keys of 128/192/256 bits
to encrypt and decrypt data in blocks of 128 bits. The Key Size (128/192/256) can be programmed
in the KEYSIZE field in the Control A Register (CTRLA.KEYSIZE). This 128-bit/192-bit/256-bit key is
defined in the Key Word Registers (KEYWORD). By setting the XORKEY bit of CTRLA register, keyword
can be updated with the resulting XOR value of user keyword and previous keyword content.

The input data for processing is written to a data buffer consisting of four 32-bit registers through
the Data register address. The data buffer register (note that input and output data shares the
same data buffer register) that is written to when the next write is performed is indicated by the
Data Pointer in the Data Buffer Pointer (DATABUFPTR) register. This field is incremented by one or
wrapped by hardware when a write to the INDATA register address is performed. This field can also
be programmed, allowing the user direct control over which input buffer register to write. Note that
when AES module is in the CFB operation mode with the data segment size less than 128 bits, the
input data must be written to the first (DATABUFPTR = 0) and second (DATABUFPTR = 1) input buffer
registers (see Table 36-1).

The input to the encryption processes of the CBC, CFB and OFB modes includes, in addition to
the plaintext, a 128-bit data block called the Initialization Vector (IV), which must be set in the
Initialization Vector Registers (INTVECT). Additionally, the GCM mode 128-bit authentication data
needs to be programmed. The Initialization Vector is used in the initial step in the encryption of a
message and in the corresponding decryption of the message. The Initialization Vector Registers are
also used by the Counter mode to set the counter value.

It is necessary to notify AES module whenever the next data block it is going to process is the
beginning of a new message. This is done by writing a one to the New Message bit in the Control B
register (CTRLB.NEWMSG).

The AES modes of operation are selected by setting the AESMODE field in the Control A Register
(CTRLA.AESMODE). In Cipher Feedback Mode (CFB), five data sizes are possible (8, 16, 32, 64 or 128
bits), configurable by means of the CFBS field in the Control A Register (CTRLA.CFBS). In Counter
mode, the size of the block counter embedded in the module is 16 bits. Therefore, there is a rollover
after processing 1 megabyte of data. The data pre-processing, post-processing and data chaining for
the concerned modes are automatically performed by the module.

When data processing has completed, the Encryption Complete bit in the Interrupt Flag register
(INTFLAG.ENCCMP) is set by hardware (which triggers an interrupt request if the corresponding
interrupt is enabled). The processed output data is read out through the Output Data register
(INDATA) address from the data buffer consisting of four 32-bit registers. The data buffer register
that is read when the next read is performed is indicated by the Data Pointer field in the Data Buffer
Pointer register (DATABUFPTR). This field is incremented by one or wrapped by hardware when a
read from the INDATA register address is performed. This field can be programmed, giving the user
direct control over which output buffer register to read from. Note that when AES module is in the
CFB operation mode with the data segment size less than 128 bits, the output data must be read
from the first (DATABUFPTR = 0) and second (DATABUFPTR = 1) output buffer registers (see Table
36-1). The Encryption Complete bit (INTFLAG.ENCCMP) is cleared by hardware after the processed
data has been read from the relevant output buffer registers.

Table 36-1. Relevant Input/Output Data Registers for Different Confidentiality Modes
Confidentiality Mode Relevant Input / Output Data Registers

ECB All

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 779

...........continued
Confidentiality Mode Relevant Input / Output Data Registers

CBC All

OFB All

128-bit CFB All

64-bit CFB First and Second

32-bit CFB First

16-bit CFB First

8-bit CFB First

CTR All

36.6.2.4 Start Modes
The Start mode field in the Control A Register (CTRLA.STARTMODE) allows the selection of encryption
start mode.

1. Manual Start Mode
In the Manual Start Mode the sequence is as follows:
a. Write the 128/192/256 bit key in the Key Register (KEYWORD)
b. Write the initialization vector or counter in the Initialization Vector Register (INTVECT). The

initialization vector concerns all modes except ECB
c. Enable interrupts in Interrupt Enable Set Register (INTENSET), depending on whether an

interrupt is required or not at the end of processing.
d. Write the data to be encrypted or decrypted in the Data Registers (INDATA).
e. Set the START bit in Control B Register (CTRLB.START) to begin the encryption or the

decryption process.
f. When the processing completes, the Encryption Complete bit in the Interrupt Flag Register

(INTFLAG.ENCCMP) raises. If Encryption Complete interrupt has been enabled, the interrupt
line of the AES is activated.

g. When the software reads one of the Output Data Registers (INDATA), INTFLAG.ENCCMP bit is
automatically cleared.

2. Auto start Mode
The Auto Start Mode is similar to the manual one, but as soon as the correct number of input
data registers is written, processing is automatically started without setting the START bit in the
Control B Register. DMA operation uses this mode.

3. Last Output Data Mode (LOD)
This mode is used to generate message authentication code (MAC) on data in CCM mode of
operation. The CCM mode combines counter mode for encryption and CBC-MAC generation for
authentication.

When LOD is disabled in CCM mode then counter mode of encryption is performed on the input
data block.

When LOD is enabled in CCM mode then CBC-MAC generation is performed. Zero block is used
as the initialization vector by the hardware. Reading from the Output Data Register (INDATA)
is not required to clear the ENCCMP flag. The ENCCMP flag is automatically cleared by writing
into the Input Data Register (INDATA). This allows retrieval of only the last data in several
encryption/decryption processes. No output data register reads are necessary between each block
of encryption/decryption process.

Note that assembling message depending on the security level identifier in CCM* has to be done in
software.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 780

36.6.2.5 Computation of last Nk words of expanded key
The AES algorithm takes the cryptographic key provided by the user and performs a Key Expansion
routine to generate an expanded key. The expanded key contains a total of 4(Nr + 1) 32-bit words,
where the first Nk (4/6/8 for a 128-/192-/256-bit key) words are the user-provided key. For data
encryption, the expanded key is used in the forward direction, i.e., the first four words are used in
the initial round of data processing, the second four words in the first round, the third four words in
the second round, and so on. On the other hand, for data decryption, the expanded key is used in
the reverse direction, i.e.,the last four words are used in the initial round of data processing, the last
second four words in the first round, the last third four words in the second round, and so on.

To reduce gate count, the AES module does not generate and store the entire expanded key prior
to data processing. Instead, it computes on-the-fly the round key (four 32-bit words) required for
the current round of data processing. In general, the round key for the current round of data
processing can be computed from the Nk words of the expanded key generated in the previous
rounds. When AES module is operating in the encryption mode, the round key for the initial round
of data processing is simply the user-provided key written to the KEY registers. On the other hand,
when AES module is operating in the decryption mode, the round key for the initial round of data
processing is the last four words of the expanded key, which is not available unless AES module has
performed at least one encryption process prior to operating in the decryption mode.

In general, the last Nk words of the expanded key must be available before decryption can start.
If desired, AES module can be instructed to compute the last Nk words of the expanded key in
advance by writing a one to the Key Generate (KEYGEN) bit in the CTRLA register (CTRLA.KEYGEN).
The computation takes Nr clock cycles. Alternatively, the last Nk words of the expanded key can be
automatically computed by AES module when a decryption process is initiated if they have not been
computed in advance or have become invalid. Note that this will introduce a latency of Nr clock
cycles to the first decryption process.

36.6.2.6 Hardware Countermeasures against Differential Power Analysis Attacks
The AES module features four types of hardware countermeasures that are useful for protecting
data against differential power analysis attacks:

• Type 1: Randomly add one cycle to data processing
• Type 2: Randomly add one cycle to data processing (other version)
• Type 3: Add a random number of clock cycles to data processing, subject to a maximum of

11/13/15 clock cycles for key sizes of 128/192/256 bits
• Type 4: Add random spurious power consumption during data processing

By default, all countermeasures are enabled, but require a write in DRNGSEED register to
be effective. One or more of the countermeasures can be disabled by programming the
Countermeasure Type field in the Control A (CTRLA.CTYPE) register. The countermeasures use
random numbers generated by a deterministic random number generator embedded in AES
module. The seed for the random number generator is written to the RANDSEED register. Note also
that a new seed must be written after a change in the keysize. Note that enabling countermeasures
reduces AES module’s throughput. In short, the throughput is highest with all the countermeasures
disabled. On the other hand, with all of the countermeasures enabled, the best protection is
achieved but the throughput is worst.

36.6.3 Galois Counter Mode (GCM)
GCM is comprised of the AES engine in CTR mode along with a universal hash function (GHASH
engine) that is defined over a binary Galois field to produce a message authentication tag. The
GHASH engine processes data packets after the AES operation. GCM provides assurance of the
confidentiality of data through the AES Counter mode of operation for encryption. Authenticity of
the confidential data is assured through the GHASH engine. Refer to the NIST Special Publication
800-38D Recommendation for more information.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 781

Counter 0 Counter 1 Counter 2Incr32 Incr32

CIPH(K) CIPH(K) CIPH(K)

Ciphertext 1 Ciphertext 2

Plaintext 1 Plaintext 2+ +

Encryption

Authentication

GF128Mult(H)GF128Mult(H)

Auth Data 1

GF128Mult(H)

+ +

+Len (A) || Len (C)

GF128Mult(H)

+

Auth Tag

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 782

36.6.3.1 GCM Operation
36.6.3.1.1 Hashkey Generation

• Configure CTRLA register as follows:
a. CTRLA.STARTMODE as Manual (Auto for DMAC)
b. CTRLA.CIPHER as Encryption
c. CTRLA.KEYSIZE as per the key used
d. CTRLA.AESMODE as ECB
e. CTRLA.CTYPE as per the countermeasures required.

• Set CTRLA.ENABLE
• Write zero to CIPLEN reg.
• Write the key in KEYWORD register
• Write the zeros to INDATA reg
• Set CTRLB.Start.
• Wait for INTFLAG.ENCCMP to be set
• AES Hardware generates Hash Subkey in HASHKEY register.

36.6.3.1.2 Authentication Header Processing
• Configure CTRLA register as follows:

a. CTRLA.STARTMODE as Manual
b. CTRLA.CIPHER as Encryption
c. CTRLA.KEYSIZE as per the key used
d. CTRLA.AESMODE as GCM
e. CTRLA.CTYPE as per the countermeasures required.

• Set CTRLA.ENABLE
• Write the key in KEYWORD register
• Set CTRLB.GFMUL
• Write the Authdata to INDATA reg
• Set CTRLB.START as1
• Wait for INTFLAG.GFMCMP to be set.
• AES Hardware generates output in GHASH register
• Continue steps 4 to 7 for remaining Authentication Header.

Note: If the Auth data is less than 128 bit, it has to be padded with zero to make it 128 bit aligned.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 783

GHASH

AUTHDAT +

GF128Mult(H)

GHASH

36.6.3.1.3 Plain text Processing
• Set CTRLB.NEWMSG for the new set of plain text processing.
• Load CIPLEN reg.
• Load (J0+1) in INTVECT register.
• As described in NIST documentation J 0 = IV || 0 31 || 1 when len(IV)=96 and J0 =GHASHH (IV

|| 0 s+64 || [len(IV)] 64) (s is the minimum number of zeroes that must be padded with the
Initialization Vector to make it a multiple of 128) if len(IV) != 96.

• Load plain text in INDATA register.
• Set CTRLB.START as 1.
• Wait for INTFLAG.ENCCMP to be set.
• AES Hardware generates output in INDATA register.
• Intermediate GHASH is stored in GHASH register and Cipher Text available in INDATA register.
• Continue 3 to 6 till the input of plain text to get the cipher text and the Hash keys.
• At the last input, set CTRLB.EOM.
• Write last in-data to INDATA reg.
• Set CTRLB.START as 1.
• Wait for INTFLAG.ENCCMP to be set.
• AES Hardware generates output in INDATA register and final Hash key in GHASH register.
• Load [LEN(A)]64||[LEN(C)]64 in INDATA register and set CTRLB.GFMUL and CTRLB.START as 1.
• Wait for INTFLAG.GFMCMP to be set.
• AES Hardware generates final GHASH value in GHASH register.

36.6.3.1.4 Plain text processing with DMAC
• Set CTRLB.NEWMSG for the new set of plain text processing.
• Load CIPLEN reg.
• Load (J0+1) in INTVECT register.
• Load plain text in INDATA register.
• Wait for INTFLAG.ENCCMP to be set.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 784

• AES Hardware generates output in INDATA register.
• Intermediate GHASH is stored in GHASH register and Cipher Text available in INDATA register.
• Continue 3 to 5 till the input of plain text to get the cipher text and the Hash keys.
• At the last input, set CTRLB.EOM.
• Write last in-data to INDATA reg.
• Wait for INTFLAG.ENCCMP to be set.
• AES Hardware generates output in INDATA register and final Hash key in GHASH register.
• Load [LEN(A)]64||[LEN(C)]64 in INDATA register and set CTRLB.GFMUL and CTRLB.START as 1.
• Wait for INTFLAG.GFMCMP to be set.
• AES Hardware generates final GHASH value in GHASH register.

36.6.3.1.5 Tag Generation
• Configure CTRLA

a. Set CTRLA.ENABLE to 0
b. Set CTRLA.AESMODE as CTR
c. Set CTRLA.ENABLE to 1

• Load J0 value to INITVECTV reg.
• Load GHASH value to INDATA reg.
• Set CTRLB.NEWMSG and CTRLB.START to start the Counter mode operation.
• Wait for INTFLAG.ENCCMP to be set.
• AES Hardware generates the GCM Tag output in INDATA register.

36.6.4 Synchronization
Not applicable.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 785

36.7 Register Summary

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x00 CTRLA

7:0 CFBS[2:0] AESMODE[2:0] ENABLE SWRST
15:8 XORKEY KEYGEN LOD STARTMODE CIPHER KEYSIZE[1:0]

23:16 CTYPE[3:0]
31:24

0x04 CTRLB 7:0 GFMUL EOM NEWMSG START
0x05 INTENCLR 7:0 GFMCMP ENCCMP
0x06 INTENSET 7:0 GFMCMP ENCCMP
0x07 INTFLAG 7:0 GFMCMP ENCCMP
0x08 DATABUFPTR 7:0 INDATAPTR[1:0]
0x09 DBGCTRL 7:0 DBGRUN
0x0A

...
0x0B

Reserved

0C KEYWORD0

7:0 KEYWORD[7:0]
15:8 KEYWORD[15:8]

23:16 KEYWORD[23:16]
31:24 KEYWORD[31:24]

10 KEYWORD1

7:0 KEYWORD[7:0]
15:8 KEYWORD[15:8]

23:16 KEYWORD[23:16]
31:24 KEYWORD[31:24]

14 KEYWORD2

7:0 KEYWORD[7:0]
15:8 KEYWORD[15:8]

23:16 KEYWORD[23:16]
31:24 KEYWORD[31:24]

18 KEYWORD3

7:0 KEYWORD[7:0]
15:8 KEYWORD[15:8]

23:16 KEYWORD[23:16]
31:24 KEYWORD[31:24]

1C KEYWORD4

7:0 KEYWORD[7:0]
15:8 KEYWORD[15:8]

23:16 KEYWORD[23:16]
31:24 KEYWORD[31:24]

20 KEYWORD5

7:0 KEYWORD[7:0]
15:8 KEYWORD[15:8]

23:16 KEYWORD[23:16]
31:24 KEYWORD[31:24]

24 KEYWORD6

7:0 KEYWORD[7:0]
15:8 KEYWORD[15:8]

23:16 KEYWORD[23:16]
31:24 KEYWORD[31:24]

28 KEYWORD7

7:0 KEYWORD[7:0]
15:8 KEYWORD[15:8]

23:16 KEYWORD[23:16]
31:24 KEYWORD[31:24]

0x2C
...

0x37
Reserved

0x38 INDATA

7:0 INDATA[7:0]
15:8 INDATA[15:8]

23:16 INDATA[23:16]
31:24 INDATA[31:24]

3C INTVECTV0

7:0 INTVECTV[7:0]
15:8 INTVECTV[15:8]

23:16 INTVECTV[23:16]
31:24 INTVECTV[31:24]

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 786

...........continued

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

40 INTVECTV1

7:0 INTVECTV[7:0]
15:8 INTVECTV[15:8]

23:16 INTVECTV[23:16]
31:24 INTVECTV[31:24]

44 INTVECTV2

7:0 INTVECTV[7:0]
15:8 INTVECTV[15:8]

23:16 INTVECTV[23:16]
31:24 INTVECTV[31:24]

48 INTVECTV3

7:0 INTVECTV[7:0]
15:8 INTVECTV[15:8]

23:16 INTVECTV[23:16]
31:24 INTVECTV[31:24]

0x4C
...

0x5B
Reserved

0x5C HASHKEY0

7:0 HASHKEY[7:0]
15:8 HASHKEY[15:8]

23:16 HASHKEY[23:16]
31:24 HASHKEY[31:24]

0x60 HASHKEY1

7:0 HASHKEY[7:0]
15:8 HASHKEY[15:8]

23:16 HASHKEY[23:16]
31:24 HASHKEY[31:24]

0x64 HASHKEY2

7:0 HASHKEY[7:0]
15:8 HASHKEY[15:8]

23:16 HASHKEY[23:16]
31:24 HASHKEY[31:24]

0x68 HASHKEY3

7:0 HASHKEY[7:0]
15:8 HASHKEY[15:8]

23:16 HASHKEY[23:16]
31:24 HASHKEY[31:24]

0x6C GHASH0

7:0 GHASH[7:0]
15:8 GHASH[15:8]

23:16 GHASH[23:16]
31:24 GHASH[31:24]

0x70 GHASH1

7:0 GHASH[7:0]
15:8 GHASH[15:8]

23:16 GHASH[23:16]
31:24 GHASH[31:24]

0x74 GHASH2

7:0 GHASH[7:0]
15:8 GHASH[15:8]

23:16 GHASH[23:16]
31:24 GHASH[31:24]

0x78 GHASH3

7:0 GHASH[7:0]
15:8 GHASH[15:8]

23:16 GHASH[23:16]
31:24 GHASH[31:24]

0x7C
...

0x7F
Reserved

0x80 CIPLEN

7:0 CIPLEN[7:0]
15:8 CIPLEN[15:8]

23:16 CIPLEN[23:16]
31:24 CIPLEN[31:24]

0x84 RANDSEED

7:0 RANDSEED[7:0]
15:8 RANDSEED[15:8]

23:16 RANDSEED[23:16]
31:24 RANDSEED[31:24]

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 787

36.8 Register Description
Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register and the 8-bit halves of a 16-bit register can be
accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the “PAC Write-Protection” property in each individual register
description. See Register Access Protection from Related Links.

Some registers are enable protected, meaning they can only be written when the peripheral is
disabled. Enable protection is denoted by the “Enable-Protected” property in each individual register
description.

Related Links
36.5.8. Register Access Protection

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 788

36.8.1 Control A

Name:  CTRLA
Offset:  0x00
Reset:  0x00000000
Property:  PAC Write-Protection, Enable-protected

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 CTYPE[3:0]

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 XORKEY KEYGEN LOD STARTMODE CIPHER KEYSIZE[1:0]

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 CFBS[2:0] AESMODE[2:0] ENABLE SWRST

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 19:16 – CTYPE[3:0] Counter Measure Type
Value Name Description
XXX0 CTYPE1 disabled Countermeasure1 disabled
XXX1 CTYPE1 enabled Countermeasure1 enabled
XX0X CTYPE2 disabled Countermeasure2 disabled
XX1X CTYPE2 enabled Countermeasure2 enabled
X0XX CTYPE3 disabled Countermeasure3 disabled
X1XX CTYPE3 enabled Countermeasure3 enabled
0XXX CTYPE4 disabled Countermeasure4 disabled
1XXX CTYPE4 enabled Countermeasure4 enabled

Bit 14 – XORKEY XOR Key Operation
Value Description
0 No effect
1 The user keyword gets XORed with the previous keyword register content.

Bit 13 – KEYGEN Last Key Generation
Value Description
0 No effect
1 Start Computation of the last NK words of the expanded key

Bit 12 – LOD Last Output Data Mode
Value Description
0 No effect
1 Start encryption in Last Output Data mode

Bit 11 – STARTMODE Start Mode Select

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 789

Value Name Description
0 Manual Mode Start Encryption / Decryption in Manual mode
1 Auto Mode Start Encryption / Decryption in Auto mode

Bit 10 – CIPHER Cipher Mode Select
Value Description
0 Decryption
1 Encryption

Bits 9:8 – KEYSIZE[1:0] Encryption Key Size
Value Name Description
0 128-bit Key 128-bit Key for Encryption / Decryption
1 192-bit Key 192-bit Key for Encryption / Decryption
2 256-bit Key 256-bit Key for Encryption / Decryption
3 Reserved Reserved

Bits 7:5 – CFBS[2:0] Cipher Feedback Block Size
Value Name Description
0 128-bit data block 128-bit Input data block for Encryption/Decryption in Cipher Feedback mode
1 64-bit data block 64-bit Input data block for Encryption/Decryption in Cipher Feedback mode
2 32-bit data block 32-bit Input data block for Encryption/Decryption in Cipher Feedback mode
3 16-bit data block 16-bit Input data block for Encryption/Decryption in Cipher Feedback mode
4 8-bit data block 8-bit Input data block for Encryption/Decryption in Cipher Feedback mode
5-7 Reserved Reserved

Bits 4:2 – AESMODE[2:0] AES Modes of Operation
Value Name Description
0 ECB Electronic code book mode
1 CBC Cipher block chaining mode
2 OFB Output feedback mode
3 CFB Cipher feedback mode
4 Counter Counter mode
5 CCM CCM mode
6 GCM Galois counter mode
7 Reserved Reserved

Bit 1 – ENABLE Enable
Value Description
0 The peripheral is disabled
1 The peripheral is enabled

Bit 0 – SWRST Software Reset
Writing a '0' to this bit has no effect.
Writing a '1' to this bit resets all registers in the AES module to their initial state, and the module will
be disabled.
Writing a '1' to SWRST will always take precedence, meaning that all other writes in the same write
operation will be discarded.
Value Description
0 There is no reset operation ongoing
1 The reset operation is ongoing

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 790

36.8.2 Control B

Name:  CTRLB
Offset:  0x04
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 GFMUL EOM NEWMSG START

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 3 – GFMUL GF Multiplication
This bit is applicable only to GCM mode.
Value Description
0 No action
1 Setting this bit calculates GF multiplication with data buffer content and hashkey register content.

Bit 2 – EOM End of Message
This bit is applicable only to GCM mode.
Value Description
0 No action
1 Setting this bit generates final GHASH value for the message.

Bit 1 – NEWMSG New Message
This bit is used in cipher block chaining (CBC), cipher feedback (CFB) and output feedback (OFB),
counter (CTR) modes to indicate the hardware to use Initialization vector for encrypting the first
block of message.
Value Description
0 No action
1 Setting this bit indicates start of new message to the module.

Bit 0 – START Start Encryption/Decryption
Value Description
0 No action
1 Start encryption / decryption in manual mode.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 791

36.8.3 Interrupt Enable Clear

Name:  INTENCLR
Offset:  0x05
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set (INTENSET) register.

Bit 7 6 5 4 3 2 1 0
 GFMCMP ENCCMP

Access R/W R/W
Reset 0 0

Bit 1 – GFMCMP GF Multiplication Complete Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the GF Multiplication Complete Interrupt Enable bit, which disables
the GF Multiplication Complete interrupt.
Value Description
0 The GF Multiplication Complete interrupt is disabled.
1 The GF Multiplication Complete interrupt is enabled.

Bit 0 – ENCCMP Encryption Complete Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the Encryption Complete Interrupt Enable bit, which disables the
Encryption Complete interrupt.
Value Description
0 The Encryption Complete interrupt is disabled.
1 The Encryption Complete interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 792

36.8.4 Interrupt Enable Set

Name:  INTENSET
Offset:  0x06
Reset:  0x00
Property:  PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Clear (INTENCLR) register.

Bit 7 6 5 4 3 2 1 0
 GFMCMP ENCCMP

Access R/W R/W
Reset 0 0

Bit 1 – GFMCMP GF Multiplication Complete Interrupt Enable
Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the GF Multiplication Complete
Interrupt Enable bit, which enables the GF Multiplication Complete interrupt.
Value Description
0 The GF Multiplication Complete interrupt is disabled.
1 The GF Multiplication Complete interrupt is enabled.

Bit 0 – ENCCMP Encryption Complete Interrupt Enable
Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the Encryption Complete
Interrupt Enable bit, which enables the Encryption Complete interrupt.
Value Description
0 The Encryption Complete interrupt is disabled.
1 The Encryption Complete interrupt is enabled.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 793

36.8.5 Interrupt Flag Status and Clear

Name:  INTFLAG
Offset:  0x07
Reset:  0x00

Bit 7 6 5 4 3 2 1 0
 GFMCMP ENCCMP

Access R/W R/W
Reset 0 0

Bit 1 – GFMCMP GF Multiplication Complete
This flag is cleared by writing a '1' to it.
This flag is set when GHASH value is available on the Galois Hash Registers (GHASHx) in GCM mode.
Writing a '0' to this bit has no effect.
This flag is also automatically cleared in the following cases.
1. Manual encryption/decryption occurs (START in CTRLB register).

2. Reading from the GHASHx register.

Bit 0 – ENCCMP Encryption Complete
This flag is cleared by writing a '1' to it.
This flag is set when encryption/decryption is complete and valid data is available on the Data
Register.
Writing a '0' to this bit has no effect.
This flag is also automatically cleared in the following cases:
1. Manual encryption/decryption occurs (START in CTRLA register). (This feature is needed only if

we do not support double buffering of INDATA registers).

2. Reading from the data register (INDATAx) when LOD = 0.

3. Writing into the data register (INDATAx) when LOD = 1.

4. Reading from the Hash Key register (HASHKEYx).

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 794

36.8.6 Data Buffer Pointer

Name:  DATABUFPTR
Offset:  0x08
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 INDATAPTR[1:0]

Access R/W R/W
Reset 0 0

Bits 1:0 – INDATAPTR[1:0] Input Data Pointer
Writing to this field changes the value of the input data pointer, which determines which of the four
data registers is written to/read from when the next write/read to the INDATA register address is
performed.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 795

36.8.7 Debug

Name:  DBGCTRL
Offset:  0x09
Reset:  0x00
Property:  PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
 DBGRUN

Access W
Reset 0

Bit 0 – DBGRUN Debug Run
Writing a '0' to this bit causes the AES to halt during debug mode.
Writing a '1' to this bit allows the AES to continue normal operation during debug mode. This bit can
only be changed while the AES is disabled.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 796

36.8.8 Keyword

Name:  KEYWORD
Offset:  0x0C + n*0x04 [n=0..7]
Reset:  0x00000000
Property:  PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
 KEYWORD[31:24]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 KEYWORD[23:16]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 KEYWORD[15:8]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 KEYWORD[7:0]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – KEYWORD[31:0] Key Word Value
The four/six/eight 32-bit Key Word registers set the 128-bit/192-bit/256-bit cryptographic key used
for encryption/decryption. KEYWORD0.KEYWORD corresponds to the first word of the key and
KEYWORD3/KEYWORD5/KEYWORD7.KEYWORD to the last one.
Note: By setting the XORKEY bit of CTRLA register, keyword will update with the resulting XOR value
of user keyword and previous keyword content.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 797

36.8.9 Data

Name:  INDATA
Offset:  0x38
Reset:  0x00000000

Bit 31 30 29 28 27 26 25 24
 INDATA[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 INDATA[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 INDATA[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 INDATA[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – INDATA[31:0] Data Value
A write to or read from this register corresponds to a write to or read from one of the four data
registers. The four 32-bit Data registers set the 128-bit data block used for encryption/decryption.
The data register that is written to or read from is given by the DATABUFPTR.INDATPTR field.
Note: Both input and output shares the same data buffer. Reading INDATA register will return 0’s
when AES is performing encryption or decryption operation.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 798

36.8.10 Initialization Vector Register

Name:  INTVECTV
Offset:  0x3C + n*0x04 [n=0..3]
Reset:  0x00000000
Property:  PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
 INTVECTV[31:24]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 INTVECTV[23:16]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 INTVECTV[15:8]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 INTVECTV[7:0]

Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – INTVECTV[31:0] Initialization Vector Value
The four 32-bit Initialization Vector registers INTVECTVn set the 128-bit Initialization Vector data
block that is used by some modes of operation as an additional initial input. INTVECTV0.INTVECTV
corresponds to the first word of the Initialization Vector, INTVECTV3.INTVECTV to the last one.
These registers are write-only to prevent the Initialization Vector from being read by another
application. For CBC, OFB, and CFB modes, the Initialization Vector corresponds to the initialization
vector. For CTR mode, it corresponds to the counter value.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 799

36.8.11 Hash Key (GCM mode only)

Name:  HASHKEY
Offset:  0x5C + n*0x04 [n=0..3]
Reset:  0x00000000
Property:  PAC Write-protection

Bit 31 30 29 28 27 26 25 24
 HASHKEY[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 HASHKEY[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 HASHKEY[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 HASHKEY[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – HASHKEY[31:0] Hash Key Value
The four 32-bit HASHKEY registers contain the 128-bit Hash Key value computed from the AES KEY.
The Hash Key value can also be programmed offering single GF128 multiplication possibilities.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 800

36.8.12 Galois Hash (GCM mode only)

Name:  GHASH
Offset:  0x6C + n*0x04 [n=0..3]
Reset:  0x00000000
Property:  PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
 GHASH[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 GHASH[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 GHASH[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 GHASH[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – GHASH[31:0] Galois Hash Value
The four 32-bit Hash Word registers GHASHcontain the GHASH value after GF128 multiplication in
GCM mode. Writing a new key to KEYWORD registers causes GHASH to be initialized with zeroes.
These registers can also be programmed.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 801

36.8.13 Galois Hash x (GCM mode only)

Name:  CIPLEN
Offset:  0x80
Reset:  0x00000000
Property:  PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
 CIPLEN[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 CIPLEN[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 CIPLEN[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 CIPLEN[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – CIPLEN[31:0] Cipher Length
This register contains the length in bytes of the Cipher text that is to be processed. This is
programmed by the user in GCM mode for Tag generation.

 PIC32CX-BZ2 and WBZ45 Family
Advanced Encryption Standard (AES)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 802

36.8.14 Random Seed

Name:  RANDSEED
Offset:  0x84
Reset:  0x00000000
Property:  PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
 RANDSEED[31:24]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 RANDSEED[23:16]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 RANDSEED[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 RANDSEED[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – RANDSEED[31:0] Random Seed
A write to this register corresponds to loading a new seed into the Random number generator.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 803

37. Public Key Cryptography Controller (PUKCC)
37.1 Overview

The Public Key Cryptography Controller (PUKCC) processes public key cryptography algorithm
calculus in both GF(p) and GF(2n) fields.

The Public Key Cryptography Library (PUKCL) is stored in ROM inside the device. The library can be
used in applications to access features of PUKCC, and includes the complete implementation of the
following public key cryptography algorithms:

• RSA (Rivest-Shamir-Adleman public key cryptosystem), DSA (Digital Signature Algorithm):
– Modular Exponentiation with CRT up to 7168 bits
– Modular Exponentiation without CRT up to 5376 bits
– Prime generation
– Utilities: GCD/modular Inverse, Divide, Modular reduction, Multiply, ...

• Elliptic Curves:
– ECDSA GF(p) up to 521 bits for common curves (up to 1120 bits for future use)
– ECDSA GF(2n) up to 571 bits for common curves (up to 1440 bits for future use)
– Choice of the curve parameters for compatibility with NIST Curves or other curves in

Weierstrass equation
– Point Multiply
– Point Add/Doubling
– Other high level elliptic curve algorithms (ECDH, ...) can be implemented by user using library

functions
• Deterministic Random Number Generation (DRNG ANSI X9.31) for DSA

37.2 Product Dependencies

37.2.1 I/O Lines
Not applicable.

37.2.2 Power Management
The PUKCC will continue to operate in any sleep mode, as long as its source clock is running.

37.2.3 Clocks
The bus clock (PB2_CLK) can be enabled and disabled by the CRU.

37.2.4 DMA
Not applicable.

37.2.5 Interrupts
Not applicable.

37.2.6 Events
Not applicable.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 804

37.3 Functional Description

37.3.1 Public Key Cryptography Library (PUKCL) Application Programming Interface (API)
The Public Key Cryptography Controller (PUKCC) is a peripheral that can be used to accelerate public
key cryptography, and processes public key cryptography algorithm calculus in both Prime field
(GF(p)) and Binary field (GF(2n)). Different functionalities of the PUKCC are accessed with the help of
the Public Key Cryptography Library (PUKCL), which is embedded into a dedicated ROM inside the
microcontroller.

The PUKCL provides access to many algorithms and functions. The features provided, start from
basic addition or comparison, up to the RSA or ECDSA complete computation. The library can be
utilized by including the PUKCL Driver in the application and passing parameters through a common
Application Programming Interface (API). The PUKCC Driver is available in Harmony 3. This library
can be used in conjunction with a SSL software stack to improve performance and helps to reduce
the RAM usage and time taken to perform different cryptographic functions.

37.3.2 PUKCL Features
PUKCL features include:
• 37.3.4. Basic Arithmetic and Cryptographic Services - PUKCL self-test, GCD, integral division, etc.
• 37.3.5. Modular Arithmetic Services - Modular reduction, modular exponentiation, probable

prime generation and modular exponentiation
• 37.3.6. Elliptic Curves Over GF(p) Services - Point addition and doubling on an elliptic curve in a

prime field, ECDSA signature generation and verification on an elliptic curve over GF(p)
• 37.3.7. Elliptic Curves Over GF(2n) Services - Point addition and doubling on an elliptic curve in a

prime field, ECDSA signature generation and verification on an elliptic curve over GF(2n)

37.3.3 PUKCL Usage
The following sections provide details on accessing the PUKCL and its features.

37.3.3.1 Initializing the PUKCC and PUKCL
For a project created with Harmony 3, the clock initialization is handled by the initialization function
CLK_Initialize(). After a power-on reset, and when the PUKCC Clock is enabled, a Crypto RAM clear
process is launched. It is mandatory to wait until the end of this process before using the Crypto
Library.

The following code shows how to wait for the Crypto RAM clear process.

while ((PUKCCSR & BIT_PUKCCSR_CLRRAM_BUSY) != 0);

The next task to be done is self-test. From the generated project in Harmony 3, copy the example for
the PUKCC Driver SelfTest and add it to the main source file. This is a mandatory step before using
the library. The return values from the SelfTest service must be compared against known values
mentioned in the service description (see the Description section in 37.3.4.1. SelfTest).

Example 37-1. PUKCC Initialization

void PUKCC_self_test(void)
{
 // Clear contents of PUKCLParam
 memset(&PUKCLParam, 0, sizeof(PUKCL_PARAM));

 pvPUKCLParam = &PUKCLParam;
 vPUKCL_Process(SelfTest, pvPUKCLParam);

 // In case of error, loop here
 while (PUKCL(u2Status) != PUKCL_OK) {
 ;

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 805

 }
 while (pvPUKCLParam->P.PUKCL_SelfTest.u4Version != PUKCL_VERSION) {
 ;
 }
 while (pvPUKCLParam->P.PUKCL_SelfTest.u4CheckNum1 != 0x6E70DDD2) {
 ;
 }
 while (pvPUKCLParam->P.PUKCL_SelfTest.u4CheckNum2 != 0x25C8D64F) {
 ;
 }
}

int main(void)
{
 /* Initializes MCU, drivers and middleware */
 SYS_Initialize();

 // Wait for Crypto RAM clear process
 while ((PUKCCSR & BIT_PUKCCSR_CLRRAM_BUSY) != 0);

 // Initialize PUKCC and perform self test
 PUKCC_self_test();
 while(1)
 {
 }
}

Note: It may also be necessary to initialize the Random Number Generator (RNG) on the
microcontroller, as some services in the library use the peripheral. Before calling such services,
be sure to follow the directives given for random number generation on the selected microcontroller
(particularly initialization and seeding) and compulsorily start the RNG. For details refer to each
service.

37.3.3.2 Accessing Different Library Services
All cryptographic services in the library are accessed by the macro vPUKCL_Process. All of these
services use the same process for receiving and returning parameters. PUKCL receives two
arguments: the requested service and a pointer to a structure called the parameter block. The
parameter block contains two structures, a common parameter structure for all commands and
specific parameter structure for each service. A specific service is accessed with vPUKCL_Process
by passing the service name as the first argument. For example, to perform SelfTest, use
vPUKCL_Process(SelfTest, pvPUKCLParam).

Example 37-2. PUKCL Parameter Block

typedef struct _PUKCL_param {
 PUKCL_HEADER PUKCL_Header;
 union {
 _PUKCL_CLEARFLAGS PUKCL_ClearFlags;
 _PUKCL_COMP PUKCL_Comp;
 _PUKCL_CONDCOPY PUKCL_CondCopy;
 _PUKCL_CRT PUKCL_CRT;
 _PUKCL_DIV PUKCL_Div;
 _PUKCL_EXPMOD PUKCL_ExpMod;
 _PUKCL_FASTCOPY PUKCL_FastCopy;
 _PUKCL_FILL PUKCL_Fill;
 _PUKCL_FMULT PUKCL_Fmult;
 _PUKCL_GCD PUKCL_GCD;
 _PUKCL_PRIMEGEN PUKCL_PrimeGen;
 _PUKCL_REDMOD PUKCL_RedMod;
 _PUKCL_RNG PUKCL_Rng;
 _PUKCL_SELFTEST PUKCL_SelfTest;
 _PUKCL_SMULT PUKCL_Smult;
 _PUKCL_SQUARE PUKCL_Square;
 _PUKCL_SWAP PUKCL_Swap;

 // ECC
 _PUKCL_ZPECCADD PUKCL_ZpEccAdd;
 _PUKCL_ZPECCDBL PUKCL_ZpEccDbl;
 _PUKCL_ZPECCADDSUB PUKCL_ZpEccAddSub;
 _PUKCL_ZPECCMUL PUKCL_ZpEccMul;
 _PUKCL_ZPECDSAGENERATE PUKCL_ZpEcDsaGenerate;

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 806

 _PUKCL_ZPECDSAVERIFY PUKCL_ZpEcDsaVerify;
 _PUKCL_ZPECDSAQUICKVERIFY PUKCL_ZpEcDsaQuickVerify;
 _PUKCL_ZPECCQUICKDUALMUL PUKCL_ZpEccQuickDualMul;
 _PUKCL_ZPECCONVPROJTOAFFINE PUKCL_ZpEcConvProjToAffine;
 _PUKCL_ZPECCONVAFFINETOPROJECTIVE PUKCL_ZpEcConvAffineToProjective;
 _PUKCL_ZPECRANDOMIZECOORDINATE PUKCL_ZpEcRandomiseCoordinate;
 _PUKCL_ZPECPOINTISONCURVE PUKCL_ZpEcPointIsOnCurve;

 // ECC
 _PUKCL_GF2NECCADD PUKCL_GF2NEccAdd;
 _PUKCL_GF2NECCDBL PUKCL_GF2NEccDbl;
 _PUKCL_GF2NECCMUL PUKCL_GF2NEccMul;
 _PUKCL_GF2NECDSAGENERATE PUKCL_GF2NEcDsaGenerate;
 _PUKCL_GF2NECDSAVERIFY PUKCL_GF2NEcDsaVerify;
 _PUKCL_GF2NECCONVPROJTOAFFINE PUKCL_GF2NEcConvProjToAffine;
 _PUKCL_GF2NECCONVAFFINETOPROJECTIVE PUKCL_GF2NEcConvAffineToProjective;
 _PUKCL_GF2NECRANDOMIZECOORDINATE PUKCL_GF2NEcRandomiseCoordinate;
 _PUKCL_GF2NECPOINTISONCURVE PUKCL_GF2NEcPointIsOnCurve;
 } P;
} PUKCL_PARAM,

37.3.3.2.1 PUKCL_HEADER Structure
The PUKCL_HEADER is common for all services of the library. This header includes standard fields
to indicate the requested service, sub-service, options, return status, and so on, as shown in the
following tables.

Different terms used in the below description to be understood, are as follows:
• Parameter – Represents a variable used by the PUKCL. Every parameter belongs to either

PUKCL_HEADER or PUKCL Service Specific Header
• Type – Indicates the data type. For details on data type, please refer to

CryptoLib_typedef_pb.h file in the library

• Dir – Direction. Indicates whether PUKCL considers the variable as input or output. Input means
that the application passes data to the PUKCL using the variable. Output means that the PUKCL
uses the variable to pass data to the application.

• Location – Suggests whether the parameter need to be stored in Crypto RAM or device SRAM.
The PUKCL driver has macros for placing parameters into Crypto RAM, so that the user does not
have to worry about the addresses

• Data Length – If a parameter is a pointer variable, the Data Length column shows the size of the
data pointed by the pointer

Table 37-1. PUKCL_HEADER Structure
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the Service

u1Service u1 I – – Required service Executed service

u1SubService u1 I – – Required sub-service Executed sub-service

u2Option u2 I – – Required option Executed option

Specific PUKCL_STATUS I/O – – See the following table
PUKCL_STATUS Structure

See the following table
PUKCL_STATUS Structure

u2Status u2 I/O – – – Output Status

Reserved u2 – – – – –

Reserved u4 – – – – –

The Specific field in the PUKCL_HEADER structure is another structure named PUKCL_STATUS. The
following table describes this structure. The details of the use of these bits are provided in the
individual service descriptions.

37.3.3.2.2 PUKCL_STATUS Structure
Members of the PUKCL_STATUS structure are shown in the following table.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 807

Table 37-2. PUKCL_STATUS Structure
Parameter Type Direction Location Data Length Before Executing the Service After Executing the Service

CarryIn (see Note 1) bit I – – CarryIn –

CarryOut bit O – – – CarryOut

Zero bit O – – –
1: Result is zero
0: Result is not zero

Gf2n (see Note 1) bit I – –
Mathematical field 0: Integers
(Zp)
1: Field GF(2n)

–

Violation bit O – – – Indicates a violation

Note: 
1. Two of these fields must be filled in to avoid problems during computations. If the Gf2n

and CarryIn fields are not reset or initialized properly, problems may be encountered during
computations. For instance, not initializing the Gf2n field may result in getting a correct
mathematical result, but computed over GF(2n) instead of Zp.

37.3.3.2.3 PUKCL Service Specific Header
Details about each service specific header are provided with service descriptions in a subsequent
section. Such structures may contain input or output parameters. A parameter is considered as an
input parameter when it used for passing information to the PUKCL, and it is considered as an
output parameter when the PUKCL uses it to pass a result back to the application code.

The following code provides the service specific header example for the SelfTest service.

typedef struct _PUKCL_selftest {
 u4 u4Version;
 u4 u4PUKCCVersion;
 u4 u4CheckNum1;
 u4 u4CheckNum2;
 u1 u1Step;
} _PUKCL_SELFTEST;

After the SelfTest service is invoked (with vPUKCL_Process(SelfTest, pvPUKCLParam)), the service
specific return values can be checked using pvPUKCLParam.

To check whether the version returned by the PUKCL is correct, the following code can be used.

while (pvPUKCLParam->P.PUKCL_SelfTest.u4Version != PUKCL_VERSION);

In a similar way, other returns can also be accessed.

37.3.3.3 Parameter Passing (Special Considerations)
Most of the PUKCL services work with memory area and accept pointers and lengths as parameters
to define input and output areas. Most of the time, the pointers and lengths are untouched by
the services, while the defined areas are read, filled, or overwritten. These memory areas are
defined with an initial pointer and a byte length. For most of the commands, the memory area
location must be in the PUKCC Cryptographic RAM. The Cryptographic RAM is the memory area for
parameter exchange with the PUKCL and is 4 Kbytes large. Sometimes memory areas can be located
in Embedded SRAM, which is detailed in the Location column of the parameters description tables.

When working with binary fields, polynomials in GF(2n) need no transformation to be written in an
area:
• Each bit represents a polynomial coefficient 0 or 1
• The polynomials must be written Low Significant Byte First
• A zero padding on the Most Significant Bytes may be added if the area is larger than the real size

of the polynomial

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 808

Important: The Cryptographic RAM is 4 Kbytes in size and is dedicated to PUKCC.
However, to ensure correct library operation, the two last 32-bit words must not
be used. Unless otherwise specified, these memory areas contain integers in
GF(p) or polynomials in GF(2n) with the Less Significant Byte first.

Unless otherwise specified, the length must be a multiple of four and the pointers must be four
bytes aligned. This is because most of the services work with 32-bit words.

37.3.3.4 Aligned Significant Length
Parameters in memory areas can have any Significant Length in bytes. As the lengths in PUKCL
must be a multiple of four, a padding is processed on the Most Significant Side with zero to three
bytes cleared to zero. Now the parameter can be considered to meet the Aligned Significant Length
requirement for PUKCL.

37.3.3.5 Processing Field GF(p) and GF(2n)
The library can process arithmetic functions over GF(p) (or Zp integers) and GF(2n), when applicable.
The choice of these processing fields is made using the following rules:

• If a processing field is not applicable to the function, it is not mentioned and the Specific.GF2n bit
has no effect.

• If the function can support both processing fields, the choice is mentioned and the Specific.GF2n
bit must be filled according to the choice.

• If the function supports only one of the processing fields, the processing field is mentioned and
the Specific.GF2n bit has no effect.

37.3.3.6 Return Codes
Each call to one of the PUKCL services returns a status code indicating whether or not the execution
is correct, which can be decoded, as shown in the following figure.

Figure 37-1. Return Code Status Decoding

The following table shows how the severity indicators must be decoded.

