23.7 EIC Register Summary
[Oftset | Name [Bitpos| 7 | 6 | 5 | 4 | 3 | 2 | 1 | o |
0x00 CTRLA 7:0 CKSEL ENABLE SWRST
0x01 NMICTRL 7:0 NMIASYNCH NMIFILTEN NMISENSE[2:0]
0x02 NMIFLAG 7:0 NMI
0x03 Reserved
7:0 ENABLE SWRST
0x04 SYNCBUSY 15:8
23:16
31:24
7:0
0x08 EVCTRL 15:8
23:16
31:24
7:0
0x0C INTENCLR 15:8
23:16
31:24
7:0
0x10 INTENSET 15:8
23:16
31:24
7:0
0x14 INTFLAG 15:8
23:16
31:24
7:0
0x18 ASYNCH 15:8
23:16
31:24
7:0 FILTEN1 SENSE1[2:0] FILTENO SENSEO[2:0]
ox1C CONFIG 15:8 FILTEN3 SENSE3[2:0] FILTEN2 SENSE2[2:0]
23:16
31:24
0x20
Reserved
Ox2F
7:0
15:8
0x30 DEBOUNCEN 2316
31:24
7:0
0x34 DPRESCALER 15:8
23:16 TICKON
31:24
7:0
15:8
0x38 PINSTATE 2316
31:24
23.8 Register Description

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the
“Read-Synchronized” and/or “Write-Synchronized” property in each individual register description.

@ MICROCHIP

438

Some registers are enable-protected, meaning they can only be written when the module is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register
description.

439

@ MICROCHIP

23.8.1 Control A

Name: CTRLA

Offset: 0x00

Reset: 0x00

Property: PAC Write-Protection, Write-Synchronized

Bit 7 6 5 4 3 2 1 0

| | | CKSEL | | | ENABLE | SWRST |
Access RW RW W
Reset 0 0 0

Bit 4 - CKSEL Clock Selection
The EIC can be clocked either by GCLK_EIC (when a frequency higher than 32.768 KHz is required for
filtering) or by CLK_ULP32K (when power consumption is the priority).
This bit is not Write-Synchronized.

Value Description

0 The EIC is clocked by GCLK_EIC.
1 The EIC is clocked by CLK_ULP32K.

Bit 1 - ENABLE Enable
Due to synchronization there is a delay between writing to CTRLA.ENABLE until the peripheral is
enabled/disabled. The value written to CTRLA.ENABLE will read back immediately and the Enable
bit in the Synchronization Busy register will be set (SYNCBUSY.ENABLE=1). SYNCBUSY.ENABLE will be
cleared when the operation is complete.
This bit is not Enable-Protected.
This bit is Write-Synchronized.

0 The EIC is disabled.
1 The EIC is enabled.

Bit 0 - SWRST Software Reset
Writing a ‘0’ to this bit has no effect.
Writing a ‘1" to this bit resets all registers in the EIC to their initial state, and the EIC will be disabled.
Writing a ‘1’ to CTRLA.SWRST will always take precedence, meaning that all other writes in the same
write operation will be discarded.
Due to synchronization there is a delay from writing CTRLA.SWRST until the Reset is complete.
CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the Reset is complete.
This bit is not Enable-Protected.
This bit is Write-Synchronized.

0 There is no ongoing reset operation.
1 The reset operation is ongoing.

440

@ MICROCHIP

23.8.2 Non-Maskable Interrupt Control

Name: NMICTRL

Offset: 0x01

Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| | | NMIASYNCH | NMIFILTEN | NMISENSE[2:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 4 - NMIASYNCH NMI Asynchronous Edge Detection Mode
The NMI edge detection can be operated synchronously or asynchronously to the EIC clock.

0 The NMI edge detection is synchronously operated.
1 The NMI edge detection is asynchronously operated.

Bit 3 - NMIFILTEN Non-Maskable Interrupt Filter Enable

Value Description
0 NMl filter is disabled.
1

NMI filter is enabled.

Bits 2:0 - NMISENSE[2:0] Non-Maskable Interrupt Sense Configuration
These bits define on which edge or level the NMI triggers.
Note: NMI cannot be triggered based on level but it is always based on edge.

VEINS Name Description

0x0 NONE No detection

0x1 RISE Rising-edge detection
0x2 FALL Falling-edge detection
0x3 BOTH Both-edge detection
0x4 HIGH High-level detection
0x5 LOW Low-level detection
0x6 - 0x7 - Reserved

@ MICROCHIP

441

23.8.3 Non-Maskable Interrupt Flag Status and Clear

Name: NMIFLAG

Offset: 0x2
Reset: 0x00
Bit 7 6 5 4 3 2 1 0
| | | | [AW
Access RW
Reset 0

Bit 0 - NMI Non-Maskable Interrupt
This flag is cleared by writing a '1' to it.
This flag is set when the NMI pin matches the NMI sense configuration, and will generate an
interrupt request.
Writing a '0' to this bit has no effect.