Table 37-3. Severity Indicators
Value for Bits 14–15 Severity Comment

0xC000 Severe Indicates a blocking error condition

0x8000 Warning Indicates a cautionary use of the return values

0x4000 Information Indicates the result is correct and gives information

0x0000 – No error or no severity given

The following table contains the exhaustive list of all reason codes.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 809

Table 37-4. Return Codes
Value for Bits 00–13 Severity Code Reason Code

0x0000 — PUKCL_OK

0x4001 Informative PUKCL_NUMBER_IS_NOT_PRIME

0x4002 Informative PUKCL_NUMBER_IS_PRIME

0xC001 Severe PUKCL_COMPUTATION_NOT_STARTED

0xC002 Severe PUKCL_UNKNOWN_SERVICE

0xC003 Severe PUKCL_UNEXPLOITABLE_OPTIONS

0xC004 Severe PUKCL_HARDWARE_ISSUE

0xC005 Severe PUKCL_WRONG_HARDWARE

0xC006 Severe PUKCL_LIBRARY_MALFORMED

0xC007 Severe PUKCL_ERROR

0xC008 Severe PUKCL_UNKNOWN_SUBSERVICE

0xC101 Severe PUKCL_DIVISION_BY_ZERO

0xC102 Severe PUKCL_MALFORMED_MODULUS

0xC103 Severe PUKCL_FAULT_DETECTED

0xC104 Severe PUKCL_MALFORMED_KEY

Please note the following rules about return codes:

• A status value indicating a severe error, means that an expected operation has not been
executed or has been corrupted. Therefore, the result of such an operation must not be used.

• A status value indicating a warning must be looked at precisely, as the expected correctness of
the result cannot be guaranteed.

• A status value indicating an information always means that the result is correct with no possible
misinterpretation of the values.

• A status value zero indicates that there is no error or no severity.

In the following sections, for each service, the constraints on the parameters placement are detailed.
For reduced code size and higher execution speed, tests are processed on these constraints. It is
important that PUKCL users take these placement constraints into consideration at the development
and test stages to ensure the correct functioning of the library.

37.3.4 Basic Arithmetic and Cryptographic Services
37.3.4.1 SelfTest
37.3.4.1.1 Purpose

This service is used to initialize the PUKCL. It resets the PUKCC, clears the Crypto RAM, and returns
the library and PUKCC version numbers.

It must be called before using any other services in the library and the user must verify the return
status at the end of the service execution.

37.3.4.1.2 How to Use the Service
37.3.4.1.3 Description

This service processes internal tests and returns information and status codes as described in
37.3.4.1.7. Status Returned Values. The service name for this operation is SelfTest.

37.3.4.1.4 Parameters Definition
It is possible to directly address this service through the PUKCL_SelfTest() macro.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 810

Table 37-5. SelfTest Service Parameters
Parameter Type Dir. Location Data Length Before Executing the Service After Executing the Service

u4Version u4 O – – – PUKCL version

u4PUKCCVersion u4 O – – – PUKCC Version

u4CheckNum1 u4 O – – – Test result value 1

u4CheckNum2 u4 O – – – Test result value 2

u1Step u1 O – – – Latest correctly executed step

37.3.4.1.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library
vPUKCL_Process(SelfTest,pvPUKCLParam);

if (PUKCL(u2Status) == PUKCL_OK)
 {
 // The Library version is available
 // in PUKCL_SelfTest(u4Version)
 // The PUKCL version is available
 // in PUKCL_SelfTest(u4PUKCCVersion)
 }

37.3.4.1.6 Returned Values
The expected u4Version value depends on the version of PUKCL being used, and the
u4PUKCCVersion value depends on the version of PUKCC being used.

The expected u4CheckNum1 value is 0x6e70ddd2 and the expected one for u4CheckNum2 is
0x25c8d64f. The expected final u1Step value is 3.

37.3.4.1.7 Status Returned Values

Table 37-6. SelfTest Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – Service functioned correctly.

PUKCL_ERROR Severe An issue has been encountered.

37.3.4.2 Clear Flags
37.3.4.2.1 Purpose

This service can be used to clear parameter structure flags.

37.3.4.2.2 How to Use the Service
37.3.4.2.3 Description

This service clears CarryOut, CarryIn, Zero and Violation flags in the Specific bit field. The Gf2n flag is
untouched.

The service name for this operation is ClearFlags.

37.3.4.2.4 Parameters Definition
It is possible to directly address this service through the PUKCL_ClearFlags() macro.

Table 37-7. Clear Flags Service Parameters
Parameter Type Direction Location Data Length Before Executing the Service After Executing the Service

Specific/CarryOut Bit O – – – Cleared

Specific/CarryIn Bit O – – – Cleared

Specific/Zero Bit O – – – Cleared

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 811

...........continued
Parameter Type Direction Location Data Length Before Executing the Service After Executing the Service

Specific/Violation Bit O – – – Cleared

37.3.4.2.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ClearFlags,pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 // Success
 }
else // Manage the error

37.3.4.2.6 Status Returned Values

Table 37-8. ClearFlags Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – Service functioned correctly.

37.3.4.3 Swap
37.3.4.3.1 Purpose

This service performs swapping of two buffers.

37.3.4.3.2 How to Use the Service
37.3.4.3.3 Description

This service swaps two buffers, X and Y, of the same size in memory.

The service name for this operation is Swap.

37.3.4.3.4 Parameters Definition
This service can easily be accessed through the use of the PUKCL_Swap() macro.

Table 37-9. Swap Service Parameters
Parameter Type Direction Location Data Length Before Executing the Service After Executing the Service

nu1XBase nu1 I Crypto RAM u2Length Base of the number X Base of X filled with Y

nu1YBase nu1 I Crypto RAM u2Length Base of the number Y Base of Y filled with X

u2XLength u2 I – – Length of X and Y Length of X and Y

37.3.4.3.5 Code Example
_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// Initialize parameters
PUKCL_Swap(nu1XBase) = <Base of the X number>;
PUKCL_Swap(nu1YBase) = <Base of the Y number>;
PUKCL_Swap(u2XLength) = <Length of the numbers>;

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(Swap,pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 812

37.3.4.3.6 Constraints
The following conditions must be avoided to ensure that the service works correctly:

• nu1XBase or nu1YBase are not aligned on 32-bit boundaries
• u2XLength is either <4, > 0xffc, or not a 32-bit length
• {nu1XBase, u2XLength} or {nu1YBase, u2XLength} do not entirely lie in PUKCCRAM
• {nu1XBase, u2XLength} overlaps {nu1YBase,u2YLength}

37.3.4.3.7 Status Returned Values

Table 37-10. Swap Service Return Codes
Returned status Importance Meaning

PUKCL_OK – Service functioned correctly

37.3.4.4 Fill
37.3.4.4.1 Purpose

This service performs a memory fill operation, with a given 32-bit constant.

37.3.4.4.2 How to Use the Service
37.3.4.4.3 Description

This service fills a Crypto RAM space with a provided 32-bit constant: Fill (R, FillValue)

The service name for this operation is Fill.

37.3.4.4.4 Parameters Definition
This service can easily be accessed through the use of the PUKCL_Fill() macro.

Table 37-11. Fill Service Parameters
Parameter Type Direction. Location Data Length Before Executing the

Service
After Executing the Service

nu1RBase nu1 I Crypto RAM u2RLength Base of R Base of R value filled repetitively with
u4FillValue

u2RLength u2 I Crypto RAM – Length of R Length of R

u4FillValue u4 I – – Filling value Filling value

37.3.4.4.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// Initialize parameters
PUKCL_Fill(nu1RBase) = <Base of the R number>;
PUKCL_Fill(u2RLength) = <Length of the R number>;
PUKCL_Fill(u4FillValue) = <32-bits value to fill with>;

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(Fill,pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.4.4.6 Constraints
The following conditions must be avoided to ensure that the service works correctly:

• nu1RBase are not aligned on 32-bit boundaries
• u2RLength is either: <4, >0xffc or not a 32-bit length

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 813

• {nu1RBase, u2RLength} do not entirely lie in Crypto RAM

37.3.4.4.7 Status Returned Values

Table 37-12. Fill Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – Service functioned correctly.

37.3.4.5 Fast Copy/Clear
37.3.4.5.1 Purpose

This service performs a copy from a memory area to another or a memory area clear.

37.3.4.5.2 How to Use the Service
37.3.4.5.3 Description

This service copies a number X into another number R, padding with zero on the MSB side up to the
length specified for R.

R = X

If the lengths of R and X are equal, a complete fast copy is processed.

If the length of R is strictly greater than the length of X, X is first copied in the Low Significant Bytes
side of R, and R is padded with zeros on the Most Significant Bytes side.

If the pointer on the X area equals zero, R is filled with zeros. This operation can also be made by
using the Fill service (see 37.3.4.4. Fill).

The service name for this operation is FastCopy.

Important: The length of R must be greater or equal to the length of X.

37.3.4.5.4 Parameters Definition
This service can easily be accessed through the use of the PUKCL_FastCopy() macro.

Table 37-13. FastCopy Service Parameters
Parameter Type Direction Location Data Length Before Executing the Service After Executing the Service

nu1XBase nu1 I Crypto RAM u2XLength Base of X Base of X number untouched

nu1RBase nu1 I Crypto RAM u2RLength Base of R Base of R filled with X

u2RLength u2 I – – Length of R Length of R

u2XLength u2 I – – Length of X Length of X

37.3.4.5.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// Initialize parameters
PUKCL_FastCopy(nu1XBase) = <Base of the X number>;
PUKCL_FastCopy(nu1RBase) = <Base of the R number>;
PUKCL_FastCopy(u2XLength) = <Length of the X number>;
PUKCL_FastCopy(u2RLength) = <Length of the R number>;

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(FastCopy,pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 ...

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 814

 }
else // Manage the error

37.3.4.5.6 Constraints
The parameter placements that are not allowed are are as follows.

If nu1XBase equals zero, no checks are made on nu1XBase (fixed) and u2XLength (unused).

The following conditions must be avoided to ensure that the service works correctly:

• nu1XBase or nu1RBase are not aligned on 32-bit boundaries
• u2XLength or u2RLength is either: <4, >0xffc or not a 32-bit length or u2XLength >u2RLength
• {nu1XBase, u2XLength} or {nu1RBase, u2RLength} do not entirely lie in Crypto RAM
• {nu1XBase, u2XLength} overlaps {nu1RBase,u2RLength}

37.3.4.5.7 Status Returned Values

Table 37-14. FastCopy Service Return Codes
Returned status Importance Meaning

PUKCL_OK – Service functioned correctly

37.3.4.6 Conditional Copy/Clear
37.3.4.6.1 Purpose

This service conditionally performs a copy from a memory area to another or a memory area clear.

37.3.4.6.2 How to Use the Service
37.3.4.6.3 Description

This service copies a number X into another number R, padding with zero on the MSB side up to
the length specified for R. This copy operation is performed under the conditions specified in the
options.

If the condition is verified, R = X.

The copy or clear action is made under condition.

The four possible options for the condition are described in the following table. Two of the
conditions check the Specific.CarryIn bit.

The processing is done as follows:

• If the condition is not verified, nothing is processed.
• If the condition is verified the copy or clear follows the rules:

– If the lengths of R and X are equal, a complete fast copy is processed
– If the length of R is strictly greater than the length of X, X is first copied in the Low Significant

Bytes side of R, and R is padded with zeros on the Most Significant Bytes side.
– If the pointer on the X area equals zero, R is filled with zeros.

The service name for this operation is CondCopy.

Important: If the condition is verified, the length of R must be greater or equal to
the length of X.

37.3.4.6.4 Parameters Definition
This service can easily be accessed through the use of the PUKCL_CondCopy() and PUKCL()
macros.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 815

Table 37-15. CondCopy Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the Service

u2Options u2 I – – Option for condition (see
the following table)

Option for condition (see the
following table)

Specific/CarryIn Bit I – – Bit CarryIn Bit CarryIn

nu1XBase nu1 I Crypto RAM u2XLength Base of X Base of X number untouched

nu1RBase nu1 I Crypto RAM u2RLength Base of R Base of R filled with X if condition
holds

u2RLength u2 I – – Length of R Length of R

u2XLength u2 I – – Length of X Length of X

37.3.4.6.5 Available Options
The option for the condition is set by the u2Options input parameter that must take one of the
values listed in the following table.

Table 37-16. CondCopy Service Options
Option Purpose Needed parameters

PUKCL_CONDCOPY_ALWAYS Always perform the copy nu1XBase,u2XLength,nu1RBase, u2RLength

PUKCL_CONDCOPY_NEVER Never perform the copy None

PUKCL_CONDCOPY_IF_CARRY Perform the copy if CarryIn is 1 Specific/CarryIn nu1XBase,u2XLength,nu1RBase,
u2RLength

PUKCL_CONDCOPY_IF_NOT_CARRY Perform the copy if CarryIn is zero Specific/CarryIn nu1XBase,u2XLength,nu1RBase,
u2RLength

37.3.4.6.6 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// CarryIn shall be beforehand filled (with zero or one) PUKCL(Specific).CarryIn = ...;

// Condition Option PUKCL(u2Options) = ...;

// Initialize parameters
PUKCL_CondCopy(nu1XBase) = <Base of the X number>;
PUKCL_CondCopy(nu1RBase) = <Base of the R number>;
PUKCL_CondCopy(u2XLength) = <Length of the X number>;
PUKCL_CondCopy(u2RLength) = <Length of the R number>;

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(CondCopy,pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.4.6.7 Constraints
The parameters placement that are not allowed are listed below.

If the conditional option and the CarryIn do not lead to execute the copy, no checks are made on the
constraints to be respected.

If nu1XBase equals zero, no checks are made on nu1XBase (fixed) and u2XLength (unused).

The following conditions must be avoided to ensure that the service works correctly:

• nu1XBase or nu1RBase are not aligned on 32-bit boundaries
• u2XLength or u2RLength is either: <4, >0xffc or not a 32-bit length or u2XLength >u2RLength
• {nu1XBase, u2XLength} or {nu1RBase, u2RLength} do not entirely lie in Crypto RAM

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 816

• {nu1XBase, u2XLength} overlaps {nu1RBase,u2RLength}

37.3.4.6.8 Status Returned Values

Table 37-17. CondCopy Service Return Codes
Returned status Importance Meaning

PUKCL_WRONG_SERVICE Severe An inconsistency has been detected between the called service and the provided
service number.

PUKCL_OK – Service functioned correctly

37.3.4.7 Small Multiply, Add, Subtract, Exclusive OR
Related Links
37.3.4.5. Fast Copy/Clear
37.3.5.1. Modular Reduction

37.3.4.7.1 Purpose
This purpose of this service is to multiply a large number X by a single-word number, MulValue, and
perform an optional accumulation/subtract with a large number Z, returning the result R.

The following options are available:

• Work in the GF(2n) or in the standard GF(p) arithmetic integer field
• Add of a supplemental CarryOperand
• Overlap of the operands is possible, taking into account some constraints
• Modulo-reduction of the computation result (see Modular Reduction from Related Links)

In addition to a multiply, possible uses of this service can include:
• Copy a block of data from one place to another (if u4MulValue is 1). This operation can

alternatively be made by using the Fast Copy service (see Fast Copy/Clear from Related Links)
• Adding/Subtracting two numbers (if u4MulValue is1)
• Xoring two blocks of data (if u4MulValue is 1 and the selected mathematical field is GF(2n))

37.3.4.7.2 How to Use the Service
37.3.4.7.3 Description

This service processes the following operation (if not computing a modular reduction of the result):

R = [Z] ± (MulValue × X + CarryOperand)

Or (if computing a modular reduction of the result):

R = ([Z] ± (MulValue × X + CarryOperand))mod N

The service name for this operation is Smult.

The result of the Small Multiply Operation is stored on u2RLength bytes, so the choice of this length
compared to u2XLength may lead to:

• A truncation if the result is too big to be stored on u2RLengthbytes.
• A padding on the MSB side if the result does not take all the u2RLengthbytes.

However, in all cases this rule must be followed:

Important: The length of R must be greater than or equal to the length of X.

In these computations, the following parameters need to be provided:

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 817

• R the result (pointed by{nu1RBase,u2Rlength})
• X one input number or GF(2n) polynomial (pointed by{nu1XBase,u2XLength})
• Z one optional input number or GF(2n) polynomial (pointed by{nu1ZBase,u2Rlength}).
• MulValue one input number or GF(2n)polynomial on one word (provided in u4MulValue)
• CarryOperand (provided through the CarryOptions and Carry values).

Important: Even if neither accumulation nor subtraction is specified, the
nu1ZBase must always be filled and point to a Crypto RAM space. It this case,
nu1ZBase can point to the same space as the nu1RBase.

If using the modular reduction option, the Multiply operation is followed by a reduction (see Modular
Reduction from Related Links) and the following parameters must be additionally provided:

• N—the modulus (pointed by {nu1ModBase,u2Modlength +4})
• Cns—the reduction constant

– In case of Big reduction, Cns is pointed by {nu1CnsBase,64bytes}.
– In case of Fast or Normalized reduction, Cns is pointed by {nu1CnsBase,u2ModLength +8}

Important: 
The result buffer R must first be padded with zero bytes until its length is
sufficient to perform the reduction (2*u2ModLength + 8) to be used by the
Modular Reduction service as an input parameter.
The result of the reduction is written in the area X pointed by {nu1XBase,
u2ModLength + 4}.

• For example, if relevant u2ModLength is 0x80 bytes and u2XLength is 0x80 too, the length of the
Rspace may be 2*(u2ModLength + 4) = 0x108 bytes.
In case of fast or normalized reduction, the length of the result may be u2ModLength + 4 so 0x84
bytes. Therefore, the zone X may lengths 0x84 bytes (at least). The multiplication of X by 1 word
provide a result in the zone R which MSB bytes will be padded with zero bytes.
In that example, the length of the zone R will be 2*u2ModLength + 8 = 0x108 bytes.

37.3.4.7.4 Parameters Definition

Table 37-18. Smult Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the

Service

u2Options u2 I — — Options (see below) Options (see below)

Specific/Gf2n
CarryIn

Bits I — — GF(2n) Bit and Carry In —

Specific/CarryOut
Zero Violation

Bits I — — — Carry Out, Zero Bit
and Violation Bit filled
according to the result

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of N Base of N untouched

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns untouched

u2ModLength u2 I — — Length of N Length of N

nu1XBase nu1 I Crypto RAM u2XLength or
u2ModLength + 4(1)

Base of X Base of X(2)

u2XLength u2 I — — Length of X Length of X

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 818

...........continued
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the

Service

nu1ZBase nu1 I Crypto RAM u2RLength Base of Z Base of Z untouched

nu1RBase nu1 I Crypto RAM u2RLength Base of R Base of R (see Note 3)

u2RLength u2 I — — Length of R Length of R

u4MulValue u4 I — — Value of MulValue Value of MulValue
untouched

Notes: 
1. If a reduction option is specified, the area X will be, if necessary, extended to u2ModLength + 4

bytes.
2. If Smult is without reduction, X is untouched. If Smult is with reduction, X is filled with the final

result.
3. If Smult is without reduction, R is filled with the final result. If Smult is with reduction, R is

corrupted.

37.3.4.7.5 Available Options
The options are set by the u2Options input parameter, which is composed of:

• The mandatory Small Multiplication operation option described in the following table.
• The mandatory CarryOperand option described in Smult Service (with Accumulate/Subtract

From) Carry Settings and Smult Service Carry Settings tables.
• The facultative Modular Reduction option (see Modular Reduction). If the Modular Reduction is

not requested, this option is absent.

The u2Options number is calculated by an “Inclusive OR” of the options. Some examples in C
language are:

• Operation: Small Multiply only without carry and without Modular Reduction
PUKCL(u2Options) = SET_MULTIPLIEROPTION(PUKCL_SMULT_ONLY) |
SET_CARRYOPTION(CARRY_NONE);

• Operation: Small Multiply with addition with Specific/CarryIn addition and with Fast Modular
Reduction
PUKCL(u2Options) =SET_MULTIPLIEROPTION(PUKCL_SMULT_ADD) |
SET_CARRYOPTION(ADD_CARRY) | PUKCL_REDMOD_REDUCTION |
PUKCL_REDMOD_USING_FASTRED;

The following table lists all of the necessary parameters for the Small Multiply option. When the
Addition or Subtraction option is not chosen, it is not necessary to fill in the nu1ZBase parameter.

Table 37-19. Smult Service Operation Options
Option Purpose Required Parameters

SET_MULTIPLIEROPTION(PUKCL_SMULT_ ONLY) Perform R = MulValue*X +
CarryOperand

nu1RBase, u2RLength, nu1XBase,
u2XLength, u4MulValue

SET_MULTIPLIEROPTION(PUKCL_SMULT_ ADD) Perform R = Z + MulValue*X +
CarryOperand

nu1RBase, u2RLength, nu1ZBase,
nu1XBase, u2XLength,u4MulValue

SET_MULTIPLIEROPTION(PUKCL_SMULT_ SUB) Perform R = Z - (MulValue*X +
CarryOperand)

nu1RBase, u2RLength, nu1ZBase,
nu1XBase, u2XLength,u4MulValue

37.3.4.7.6 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// Gf2n and CarryIn shall be beforehand filled (with zero or one)
PUKCL(Specific).Gf2n = ...;

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 819

PUKCL(Specific).CarryIn = ...; PUKCL(u2Options) =...;

// Depending on the option specified, all fields must not be filled
PUKCL_Smult(nu1XBase) = <Base of the X number>;
PUKCL_Smult(u2XLength) = <Length of the X number>;
PUKCL_Smult(nu1RBase) = <Base of the R number>;
PUKCL_Smult(u2RLength) = <Length of the R number>;
PUKCL_Smult(nu1ZBase) = <Base of the Z number>;
PUKCL_Smult(u4MulValue) = <Value to be multiplied with>;

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(Smult,pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 // The Small multiplication has been executed correctly
 ...
 }
else // Manage the error

Note: 
The length of R must be greater or equal to the length of X. Additional options are available through
the use of a modular reduction to be executed at the end of this operation. Some important
considerations have to be taken into account concerning the length of resulting operands to get a
mathematically correct result.

The output of this operation is not obviously compatible with the modular reduction, as it may be
either smaller or bigger. In the case (most of the time) where the result (pointed by nu1RBase)
is smaller in size than twice the modulus plus one word, it is mandatory to add padding bytes
to zero. Otherwise, the reduced value will be taken considering the high order words (potentially
uninitialized) as part of the number, thus resulting in a mathematically correct but unexpected
result.

In the case that the result is bigger than twice the modulus plus one word, the modular reduction
feature has to be executed as a separate operation, using an Euclidean division.

37.3.4.7.7 Constraints
For the case of a small multiplication with an option indicating either subtraction or accumulation,
the following conditions must be avoided to ensure the service works correctly:

• nu1XBase, nu1RBase or nu1ZBase are not aligned on 32-bit boundaries
• {nu1XBase, u2XLength}, {nu1ZLength, u2RLength} or {nu1RBase, u2RLength} do not entirely lie in

Crypto RAM
• u2XLength or u2RLength is either: < 4, > 0xffc or not a 32-bit length or u2XLength >u2RLength
• {nu1RBase, u2RLength} overlaps {nu1XBase, u2XLength} or nu1R < nu1Z and

{nu1RBase,u2RLength} overlaps {nu1ZBase, u2RLength}

If the nu1R value is greater or equals to the nu1Z one, the overlapping between R and Z is allowed.

If a modular reduction is specified, the relevant parameters must be defined according to the
chosen reduction and follow the description in Modular Reduction. Additional constraints to be
respected and error codes are described in this section and in Smult Service Return Codes.

Multiplication with Accumulation or Subtraction
When the options bits specify that either an Accumulation or a Subtraction must be performed, this
service performs the following operation:

R = (Z ± (MulValue × X + CarryOperand))mod BRLength

Table 37-20. Smult Service (with Accumulate/Subtract From) Carry Settings
Carry Options CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_CARRY) CarryIn R = Z ± (MulValue*X + CarryIn)

SET_CARRYOPTION(SUB_CARRY) - CarryIn R = Z ± (MulValue*X - CarryIn)

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 820

...........continued
Carry Options CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_1_PLUS_CARRY) 1 + CarryIn R = Z ± (MulValue*X + 1 + CarryIn)

SET_CARRYOPTION(ADD_1_MINUS_CARRY) 1 - CarryIn R = Z ± (MulValue*X + 1 - CarryIn)

SET_CARRYOPTION(CARRY_NONE) 0 R = Z ± (MulValue*X)

SET_CARRYOPTION(ADD_1) 1 R = Z ± (MulValue*X + 1)

SET_CARRYOPTION(SUB_1) - 1 R = Z ± (MulValue*X - 1)

SET_CARRYOPTION(ADD_2) 2 R = Z ± (MulValue*X + 2)

Multiplication without Accumulation or Subtraction
When the case the options bits specify that neither an Accumulation nor a Subtraction must be
performed, this service performs the following operation:

R = (MulValue × X + CarryOperand)mod BRLength

Table 37-21. Smult Service Carry Settings
Carry Options CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_CARRY) CarryIn R = MulValue*X + CarryIn

SET_CARRYOPTION(SUB_CARRY) - CarryIn R = MulValue*X - CarryIn

SET_CARRYOPTION(ADD_1_PLUS_CARRY) 1 + CarryIn R = MulValue*X + 1 + CarryIn

SET_CARRYOPTION(ADD_1_MINUS_CARRY) 1 - CarryIn R = MulValue*X + 1 - CarryIn

SET_CARRYOPTION(CARRY_NONE) 0 R = MulValue*X

SET_CARRYOPTION(ADD_1) 1 R = MulValue*X + 1

SET_CARRYOPTION(SUB_1) -1 R = MulValue*X - 1

SET_CARRYOPTION(ADD_2) 2 R = MulValue*X + 2

37.3.4.7.8 Status Returned Values

Table 37-22. Smult Service Return Codes
Returned Status Importance Meaning

PUKCL_OK — Service functioned correctly

37.3.4.8 Compare
37.3.4.8.1 Purpose

The purpose of this service is to compare two numbers in classical arithmetic GF(p).

Important: This service works only with integers.

37.3.4.8.2 How to Use the Service
37.3.4.8.3 Description

This service accepts two numbers in classical arithmetic in input and performs a comparison,
virtually subtracting (X + CarryIn) from Y:

CompareGetFlags (Y - (X + CarryIn))

The numbers X and Y are untouched but the resulting flags CarryOut and the Zero Bit are filled. If
the lengths of Y and X are equal, a comparison is processed.

If the length of Y is strictly greater than the length of X, X is first virtually padded with zeros on the
Most Significant Bytes side, then a comparison is processed.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 821

Note: The length of Y must be greater or equal to the length of X.

In this computation, the following data need to be provided:

• X (pointed by{nu1XBase,u2XLength})
• Y (pointed by{nu1YBase,u2YLength})

The service name for this operation is Comp.

37.3.4.8.4 Parameters Definition

Table 37-23. Comp Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the Service

Specific/Gf2n
CarryIn

Bits I – – GF(2n) Bit and Carry In –

Specific/CarryOut
Zero Violation

Bits I – – – Carry Out, Zero Bit and
Violation Bit filled according to
the result

nu1XBase nu1 I Crypto RAM u2XLength Base of X Base of X

u2XLength u2 I – – Length of X Length of X

nu1YBase nu1 I Crypto RAM u2YLength Base of Y Base of Y

u2YLength u2 I – – Length of Y Length of Y

37.3.4.8.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// CarryIn shall be beforehand filled (with zero or one) PUKCL(Specific).CarryIn = ...;

// Initializing parameters
PUKCL_Comp(nu1XBase) = <Base of the ram location of X>;
PUKCL_Comp(u2XLength) = <Length of X>;
PUKCL_Comp(nu1YBase) = <Base of the ram location of Y>;
PUKCL_Comp(u2YLength) = <Length of Y>;

// vPUKCL_Process() is a macro command,
// and then calls the library...
vPUKCL_Process(Comp,pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 // The COMPARE has been executed correctly
 // CarryOut, Zero ... are available
 ... = PUKCL(Specific).CarryOut;
 ... = PUKCL(Specific).Zero;
 }
else // Manage the error

37.3.4.8.6 Constraints
The following conditions must be avoided to ensure that the service works correctly:

• nu1XBase or nu1YBase are not aligned on 32-bit boundaries
• {nu1XBase, u2XLength} or {nu1YLength, u2YLength} are not in Crypto RAM
• u2XLength or u2YLength is either: < 4, > 0xffc or not a 32-bit length or u2XLength >u2YLength

37.3.4.8.7 Status Returned Values

Table 37-24. Comp Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – Service functioned correctly

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 822

37.3.4.9 Full Multiply
Related Links
37.3.5.1. Modular Reduction

37.3.4.9.1 Purpose
The purpose of this service is to multiply two large numbers, X and Y, and optionally accumulate/
subtract from a third large number, Z, returning the result, R.

The available options are as follows:

• Work in the GF(2n) field or in the standard arithmetic field
• Add of a supplemental CarryOperand
• Overlap of the operands is possible, taking into account some constraints
• Modular Reduction of the computation result (see Modular Reduction from Related Links)

37.3.4.9.2 How to Use the Service
37.3.4.9.3 Description

This service provides the following (if not computing a modular reduction of the result):

R = [Z] ± (X × Y + CarryOperand)

Or (if computing a modular reduction of the result):

R = ([Z] ± (X × Y + CarryOperand))mod N

The service name for this operation is Fmult.

In these computations, the following data has to be provided:

• R the result (pointed by {nu1RBase,u2Xlength +u2YLength})
• X one input number or GF(2n) polynomial (pointed by{nu1XBase,u2XLength})
• Y one input number or GF(2n) polynomial (pointed by{nu1YBase,u2YLength})
• Z one optional input number or GF(2n) polynomial (pointed by {nu1ZBase,u2Xlength

+u2YLength})
• CarryOperand (provided through the Carry Options and Carry values)

Important: Even if neither accumulation nor subtraction is specified, the
nu1ZBase must always be filled and point to a Crypto RAM space. It this case,
nu1ZBase can point to the same space as the nu1RBase.

If using the big modular reduction option, the Multiply operation is followed by a reduction (see
Modular Reduction from Related Links). In this case, the length of Cns is 64 bytes.

If using the modular reduction option, the Multiply operation is followed by a reduction (see Modular
Reduction from Related Links). In this case the following parameters must be additionally provided:

• N—the modulus (pointed by {nu1ModBase,u2Modlength +4})
• Cns—the reduction constant

– In case of Big reduction, Cns is pointed by {nu1CnsBase,64bytes}.
– In case of Fast or Normalized reduction, Cns is pointed by (pointed by

{nu1CnsBase,u2ModLength+ 8})

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 823

Note: 
The result buffer R must first be padded with zero bytes until its length is sufficient to perform the
reduction (2*u2ModLength + 8) to be used by the Modular Reduction service as an input parameter.

The result of the reduction is written in the area X pointed by {nu1XBase, u2ModLength + 4}.

For example, if u2ModLength, u2XLength and u2YLength are 0x80 bytes, the length of the R space is
2*(u2ModLength + 4) = 0x108 bytes because of the constraints of modular reduction.

In case of Fast or Normalized Reduction, the length of the result is u2ModLength + 4 so 0x84 bytes.
Thus, the zone X has a length of 0x84 bytes (at least). The multiplication of X by Y provides a result of
length 0x100 bytes in the zone R so the 8 MSB bytes must be previously padded with zero bytes (in
offsets 0x100 to 0x107).

37.3.4.9.4 Parameters Definition

Table 37-25. Fmult Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

u2Options u2 I – – Options (see below) Options (see below)

Specific/Gf2n
CarryIn

Bits I – – GF(2n) Bit and Carry
In

–

Specific/CarryOut
Zero Violation

Bits I – – – Carry Out, Zero Bit
and Violation Bit filled
according to the result

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of N Base of N untouched

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 or
64 bytes

Base of Cns Base of Cns untouched

u2ModLength u2 I – – Length of N Length of N

nu1XBase nu1 I Crypto RAM u2XLength or
u2ModLength + 4(1)

Base of X Base of X(2)

u2XLength u2 I – – Length of X Length of X

nu1YBase nu1 I Crypto RAM u2YLength Base of Y Base of Y

u2YLength u2 I – – Length of Y Length of Y

nu1ZBase nu1 I Crypto RAM u2XLength +
u2YLength

Base of Z Base of Z untouched

nu1RBase nu1 I Crypto RAM u2XLength +
u2YLength

Base of R Base of R(3)

Notes: 
1. In case of a reduction option is specified, if necessary, the area X will be extended to

u2ModLength + 4 bytes.
2. If FMult is without reduction, X is untouched. If FMult is with reduction, X is filled with the final

result.
3. If FMult is without reduction, R is filled with the final result. If FMult is with reduction, R is

corrupted.

37.3.4.9.5 Available Options
The options are set by the u2Options input parameter, which is composed of:

• the mandatory Full Multiplication operation option described in Table 37-26
• the mandatory CarryOperand option described in Table 37-27 and Table 37-28
• the facultative Modular Reduction option(see Modular Reduction from Related Links). If the

Modular Reduction is not requested, this option is absent.

The u2Options number is calculated by an Inclusive OR of the options.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 824

Some Examples in C language are:

• Operation: Full Multiply only without carry and without Modular Reduction
PUKCL(u2Options) = SET_MULTIPLIEROPTION(PUKCL_FMULT_ONLY) |
SET_CARRYOPTION(CARRY_NONE);

• Operation: Full Multiply with addition with Specific/CarryIn addition and with Fast Modular
Reduction
PUKCL(u2Options) = SET_MULTIPLIEROPTION(PUKCL_FMULT_ADD) |
SET_CARRYOPTION(ADD_CARRY) |
PUKCL_REDMOD_REDUCTION |
PUKCL_REDMOD_USING_FASTRED;

The following table shows all of the necessary parameters for the Full Multiply option. When the
Addition or Subtraction option is not chosen, it is not necessary to fill in the nu1ZBase parameter.

Table 37-26. Fmult Service Options
Option Purpose Required Parameters

SET_MULTIPLIEROPTION(PUKCL_FMUL_ONLY) Perform R = X*Y + CarryOperand nu1RBase, nu1YBase, u2YLength,
nu1XBase, u2XLength

SET_MULTIPLIEROPTION(PUKCL_FMUL_ADD) Perform R = Z + X*Y + CarryOperand nu1RBase, nu1ZBase, nu1YBase,
u2YLength, nu1XBase, u2XLength

SET_MULTIPLIEROPTION(PUKCL_FMUL_SUB) Perform R = Z - (X*Y + CarryOperand) nu1RBase, nu1ZBase, nu1YBase,
u2YLength, nu1Xlength, u2XLength

37.3.4.9.6 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// Gf2n and CarryIn shall be beforehand filled (with zero or one)
PUKCL(Specific).Gf2n = ...;
PUKCL(Specific).CarryIn = ...;

PUKCL(u2Option) =...;
// Depending on the option specified, not all fields must be filled
PUKCL_Fmult(nu1XBase) = <Base of the ram location of X>;
PUKCL_Fmult(u2XLength) = <Length of X>;
PUKCL_Fmult(nu1YBase) = <Base of the ram location of Y>;
PUKCL_Fmult(u2YLength) = <Length of Y>;
PUKCL_Fmult(nu1ZBase) = <Base of the ram location of Z>;
PUKCL_Fmult(nu1RBase) = <Base of the ram location of R>;

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(Fmult,pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 // The Full multiply has been executed correctly
 ...
 }
else // Manage the error

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 825

37.3.4.9.7 Important Considerations for Modular Reduction of a Fmult Computation Result
Note: 
Additional options are available through the use of a modular reduction to be executed at the end of
this operation. Some important considerations have to be taken into account concerning the length
of resulting operands to get a mathematically correct result.

The output of this operation is not always compatible with the modular reduction as it may
be either smaller or bigger. In the case (most of the time) the result (pointed by nu1RBase)
is smaller in size than “twice the modulus plus one word” by one word, a padding word must
be added to zero. Otherwise, the reduced value will be taken considering the high order words
(potentially uninitialized) as part of the number, thus resulting in getting a mathematically correct
but unexpected result.

In the case that the result is bigger than twice the modulus plus one word, the modular reduction
feature has to be executed as a separate operation, using an Euclidean division.

37.3.4.9.8 Constraints
The following conditions must be avoided to ensure that the service works correctly:

• nu1XBase, nu1YBase, nu1RBase or nu1ZBase are not aligned on 32-bit boundaries
• {nu1XBase, u2XLength}, {nu1YLength, u2YLength}, {nu1ZBase, u2XLength+u2YLength}

or{nu1RBase, u2XLength+u2YLength} are not in Crypto RAM
• u2XLength, u2YLength is either: < 4, > 0xffc or not a 32-bit length
• {nu1RBase, u2XLength+u2YLength} overlaps {nu1YBase, u2YLength} or{nu1RBase,

u2XLength+u2YLength} overlaps {nu1XBase, u2XLength}
• {nu1RBase, u2XLength+u2YLength} overlaps {nu1ZBase, u2XLength+u2YLength} and nu1RBase>

nu1ZBase

If a modular reduction is specified, the relevant parameters must be defined according to the
chosen reduction and follow the description in Modular Reduction (see Modular Reduction from
Related Links). Additional constraints to be respected and error codes are described in this section
and in Table 37-49.

Multiplication with Accumulation or Subtraction
In the case where the options bits specify that either an Accumulation or a subtraction must be
performed, this service performs the following operation:

R = (Z ± (X × Y + CarryOperand))mod BXLength + YLength

Table 37-27. Fmult Service (with Accumulate/Subtract From) Carry Settings
Option AND CARRYOPTIONS CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_CARRY) CarryIn R = Z ± (X*Y + CarryIn)

SET_CARRYOPTION(SUB_CARRY) - CarryIn R = Z ± (X*Y - CarryIn)

SET_CARRYOPTION(ADD_1_PLUS_CARRY) 1 + CarryIn R = Z ± (X*Y + 1 + CarryIn)

SET_CARRYOPTION(ADD_1_MINUS_CARRY) 1 - CarryIn R = Z ± (X*Y + 1 - CarryIn)

SET_CARRYOPTION(CARRY_NONE) 0 R = Z ± (X*Y)

SET_CARRYOPTION(ADD_1) 1 R = Z ± (X*Y + 1)

SET_CARRYOPTION(SUB_1) - 1 R = Z ± (X*Y - 1)

SET_CARRYOPTION(ADD_2) 2 R = Z ± (X*Y + 2)

Multiplication without Accumulation or Subtraction
In the case the options bits specify that either an Accumulation or a subtraction must be performed,
this service performs the following operation:

R = (X × Y + CarryOperand)mod BXLength + YLength

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 826

Table 37-28. Fmult Service Carry Settings
Option AND CARRYOPTIONS CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_CARRY) CarryIn R = X*Y + CarryIn

SET_CARRYOPTION(SUB_CARRY) - CarryIn R = X*Y - CarryIn

SET_CARRYOPTION(ADD_1_PLUS_CARRY) 1 + CarryIn R = X*Y + 1 + CarryIn

SET_CARRYOPTION(ADD_1_MINUS_CARRY) 1 - CarryIn R = X*Y + 1 - CarryIn

SET_CARRYOPTION(CARRY_NONE) 0 R = X*Y

SET_CARRYOPTION(ADD_1) 1 R = X*Y + 1

SET_CARRYOPTION(SUB_1) - 1 R = X*Y - 1

SET_CARRYOPTION(ADD_2) 2 R = X*Y + 2

37.3.4.9.9 Status Returned Values

Table 37-29. Fmult Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – Service functioned correctly

37.3.4.10 Square
Related Links
37.3.5.1. Modular Reduction

37.3.4.10.1 Purpose
The purpose of this service is to compute the square of a big number and optionally accumulate/
subtract from a second big number.

Please note that this service uses an optimized implementation of the squaring. It also means that
when the GF(2n) flag is set, the execution time will be smaller than when not set (in that case, the
squaring execution time will still be smaller than for a standard multiplication).

The available options are as follows:

• Work in the GF(2n) or in the standard integer arithmetic field
• Add of a supplemental CarryOperand
• Overlapping of the operands is possible, taking into account some constraints
• Modular Reduction of the computation result

37.3.4.10.2 How to Use the Service
37.3.4.10.3 Description

This service provides the following (if not computing a modular reduction of the result):

R = [Z] ± (X2 + CarryOperand)

Or (if computing a modular reduction of the result):

R = ([Z] ± (X2 + CarryOperand))mod N

The service name for this operation is Square.

In these computations, the following data has to be provided:

• R the result (pointed by {nu1RBase,2 *u2Xlength})
• X one input number or GF(2n) polynomial (pointed by{nu1XBase,u2XLength})
• Z one optional input number or GF(2n) polynomial (pointed by {nu1ZBase,2 *u2Xlength})
• CarryOperand (provided through the CarryOptions and Carry values)

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 827

Important: Even if neither accumulation nor subtraction is specified, the
nu1ZBase must always be filled and point to a Crypto RAM space. It this case,
nu1ZBase can point to the same space as the nu1RBase.

If using the big modular reduction option, the Multiply operation is followed by a reduction (see
Modular Reduction from Related Links). In this case, the length of Cns is 64 bytes.

If using the modular reduction option the Square operation is followed by a reduction (see Modular
Reduction from Related Links). In this case the following parameters must be additionally provided:

• N—the modulus (pointed by {nu1ModBase,u2Modlength +4}).
• Cns—the reduction constant (pointed by {nu1CnsBase,u2Modlength +8})

– In case of big reduction option, the length of Cns is 64bytes.

Note: 
The result buffer R must first be padded with zero bytes until its length is sufficient to perform the
reduction (2*u2ModLength + 8) to be used by the Modular Reduction service as an input parameter.

The result of the reduction is written in the area X pointed by {nu1XBase, u2ModLength + 4}.

For example, if u2ModLength, u2XLength is 0x80 bytes, the length of the R space is 2*(u2ModLength
+ 4) = 0x108 bytes because of the constraints of modular reduction.

In case of Fast or Normalized Reduction, the length of the result is u2ModLength + 4 so 0x84 bytes.
Thus, the zoneX has a length of 0x84 bytes (at least). The square of X provides a result of length
0x100 bytes in the zone R so the 8 MSB bytes previously must be previously padded with zero bytes
(in offsets 0x100 to 0x107).

37.3.4.10.4 Parameters Definition

Table 37-30. Square Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

u2Options u2 I – – Options (see below) Options (see below)

Specific/Gf2n
CarryIn

Bits I – – GF(2n) Bit and Carry
In

–

Specific/CarryOut
Zero Violation

Bits I – – – Carry Out, Zero Bit
and Violation Bit filled
according to the result

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of N Base of N untouched

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 or 64
bytes

Base of Cns Base of Cns untouched

u2ModLength u2 I – – Length of N Length of N

nu1XBase nu1 I Crypto RAM u2XLength or
u2ModLength + 4(1)

Base of X Base of X(2)

u2XLength u2 I – – Length of X Length of X

nu1ZBase nu1 I Crypto RAM 2 * u2XLength Base of Z Base of Z

nu1RBase nu1 I Crypto RAM 2 * u2XLength Base of R Base of R(3)

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 828

Notes: 
1. In case of a reduction option is specified, the area X will be, if necessary, extended to

u2ModLength + 4 bytes.
2. If Square is without reduction, X is untouched. If Square is with reduction, X is filled with the final

result.
3. If Square is without reduction, R is filled with the final result. If Square is with reduction, R is

corrupted.

37.3.4.10.5 Available Options
The options are set by the u2Options input parameter, which is composed of:

• the mandatory Square operation option described in Table 37-31
• the mandatory CarryOperand option described in Table 37-32 and Table 37-33
• the facultative Modular Reduction option (see Modular Reduction from Related Links). If the

Modular Reduction is not requested, this option is absent.

The u2Options number is calculated by an Inclusive OR of the options. Some Examples in C
language are:

• Operation: Square only without carry and without Modular Reduction
PUKCL(u2Options) = SET_MULTIPLIEROPTION(PUKCL_SQUARE_ONLY) |
SET_CARRYOPTION(CARRY_NONE);

• Operation: Square with addition with Specific/CarryIn addition and with Fast Modular Reduction
PUKCL(u2Options) = SET_MULTIPLIEROPTION(PUKCL_SQUARE_ADD) |
SET_CARRYOPTION(ADD_CARRY) | PUKCL_REDMOD_REDUCTION |
PUKCL_REDMOD_USING_FASTRED;

The following table lists all of the necessary parameters for the Square option. When the Addition or
Subtraction option is not chosen it is not necessary to fill in the nu1ZBase parameter.

Table 37-31. Square Service Options
Option Purpose Required Parameters

SET_MULTIPLIEROPTION(PUKCL_ SQUARE_ONLY) Perform R = X2 + CarryOperand nu1RBase, nu1ZBase,
nu1XBase, u2XLength

SET_MULTIPLIEROPTION(PUKCL_ SQUARE_ADD) Perform R = Z + X2 + CarryOperand nu1RBase, nu1ZBase,
nu1XBase, u2XLength

SET_MULTIPLIEROPTION(PUKCL_ SQUARE_SUB) Perform R = Z - (X2 + CarryOperand) nu1RBase, nu1ZBase,
nu1Xlength, u2XLength

37.3.4.10.6 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// Gf2n and CarryIn shall be beforehand filled (with zero or one)
PUKCL(Specific).Gf2n = ...;
PUKCL(Specific).CarryIn = ...;

PUKCL(u2Option) =...;
// Depending on the option specified, not all fields must be filled
PUKCL_Fmult(nu1XBase) = <Base of the ram location of X>;
PUKCL_Fmult(u2XLength) = <Length of X>;
PUKCL_Fmult(nu1ZBase) = <Base of the ram location of Z>;

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(Square,pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 // The Squaring has been executed correctly

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 829

 ...
 }
else // Manage the error

37.3.4.10.7 Important Considerations for Modular Reduction of a Square Computation
Note: 
Additional options are available through the use of a modular reduction to be executed at the end of
this operation. Some important considerations have to be taken into account concerning the length
of resulting operands to get a mathematically correct result.

The output of this operation is not obviously compatible with the modular reduction as it may
be either smaller or bigger. In the case (most of the time) the result (pointed by nu1RBase)
is smaller in size than “twice the modulus plus one word” by one word, a padding word must
be added to zero. Otherwise, the reduced value will be taken considering the high order words
(potentially uninitialized) as part of the number, thus resulting in getting a mathematically correct
but unexpected result.

In the case that the result is greater than twice the modulus plus one word, the modular reduction
feature has to be executed as a separate operation, using an Euclidean division.

37.3.4.10.8 Constraints
When the options only indicate a square, the constraints involving nu1ZBase are not checked. The
following conditions must be avoided to ensure that the service works correctly:

• nu1XBase, nu1RBase or nu1ZBase are not aligned on 32-bit boundaries
• {nu1XBase, u2XLength}, {nu1ZBase, 2*u2XLength} or {nu1RBase, 2*u2XLength} are not in Crypto

RAM
• u2XLength is either: < 4, > 0xffc or not a 32-bit length
• {nu1RBase, 2*u2XLength} overlaps {nu1XBase,u2XLength}
• {nu1RBase, 2*u2XLength} overlaps {nu1ZBase, 2*u2XLength} and nu1RBase >nu1ZBase

If a modular reduction is specified, the relevant parameters must be defined according to the
chosen reduction and follow the description in Modular Reduction (see Modular Reduction from
Related Links). Additional constraints to be respected and error codes are described in this section
and in Table 37-49.

Multiplication with Accumulation or Subtraction
Where the options bits specify that either an Accumulation or a subtraction must be performed, this
command performs the following operation:

R = (Z ± (X2 + CarryOperand))mod B2 ˟ XLength

Table 37-32. Multiplication with Accumulation or Subtraction
Option AND CARRYOPTIONS CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_CARRY) CarryIn R = Z ± (X2 + CarryIn)

SET_CARRYOPTION(SUB_CARRY) - CarryIn R = Z ± (X2 - CarryIn)

SET_CARRYOPTION(ADD_1_PLUS_CARRY) 1 + CarryIn R = Z ± (X2 + 1 + CarryIn)

SET_CARRYOPTION(ADD_1_MINUS_CARRY) 1 - CarryIn R = Z ± (X2 + 1 - CarryIn)

SET_CARRYOPTION(CARRY_NONE) 0 R = Z ± (X2)

SET_CARRYOPTION(ADD_1) 1 R = Z ± (X2 + 1)

SET_CARRYOPTION(SUB_1) - 1 R = Z ± (X2 - 1)

SET_CARRYOPTION(ADD_2) 2 R = Z ± (X2 + 2)

37.3.4.10.9 Multiplication without Accumulation or Subtraction
Where the options bits specify that either an accumulation or a subtraction must be performed, this
command performs the following operation:

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 830

R = (X2 + CarryOperand)mod B2 ˟ XLength

Table 37-33. Square Service Carry Settings
Option AND CARRYOPTIONS CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_CARRY) CarryIn R = X2 + CarryIn

SET_CARRYOPTION(SUB_CARRY) - CarryIn R = X2 - CarryIn

SET_CARRYOPTION(ADD_1_PLUS_CARRY) 1 + CarryIn R = X2 + 1 + CarryIn

SET_CARRYOPTION(ADD_1_MINUS_CARRY) 1 - CarryIn R = X2 + 1 - CarryIn

SET_CARRYOPTION(CARRY_NONE) 0 R = X2

SET_CARRYOPTION(ADD_1) 1 R = X2 + 1

SET_CARRYOPTION(SUB_1) - 1 R = X2 - 1

SET_CARRYOPTION(ADD_2) 2 R = X2 + 2

37.3.4.10.10 Status Returned Values

Table 37-34. Square Service Return Codes
Returned status Importance Meaning

PUKCL_OK – Service functioned correctly

37.3.4.11 Integral (Euclidean) Division
37.3.4.11.1 Purpose

The purpose of this service is to compute the Euclidean Division of two multiple precision numbers
in GF(p) or polynomial in GF(2n). The Numerator is divided by the Denominator giving the Quotient
“Quo” and the Remainder “R”.

The following options are available:

• Work in the GF(2n) field or in the standard integer arithmetic field GF(p)

37.3.4.11.2 How to Use the Service
37.3.4.11.3 Description

This service processes the calculus corresponding to:Num = Mod × Quo + R witℎ 0 ≤ R < Mod and Quo = NumMod
The Numerator is Num.

The Divisior (Modulus) is Mod.

The Quotient is Quo.

The Remainder is R.

The Inputs are, the Numerator Num, and the Denominator Mod. The service calculates the Quotient
and the Remainder. The Remainder overwrites the Numerator and is copied to the R area.

If the parameter nu1QuoBase equals zero, the Quotient is not stored in memory.

If nu1QuoBase is different from zero, the Quotient length is (<Numerator Length> - <Denominator
Length>) + 4 bytes.

In this computation, the following areas need to be provided:

• Num (pointed by {nu1NumBase,u2NumLength}) filled with the Numerator (with MSB word to
zero).

• Mod (pointed by {nu1ModBase,u2ModLength}) filled with the Denominator.
• Workspace (pointed by {nu1CnsBase,64 or68}).

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 831

• Quo (pointed by {nu1QuoBase,u2NumLength - u2ModLength + 4}) to contain calculated
Quotient.

– When the quotient is not needed, the nu1QuoBase pointer can be provided as NULL. In that
case, only the remainder will be provided as a result.

• R (pointed by {nu1RBase,u2ModLength}) to contain the calculated Remainder.

The service name for this operation is Div.

37.3.4.11.4 Parameters Definition

Table 37-35. Div Service Parameters
Parameter Type Dir. Location Data Length Before Executing the

Service
After Executing the
Service

Specific/Gf2n Bit I – – GF(2n) Bit –

nu1NumBase nu1 I Crypto RAM u2NumLength Base of Num
Filled with the Numerator

Base of Num
Filled with the Remainder

u2NumLength u2 I – – Length of the Numerator Length of the Numerator

nu1ModBase nu1 I Crypto RAM u2ModLengt Base of the Divisor Base of the Divisor
untouched

u2ModLength u2 I – – Length of the Divisor Length of the Divisor

nu1QuoBase (see
Note 1)

nu1 I Crypto RAM u2NumLength -
u2ModLength + 4

Base of the Quotient Base of the Quotient

nu1WorkSpace nu1 I Crypto RAM GF(p): 64
GF(2n): 68

Base of the WorkSpace Base of the WorkSpace
corrupted

nu1RBase (see Note
2)

nu1 I Crypto RAM u2ModLength Base of the Remainder Base of the Remainder

Notes: 
1. If the quotient is not needed, set nu1QuoBase to zero and the quotient will not be written to

memory. If the quotient is needed, set the nu1QuoBase to the beginning of an area of size
(u2NumLength - u2ModLength + 4) to write the whole quotient.

2. The Remainder is present in the area {nu1NumBase, u2NumLength} at the end of the calculus.
The nu1RBase parameter makes it possible to copy this result in the other area {nu1RBase,
u2ModLength}, if this copy is not needed, set nu1RBase to the same value as nu1NumBase and
the copy will not be done.

Note: The parameter Num must have its most significant 32-bit word cleared to zero. The length
u2NumLength is the length of Num including this zero word.
One additional word is used on the LSB side of the Num parameter, this word is restored at the end
of the calculus. As a consequence the parameter nu1NumBase must never been at the beginning of
the Crypto RAM, i.e., ensure that nu1NumBase ≥ <Crypto RAM Base> + 4 bytes.

One additional word is used on the MSB side of the Num parameter, this word is not corrupted. As a
consequence the Area {nu1NumBase, u2NumLength} must not be at the end of the Crypto RAM, i.e.,
en sure that nu1NumBase+u2NumLength ≤ <Crypto RAM End> - 4.

u2ModLength must be the true length of the Modulus, i.e., the MSB word of the area {nu1ModBase,
u2ModLength} must be different from zero.

The minimum value for u2ModLength is 8 bytes, so the significant length of Num must be at least 8
bytes. To divide by a 32-bit value, the divider and numerator shall be multiplied by 232. The resulting
remainder will have to be divided by 232, the quotient will be exact.

37.3.4.11.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 832

// Fill all the fields
// In that case, the quotient will be computed
// If it was not needed, set nu1QuoBase to NULL
PUKCL_Div(nu1NumBase) = <Base of the ram location of Num>;
PUKCL_Div(nu1ModBase) = <Base of the ram location of Mod>;
PUKCL_Div(nu1QuoBase) = <Base of the ram location of Quo>;
PUKCL_Div(nu1WorkSpace) = <Base of the workspace>;
PUKCL_Div(nu1RBase) = <Base of the ram location of R>;
PUKCL_Div(u2NumLength) = <Length of Num>;
PUKCL_Div(u2ModLength) = <Length of Mod>;

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(Div,pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 // The Division has been executed correctly
 ...
 }
else // Manage the error

37.3.4.11.6 Constraints
The following conditions must be avoided to ensure the service works correctly:

• nu1ModBase, nu1RBase, nu1QuoBase, nu1WorkSpace or nu1NumBase are not aligned on 32-bit
boundaries

• {nu1ModBase, u2ModLength}, {nu1RBase, u2ModLength}, {nu1WorkSpace, 64} or{nu1NumBase,
u2NumLength} are not in Crypto RAM

• u2ModLength, u2NumLength is either: < 4, > 0xffc or not a 32-bit length
• One or more overlaps exist between two of the areas: {nu1ModBase,u2ModLength},{nu1RBase,

u2ModLength} {nu1NumBase, u2NumLength}(1) or {nu1WorkSpace,64}
• If nu1QuoBase is different from zero and: {nu1QuoBase, u2NumLength - u2ModLength + 4} are

not in Crypto RAM
• If nu1QuoBase is different from zero and one or more overlaps exist between two of the areas:

{nu1QuoBase, u2NumLength - u2ModLength + 4}, {nu1ModBase, u2ModLength}, {nu1RBase,
u2ModLength}, {nu1NumBase, u2NumLength} or {nu1WorkSpace, 64}

Overlaps between {nu1RBase, u2ModLength} and {nu1NumBase, u2NumLength} are forbidden, but
the equality between nu1RBase and nu1NumBase is authorized

37.3.4.11.7 Status Returned Values

Table 37-36. Div Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – Service functioned correctly.

PUKCL_DIVISION_BY_ZERO Severe The operation was not performed because the Denominator value is zero.

37.3.4.12 GCD, Modular Inverse
37.3.4.12.1 Purpose

The purpose of this command is to compute the Greatest Common Divisor (GCD) and the Modular
Inverse. The algorithm used is the Extended Euclidean Algorithm for the GCD.

This command accepts as input two multiple precision numbers in GF(p) or two polynomials in
GF(2n) X and Y and computes their GCD (D), if D equals one, the command also supplies the inverse
of X modulo Y.

The available options are as follows:

• Work in the GF(2n) field or in the standard integer arithmetic field GF(p)

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 833

37.3.4.12.2 How to Use the Service
37.3.4.12.3 Description

This command calculates:

D = GCD(X,Y).

and parameter A in the Bezout equation:

A × X + B × Y = D.

The first input, or input to inverse is X.

The second input, or modulus is Y.

The GCD is output in D.

The modular inverse if X and Y are co-primes is output A:

A = X–1mod(Y)

The command calculates the GCD and the value A. The value A is the multiplicative inverse of X, only
if X and Y are co-prime. As a supplemental result, Z is given back, being the quotient of Y divided by
D only if D is different from zero:Z = YD
At the end of the command: X is overwritten by D.

Y is cleared.

The value of A is calculated and stored.

The value of Z is calculated and stored if D is different from zero.

The service name for this operation is GCD.

In this computation, the following areas have to be provided:

• X (pointed by {nu1XBase,u2Length}) filled with X (with MSB word to zero)
• Y (pointed by {nu1YBase,u2Length}) filled with Y (with MSB word to zero)
• A (pointed by {nu1ABase,u2Length}) to contain calculated A
• Z (pointed by {nu1ZBase,u2Length}) to contain calculated Z
• The workspace (pointed by {nu1WorkSpace,32})

37.3.4.12.4 Parameters Definition

Table 37-37. GCD Service Parameters
Parameter Type Dir. Location Data Length Before Executing the Service After Executing the Service

Specific/Gf2n Bit I – – GF(2n) Bit –

nu1XBase nu1 I Crypto RAM u2Length Base of X Number X Base of X
Filled with the GCD D

u2Length u2 I – – Length of the Areas X, Y, A, Z Length of the Areas X, Y, A, Z

nu1YBase nu1 I Crypto RAM u2Length Base of Y Number Y Base of Y Cleared area

nu1ABase nu1 I Crypto RAM u2Length Base of A Base of A
Filled with the result

nu1ZBase nu1 I Crypto RAM u2Length + 4 (see
Note 1)

Base of Z Base of Z
Filled with the result

nu1WorkSpace nu1 I Crypto RAM 32 bytes Base of the workspace Base of the workspace corrupted

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 834

Note: 
1. The additional word is 4 zero bytes.

The parameters X and Y must have their most significant 32-bit word cleared to zero. The length
u2Length is the length of the longer of the parameters X and Y including this zero word.

To clarify here is an example:

• X is an 8 bytes number.
• Y is a 12 bytes number.

This example is processed this way before the use of the GCD service:

• The longer number is Y so its length is taken and increased by 4 bytes for the 32-bit word cleared
to zero, this gives u2Length = 16 bytes. Therefore, X, Y, A and Z areas have a length of 16 bytes.

• Y is padded with 4 bytes cleared to zero on the MSB side and the u2Length = 16 bytes are written
in memory (LSB first).

• X is padded with 8 bytes cleared to zero on the MSB side and the u2Length = 16 bytes are written
in memory (LSB first).

• The areas A and Z are mapped in memory with a size of u2Length = 16 bytes.
• The workspace is mapped in memory with its constant size of 32 bytes

37.3.4.12.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;
// Fill all the fields
PUKCL(u2Option) = 0;
PUKCL_GCD(nu1XBase) = <Base of the ram location of X>;
PUKCL_GCD(nu1YBase) = <Base of the ram location of Y>;
PUKCL_GCD(nu1ABase) = <Base of the ram location of A>;
PUKCL_GCD(nu1ZBase) = <Base of the ram location of Z>;
PUKCL_GCD(nu1WorkSpace) = <Base of the workspace>;
PUKCL_GCD(u2Length) = <Length of X, Y, A and Z>;
// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(GCD, pvPUKCLParam);
if (PUKCL_Param.Status == PUKCL_OK)
 {
 // The GCD has been executed correctly
 ...
 }
else // Manage the error

37.3.4.12.6 Constraints
The following conditions must be avoided to ensure that the service works correctly:

• nu1XBase, nu1YBase, nu1ABase or nu1ZBase are not aligned on 32-bit boundaries
• {nu1XBase, u2Length}, {nu1YBase, u2Length}, {nu1ABase, u2Length} or {nu1ZBase, u2Length}

are not in Crypto RAM
• u2Length is either: < 4, > 0xffc or not a 32-bit length
• {nu1XBase, u2Length} overlaps {nu1YBase, u2Length} or {nu1XBase, u2Length} overlaps

{nu1ABase, u2Length} or {nu1XBase, u2Length} overlaps {nu1ZBase, u2Length} or {nu1YBase,
u2Length}overlaps

{nu1ABase, u2Length} or {nu1YBase, u2Length} overlaps {nu1ZBase, u2Length} or {nu1ABase,
u2Length} overlaps {nu1ZBase, u2Length}

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 835

37.3.4.12.7 Status Returned Values

Table 37-38. GCD Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – Service functioned correctly

37.3.4.13 Get Random Number
37.3.4.13.1 Purpose

The purpose of this command is to provide the user with a source of entropy. The options available
for this service are:

• Generation of random numbers from a Hardware Random Number Generator (TRNG).
• Generation of random numbers from a Deterministic Random Number Generator (DRNG).

Important: 
When using this service, be sure to strictly follow the directives given for the RNG
on the chip you use (particularly initialization, seeding) and compulsorily start the
RNG. If the directives require not to use this service, follow them and use the
proposed method to get random numbers.

This service only has the option to get random numbers and does not seed,
initialize or start the RNG. Other options are reserved for future use.

Neither continuous testing nor entropy testing is included in this service. If this is
needed (FIPS 140, ZKA, ...), this service must not be used and the users develops
their own command.

The DRNG is compatible with both ANSI X9.31 and FIPS 186-2 standards (see the important note
below). The DRNG is designed according to:

• The algorithm described in the document ANSI Digital Signatures Using Reversible Public Key
Cryptography for the Financial Services Industry (rDSA) X9.31 dated September 9, 1998.

• The Change recommendation for ANSI X9.0 - 1995 (Part 1) and ANSI X9.31 -1998:

The algorithm B.2.1 Algorithm for computing m Values of x is the one applied in the Toolbox 3 X9.31
DRNG. The DRNG is compatible with:

• The DRNG is described in the document NIST Digital Signature Standard (DSS) FIPS Pub 186-2
January 27, 2000 Appendix 3.1

• The FIPS 186-2 Change Notice 1 dated October 5, 2001 modifies this algorithm.

Important: To apply the FIPS 186-2 algorithm, the parameters XSeed[0] and
XSeed[1] must be set to the same value.

37.3.4.13.2 How to Use the Service
37.3.4.13.3 Description

This service has four possible options described in Table 37-41. Two of these options are reserved
for future use. This service performs the following operations:

• Generation of a random number from the Hardware RNG
• Generation of a random number from the Deterministic RNG

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 836

Generation of a Random Number from the Hardware RNG
This service, activated with the option PUKCL_RNG_GET, makes it possible to get a random number R
from the Hardware RNG:

R = HardwareRandomGenerate()

In the Generation of random from the RNG service, the following parameters need to be provided:

• R the generated number area (pointed by{nu1RBase,u2RLength})

37.3.4.13.4 Generation of a Random Number from the Deterministic RNG
This service, activated with the option PUKCL_RNG_X931_GET, makes it possible to get a random
number R from the Deterministic Random Number Generator with input parameters the Key XKey
and the Seed XSeed:

(XKey, R) = DeterministicRandomGenerateFromSeed (XKey, XSeed, Q)

In the generation of a random number from the Deterministic RNG service, the following
parameters need to be provided:

• XKey the input and output Key (pointed by {nu1XKeyBase,u2XKeyLength})
• XSeed the input Seed (pointed by {nu1XseedBase,u2XKeyLength})
• Q the prime number (pointed by {nu1QBase, 20bytes})
• R the generated number area (pointed by {nu1RBase, 20bytes})

37.3.4.13.5 Hardware RNG Parameters Definition
The parameters for the generation of random from the Hardware RNG are described in the
following table. This service can easily be accessed through the use of the PUKCL_Rng() and
PUKCL() macros.

Table 37-39. RNG Service Hardware Generated Parameters
Parameter Type Dir. Location Data Length Before Executing the

Service
After Executing the Service

u2Options u2 I – – Option (see Table 37-41) Option (see Table 37-41)

nu1RBase nu1 I Crypto RAM or
Device RAM

u2RLength Base of R Base of R filled with random values
depending on the option

u2RLength u2 I – – Length of R Length of R

37.3.4.13.6 Deterministic RNG Parameters Definition
The parameters for the generation of random from the Deterministic RNG are described in the
following table. This service can easily be accessed through the use of the PUKCL_Rng() and
PUKCL() macros.

Table 37-40. RNG Service Deterministic Generated Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

u2Options u2 I – – Option (see Table
37-41)

Option (see Table 37-41)

nu1XKeyBase nu1 I/O Crypto RAM u2XKeyLength Base of XKey Base of XKey filled with
the resulting XKey

nu1Workspace nu1 NA Crypto RAM 64 bytes Base of the
workspace

Base of the workspace
corrupted

nu1Workspace2(1) nu1 NA Crypto RAM 2*u1XKeyLength + 4 Base of the
workspace 2

Base of the workspace
corrupted

nu1XSeedBase nu1 I/O Crypto RAM max
(2*u2XKeyLength, 44
bytes)

Base of the
values XSeed[0] and
XSeed[1]

Base of XSeed filled with
the result on 20 bytes

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 837

...........continued
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

u2XKeyLength u2 I – – Length of XKey,
Xseed[0] and Xseed[1]

Length of XKey, Xseed[0]
and Xseed[1]

nu1QBase nu1 I Crypto RAM 20 bytes Base of Q Base of Q

nu1RBase nu1 I Crypto RAM u2RLength Base of R Base of R filled with the
result on 20 bytes

Note: 
1. The nu1 Workspace2 must be a multiple of 256.

37.3.4.13.7 Options
The option is set by the u2Options input parameter that must take one of the values listed in the
following table.
Note: The values, OPTION_RNG_SEED and OPTION_RNG_GETSEED, are reserved for future use.

Table 37-41. RNG Service Options
Option Purpose Required Parameters

PUKCL_RNG_SEED Reserved Reserved

PUKCL_RNG_GET Generation of a random number from the RNG nu1RBase, u2RLength

PUKCL_RNG_X931_GET Generation of a random number from the Deterministic
RNG

nu1XKeyBase, nu1Workspace,
nu1XSeedBase, u2XKeyLength, nu1QBase,
nu1RBase

PUKCL_RNG_GETSEED Reserved Reserved

37.3.4.13.8 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL(u2Option) =...;

// Initializing parameters
PUKCL_Rng(nu1RBase) = <Base of the ram location to store the rng>;
PUKCL_Rng(u2RLength) = <Length of the rng to get>;

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(Rng,pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 // The RNG generation has been executed correctly
 ...
 }
else // Manage the error

37.3.4.13.9 Constraints
Random Number Generation
The following conditions must be avoided to ensure that the service works correctly:

• {nu1RBase,u2RLength} not in RAM
• {nu1RBase,u2RLength} not accessible or authorized for writing

Deterministic Random Number Generation
The length of the parameter nu1XSeedbase is: XSeedLength = max(2*u2XKeyLength, 44 bytes) The
max() macro takes a maximum of two values.

The following conditions must be avoided to ensure that the service works correctly:

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 838

• nu1XKeyBase,nu1Workspace, nu1Workspace2, nu1XSeedBase, nu1QBase, nu1RBase are not
aligned on 32-bit boundaries

• {nu1XKeyBase, u2XKeyLength}, {nu1Workspace, 64 bytes}, {nu1Workspace2, 2*u1XKeyLength
+4}, {nu1XSeedBase, XSeedLength}, {nu1QBase, 24 bytes} or {nu1RBase, 20 bytes} are not in
PUKCC RAM

• u2XKeyLength is either: < 20, > 64 or not a 32-bit length
• nu1Workspace2 not multiple of 256.
• Overlaps exist between two or more of the areas: {nu1XKeyBase, u2XKeyLength},

{nu1Workspace,64 bytes}, {nu1XSeedBase, XSeedLength}, {nu1QBase, 24 bytes} or {nu1RBase,
20 bytes}
The area {nu1RBase, 20} can overlap with {nu1Workspace, 64 bytes} or {nu1QBas, 24 bytes}. The
pointer nu1RBase can equal the pointer nu1XSeedBase.

37.3.4.13.10 Status Returned Values

Table 37-42. RNG Service Return Codes
Returned status Importance Meaning

PUKCL_OK Information Service functioned correctly

37.3.5 Modular Arithmetic Services
This section provides a complete description of the modular arithmetic services, which consists of
two sets:

• Modular reductions, which can be used as stand alone operations, or used as a final step of most
arithmetic operations (full and small multiplications, squaring).

• Modular operations, which include modular exponentiations (with or without using the CRT) and
a probabilistic prime number generation.

These operations work on general data so the modulus has no special form. The modular services
are available through:

• a Fast form (may return a congruence of the result, with a high probability to have a Normalized
result)

• a Normalized form (returns the exact result, strictly lower than the modulus)
• a Euclidean form (returns the exact result, strictly lower than the modulus)

The following table describes the modes of the modular reduction with the hypothesis:
• In GF(p): The modulus is N with length NLength in bytes
• In GF(2n): The modulus is P[X] with length NLength in bytes

For the exact calculus of NLength see below.

Table 37-43. Modular Reduction Modes
Modular
Reduction Form

Input Dynamic Result Dynamic Comments

Fast GF(p): 0 ≤ Input < (N2) * (232)
GF(2n): Input < ((P[x])2) * (X32)

GF(p): 0 ≤ Res < N * 4
GF(2n): Res < P[X] * (X2)

The fastest reduction available, needs a
precomputed constant.

Normalized InputLength < NLength + 4
bytes

GF(p): 0 ≤ Res < N GF(2n): Res <
P[X]

The correction step does not runs in
constant time. Needs a precomputed
constant.
The Normalize function cannot be
applied to the product of two numbers
of length u2NLength.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 839

...........continued
Modular
Reduction Form

Input Dynamic Result Dynamic Comments

Using Euclidean
division

InputLength < 2 * NLength + 4
bytes

GF(p): 0 ≤ Res < N
GF(2n): Res < P[X]

Does not need any precomputed
constant.

To be able to use these modular reduction services (except the Euclidean division), first the
implementer shall call the setup service, providing the modulus as well as one free memory space
for the constant (this constant is used to speed up the modular reduction). In most commands
(except the modular exponentiation), the quotient is stored in the high order bytes of the number to
be reduced, using only eight bytes more than the maximum size of the number to be reduced.

The following rules must be respected to ensure the modular reduction services function correctly:

• The numbers to be reduced can have any significant length, given the fact it CANNOT BE
GREATER than 2*u2ModLength + 4 bytes.

• The modulus SHALL ALWAYS HAVE a significant length of <u2ModLength> bytes. The modulus
must be provided as a <u2ModLength + 4> bytes long number, padded on the most significant
side with a 32-bit word cleared to zero. Not respecting this rule leads to unexpected and wrong
results from the modular reduction.

• The normalization operation ALWAYS performs a modular reduction step, and will therefore have
the same memory usage as this one.

• The very first operation before any modular operation SHALL BE a modular setup.

37.3.5.1 Modular Reduction
Related Links
37.3.3.4. Aligned Significant Length

37.3.5.1.1 Purpose
This service is used to perform the various steps necessary to perform a modular reduction and
accepts as input numbers in GF(p) or polynomials in GF(2n) .

The available options for this service are:

• Work in the GF(2n) or in the standard integer arithmetic field GF(p)
• Operation is the generation of the reduction constant.
• Operation is a Modular Reduction.
• Operation is a Normalization.

37.3.5.1.2 How to Use the Service
37.3.5.1.3 Description

This service performs one of the following operations:

• Setup of the Fast or Normalize functions: generation of the reduction constant
• Fast Modular Reduction
• Big Modular Reduction (using Euclide’s division)
• Normalization

The service name for this operation is RedMod.

37.3.5.1.4 Modular Reduction Setup
This service calculates the constant Cns, computed from the modulus and used to speed up the
modular reduction:

Cns = SetupConstant(N)

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 840

This service must be processed before the use of the Fast or Normalize functions. In the Setup
computations, the following data must be provided:

• N the modulus (pointed by {nu1ModBase,u2ModLength +4}).
• Cns the Setup Constant Result (pointed by {nu1CnsBase,u2ModLength +12}).
• X used as a workspace (pointed by {nu1XBase,2 * u2ModLength + 8}) (include the supplementary

bytes; see Note 2 in Table 37-44
• R used as a workspace (pointed by {nu1RBase,64 or 68bytes}).
• u2ModLength is the Aligned Significant Length of the modulus and is not the byte Significant

Length (see Aligned Significant Length from Related Links).

37.3.5.1.5 Fast Reductions and Normalization
These commands calculate an approximated or exact Modular Reduction, that is, the result may be
greater than the modulus, but is always congruent to the true result.

Important: Before using these functions, ensure that the constant Cns has been
calculated with the setup for the Modular Reduction service.

Input and Result significant values verify:

• For the Fast Modular Reduction:0 ≤ X < N2 × 232R = Xmod N + k × N witℎ 0 ≤ k ≤ 4
• For the Normalize:XLengtℎ < NLengtℎ + 4 bytes R= Xmod N
In these Fast Modular Reduction and Normalize computations, the following data have to be
provided:

• X (pointed by {nu1XBase,2 * u2ModLength +8})
– The Normalize computation accept as entry a value whose length is lower or equal to

u2ModLength + 4 (that is, for example, a value yet reduced but not normalized.). The
u2ModLength + 4 MSB bytes are cleared at the beginning of the computation.

– in case of Fast RedMod computations, the value X mayverify: X < (N2) *(232).
– include the supplementary bytes; see Note 3 in 37.3.5.1.8. Fast Modular Reductions Service

Parameters Definition.
• R (pointed by {nu1RBase,u2Modlength +4})
• N (pointed by {nu1ModBase,u2ModLength +4})
• Cns (pointed by {nu1CnsBase,u2ModLength +12})
• u2ModLength is the Aligned Significant Length of the modulus and is not the byte Significant

Length (see Aligned Significant Length from Related Links).

The Fast Modular Reduction is able to reduce inputs up to <2*u2ModLength + 4> bytes. The input
can come from a multiplication of 2 <u2ModLength + 4> bytes numbers. The input X is considered
as a <2*u2ModLength + 8> bytes number.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 841

Important: Additionally the Fast Reduction and Normalize functions need
supplemental bytes located on the MSB side of the number to be reduced
but these bytes are restored at the end of the operation and are therefore
unchanged. However, these bytes are to be taken into account when the mapping
is created, and could lead to unexpected results if overlapping with other area
used by the function.

The Fast Modular Reduction returns a <u2ModLength + 4> bytes number, but this number is in fact
a <u2ModLength + 2> significant bytes number. When using the Fast Modular Reduction, the two
MSB bytes of the <u2ModLength + 2> can have a maximum of two lsb bits set (depending on the
reduced number and the modulo).

The Normalize computation accepts as entry a resulting value of Fast Modular Reduction and
computes an exact result. It can not be applied to the result of the product of two numbers of
size NLength: a Fast Modular Reduction must be applied before.

For the Normalize computation, the X value is limited by the preceding formula but the area
in memory is bigger as described in 37.3.5.1.8. Fast Modular Reductions Service Parameters
Definition.

As input, the Normalize sub-service only accept values, which length is lower or equal to
u2ModLength + 4. The Most Significant u2ModLength + 4 bytes are firstly cleared by this service.

37.3.5.1.6 Big Modular Reduction Using Euclide's Division
This command calculates:XLengtℎ < 2 × NLengtℎ + 4 bytes R= Xmod N
In this Big Modular Reduction computations, the following data must be provided:

• X (pointed by {nu1XBase,2 * u2ModLength + 8}) (include the supplementary bytes; see Note 1 in
Table 37-46)

• R (pointed by {nu1RBase,u2Modlength +4})
• N (pointed by {nu1ModBase,u2ModLength +4})
• u2ModLength is the Aligned Significant Length of the modulus and is not the byte Significant

Length (see Aligned Significant Length from Related Links).
• Workspace (pointed by {nu1CnsBase,64 or 68}).

37.3.5.1.7 Modular Reductions Service Parameters Definition

Table 37-44. RedMod Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

u2Options u2 I – – Options (see below) Options (see below)

Specific/CarryIn Bits I – – Must be set to zero. –

Specific/Gf2n Bit I – – GF(2n) Bit –

Specific/CarryOut
Zero Violation

Bits I – – – Carry Out, Zero Bit
and Violation Bit filled
according to the result

nu1ModBase(1) nu1 I Crypto RAM u2ModLength + 4 Base of N Base of N untouched

nu1CnsBase nu1 I Crypto RAM u2ModLength + 12 Base of Cns Base of Cns filled with the
Setup Constant

u2ModLength u2 I – – Length of N Length of N

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 842

...........continued
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

nu1RBase nu1 I Crypto RAM GF(p): 64 bytes
GF(2n): 68 bytes

Base of R
as a workspace

Base of R workspace
corrupted

nu1XBase(2) nu1 I Crypto RAM 2*u2ModLength + 8 Base of X as a
workspace

Base of X workspace
corrupted

Notes: 
1. The Modulus is to be given as a u2ModLength Aligned Significant Length Bytes however, it has

to be provided as a u2ModLength + 4 bytes long number, having the four high-order bytes set to
zero.

2. Before the X (pointed by {nu1XBase,2 * u2ModLength + 8}) LSB bytes, four supplementary bytes
will be saved/restored. Other four supplementary bytes will also be saved/restored after the X
MSB bytes. All these supplementary bytes may be entirely in the Crypto RAM (therefore, do not
place the X area too near the end of the Crypto RAM) and shall not overlap with other area used
by the service.

37.3.5.1.8 Fast Modular Reductions Service Parameters Definition

Table 37-45. Fast RedMode and Normalize Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

u2Options u2 I – – Options (see below) Options (see below)

Specific/CarryIn Bits I – – Must be set to zero. –

Specific/Gf2n Bit I – – GF(2n) Bit –

Specific/CarryOut
Zero Violation

Bits I – – – Carry Out, Zero Bit
and Violation Bit filled
according to the result

nu1ModBase(1) nu1 I Crypto RAM u2ModLength + 4 Base of N Base of N untouched

nu1CnsBase nu1 I Crypto RAM u2ModLength + 12 Base of Cns Base of Cns untouched

u2ModLength u2 I – – Length of N Length of N

nu1RBase(2) nu1 I Crypto RAM u2ModLength + 4 Base of R Base of R filled with the
result

nu1XBase(3) nu1 I Crypto RAM 2*u2ModLength + 8 Base of X the number
to reduce

Base of X corrupted

Notes: 
1. The Modulus is to be given as a u2ModLength Aligned Significant Length Bytes however, it has

to be provided as a u2ModLength + 4 bytes long number, having the four high-order bytes set to
zero.

2. To make profitable the space memory, it is possible to set nu1RBase exactly equal to nu1XBase.
3. After the X (pointed by {nu1XBase,2 * u2ModLength + 8}) MSB bytes, supplementary bytes will

be saved/restored (8 bytes in case of Fast RedMod, otherwise; 12 bytes). These supplementary
bytes may be entirely in the Crypto RAM (therefore, do not place the X area too near the end of
the Crypto RAM) and shall not overlap with other area used by the service.

37.3.5.1.9 Big Modular Reduction Parameters Definition

Table 37-46. Big RedMod Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

u2Options u2 I – – Options (see below) Options (see below)

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 843

...........continued
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

Specific/CarryIn Bits I – – Must be set to zero –

Specific/Gf2n Bit I – – GF(2n) Bit –

Specific/CarryOut
Zero Violation

Bits I – – – Carry Out, Zero Bit
and Violation Bit filled
according to the result

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of N Base of N untouched

nu1CnsBase nu1 I Crypto RAM GF(p): 64 bytes
GF(2n): 68 bytes

Base of Cns as a
workspace

Base of Cns corrupted

u2ModLength u2 I – – Length of N Length of N

nu1RBase nu1 I Crypto RAM u2ModLength + 4 Base of R Base of R filled with the
result

nu1XBase(1) nu1 I Crypto RAM 2*u2ModLength + 8 Base of X the number
to reduce

Base of X filled with the
result

Note: 
1. Before the X (pointed by {nu1XBase,2 * u2ModLength + 8}) LSB bytes, four supplementary bytes

will be saved/restored. Other four supplementary bytes will also be saved/restored after the X
MSB bytes. All of these supplementary bytes may be entirely in the Crypto RAM (therefore, do
not place the X area too near the end of the Crypto RAM) and shall not overlap with other area
used by the service.

37.3.5.1.10 Options
The options are set by the u2Options input parameter, which is composed of:

• the mandatory Operation Option described in Table 37-47
• if the Operation Option is PUKCL_REDMOD_REDUCTION, the Modular Reduction Sub-Option

described in Table 37-48

The u2Options number is calculated by an Inclusive OR of the options. Some Examples in C
language are:

• Operation: Setup for the ModularReductions.
PUKCL(u2Options) = PUKCL_ REDMOD_SETUP;

• Operation: Fast ModularReduction.
PUKCL(u2Options) = PUKCL_REDMOD_REDUCTION | PUKCL_REDMOD_USING_FASTRED;

For this command three exclusive options can be specified. The following table lists the operations
that can be performed.

Table 37-47. RedMod Service Options
Option Purpose Required Parameters

PUKCL_REDMOD_SETUP Perform the Cns value computation nu1ModBase, u2ModLength, nu1CnsBase,
nu1XBase

PUKCL_REDMOD_REDUCTION Perform R ≡ X Mod N, see sub-option for details nu1ModBase, u2ModLength, nu1CndBase,
nu1XBase, nu1RBase

PUKCL_REDMOD_NORMALIZE Perform R = X Mod N nu1ModBase, u2ModLength, nu1CndBase,
nu1XBase, nu1RBase

When selecting the PUKCL_REDMOD_REDUCTION option, one of the two sub-options listed in the
following table must be selected.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 844

Table 37-48. RedMode Service Options with PUKCL_RED_MOD_REDUCTION
Option Purpose Required Parameters

PUKCL_REDMOD _USING_DIVISION Perform R = X Mod N nu1ModBase, u2ModLength, nu1CndBase, nu1XBase

PUKCL_REDMOD _USING_FASTRED Perform R ≡ X Mod N
The entropy is minimized (~2 bits)

nu1ModBase, u2ModLength, nu1CndBase,
nu1XBase, nu1RBase

37.3.5.1.11 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL(Specific).CarryIn = 0;
PUKCL(Specific).GF2n = ...;

PUKCL(u2Option) =...;

// Depending on the option specified, not all fields must be filled
PUKCL_RedMod(nu1ModBase) = <Base of the ram location of N>;
PUKCL_RedMod(u2ModLength) = <Length of N>;
PUKCL_RedMod(nu1CnsBase) = <Base of the ram location of Cns>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(RedMod,pvPUKCLParam);
if (PUKCL_Param.Status == PUKCL_OK)
 {
 // operation has correctly been performed
 ...
 }
else // Manage the error

37.3.5.1.12 Constraints
Depending on the options chosen the lengths of the R area and Cns area differ:

• For the Setup:
– RLength = 64bytes
– CnsLength = u2ModLength +12

• For the Fast Reduction and Normalize:
– RLength = u2ModLength +4
– CnsLength = u2ModLength +8

• For the BigRedMod:
– RLength = u2ModLength +4
– CnsLength =64

The following combinations of input values must be avoided in the case of a modular reduction
‘alone’, meaning that it has not been requested as an option of any other command:

• nu1ModBase, nu1CnsBase, nu1RBase, nu1XBase are not aligned on 32-bit boundaries
• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2CnsLength}, {nu1XBase, 2*u2XLength + 8 + s}

or {nu1RBase, u2RLength} are not in Crypto RAM
• u2ModLength is either: < 4, > 0xffc or not a 32-bit length
• Overlaps exist between two or more of the areas: {nu1ModBase, u2ModLength + 4},

{nu1CnsBase, u2CnsLength}, {nu1XBase, 2*u2XLength + 8 + s} or {nu1RBase, u2RLength}

Note: Overlaps between {nu1RBase, RLength} and {nu1XBase, 2*u2XLength + 8} are forbidden; but
if the operation is the Fast, Normalized or Big Modular Reduction, the equality between nu1RBase
and nu1XBase is authorized.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 845

37.3.5.1.13 Status Returned Values

Table 37-49. RedMod Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – Service functioned correctly

PUKCL_DIVISION_BY_ZERO Severe When computing an Euclidean division, the Modulus was found to be
zero. This occurs ONLY when either reducing using an Euclidean division
or computing the reduction constant usable for a Fast or Normalize
Reduction.

PUKCL_UNEXPLOITABLE_OPTIONS Severe A bad combination of options has been detected.

PUKCL_MALFORMED_MODULUS Severe The Msw of the modulus is not zero.

37.3.5.2 Modular Exponentiation (Without CRT)
37.3.5.2.1 Purpose

This service is used to perform the Modular Exponentiation computation. This service processes
integers in GF(p) only.

The options available for this service are:

• Fast implementation
• Regular implementation
• Exponent is located in Crypto RAM or not in Crypto RAM
• Exponent window size

37.3.5.2.2 How to Use the Service
37.3.5.2.3 Description

Important: Before using these functions, ensure that the constant Cns has been
calculated with the Setup of the Modular Reductions service.

This service processes the following operation:

The service name for this operation is ExpMod.

R = XExpmod(N)

In this computation, the following parameters need to be provided:

• X: input number (pointed by {nu1XBase,u2ModLength +16})
• N: modulus (pointed by {nu1ModBase,u2ModLength +4}).
• Exp: exponent (pointed by {pfu1ExpBase,u2ExpLength +4})
• Cns: Fast Modular Constant (pointed by {nu1CnsBase,u2ModLength +8})
• Precomp: precomputation workspace (pointed by{nu1PrecompBase,PrecompLen})
• Blinding: exponent blinding value (provided inu1Blinding)

The length PrecompLen depends on the lengths and options chosen; its calculus is detailed in
Options below.

Note: The minimum value for u2ModLength is 12 bytes. Therefore, the significant length of N must
be at least three 32-bit words.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 846

37.3.5.2.4 Parameters Definition

Table 37-50. ExpMod Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the Service

u2Options u2 I – – Options (see below) Options (see below)

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of N Base of N untouched

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns untouched

u2ModLength u2 I – – Length of N Length of N

nu1XBase(1) nu1 I Crypto RAM u2ModLength + 16 Base of X Base of X
Filled with the result

nu1PrecompBase nu1 I Crypto RAM See below Base of Precomp as a
workspace

Base of Precomp workspace
corrupted

pfu1ExpBase(2) pfu1 I Any place(3) u2ExpLength + 4 Base of the Exponent Base of the Exponent
untouched

u2ExpLength(4) u2 I – – Significant length of
Exponent

Significant length of
Exponent

u1Blinding(5) u1 I – – Exponent unblinding
value

Exponent unblinding value
untouched

Notes: 
1. This zone contains the number to be exponentiated (u2ModLength bytes) and is used during the

computations as a workspace (four 32-bit words longer than the number to be exponentiated).
At the end of the computation, it contains the correct result of the operation.

2. The exponent must be given with a supplemental word on the LSB side (low addresses). This
word shall be set to zero.

3. If the PUKCL_EXPMOD_EXPINPUKCCRAM option is not set, the location of the exponent MUST
NOT be the Crypto RAM, even partially.

4. The u2ExpLength parameter does not take into account the supplemental word needed on the
LSB side of the exponent.

5. It is possible to mask the exponent in memory using an 8-bits XOR mask value. Be aware that not
only the exponent, but also the supplemental word has to be masked. If masking is not desired,
then this parameter must be set to 0.

37.3.5.2.5 Options
The options are set by the u2Options input parameter, which is composed of:

• the mandatory Calculus Mode Option described in Table 37-51
• the mandatory Window Size Option described in Table 37-52
• the indication of the presence of the exponent in Crypto RAM

Note:  Please check precisely if one part of the exponent is in Crypto RAM. If this is the case the
PUKCL_EXPMOD_EXPINPUKCCRAM must be used.

The u2Options number is calculated by an “Inclusive OR” of the options. Some examples in C
language are:

• Operation:Fast Modular Exponentiation with the window size equal to 1 and with no part of the
Exponent in the Crypto RAM
PUKCL(u2Options) = PUKCL_EXPMOD_FASTRSA | PUKCL_EXPMOD_WINDOWSIZE_1;

• Operation: Regular Modular Exponentiation with the window size equal to 2 and with one part of
the Exponent in the Crypto RAM
PUKCL(u2Options) = PUKCL_EXPMOD_REGULARRSA | PUKCL_EXPMOD_WINDOWSIZE_2 |
PUKCL_EXPMOD_EXPINPUKCCRAM;

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 847

There is no difference on the final result when using any of the options for this service. The choice
has to be made according to the available resources (RAM, Time) and also taking into account the
expected security level.

For this service, two exclusive Calculus Modes are possible. The following table describes the
Calculus Mode Options.

Table 37-51. ExpMod Service Calculus Mode Option
Option Explanation

PUKCL_EXPMOD_FASTRSA Performs a Fast computation

PUKCL_EXPMOD_REGULARRSA Performs a Regular computation, slower than the Fast version, but using Regular calculus
methods

For this service, four window sizes are possible. The window size in bits is those of the windowing
method used for the exponent.

The choice of the window size is a balance between the size of the parameters and the computation
time:

• Increasing the window size increases the precomputation workspace.
• Increasing the window size reduces the computation time (may not be relevant for very small

exponents).

The following table details the size of the precomputation workspace, depending on the chosen
window size option.

Table 37-52. ExpMode Service Window Size Options and Precomputation Space Size
Option specified Size of the PrecompBase Workspace (bytes) Content of the Workspace

PUKCL_EXPMOD_WINDOWSIZE_1 3*(u2ModLength + 4) + 8 x

PUKCL_EXPMOD_WINDOWSIZE_2 4*(u2ModLength + 4) + 8 x x3

PUKCL_EXPMOD_WINDOWSIZE_3 6*(u2ModLength + 4) + 8 x x3 x5 x7

PUKCL_EXPMOD_WINDOWSIZE_4 10*(u2ModLength + 4) + 8 x x3 x5 x7 x9 x11 x13 x15

The exponent can be located in RAM or in the data space. If one part of the exponent is in Crypto
RAM this must be mandatory signaled by using the option PUKCL_EXPMOD_EXPINPUKCCRAM.

The following table describes this option.