442

@ MICROCHIP

23.8.4 Synchronization Busy

Name: SYNCBUSY
Offset: 0x04
Reset: 0x00000000

Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
ENABLE SWRST
Access R R
Reset 0 0

Bit 1 - ENABLE Enable Synchronization Busy Status

0 Write synchronization for CTRLA.ENABLE bit is complete.

1 Write synchronization for CTRLA.ENABLE bit is ongoing.

Bit 0 - SWRST Software Reset Synchronization Busy Status
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description
0 Write synchronization for CTRLA.SWRST bit is complete.

1 Write synchronization for CTRLA.SWRST bit is ongoing.

443

@ MICROCHIP

23.8.5 Event Control

Name: EVCTRL

Offset: 0x08

Reset: 0x00000000

Property: PAC Write-Protection, Enable-Protected

Bit 31 30 29 28

27

26

25

24

Access
Reset

Bit 23 22 21 20

19

18

17

16

Access
Reset

Bit 15 14 13 12

11

10

Access
Reset

Bit 7 6 5 4

Access
Reset

@ MICROCHIP

444

23.8.6 Interrupt Enable Clear

Name: INTENCLR

Offset: 0x0C

Reset: 0x00000000
Property: PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.

Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

@ MICROCHIP

445

23.8.7 Interrupt Enable Set

Name: INTENSET

Offset: 0x10

Reset: 0x00000000
Property: PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Clear (INTENCLR) register.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

446

@ MICROCHIP

23.8.8 Interrupt Flag Status and Clear
Name: INTFLAG
Offset: 0x14
Reset: 0x00000000
Property: -
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
Access
Reset

@ MICROCHIP

447

23.8.9 External Interrupt Asynchronous Mode

Name: ASYNCH

Offset: 0x18

Reset: 0x00000000

Property: PAC Write-Protection, Enable-Protected

Bit 31 30 29 28

27

26

25

24

Access
Reset

Bit 23 22 21 20

19

18

17

16

Access
Reset

Bit 15 14 13 12

11

10

Access
Reset

Bit 7 6 5 4

Access
Reset

@ MICROCHIP

448

23.8.10 External Interrupt Sense Configuration

Name: CONFIG

Offset: 0x1C

Reset: 0x00000000

Property: PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
FILTEN3 SENSE3[2:0] | FILTEN2 | SENSE2[2:0] |
Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
FILTEN SENSE1[2:0] FILTENO SENSEO[2:0]
Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0

Bits 3, 7, 11, 15 - FILTENX Filter Enable x [x=3..0]
Note: The filter must be disabled if the asynchronous detection is enabled.

VEIS Description

0 Filter is disabled for EXTINT[X] input.
1 Filter is enabled for EXTINT[x] input.

Bits 0:2, 4:6, 8:10, 12:14 - SENSEx Input Sense Configuration x [x=3..0]
These bits define on which edge or level the interrupt or event for EXTINT[x] will be generated.

Value Name Description

0x0 NONE No detection

0x1 RISE Rising-edge detection
0x2 FALL Falling-edge detection
0x3 BOTH Both-edge detection
0x4 HIGH High-level detection
0x5 LOW Low-level detection
0x6 - 0x7 - Reserved

449

@ MICROCHIP

23.8.11 Debouncer Enable

Name: DEBOUNCEN

Offset: 0x30

Reset: 0x00000000

Property: PAC Write-Protection, Enable-Protected

Bit 31 30 29 28

27

26

25

24

Access
Reset

Bit 23 22 21 20

19

18

17

16

Access
Reset

Bit 15 14 13 12

11

10

Access
Reset

Bit 7 6 5 4

Access
Reset

@ MICROCHIP

450

23.8.12 Debouncer Prescaler

Name: DPRESCALER
Offset: 0x34
Reset: 0x00000000

Property: PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | TICKON |
Access RW
Reset 0
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
Access
Reset

Bit 16 - TICKON Pin Sampler frequency selection
This bit selects the clock used for the sampling of bounce during transition detection.

VEIS Description

0 The bounce sampler is using GCLK_EIC.
1 The bounce sampler is using the low frequency clock.

@ MICROCHIP

451

23.8.13 Pin State

Name: PINSTATE
Offset: 0x38
Reset: 0x00000000
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
Access
Reset

@ MICROCHIP

452

24. Flash Memory

24.1 Overview
The PIC32CX-BZ2 devices contain a single bank of Flash memory with their Program Flash Memory
(PFM) partition and Boot Flash Memory (BFM) partition for storing user code or non-volatile data.
The Flash controller is used to access the Flash memory. The peripheral bus interface is used for
commands and configuration of the Flash controller.