Table 37-53. ExpMod Service Exponent in Crypto RAM Option
Option Purpose

PUKCL_EXPMOD_EXPINPUKCCRAM The exponent can be read from any data space of memory, including Flash, RAM or even
Crypto RAM. When at least one word the exponent is in Crypto RAM, this option has to
be set.

37.3.5.2.6 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL(u2Option) =...;

// Depending on the option specified, not all fields must be filled
PUKCL_ExpMod(nu1ModBase) = <Base of the ram location of N>;
PUKCL_ExpMod(u2ModLength) = <Length of N>;
PUKCL_ExpMod(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL_ExpMod(nu1XBase) = <Base of the ram location of X>;
PUKCL_ExpMod(nu1PrecompBase) = <Base of the ram location of Precomp>;
PUKCL_ExpMod(pfu1ExpBase) = <Base of the location of Exp>;
PUKCL_ExpMod(u2ExpLength) = <Length of Exp>;
...

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 848

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ExpMod, pvPUKCLParam);
if (PUKCL_Param.Status == PUKCL_OK)
 {
 // operation has been performed correctly
 ...
 }
else // Manage the error

37.3.5.2.7 Constraints
The following combinations of input values must be avoided in the case of a modular reduction
‘alone’, meaning that it has not been requested as an option of any other command:

• nu1ModBase,nu1CnsBase, nu1XBase,nu1PrecompBase,nu1ExpBase are not aligned on 32-bit
boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1XBase, u2ModLength
+16},{nu1PrecompBase, <PrecompLength>} are not in Crypto RAM

• {nu1ExpBase,u2ExpLength + 4} has no part in Crypto RAM and
PUKCL_EXPMOD_EXPINPUKCCRAM is specified

• u2ModLength or u2ExpLength are either: < 4, > 0xffc or not a 32-bit length
• None or both PUKCL_EXPMOD_REGULARRSA and PUKCL_EXPMOD_FASTRSA are specified.
• {nu1PrecompBase,<PrecompLength>} overlaps with either: {nu1ModBase, u2ModLength +4},

{nu1CnsBase, u2ModLength + 8} {nu1XBase, u2ModLength + 16} or {nu1ExpBase, u2ExpLength +
4}

• {nu1XBase,u2ModLength + 16} overlaps with either: {nu1ModBase, u2ModLength + 4},
{nu1CnsBase, u2ModLength + 8} or {nu1ExpBase, u2ExpLength + 4}

• {nu1ModBase, u2ModLength + 4} overlaps {nu1CnsBase, u2ModLength +8}

37.3.5.2.8 Maximum Sizes for the Modular Exponentiation
The following table provides the maximum sizes for the Modular Exponentiation, depending on the
window size and the presence of the exponent in Crypto RAM.

• The figures below are calculated supposing that u2ExpLength =u2ModLength.
• In case of the PUKCL_EXPMOD_EXPINPUKCCRAM option is specified, for the computation of the

maximum acceptable size, it is assumed the Exponent is entirely in the Crypto RAM and its length
is equal to the Modulus one.

• Otherwise, the Exponent is entirely out of the Crypto RAM and so the computation do not
depend on its length.

Table 37-54. Maximum Exponentiation Sizes
Option Specified Maximum Modulus Size (bytes) Maximum Modulus Size (bits)

Exponent in Crypto RAM, 1 bit window 576 4608

Exponent in Crypto RAM, 2 bits window 504 4032

Exponent in Crypto RAM, 3 bits window 400 3200

Exponent in Crypto RAM, 4 bits window 284 2272

Exponent not in Crypto RAM, 1 bit window 672 5376

Exponent not in Crypto RAM, 2 bits window 576 4608

Exponent not in Crypto RAM, 3 bits window 448 3584

Exponent not in Crypto RAM, 4 bits window 308 2464

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 849

37.3.5.2.9 Status Returned Values

Table 37-55. ExpMod Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – Service functioned correctly

37.3.5.3 Probable Prime Generation (Using Rabin-Miller)
37.3.5.3.1 Purpose

This service is used to perform probable prime generation or test. This service processes integers in
GF(p) only.

The options available for this service are:

• Choice of the number of iterations of the Rabin-Miller test
• Generation or Test of a probable prime number
• Fast Implementation
• Regular Implementation
• Exponent Window Size

37.3.5.3.2 Additional Information
The Rabin-Miller test is a probable-primality testing algorithm. As a consequence, the primality
of the generated number is not guaranteed at 100%, however, numerous publications have been
issued explaining how to estimate the probability of getting a composite number, giving the size of
the number and the number of iterations (the T parameter).

Useful information can be found in the “Handbook of Applied Cryptography (Discrete Mathematics
and Its Applications” by Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, in the following
sections:

• 4.2.3. “Rabin-Miller Test”
• 4.4. “Prime Number Generation”

37.3.5.3.3 How to Use the Service
37.3.5.3.4 Description

This service processes a test for probable primality or a generation of a probable prime number.

Note:  When using this service be sure to follow the directives given for the RNG on the chip you
use (particularly initialization, seeding) and compulsorily start the RNG.

This service processes one of the following operations: CheckProbablePrimality(N)

or

N = GenerateProbablePrimeFromSeed (NSeed)

In this computation, the following parameters need to be provided:

• N the input number (pointed by {nu1NBase,u2NLength +4})
– If the requested operation is a test, it is untouched after the operation.
– If the requested operation is a generation and a probable prime number was found

before reaching the Maximum Increment, it contains the resulting probable prime after the
operation.

– If the requested operation was a generation and Maximum Increment was reached before a
probable prime number was found, it contains no relevant information.

• Cns as a workspace (pointed by {nu1CnsBase,u2NLength +12})
• Rnd as a workspace (pointed by {nu1RndBase,u2NLength +16})

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 850

• Precomp the precomputation workspace (pointed by{nu1PrecompBase,PrecompLen})
• Exp as a workspace (pointed by {pfu1ExpBase,u2ExpLength +4})
• u1MillerRabinIterations the number of Miller Rabin Iterations requested
• u2MaxIncrement, maximum increment of the number in case of probable prime generation

The length PrecompLen depends on the lengths and options chosen; its calculus is detailed in
Options below.

The service name for this operation is PrimeGen.

37.3.5.3.5 Parameters Definition

Table 37-56. PrimeGen Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

nu1NBase(1) nu1 I Crypto
RAM

u2NLength + 4 Base of N
Number to test or Seed
for the generation

Base of N unchanged
if test or generation
result(2)

nu1CnsBase nu1 I Crypto
RAM

u2NLength + 12 Base of Cns as a
workspace

Base of Cns workspace
corrupted

u2NLength u2 I – – Length of N Length of N

nu1RndBase nu1 I Crypto
RAM

Max (u2NLength
+ 16,64)

Internal Workspace Internal Workspace
corrupted

nu1PrecompBase nu1 I Crypto
RAM

See Options
below

Base of Precomp
workspace

Base of Precomp
workspace corrupted

nu1RBase(2) nu1 – Crypto
RAM

– – –

nu1ExpBase(3) nu1 I Crypto
RAM

u2NLength + 4 Base of Exponent (R) Base of Exponent (R)

u1MillerRabin-
Iterations

u1 I – – Miller Rabin’s T
parameter

Miller Rabin’s T
parameter

u2MaxIncrement u2 I – – Maximum Increment(4) Maximum Increment

Notes: 
1. This zone contains the number to be either tested or used as a seed for generation. It has to be

provided with one zero word on the MSB side. This area has supplementary constraints (see the
following Important note).

1. This parameter does not have to be provided and is used as an internal value for computing the
reduction’s constant.

2. The area {nu1ExpBase, u2NLength + 4} must be entirely in the Crypto RAM.
3. The generation starts from the number in {nu1NBase,u2NLength + 4} and increments it until a

number is found as probable prime. However, the generation may stop for two reasons: The
number has been incremented in a way it is bigger than <u2NLength> bytes, or the original
number has been incremented by more than <u2MaxIncrement>.

In case of probable prime generation, ensure that the addition of NSeed and Maximum Increment is
not a number with more bytes than u2NLength, as this would produce an overflow.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 851

Important: 
One additional word is used on the LSB side of the NBase parameter; this word is
restored at the end of the calculus. As a consequence, the parameter nu1NBase
must never be at the beginning of the Crypto RAM, but at least at one word from
the beginning.

One additional word is used on the MSB side of the NBase parameter; this word is
not corrupted. As a consequence the Area {nu1NBase, u2NLength} must not be at
the end of the Crypto RAM but at least at one word from the end.

Prime numbers of a size lower than 96 bits (three 32-bit words) cannot be
generated or tested by this service.

37.3.5.3.6 Options
Some of the Prime Generation options configure the Modular Exponentiation steps and so are very
similar to the Modular Exponentiation options.

The options are set by the u2Options input parameter, which is composed of:

• the mandatory Operation Option described in Table 37-57
• the mandatory Calculus Mode Option described in Table 37-58
• the mandatory Window Size Option described in Table 37-59

The u2Options number is calculated by an “Inclusive OR” of the options. Some Examples in C
language are:

• Operation: Probable Prime Testing with Fast Modular Exponentiation and the window size equal
to 1
PUKCL(u2Options) = PUKCL_PRIMEGEN_TEST | PUKCL_EXPMOD_FASTRSA |
PUKCL_EXPMOD_WINDOWSIZE_1;

• Operation: Probable Prime Generate with Regular Modular Exponentiation and the window size
equal to 2
PUKCL(u2Options) = PUKCL_EXPMOD_REGULARRSA | PUKCL_EXPMOD_WINDOWSIZE_2;

The following table describes the PrimeGen service features available from the various options.

Table 37-57. PrimeGen Service Options
Option Method Used

PUKCL_PRIMEGEN_TEST This option is used to specify that only tests will be made on the provided
number.
When this option is not specified, a prime generation algorithm is selected,
starting from the given seed and incrementing it.

PUKCL_EXPMOD_WINDOWSIZE_1,2,3 or 4 Depending on this option, different bit-window sizes will be used. For long
exponents, the bigger the window, the faster the computation. However, this has
also an impact on the size of the precomputations table.

For this service, two exclusive Calculus Modes are possible. The following table describes the
Calculus Mode Options.

Table 37-58. PrimeGen Service Calculus Mode Options
Option Explanation

PUKCL_EXPMOD_FASTRSA Perform a Fast computation.

PUKCL_EXPMOD_REGULARRSA Performs a Regular computation, slower than the Fast version, but using regular calculus
methods.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 852

The length of the Precomp area depends on the window size W and u2NLength. The Precomp area
length is:

PrecompLen = max(2*(u2NLength + 4) + 2W-1 * (u2NLength + 4), u2NLength + 8 + 64) + 8

Note: Please calculate precisely the length PrecompLen with the formula and the max() macro,
which takes a maximum of two values.

The following table shows the size of the precomputation workspace (PrecompLen), depending on
the chosen window size option.

Table 37-59. PrimeGen Service Precomputation Space Size
Option Specified Size of the PrecompBase Workspace (bytes) Content of the Workspace

PUKCL_EXPMOD_WINDOWSIZE_1 max(3*(u2NLength + 4), u2NLength + 72) + 8 x

PUKCL_EXPMOD_WINDOWSIZE_2 max(4*(u2NLength + 4), u2NLength + 72) + 8 x x3

PUKCL_EXPMOD_WINDOWSIZE_3 max(6*(u2NLength + 4), u2NLength + 72) + 8 x x3 x5 x7

PUKCL_EXPMOD_WINDOWSIZE_4 max(10*(u2NLength + 4) u2NLength + 72) + 8 x x3 x5 x7 x9 x11 x13 x15

The following table provides the maximum sizes for the Prime Generation depending on the window
size.

Table 37-60. PrimeGen Service Maximum Sizes
Characteristics of the Operation Maximum Prime Sizes (bits)

1 bit window 4608

2 bits window 4032

3 bits window 3200

4 bits window 2272

37.3.5.3.7 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip PUKCL(u2Option) =...;
// Depending on the option specified, not all fields must be filled
PUKCL_PrimeGen(nu1NBase) = <Base of the ram location of N>;
PUKCL_PrimeGen(u2NLength) = <Length of N>;
PUKCL_PrimeGen(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL_PrimeGen(nu1PrecompBase) = <Base of the ram location of Precomp>;
PUKCL_PrimeGen(pfu1ExpBase) = <Base of the location of Exp>;
PUKCL_PrimeGen(u2ExpLength) = <Length of Exp>;
PUKCL_PrimeGen(u1MillerRabinIterations) = <Number of iterations>;
PUKCL_PrimeGen(u2MaxIncrement) = <Maximum Increment>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(PrimeGen, pvPUKCLParam);
if (PUKCL_Param.Status == PUKCL_NUMBER_IS_PRIME)
 {
 // The number is probably prime
 ...
 }
else if (PUKCL_Param.Status == PUKCL_NUMBER_IS_NOT_PRIME)
 {
 // The number is not prime
 ...
 }
else // Manage the error

37.3.5.3.8 Constraints
The following combinations of input values must be avoided in the case of a modular reduction
‘alone’, meaning that it has not been requested as an option of any other service:

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 853

• nu1NBase,nu1CnsBase, nu1RndBase,nu1PrecompBase,nu1ExpBase are not aligned on 32-bit
boundaries

• {nu1NBase, u2NLength + 4}, {nu1CnsBase, u2NLength + 12}, {nu1RndBase, u2NLength +12},
{nu1PrecompBase, <PrecompLength>} are not in Crypto RAM

• u2NLength is either: < 12, > 0xffc or not a 32-bit length
• Both PUKCL_EXPMOD_REGULARRSA and PUKCL_EXPMOD_FASTRSA are specified.
• {nu1PrecompBase,<PrecompLength>} overlaps with either: {nu1NBase, u2NLength + 4},

{nu1CnsBase, u2NLength + 12} {nu1RndBase, u2NLength + 12} or {nu1ExpBase, u2ExpLength
+ 4}

• {nu1RndBase,3*u2NLength + 24} overlaps with either: {nu1NBase, u2NLength + 4},{nu1CnsBase,
u2NLength + 12} {nu1XBase, u2NLength + 12} or {nu1ExpBase, u2ExpLength + 4}

• {nu1NBase, u2NLength + 4} overlaps {nu1CnsBase, u2NLength +12}

37.3.5.3.9 Status Returned Values

Table 37-61. PrimeGen Service Return Codes
Returned Status Importance Meaning

PUKCL_NUMBER_IS_PRIME Information The generated or tested number has been detected as probably prime.

PUKCL_NUMBER_IS_NOT_PRIME Information The generated or tested number has been detected as composite.

37.3.5.4 Modular Exponentiation (With CRT)
37.3.5.4.1 Purpose

The purpose of this service is to perform the Modular Exponentiation with the Chinese Remainders
Theorem (CRT). This service processes integers in GF(p) only.

The options available for this service are:

• Fast implementation
• Regular implementation
• Exponent is located in Crypto RAM or not
• Exponent window size

37.3.5.4.2 How to Use the Service
37.3.5.4.3 Description

This service processes a Modular Exponentiation with the Chinese Remainder Theorem:

R = XDmod(N) with N = P *Q

Important:  For this service, be sure to follow the directives given for the RSA
implementation on the chip you use.

This service requires that the modulus N is the product of two co-primes P and Q and that the
decryption exponents D is co-prime with the product ((P-1)*(Q-1)).

The Input data are P, Q, EP, EQ, Rvalue, and X. P and Q are the co-primes so that N = P*Q.

X is the number to exponentiate.

EP, EQ and Rval are calculated as follows:

EP = Dmod(P – 1) EQ = Dmod(Q – 1) Rval = P–1mod(Q)

In some cases, the decryption exponent D may not be available and the encryption exponent E may
be available instead. The possibilities to calculate the parameters are:

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 854

• Calculate D from E with the formula:
D = E–1mod((P – 1) × (Q – 1))

• Calculate the parameters from E:
EP = E–1mod(P – 1) EQ = E–1mod(Q – 1) Rval = P–1mod(Q)

In this computation, the following parameters need to be provided:

• X the input number (pointed by {nu1XBase,2*u2ModLength +16})
• P and Q the primes (pointed by {nu1ModBase,2*u2ModLength +8}).
• EP and EQ the reduced exponents (pointed by {pfu1ExpBase,2*u2ExpLength +8})
• Rval and Precomp (pointed by{nu1PrecompBase,RAndPrecompLen})
• Blinding the exponent blinding value (provided inu1Blinding)

The length RAndPrecompLen depends on the lengths and options chosen; its calculus is detailed in
Options below.

The service for this operation is CRT.

Note: The minimum value for u2ModLength is 12 bytes. Therefore, the significant length of P or Q
must be at least three 32-bit words.

37.3.5.4.4 Parameters Definition
The following table shows the parameter block for the CRT service.

Many parameters have complex placement in memory; therefore, detailed figures are provided in
CRT Service Placement below.

Table 37-62. CRT Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

u2Options u2 I – – Options (see below) Options (see below)

nu1ModBase nu1 I Crypto RAM 2*u2ModLength + 8 Base of P, Q Base of P, Q untouched

u2ModLength u2 I – – Length of P or Q greater
than or equal to 12

Length of P or Q

nu1XBase(1) nu1 I Crypto RAM 2*u2ModLength + 16 Base of X Base of X
Filled with the result

nu1PrecompBase nu1 I Crypto RAM See Options below Base of Rvalue and Pre
computations workspace

Corrupted

pfu1ExpBase(2) pfu1 I Any place 2*u2ExpLength + 8 Base of EP, EQ Base of EP, EQ
untouched

u2ExpLength u2 I – – Significant length of EP or
EQ

Significant length of EP
or EQ

u1Blinding(3) u4 I – – Exponent unblinding value Exponent unblinding
value

Notes: 
1. This zone contains the number to be exponentiated (u2ModLength bytes) and is used during the

computations as a workspace (four 32-bit words longer than the number to be exponentiated).
At the end of the computation, it contains the correct result of the operation.

2. If the PUKCL_EXPMOD_EXPINPUKCCRAM option is not set, the location of the exponent MUST
NOT be placed in the Crypto RAM, even partially.

3. It is possible to mask the exponent in memory using a 32-bit XOR mask value. Be aware that
not only the exponent, but also the supplemental spill word has to be masked. If masking is not
desired, the parameter must be set to 0.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 855

37.3.5.4.5 Options
Most of the CRT options configure the Modular Exponentiation steps of the CRT and so are very
similar to the Fast Modular Exponentiation options.

The options are set by the u2Options input parameter, which is composed of:

• the mandatory Calculus Mode Option described in Table 37-63
• the mandatory Window Size Option described in Table 37-64
• the indication of the presence of the exponent in Crypto RAM

Important: Please check precisely if one part of the exponent area
(containing EP and EQ) is in Crypto RAM. If this is the case, the
PUKCL_EXPMOD_EXPINPUKCCRAM option must be used.

The u2Options number is calculated by an “Inclusive OR” of the options. Some Examples in C
language are:

• Operation: CRT using the Fast Modular Exponentiation with the window size equal to 1 and with
no part of the Exponent area in the Crypto RAM
PUKCL(u2Options) = PUKCL_EXPMOD_FASTRSA | PUKCL_EXPMOD_WINDOWSIZE_1;

• Operation:CRT using the Regular Modular Exponentiation with the window size equal to 2 and
with one part the Exponent area in the Crypto RAM
PUKCL(u2Options) = PUKCL_EXPMOD_REGULARRSA | PUKCL_EXPMOD_WINDOWSIZE_2 |
PUKCL_EXPMOD_EXPINPUKCCRAM;

For this service, two exclusive Calculus Modes for the Modular Exponentiation steps of the CRT are
possible. The following table describes the Calculus Mode Options.

Table 37-63. CRT Service Calculus Mode Options
Option Explanation

PUKCL_EXPMOD_FASTRSA Perform a Fast computation.

PUKCL_EXPMOD_REGULARRSA Performs a Regular computation, slower than the Fast version, but using regular calculus
methods.

For this service, four window sizes for the Modular Exponentiation Steps are possible. The window
size in bits is those of the windowing method used for the exponent.

The choice of the window size is a balance between the size of the parameters and the computation
time:

• Increasing the window size increases the precomputation workspace.
• Increasing the window size reduces the computation time (may not be relevant for very small

exponents). The length of the Rval and Precomp area depends on the window size W and
u2ModLength.

The Rval and Precomp area length is:

RandPrecompLen = 4 * (u2ModLength + 4) + max(64 , 2(W-1) * (u2ModLength + 4)) + 8

Important: Please calculate precisely the length RandPrecompLen with the
formula and the max() macro, which takes the maximum of two values.

The following table shows the size of the Rval and Precomp area, depending on the chosen window
size option.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 856

Table 37-64. CRT Service Window Size Options and Rval and Precomp Area Size
Option Specified Size of the Rval and Precomp Area (bytes) Precomputation Values

PUKCL_EXPMOD_WINDOWSIZE_1 4*(u2ModLength + 4) + max(64 , (u2ModLength + 4)) + 8 x

PUKCL_EXPMOD_WINDOWSIZE_2 4*(u2ModLength + 4) + max(64 , 2*(u2ModLength + 4)) + 8 x x3

PUKCL_EXPMOD_WINDOWSIZE_3 4*(u2ModLength + 4) + max(64 , 4*(u2ModLength + 4)) + 8 x x3 x5 x7

PUKCL_EXPMOD_WINDOWSIZE_4 10*(u2ModLength + 4) + max(64 , 8*(u2ModLength + 4)) + 8 x x3 x5 x7 x9 x11 x13 x15

The exponent area can be located in RAM or in the data space. If one part of the exponent area
is in Crypto RAM this must be mandatory signaled by using the PUKCL_EXPMOD_EXPINPUKCCRAM
option.

The following table describes this option.

Table 37-65. CRT Service Crypto RAM Option Exponent Area
Option Purpose

PUKCL_EXPMOD_EXPINPUKCCRAM The exponent area can be read from any data space of memory, including Crypto RAM.
When at least one word the exponent is in Crypto RAM, this option has to be set.

37.3.5.4.6 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL(u2Option) =...;

// Depending on the option specified, not all fields must be filled PUKCL_CRT(nu1ModBase) =
<Base of the ram location of P and Q>; PUKCL_CRT(u2ModLength) = <Length of P or Q>;
PUKCL_CRT(nu1XBase) = <Base of the ram location of X>;
PUKCL_CRT(nu1PrecompBase) = <Base of the ram location of RVal and Precomp>;
PUKCL_CRT(pfu1ExpBase) = <Base of the ram location of EP and EQ>;
PUKCL_CRT(u2ExpLength) = <Length of EP or EQ>;
PUKCL_CRT(u1Blinding) = <Blinding value>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(CRT, pvPUKCLParam);
if (PUKCL_Param.Status == PUKCL_OK)
 {
 // operation has been performed correctly
 ...
 }
else // Manage the error

37.3.5.4.7 Constraints
The following conditions must be avoided to ensure that the service works correctly:

• nu1ModBase, nu1XBase, nu1PrecompBase, pfu1ExpBase are not aligned on 32-bit boundaries
• {nu1XBase, 2*u2ModLength + 16}, {nu1ModBase, 2*u2ModLength + 8},

{nu1PrecompBase,<PrecompLength>} are not in Crypto RAM
• {nu1ExpBase,2*u2ExpLength + 8} is not in Crypto RAM and PUKCL_EXPMOD_EXPINPUKCCRAM is

specified
• u2ModLength or u2ExpLength are either: < 4, > 0xffc or not a 32-bit length
• None or both PUKCL_EXPMOD_REGULARRSA and PUKCL_EXPMOD_FASTRSA are specified.
• {nu1XBase,2*u2ModLength + 16} overlaps with either: {nu1ModBase, 2*u2ModLength +8},

{nu1PrecompBase, <PrecompLength>} or {pfu1ExpBase, 2*u2ExpLength + 8}
• {nu1ModBase,2*u2ModLength + 8} overlaps with either: {nu1PrecompBase, <PrecompLength>}

or {pfu1ExpBase, 2*u2ExpLength + 8}
• {nu1PrecompBase, <PrecompLength>} overlaps {pfu1ExpBase, 2*u2ExpLength +8}

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 857

37.3.5.4.8 CRT Service Parameter Placement
The parameters’ placements are described in detail in the following figures.

Figure 37-2. Modulus P and Q in {nu1ModBase, 2*u2ModLength + 8}

Figure 37-3. Value X in {nu1XBase, 2*u2ModLength + 16}

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 858

Figure 37-4. Exponents EP and EQ in {fnu1ExpBase, 2*u2ExpLength + 8}

Figure 37-5. Value Rval and Precomp in {nu1PrecompBase, RandPrecompLen}

37.3.5.4.9 CRT Service Modular Exponentiation Maximum Size
The following table details the maximum size in bits of P or Q, of N and of EP or EQ.

• The maximum size in bits of P or Q equals:
<Max Size Bits P> = <Max Size Bits Q> = 8 * <Max u2ModLength bytes>

• The maximum size in bits of N=P*Q equals:
<Max Size Bits N> = 2 * <Max Size Bits P>

• The maximum size in bits of EP or EQ equals:
<Max Size Bits EP> = <Max Size Bits EQ> = 8 * <Max u2ExpLength bytes>

• In case of the PUKCL_EXPMOD_EXPINPUKCCRAM option is specified, for the computation of the
maximum acceptable size, it is assumed the Exponent is entirely in the Crypto RAM and its length
equal the Modulus one.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 859

• Otherwise, the Exponent is entirely out of the Crypto RAM and so the computation do not
depend on its length.

Table 37-66. CRT Service Maximum Sizes
Characteristics of the Operation P or Q Max Bit Sizes N Max Bit Sizes EP or EQ Max Bit Sizes

Exponent in Crypto RAM, 1 bit window 2912 5824 2912

Exponent in Crypto RAM, 2 bits window 2688 5376 2688

Exponent in Crypto RAM, 3 bits window 2464 4928 2464

Exponent in Crypto RAM, 4 bits window 2304 4608 2304

Exponent not in Crypto RAM, 1 bit window 3584 7168 <application dependent>

Exponent not in Crypto RAM, 2 bits window 3232 6464 <application dependent>

Exponent not in Crypto RAM, 3 bits window 2912 5824 <application dependent>

Exponent not in Crypto RAM, 4 bits window 2688 5376 <application dependent>

37.3.5.4.10 Status Returned Values

Table 37-67. CRT Service Return Codes
Returned Status Importance Meaning

PUKCL_OK Information Service functioned correctly

37.3.6 Elliptic Curves Over GF(p) Services
This section provides a complete description of the currently available elliptic curve over Prime
Fields services. These services process integers in GF(p) only.

The offered services cover the basic operations over elliptic curves such as:

• Adding two points over a curve
• Doubling a point over a curve
• Multiplying a point by an integral constant
• Converting a point’s projective coordinates (resulting from a doubling or an addition) to the affine

coordinates, and oppositely converting a point’s affine coordinates to the projective coordinates.
• Testing the point presence on the curve.

Additionally, some higher level services covering the needs for signature generation and verification
are offered:

• Generating an ECDSA signature (compliant with FIPS186-2)
• Verifying an ECDSA signature (compliant with FIPS186-2) The supported curves use the following

curve equation:

Y2 = X3 + aX + b

37.3.6.1 Coordinate Systems
Related Links
37.3.5.1. Modular Reduction

37.3.6.1.1 General Considerations
In this implementation, several choices have been made related to the coordinate systems managed
by the elliptic curve primitives.

There are two systems currently managed by the library:

• Affine Coordinates System where each curve point has two coordinates (X, Y)
• Projective Coordinates System where each point is represented with three coordinates (X,Y, Z)

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 860

Converting from the affine coordinates system to a projective coordinates system is performed by
extending its representation with Z = 1:

(X, Y) ⇒ (X, Y, Z= 1)

Converting from a projective coordinate to an affine one is a service offered by the PUKCL. The
formula to perform this conversion is:

(X, Y, Z) ⇒ (X / Z2, Y / Z3)

37.3.6.1.2 Points Representations
Depending on the representation (Projective or Affine), points are represented tn memory, as shown
in the following figure.

Figure 37-6. Points Representation in Memory

In this figure, the modulus is represented as a reference, and to show that coordinates are always to
be provided on the length of the modulus plus one 32-bit word.

The different types of representations are as follows:

Notes: 
1. The minimum value for u2ModLength is 12 bytes. Therefore, the significant length of the

modulus must be at least three 32-bit words.
2. In some cases the point can be the infinite point. In this case, it is represented with its Z

coordinates equal or congruent to zero.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 861

37.3.6.1.3 Modulus and Modular Constant Parameters
In most of the services the following parameters must be provided:

• P the Modulus (often pointed by {nu1ModBase,u2ModLength + 4}): This parameter contains the
Modulus Integer prime P defining the Galois Field used in points coordinates computations. The
Modulus must be u2ModLength bytes long, while having a supplemental zeroed 32-bit word on
the MSB side.
Note: Most of the Elliptic Curve computations are reduced modulo P. In many functions the
reductions are made with the Fast Reduction.

• Cns the Modular Constant (often pointed by {nu1CnsBase,u2ModLength + 12}): This parameter
contains the Modular Constant associated to the Modulus

Important: The Modular Constant must be calculated before using the GF(p)
Elliptic Curves functions by a call to the Setup for Modular Reductions with the
GF(p) option (see Modular Reduction Setup in the Modular Reduction from Related
Links).

37.3.6.2 Point Addition
37.3.6.2.1 Purpose

This service is used to perform a point addition, based on a given elliptic curve over GF(p). Please
note that:

• This service is not intended to add the same point twice. In this particular case, use the doubling
service
(see 37.3.6.4. Fast Point Doubling).

37.3.6.2.2 How to Use the Service
37.3.6.2.3 Description

The operation performed is:

PtC = PtA + PtB

In this computation, the following parameters need to be provided:

• A the input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

• B the input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointBBase,3*u2ModLength + 12}). This point can be the Infinite Point.

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
• The workspace not initialized (pointed by {nu1WorkSpace, 5*u2ModLength +32}

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the very same
place than the input point A. This Point can be the Infinite Point.

The service name for this operation is ZpEccAddFast. This service uses Fast mode and Fast
Modular Reduction for computations.

Important: Before using this service, ensure that the constant Cns has been
calculated with the Setup of the Modular Reduction functions.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 862

37.3.6.2.4 Parameters Definition

Table 37-68. ZpEccAddFast Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of Modulus P Base of Modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulo Length of modulo

nu1PointABase nu1 I/O Crypto RAM 3*u2ModLength + 12 Input point A (projective
coordinates)

Resulting point C
(projective coordinates)

nu1PointBBase nu1 I Crypto RAM 3*u2ModLength + 12 Input point B (projective
coordinates)

Input point B

nu1Workspace nu1 I Crypto RAM 5*u2ModLength + 32 – Corrupted workspace

37.3.6.2.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u2Option) = 0;

PUKCL _ZpEccAdd(nu1ModBase) = <Base of the ram location of P>;
PUKCL _ZpEccAdd(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _ZpEccAdd(u2ModLength) = <Byte length of P>;
PUKCL _ZpEccAdd(nu1PointABase) = <Base of the ram location of the A point>;
PUKCL _ZpEccAdd(nu1PointBBase) = <Base of the ram location of the B point>;
PUKCL _ZpEccAdd(nu1Workspace) = <Base of the ram location of the workspace>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ZpEccAddFast,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.6.2.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1PointBBase, nu1Workspace are not aligned on
32-bit boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength + 12}, {nu1PointBBase, 3*u2ModLength + 12}, {nu1Workspace,
<WorkspaceLength>} are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength

+8},{nu1PointABase, 3*u2ModLength + 12}, {nu1PointBBase, 3*u2ModLength + 12} and
{nu1Workspace, 5*u2ModLength + 32}

37.3.6.2.7 Status Returned Values

Table 37-69. ZpEccAddFast Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 863

37.3.6.3 Point Addition and Subtraction
37.3.6.3.1 Purpose

This service is used to perform a point addition and point subtraction, based on a given elliptic curve
over GF(p). Please note that:

• This service is not intended to add the same point twice. In this particular case, use the doubling
service (see 37.3.6.4. Fast Point Doubling).

37.3.6.3.2 How to Use the Service
37.3.6.3.3 Description

The operation performed is:

PtC = PtA ± PtB

In this computation, the following parameters need to be provided:

• A the input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

• B the input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointBBase,3*u2ModLength + 12}). This point can be the Infinite Point.

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
• The workspace not initialized (pointed by {nu1WorkSpace, 5*u2ModLength +32}
• The operator filled with the operation to perform (Addition or Subtraction)

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the very same
place than the input point A. This Point can be the Infinite Point.

The service name for this operation is ZpEccAddSubFast. This service uses Fast mode and Fast
Modular Reduction for computations.

Note:  Before using this service, ensure that the constant Cns has been calculated with the setup of
the modular reduction functions.

37.3.6.3.4 Parameters Definition

Table 37-70. ZpEccAddSubFast Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of Modulus P Base of Modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulo Length of modulo

nu1PointABase nu1 I/O Crypto RAM 3*u2ModLength + 12 Input point A (projective
coordinates)

Resulting point C
(projective coordinates)

nu1PointBBase nu1 I Crypto RAM 3*u2ModLength + 12 Input point B (projective
coordinates)

Input point B

u2Operator u2 I - - Addition or Subtraction Addition or Subtraction

nu1Workspace nu1 I Crypto RAM 5*u2ModLength + 32 – Corrupted workspace

37.3.6.3.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u2Option) = 0;

PUKCL _ZpEccAddSub(nu1ModBase) = <Base of the ram location of P>;

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 864

PUKCL _ZpEccAddSub(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _ZpEccAddSub(u2ModLength) = <Byte length of P>;
PUKCL _ZpEccAddSub(nu1PointABase) = <Base of the ram location of the A point>;
PUKCL _ZpEccAddSub(nu1PointBBase) = <Base of the ram location of the B point>;
PUKCL _ZpEccAddSub(nu1Workspace) = <Base of the ram location of the workspace>;
PUKCL _ZpEccAddSub(u2Operator) = <Operation to perform (PUKCL_ZPECCADD or PUKCL_ZPECCSUB)>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ZpEccAddSubFast,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.6.3.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1PointBBase, nu1Workspace are not aligned on
32-bit boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength + 12}, {nu1PointBBase, 3*u2ModLength + 12}, {nu1Workspace,
<WorkspaceLength>} are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength

+8},{nu1PointABase, 3*u2ModLength + 12}, {nu1PointBBase, 3*u2ModLength + 12} and
{nu1Workspace, 5*u2ModLength + 32}

37.3.6.3.7 Status Returned Values

Table 37-71. ZpEccAddFast Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

37.3.6.4 Fast Point Doubling
37.3.6.4.1 Purpose

This service is used to perform a Point Doubling, based on a given elliptic curve over GF(p).

37.3.6.4.2 How to Use the Service
37.3.6.4.3 Description

These two services process the Point Doubling:

PtC = 2 × PtA

In this computation, the following parameters need to be provided:

• A the input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
• The workspace not initialized (pointed by {nu1WorkSpace, 4*u2ModLength +28}
• The a parameter relative to the elliptic curve (pointed by {nu1ABase,u2ModLength +4})
• The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the same

location than the input point A. This point can be the Infinite Point.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 865

The service name for this operation is ZpEccDblFast. This service uses Fast mode and Fast
Modular Reduction for computations.

Important: Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reduction service.

37.3.6.4.4 Parameters Definition

Table 37-72. ZpEccDblFastService
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus P

nu1ABase u2 I Crypto RAM u2ModLength + 4 Parameter a of the elliptic
curve

Parameter a of the elliptic
curve

nu1PointABase nu1 I/O Crypto RAM 3*u2ModLength + 12 Input point A (projective
coordinates)

Resulting point C
(projective coordinates)

nu1Workspace nu1 I Crypto RAM 4*u2ModLength + 28 – Corrupted workspace

37.3.6.4.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u2Option) = 0;

PUKCL _ZpEccDbl(nu1ModBase) = <Base of the ram location of P>;
PUKCL _ZpEccDbl(u2ModLength) = <Byte length of P>;
PUKCL _ZpEccDbl(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _ZpEccDbl(nu1PointABase) = <Base of the ram location of the A point>;
PUKCL _ZpEccDbl(nu1ABase) = <Base of the a parameter of the elliptic curve>;
PUKCL _ZpEccDbl(nu1Workspace) = <Base of the ram location of the workspace>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ZpEccDblFast,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.6.4.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1ABase, nu1Workspace are not aligned on 32-bit
boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12}, {nu1ABase, u2ModLength + 4}, {nu1Workspace, <WorkspaceLength>} are
not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},

{nu1PointABase, 3*u2ModLength + 12}, {nu1ABase, u2ModLength + 4} and {nu1Workspace,
4*u2ModLength + 28}

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 866

37.3.6.4.7 Status Returned Values
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

37.3.6.5 Fast Multiplying by a Scalar Number of a Point
37.3.6.5.1 Purpose

This service is used to multiply a point by an integral constant K on a given elliptic curve over GF(p).

37.3.6.5.2 How to Use the Service
37.3.6.5.3 Description

These two services process the Multiplying by a scalar number:

PtC = K × PtA

In this computation, the following parameters need to be provided:

• A the input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
• The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength +44}
• The a parameter relative to the elliptic curve (pointed by {nu1ABase,u2ModLength +4})
• K the scalar number (pointed by {nu1ScalarNumber,u2ScalarLength +4})

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the very same
place than the input point A. This point can be the Infinite Point.

The service name for this operation is ZpEccMulFast. This service uses Fast mode and Fast
Modular Reduction for computations.

Note:  Before using this service, ensure that the constant Cns has been calculated with the setup of
the Fast Modular Reduction service.

37.3.6.5.4 Parameters Definition

Table 37-73. ZpEccMulFast Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus P

nu1KBase nu1 I Crypto RAM u2KLength Scalar number used to
multiply the point A

Unchanged

u2KLength u2 I – – Length of scalar K Length of scalar K

nu1PointABase nu1 I/O Crypto RAM 3*u2ModLength + 12 Input point A (projective
coordinates)

Resulting point C
(projective coordinates)

nu1ABas nu1 I Crypto RAM u2ModLength + 4 Parameter a of the elliptic
curve

Unchanged

nu1Workspace nu1 I Crypto RAM 8*u2ModLength + 44 – Corrupted workspace

37.3.6.5.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u2Option) = 0;

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 867

PUKCL _ZpEccMul(nu1ModBase) = <Base of the ram location of P>;
PUKCL _ZpEccMul(u2ModLength) = <Byte length of P>;
PUKCL _ZpEccMul(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _ZpEccMul(nu1PointABase) = <Base of the ram location of the A point>;
PUKCL _ZpEccMul(nu1ABase) = <Base of the ram location of the parameter A of the elliptic
curve>;
PUKCL _ZpEccMul(nu1KBase) = <Base of the ram location of the scalar number>;
PUKCL _ZpEccMul(nu1Workspace) = <Base of the ram location of the workspace>;
PUKCL_ZpEccMul(u2KLength) = <Byte length of the Scalar Number K>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ZpEccMulFast,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.6.5.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase,nu1CnsBase, nu1PointABase, nu1ABase, nu1ScalarNumber, nu1Workspace are not
aligned on 32-bit boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12}, {nu1ABase, u2ModLength + 4}, {nu1ScalarNumber, u2ScalarLength} or
{nu1Workspace, 8*u2ModLength + 44} are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},

{nu1PointABase, 3*u2ModLength + 12}, {nu1ABase, u2ModLength + 4}, {nu1ScalarNumber,
u2ScalarLength} and {nu1Workspace, 8*u2ModLength + 44}

37.3.6.5.7 Status Returned Values
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

37.3.6.6 Quick Dual Multiplying by Two Scalar Numbers and Two Points
37.3.6.6.1 Purpose

This service is used to multiply two points by two integral constants K1 and K2, and then provide the
addition of these multiplications results.

Important:  This service has a quick implementation without additional security.

37.3.6.6.2 How to Use the Service
37.3.6.6.3 Description

This service processes the dual Multiplying by two scalar numbers:

PtC = K1 × PtA + K2 × PtB

In this computation, the following parameters need to be provided:

• A the first input point is filled in projective coordinates (X,Y,Z) (pointed by {pu1PointABase,
(3*(u2ModLength + 4)) * (2(WA-2))}). This point can be the Infinite Point.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 868

• B the 2nd input point is filled in projective coordinates (X,Y,Z) (pointed by {pu1PointBBase,
(3*(u2ModLength + 4)) * (2(WB-2))}). This point can be the Infinite Point.

• P the modulus filled and Cns the Fast Modular Constant filled (pointed by
{pu1ModCnsBase,2*u2ModLength + 16})

• The a parameter filled and the workspace not initialized (pointed by {pu1AWorkBase,
9*u2ModLength +48}

• KAB the scalar numbers (pointed by {pu1KABBase, 2*u2KLength +8})
• The options are set by the u2Options input parameter, which is composed of:

– wA: Size of window for Point A between 2 and15
– wB: Size of window for Point B between 2 and15
– PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM flag: to set only if the scalars are entirely in Classic

RAM with no part in PUKCC RAM

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at (pu1AWorkBase
+ u2ModLength + 4). This point can be the Infinite Point.

Important: Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reduction service.

37.3.6.6.4 Parameters Definition
WA is the Point A window size and WB is the Point B window size (see Options below for details).

Important: Please calculate precisely the length of areas with the formulas.
Ensure that the pu1 type is a pointer on 4 bytes and contains the full address
(see 37.3.3.4. Aligned Significant Length).

Table 37-74. ZpEccQuickDualMulFast Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

pu1ModCnsBase pu1 I Crypto RAM 2 * u2ModLength + 16 Base of modulus P, Base
of Cns

Base of modulus P,
Base of Cns

u2Option u2 I – – Option related to the
called service (see
below)

–

u2ModLength u2 I – – Length of modulus P Length of modulus P

pu1KABBase pu1 I Any RAM 2 * u2KLength + 8 Scalar numbers used to
multiply the points A
and B

Unchanged

u2KLength u2 I – – Length of scalars KA and
KB

Length of scalars KA
and KB

pu1PointABase pu1 I/O Crypto RAM (3*(u2ModLength + 4)) *
(2(WA-2)) (1)

Input point A (projective
coordinates)

Unchanged

pu1PointBBase pu1 I Crypto RAM (3*(u2ModLength + 4)) *
(2(WB-2)) (2)

Input point B (projective
coordinates)

Unchanged

pu1AWorkBase pu1 I Crypto RAM 9*u2ModLength + 48 Parameter a of the
elliptic curve

Resulting point C
(projective coordinates)
in pu1AWorkBase Base
+ u2ModLength + 4

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 869

Notes: 
1. The precalculus table size for the point A is calculated from chosen window size “WA”.
2. The precalculus table size for the point B is calculated from chosen window size “WB”.

37.3.6.6.5 Options
The options are set by the u2Options input parameter, which is composed of:

• the mandatory windows sizes WA and WB
• the indication of the presence of the scalars in system RAM

Note: Please check precisely if one part of the scalars is in Crypto RAM. If this is the case, the
PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM option must not be used.

The u2Options number is calculated by an “Inclusive OR” of the options. Some Examples in C
language are:

• // Scalars are in system RAM
// The Point A window size is 3
// The Point B window size is 4
PUKCL(u2Options) = PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM |
PUKCL_ZPECCMUL_WINSIZE_A_VAL_TO_OPT(3) |
PUKCL_ZPECCMUL_WINSIZE_B_VAL_TO_OPT(4);

• // Scalars are in the PUKCC Cryptographic RAM
// The Point A window size is 2
// The Point B window size is 5
PUKCL(u2Options) = PUKCL_ZPECCMUL_WINSIZE_A_VAL_TO_OPT(2) |
PUKCL_ZPECCMUL_WINSIZE_B_VAL_TO_OPT(5);

For this service, many window sizes are possible. The window sizes in bits are those of the
windowing method used for the scalar multiplying.

The choice of the window sizes is a balance between the size of the parameters and the
computation time:

• Increasing the window size increases the precomputation table size.
• Increasing the window size to the optimum reduces the computation time.

The following table details the size of the point and the precomputation table, depending on the
chosen window size option.

Table 37-75. ZpEccQuickDualMulFast Service Window Size Options and Precomputation Table Size
Option Specified Size of the Point and the Precomputation Table

PUKCL_ZPECCMUL_WINSIZE_A_VAL_TO_OPT(WA) WA in [2, 15] (3*(u2ModLength + 4)) * (2(WA-2))

PUKCL_ZPECCMUL_WINSIZE_B_VAL_TO_OPT(WB) WB in [2, 15] (3*(u2ModLength + 4)) * (2(WB-2))

The scalars can be located in PUKCC RAM or in system RAM. If both scalars are entirely
in system RAM with no part in PUKCC RAM this can be signaled by using the option
PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM. In all other cases this option must not be used.

The following table describes this option.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 870

Table 37-76. ZpEccQuickDualMulFast Service System RAM Scalar Options
Option Purpose

PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM The scalars can be located in Crypto RAM or in system RAM.
If both scalars are entirely in system RAM with no part in Crypto RAM this can be
signaled by using this option . In all other cases this option must not be used.

37.3.6.6.6 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL(u2Option) = <Configure scalar numbers location and windows sizes>;
PUKCL_ZpEccQuickDualMulFast(pu1ModCnsBase) = <Base of the ram location of P and Cns>;
PUKCL_ZpEccQuickDualMulFast(u2ModLength) = <Byte length of P>;
PUKCL_ZpEccQuickDualMulFast(u2KLength) = <Byte length of scalars>;
PUKCL_ZpEccQuickDualMulFast(pu1PointABase) = <Base of the ram location of the A point>;
PUKCL_ZpEccQuickDualMulFast(pu1PointBBase) = <Base of the ram location of the B point>;
PUKCL_ZpEccQuickDualMulFast(pu1AWorkBase) = <Base of the ram location of the parameter A of
the elliptic curve and workspace>;
PUKCL_ZpEccQuickDualMulFast(pu1KABBase) = <Base of the ram location of the scalar numbers KA
and KB>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ZpEccQuickDualMulFast, pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.6.6.7 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• pu1ModCnsBase,pu1PointABase, pu1PointBBase, pu1AWorkBase, pu1KABBase are not aligned
on 32-bit boundaries

• {pu1ModCnsBase, 2*u2ModLength + 16}, {pu1PointABase, (3*(u2ModLength + 4)) *(2(WA-2))},
{pu1PointBBase, (3*(u2ModLength + 4)) * (2(WB-2))} or { pu1AWorkBase, 9*u2ModLength + 48}
are not in PUKCC RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• Alloverlapping between {pu1ModCnsBase, 2*u2ModLength + 16}, {pu1PointABase,

(3*(u2ModLength + 4)) * (2(WA-2))}, {pu1PointBBase, (3*(u2ModLength + 4)) * (2(WB-2))} or
{pu1AWorkBase, 9*u2ModLength + 48}.

37.3.6.6.8 Parameters Placement
The parameters’ placement is described in the following figures.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 871

Figure 37-7. Modulus P and Cns{pu1ModCnsBase, 2*u2ModLength + 16}

Figure 37-8. Points A and B {pu1PointABase, [(3*(u2ModLength + 4)) * (2(WA-2))] Or [(3*(u2ModLength + 4)) *
(2(WB-2))]}

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 872

Figure 37-9. Scalars KA and KB {pu1KABBase, 2 * u2KLength + 8}

Figure 37-10. The a parameter and Workspace {pu1AWorkBase, 9*u2ModLength + 48}

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 873

37.3.6.6.9 Status Returned Values
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

37.3.6.7 Projective to Affine Coordinates Conversion
37.3.6.7.1 Purpose

This service is used to perform a point coordinates conversion from projective representation to
affine.

37.3.6.7.2 How to Use the Service
37.3.6.7.3 Description

The operation performed is:

PtX Affine coordinate = PtXProjective coordinatePtZ Projective coordinate 2
PtY Affine coordinate = PtY Projective coordinatePtZ Projective coordinate 3
In this computation, the following parameters need to be provided:

• A the input point is filled in projective coordinates (X,Y,Z) or affine coordinates for X and Y, and
setting Z to 1(pointed by {nu1PointABase,3*u2ModLength + 12}). The Point A can be the point at
infinity. In this case, the u2Status returned is PUKCL_POINT_AT_INFINITY.

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
• The workspace not initialized (pointed by {nu1WorkSpace, 4*u2ModLength +48}

The result is the point A with its (X,Y) coordinates converted to affine, and the Z coordinate set to 1.
The service for this operation is ZpEcConvProjToAffine.

Important:  Before using this service, ensure that the constant Cns has been
calculated with the Setup of the fast Modular Reductions service.

37.3.6.7.4 Parameters Definition

Table 37-77. ZpEccConvAffineToProjective Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus P

nu1PointABase nu1 I Crypto RAM 3*u2ModLength + 12 Input point A Resulting point A in affine
coordinates

nu1Workspace nu1 I Crypto RAM 4*u2ModLength + 48 – Workspace

37.3.6.7.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u2Option) = 0;

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 874

PUKCL _ZpEcConvProjToAffine(nu1ModBase) = <Base of the ram location of P>;
PUKCL _ZpEcConvProjToAffine(u2ModLength) = <Byte length of P>;
PUKCL _ZpEcConvProjToAffine(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _ZpEcConvProjToAffine(nu1PointABase) = <Base of the ram location of the A point>;
PUKCL _ZpEcConvProjToAffine(nu1Workspace) = <Base of the ram location of the workspace>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ZpEcConvProjToAffine,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.6.7.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1Workspace are not aligned on 32-bit boundaries
• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},{nu1PointABase,

3*u2ModLength+ 12}, {nu1Workspace, <WorkspaceLength>} are not in Crypto RAM
• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},

{nu1PointABase, 3*u2ModLength + 12} and {nu1Workspace, 4*u2ModLength + 48}

37.3.6.7.7 Status Returned Values

Table 37-78. ZpEccConvAffineToProjective Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

PUKCL_POINT_AT_INFINITY Warning The input point has its Z equal to zero, so it’s a representation of the infinite point.

37.3.6.8 Affine to Projective Coordinates Conversion
37.3.6.8.1 Purpose

This service is used to perform a point coordinates conversion from an affine point representation
to projective.

37.3.6.8.2 How to Use the Service
37.3.6.8.3 Description

The operation performed is:

affine(Xa, Ya) → projective(Xp, Yp, Zp)

In this computation, the following parameters need to be provided:

• A the input point is filled in affine coordinates for X and Y, and setting Z to 1 (pointed by
{nu1PointABase,3*u2ModLength + 4}).

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
• The workspace not initialized (pointed by {nu1WorkSpace, 2*u2ModLength +16}

The result is the point A with its (X,Y,Z) projective coordinates.

The service for this operation is ZpEcConvAffineToProjective

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 875

Important:  Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reductions service.

37.3.6.8.4 Parameters Definition

Table 37-79. ZpEccConvAffineToProjective Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus P

nu1PointABase nu1 I Crypto RAM 3*u2ModLength + 12 Input point A Resulting point A in affine
coordinates

nu1Workspace nu1 I Crypto RAM 2*u2ModLength + 16 – Workspace

37.3.6.8.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u2Option) = 0;

PUKCL _ZpEcConvAffineToProjective(nu1ModBase) = <Base of the ram location of P>;
PUKCL _ZpEcConvAffineToProjective(u2ModLength) = <Byte length of P>;
PUKCL _ZpEcConvAffineToProjective(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _ZpEcConvAffineToProjective(nu1PointABase) = <Base of the ram location of the A point>;
PUKCL _ZpEcConvAffineToProjective(nu1Workspace) = <Base of the ram location of the workspace>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ZpEcConvAffineToProjective,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.6.8.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1Workspace are not aligned on 32-bit boundaries
• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,

3*u2ModLength+ 12}, {nu1Workspace, <WorkspaceLength>} are not in Crypto RAM
• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},

{nu1PointABase, 3*u2ModLength + 12}, and {nu1Workspace, 2*u2ModLength + 16}

37.3.6.8.7 Status Returned Values

Table 37-80. ZpEccConvAffineToProjective Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 876

37.3.6.9 Randomize a Coordinate
37.3.6.9.1 Purpose

This service is used to convert the projective representation of a point to another projective
representation.

37.3.6.9.2 How to Use the Service
37.3.6.9.3 Description

The operation performed is:

Projective(X1, Y1, Z1) → Projective(X2, Y2, Z2)

In this computation, the following parameters need to be provided:

• The input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointBase,3*u2ModLength + 12}). This Point must not be the point at infinity.

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
• The workspace not initialized (pointed by {nu1WorkSpace, 3*u2ModLength +28}
• The random number (pointed by {nu1RandomBase, u2ModLength +4}).

The result is the point nu1PointBase with its (X,Y,Z) coordinates randomized.

The service for this operation is ZpEcRandomiseCoordinate.

Important: Before using this service:
• Ensure that the constant Cns has been calculated with the setup of the

Modular Reduction service.
• Be sure to follow the directives given for the RNG on the chip you use

(particularly initialization, seeding) and compulsorily start the RNG

.

37.3.6.9.4 Parameters Definition

Table 37-81. ZpEccRandomiseCoordinate Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus P

nu1PointBase nu1 I Crypto RAM 3*u2ModLength + 12 Input point Resulting point

nu1RandomBase nu1 I Crypto RAM u2ModLength + 4 Random Corrupted

nu1Workspace nu1 I Crypto RAM 3*u2ModLength + 28 – Workspace

37.3.6.9.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u2Option) = 0;

// Depending on the option specified, not all fields must be filled
PUKCL _ZpEccRandomiseCoordinate(nu1ModBase) = <Base of the ram location of P>;
PUKCL _ZpEccRandomiseCoordinate(u2ModLength) = <Byte length of P>;

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 877

PUKCL _ZpEccRandomiseCoordinate(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL_ZpEccRandomiseCoordinate(nu1RandomBase) = <Base of the ram location where the the RNG
is stored>;
PUKCL _ZpEccRandomiseCoordinate(nu1PointBase) = <Base of the ram location of the point>;
PUKCL _ZpEccRandomiseCoordinate(nu1Workspace) = <Base of the ram location of the workspace>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ZpEccRandomiseCoordinate,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.6.9.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1RandomBase, nu1Workspace are not aligned on
32-bit boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength + 12}, {nu1RandomBase, u2ModLength + 4}, {nu1Workspace,
<WorkspaceLength>} are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength

+8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1RandomBase, u2ModLength + 4} and
{nu1Workspace, 3*u2ModLength + 28}

37.3.6.9.7 Status Returned Values

Table 37-82. ZpEccRandomiseCoordinate Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

37.3.6.10 Point is on Elliptic Curve
37.3.6.10.1 Purpose

This service is used to test whether or not the point is on the curve.

37.3.6.10.2 How to Use the Service
37.3.6.10.3 Description

The operation performed is:

Status = IsPointOnCurve(X, Y, Z)

In this computation, the following parameters need to be provided:

• The input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointBase,3*u2ModLength + 4}). This Point can be the point at infinity.

• AParam and BParam are the Elliptic Curve Equation parameters. (pointed by{nu1AParam,
u2ModLength+4} and {nu1BParam, u2ModLength+4}).

• Cns the Fast Modular Constant filled (pointed by{nu1CnsBase,u2ModLength+8}).
• P the modulus filled (pointed by {nu1ModBase,u2ModLength +4}).
• The workspace not initialized (pointed by {nu1WorkSpace, 4*u2ModLength +28}.

The result is the status of the point (X,Y,Z) regarding the Elliptic Curve Equation.

The service name for this operation is ZpEcPointIsOnCurve.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 878

Note:  Before using this service, ensure that the constant Cns has been calculated with the setup of
the Fast Modular Reduction service.

37.3.6.10.4 Parameters Definition

Table 37-83. ZpEcPointIsOnCurve Service Parameters
Parameter Type Direction Location Data Length Before Executing the Service After Executing the Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus P

nu1PointBase nu1 I Crypto RAM 3*u2ModLength + 12 Input point unchanged

nu1AParam nu1 I Crypto RAM u2ModLength + 4 The parameter a The parameter a

nu1BParam nu1 I Crypto RAM u2ModLength + 4 The parameter b The parameter b

nu1Workspace nu1 I Crypto RAM 4*u2ModLength + 28 – Workspace

37.3.6.10.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u2Option) = 0;

PUKCL _ZpEcPointIsOnCurve(nu1ModBase) = <Base of the ram location of P>;
PUKCL _ZpEcPointIsOnCurve(u2ModLength) = <Byte length of P>;
PUKCL _ZpEcPointIsOnCurve(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _ZpEcPointIsOnCurve(nu1AParam) = <Base of the ram location of the parameter a>;
PUKCL _ZpEcPointIsOnCurve(nu1BParam) = <Base of the ram location of the parameter b>;
PUKCL _ZpEcPointIsOnCurve(nu1PointBase) = <Base of the ram location of the point>;
PUKCL _ZpEcPointIsOnCurve(nu1Workspace) = <Base of the ram location of the workspace>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ZpEcPointIsOnCurve,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.6.10.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1AParam, nu1BParam, nu1Workspace are not
aligned on 32-bit boundaries

• {nu1ModBase, u2ModLength+4}, {nu1CnsBase, u2ModLength+8}, {nu1PointABase,
3*u2ModLength +12}, {nu1AParam, u2ModLength + 4}, {nu1BParam, u2ModLength + 4},
{nu1Workspace, <WorkspaceLength>} are not in Crypto RAM.

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length.
• All overlapping between {nu1ModBase, u2ModLength+4}, {nu1CnsBase,u2ModLength+8},

{nu1PointABase, 3*u2ModLength+12}, {nu1AParam, u2ModLength+4}, {nu1AParam,
u2ModLength + 4} and {nu1Workspace, 4*u2ModLength+28}.

37.3.6.10.7 Status Returned Values

Table 37-84. ZpEcPointIsOnCurve Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The point is on the curve.

PUKCL_POINT_IS_NOT_ON_ CURVE Warning The point is not on the curve.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 879

...........continued
Returned Status Importance Meaning

PUKCL_POINT_AT_INFINITY Warning The input point has its Z equal to zero, so it’s a representation of the
infinite point.

37.3.6.11 Generating an ECDSA Signature (Compliant with FIPS 186-2)
37.3.6.11.1 Purpose

This service is used to generate an ECDSA signature following the FIPS 186-2. It performs the second
step of the Signature Generation. A hash value (HashVal) must be provided as input, it has to be
previously computed from the message to be signed using a secure hash algorithm.

A scalar number must be provided too as described in the FIPS 186-2. The result (R,S) is computed
by this service.

37.3.6.11.2 How to Use the Service
37.3.6.11.3 Description

The operation performed is:

(R, S) = EcDsaSign(PtA, HashVal, k, CurveParameters, PrivateKey)

This service processes the following checks:

• If the Scalar Number k is out of the range [1, PointOrder -1], the calculus is stopped and the
status is set to PUKCL_WRONG_SELECT_NUMBER.

• If R equals zero, the calculus is stopped and the status is set to PUKCL_WRONG_SELECT_NUMBER.
• If S equals zero, the calculus is stopped and the status is set to PUKCL_WRONG_SELECT_NUMBER.

In this computation, the following parameters need to be provided:

• A the input point is filled in “mixed” coordinates (X,Y) with the affine values and Z = 1 (pointed by
{nu1PointABase,3*u2ModLength + 12})

• Cns the working space for the Fast Modular Constant not initialized (pointed by
{nu1CnsBase,u2ScalarLength + 8})

• P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
• The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength + 44}
• The a parameter relative to the elliptic curve (pointed by {nu1ABase, u2ModLength + 4})
• The order of the Point A on the elliptic curve (pointed by {nu1OrderPointBase, u2ScalarLength +

4})
• k the input Scalar Number beforehand generated and filled (pointed

by{nu1ScalarNumber,u2ScalarLength + 4})
• HashVal the hash value beforehand generated and filled (pointed by {nu1HashBase,

u2ScalarLength + 4})
• The Private Key (pointed by {nu1PrivateKey, u2ScalarLength +4})
• Generally, u2ScalarLength is equal to (u2ModLength) or (u2ModLength + 4)

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 880

Important: 
For the ECDSA signature generation be sure to follow the directives given for the
RNG on the chip you use (particularly initialization, seeding) and compulsorily
start the RNG.

The scalar number k must be selected at random. This random must be
generated before the call of the ECDSA signature. For this random generation
be sure to follow the directives given for the RNG on the chip you use (particularly
initialization, seeding) and compulsorily start the RNG.

The operation performed is:

• Compute the ECDSA (R,S) as described in FIPS 186-2, but leaving the user the role of computing
the input Hash Value, thus leaving the freedom of using any other algorithm than SHA-1.

• Compute a R value using the input A point and the scalar number.
• Compute a S value using R, the scalar number, the private key and the provided hash value. Note

that the resulting signature (R,S) is stored at the place of the input A point.
• If all is correct and S is different from zero, the status is set to PUKCL_OK. If all is correct and S

equals zero,the status is set to PUKCL_WRONG_SELECT_NUMBER. If an error occurs, the status is
set to the corresponding error value (see Status Returned Values below).

The service name for this operation is ZpEcDsaGenerateFast. This service uses Fast mode and
Fast Modular Reduction for computation.

• The signature (R,S), when resulting from a computation is given back at address of the A point:
– R output is at offset 0 and has length (u2ScalarLength + 4)bytes.
– S output is at offset (u2ScalarLength + 4) bytes and has length (u2ScalarLength + 4) bytes.
– The MSB 4 zero bytes may be suppressed to get the R and S values on u2ScalarLength bytes

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 881

37.3.6.11.4 Parameters Definition

Table 37-85. ZpEcDsaGenerateFast Service Parameters
Parameter Type Direction Location Data Length Before Executing the Service After Executing

the Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ScalarLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus
P

nu1ScalarNumber nu1 I Crypto RAM u2ScalarLength + 4 Scalar Number used to
multiply the point A

Unchanged

nu1OrderPointBase nu1 I Crypto RAM u2ScalarLength + 4 Order of the Point A in the
elliptic curve

Unchanged

nu1PrivateKey nu1 I/O Crypto RAM u2ScalarLength + 4 Base of the Private Key Unchanged

nu1HashBase(1) nu1 I Crypto RAM u2ScalarLength + 4 Base of the hash value
resulting from the previous
SHA

Unchanged

u2ScalarLength u2 I – – Length of scalar (same length
as the length of order)

Length of scalar

nu1PointABase(2) nu1 I/O Crypto RAM 3*u2ModLength + 12 Input point A (three
coordinates (X,Y) affine and Z
= 1)

Resulting
signature (R,S,0)

nu1ABase nu1 I Crypto RAM u2ModLength + 4 Parameter a of the elliptic
curve

Unchanged

nu1Workspace nu1 I Crypto RAM 8*u2ModLength + 44 – Corrupted
workspace

Notes: 
1. The hash value calculus is defined by the ECDSA norm and depends on the elliptic curve domain

parameters. To construct the input parameter, the 4 Most Significant Bytes must be set to zero.
2. The resulting signature format is different from the point A format (see Description above for

information on the point A format).

37.3.6.11.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u2Option) = 0;

// Depending on the option specified, not all fields must be filled
PUKCL _ZpEcDsaGenerate(nu1ModBase) = <Base of the ram location of P>; PUKCL
_ZpEcDsaGenerate(u2ModLength) = <Byte length of P>;
PUKCL _ZpEcDsaGenerate(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _ZpEcDsaGenerate(nu1PointABase) = <Base of the A point>;
PUKCL _ZpEcDsaGenerate(nu1PrivateKey) = <Base of the Private Key>;
PUKCL _ZpEcDsaGenerate(nu1ScalarNumber) = <Base of the ScalarNumber>;
PUKCL _ZpEcDsaGenerate(nu1OrderPointBase) = <Base of the order of A point>;
PUKCL _ZpEcDsaGenerate(nu1ABase) = <Base of the a parameter of the curve>;
PUKCL _ZpEcDsaGenerate(nu1Workspace) = <Base of the workspace>;
PUKCL _ZpEcDsaGenerate(nu1HashBase) = <Base of the SHA resulting hash>;
PUKCL_ZpEcDsaGenerate(u2ScalarLength) = < Length of ScalarNumber>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ZpEcDsaGenerateFast, pvPUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 882

 }
else // Manage the error

37.3.6.11.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1PrivateKey, nu1ScalarNumber,
nu1OrderPointBase,nu1ABase, nu1Workspace or nu1HashBase are not aligned on 32-bit
boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12},{nu1PrivateKey, u2ScalarLength + 4},{nu1ScalarNumber, u2ScalarLength +
4},{nu1OrderPointBase, u2ScalarLength + 4}, {nu1ABase, u2ModLength + 4}, {nu1Workspace,
<WorkspaceLength>} or {nu1HashBase, u2ScalarLength + 4} are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},

{nu1PointABase, 3*u2ModLength + 12}, {nu1PrivateKey, u2ScalarLength + 4}, {nu1ScalarNumber,
u2ScalarLength + 4}, {nu1OrderPointBase, u2ScalarLength + 4}, {nu1ABase, u2ModLength + 4},
{nu1Workspace, <WorkspaceLength>} and {nu1HashBase, u2ScalarLength + 4}

37.3.6.11.7 Status Returned Values

Table 37-86. ZpEcDsaGenerateFast Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem. The signature is the good one.

PUKCL_WRONG_SELECTNUMBER Warning The given value for nu1ScalarNumber is not good to perform this signature
generation.

37.3.6.12 Verifying an ECDSA Signature (Compliant with FIPS186-2)
37.3.6.12.1 Purpose

This service is used to verify an ECDSA signature following the FIPS 186-2. It performs the second
step of the Signature Verification.

A hash value (HashVal) must be provided as input, it has to be previously computed from the
message to be signed using a secure hash algorithm.

As second significant input, the Signature is provided to be checked. This service checks the
signature and fills the status accordingly.

37.3.6.12.2 How to Use the Service
37.3.6.12.3 Description

The operation performed is:

Verify = EcDsaVerifySignature(PtA, HashVal, Signature, CurveParameters, PublicKey)

The points used for this operation are represented in different coordinate systems. In this
computation, the following parameters need to be provided:

• A the input point is filled with the affine values (X,Y) and Z = 1 (pointed
by{nu1PointABase,3*u2ModLength + 12})

• Cns the working space for the Fast Modular Constant not initialized (pointed by
{nu1CnsBase,u2ScalarLength + 8})

• P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
• The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength + 44}
• The a parameter relative to the elliptic curve (pointed by {nu1ABase,u2ModLength + 4})

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 883

• The order of the Point A on the elliptic curve (pointed by {nu1OrderPointBase,u2ScalarLength +
4})

• HashVal the hash value is generated prior and filled (pointed by {nu1HashBase,u2ScalarLength +
4})

• The Public Key point is filled in “mixed” coordinates (X,Y) with the affine values and Z = 1 (pointed
by {nu1PointPublicKeyGen, 3*u2ModLength + 12})

• The input signature (R,S), even if it is not a Point, is represented in memory like a point in affine
coordinates (X,Y) (pointed by {nu1PointSignature, 2*u2ScalarLength + 8})
Note:  For the ECDSA signature verification be sure to follow the directives given for the RNG on
the chip you use (particularly initialization, seeding) and compulsorily start the RNG.

• The operation consists in obtaining a V value with all these input parameters and checking
that V equals the provided R. If all is correct and the signature is the good one, the
status is set to PUKCL_OK. If all is correct and the signature is wrong, the status is set to
PUKCL_WRONG_SIGNATURE. If an error occurs, the status is set to the corresponding error value
(see Status Returned Values below).

37.3.6.12.4 Parameters Definition

Table 37-87. ZpEcDsaVerifyFast Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ScalarLength + 12 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus
P

nu1OrderPointBase nu1 I Crypto RAM u2ScalarLength + 4 Order of the Point A in the
elliptic curve

Unchanged

nu1PointSignature nu1 I Crypto RAM 2*u2ScalarLength + 8 Signature(r, s) Corrupted

nu1HashBase(1) nu1 I Crypto RAM u2ScalarLength + 4 Base of the hash
value resulting from the
previous SHA

Corrupted

u2ScalarLength u2 I – – Length of scalar Length of scalar

nu1PointABase nu1 I/O Crypto RAM 3*u2ModLength + 12 Generator point Corrupted

nu1PointPublicKeyGen nu1 I/O Crypto RAM 3*u2ModLength + 12 Public point Corrupted

nu1ABase nu1 I Crypto RAM u2ModLength + 4 Parameter a of the elliptic
curve

Unchanged

nu1Workspace nu1 I Crypto RAM 8*u2ModLength + 44 – Corrupted
workspace

Note: 
1. The hash value calculus is defined by the ECDSA norm and depends on the elliptic curve domain

parameters. To construct the input parameter, the 4 Most Significant Bytes must be set to zero.

37.3.6.12.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL(u2Option) = 0;

// Depending on the option specified, not all fields must be filled
PUKCL_ZpEcDsaVerify(nu1ModBase) = <Base of the ram location of P>;
PUKCL_ZpEcDsaVerify(u2ModLength) = <Byte length of P>;
PUKCL_ZpEcDsaVerify(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL_ZpEcDsaVerify(nu1PointABase) = <Base of the A point>;

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 884

PUKCL_ZpEcDsaVerify(nu1PrivateKey) = <Base of the Private Key>;
PUKCL_ZpEcDsaVerify(nu1ScalarNumber) = <Base of the ScalarNumber>;
PUKCL_ZpEcDsaVerify(nu1OrderPointBase) = <Base of the order of A point>;
PUKCL_ZpEcDsaVerify(nu1ABase) = <Base of the a parameter of the curve>;
PUKCL_ZpEcDsaVerify(nu1Workspace) = <Base of the workspace>;
PUKCL_ZpEcDsaVerify(nu1HashBase) = <Base of the SHA resulting hash>;
 PUKCL_ZpEcDsaVerify(u2ScalarLength) = < Length of ScalarNumber>;

...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ZpEcDsaVerifyFast, pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 ...
 }ou
else
 if(PUKCL(u2Status) == PUKCL_WRONG_SIGNATURE)
 {
 ...
 }
 else // Manage the error

37.3.6.12.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1PointPublicKeyGen, nu1PointSignature,
nu1OrderPointBase,nu1ABase, nu1Workspace or nu1HashBase are not aligned on 32-bit
boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},
{nu1PointABase, 3*u2ModLength+ 12}, {nu1PointPublicKeyGen, 3*u2ModLength + 12},
{nu1PointSignature,2*u2ScalarLength + 8}, {nu1OrderPointBase, u2ScalarLength + 4}, {nu1ABase,
u2ModLength + 4}, {nu1Workspace, <WorkspaceLength>} or {nu1HashBase, u2ScalarLength + 4}
are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength

+8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1PointPublicKeyGen, 3*u2ModLength +
12}, {nu1PointSignature, 2*u2ScalarLength + 8}, {nu1OrderPointBase, u2ScalarLength + 4},
{nu1ABase, u2ModLength + 4}, {nu1Workspace, <WorkspaceLength>} and {nu1HashBase,
u2ScalarLength + 4}

37.3.6.12.7 Status Returned Values

Table 37-88. ZpEcDsaVerifyFast Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem. The signature is the good one.

PUKCL_WRONG_SIGNATURE Warning The signature is wrong.

37.3.6.13 Quick Verifying an ECDSA Signature (Compliant with FIPS 186-2)
37.3.6.13.1 Purpose

This service is used to verify an ECDSA signature following the FIPS 186-2. It performs the second
step of the Signature Verification using Quick Dual Multiplying to perform computation.

A hash value (HashVal) must be provided as input, it has to be previously computed from the
message whose signature is verified using a secure hash algorithm.

As second significant input, the Signature is provided to be checked.

This service checks the signature and fills the status accordingly.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 885

Important: This service has a quick implementation without additional security.

37.3.6.13.2 How to Use the Service
37.3.6.13.3 Description

The operation performed is:

Verify = EcDsaVerifySignature(PtA, HashVal, Signature, CurveParameters, PublicKey)

The points used for this operation are represented in different coordinate systems.

In this computation, the following parameters need to be provided (such that u2MaxLength =
max(u2ModLength, u2ScalarLength)):

• A the input point is filled with the affine values (X,Y) and Z = 1 (pointed by {pu1PointABase,
(3*(u2ModLength + 4)) * (2(WA-2))})

• P the modulus filled and Cns the working space for the Fast Modular Constant not initialized
(pointed by {pu1ModBase, u2ModLength + u2MaxLength + 16})

• The a parameter relative to the elliptic curve filled and workspace not initialized (pointed by
{pu1AWorkBase,8*u2MaxLength + u2ModLength + 48})

• The order of the Point A on the elliptic curve (pointed by {pu1OrderPointBase,u2ScalarLength
+4})

• HashVal the hash value beforehand generated and filled (pointed by
{pu1HashBase,u2MaxLength +4})

• The Public Key point is filled in “mixed” coordinates (X,Y) with the affine values and Z = 1 (pointed
by {nu1PointPublicKeyGen, (3*(u2ModLength + 4)) * (2(WB-2))})

• The input signature (R,S), even if it is not a Point, is represented in memory like a point in affine
coordinates (X,Y) (pointed by {nu1PointSignature, 2*u2ScalarLength + 8})

The operation consists of obtaining a V value with all input parameters and checks that V equals
the provided R. If all is correct and the signature is the good one, the status is set to PUKCL_OK. If
all is correct and the signature is wrong, the status is set to PUKCL_WRONG_SIGNATURE. If an error
occurs, the status is set to the corresponding error value (see Status Returned Values below).

37.3.6.13.4 Parameters Definition
To place the parameters correctly the maximum of u2ModLength and u2ScalarLength must be
calculated: u2MaxLength = max(u2ModLength, u2ScalarLength)

WA is the Point A window size and WB is the Point Public Key window size (see Options below for
details).

Important: Please calculate precisely the length of areas with the formulas and
the max() service which takes the maximum of two values. Ensure that the pu1
type is a pointer on 4 bytes and contains the full address (see 37.3.3.4. Aligned
Significant Length for details).

Table 37-89. ZpEcDsaQuickVerify Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing
the Service

pu1ModCnsBase pu1 I Crypto RAM u2ModLength + 4 +
u2MaxLength + 12

Base of modulus P Base of
modulus P

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 886

...........continued
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing
the Service

u2Option u2 I – – Option related to the
called service (see
below)

–

u2ModLength u2 I – – Length of modulus P Length of
modulus P

pu1OrderPointBase pu1 I Crypto RAM u2ScalarLength + 4 Order of the Point A in
the elliptic curve

Unchanged

pu1PointSignature pu1 I Any RAM 2*u2ScalarLength + 8 Signature(r, s) Corrupted

pu1HashBase (see Note
1)

pu1 I Crypto RAM u2MaxLength + 4 Base of the hash
value resulting from
the previous SHA

Corrupted

u2ScalarLength u2 I – – Length of scalar Length of scalar

pu1PointABase pu1 I/O Crypto RAM (3*u2ModLength + 12) *
(2(WA-2))

Generator point Corrupted

pu1PointPublicKeyGen pu1 I/O Crypto RAM (3*u2ModLength + 12) *
(2(WB-2))

Public Key point Corrupted

pu1AWorkBase pu1 I Crypto RAM (u2ModLength + 4) +
(8*u2MaxLength + 44)

Parameter a of the
elliptic curve and
Workspace

Corrupted

Note: 
1. 1. The hash value calculus is defined by the ECDSA norm and depends on the elliptic curve

domain parameters. To construct the input parameter, the 4 Most Significant Bytes must be set
to zero.

A suggested parameters placement in Crypto RAM is:

• ModCnsBase
• OrderPointBase
• Signature may be placed here or in Classical RAM
• HashBase
• PointABase
• PointPublicKeyGen
• AWorkBase

37.3.6.13.5 Options
The options are set by the u2Options input parameter, which is composed of:

• the mandatory windows sizes WA (window for Point A) and WB (window for Point Public Key)
• the indication of the presence of the Point Signature in system RAM

Important: Please check precisely if the Point Signature is in Crypto RAM. If this is
the case the PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM must not be used.

The u2Options number is calculated by an “Inclusive OR” of the options. Some Examples in C
language are:

• // Point Signature in system RAM
// The Point A window size is 3
// The Point Public Key window size is 4

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 887

PUKCL(u2Options) = PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM |
PUKCL_ZPECCMUL_WINSIZE_A_VAL_TO_OPT(3) |
PUKCL_ZPECCMUL_WINSIZE_B_VAL_TO_OPT(4);

• // Point Signature in the Cryptographic RAM
// The Point A window size is 2
// The Point Public Key window size is 5
PUKCL(u2Options) = PUKCL_ZPECCMUL_WINSIZE_A_VAL_TO_OPT(2) |
PUKCL_ZPECCMUL_WINSIZE_B_VAL_TO_OPT(5);

For this service, many window sizes are possible. The window sizes in bits are those of the
windowing method used for the scalar multiplying.

The choice of the window sizes is a balance between the size of the parameters and the
computation time:

• Increasing the window size increases the precomputation table size.
• Increasing the window size to the optimum reduces the computation time.

The following table details the estimated windows WA and WB optimum and possible for some
curves.

Table 37-90. ZpEcDsaQuickVerify Service Estimated WA and WB Window Size
Curve Size (bits) Optimum Window size Possible Window Sizes (WA, WB) or (WB, WA)

192 5 5, 5

256 5 5, 5

384 6 5, 5

521 6 4, 5

The following table details the size of the point and the precomputation table, depending on the
chosen window size option.

Table 37-91. ZpEcDsaQuickVerify Service Window Size and Precomputation Table Size Options
Option Specified Point and Precomputation Table Size

PUKCL_ZPECCMUL_WINSIZE_A_VAL_TO_OPT(WA) WA in [2, 15] (3*(u2ModLength + 4)) * (2(WA-2))

PUKCL_ZPECCMUL_WINSIZE_B_VAL_TO_OPT(WB) WB in [2, 15] (3*(u2ModLength + 4)) * (2(WB-2))

The Point Signature can be located in PUKCC RAM or in system RAM. If the Point Signature is
entirely in system RAM with no part in PUKCC RAM this can be signaled by us ing the option
PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM. In all other cases this option must not be used.

The following table describes this option.

Table 37-92. ZpEcDsaQuickVerify Service Point Signature in Classical RAM Option
Option Purpose

PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM The Point Signature can be located in Crypto RAM or in system RAM. If the Point
Signature is entirely in system RAM with no part in PUKCC RAM this can be
signaled by using this option. In all other cases this option must not be used.

37.3.6.13.6 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;
PUKCL(u2Option) = <Point Signature location and windows sizes>;
PUKCL_ZpEcDsaQuickVerify(pu1ModCnsBase) = <Base of the ram location of P and Cns>;
PUKCL_ZpEcDsaQuickVerify(u2ModLength) = <Byte length of P>;
PUKCL_ZpEcDsaQuickVerify(pu1PointABase) = <Base of the ram location of the A point>;
PUKCL_ZpEcDsaQuickVerify(pu1PointPublicKeyGen) = <Base of the Public Key>;
PUKCL_ZpEcDsaQuickVerify(pu1PointSignature) = <Base of the Signature (r, s)>;

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 888

PUKCL_ZpEcDsaQuickVerify(pu1OrderPointBase) = <Base of the order of the A point>;
PUKCL_ZpEcDsaQuickVerify(pu1AWorkBase) = <Base of the ram location of the parameter A of the
elliptic curve and workspace>;
PUKCL_ZpEcDsaQuickVerify(pu1HashBase) = <Base of the SHA resulting hash>;
PUKCL_ZpEcDsaQuickVerify(u2ScalarLength) = <Byte length of R and S in Point Signature>;
. . .
// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(ZpEcDsaQuickVerify, pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 ...
 }
else
 if (PUKCL(u2Status) = PUKCL_WRONG_SIGNATURE)
 {
 ...
 }
 else // Manage the error

37.3.6.13.7 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• pu1ModCnsBase, pu1PointABase, pu1PointPublicKeyGen,
pu1PointSignature,pu1OrderPointBase, pu1AWorkBase or pu1HashBase are not aligned on 32-
bit boundaries

• {pu1ModCnsBase, u2ModLength + 4 + u2MaxLength + 12}, {pu1PointABase, (3 * u2ModLength +
12)* (2(WA-2))}, {pu1PointPublicKeyGen, (3 * u2ModLength + 12) * (2(WPub-2))}, {pu1OrderPointBase,
u2ScalarLength + 4}, {nu1ABase, u2ModLength + 4}, {pu1AWorkBase, (u2ModLength + 4) + (8 *
u2MaxLength + 44)} or {nu1HashBase, u2ScalarLength + 4} are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {pu1ModCnsBase, u2ModLength + 4 + u2MaxLength + 12},

{pu1PointABase, (3 * u2ModLength + 12) * (2(WA-2))}, {pu1PointPublicKeyGen, (3 * u2ModLength
+ 12) *(2(WPub-2))}, {pu1OrderPointBase, u2ScalarLength + 4}, {pu1PointSignature, 2 *
u2ScalarLength + 8}, {nu1ABase, u2ModLength + 4}, {pu1AWorkBase, (u2ModLength + 4) + (8
* u2MaxLength + 44)} and {nu1HashBase, u2ScalarLength + 4}

37.3.6.13.8 Status Returned Values

Table 37-93. ZpEcDsaQuickVerify Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem. The signature is the good one.

PUKCL_WRONG_SIGNATURE Warning The signature is wrong.

37.3.6.13.9 Parameter Placement
The parameters’ placement is described in detail in the following figures.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 889

Figure 37-11. Modulus P and Cns{pu1ModCnsBase, u2ModLength + 4 + u2MaxLength + 12}

Figure 37-12. Points A {pu1PointABase, (3*(u2ModLength + 4)) * (2(WA-2))} and Public Key Gen
{pu1PointPublicKeyGen, (3*(u2ModLength + 4)) * (2(WB-2))}

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 890

Figure 37-13. PointSignature {pu1PointSignature, 2 * u2ScalarLength + 8}

Figure 37-14. The a parameter and Workspace {pu1AWorkBase, 9*u2ModLength + 48}

37.3.7 Elliptic Curves Over GF(2n) Services
This section provides a complete description of the currently available elliptic curve over
Polynomials in GF(2n) services.

These services process Polynomials in GF(2n) only.

The offered services cover the basic operations over elliptic curves such as:

• Adding two points over a curve
• Doubling a point over a curve
• Multiplying a point by an integral constant
• Converting a point’s projective coordinates (resulting from a doubling or an addition) to the affine

coordinates, and oppositely converting a point’s affine coordinates to the projective coordinates.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 891

• Testing the point presence on the curve.

Additionally, some higher level services covering the needs for signature generation and verification
are offered:

• Generating an ECDSA signature (compliant with FIPS186-2)
• Verifying an ECDSA signature (compliant with FIPS 186-2) The supported curves use the following

curve equation in GF(2n):

Y2 + XY = X3 + aX + b

37.3.7.1 Parameters Format
Related Links
37.3.5.1. Modular Reduction
37.3.3.4. Aligned Significant Length

37.3.7.1.1 Polynomials in GF(2n)
Polynomials in GF(2n) are binary polynomials reduced modulo the polynomial P[X]. This polynomial
is called the modulus and may be abbreviated to P in this document. The storage of these
polynomials in memory area is described in Aligned Significant Length (see Aligned Significant Length
from Related Links).

For notation simplicity the comparison signs “<“ or “>” may be used for polynomials, this is to be
interpreted as a comparison between the degree of the polynomials.

In GF(2n) fully reduced polynomials are of degree strictly lower than degree(P[X]). In many cases the
polynomials used in this library are only partially reduced and so have a degree higher or equal than
degree(P[X]), but this degree is maintained strictly lower than (degree(P[X]) + 15).

37.3.7.1.2 Coordinates System
In this implementation, several choices have been made related to the coordinate systems managed
by the elliptic curve primitives.

There are two systems currently managed by the library:

• Affine Coordinates System where each curve point has two coordinates (X,Y)
• Projective Coordinates System where each point is represented with three coordinates (X,Y,Z)

Converting from the affine coordinates system to a projective coordinates system and is performed
by extending its representation having Z = 1:

(X,Y) ⇒ (X,Y, Z= 1)

Converting from a projective coordinate to an affine one is a service offered by the library. The
formula to perform this conversion is:

(X,Y, Z) ⇒ (X ⇒ Z,Y/Z2)

37.3.7.1.3 Points Representation in Memory
Depending on the representation (Projective or Affine), points are represented in memory as shown
in the following figure.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 892

Figure 37-15. Point Representation in Memory

In this figure, the modulus is represented as a reference, and to show that coordinates are always to
be provided on the length of the modulus plus one 32-bit word.

Different types of representations are listed here:

Affine representation: Pt = XAffine < P × X15YAffine < P × X15
Projective representation: Pt = XProjective < P × X15YProjective < P × X15ZProjective < P × X15
Notes: 
1. The minimum value for u2ModLength is 12 bytes. Therefore, the significant length of the

modulus must be at least three 32-bit words.
2. In some cases the point can be the infinite point. In this case it is represented with its Z

coordinates equal or congruent to zero.

37.3.7.1.4 Modulus and Modular Constant Parameters
In most of the services the following parameters must be provided:

• P the Modulus (often pointed by {nu1ModBase,u2ModLength + 4}): This parameter contains the
Modulus Polynomial P[X] defining the Galois Field used in points coordinates computations. The
Modulus must be u2ModLength bytes long, while having a supplemental zeroed 32-bit word on
the MSB side.
Note: Most of the Elliptic Curve computations are reduced modulo P. In many functions the
reductions are made with the Fast Reduction.

• Cns the Modular Constant (often pointed by {nu1CnsBase,u2ModLength + 12}): This parameter
contains the Modular Constant associated to the Modulus.

Important: The Modular Constant must be calculated before using the GF(2n)
Elliptic Curves functions by a call to the Setup for Modular Reductions with the
GF(2n) option (see Modular Reduction from Related Links).

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 893

37.3.7.1.5 Curve Parameters in Memory
Some services need one or both of the Elliptic Curve Equation Parameters a and b. In this case these
values are organized in memory as follows:

• The a Parameter relative to the Elliptic Curve Equation (often pointed by
{nu1ABase,u2ModLength +4}). The a Parameter is written in a classical way in memory. It is
u2ModLength bytes long and has a supplemental zeroed 32-bit word on the MSB side.

• The a and b Parameters relative to the Elliptic Curve Equation (often pointed by
{nu1ABBase,2*u2ModLength + 8}):

– The a Parameter is written in memory on u2ModLength bytes long, with a supplemental
zeroed 32-bit word on the MSB side.

– The b Parameter is written in memory after the a Parameter at an offset of (u2ModLength
+ 4) bytes. It is written in memory on u2ModLength bytes long, with a supplemental zeroed
32-bit word on the MSB side.

37.3.7.2 Point Addition
37.3.7.2.1 Purpose

This service is used to perform a point addition, based on a given elliptic curve over GF(2n).

Please note that this service is not intended to add the same point twice. In this particular case, use
the doubling service (see 37.3.7.3. Point Doubling).

37.3.7.2.2 How to Use the Service
37.3.7.2.3 Description

The operation performed is:

PtC = PtA + PtB

In this computation, the following parameters need to be provided:

• Point A the input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

• Point B the input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointBBase,3*u2ModLength + 12}). This point can be the Infinite Point.

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 12})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
• The a parameter relative to the elliptic curve equation (pointed by {nu1ABase,u2ModLength + 4})
• The workspace not initialized (pointed by {nu1WorkSpace, 7*u2ModLength + 40}

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the same place
than the input point A. This Point can be the Infinite Point.

The services for this operation are:
• Service GF2NEccAddFast: The fast mode is used, the fast modular reduction is used in the

computations.

Important:  Before using this service, ensure that the constant Cns has been
calculated with the setup of the Modular Reductions service.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 894

37.3.7.2.4 Parameters Definition

Table 37-94. GF2NEccAddFast Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of Modulus P Base of Modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 12 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulo Length of modulo

nu1PointABase nu1 I/O Crypto RAM 3*u2ModLength + 12 Input point A (projective
coordinates)

Resulting point C
(projective coordinates)

nu1PointBBase nu1 I Crypto RAM 3*u2ModLength + 12 Input point B (projective
coordinates)

Input point B

nu1ABBase nu1 I Crypto RAM u2ModLength + 4 Parameter a of the elliptic
curve

Unchanged

nu1Workspace nu1 I Crypto RAM 7*u2ModLength + 40 – Corrupted workspace

37.3.7.2.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;
//Depending on the function the Random Number Generator
//must be initialized and started
//following the directives given for the RNG on the chip
PUKCL(u2Option) = 0;
PUKCL_GF2NEccAdd(nu1ModBase) = <Base of the ram location of P>;
PUKCL_GF2NEccAdd(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL_GF2NEccAdd(u2ModLength) = <Byte length of P>;
PUKCL_GF2NEccAdd(nu1PointABase) = <Base of the ram location of the A point>;
PUKCL_GF2NEccAdd(nu1PointBBase) = <Base of the ram location of the B point>;
PUKCL_GF2NEccAdd(nu1ABBase) = <Base of the ram location of the a Parameter>;
PUKCL_GF2NEccAdd(nu1Workspace) = <Base of the ram location of the workspace>;
. . .
// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(GF2NEccAddFast, pvPUKCLParam);
if (PUKCL(u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.7.2.6 Constraints
No overlapping between either input and output are allowed The following conditions must be
avoided to ensure the service works correctly:

• nu1ModBase,nu1CnsBase, nu1PointABase, nu1PointBBase, nu1ABBase, nu1Workspace are not
aligned on 32-bit boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12}, {nu1PointBBase, 3*u2ModLength + 12}, {nu1ABase,u2ModLength + 4},
{nu1Workspace, <WorkspaceLength>} are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength

+8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1PointBBase, 3*u2ModLength + 12},
{nu1ABase,u2ModLength + 4} and {nu1Workspace, 5*u2ModLength + 32}

37.3.7.2.7 Status Returned Values

Table 37-95. GF2NEccAddFast Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without errors.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 895

37.3.7.3 Point Doubling
37.3.7.3.1 Purpose

This service is used to perform a Point Doubling, based on a given elliptic curve over GF(2n).

37.3.7.3.2 How to Use the Service
37.3.7.3.3 Description

The operation performed is:

PtC = 2 × PtA

In this computation, the following parameters need to be provided:

• A the input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
• The workspace not initialized (pointed by {nu1WorkSpace, 4*u2ModLength +28}
• The a and b Parameters relative to the Elliptic Curve Equation (pointed by

{nu1ABBase,2*u2ModLength+ 8})
• The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the very

same place than the input point A. This point can be the Infinite Point.

The service name for this operation is GF2NEccDblFast. This service uses Fast mode and Fast
Modular Reduction for computation.

Important:  Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reductions service.

37.3.7.3.4 Parameters Definition

Table 37-96. GF2NEccDblFast Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 12 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus P

nu1ABBase u2 I Crypto RAM 2*u2ModLength + 8 Parameters a and b of the
elliptic curve

Parameter a and b of the
elliptic curve

nu1PointABase nu1 I/O Crypto RAM 3*u2ModLength + 12 Input point A (projective
coordinates)

Resulting point C
(projective coordinates)

nu1Workspace nu1 I Crypto RAM 4*u2ModLength + 28 – Corrupted workspace

37.3.7.3.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u2Option) = 0;

PUKCL _GF2NEccDbl(nu1ModBase) = <Base of the ram location of P>;
PUKCL _GF2NEccDbl(u2ModLength) = <Byte length of P>;
PUKCL _GF2NEccDbl(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _GF2NEccDbl(nu1PointABase) = <Base of the ram location of the A point>;
PUKCL _GF2NEccDbl(nu1ABBase) = <Base of the a and b parameters of the elliptic curve>;
PUKCL _GF2NEccDbl(nu1Workspace) = <Base of the ram location of the workspace>;
...

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 896

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(GF2NEccDblFast,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.7.3.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1ABBase, nu1Workspace are not aligned on 32-bit
boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12}, {nu1ABBase, 2*u2ModLength + 8}, {nu1Workspace, <WorkspaceLength>}
are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},

{nu1PointABase, 3*u2ModLength + 12}, {nu1ABase, u2ModLength + 4} and {nu1Workspace,
4*u2ModLength + 28}

37.3.7.3.7 Status Returned Values

Table 37-97. GF2NEccDblFast Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

37.3.7.4 Scalar Point Multiply
37.3.7.4.1 Purpose

This service is used to multiply a point by an integral constant K on a given elliptic curve over GF(2n).

37.3.7.4.2 How to Use the Service
37.3.7.4.3 Description

The operation performed is:

PtC = K × PtA

In this computation, the following parameters need to be provided:

• A the input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
• The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength + 44}
• The a and b parameters relative to the elliptic curve (pointed by {nu1ABBase,2*u2ModLength +

8})
• K the scalar number (pointed by {nu1ScalarNumber,u2ScalarLength + 4})

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the very same
place than the input point A. This point can be the Infinite Point.

The service name for this operation is GF2NEccMulFast. This service uses Fast mode and Fast
Modular Reduction for computation.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 897

Important: Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reductions service.

37.3.7.4.4 Parameters Definition

Table 37-98. GF2NEccMulFast Service Parameters
Parameter Type Direction Location Data Length Before Executing the Service After Executing the

Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 12 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus P

nu1KBase nu1 I Crypto RAM u2KLength Scalar number used to
multiply the point A

Unchanged

u2KLength u2 I – – Length of scalar K Length of scalar K

nu1PointBase nu1 I/O Crypto RAM 3*u2ModLength + 12 Input point A (projective
coordinates)

Resulting point C
(projective coordinates)

nu1ABase nu1 I Crypto RAM 2*u2ModLength + 8 Parameters a and b of the
elliptic curve

Unchanged

nu1Workspace nu1 I Crypto RAM 8*u2ModLength + 44 – Corrupted workspace

37.3.7.4.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u2Option) = 0;

PUKCL _GF2NEccMul(nu1ModBase) = <Base of the ram location of P>;
PUKCL _GF2NEccMul(u2ModLength) = <Byte length of P>;
PUKCL _GF2NEccMul(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _GF2NEccMul(nu1PointBase) = <Base of the ram location of the A point>;
PUKCL _GF2NEccMul(nu1ABase) = <Base of the ram location of the parameters a and b of the
elliptic
curve>;
PUKCL _GF2NEccMul(nu1KBase) = <Base of the ram location of the scalar number>;
PUKCL _GF2NEccMul(nu1Workspace) = <Base of the ram location of the workspace>;
PUKCL _GF2NEccMul(u2KLength) = <Length of the ram location of the scalar number>;

...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(GF2NEccMulFast,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.7.4.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointBase, nu1ABase, nu1KBase, nu1Workspace are not aligned
on 32-bit boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointBase,
3*u2ModLength+ 12}, {nu1ABase, 2*u2ModLength + 8}, {nu1KBase, u2KLength} or
{nu1Workspace, 8*u2ModLength + 44} are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 898

• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},
{nu1PointBase, 3*u2ModLength + 12}, {nu1ABase, 2*u2ModLength + 8}, {nu1KBase, u2KLength}
and {nu1Workspace, 8*u2ModLength + 44}

37.3.7.4.7 Status Returned Values

Table 37-99. GF2NEccMulFast Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

37.3.7.5 Projective to Affine Coordinates Conversion
37.3.7.5.1 Purpose

This service is used to perform a point coordinates conversion from a projective representation to
an affine.

37.3.7.5.2 How to Use the Service
37.3.7.5.3 Description

The operation performed is:

PtX Affine coordinate = PtXProjective coordinatePtZ Projective coordinatePtY Affine coordinate = PtY Projective coordinatePtZ Projective coordinate 2
In this computation, the following parameters need to be provided:

• A the input point is filled in projective coordinates (X,Y,Z) or affine coordinates for X and Y, and
setting Z to 1 (pointed by {nu1PointABase,3*u2ModLength + 12}). The Point A can be the point at
infinity. In this case, the u2Status returned is PUKCL_POINT_AT_INFINITY.

• Cns the Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
• The workspace not initialized (pointed by {nu1WorkSpace, 4*u2ModLength + 48}

The result is the point A with its (X,Y) coordinates converted to affine, and the Z coordinate set to 1.

The service name for this operation is GF2NEcConvProjToAffine.

Important:  Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reductions service.

37.3.7.5.4 Parameters Definition

Table 37-100. GF2NEcConvProjToAffine Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 12 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus P

nu1PointABase nu1 I Crypto RAM 3*u2ModLength + 12 Input point A Resulting point A in affine
coordinates

nu1Workspace nu1 I Crypto RAM 4*u2ModLength + 48 – Workspace

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 899

37.3.7.5.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u2Option) = 0;

PUKCL _GF2NEcConvProjToAffine(nu1ModBase) = <Base of the ram location of P>;
PUKCL _GF2NEcConvProjToAffine(u2ModLength) = <Byte length of P>;
PUKCL _GF2NEcConvProjToAffine(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _GF2NEcConvProjToAffine(nu1PointABase) = <Base of the ram location of the A point>;
PUKCL _GF2NEcConvProjToAffine(nu1Workspace) = <Base of the ram location of the workspace>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(GF2NEcConvProjToAffine,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.7.5.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1Workspace are not aligned on 32-bit boundaries
• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},{nu1PointABase,

3*u2ModLength + 12}, {nu1Workspace, <WorkspaceLength>} are not in Crypto RAM
• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},

{nu1PointABase, 3*u2ModLength + 12} and {nu1Workspace, 4*u2ModLength + 48}

37.3.7.5.7 Status Returned Values

Table 37-101. GF2NEcConvProjToAffine Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

PUKCL_POINT_AT_INFINITY Warning The input point has its Z equal to zero, so it is a representation of the infinite point.

37.3.7.6 Affine to Projective Coordinates Conversion
37.3.7.6.1 Purpose

This service is used to perform a point coordinates conversion from an affine point representation
to projective.

37.3.7.6.2 How to Use the Service
37.3.7.6.3 Description

The operation performed is:

affine(Xa, Ya) → projective(Xp, Yp, Zp)

In this computation, the following parameters need to be provided:

• A the input point is filled in affine coordinates for X and Y, and setting Z to 1 (pointed by
{nu1PointABase,3*u2ModLength + 4}).

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 900

• The workspace not initialized (pointed by {nu1WorkSpace, 2*u2ModLength +16} The result is the
point A with its (X,Y,Z) projective coordinates.

The service name for this operation is GF2NEcConvAffineToProjective.

Important:  Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reductions service.

37.3.7.6.4 Parameters Definition

Table 37-102. GF2NEcConvAffineToProjective Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus P

nu1PointABase nu1 I Crypto RAM 3*u2ModLength + 12 Input point A Resulting point A in affine
coordinates

nu1Workspace nu1 I Crypto RAM 2*u2ModLength + 16 – Workspace

37.3.7.6.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u2Option) = 0;

PUKCL _GF2NEcConvAffineToProjective(nu1ModBase) = <Base of the ram location of P>;
PUKCL _GF2NEcConvAffineToProjective(u2ModLength) = <Byte length of P>;
PUKCL _GF2NEcConvAffineToProjective(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _GF2NEcConvAffineToProjective(nu1PointABase) = <Base of the ram location of the A
point>;
PUKCL _GF2NEcConvAffineToProjective(nu1Workspace) = <Base of the ram location of the
workspace>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(GF2NEcConvAffineToProjective,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.7.6.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1Workspace are not aligned on 32-bit boundaries
• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,

3*u2ModLength + 12}, {nu1Workspace, <WorkspaceLength>} are not in Crypto RAM
• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},

{nu1PointABase, 3*u2ModLength + 12}, and {nu1Workspace, 2*u2ModLength + 16}

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 901

37.3.7.6.7 Status Returned Values

Table 37-103. GF2NEcConvAffineToProjective Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

37.3.7.7 Randomize Coordinate
37.3.7.7.1 Purpose

This service is used to convert the Projective representation of a point to another Projective
representation.

37.3.7.7.2 How to Use the Service
37.3.7.7.3 Description

The operation performed is:

Projective(X1, Y1, Z1) → Projective(X2, Y2, Z2)

In this computation, the following parameters need to be provided:

• The input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointBase,3*u2ModLength + 12}). This Point must not be the point at infinity.

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
• The workspace not initialized (pointed by {nu1WorkSpace, 3*u2ModLength + 28}
• The random number (pointed by {nu1RandomBase, u2ModLength + 4}) The result is the

point nu1PointBase with its (X,Y,Z) coordinates randomized. The service for this operation is
GF2NEcRandomiseCoordinate.

Important: 
Before using this service:

• Ensure that the constant Cns has been calculated with the Setup of the fast
Modular Reductions service.

• Be sure to follow the directives given for the RNG on the chip you use
(particularly initialization, seeding) and compulsorily start the RNG.

37.3.7.7.4 Parameters Definition

Table 37-104. GF2NEcRandomiseCoordinate Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing the
Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus P

nu1PointBase nu1 I Crypto RAM 3*u2ModLength + 12 Input point Resulting point

nu1RandomBase nu1 I Crypto RAM u2ModLength + 4 Random Corrupted

nu1Workspace nu1 I Crypto RAM 3*u2ModLength + 28 – Workspace

37.3.7.7.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 902

// ! following the directives given for the RNG on the chip

PUKCL (u2Option) = 0;

// Depending on the option specified, not all fields must be filled
PUKCL _GF2NEcRandomiseCoordinate(nu1ModBase) = <Base of the ram location of P>;
PUKCL _GF2NEcRandomiseCoordinate(u2ModLength) = <Byte length of P>;
PUKCL _GF2NEcRandomiseCoordinate(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL_GF2NEcRandomiseCoordinate(nu1RandomBase) = <Base of the ram location where the the rng
is stored>;
PUKCL _GF2NEcRandomiseCoordinate(nu1PointBase) = <Base of the ram location of the point>;
PUKCL _GF2NEcRandomiseCoordinate(nu1Workspace) =
<Base of the ram location of the workspace>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(GF2NEcRandomiseCoordinate,&PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.7.7.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1RandomBase, nu1Workspace are not aligned on
32-bit boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength + 12}, {nu1RandomBase, u2ModLength + 4}, {nu1Workspace,
<WorkspaceLength>} are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength

+ 8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1RandomBase, u2ModLength + 4} and
{nu1Workspace, 3*u2ModLength + 28}

37.3.7.7.7 Status Returned Values

Table 37-105. GF2NEcRandomiseCoordinate Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

37.3.7.8 Point is on Elliptic Curve
37.3.7.8.1 Purpose

This service is used to test whether the point is on the curve.

37.3.7.8.2 How to Use the Service
37.3.7.8.3 Description

The operation performed is:

Status = IsPointOnCurve(X, Y, Z);

In this computation, the following parameters need to be provided:

• The input points filled in projective coordinates (X, Y, Z) (pointed by {nu1PointBase,
3*U2ModLength + 4}). This point can be point at infinity.

• AParam and BParam are the Elliptic Curve Equation parameters (pointed by {nu1AParam,
u2ModLength+ 4} and {nu1BParam, u2ModLength + 4}).

• Cns the Fast Modular Constant filled (pointed by {nu1CnsBase, u2ModLength + 8})

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 903

• P the modulus filled (pointed by {nu1ModBase, u2ModLength + 8})
• The workspace not initialized (pointed by {nu1WorkSpace, 4*u2ModLength + 28})

The service name for this operation is GF2NEcPointIsOnCurve.

Important: Before using this service, the constant Cns must have been
calculated with the Fast Modular Reduction service.

37.3.7.8.4 Parameters Definition

Table 37-106. GF2NEcPointIsOnCurve Service Parameters
Parameter Type Dir. Location Data Length Before Executing the Service After Executing the Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus P

nu1PointBase nu1 I Crypto RAM 3*u2ModLength + 12 Input point Unchanged

nu1AParam nu1 I Crypto RAM u2ModLength + 4 The parameter a Unchanged

nu1BParam nu1 I Crypto RAM u2ModLength + 4 The parameter b Unchanged

nu1Workspace nu1 I Crypto RAM 4*u2ModLength + 28 N/A Workspace

37.3.7.8.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u2Option) = 0;

// Depending on the option specified, not all fields must be filled
PUKCL _GF2NEcPointIsOnCurve(nu1ModBase) = <Base of the ram location of P>;
PUKCL _GF2NEcPointIsOnCurve(u2ModLength) = <Byte length of P>;
PUKCL _GF2NEcPointIsOnCurve(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _GF2NEcPointIsOnCurve(nu1PointABase) = <Base of the A point>;
PUKCL _GF2NEcPointIsOnCurve(nu1AParam) = <Base of the ram location of the parameter a>;
PUKCL _GF2NEcPointIsOnCurve(nu1BParam) = <Base of the ram location of the parameter b>;
PUKCL _GF2NEcPointIsOnCurve(nu1PointBase) = <Base of the ram location of the point>;
PUKCL _GF2NEcPointIsOnCurve(nu1Workspace) = <Base of the ram location of the workspace>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKC L_Process(GF2NEcPointIsOnCurve,
pvPUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

37.3.7.8.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1AParam, nu1BParam and nu1Workspace are not
aligned on 32-bit boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength + 12}, {nu1AParam, u2ModLength + 4}, {nu1BParam, u2ModLength + 4},
{nu1Workspace, 4*u2ModLength + 28} are not in Crypto RAM

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 904

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +

8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1AParam, u2ModLength + 4}, {nu1BParam,
u2ModLength + 4} and {nu1Workspace, 4*u2ModLength + 28}

37.3.7.8.7 Status Returned Values

Table 37-107. GF2NEcPointIsOnCurve Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The point is on the curve.

PUKCL_POINT_IS_NOT_ON_CURVE Warning The point is not on the curve.

PUKCL_POINT_AT_INFINITY Warning The input point has its Z equal to zero, so it’s a representation of the infinite
point.

37.3.7.9 Generating an ECDSA Signature (Compliant with FIPS 186-2)
37.3.7.9.1 Purpose

This service is used to generate an ECDSA signature following the FIPS 186-2. It performs the second
step of the Signature Generation. A hash value (HashVal) must be provided as input, it has to be
previously computed from the message to be signed using a secure hash algorithm.

A scalar number must be provided, as described in the FIPS 186-2.

The result (R,S) is computed by this service. If S equals zero, the status is set to
PUKCL_WRONG_SELECT_NUMBER.

37.3.7.9.2 How to Use the Service
37.3.7.9.3 Description

The operation performed is:

(R, S) = EcDsaSign(PtA, HashVal, k, CurveParameters, PrivateKey)

This service processes the following checks:

• If the Scalar Number k is out of the range [1, PointOrder -1], the calculus is stopped and the
status is set to PUKCL_WRONG_SELECT_NUMBER.

• If R equals zero, the calculus is stopped and the status is set to PUKCL_WRONG_SELECT_NUMBER.
• If S equals zero, the calculus is stopped and the status is set to PUKCL_WRONG_SELECT_NUMBER.

In this computation, the following parameters need to be provided:
• A the input point is filled in “mixed” coordinates (X,Y) with the affine values and Z = 1 (pointed by

{nu1PointABase,3*u2ModLength + 12})
• Cns the working space for the Fast Modular Constant not initialized (pointed by

{nu1CnsBase,u2ScalarLength + 8})
• P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
• The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength + 44}
• The a and b parameters relative to the elliptic curve equation (pointed by {nu1ABBase,

2*u2ModLength + 8})
• The order of the Point A on the elliptic curve (pointed by {nu1OrderPointBase, u2ScalarLength +

4})
• k the input Scalar Number beforehand generated and filled (pointed

by{nu1ScalarNumber,u2ScalarLength + 4})
• HashVal the hash value beforehand generated and filled (pointed by {nu1HashBase,

u2ScalarLength +4})

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 905

• The Private Key (pointed by {nu1PrivateKey, u2ScalarLength +4})
• Generally u2ScalarLength is equal to (u2ModLength) or (u2ModLength + 4)

Important: 
For the ECDSA signature generation be sure to follow the directives given for the
RNG on the chip you use (particularly initialization, seeding) and compulsorily
start the RNG.

The scalar number k must be selected at random. This random must be
generated before the call of the ECDSA signature. For this random generation
be sure to follow the directives given for the RNG on the chip you use (particularly
initialization, seeding) and compulsorily start the RNG.

The operation performed is:

• Compute the ECDSA (R,S) as described in FIPS 186-2, but leaving the user the role of computing
the input Hash Value, thus leaving the freedom of using any other algorithm than SHA-1.

• Compute a R value using the input A point and the scalar number.
• Compute a S value using R, the scalar number, the private key and the provided hash value. Note

that the resulting signature (R,S) is stored at the place of the input A point.
• If all is correct and S is different from zero, the status is set to PUKCL_OK. If all is correct and S

equals zero,the status is set to PUKCL_WRONG_SELECT_NUMBER. If an error occurs, the status is
set to the corresponding error value (see Status Returned Values below).

The service name for this operation is GF2NEcDsaGenerateFast. The fast mode is used, the fast
modular reduction is used in the computations.

• The signature (R,S), when resulting from a computation is given back at address of the A point:
– The R value result with u2ModLength + 4 bytes (padded with zeros).
– The S value result with u2ModLength + 4 bytes (padded with zeros)
– The u2NLength + 4 following bytes (space for the third coordinate of A) are filled with zeros.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 906

37.3.7.9.4 Parameters Definition

Table 37-108. GF2NEcDsaGenerateFast Service Parameters
Parameter Type Direction Location Data Length Before Executing the Service After Executing

the Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ScalarLength + 12 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus
P

nu1ScalarNumber nu1 I Crypto RAM u2ScalarLength + 4 Scalar Number used to
multiply the point A

Unchanged

nu1OrderPointBase nu1 I Crypto RAM u2ScalarLength + 4 Order of the Point A in the
elliptic curve

Unchanged

nu1PrivateKey nu1 I/O Crypto RAM u2ScalarLength + 4 Base of the Private Key Unchanged

nu1HashBase(1) nu1 I Crypto RAM u2ScalarLength + 4 Base of the hash value
resulting from the previous
SHA

Unchanged

u2ScalarLength u2 I – – Length of scalar (same length
as the length of order)

Length of scalar

nu1PointABase nu1 I/O Crypto RAM 3*u2ModLength + 12 Input point A (three
coordinates (X,Y) affine and Z
= 1)

Resulting
signature (R,S,0)

nu1ABase nu1 I Crypto RAM 2*u2ModLength + 8 Parameter a of the elliptic
curve

Unchanged

nu1Workspace nu1 I Crypto RAM 8*u2ModLength + 44 – Corrupted
workspace

Note: 
1. Whatever the chosen SHA, the resulting hash value may have a length inferior or equal to the

modulo length and be padded with zeros until its total length is u2ModLength + 4.

37.3.7.9.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u2Option) = 0;

// Depending on the option specified, not all fields must be filled
PUKCL _GF2NEcDsaGenerate(nu1ModBase) = <Base of the ram location of P>;
PUKCL _GF2NEcDsaGenerate(u2ModLength) = <Byte length of P>;
PUKCL _GF2NEcDsaGenerate(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _GF2NEcDsaGenerate(nu1PointABase) = <Base of the A point>;
PUKCL _GF2NEcDsaGenerate(nu1PrivateKey) = <Base of the Private Key>;
PUKCL _GF2NEcDsaGenerate(nu1ScalarNumber) = <Base of the ScalarNumber>;
PUKCL _GF2NEcDsaGenerate(nu1OrderPointBase) = <Base of the order of A point>;
PUKCL _GF2NEcDsaGenerate(nu1ABase) = <Base of the a parameter of the curve>; PUKCL
_GF2NEcDsaGenerate(nu1Workspace) = <Base of the workspace>;
PUKCL _GF2NEcDsaGenerate(nu1HashBase) = <Base of the SHA resulting hash>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(GF2NEcDsaGenerateFast, pvPUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else // Manage the error

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 907

37.3.7.9.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1PrivateKey, nu1ScalarNumber,
nu1OrderPointBase,nu1ABase, nu1Workspace or nu1HashBase are not aligned on 32-bit
boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12},{nu1PrivateKey, u2ScalarLength + 4},{nu1ScalarNumber, u2ScalarLength +
4},{nu1OrderPointBase, u2ScalarLength + 4}, {nu1ABase, u2ModLength + 4}, {nu1Workspace,
<WorkspaceLength>} or {nu1HashBase, u2ScalarLength + 4} are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},

{nu1PointABase, 3*u2ModLength + 12}, {nu1PrivateKey, u2ScalarLength + 4}, {nu1ScalarNumber,
u2ScalarLength + 4}, {nu1OrderPointBase, u2ScalarLength + 4}, {nu1ABase, u2ModLength + 4},
{nu1Workspace, <WorkspaceLength>} and {nu1HashBase, u2ScalarLength + 4}

37.3.7.9.7 Status Returned Values

Table 37-109. GF2NEcDsaGenerate Fast Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without problem.

PUKCL_WRONG_SELECTNUMBER Warning The given value for nu1ScalarNumber is not good to perform this signature
generation.

37.3.7.10 Verifying an ECDSA Signature (Compliant with FIPS 186-2)
37.3.7.10.1 Purpose

This service is used to verify an ECDSA signature following the FIPS 186-2. It performs the second
step of the Signature Verification.

A hash value (HashVal) must be provided as input, it has to be previously computed from the
message to be signed using a secure hash algorithm.

As second significant input, the Signature is provided to be checked. This service checks the
signature and fills the status accordingly.

37.3.7.10.2 How to Use the Service
37.3.7.10.3 Description

The operation performed is:

Verify = EcDsaVerifySignature(PtA, HashVal, Signature, CurveParameters, PublicKey)

The points used for this operation are represented in different coordinate systems. In this
computation, the following parameters need to be provided:

• A the input point is filled with the affine values (X,Y) and Z = 1 (pointed
by{nu1PointABase,3*u2ModLength + 12})

• Cns the working space for the Fast Modular Constant not initialized (pointed by
{nu1CnsBase,u2ScalarLength + 8})

• P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
• The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength +44} The a and b

parameters relative to the elliptic curve (pointed by {nu1ABase,2*u2ModLength + 8})
• The order of the Point A on the elliptic curve (pointed by {nu1OrderPointBase,u2ScalarLength

+4})

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 908

• HashVal the hash value beforehand generated and filled (pointed by
{nu1HashBase,u2ScalarLength +4})

• The Public Key point is filled in “mixed” coordinates (X,Y) with the affine values and Z = 1 (pointed
by {nu1PointPublicKeyGen, 3*u2ModLength + 12})

• The input signature (R,S), even if it is not a Point, is represented in memory like a point in affine
coordinates (X,Y) (pointed by {nu1PointSignature, 2*u2ScalarLength + 8})

Important:  For the ECDSA signature verification be sure to follow the
directives given for the RNG on the chip you use (particularly initialization,
seeding) and compulsorily start the RNG.

• The operation consists in obtaining a V value with all these input parameter and check
that V equals the provided R. If all is correct and the signature is the good one, the
status is set to PUKCL_OK. If all is correct and the signature is wrong, the status is set to
PUKCL_WRONG_SIGNATURE. If an error occurs, the status is set to the corresponding error value
(see Status Returned Values below).

The service name for this operation is GF2NEcDsaVerifyFast. This service uses Fast mode and
Fast Modular Reduction for computation.

37.3.7.10.4 Parameters Definition

Table 37-110. GF2NEcDsaVerifyFast Service Parameters
Parameter Type Direction Location Data Length Before Executing the

Service
After Executing
the Service

nu1ModBase nu1 I Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nu1CnsBase nu1 I Crypto RAM u2ScalarLength + 8 Base of Cns Base of Cns

u2ModLength u2 I – – Length of modulus P Length of modulus
P

nu1OrderPointBase nu1 I Crypto RAM u2ScalarLength + 4 Order of the Point A in the
elliptic curve

Unchanged

nu1PointSignature nu1 I Crypto RAM 2*u2ScalarLength + 8 Signature(r, s) Corrupted

nu1HashBase(1) nu1 I Crypto RAM u2ScalarLength + 4 Base of the hash
value resulting from the
previous SHA

Corrupted

u2ScalarLength u2 I – – Length of scalar Length of scalar

nu1PointABase nu1 I/O Crypto RAM 3*u2ModLength + 12 Generator point Corrupted

nu1PointPublicKeyGen nu1 I/O Crypto RAM 3*u2ModLength + 12 Public point Corrupted

nu1ABase nu1 I Crypto RAM 2*u2ModLength + 8 Parameter a and b of the
elliptic curve

Unchanged

nu1Workspace nu1 I Crypto RAM 8*u2ModLength + 44 – Corrupted
workspace

Note: 
1. Whatever the chosen SHA, the resulting hash value may have a length inferior or equal to the

modulo length and be padded with zeros until its total length is u2ModLength + 4.

37.3.7.10.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u2Option) = 0;

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 909

// Depending on the option specified, not all fields must be filled PUKCL
_GF2NEcDsaVerify(nu1ModBase) = <Base of the ram location of P>;
PUKCL _GF2NEcDsaVerify(u2ModLength) = <Byte length of P>;
PUKCL _GF2NEcDsaVerify(nu1CnsBase) = <Base of the ram location of Cns>;
PUKCL _GF2NEcDsaVerify(nu1PointABase) = <Base of the A point>;
PUKCL _GF2NEcDsaVerify(nu1PrivateKey) = <Base of the Private Key>;
PUKCL _GF2NEcDsaVerify(nu1ScalarNumber) = <Base of the ScalarNumber>;
PUKCL _GF2NEcDsaVerify(nu1OrderPointBase) = <Base of the order of A point>;
PUKCL _GF2NEcDsaVerify(nu1ABase) = <Base of the a parameter of the curve>; PUKCL
_GF2NEcDsaVerify(nu1Workspace) = <Base of the workspace>;
PUKCL _GF2NEcDsaVerify(nu1HashBase) = <Base of the SHA resulting hash>;
...

// vPUKCL_Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL_Process(GF2NEcDsaVerifyFast, &PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
 {
 ...
 }
else
 if(PUKCL(u2Status) == PUKCL_WRONG_SIGNATURE)
 {
 ...
 }
else // Manage the error

37.3.7.10.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure the service works correctly:

• nu1ModBase, nu1CnsBase, nu1PointABase, nu1PointPublicKeyGen, nu1PointSignature,
nu1OrderPointBase,nu1ABBase, nu1Workspace or nu1HashBase are not aligned on 32-bit
boundaries

• {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},
{nu1PointABase, 3*u2ModLength + 12}, {nu1PointPublicKeyGen, 3*u2ModLength + 12},
{nu1PointSignature,2*u2ScalarLength + 8}, {nu1OrderPointBase, u2ScalarLength + 4},
{nu1ABBase, 2*u2ModLength + 8}, {nu1Workspace, <WorkspaceLength>} or {nu1HashBase,
u2ScalarLength + 4} are not in Crypto RAM

• u2ModLength is either: < 12, > 0xffc or not a 32-bit length
• All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength

+8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1PointPublicKeyGen, 3*u2ModLength +
12}, {nu1PointSignature, 2*u2ScalarLength + 8}, {nu1OrderPointBase, u2ScalarLength + 4},
{nu1ABBase, 2*u2ModLength + 8}, {nu1Workspace, <WorkspaceLength>} and {nu1HashBase,
u2ScalarLength + 4}

37.3.7.10.7 Status Returned Values

Table 37-111. GF2NEcDsaVerifyFast Service Return Codes
Returned Status Importance Meaning

PUKCL_OK – The computation passed without errors. The signature is correct.

PUKCL_WRONG_SIGNATURE Warning The signature is incorrect.

37.3.8 PUKCL Requirements and Performance
37.3.8.1 Services Stack Usage

This library is using the main core to execute its computations, and therefore is also sharing some
resources with the application.

It may be important for the application to know RAM usage by the library functions and to be aware
that the library does not use any global variables.

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 910

The following table provides the minimum number of bytes used by the library that have to be
available on the stacks to ensure that the functionality can be executed correctly. In some cases,
the library may use less bytes than the specified number for some options. This table contains
estimated values.

Table 37-112. Services Stack Usage
PUKCL Service STACK Usage (Bytes)

SelfTest 112

ClearFlags 0

Swap 8

Fill 8

CondCopy 24

FastCopy 16

Smult 16

Smult (with reduction) 88

Comp 8

Fmult 24

Fmult (with reduction) 96

Square 16

Square (with reduction) 88

Div 144

GCD 136

RedMod (Setup) 160

RedMod (using fast reduction) 80

RedMod (randomize) 80

RedMod (Normalize) 80

RedMod (Using Division) 184

ExpMod 200

PrimeGen 416

CRT 304

ZpEccAddFast 104

ZpEccAddSubFast 92

ZpEcConvProjToAffine 280

ZpEcConvAffineToProjective 64

ZpEccDblFast 96

ZpEccMulFast 168

ZpEccQuickDualMulFast 216

ZpEcDsaGenerateFast 392

ZpEcDsaVerifyFast 456

ZpEcDsaQuickVerify 368

ZpEcRandomiseCoordinate 56

GF2NEccAddFast 128

GF2NEcConvProjToAffine 264

GF2NEcConvAffineToProjective 56

GF2NEccDblFast 136

GF2NEccMulFast 208

GF2NEcDsaGenerateFast 376

GF2NEcDsaVerifyFast 440

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 911

...........continued
PUKCL Service STACK Usage (Bytes)

GF2NEcRandomiseCoordinate 56

37.3.8.2 Parameter Size Limits for Different Services
The following table lists parameter size limits for different services.

For the services ModExp, PrimeGen, and CRT, additional details are available in the service
description.

Table 37-113. Parameter Size Limits
API Min/Max Sizes Comments

SelfTest — —

ClearFlags — —

Swap 4 bytes to 2044 bytes Per block to be swapped

Fill 4 bytes to 4088 bytes —

Fast Copy/Clear 4 bytes to 2044 bytes Supposing Length(R) = Length(X)

Conditional Copy/Clear 4 bytes to 2044 bytes Supposing Length(R) = Length(X)

Smult 4 bytes to 2040 bytes Supposing Length(R) = Length(X) + 4
Bytes, No Z Parameter, No Reduction

Compare 4 bytes to 2044 bytes Supposing Length(X) = Length(Y)

FMult Input: 4 bytes to 1020 bytes Output: 4bytes to
2040 bytes

Supposing Length(Y) = Length(X), No Z
Parameter, No Reduction

Square Input: 4 bytes to 1020 bytes
Output: 4 bytes to 2040 bytes

Supposing No Z Parameter, No Reduction

Euclidean Division Divider: 8 to 1016 bytes
Num.: 8 to 2032 bytes

Supposing Length(Num) =
2*Length(Divider)

Mod. inv. / GCD 8 to 1012 bytes —

ModRed Modulus: 12 to 1016 bytes
Input: 24 to 2032 bytes

Supposing RBase = XBase

Fast ModExp Exp in Crypto
RAM

12 to 576 bytes
(96 to 4608 bits)

Supposing Length(Exponent) =
Length(Modulus), Window Size = 1
With the Exponent in Crypto RAM

Fast ModExp
Exp not in Crypto RAM

12 to 672 bytes
(96 to 5376 bits)

Supposing Length(Exponent) =
Length(Modulus), Window Size = 1
With the Exponent not in Crypto RAM

Prime Gen. Prime Number: 12 to 448 bytes
(96 to 3584 bits)

Supposing Window Size = 1

CRT Modulus = Two Primes:
Size of one prime from 24 to 448 bytes Modulus =
from 48 to 896 bytes
(384 to 7168 bits)

Supposing Length(Exponent) =
Length(Modulus), Window Size = 1

ECC Addition qnd
Subtraction GF(p)

Modulus: 12 to 308 bytes —

ECC Doubling GF(p) Modulus: 12 to 400 bytes —

ECC Multiplication GF(p) Modulus: 12 to 264 bytes Supposing Length(Scalar) =
Length(Modulus)

ECC Quick Dual
Multiplication GF(p)

Modulus: 12 to 152 bytes —

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 912

...........continued
API Min/Max Sizes Comments

ECDSA Generate GF(p) Modulus: 12 to 220 bytes
(up to 521 bits for common curves)

Supposing Length(Scalar) =
Length(Modulus)

ECDSA Verify GF(p) Modulus: 12 to 188 bytes
(up to 521 bits for common curves)

Supposing Length(Scalar) =
Length(Modulus)

ECC Addition GF(2n) Modulus: 12 to 248 bytes —

ECC Doubling GF(2n) Modulus: 12 to 364 bytes —

ECC Multiplication GF(2n) Modulus: 12 to 250 bytes Supposing Length(Scalar) =
Length(Modulus)

ECDSA Generate GF(2n) Modulus: 12 to 208 bytes
(up to 571 bits for common curves)

Supposing Length(Scalar) =
Length(Modulus)

ECDSA Verify GF(2n) Modulus: 12 to 180 bytes
(up to 571 bits for common curves)

Supposing Length(Scalar) =
Length(Modulus)

ECDSA Quick Verify GF(2n) Modulus: 12 to 140 bytes
(up to 571 bits for common curves)

Supposing Length(Scalar) =
Length(Modulus)

37.3.8.3 Service Timing
The values in the following tables are estimated performances for CPU clock of 64 MHz. The CPU
and PUKCC are operated at the same frequency. Due to possible change in the parameters values,
the measurements show approximated values.

Other test conditions:

• PUKCL library data in Crypto RAM
• Test code and test data in SRAM
• ICache and DCache are disabled

37.3.8.3.1 Service Timing for RSA
RSA uses the ExpMod service for encryption and decryption. Following tables show service timing,
where ‘W’ indicates window size.

Table 37-114. RSA1024
Operation Clock Cycles Timing one block

RSA 1024 decryption / signature generation. No CRT, Regular implementation, W=4 3.05 MCycles 47.799 ms

RSA 1024 decryption / signature generation.
With CRT, Regular implementation, W=4

1.09 MCycles 17.109 ms

RSA 1024 encryption / signature verification.
No CRT, Fast implementation, W=1 Exponent=3

0.07 MCycles 1.141 ms

RSA 1024 encryption / signature verification.
No CRT, Fast implementation, W=1 Exponent=0x10001

0.07 MCycles 1.129 ms

Table 37-115. RSA2048
Operation Clock Cycles Timing One block

RSA 2048 decryption / signature generation.
No CRT, Regular implementation, W=4

21.6 MCycles 338.249 ms

RSA 2048 decryption / signature generation. With CRT, Regular implementation, W=4 6.36 MCycles 99.408 ms

RSA 2048 encryption / signature verification.
No CRT, Fast implementation, W=1 Exponent=3

0.24 MCycles 3.843 ms

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 913

...........continued
Operation Clock Cycles Timing One block

RSA 2048 encryption / signature verification.
No CRT, Fast implementation, W=1 Exponent=0x10001

0.24 MCycles 3.827 ms

Table 37-116. RSA4096
Operation Clock Cycles Timing One block

RSA 4096 Decryption / signature generation. No CRT, Regular implementation, W=1 209 MCycles 3.2742s

RSA 4096 Decryption / signature generation. With CRT, Regular implementation, W=3 46.1 MCycles 720.95 ms

RSA 4096 encryption / signature verification.
No CRT, Fast implementation, W=1 Exponent=3

0.91 MCycles 14.346 ms

RSA 4096 encryption / signature verification.
No CRT, Fast implementation, W=1 Exponent=0x10001

0.91 MCycles 14.337 ms

37.3.8.3.2 Service Timing for Prime Generation
Prime generation uses the PrimeGen service.

Table 37-117. Prime Generation
Operation Clock Cycles Timing One Block

Regular Generation of two primes, Prime_Length=512 bits, W=4, Rabin Miller
Iterations Number = 3, (average of 200 samples)

Mean = 47.4 MCycles Mean = 0.4s

Regular Generation of two primes, Prime_Length=512 bits, W=4, Rabin Miller
Iterations Number = 3, (Standard Deviation for 200 samples)

Std Dev = 30.3 Mcycles Std Dev = 0.47s

Regular Generation of two primes, Prime_Length=1024 bits, W=4, Rabin Miller
Iterations Number = 3, (average of 200 samples)

Mean = 419.71 MCycles Mean = 6.558s

Regular Generation of two primes, Prime_Length=1024 bits, W=4, Rabin Miller
Iterations Number = 3, (Standard Deviation for 200 samples)

Std Dev = 294 Mcycles Std Dev = 4.59s

Regular Generation of two primes, Prime_Length=2048 bits, W=4, Rabin Miller
Iterations Number = 3, (average of 200 samples)

Mean = 4.78 GCycles Mean = 74.68s

Regular Generation of two primes, Prime_Length=2048 bits, W=4, Rabin Miller
Iterations Number = 3, (Standard Deviation for 200 samples)

Std Dev = 3.05 GCycles Std Dev = 47.65s

37.3.8.3.3 Service Timing for ECDSA on Prime Field
In the following table, ECDSA signature generation uses the ZpEcDsaGenerateFast service and
signature verification uses ZpEcDsaQuickVerify

Table 37-118. ECDSA GF(p)
Operation Clock Cycles Timing One block

ECDSA GF(p) 256 Generate Fast 2.67 MCycles 41.864 ms

ECDSA GF(p) 256 Verify Quick W=(4,4)
Scalar in PUKCC RAM

1.84 MCycles 28.888 ms

ECDSA GF(p) 384 Generate Fast 6.18 MCycles 96.712 ms

ECDSA GF(p) 384 Verify Quick W=(4,4)
Scalar in PUKCC RAM

4.15 MCycles 64.868 ms

ECDSA GF(p) 521 Generate Fast 13.36 MCycles 208.869 ms

ECDSA GF(p) 521 Verify Quick W=(4,4)
Scalar in PUKCC RAM

8.81 MCycles 137.711 ms

37.3.8.3.4 Service Timing for ECDSA on Binary Field
In the following table, ECDSA signature generation uses the GF2NEcDsaGenerateFast service and
signature verification uses GF2NEcDsaVerifyFast

 PIC32CX-BZ2 and WBZ45 Family
Public Key Cryptography Controller (PUKCC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 914

Table 37-119. ECDSA GF(2n)
Operation CPU Cycles Timing One block

ECDSA GF(2n) B283 Generate Fast 3.21 MCycles 50.301 ms

ECDSA GF(2n) B283 Verify 6.40 MCycles 100.150 ms

ECDSA GF(2n) B409 Generate Fast 6.94 Mcycles 108.554 ms

ECDSA GF(2n) B409 Verify 13.73 Mcycles 214.571 ms

ECDSA GF(2n) B571 Generate Fast 15.08 Mcycles 235.704 ms

ECDSA GF(2n) B571 Verify 30.07 MCycles 469.972 ms

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 915

38. Analog-to-Digital Converter (ADC)
38.1 Overview

The PIC32CX-BZ2 12-bit High Speed Successive Approximation Register (SAR) Analog-to-Digital
Converter (ADC) includes the following features:

• 12-bit resolution
• One ADC module, up to 2 Msps conversion rate
• Single-ended and/or differential input
• Supported in Sleep mode
• Two digital comparators
• Two digital filters supporting two modes:

– Oversampling mode
– Averaging mode

• Designed for motor control, power conversion and general purpose applications

The PIC32CX-BZ2 has one shared ADC module. This ADC module incorporates a multiplexer on the
input to facilitate a group of inputs and provides a flexible automated scanning option through the
input scan logic.

For the ADC module, the analog inputs are connected to the Sample and Hold (S&H) capacitor. The
ADC module performs the conversion of the input analog signal based on the configurations set in
the registers. When the conversion is complete, the final result is stored in the result buffer for the
specific analog input and is passed to the digital filter and digital comparator if configured to use
data from this particular sample.

Equation 38-1. ADC Throughput RateFTP = TADTSAMP + TCONV
Where,

• TAD = The frequency of the individual ADC module.

A block diagram of the ADC module is illustrated in the following figure.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 916

Figure 38-1. ADC Block Diagram

ADC7

AVDD ADCSEL [1:0]

CONCLKDIV [5:0]

ADCDIV [6:0]
(ADCCON2 [6:0])

TAD

ADCDATA0

...

ADCDATA11

Digital Filter

Digital Comparator
Interrupt/Event

Triggers,
Scan Control Logic

Trigger

Status and Control
Registers

AN7

AN6

AN1

TCLK

SY
ST

EM
 B

US

Interrupt

Data

01 10 1100
PB2_CLK

REFCLK3

AVSS

VREFSEL[2:0]

ANN0

(ADCCON3)

(ADCCON3)

IVtest_vdd1v2 (AN9)

IVref (AN8)

IVddcore_ana (AN10)

IVpmu_test (AN11)

 1

(ADIMOD1)

(ADCCON3)
(ADINSEL[5:0])

38.2 ADC Operation
The High Speed Successive Approximation Register (SAR) ADC is designed to support power
conversion and motor control applications and consists of one shared ADC module. The shared
ADC module has multiple analog inputs connected to its S&H circuit through a multiplexer. Multiple
analog inputs share this ADC; therefore, it is termed the shared ADC module. The shared ADC
module is used to measure analog signals of lower frequencies and signals that are static in nature
(in other words, do not change significantly with time). However, this ADC module is capable of up to
2 Msps sample rate.

The analog inputs connected to the shared ADC module are Class 2 and Class 3 inputs. The
number of inputs designated for each class depends on the specific device. For the PIC32CX-BZ2, the
following arrangement is provided.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 917

• Class 2 = AN0 to AN5
• Class 3 = AN6 to AN7

The property of each class of analog input is described in the following table.

Table 38-1. Analog Input Class
ADC Module Analog Input Class Trigger Trigger Action

Shared ADC module Class 2 Individual trigger source or
scan trigger

Starts sampling sequence or begins
scan sequence

Shared ADC module with input
scan

Class 3 Scan trigger Starts scan sequence

Class 2 and Class 3 analog input properties:

• Class 2 inputs are used on the shared ADC module, either individually triggered or as part of
a scan list. When used individually, they are triggered by their unique trigger selected by the
ADCTRGx register.

• The analog inputs on the shared ADC have a natural order of priority (for example, AN6 has a
higher priority than AN7).

• Class 3 inputs are used exclusively for scanning and share a common trigger source (scan
trigger).

• Class 3 analog inputs share both the ADC module and the trigger source; therefore, the only
method possible to convert them is to scan them sequentially for each incoming scan trigger
event, where scanning occurs in the natural order of priority.

• The arrival of a trigger in the shared ADC module only starts the sampling. When the trigger
arrives, the ADC module goes into sampling mode for the sampling time decided by the
SAMC[9:0] bits (ADCCON2[25:16]). At the end of sampling, the ADC starts conversion. Upon
completion of conversion, the ADC module is used to convert the next in line Class 2 or Class 3
inputs according to the natural order of priority. When a shared analog input (Class 2 or Class 3)
has completed all conversion and no trigger is pending, the ADC module is disconnected from all
analog inputs

Figure 38-2. Sample and Conversion Sequence for Shared ADC Modules

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 918

38.2.1 Class 2 Triggering
When a single Class 2 input is triggered, it is sampled and converted by the shared S&H using the
sequence illustrated in Sample and Conversion Sequence for the Shared ADC Modules figure; see
Sample and Conversion Sequence for Shared ADC Modules figure in the ADC Operation from Related
Links. When multiple Class 2 inputs are triggered, it is important to understand the consequences
of trigger timing. If a conversion is underway and another Class 2 trigger occurs, then the sample-
hold-conversion for the new trigger is stalled until the in-process, sample-hold cycle is complete, as
shown in the following figure.

Figure 38-3. Multiple Independent Class 2 Trigger Conversion Sequence

AN1

AN2

AN1

AN2

AN1 AN1

AN1

AN2 AN2

AN2

When multiple inputs to the shared S&H are triggered simultaneously, the processing order is
determined by their natural priority (the lowest numbered input has the highest priority). As an
example, if AN1, AN2 and AN3 are triggered simultaneously, AN1 is sampled and converted first,
followed by AN2 and finally, AN3. When using the independent Class 2 triggering on the shared S&H,
the SAMC[9:0] bits (ADCCON2[25:16]) determine the sample time for all inputs while the appropriate
TRGSRC[4:0] bits in the ADCTRGx Register (see ADCTRG1 register from Related Links) determine the
trigger source for each input.

Related Links
38.11.15. ADCTRG1
38.2. ADC Operation

38.2.2 Input Scan
Input scanning is a feature that allows an automated scanning sequence of multiple Class 2 or Class
3 inputs. All Class 2 and Class 3 inputs are scanned using the single shared S&H. The selection of
analog inputs for scanning is done with the CSSx bits of the ADCCSS1 registers. Class 2 inputs are
triggered using STRIG selection in the ADCTRGx register, and Class 3 inputs are triggered using the
STRGSRC[4:0] of the ADCCON1[20:16] register. When a trigger occurs for Class 2 or Class 3 inputs,
the sampling and conversion occur in the natural input order is used; lower number inputs are
sampled before higher number inputs.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 919

Figure 38-4. Input Scan Conversion Sequence for Three Class 2 Inputs

AN1

AN1 AN2

AN2AN2AN1 AN3 AN3

AN3

When using the shared analog inputs in scan mode, the SAMC[9:0] bits in the ADC Control Register 2
(ADCCON2[25:16]) determine the sample time for all inputs, while the Scan Trigger Source Selection
bits (STRGSRC[4:0]) in the ADC Control Register 1 (ADCCON1[20:16]) determine the trigger source.

To ensure predictable results, a scan must not be retriggered until a sampling of all inputs is
complete. Ensure system design to preclude retriggering a scan while a scan is in progress.

Individual Class 2 triggers that occur during a scan preempts the scan sequence if they are a higher
priority than the sample currently being processed. In the following figure, a scan of AN5, AN6
and AN7 is underway when an independent trigger of Class 2 input AN2 takes place. The scan is
interrupted for the sampling and conversion of AN2.

Figure 38-5. Scan Conversion Pre-empted by Class 2 Input Trigger

AN5 AN6 AN6

AN6AN5

AN5

AN6

AN6
AN5

AN7

AN7 AN7

AN7

AN2

AN2AN6
AN7

AN2

AN2

AN2
AN2

AN2

38.3 ADC Module Configuration
Operation of the ADC module is directed through bit settings in the specific registers. The following
instructions summarize the actions and the settings. The options and details for each configuration
step are provided in the subsequent sections.

To configure the ADC module, perform the following steps:

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 920

1. Configure the analog port pins as described in 38.3.1. Configuring the Analog Port Pins.
2. Select the analog inputs to the ADC multiplexers as described in 38.3.2. Selecting the ADC

Multiplexer Analog Inputs.
3. Select the format of the ADC result as described in 38.3.3. Selecting the Format of the ADC

Result.
4. Select the conversion trigger source as described in 38.3.4. Selecting the Conversion Trigger

Source.
5. Select the voltage reference source as described in 38.3.5. Selecting the Voltage Reference

Source.
6. Select the scanned inputs as described in 38.3.6. Selecting the Scanned Inputs.
7. Select the analog-to-digital conversion clock source and prescaler as described in

38.3.7. Selecting the Analog-to-Digital Conversion Clock Source and Prescaler.
8. Specify any additional acquisition time (if required) as described in 38.9. ADC Sampling

Requirements.
9. Turn on the ADC module as described in 38.3.8. Turning ON the ADC.
10. Poll (or wait for the interrupt) for the voltage reference to be ready as described in

38.3.5. Selecting the Voltage Reference Source.
11. Enable the analog and bias circuit for the required ADC modules, and, after the ADC module

wakes up, enable the digital circuit as described in 38.6.3. Low-Power Mode.
12. Configure the ADC interrupts (if required) as described in 38.5. Interrupts.

38.3.1 Configuring the Analog Port Pins
The ANSELx registers for the I/O ports associated with the analog inputs are used to configure the
corresponding pin as an analog or a digital pin. A pin is configured as an analog input when the
corresponding ANSELx bit = ‘1’. When the ANSELx bit = ‘0’, the pin is set to digital control. The ANSELx
registers are set when the device comes out of Reset, causing the ADC input pins to be configured as
analog inputs by default.

The TRISx registers control the digital function of the port pins. The port pins that are required as
analog inputs must have their corresponding bit set in the specific TRISx register, configuring the pin
as an input. If the I/O pin associated with an ADC input is configured as an output by clearing the
TRISx bit, the port’s digital output level (VOH or VOL) is converted. After a device Reset, all of the TRISx
bits are set. For more information on port pin configuration, see I/O Ports and Peripheral Pin Select
(PPS) from Related Links.

Note: When reading a PORT register that shares pins with the ADC, any pin configured as an analog
input reads as ‘0’ when the PORT latch is read. Analog levels on any pin that is defined as a digital
input but not configured as an analog input, may cause the input buffer to consume the current that
exceeds the device specification.

Related Links
6. I/O Ports and Peripheral Pin Select (PPS)

38.3.2 Selecting the ADC Multiplexer Analog Inputs
The ADC module has two inputs, referred to as the positive and negative inputs. Input selection
options vary as described in the following sections.

38.3.2.1 Selection of Positive Inputs
For the shared ADC module, the positive input is shared among all Class 2 and Class 3 inputs. Input
connection of the analog input ANx to the shared ADC is automatic for either the Class 2 input
trigger or during a scan of Class 2 and or Class 3 inputs. Selecting inputs for scanning is described in
Selecting the Scanned Inputs from Related Links.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 921

Related Links
38.3.6. Selecting the Scanned Inputs

38.3.2.2 Selection of Negative Inputs
Negative input selection is determined by the setting of the DIFFx bit of the ADCIMCON1 register.
The DIFFx bit allows the inputs to be rail-to-rail and either single-ended or differential. The SIGNx
and DIFFx bits in the ADCIMCON1 register scale the internal ADC analog inputs and reference
voltages and configure the digital result to align with the expected full-scale output range.

For the shared ADC module, the analog inputs have individual settings for the DIFFx bit. Therefore,
the user has the ability to select certain inputs as single-ended and others as differential while
being connected to the same shared ADC module. While sampling, the signal changes on-the-fly as
single-ended or differential according to its corresponding DIFFx bit setting.

Table 38-2. Negative Input Selection
ADCIMCON1 Input Configuration Input Voltage Output

DIFFx SIGNx

1 1 Differential 2’s
complement

Minimum input VINP - VINN = -VREF -2048

Maximum input VINP - VINN = VREF +2047

1 0 Differential unipolar Minimum input VINP - VINN = -VREF 0

Maximum input VINP - VINN = VREF +4095

0 1 Single-ended 2’s
complement

Minimum input VINP = VREF -2048

Maximum input VINP - VINN = VREF +2047

0 0 Single-ended unipolar Minimum input VINP = VREF 0

Maximum input VINP - VINN = VREF +4095

Legend:
• VINP = Positive S&H input
• VINN = Negative S&H input
• VREF = VREFH - VREFL

Note: For proper operation and to prevent device damage, input voltage levels must not exceed the
limits listed in the Electrical Specifications.

38.3.3 Selecting the Format of the ADC Result
The data in the ADC Result register can be read in any of the four supported data formats. The user
can select from unsigned integer, signed integer, unsigned fractional or signed fractional. Integer
data is right-justified and fractional data is left-justified.
• The integer or fractional data format selection is specified globally for all analog inputs using the

Fractional Data Output Format bit, FRACT (ADCCON1[23]).
• The signed or unsigned data format selection can be independently specified for each individual

analog input using the SIGNx bits in the ADCIMCONx registers
.

The following table provides how a result is formatted.

Table 38-3. ADC Result Format
FRACT SIGNx Description 32-bit Output Data Format

0 0 Unsigned integer 0000 0000 0000 0000
0000 dddd dddd dddd

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 922

...........continued
FRACT SIGNx Description 32-bit Output Data Format

0 1 Signed integer ssss ssss ssss ssss
ssss sddd dddd dddd

1 0 Fractional dddd dddd dddd 0000
0000 0000 0000 0000

1 1 Signed fractional sddd dddd dddd dddd
0000 0000 0000 0000

The following code is an example for ADC Class 2 configuration and fractional format.

int main(int argc, char** argv) {
int result[3];

/* Configure ADCCON1 */
ADCCON1bits.FRACT = 1; // use Fractional output format ADCCON1bits.SELRES = 3; // ADC
resolution is 12 bits ADCCON1bits.STRGSRC = 0; // No scan trigger.

/* Configure ADCCON2 */
ADCCON2bits.SAMC = 5; // ADC sampling time = 5 * TAD7
ADCCON2bits.ADCDIV = 1; // ADC clock freq is half of control clock = TAD7

/* Initialize warm up time register */ ADCANCON = 0;
ADCANCONbits.WKUPCLKCNT = 5; // Wakeup exponent = 32 * TADx

/* Clock setting */ ADCCON3 = 0;
ADCCON3bits.ADCSEL = 0; // Select input clock source
ADCCON3bits.CONCLKDIV = 1; // Control clock frequency is half of input clock
ADCCON3bits.VREFSEL = 0; // Select AVDD and AVSS as reference source

/* No selection for dedicated ADC modules, no presync trigger, not sync sampling */
ADCTRGMODEbits = 0;

/* Select ADC input mode */
ADCIMCON1bits.SIGN7 = 0; // unsigned data format ADCIMCON1bits.DIFF7 = 0; // Single ended
mode ADCIMCON1bits.SIGN8 = 0; // unsigned data format ADCIMCON1bits.DIFF8 = 0; // Single
ended mode ADCIMCON1bits.SIGN9 = 0; // unsigned data format ADCIMCON1bits.DIFF9 = 0; //
Single ended mode

/* Configure ADCGIRQENx */
ADCGIRQEN1 = 0; // No interrupts are used
ADCGIRQEN2 = 0;

/* Configure ADCCSSx */
ADCCSS1 = 0; // No scanning is used
ADCCSS2 = 0;

/* Configure ADCCMPCONx */
ADCCMPCON1 = 0; // No digital comparators are used. Setting the ADCCMPCONx
ADCCMPCON2 = 0; // register to '0' ensures that the comparator is disabled.
ADCCMPCON3 = 0; // Other registers are “don't care”.
ADCCMPCON4 = 0;
ADCCMPCON5 = 0; ADCCMPCON6 = 0;

/* Configure ADCFLTRx */
ADCFLTR1 = 0; // No oversampling filters are used. ADCFLTR2 = 0;
ADCFLTR3 = 0; ADCFLTR4 = 0; ADCFLTR5 = 0; ADCFLTR6 = 0;
/* Set up the trigger sources */
ADCTRGSNSbits.LVL7 = 0; // Edge trigger ADCTRGSNSbits.LVL8 = 0; // Edge trigger
ADCTRGSNSbits.LVL9 = 0; // Edge trigger
ADC1TRG2bits.TRGSRC7 = 1; // Set AN7 to trigger from software
ADC2TRG3bits.TRGSRC8 = 1; // Set AN8 to trigger from software
ADC2TRG3bits.TRGSRC9 = 1; // Set AN9 to trigger from software
/* Early interrupt */
ADCEIEN1 = 0; // No early interrupt
ADCEIEN2 = 0;

/* Turn the ADC on */ ADCCON1bits.ON = 1;

/* Wait for voltage reference to be stable */

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 923

while(!ADCCON2bits.BGVRRDY); // Wait until the reference voltage is ready
while(ADCCON2bits.REFFLT); // Wait if there is a fault with the reference voltage

/* Enable clock to analog circuit */
ADCANCONbits.ANEN7 = 1; // Enable the clock to analog bias

/* Wait for ADC to be ready */
while(!ADCANCONbits.WKRDY7); // Wait until ADC7 is ready

/* Enable the ADC module */ ADCCON3bits.DIGEN7 = 1; // Enable ADC7

while (1) {
/* Trigger a conversion */ ADCCON3bits.GSWTRG = 1;

/* Wait the conversions to complete */
while (ADCDSTAT1bits.ARDY7 == 0);
/* fetch the result */
result[0] = ADCDATA7;

while (ADCDSTAT1bits.ARDY8 == 0);
/* fetch the result */
result[1] = ADCDATA8;

while (ADCDSTAT1bits.ARDY9 == 0);
/* fetch the result */
result[2] = ADCDATA9;

/*
* Process results here
*
* Note 1: Loop time determines the sampling time since all inputs are Class 2.
* If the loop time happens is small and the next trigger happens before the
* completion of set sample time, the conversion will happen only after the
* sample time has elapsed.
*
* Note 2: Results are in fractional format
*
*/
}
return (1);
}

38.3.4 Selecting the Conversion Trigger Source
Class 2 inputs to the ADC module can be triggered for conversion either individually or as part of a
scan sequence. Class 3 inputs can only be triggered as part of a scan sequence. Individual or scan
triggers can originate from an on-board timer or output compare peripheral event, from external
digital circuits connected to INT0, from external analog circuits connected to an analog comparator
or through software by setting a trigger bit in an SFR.

Note: When conversion triggers for multiple Class 2 analog inputs occur simultaneously, they are
prioritized according to a natural order priority scheme based on the analog input used. AN6 has the
highest priority, AN7 has the next highest priority and so on.

38.3.4.1 Trigger Selection Class 2 Inputs
For each one of the Class 2 inputs, the user application can independently specify a conversion
trigger source. The individual trigger source for an analog input ‘x’ is specified by the TRGSRC[4:0]
bits located in registers ADCTRG1 through ADCTRG3. For example, these trigger sources may
include:

• General Purpose (GP) Timers: When a period match occurs for the 32-bit timer, Timer3/2 or
Timer5/4, or the 16-bit Timer1, Timer3 or Timer5, a special ADC trigger event signal is generated
by the timer. This feature does not exist for other timers. For more information, see Timer/
Counter (TC) from Related Links.

• Output Compare: The Output Compare peripherals, OC1, OC3 and OC5, can be used to generate
an ADC trigger, then the output transitions from a low to high state. For more information, see
Timer/Counter (TC) from Related Links.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 924

• Comparators: The analog Comparators can be used to generate an ADC trigger when the output
transitions from a low state to a high state. For more information, see Digital Comparator from
Related Links.

• External INT0 Pin Trigger: In this mode, the ADC module starts a conversion on an active
transition on the INT0 pin. The INT0 pin may be programmed for either a rising edge input or a
falling edge input to trigger the conversion process.

• Global Software Trigger: The ADC module can be configured for manually triggering a
conversion for all inputs that have selected this trigger option. The user can manually trigger
a conversion by setting the Global Software Trigger bit, GSWTRG (ADCCON3[6]).

Related Links
38.4.1. Digital Comparator
40. Timer/Counter (TC)

38.3.4.2 Conversion Trigger Sources and Control
The following are the possible sources for each trigger signal:

• External trigger selection through the TRGSRCx[4:0] bits in the ADCTRGx registers. This capability
is supported only for Class 2 analog inputs. Typically, the user specifies a particular trigger
source to initiate a conversion for specific input. All of the analog inputs may select the same
trigger source if desired. In such an event, the result resembles a “scanned conversion”, which
has its order of completion enforced by the priority of the inputs associated with the same
trigger source. The first trigger selection is 00000 (no trigger), which amounts to temporarily
disabling that particular trigger and, consequently, temporarily disabling that analog input
from being converted. The next two selections for trigger source (GSWTRG and GLSWTRG)
are software-generated trigger sources. The second software-generated trigger selection is the
Global Software Trigger (GSWTRG). This trigger links to the GSWTRG bit in the ADCCON3 register,
which may be used to enable the user application to initiate a single conversion. GSWTRG is a
self-clearing bit; therefore, it clears itself on the next ADC clock cycle after being set by the user
application. The third software-generated trigger selection is the Global Level Software Trigger
(GLSWTRG), which is linked to the GLSWTRG bit in the ADCCON3 register. This trigger may be
used by the user application to initiate a burst of consecutive samples as the GLSWTRG bit is not
self-clearing. The fourth trigger selection is a special selection, the Scan Trigger selection, which
allows the Class 2 analog inputs to be included as members of a global scan of all inputs.

• Scanned trigger selection via the STRGSRC[4:0] bits in the ADCCON1 register and select bits in
the ADCCSS1 registers. This mode is typically used to initiate the conversion of a group of analog
inputs. This capability works for 2 and 3 analog inputs but is typically used for Class 3 inputs
because they do not have individual associated TRGSRC bits. One of the trigger selections is the
GSWTRG bit in the ADCCON3 register, which may be used to enable the user software to initiate a
conversion.

• User initiated trigger via the ADINSEL[5:0] bits and the RQCNVRT bit in the ADCCON3 register.
This mode enables the user application to create an individual conversion trigger request for a
specified analog input. Using this mode enables the user application to trigger the conversion of
an input without changing the trigger source configuration of the ADC. This is useful in handling
error situations where another software module wants ADC information without disrupting the
normal operation of the ADC. This is also the preferred method to generate the initial trigger to
start a digital filter sequence.

• User-controlled sampling of Class 2 and Class 3 inputs via the ADINSEL[5:0] bits and the SAMP
bit in the ADCCON3 register. Setting the SAMP bit causes the Class 2 and Class 3 inputs to be
in Sampling mode while ignoring the selection of the SAMC[9:0] bits. This mode is also useful in
software conversion of ADC with software-selectable sample time.

• External module (such as PTG) may specify an analog input for conversion via the setting of the
ECRIEN bit in the ADCCON2 register. This method operates independently of the normal TRGSRC

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 925

and STRGSRC methods. External modules may still use individual trigger signals and initiate
conversions via the normal TRGSRC and STRGSRC methods.

38.3.4.3 User-Requested Individual Conversion Trigger (Software ADC Conversion) (Only for Class 2
and Class 3 Inputs)
The user can explicitly request a single conversion (by software) of any selected analog input at any
time during program execution without changing the trigger source configuration of the ADC.

The steps to be followed for conversion are as follows:
1. The analog input ID to be converted is specified by the ADC Input Select bits, ADINSEL[5:0]

(ADCCON3[5:0]).
2. The sampling of analog input is started by setting the SAMP bit (ADCCON3[9]).
3. After the required sampling time (time delay), the SAMP bit is cleared.
4. The conversion of sampled signal is started by setting the RQCNVRT bit (ADCCON3[8]).
5. Once the conversion is complete, the ARDYx bit of the ADCDSTATx register is set. The data can be

read from the ADCDATAx register.

The following figure illustrates the conversion process in graphical form.

Figure 38-6. Individual Conversion Trigger Process

AN6 AN7

AN6 AN6 AN7AN7

AN7AN6

38.3.5 Selecting the Voltage Reference Source
The user application can select the voltage reference for the ADC module, which can be internal
or external. The Voltage Reference Input Selection bits, VREFSEL[2:0] (ADCCON3[15:13]), select the
voltage reference for analog-to-digital conversions. The upper voltage reference (VREFH) and the
lower voltage reference (VREFL) may be the internal AVDD and AVSS voltage rails or the band gap
reference generator or the external VREFH+ and VREF- input pins. When the voltage reference and
band gap reference are ready, the BGVRRDY (ADCCON2[31]) bit is set. If a Fault occurs in the voltage

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 926

reference (such as a brown-out), the REFFLT bit (ADCCON2[30]) is set. The BGVRRDY and REFFLT bits
can also generate interrupts if the BGVRIEN bit (ADCCON2[15]) and REFFLTIEN bit (ADCCON2[14]) are
set, respectively.

The voltages applied to the external reference pins must comply with certain specifications. See
Electrical Characteristics from Related Links.

The Analog Input Charge Pump Enable bit, AICPMPEN (ADCCON1[12]), must be set when the
difference between the selected reference voltages (VREFH - VREFL) is less than 0.65 * (AVDD - AVSS).
Setting this bit does not increase the magnitude of the reference voltage; however, setting this
bit reduces the series source resistance to the sampling capacitors. This maximizes the SNR for
analog-to-digital conversions using small reference voltage rails.

Related Links
43. Electrical Characteristics

38.3.6 Selecting the Scanned Inputs
All available analog inputs can be configured for scanning. Class 2 and Class 3 inputs are sampled
using the shared ADC module. A single conversion trigger source is selected for all of the inputs
selected for scanning using the STRGSRC[4:0] bits (ADCCON1[20:16]). On each conversion trigger,
the ADC module starts converting (in the natural priority) all inputs specified in the user-specified
scan list (ADCCSS1 or ADCCSS2). For Class 2 and Class 3 inputs, the trigger initiates a sequential
sample/conversion process in the natural priority order.

An analog input belongs to the scan if it is:
• A Class 3 input. For Class 3 inputs, scan is the only mechanism for conversion.
• A Class 2 input that has the scan trigger selected as the trigger source by selecting the STRIG

option in the TRGSRCx[4:0] bits located in the ADCTRG1 through ADCTRG8 registers.

The trigger options available for scan are identical to those available for independent triggering of
Class 2 inputs. Any Class 2 inputs that are part of the scan must have the STRIG option selected as
their trigger source in the TRGSRCx[4:0] bits.

Note: The end-of-scan (EOS) is generated only if the last shared input conversion has completed.
Until this condition is met, the scan sequence is still in effect. Therefore, the EOS Interrupt can be
used for any scan sequence with any combination of input types.

The following code is an example for ADC scanning multiple inputs.

int main(int argc, char** argv) {
int result[3];

/* Configure ADCCON1 */
ADCCON1 = 0; // No ADCCON1 features are enabled including: Stop-in-Idle, turbo,
// CVD mode, Fractional mode and scan trigger source. ADCCON1bits.SELRES = 3; // ADC7
resolution is 12 bits
ADCCON1bits.STRGSRC = 1; // Select scan trigger.

/* Configure ADCCON2 */
ADCCON2bits.SAMC = 5; // ADC7 sampling time = 5 * TAD7
ADCCON2bits.ADCDIV = 1; // ADC7 clock freq is half of control clock = TAD7

/* Initialize warm up time register */ ADCANCON = 0;
ADCANCONbits.WKUPCLKCNT = 5; // Wakeup exponent = 32 * TADx

/* Clock setting */
ADCCON3bits.ADCSEL = 0; // Select input clock source
ADCCON3bits.CONCLKDIV = 1; // Control clock frequency is half of input clock
ADCCON3bits.VREFSEL = 0; // Select AVDD and AVSS as reference source

ADC0TIMEbits.ADCDIV = 1; // ADC0 clock frequency is half of control clock = TAD0
ADC0TIMEbits.SAMC = 5; // ADC0 sampling time = 5 * TAD0
ADC0TIMEbits.SELRES = 3; // ADC0 resolution is 12 bits

/* Select analog input for ADC modules, no presync trigger, not sync sampling */

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 927

ADCTRGMODEbits.SH0ALT = 0; // ADC0 = AN0

/* Select ADC input mode */
ADCIMCON1bits.SIGN0 = 0; // unsigned data format ADCIMCON1bits.DIFF0 = 0; //
Single ended mode ADCIMCON1bits.SIGN8 = 0; // unsigned data format ADCIMCON1bits.DIFF8
= 0; // Single ended mode ADCIMCON1bits.SIGN40 = 0; // unsigned data format
ADCIMCON1bits.DIFF40 = 0; // Single ended mode

/* Configure ADCGIRQENx */
ADCGIRQEN1 = 0; // No interrupts are used. ADCGIRQEN2 = 0;

/* Configure ADCCSSx */
ADCCSS1 = 0; // Clear all bits
ADCCSS2 = 0;
ADCCSS1bits.CSS0 = 1; // AN0 (Class 1) set for scan ADCCSS1bits.CSS8 = 1; //
AN8 (Class 2) set for scan ADCCSS2bits.CSS40 = 1; // AN40 (Class 3) set for scan

/* Configure ADCCMPCONx */
ADCCMPCON1 = 0; // No digital comparators are used. Setting the ADCCMPCONx
ADCCMPCON2 = 0; // register to '0' ensures that the comparator is disabled.
ADCCMPCON3 = 0; // Other registers are ‘don't care’.
ADCCMPCON4 = 0;
ADCCMPCON5 = 0; ADCCMPCON6 = 0;

/* Configure ADCFLTRx */
ADCFLTR1 = 0; // No oversampling filters are used. ADCFLTR2 = 0;
ADCFLTR3 = 0; ADCFLTR4 = 0; ADCFLTR5 = 0; ADCFLTR6 = 0;
/* Set up the trigger sources */
ADCTRG1bits.TRGSRC0 = 3; // Set AN0 (Class 1) to trigger from scan source
ADCTRG3bits.TRGSRC8 = 3; // Set AN8 (Class 2) to trigger from scan source
// AN40 (Class 3) always uses scan trigger source

/* Early interrupt */
ADCEIEN1 = 0; // No early interrupt
ADCEIEN2 = 0;

/* Turn the ADC on */ ADCCON1bits.ON = 1;

/* Wait for voltage reference to be stable */
while(!ADCCON2bits.BGVRRDY); // Wait until the reference voltage is ready
while(ADCCON2bits.REFFLT); // Wait if there is a fault with the reference voltage

/* Enable clock to analog circuit */
ADCANCONbits.ANEN0 = 1; // Enable the clock to analog bias ADC0
ADCANCONbits.ANEN7 = 1; // Enable, ADC7

/* Wait for ADC to be ready */
while(!ADCANCONbits.WKRDY0); // Wait until ADC0 is ready while(!
ADCANCONbits.WKRDY7); // Wait until ADC7 is ready

/* Enable the ADC module */
ADCCON3bits.DIGEN0 = 1; // Enable ADC0
ADCCON3bits.DIGEN7 = 1; // Enable ADC7

while (1) {
/* Trigger a conversion */ ADCCON3bits.GSWTRG = 1;

/* Wait the conversions to complete */
while (ADCDSTAT1bits.ARDY0 == 0);
/* fetch the result */
result[0] = ADCDATA0;

while (ADCDSTAT1bits.ARDY8 == 0);
/* fetch the result */
result[1] = ADCDATA8;

while (ADCDSTAT2bits.ARDY40 == 0);
/* fetch the result */
result[2] = ADCDATA40;

/*
* Process results here
*
*
*/
}

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 928

return (1);
}

38.3.7 Selecting the Analog-to-Digital Conversion Clock Source and Prescaler
The ADC module can use the internal Fast RC (FRC) oscillator output, system clock (SYSCLK),
reference clock (REFCLK3) or peripheral bus clock (PBCLK) as the conversion clock source (TQ). See
ADCCON3 register from Related Links.

When the ADCSEL[1:0] bits (ADCCON2[31:30]) = ‘01’, the internal FRC oscillator is used as the ADC
clock source. When using the internal FRC oscillator, the ADC module can continue to function in
Sleep and Idle modes.

Note: It is recommended that applications that require precise timing of ADC acquisitions use
SYSCLK as the clock source for the ADC.

For correct analog-to-digital conversions, the conversion clock limits must not be exceeded. Clock
frequencies from 1 MHz to 28 MHz are supported by the ADC module.

The maximum rate that analog-to-digital conversions may be completed by the ADC module
(effective conversion throughput) is 2 Msps. However, the maximum rate that a single input can be
converted is dependent on the sampling time requirements. In addition, the sampling time depends
on the output impedance of the analog signal source. For more information on sampling time, see
ADC Sampling Requirements from Related Links.

The input clock source for the ADC is selected using the ADCSEL[1:0] bits (ADCCON3[31:30]). The
input clock is further divided by the control clock divider CONCLKDIV[5:0] bits (ADCCON3[29:24]).
The output clock is called the “ADC control clock” with a time period of TQ.

The ADC control clock is divided by the ADCDIV[6:0] bits (ADCxTIME[22:16]). This acts as the clock
source for the respective dedicated ADC modules with a time period of TADX.

The ADC control clock is divided before it is used for the shared ADC by the ADCDIV[6:0] bits
(ADCCON2[6:0]). The time period for this clock is denoted as TAD7.

Figure 38-7. Clock Derivation for Shared ADC Modules

Equation 38-2. Sample Time for the Shared ADC ModuletSAMC = ADCCON2 < 25: 16 > TADtconversion = 2 + ADCCON2 < 22: 21 > TAD
Related Links
38.11.4. ADCCON3
38.9. ADC Sampling Requirements

38.3.8 Turning ON the ADC
Turning ON the ADC module involves the following procedure.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 929

When the ADC module enable bit, ON (ADCCON1[15]), is set to ‘1’, the module is in Active mode and
is fully powered and functional. When the ON bit is ‘0’, the ADC module is disabled. Once disabled,
the digital and analog portions of the ADC are turned off for maximum current savings. In addition
to setting the ON bit, the analog and digital circuits of ADC must be turned ON. See Low-power Mode
from Related Links.

Note: Writing to the ADC control bits that control the ADC clock, input assignments, scanning,
voltage reference selection, S&H circuit operating modes and interrupt configuration is not
recommended while the ADC module is enabled.

Related Links
38.6.3. Low-Power Mode

38.3.9 ADC Status Bits
The ADC module includes the WKRDYx/WKRDY7 status bit in the ADCANCON register, which
indicates the current state of ADC Analog and bias circuit. The user application must not perform
any ADC operations until this bit is set.

38.4 Additional ADC Functions
This section describes some additional features of the ADC module, which includes:
• Digital comparator
• Oversampling filter

38.4.1 Digital Comparator
The ADC module features digital comparators that can be used to monitor selected analog
input conversion results and generate interrupts when a conversion result is within the user-
specified limits. Conversion triggers are still required to initiate conversions. The comparison
occurs automatically once the conversion is complete. This feature is enabled by setting the Digital
Comparator Module Enable bit, ENDCMP (ADCCMPCONx[7]).

The user application makes use of an interrupt that is generated when the analog-to-digital
conversion result is higher or lower than the specified high and low limit values in the ADCCMPx
register. The high and low limit values are specified in the DCMPHI[15:0] bits (ADCCMPx[31:16]) and
the DCMPLO[15:0] bits (ADCCMPx[15:0]).

The CMPEx bits (‘x’ = 0 through 31) in the ADCCMPENx registers are used to specify which analog
inputs are monitored by the digital comparator (for the first 8 analog inputs, ANx, where ‘x’ =
0 through 31). The ADCCMPCONx register specifies the comparison conditions that generates an
interrupt, as follows:
• When IEBTWN = 1, an interrupt is generated when DCMPLO ≤ ADCDATA < DCMPHI

• When IEHIHI = 1, an interrupt is generated when DCMPHI ≤ ADCDATA

• When IEHILO = 1, an interrupt is generated when ADCDATA < DCMPHI

• When IELOHI = 1, an interrupt is generated when DCMPLO ≤ ADCDATA

• When IELOLO = 1, an interrupt is generated when ADCDATA < DCMPLO

The comparator event generation is illustrated in the following figure. When the ADC module
generates a conversion result, the conversion result is provided to the comparator. The comparator
uses the DIFFx and SIGNx bits of the ADCIMCONx register (depending on the analog input used)
to determine the data format used and to appropriately select whether the comparison must be
signed or unsigned. The global ADC setting, which is specified by the FRACT bit (ADCCON1[23]), is
also used to set the fractional or integer format. The digital comparator compares the ADC result
with the high and low limit values (depending on the selected comparison criteria) in the ADCCMPx
register.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 930

Depending on the comparator results, a digital comparator interrupt event may be generated.
If a comparator event occurs, the Digital Comparator Interrupt Event Detected status bit,
DCMPED (ADCCMPCONx[5]), is set, and the Analog Input Identification (ID) bits, AINID[4:0]
(ADCCMPCONx[12:8]), are automatically updated so that the user application knows which analog
input generated the interrupt event.

Note: The user software must format the values contained in the ADCCMPx registers to match
converted data format as either signed or unsigned, and fractional or integer.

Figure 38-8. Digital Comparator

The following code is an example for ADC digital comparator.

int main(int argc, char** argv) {
int result = 0, eventFlag = 0;

/* Configure ADCCON1 */
ADCCON1 = 0; // No ADCCON1 features are enabled including: Stop-in-Idle,
// turbo, CVD mode, Fractional mode and scan trigger source. ADCCON1bits.SELRES = 3; //
ADC resolution is 12 bits
ADCCON1bits.STRGSRC = 0; // No scan trigger.

/* Configure ADCCON2 */
ADCCON2bits.SAMC = 5; // ADC7 sampling time = 5 * TAD7
ADCCON2bits.ADCDIV = 1; // ADC7 clock freq = TAD7

/* Initialize warm up time register */ ADCANCON = 0;

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 931

/* No selection for dedicated ADC modules, no presync trigger, not sync sampling */
ADCTRGMODEbits = 0;

/* Select ADC input mode */
ADCIMCON1bits.SIGN8 = 0; // unsigned data format
ADCIMCON1bits.DIFF8 = 0; // Single ended mode

/* Configure ADCGIRQENx */
ADCGIRQEN1 = 0; // No interrupts are used
ADCGIRQEN2 = 0;

/* Configure ADCCSSx */
ADCCSS1 = 0; // No scanning is used
ADCCSS2 = 0;

/* Configure ADCCMPCONx */
ADCCMP1 = 0; // Clear the register ADCCMP1bits.DCMPHI = 0xC00; // High
limit is a 3072 result. ADCCMP1bits.DCMPLO = 0x500; // Low limit is a 1280 result.
ADCCMPCON1bits.IEBTWN = 1; // Create an event when the measured result is
// >= low limits and < high limit. ADCCMPEN1 = 0; // Clear all enable bits
ADCCMPEN1bits.CMPE8 = 1; // set the bit corresponding to AN8
ADCCMPCON1bits.ENDCMP = 1; // enable comparator
ADCCMPCON2 = 0; ADCCMPCON3 = 0; ADCCMPCON4 = 0; ADCCMPCON5 = 0; ADCCMPCON6 = 0;

/* Configure ADCFLTRx */
ADCFLTR1 = 0; // No oversampling filters are used. ADCFLTR2 = 0;
ADCFLTR3 = 0; ADCFLTR4 = 0; ADCFLTR5 = 0; ADCFLTR6 = 0;
/* Set up the trigger sources */
ADCTRG3bits.TRGSRC8 = 3; // Set AN8 (Class 2) to trigger from scan source

/* Early interrupt */
ADCEIEN1 = 0; // No early interrupt
ADCEIEN2 = 0;

/* Turn the ADC on */ ADCCON1bits.ON = 1;

/* Wait for voltage reference to be stable */
while(!ADCCON2bits.BGVRRDY); // Wait until the reference voltage is ready
while(ADCCON2bits.REFFLT); // Wait if there is a fault with the reference voltage

/* Enable clock to analog circuit */
ADCANCONbits.ANEN7 = 1; // Enable the clock to analog bias

/* Wait for ADC to be ready */
while(!ADCANCONbits.WKRDY7); // Wait until ADC7 is ready

/* Enable the ADC module */
ADCCON3bits.DIGEN7 = 1; // Enable ADC7

while (1) {
/* Trigger a conversion */ ADCCON3bits.GSWTRG = 1;

while (ADCDSTAT1bits.ARDY8 == 0);
/* fetch the result */
result = ADCDATA8;

/* Note: It is not necessary to fetch the result for the digital
* comparator to work. In this example we are triggering from
* software so we are using the ARDY8 to gate our loop. Reading the
* data clears the ARDY bit.
*/
/* See if we have a comparator event*/
if (ADCCMPCON1bits.DCMPED == 1) {
eventFlag = 1;
/*
* Process results here
*/
}
}

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 932

return (1);
}

38.4.2 Oversampling Digital Filter
The ADC module supports two oversampling digital filters. The oversampling digital filter consists
of an accumulator and a decimator (down-sampler), which function together as a low-pass filter. By
sampling an analog input at a higher-than-required sample rate, then processing the data through
the oversampling digital filter, the effective resolution of the ADC module can be increased at the
expense of decreased conversion throughput.

To obtain ‘x’ bits of extra resolution, the number of samples required (over and above the Nyquist
rate) = (2x)2:
• 4x oversampling yields one extra bit of resolution (total 13 bits resolution)
• 16x oversampling yields two extra bits of resolution (total 14 bits resolution)
• 64x oversampling provides three extra bits of resolution (total 15 bits resolution)
• 256x oversampling provides four extra bits of resolution (total 16 bits resolution)

The digital filter also has an averaging mode, where it accumulates the samples and divides it by the
number of samples.

Note: 
1. Only Class 2 analog inputs can engage the digital filter. Therefore, the CHNLID[2:0] bits are 3 bits

wide (0 to 7).
2. During the burst conversion process (repeated trigger until all required data for oversampling is

obtained), in the case of filtering Class 2 input using the shared ADC module, higher priority ADC
inputs may still process conversions; lower priority ADC conversion requests are held waiting
until the filter burst sequence is completed.

3. If higher priority requests occur during the digital filter sequence, they delay the completion
of the filtering process. This delay may affect the accuracy of the result because the multiple
samples cannot be contiguous. The user must arrange the initiation trigger for the oversampling
filters to occur while there are no expected interruptions from higher priority ADC conversion
requests.

The user application must configure the following bits to perform an oversampling conversion:
• Select the amount of oversampling through the Oversampling Filter Oversampling Ratio

(OVRSAM[2:0]) bits in the ADC Filter register (ADCFLTRx[28:26]).
• Set the filter mode to either Oversampling mode or Averaging mode using the DFMODE

bit(ADCFLTRx[29]).
• If the filter is set to Averaging mode and the data format is set to fractional (FRACT bit), set or

clear the DATA16EN bit (ADCFLTRx[30]) to set the output resolution.
• Set the sample time for subsequent samples:

– If using Class 2 inputs, select the sample time using the SAMC[9:0] bits (ADC- CON2[25:16]).
• Select the specific analog input to be oversampled by configuring the Analog Input ID Selection

bits, CHNLID[4:0] (ADCFLTRx[20:16]).
• If needed, include the oversampling filter interrupt event in the global ADC interrupt by setting

the Accumulator Filter Global Interrupt Enable bit, AFGIEN (ADCFLTRx[25]).
• Enable the oversampling filter by setting the Oversampling Filter Accumulator Enable bit, AFEN

(ADCFLTRx[31]).

When the digital filter module is configured, the filter’s control logic waits for an external trigger
to initiate the process. The trigger signal for the analog input to be oversampled causes the
accumulator to be cleared and initiates the first conversion. The trigger also forces the trigger
sensitivity into level mode and forces the trigger itself to 1 as long as the filter needs to acquire

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 933

the user-specified number of samples via the OVRSAM[2:0] bits (ADCFLTRx[28:26]). The time
delay between each acquired sample is decided by the set sample time in the SAMC[9:0] bits
in the ADCCON2 register for Class 2 and the time for conversion. When the required number
set by OVRSAM[2:0] are received and processed, the data stored in the FLTRDATA[15:0] bit
(ADCFLTRx[15:0]) and the AFRDY bit (ADCFLTRx[24]) is set and the interrupt is generated (if enabled).

The following figure illustrates 4x oversampling using a Class 2 input. Triggering a Class 2 input
initiates sampling for the length of time defined by the SAMC[9:0] bits. Retriggers generated by the
oversampling logic use the SAMC[9:0] bits to set the sample time.

Class 2 inputs use the shared S&H; therefore, oversampling blocks lower priority Class 2 and Class 3
triggers. Higher priority Class 2 triggers completely disrupt the oversampling process; therefore, they
must be avoided completely. The same priority rule applies to two Class 2 inputs that use two digital
filters. In such a case, the higher priority input also uses the shared ADC module in Burst mode
and prevents the lower priority input from using the shared ADC. Only after all required samples
are obtained by the higher priority input can the lower priority input use the shared ADC to acquire
samples for its own digital filtering.

Figure 38-9. 4x Oversampling of a Class 2 Input

The following code is an example for ADC digital oversampling filter.

int main(int argc, char** argv) {
int result;

/* Configure ADCCON1 */
ADCCON1 = 0; // No ADCCON1 features are enabled including: Stop-in-Idle, turbo,
// CVD mode, Fractional mode and scan trigger source.

/* Configure ADCCON2 */
ADCCON2 = 0; // Since, we are using only the Class 1 inputs, no setting is
// required for ADCDIV

/* Initialize warm up time register */ ADCANCON = 0;
ADCANCONbits.WKUPCLKCNT = 5; // Wake-up exponent = 32 * TADx

/* Clock setting */ ADCCON3 = 0;
ADCCON3bits.ADCSEL = 0; // Select input clock source
ADCCON3bits.CONCLKDIV = 1; // Control clock frequency is half of input clock
ADCCON3bits.VREFSEL = 0; // Select AVDD and AVSS as reference source

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 934

ADC0TIMEbits.ADCDIV = 1; // ADC0 clock frequency is half of control clock = TAD0
ADC0TIMEbits.SAMC = 5; // ADC0 sampling time = 5 * TAD0
ADC0TIMEbits.SELRES = 3; // ADC0 resolution is 12 bits

/* Select analog input for ADC modules, no presync trigger, not sync sampling */
ADCTRGMODEbits.SH0ALT = 0; // ADC0 = AN0

/* Select ADC input mode */
ADCIMCON1bits.SIGN0 = 0; // unsigned data format
ADCIMCON1bits.DIFF0 = 0; // Single ended mode

/* Configure ADCGIRQENx */
ADCGIRQEN1 = 0; // No interrupts are used
ADCGIRQEN2 = 0;

/* Configure ADCCSSx */
ADCCSS1 = 0; // No scanning is used
ADCCSS2 = 0;
/* Configure ADCCMPCONx */
ADCCMPCON1 = 0; // No digital comparators are used. Setting the ADCCMPCONx
ADCCMPCON2 = 0; // register to '0' ensures that the comparator is disabled.
ADCCMPCON3 = 0; // Other registers are ‘don't care’.
ADCCMPCON4 = 0; ADCCMPCON5 = 0; ADCCMPCON6 = 0;

/* Configure ADCFLTRx */
ADCFLTR1 = 0; // Clear all bits ADCFLTR1bits.CHNLID = 0; // Use AN0 as
the source ADCFLTR1bits.OVRSAM = 3; // 16x oversampling ADCFLTR1bits.DFMODE = 0; //
Oversampling mode ADCFLTR1bits.AFEN = 1; // Enable filter 1
ADCFLTR2 = 0; // Clear all bits
ADCFLTR3 = 0; ADCFLTR4 = 0; ADCFLTR5 = 0; ADCFLTR6 = 0;

/* Set up the trigger sources */ ADCTGSNSbits.LVL0 = 0; // Edge trigger
ADCTRG1bits.TRGSRC0 = 1; // Set AN0 to trigger from software.

/* Turn the ADC on */ ADCCON1bits.ON = 1;

/* Wait for voltage reference to be stable */
while(!ADCCON2bits.BGVRRDY); // Wait until the reference voltage is ready
while(ADCCON2bits.REFFLT); // Wait if there is a fault with the reference voltage

/* Enable clock to analog circuit */
ADCANCONbits.ANEN0 = 1; // Enable the clock to analog bias and digital control

/* Wait for ADC to be ready */
while(!ADCANCONbits.WKRDY0); // Wait until ADC0 is ready

/* Enable the ADC module */ ADCCON3bits.DIGEN0 = 1; // Enable ADC0

while (1) {
/* Trigger a conversion */ ADCCON3bits.GSWTRG = 1;

/* Wait for the oversampling process to complete */
while (ADCFLTR1bits.AFRDY == 0);
/* fetch the result */
result = ADCFLTR1bits.FLTRDATA;

/*
* Process result Here
*
* Note 1: Loop time determines the sampling time for the first sample.
* remaining samples sample time is determined by set sampling + conversion time.
*
* Note 2: The first 5 samples may have reduced accuracy.
*
*/
}
return (1);
}

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 935

Figure 38-10. ADC Filter Comparisons Example

38.5 Interrupts
The ADC module supports interrupts triggered from a variety of sources that can be processed
individually or globally. An early interrupt feature is also available to compensate for interrupt
servicing latency.

After an enabled interrupt is generated, the CPU jumps to the vector assigned to that interrupt. The
CPU begins executing code at the vector address. The user software at this vector address must
perform the required operations, such as processing the data results, clearing the interrupt flag,
then exiting. See Nested Vector Interrupt Controller (NVIC) from Related Links for more information on
interrupts and the vector address table details.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

38.5.1 Interrupt Sources
The ADC is capable of generating interrupts from the events listed in the following table.

Table 38-4. ADC Interrupt Sources
Interrupt Event Description Interrupt Enable Bit Interrupt Status Bit

ANx Data Ready Event Interrupt is generated upon a completion of a
conversion from an analog input source (ANx).
Each of the ARDYx bits is capable of generating
a unique interrupt when set using the ADCBASE
register.

AGIENx of
ADCGIRQEN1

ARDYx of ADCDSTAT1
register

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 936

...........continued
Interrupt Event Description Interrupt Enable Bit Interrupt Status Bit

Digital Comparator Event When an conversion's comparison criteria are
met by a configured and enabled digital
comparator. Each of the digital comparators is
capable of generating a unique interrupt when
its DCMPED bit is set.

DCMPGIEN of
ADCCMPCONx
register

DCMPED of
ADCCMPCONx register

Oversampling Filter Data
Ready Event

When an oversampling filter has completed the
accumulation/decimation process and has stored
the result.

AFGIEN of ADCFLTRx
register

AFRDY of ADCFLTRx
register

Both Band Gap Voltage
and ADC Reference
Voltage Ready Event

Interrupt is generated when both band gap
voltage and ADC reference voltage are ready.

BGVRIEN of ADCCON2
register

BGVRRDY of ADCCON2
register

Band Gap Fault/
Reference Voltage Fault/
AVDD Brown-out Fault
Event

Interrupt is generated when Band Gap Fault/
Reference Voltage Fault/AVDD Brown-out occurs.

REFFLTIEN of
ADCCON2 register

REFFLT of ADCCON2
register

ADC Module Wake-up
Event

Interrupt is generated when ADC wakes up after
being enabled.

WKIEN0 of
ADCANCON register

WKRDY0
of ADCANCON
register

Update Ready Event Interrupt is generated when ADC SFRs are ready
to be (and can be safely) updated with new
values.

UPDIEN of ADCCON3
register

UPDRDY of ADCCON3
register

38.5.2 ADC Base Register (ADCBASE) Usage
After conversion of ADC is complete, if the interrupt is vectored to a function that is common to all
analog inputs, it takes some significant time to find the ADC input by evaluating the ARDYx bits in
the ADCDSTATx. To avoid this time spent, the ADCBASE register is provided, which contains the base
address of the user’s ADC ISR jump table. When read, the ADCBASE register provides a sum of the
contents of the ADCBASE register plus an encoding of the ARDYx bits set in the ADCDSTATx registers.
This use of the ADCBASE register supports the creation of an interrupt vector address that can be
used to improve the performance of an ISR.

The ARDYx bits are binary priority encoded with ARDY1 being the highest priority and ARDY8 being
the lowest priority. The encoded priority result is, then, shifted left the amount specified by the
number of bit positions specified by the IRQVS[2:0] bits in the ADCCON1 register, then added to the
contents of the ADCBASE register. If there are no ARDYx bits set, then reading the ADCBASE register
equals the value written into the ADCBASE register.

The ADCBASE register is typically loaded with the base address of a jump table that contains the
address of the appropriate ISR. The kth interrupt request is enabled via the AGIENx bit (1-8) in one of
ADCGIRQENx SFRs (‘x’ = 1 or 2).

The following codes are examples for the ADCBASE register usage.

Case 1:

ADCBASE = 0x1234; // Set the address
ADCCON1bits.IRQVS = 2; // left shift by 2
ADCGIRQEN1bits.AGIEN0 = 1; // enable interrupt when AN0 completion is done.

When the ADC conversion for AN0 is complete, bit 0 of ADCDSTAT1 = ARDY0 is set.

Read value of ADCBASE = 0x1234 + (0 << 2) = 0x1234.

Therefore, the ISR must be placed at address 0x1234 for AN0.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 937

Case 2:

ADCBASE = 0x1234; // Set the address
ADCCON1bits.IRQVS = 2; // left shift by 2
ADCGIRQEN1bits.AGIEN0 = 2; // enable interrupt when AN2 completion is done.

When the ADC conversion for AN2 is complete, bit 2 of ADCDSTAT1 = ARDY2 is set.

Read value of ADCBASE = 0x1234 + (2 << 2) = 0x123C.

Therefore, the ISR must be placed at address 0x123C for AN2.

Note: The contents of the ADCBASE register are not altered. Summation is performed when the
ADCBASE register is read and the summation result is the returned read value from the ADCBASE
SFR.

38.5.3 Interrupt Enabling, Priority and Vectoring
Each of the ADC events previously mentioned generates an interrupt when its associate Interrupt
Enable bit, IE, is set. Each of the ADC events previously listed also has an associated interrupt vector.
See Nested Vector Interrupt Controller (NVIC) from Related Links for more information on the vector
location and control/status bits associated with each individual interrupt.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

38.5.4 Individual and Global Interrupts
The use of the individual interrupts previously listed can significantly optimize the servicing of
multiple ADC events by keeping each ISR focused on efficiently handling a specific event. In addition,
different ISRs can be easily segregated according to the tasks performed, thereby making user
software easier to implement and maintain. There may be cases where it is desirable to have a
single ISR service multiple interrupt events. To facilitate this, each ADC event can be logically “ORed”
to create a single global ADC interrupt. When an ADC event is enabled for a global interrupt, it
vectors to a single interrupt routine. It is the responsibility of this single global ISR to determine the
source of the interrupt through polling and process it accordingly.

Use of the Global Interrupt requires configuration of its own unique IE, IF, IP and IS bits as well as
configuration of its interrupt vector as described in Interrupt Enabling, Priority and Vectoring. See
Interrupt Enabling, Priority and Vectoring from Related Links.

Interrupts for the ADC can be configured as individual or global, or utilized as both where some are
processed individually and others in the global ISR.

Related Links
38.5.3. Interrupt Enabling, Priority and Vectoring

38.6 Power-Saving Modes of Operation
The Power-Saving, Sleep and Idle modes are useful for reducing the conversion noise by minimizing
the digital activity of the CPU, buses and other peripherals.

38.6.1 Sleep Mode
When the device enters Sleep mode, the system clock (SYCCLK) is halted. If an ADC module selects
SYSCLK as its clock source or selects REFCLK3 as its clock source (REFCLK3 is generated from
SYSCLK), the ADC enters the Sleep mode.

When the SYSCLK is the source (directly or indirectly) and Sleep mode occurs during a conversion,
the conversion is aborted. The converter cannot resume a partially completed conversion on exiting
from Sleep mode. The ADC register contents are not affected by the device entering or leaving Sleep
mode. The ADC module can operate during Sleep mode if the ADC clock source is derived from a
source other than SYSCLK that is active during Sleep mode. The FRC clock source is a logical choice

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 938

for operation during Sleep; however, the REFCLK3 clock source can also be used, provided it has an
input clock that is operational during Sleep mode.

ADC operation during Sleep mode reduces the digital switching noise from the conversion. When
the conversion is completed, the ARDYx status bit for that analog input is set and the result is loaded
into the corresponding ADC Result register (ADCDATAx).

If any of the ADC interrupts are enabled, the device is woken up from Sleep mode when the ADC
interrupt occurs. The program execution resumes at the ADC ISR if the ADC interrupt is greater
than the current CPU priority. Otherwise, execution continues from the instruction after the WAIT
instruction that placed the device in Sleep mode.

To minimize the effects of digital noise on the ADC module operation, the user must select a
conversion trigger source that ensures that the analog-to-digital conversion take places in Sleep
mode. For example, the external interrupt pin (INT0) conversion trigger option (TRGSRC[4:0] =
00100) can be used for performing sampling and conversion while the device is in Sleep mode.

Note: For the ADC module to operate in Sleep mode, the ADC clock source must be set to
Internal FRC (ADCSEL[1:0] bits (ADCCON2[31:30]) = 01). Alternately, the REFCLK3 source can be used;
however, the clock source used for REFCLK3 must operate during Sleep mode. Any changes to the
ADC clock configuration require that the ADC be disabled.

38.6.2 Operation During Idle Mode
For the ADC, the stop in the Idle Mode bit, SIDL (ADCCON1[13]), specifies whether the ADC module
stops on Idle or continues on Idle. If SIDL = 0, the ADC module continues normal operation when
the device enters the Idle mode. If any of the ADC interrupts are enabled, the device wakes up from
the Idle mode when the ADC interrupt occurs. The program execution resumes at the ADC ISR if
the ADC interrupt is greater than the current CPU priority. Otherwise, execution continues from the
instruction after the WAIT instruction that placed the device in the Idle mode.

If SIDL = 1, the ADC module stops in the Idle mode. If the device enters the Idle mode during
a conversion, the conversion is aborted. The converter cannot resume a partially completed
conversion on exiting from the Idle mode.

38.6.3 Low-Power Mode
The ADC module can be placed in a low-power state by disabling the digital circuit for individual ADC
modules that are not running. This is possible by clearing the DIGENx bits and the DIGEN7 bit in the
ADCCON3 register. (See ADCCON3 register from Related Links.)

An even lower power state is possible by disabling the analog and bias circuit for individual ADC
modules that are not running. This is possible by clearing the ANENx bits and the ANEN7 bit in
the ADCANCON register. (See ADCANCON register from Related Links.) Disabling the digital circuit to
achieve Low-Power mode provides a significantly faster module restart compared to disabling and
re-enabling the analog and bias circuit of the ADC module. This is because disabling and re-enabling
the analog and bias circuit using the ANENx bits and the ANEN7 bit requires a wake-up time (typical
minimum wake-up time of 20 µs) for the ADC module before it can be used. Refer to the Electrical
Specifications in the specific device data sheet for more information on the stabilization time.

When the analog and bias circuit for an ADC module is enabled, the wake-up must be polled (or
through an interrupt) using the wake-up ready bits, WKRDY6:WKRDY0 and WKRDY7, which must be
equal to ‘1’.

Related Links
38.11.4. ADCCON3
38.11.24. ADCANCON
43. Electrical Characteristics

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 939

38.7 Effects of Reset
Following any Reset event, all the ADC control and status registers are reset to their default values
with control bits in a non-active state. This disables the ADC module and sets the analog input pins
to Analog Input mode. Any conversion that was in progress terminates, and the result cannot be
written to the result buffer. The values in the ADCDATAx registers are initialized to ‘0x00000000’
during a device Reset. The bias circuits are also turned OFF, so the ADC resuming operations wait
for the bias circuits to stabilize by polling (or requesting to be interrupted by) the BGVRRDY bit
(ADCCON2 register).

38.8 Transfer Function
A typical transfer function of the 12-bit ADC is illustrated in the following figure. The difference of the
input voltages (VINH - VINL) is compared with the reference (VREFH - VREFL).
• The first code transition (A) occurs when the input voltage is (VREFH - VREFL/8192) or 0.5 LSb.
• The 0000 0000 0001 code is centered at (VREFH - VREFL/4096) or 1.0 LSb (B).

• The 1000 0000 0000 code is centered at (2048 * (VREFH - VREFL)/4096) (C).

• An input voltage less than (1 * (VREFH - VREFL)/8192) converts as 0000 0000 0000 (D).

• An input greater than (8192 * (VREFH - VREFL)/8192) converts as 1111 1111 1111 (E).

Figure 38-11. Analog-to-Digital Transfer Function

38.9 ADC Sampling Requirements
The analog input model of the 12-bit ADC is illustrated in the following figure. The total acquisition
time for the analog-to-digital conversion is a function of the internal circuit settling time and the
holding capacitor charge time.

For the ADC module to meet its specified accuracy, the charge holding capacitor (CHOLD) must be
allowed to fully charge to the voltage level on the analog input pin. The analog output source
impedance (RS), the interconnect impedance (RIC) and the internal sampling switch (RSS) impedance
combine to directly affect the time required to charge the CHOLD. The combined impedance of
the analog sources must, therefore, be small enough to fully charge (to within one-fourth LSB of

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 940

the desired voltage) the holding capacitor within the selected sample time. The internal holding
capacitor is in the discharged state prior to each sample operation.

At least 1 TAD time period must be allowed between conversions for the acquisition time. Refer to
the Electrical Characteristics from the Related Links.

Figure 38-12. 12-bit ADC Analog Input Model

Note: The CPIN value depends on the device package and is not tested. The effect of the CPIN is
negligible if Rs 5 k.

Legend:
• CPIN = Input capacitance
• RSS = Sampling switch resistance
• RS = Source resistance
• ILEAKAGE = Leakage current at the pin due to various junctions
• VT = Threshold voltage
• RIC = Interconnect resistance
• CHOLD = Sample/hold capacitance

Related Links
43. Electrical Characteristics

38.10 Connection Considerations
Because the analog inputs employ Electrostatic Discharge (ESD) protection, they have diodes to VDD
and VSS; therefore, the analog input must be between VDD and VSS. If the input voltage exceeds this
range by greater than 0.3V (either direction), one of the diodes becomes forward biased, and it may
damage the device if the input current specification is exceeded.

An external RC filter is sometimes added for antialiasing of the input signal. The R (resistive)
component must be selected to ensure that the acquisition time is met. Any external components
connected (through high-impedance) to an analog input pin (capacitor, Zener diode and so on) must
have very little leakage current at the pin.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 941

38.11 Register Description
Notes: The following conventions are used in the following registers:
• R = Readable bit
• W = Writable bit
• U = Unimplemented bit, read as ‘0’

• 1= Bit is set0= Bit is cleared

• x = Bit is unknown
• -n = Value at POR
• HS = Hardware Set
• HC = Hardware Cleared

Note: CLR/SET/INV registers for each register are located at offset <register offset> + 0x04, 0x08,
0x0C, respectively.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 942

38.11.1 Register Summary
The PIC32CX-BZ2 12-bit High Speed SAR ADC module has the following Special Function Registers
(SFRs):

Offset Name Bit Pos. 7 6 5 4 3 2 1 0
0x00

...
0x13FF

Reserved

0x1400 ADCCON1

7:0 IRQVS[2:0] STRGLVL DMABL[2:0]
15:8 ON FRZ SIDL FSYDMA FSYUPB SCANEN

23:16 FRACT SELRES[1:0] STRGSRC[4:0]
31:24

0x1404
...

0x140F
Reserved

0x1410 ADCCON2

7:0 ADCDIV[6:0]
15:8 BGVRIEN REFFLTIEN EOSIEN ENXCNVRT

23:16 SAMC[7:0]
31:24 BGVRRDY REFFLT EOSRDY SAMC[9:8]

0x1414
...

0x141F
Reserved

0x1420 ADCCON3

7:0 GLSWTRG GSWTRG ADINSEL[5:0]
15:8 VREFSEL[2:0] TRGSUSP UPDIEN UPDRDY SAMP RQCNVRT

23:16 CHN_EN_SHR
31:24 ADCSEL[1:0] CONCLKDIV[5:0]

0x1424
...

0x143F
Reserved

0x1440 ADCIMCON1

7:0 DIFF3 SIGN3 DIFF2 SIGN2 DIFF1 SIGN1 DIFF0 SIGN0
15:8 DIFF7 SIGN7 DIFF6 SIGN6 DIFF5 SIGN5 DIFF4 SIGN4

23:16 DIFF11 SIGN11 DIFF10 SIGN10 DIFF9 SIGN9 DIFF8 SIGN8
31:24

0x1444
...

0x147F
Reserved

0x1480 ADCGIRQEN1

7:0 AGIEN7 AGIEN6 AGIEN5 AGIEN4 AGIEN3 AGIEN2 AGIEN1 AGIEN0
15:8 AGIEN11 AGIEN10 AGIEN9 AGIEN8

23:16
31:24

0x1484
...

0x149F
Reserved

0x14A0 ADCCSS1

7:0 CSS7 CSS6 CSS5 CSS4 CSS3 CSS2 CSS1 CSS0
15:8 CSS11 CSS10 CSS9 CSS8

23:16
31:24

0x14A4
...

0x14BF
Reserved

0x14C0 ADCDSTAT1

7:0 ARDY7 ARDY6 ARDY5 ARDY4 ARDY3 ARDY2 ARDY1 ARDY0
15:8 ARDY11 ARDY10 ARDY9 ARDY8

23:16
31:24

0x14C4
...

0x14DF
Reserved

0x14E0 ADCCMPEN1

7:0 CMPEx[7:0]
15:8

23:16
31:24

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 943

...........continued

Offset Name Bit Pos. 7 6 5 4 3 2 1 0
0x14E4

...
0x14EF

Reserved

0x14F0 ADCCMP1

7:0 DCMPLO[7:0]
15:8 DCMPLO[15:8]

23:16 DCMPHI[7:0]
31:24 DCMPHI[15:8]

0x14F4
...

0x14FF
Reserved

0x1500 ADCCMPEN2

7:0 CMPEx[7:0]
15:8

23:16
31:24

0x1504
...

0x150F
Reserved

0x1510 ADCCMP2

7:0 DCMPLO[7:0]
15:8 DCMPLO[15:8]

23:16 DCMPHI[7:0]
31:24 DCMPHI[15:8]

0x1514
...

0x159F
Reserved

0x15A0 ADCFLTR1

7:0 FLTRDATA[7:0]
15:8 FLTRDATA[15:8]

23:16 CHNLID[4:0]
31:24 AFEN DATA16EN DFMODE OVRSAM[2:0] AFGIEN AFRDY

0x15A4
...

0x15AF
Reserved

0x15B0 ADCFLTR2

7:0 FLTRDATA[7:0]
15:8 FLTRDATA[15:8]

23:16 CHNLID[4:0]
31:24 AFEN DATA16EN DFMODE OVRSAM[2:0] AFGIEN AFRDY

0x15B4
...

0x15FF
Reserved

0x1600 ADCTRG1

7:0 TRGSRC0[4:0]
15:8 TRGSRC1[4:0]

23:16 TRGSRC2[4:0]
31:24 TRGSRC3[4:0]

0x1604
...

0x160F
Reserved

0x1610 ADCTRG2

7:0 TRGSRC4[4:0]
15:8 TRGSRC5[4:0]

23:16 TRGSRC6[4:0]
31:24 TRGSRC7[4:0]

0x1614
...

0x167F
Reserved

0x1680 ADCCMPCON1

7:0 ENDCMP DCMPGIEN DCMPED IEBTWN IEHIHI IEHILO IELOHI IELOLO
15:8 AINID[5:0]

23:16
31:24

0x1684
...

0x168F
Reserved

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 944

...........continued

Offset Name Bit Pos. 7 6 5 4 3 2 1 0

0x1690 ADCCMPCON2

7:0 ENDCMP DCMPGIEN DCMPED IEBTWN IEHIHI IEHILO IELOHI IELOLO
15:8 AINID[4:0]

23:16
31:24

0x1694
...

0x16FF
Reserved

0x1700 ADCBASE

7:0 ADCBASE[7:0]
15:8 ADCBASE[15:8]

23:16
31:24

0x1704
...

0x170F
Reserved

0x1710 ADCDMASTAT

7:0 RAF0
15:8 DMACNTEN RAF0IEN

23:16 WROVRERR RBF0
31:24 DMAEN RBF0IEN

0x1714
...

0x171F
Reserved

0x1720 ADCCNTB

7:0 ADCCNTB[7:0]
15:8 ADCCNTB[15:8]

23:16 ADCCNTB[23:16]
31:24 ADCCNTB[31:24]

0x1724
...

0x172F
Reserved

0x1730 ADCDMAB

7:0 ADDMAB[7:0]
15:8 ADDMAB[15:8]

23:16 ADDMAB[23:16]
31:24 ADDMAB[31:24]

0x1734
...

0x173F
Reserved

0x1740 ADCTRGSNS

7:0 LVL7 LVL6 LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
15:8

23:16
31:24

0x1744
...

0x17FF
Reserved

0x1800 ADCANCON

7:0 ANEN7 ANEN0
15:8 WKRDY7 WKRDY0

23:16 WKIEN7 WKIEN0
31:24 WKUPCLKCNT[3:0]

0x1804
...

0x1AFF
Reserved

0x1B00 ADCSYSCFG0

7:0 AN[7:0]
15:8 AN[15:8]

23:16 AN[19:16]
31:24

0x1B04
...

0x1DFF
Reserved

0x1E00 ADCDATAx

7:0 DATA[7:0]
15:8 DATA[15:8]

23:16 DATA[23:16]
31:24 DATA[31:24]

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 945

38.11.2 ADCCON1 – ADC Control Register 1

Name:  ADCCON1
Offset:  0x1400
Reset:  0x00601000
Property:  -

This register controls the basic operation of the ADC module, including behavior in Sleep and Idle
modes, and data formatting. This register also specifies the vector shift amounts for the Interrupt
Controller. Additional ADCCON1 functions include the RAM buffer length in DMA mode.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 FRACT SELRES[1:0] STRGSRC[4:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 1 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 ON FRZ SIDL FSYDMA FSYUPB SCANEN

Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 IRQVS[2:0] STRGLVL DMABL[2:0]

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 23 – FRACT Fractional Data Output Format bit
Value Description
0 Integer
1 Fractional

Bits 22:21 – SELRES[1:0] Shared ADC (ADC2) Resolution bits
Note: Changing the resolution of the ADC does not shift the result in the corresponding ADCDATAx
register. The result occupies 12 bits, with the corresponding lower unused bits set to ‘0’. For
example, a resolution of 6 bits results in ADCDATAx[5:0] being set to ‘0’ and ADCDATAx[11:6] holding
the result.

Value Description
11 12 bits (default)
10 10 bits
01 8 bits
00 6 bits

Bits 20:16 – STRGSRC[4:0] ScanTrigger Source Select bits
Value Description
10001 - 11111 Reserved
10000 EVSYS_47
01111 EVSYS_46
01110 EVSYS_45
01101 EVSYS_44
01100 EVSYS_43

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 946

Value Description
01011 EVSYS_42
01010 EVSYS_41
01001 EVSYS_40
01000 EVSYS_39
00111 EVSYS_38
00110 EVSYS_37
00101 EVSYS_36
00100 INT0 External interrupt
00011 Reserved
00010 Global level software trigger (GLSWTRG)
00001 Global software edge trigger (GSWTRG)
00000 No Trigger

Bit 15 – ON ADC Module Enable bit
Note: The ON bit must be set only after the ADC module is configured.

Value Description
0 ADC module is disabled
1 ADC module is enabled

Bit 14 – FRZ  Freeze in Debug Mode
Value Description
0 Do not freeze in Debug mode
1 Freeze in Debug mode

Bit 13 – SIDL Stop in Idle Mode bit
Value Description
0 Continue module operation in Idle mode
1 Discontinue module operation when device enters Idle mode

Bit 10 – FSYDMA Fast Synchronous DMA System Clock bit
Value Description
0 Fast synchronous DMA system clock is disabled
1 Fast synchronous DMA system clock is enabled

Bit 9 – FSYUPB Fast Synchronous UPB Clock bit
Value Description
0 Fast synchronous UPB clock is disabled
1 Fast synchronous UPB clock is enabled

Bit 8 – SCANEN SCAN Enable bit

Bits 6:4 – IRQVS[2:0] Interrupt Vector Shift bits
To determine the interrupt vector address, this bit specifies the amount of left-shift done to the
ARDYx status bits in the ADCDSTAT1 and ADCDSTAT2 registers prior to adding with the ADCBASE
register.
Interrupt Vector Address = Read Value of ADCBASE, and Read Value of ADCBASE = Value written
to ADCBASE + x << IRQVS[2:0], where ‘x’ is the smallest active input ID from the ADCDSTAT1 or
ADCDSTAT2 registers (which has highest priority).
Value Description
111 Shift x left 7 bit position
110 Shift x left 6 bit position
101 Shift x left 5 bit position
100 Shift x left 4 bit position
011 Shift x left 3 bit position
010 Shift x left 2 bit position

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 947

Value Description
001 Shift x left 1 bit position
000 Shift x left 0 bit position

Bit 3 – STRGLVL ScanTrigger High Level/Positive Edge Sensitivity bit
Value Description
0 Scan trigger is positive edge sensitive. Once STRIG mode is selected (TRGSRCx[4:0] in the ADCTRGx register),

only a single scan trigger is generated, which completes the scan of all selected analog inputs.
1 Scan trigger is high level sensitive. Once STRIG mode is selected (TRGSRCx[4:0] in the ADCTRGx register), the

scan trigger continues for all selected analog inputs, until the STRIG option is removed.

Bits 2:0 – DMABL[2:0] DMA to System RAM Buffer Length Size
Defines the number of locations in system memory allocated per analog input for DMA interface
use. As each output data is 16-bit wide, one location consists of 2 bytes. Therefore, the actual size
reserved in the system RAM follows the formula: RAM Buffer Length in bytes = 2(DMABL+1).

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 948

38.11.3 ADCCON2 – ADC Control Register 2

Name:  ADCCON2
Offset:  0x1410
Reset:  0x00000000
Property:  -

This register controls the reference selection for the ADC module, the sample time for the shared
ADC module, interrupt enable for reference, early interrupt selection and clock division selection for
the shared ADC.

Bit 31 30 29 28 27 26 25 24
 BGVRRDY REFFLT EOSRDY SAMC[9:8]

Access R/HS/HC R/HS/HC R/HS/HC R/W R/W
Reset 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 SAMC[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 BGVRIEN REFFLTIEN EOSIEN ENXCNVRT

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 ADCDIV[6:0]

Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 31 – BGVRRDY Band Gap Voltage/ADC Reference Voltage Status bit
Data processing is valid only after BGVRRDY is set by hardware, so the application code must check
that the BGVRRDY bit is set to ensure data validity. This bit set to ‘0’ when ON (ADCCON1[15]) = 0.
Value Description
0 Either or both band gap voltage and ADC reference voltages (VREF) are not ready
1 Both band gap voltage and ADC reference voltages (VREF) are ready

Bit 30 – REFFLT Band Gap/VREF/AVDD BOR Fault Status bit
This bit is cleared when the ON bit (ADCCON1[15]) = 0 and the BGVRRDY bit = 1.
Value Description
0 Band gap and VREF voltage are working properly
1 Fault in band gap or the VREF voltage while the ON bit (ADCCON1[15]) was set. Most likely a band gap or VREF

fault is caused by a BOR of the analog VDDsupply.

Bit 29 – EOSRDY End of Scan Interrupt Status bit
This bit is cleared when ADCCON2[31:24] are read in software.
Value Description
0 Scanning has not completed
1 All analog inputs are considered for scanning through the scan trigger (all analog inputs specified in the

ADCCSS1 and ADCCSS2 registers) have completed scanning

Bits 25:16 – SAMC[9:0] SampleTime for the Shared ADC (ADC2) bits
Where TAD7 = Period of the ADC conversion clock for the Shared ADC (ADC2) controlled by the
ADCDIV[6:0] bits.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 949

Value Description
111111111
1

1025 TAD7

...
000000000
1

3 TAD7

000000000
0

2 TAD7

Bit 15 – BGVRIEN Band Gap/VREF Voltage Ready Interrupt Enable bit
Value Description
0 No interrupt is generated when the BGVRRDY bit is set
1 Interrupt is generated when the BGVRDDY bit is set

Bit 14 – REFFLTIEN Band Gap/VREF Voltage Fault Interrupt Enable bit
Value Description
0 No interrupt is generated when the REFFLT bit is set
1 Interrupt is generated when the REFFLT bit is set

Bit 13 – EOSIEN End of Scan Interrupt Enable bit
Value Description
0 No interrupt is generated when the EOSRDY bit is set
1 Interrupt is generated when the EOSRDY bit is set

Bit 11 – ENXCNVRT Enable External Conversion Request Interface
Setting this bit enables another module (such as the PTG) to specify and request conversion of an
ADC input.
Note: The external module (such as the PTG) is responsible for asserting only the proper trigger
signals. This ADC module has no method to block specific trigger requests from the external
module.

Bits 6:0 – ADCDIV[6:0] Division Ratio for the Shared SAR ADC Core Clock bits
The ADCDIV[6:0] bits divide the ADC control clock (TQ) to generate the clock for the shared SAR ADC.
Value Description
1111111 254 * TQ = TAD2

...
0000011 6 * TQ = TAD2

0000010 4 * TQ = TAD2

0000001 2 * TQ = TAD2

0000000 Reserved

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 950

38.11.4 ADCCON3 – ADC Control Register 3

Name:  ADCCON3
Offset:  0x1420
Reset:  0x00000000
Property:  -

This register enables ADC clock selection, enables/disables the digital feature for the shared ADC
module and controls the manual (software) sampling and conversion.

Bit 31 30 29 28 27 26 25 24
 ADCSEL[1:0] CONCLKDIV[5:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 CHN_EN_SHR

Access R/W
Reset 0

Bit 15 14 13 12 11 10 9 8
 VREFSEL[2:0] TRGSUSP UPDIEN UPDRDY SAMP RQCNVRT

Access R/W R/W R/W R/W R/W R/HS/HC R/W R/HS/HC
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 GLSWTRG GSWTRG ADINSEL[5:0]

Access R/W R/W, HC R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:30 – ADCSEL[1:0] Analog-to-Digital Clock Source (TCLK) bits
Value Description
00 Peripheral Bus Clock
01 FRC Clock
10 REFO3 Clock Output
11 System Clock (SYS_CLK)

Bits 29:24 – CONCLKDIV[5:0] Analog-to-Digital Control Clock (TQ) Divider bits
Value Description
111111 64 * TCLK= TQ

...
000011 4 * TCLK= TQ

000010 3 * TCLK= TQ

000001 2 * TCLK= TQ

000000 TCLK= TQ

Bit 23 – CHN_EN_SHR Shared ADC Digital Enable bit
Value Description
1 ADC is digital enabled
0 ADC is digital disabled

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 951

Bits 15:13 – VREFSEL[2:0] Voltage Reference (VREF) Input Selection bits

Table 38-5.
VREFSEL[2:0] ADREF+ ADREF-

000 AVDD AVSS

001-111 RESERVED FOR FUTURE USE

Bit 12 – TRGSUSP Trigger Suspend bit
Value Description
1 Triggers are blocked from starting a new analog-to-digital conversion, but the ADC module is not disabled
0 Triggers are not blocked

Bit 11 – UPDIEN Update Ready Interrupt Enable bit
Value Description
1 Interrupt is generated when the UPDRDY bit is set by hardware
0 No interrupt is generated

Bit 10 – UPDRDY ADC Update Ready Status bit
Note: This bit is only active while the TRGSUSP bit is set and there are no more running conversions
of any ADC modules.

Value Description
1 ADC SFRs can be updated
0 ADC SFRs cannot be updated

Bit 9 – SAMP Class 2 and Class 3 Analog Input Sampling Enable bit(1,2,3,4)

Value Description
1 The ADC S&H amplifier is sampling
0 The ADC S&H amplifier is holding

Bit 8 – RQCNVRT Individual ADC Input Conversion Request bit
This bit and its associated ADINSEL[5:0] bits enable the user to individually request an analog-to-
digital conversion of an analog input through software.
Note: This bit is automatically cleared in the next ADC clock cycle.

Value Description
1 Trigger the conversion of the selected ADC input as specified by the ADINSEL[5:0] bits
0 Do not trigger the conversion

Bit 7 – GLSWTRG Global Level Software Trigger bit
Value Description
1 Trigger conversion for ADC inputs that have selected the GLSWTRG bit as the trigger signal, either through

the associated TRGSRC[4:0] bits in the ADCTRGx registers or through the STRGSRC[4:0]bits in the ADCCON1
register

0 Do not trigger an analog-to-digital conversion

Bit 6 – GSWTRG Global Software Trigger bit
This bit is automatically cleared in the next ADC clock cycle.
Value Description
0 Trigger conversion for ADC inputs that have selected the GSWTRG bit as the trigger signal, either through

the associated TRGSRC[4:0] bits in the ADCTRGx registers or through the STRGSRC[4:0]bits in the ADCCON1
register

1 Do not trigger an analog-to-digital conversion

Bits 5:0 – ADINSEL[5:0] Analog Input Select bits
These bits select the analog input to be converted when the RQCNVRT bit is set.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 952

Note: 
1. The SAMP bit has the highest priority and setting this bit keeps the S&H circuit in Sample

mode until the bit is cleared. Also, usage of the SAMP bit causes settings of SAMC[9:0] bits
(ADCCON2[25:16]) to be ignored.

2. The SAMP bit only connects Class 2 and Class 3 analog inputs to the shared ADC.
3. The SAMP bit is not a self-clearing bit and it is the responsibility of application software to first

clear this bit and, only after setting the RQCNVRT bit, to start the analog-to-digital conversion.
4. Normally, when the SAMP and RQCNVRT bits are used by software routines, all TRGSRCx[4:0]

bits and STRGSRC[4:0] bits must be set to ‘00000’ to disable all external hardware triggers and
prevent them from interfering with the software-controlled sampling command signal SAMP and
with the software-controlled trigger RQCNVRT.

Value Description
111111 Reserved
...
001011 PMU Test Output
001010 VddCore (Internal)
001001 CP_Test_1.2V (Internal)
001000 BandGap Reference (Internal)
000111 AN7 is being monitored
...
000001 AN1 is being monitored
000000 AN0 is being monitored

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 953

38.11.5 ADCIMCON1 – ADC Input Mode Control Register 1

Name:  ADCIMCON1
Offset:  0x1440
Reset:  0x00000000
Property:  -

This register enables the user to select between single-ended and differential operation as well as
select between signed and unsigned data format.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 DIFF11 SIGN11 DIFF10 SIGN10 DIFF9 SIGN9 DIFF8 SIGN8

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 DIFF7 SIGN7 DIFF6 SIGN6 DIFF5 SIGN5 DIFF4 SIGN4

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 DIFF3 SIGN3 DIFF2 SIGN2 DIFF1 SIGN1 DIFF0 SIGN0

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 – DIFF11 AN11 Mode bit
Value Description
1 AN11 is using Differential mode
0 AN11 is using Single-ended mode

Bit 22 – SIGN11 AN11 Signed Data Mode bit
Value Description
1 AN11 is using Signed Data mode
0 AN11 is using Unsigned Data mode

Bit 21 – DIFF10 AN10 Mode bit
Value Description
1 AN10 is using Differential mode
0 AN10 is using Single-ended mode

Bit 20 – SIGN10 AN10 Signed Data Mode bit
Value Description
1 AN10 is using Signed Data mode
0 AN10 is using Unsigned Data mode

Bit 19 – DIFF9 AN9 Mode bit
Value Description
1 AN9 is using Differential mode
0 AN9 is using Single-ended mode

Bit 18 – SIGN9 AN9 Signed Data Mode bit

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 954

Value Description
1 AN9 is using Signed Data mode
0 AN9 is using Unsigned Data mode

Bit 17 – DIFF8 AN8 Mode bit
Value Description
1 AN8 is using Differential mode
0 AN8 is using Single-ended mode

Bit 16 – SIGN8 AN8 Signed Data Mode bit
Value Description
1 AN8 is using Signed Data mode
0 AN8 is using Unsigned Data mode

Bit 15 – DIFF7 AN7 Mode bit
Value Description
1 AN7 is using Differential mode
0 AN7 is using Single-ended mode

Bit 14 – SIGN7 AN7 Signed Data Mode bit
Value Description
1 AN7 is using Signed Data mode
0 AN7 is using Unsigned Data mode

Bit 13 – DIFF6 AN6 Mode bit
Value Description
1 AN6 is using Differential mode
0 AN6 is using Single-ended mode

Bit 12 – SIGN6 AN6 Signed Data Mode bit
Value Description
1 AN6 is using Signed Data mode
0 AN6 is using Unsigned Data mode

Bit 11 – DIFF5 AN5 Mode bit
Value Description
1 AN5 is using Differential mode
0 AN5 is using Single-ended mode

Bit 10 – SIGN5 AN5 Signed Data Mode bit
Value Description
1 AN5 is using Signed Data mode
0 AN5 is using Unsigned Data mode

Bit 9 – DIFF4 AN4 Mode bit
Value Description
1 AN4 is using Differential mode
0 AN4 is using Single-ended mode

Bit 8 – SIGN4 AN4 Signed Data Mode bit
Value Description
1 AN4 is using Signed Data mode
0 AN4 is using Unsigned Data mode

Bit 7 – DIFF3 AN3 Mode bit
Value Description
1 AN3 is using Differential mode

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 955

Value Description
0 AN3 is using Single-ended mode

Bit 6 – SIGN3 AN3 Signed Data Mode bit
Value Description
1 AN3 is using Signed Data mode
0 AN3 is using Unsigned Data mode

Bit 5 – DIFF2 AN2 Mode bit
Value Description
1 AN2 is using Differential mode
0 AN2 is using Single-ended mode

Bit 4 – SIGN2 AN2 Signed Data Mode bit
Value Description
1 AN2 is using Signed Data mode
0 AN2 is using Unsigned Data mode

Bit 3 – DIFF1 AN1 Mode bit
Value Description
1 AN1 is using Differential mode
0 AN1 is using Single-ended mode

Bit 2 – SIGN1 AN1 Signed Data Mode bit
Value Description
1 AN1 is using Signed Data mode
0 AN1 is using Unsigned Data mode

Bit 1 – DIFF0 AN0 Mode bit
Value Description
1 AN0 is using Differential mode
0 AN0 is using Single-ended mode

Bit 0 – SIGN0 AN0 Signed Data Mode bit
Value Description
1 AN0 is using Signed Data mode
0 AN0 is using Unsigned Data mode

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 956

38.11.6 ADCGIRQEN1 – ADC Global Interrupt Enable Register 1

Name:  ADCGIRQEN1
Offset:  0x1480
Reset:  0x00000000
Property:  -

This register specifies which of the individual input conversion interrupts can generate the global
ADC interrupt.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 AGIEN11 AGIEN10 AGIEN9 AGIEN8

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 AGIEN7 AGIEN6 AGIEN5 AGIEN4 AGIEN3 AGIEN2 AGIEN1 AGIEN0

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 – AGIEN ADC Global Interrupt Enable bits
Value Description
1 Interrupts are enabled for the selected analog input. The interrupt is generated after the converted data is

ready (indicated by the ARDYx bit (‘x’ = 8-1) of the ADCDSTAT1 register)
0 Interrupts are disabled

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 957

38.11.7 ADCCSS1 – ADC Common Scan Select Register 1

Name:  ADCCSS1
Offset:  0x14A0
Reset:  0x00000000
Property:  -

This register specifies the analog inputs to be scanned by the common scan trigger.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 CSS11 CSS10 CSS9 CSS8

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 CSS7 CSS6 CSS5 CSS4 CSS3 CSS2 CSS1 CSS0

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 – CSS Analog Common Scan Select bits
Notes: 
1. In addition to setting the appropriate bits in this register, Class 2 analog inputs must select the

STRIG input as the trigger source if they are to be scanned through the CSSx bits. Refer to the bit
descriptions in the ADCTRGx registers for selecting the STRIG option.

2. If a Class 2 input is included in the scan by setting the CSSx bit to ‘1’ and by setting the
TRGSRCx[4:0] bits to STRIG mode (0b11), the user application must ensure that no other triggers
are generated for that input using the RQCNVRT bit in the ADCCON3 register or the hardware
input or any digital filter. Otherwise, the scan behavior is unpredictable.

Value Description
1 Select ANx for input scan
0 Skip ANx for input scan

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 958

38.11.8 ADCDSTAT1 – ADC Data Ready Status Register 1

Name:  ADCDSTAT1
Offset:  0x14C0
Reset:  0x00000000
Property:  -

This register contains the interrupt status of the individual analog input conversions. Each bit
represents the data-ready status for its associated conversion result.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8
 ARDY11 ARDY10 ARDY9 ARDY8

Access R/HS/HC R/HS/HC R/HS/HC R/HS/HC
Reset 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 ARDY7 ARDY6 ARDY5 ARDY4 ARDY3 ARDY2 ARDY1 ARDY0

Access R/HS/HC R/HS/HC R/HS/HC R/HS/HC R/HS/HC R/HS/HC R/HS/HC R/HS/HC
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 – ARDY Conversion Data Ready for Corresponding Analog Input Ready
bits

Value Description
1 This bit is set when converted data is ready in the data register
0 This bit is cleared when the associated data register is read

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 959

38.11.9 ADCCMPEN1 – ADC Digital Comparator 1 Enable Register

Name:  ADCCMPEN1
Offset:  0x14E0
Reset:  0x00000000
Property:  -

These registers select which analog input conversion results is processed by the digital comparator.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 CMPEx[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – CMPEx[7:0] ADC Digital Comparator ‘x’ Enable bits
Note: CMPEx = where "x" stands for bit value from 0 to 7.

These bits enable conversion results corresponding to the analog input to be processed by the
digital comparator. CMPE0 enables AN0, CMPE1 enables AN1 and so on.
Notes: 
1. CMPEx = ANx, where ‘x’ = 0-31 (Digital Comparator inputs are limited to AN0 through AN31).
2. Changing the bits in this register while the Digital Comparator is enabled (ENDCMP = 1) can

result in unpredictable behavior.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 960

38.11.10 ADCCMPEN2 – ADC Digital Comparator 2 Enable Register

Name:  ADCCMPEN2
Offset:  0x1500
Reset:  0x00000000
Property:  -

These registers select which analog input conversion results is processed by the digital comparator.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0
 CMPEx[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – CMPEx[7:0] ADC Digital Comparator ‘x’ Enable bits
Note: CMPEx = where ‘x’ stands for bit value from 0 to 7.

These bits enable conversion results corresponding to the analog input to be processed by the
digital comparator. CMPE0 enables AN0, CMPE1 enables AN1 and so on.
Notes: 
1. CMPEx = ANx, where ‘x’ = 0-31 (Digital Comparator inputs are limited to AN0 through AN31).
2. Changing the bits in this register while the Digital Comparator is enabled (ENDCMP = 1) can

result in unpredictable behavior.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 961

38.11.11 ADCCMP1 – ADC Digital Comparator 1 Limit Value Register

Name:  ADCCMP1
Offset:  0x14F0
Reset:  0x00000000
Property:  -

These registers contain the high and low digital comparison values for use by the digital comparator.
Notes: 
1. Changing theses bits while the Digital Comparator is enabled (ENDCMP = 1) can result in

unpredictable behavior.
2. The format of the limit values must match the format of the ADC converted value in terms of

sign and fractional settings.
3. For Digital Comparator 0 used in CVD mode, the DCMPHI[15:0] and DCMPLO[15:0] bits must

always be specified in signed format as the CVD output data is differential and is always signed.

Bit 31 30 29 28 27 26 25 24
 DCMPHI[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 DCMPHI[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 DCMPLO[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 DCMPLO[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:16 – DCMPHI[15:0] Digital Comparator ‘x’ High Limit Value bits(1,2,3)

These bits store the high limit value, which is used by digital comparator for comparisons with ADC
converted data.

Bits 15:0 – DCMPLO[15:0] Digital Comparator ‘x’ Low Limit Value bits(1,2,3)

These bits store the low limit value, which is used by digital comparator for comparisons with ADC
converted data.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 962

38.11.12 ADCCMP2 – ADC Digital Comparator 2 Limit Value Register

Name:  ADCCMP2
Offset:  0x1510
Reset:  0x00000000
Property:  -

These registers contain the high and low digital comparison values for use by the digital comparator.
Notes: 
1. Changing theses bits while the Digital Comparator is enabled (ENDCMP = 1) can result in

unpredictable behavior.
2. The format of the limit values must match the format of the ADC converted value in terms of

sign and fractional settings.
3. For Digital Comparator 0 used in CVD mode, the DCMPHI[15:0] and DCMPLO[15:0] bits must

always be specified in signed format as the CVD output data is differential and is always signed.

Bit 31 30 29 28 27 26 25 24
 DCMPHI[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 DCMPHI[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 DCMPLO[15:8]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 DCMPLO[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:16 – DCMPHI[15:0] Digital Comparator ‘x’ High Limit Value bits(1,2,3)

These bits store the high limit value, which is used by digital comparator for comparisons with ADC
converted data.

Bits 15:0 – DCMPLO[15:0] Digital Comparator ‘x’ Low Limit Value bits(1,2,3)

These bits store the low limit value, which is used by digital comparator for comparisons with ADC
converted data.

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 963

38.11.13 ADCFLTR1 – ADC Digital Filter 1 Register

Name:  ADCFLTR1
Offset:  0x15A0
Reset:  0x00000000
Property:  -

These registers provide control and status bits for the oversampling filter accumulator, and also
includes the 16-bit filter output data.

Bit 31 30 29 28 27 26 25 24
 AFEN DATA16EN DFMODE OVRSAM[2:0] AFGIEN AFRDY

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 CHNLID[4:0]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 FLTRDATA[15:8]

Access R/HS/HC R/HS/HC R/HS/HC R/HS/HC R/HS/HC R/HS/HC R/HS/HC R/HS/HC
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 FLTRDATA[7:0]

Access R/HS/HC R/HS/HC R/HS/HC R/HS/HC R/HS/HC R/HS/HC R/HS/HC R/HS/HC
Reset 0 0 0 0 0 0 0 0

Bit 31 – AFEN Digital Filter ‘x’ Enable bit
Value Description
1 Digital filter is enabled
0 Digital filter is disabled and the AFRDY status bit is cleared

Bit 30 – DATA16EN Filter Significant Data Length bit
Note: This bit is significant only if DFMODE = 1 (Averaging Mode) and FRACT (ADCCON1[23]) = 1
(Fractional Output Mode).

Value Description
1 All 16 bits of the filter output data are significant
0 Only the first 12 bits are significant, followed by four zeros

Bit 29 – DFMODE ADC Filter Mode bit
Value Description
1 Filter ‘x’ works in Averaging mode
0 Filter ‘x’ works in Oversampling Filter mode (default)

Bits 28:26 – OVRSAM[2:0] Oversampling Filter Ratio bits
Value Description

If DFMODE is ‘0’
111 128 samples (shift sum 3 bits to right, output data is in 15.1 format)
110 32 samples (shift sum 2 bits to right, output data is in 14.1 format)
101 8 samples (shift sum 1 bit to right, output data is in 13.1 format)
100 2 samples (shift sum 0 bits to right, output data is in 12.1 format)
011 256 samples (shift sum 4 bits to right, output data is 16 bits)

 PIC32CX-BZ2 and WBZ45 Family
Analog-to-Digital Converter (ADC)

 Draft - Please select a publication type
© 2024 Microchip Technology Inc. and its subsidiaries

DSxxxxxxxxA - 964

Value Description
010 64 samples (shift sum 3 bits to right, output data is 15 bits)
001 16 samples (shift sum 2 bits to right, output data is 14 bits)
000 4 samples (shift sum 1 bit to right, output data is 13 bits)

If DFMODE is ‘1’
111 256 samples (256 samples to be averaged)
110 128 samples (128 samples to be averaged)
101 64 samples (64 samples to be averaged)
100 32 samples (32 samples to be averaged)
011 16 samples (16 samples to be averaged)
010 8 samples (8 samples to be averaged)
001 4 samples (4 samples to be averaged)
000 2 samples (2 samples to be averaged)

Bit 25 – AFGIEN Digital Filter ‘x’ Interrupt Enable bit
Value Description
1 Digital filter interrupt is enabled and is generated by the AFRDY status bit
0 Digital filter is disabled

Bit 24 – AFRDY Digital Filter ‘x’ Data Ready Status bit
Note: This bit is cleared by reading the FLTRDATA[15:0] bits or by disabling the Digital Filter module
(by setting AFEN to ‘0’).

Value Description
1 Data is ready in the FLTRDATA[15:0] bits
0 Data is not ready

Bits 20:16 – CHNLID[4:0] Digital Filter Analog Input Selection bits
Note: Only the first 12 analog inputs, Class 2 (AN0 -AN11), can use a digital filter.

These bits specify the analog input to be used as the oversampling filter data source.
Value Description
11111 Reserved
...
...
...
01100 Reserved
01011 AN11
...
...
...
00010 AN2
00001 AN1
00000 AN0

Bits 15:0 – FLTRDATA[15:0] Digital Filter ‘x’ Data Output Value bits
The filter output data is as per the fractional format set in the FRACT bit (ADCCON1[23]). The FRACT
bit must not be changed while the filter is enabled. Changing the state of the FRACT bit after the
operation of the filter ended must not update the value of the FLTRDATA[15:0] bits to reflect the new
format.