24.2 Features
Flash Controller
« PB-Bridge-D interface that provides access to the Flash controller registers

+ AHB Initiator for bus hosted reads the row programming data from SRAM
+ Write Protect for Program Flash (PFM)
- Single page protection resolution
- Protect “Less Than" Address
- Protect “Greater Than or Equal to” Address
+ Individual page write protection for boot Flash (BFM)
« Error-correction code (ECC) support
+ Supports chip and page erase
+ Supports Single Word, Quad Word and row program options
+ Supports flash Erase/Retry to increase Retention and Endurance
Flash Memory
« 128-bit wide Flash Memory Access
+ 4 Kbytes page size
* Rowsizeis 1 KB (256 IW)
+ Flash-based OTP (one-time-programmable) page
The Flash controller allows the Flash memory to be accessed through the following methods:

1. Run-Time Self-Programming (RTSP)

2. Serial Wire Debug (SWD) programming using DSU (See Device Service Unit (DSU) from Related
Links and PIC32CX-BZ2 Programming Specification.)

Related Links
12. Device Service Unit (DSU)

453

@ MICROCHIP

24.3

24.4

24.5

24.5.1

Functional Block Diagram

Figure 24-1. Flash Memory Block Diagram

| NVMDATA3[31:0] | | NVMDATA2[31:0] | | NVMDATA1[31:0] | NVMDATAQ[31:0]

M M M =
o
M M @ | AHB
m | Initiator
M T
<
Word/Quad word:0 \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 /
Row:1
A 4 A 4 A 4 A 4
FC Program Data Buffer lpgm data 3 ‘ lpgm data 2 ‘ lpgm data 1 ‘ lpgm data 0 ‘
Flash Controller
Flash Wrapper
v v v v
Row/Quad word 0:NVMADDR([3:2] \ 1 10 01 00
Word:2'b0 e

ECC Parity/Control

NVMADDR([3:2] —»|

Flash Memory

NVMADDR[31:4] —»|

Word 3 Word 2 Word 1 Word 0

Flash Memory Addressing

Flash memory addressing uses physical addresses only. For more information on addressing, see
Product Memory Mapping Overview from Related Links.

Related Links
8. Product Memory Mapping Overview

Memory Configuration

Flash Memory Construction

Flash memory is divided into pages. A page is the smallest unit of memory that can be erased at
one time. Each page of memory is segmented into four rows. A row is the largest unit of memory
that can be programmed at one time. A row consists of 64 Quad (128-bit) Word. Each Quad Word
consists of a four instruction (32-bit) Word. Flash memory can be programmed in rows, Quad Word
(128-bit) or Single Word (32-bit) units.

@ MICROCHIP

454

24.5.2

24.6

24.6.1

Figure 24-2. Flash Construction

Flash Bank consisting of ‘n’ pages

~

Page n
- Each page consists

of 4 rows Each Quad Word consists
| | of 4 instruction (32-bit) word

Page 3 / \

Flash Bank -
Page 2 / Row 3 Word 3 Word 1 Word 0
/ L _
| Page 1 Row 2 >~ . .
~N -~ ~ 4
N Page 0 Row 1 ~ - V.
S | Rowo Qw 63 Qw 1 Qw o

Each row consists of 64 quad (128-bit) words

Flash Memory Organization
The Device Flash memory is divided into two logical Flash partitions:

1. Main Program Flash Memory (PFM)

2. Boot/Configuration Flash Memory (BFM)
a. BootFlash
b. Device/Boot Configuration - Device and boot configuration data
c. OTP (One Time Programmable) - User system calibration data

Each Flash section has a different protection status; refer to the following table.

Table 24-1. Protection Status

Flash Partition Memory Region Write Protection Erase Protection Chip Erase through
DSU

Boot Flash Yes. Page-wise Yes. Page-wise Erased
Configurable Configurable
Device/Boot Yes. Configurable Yes. Configurable Erased
Configuration
OTP (One-Time- Yes. Configurable Always Erase protected. Not Erased
Programmable) Can not be erased
PFM Program Flash Yes. Configurable Yes. Configurable Erased

Boot Flash Memory (BFM) Partitions

BFM Write Protection

Pages in the BFM regions can be protected individually using bits in the NVMLBWP register. At Reset,
all pages are in a write-protected state and must be disabled prior to performing any programming
operations on the BFM regions. There is also an unlock bit, ULOCK(NVMLBWP[31]), that is set at
Reset and can be cleared by the user software. When cleared, changes to write protection for that
region can no longer be made. Once cleared, the ULOCK bit can only be set by a Reset.

The NVMLBWP write-protect register can only be changed when the unlock sequence is followed.
See NVMKEY Register Unlocking Sequence from Related Links.

Related Links
24.11. NVMKEY Register Unlocking Sequence

@ MICROCHIP

455

24.7 Program Flash Memory (PFM) Partitions

24.7.1 PFM Write Protection

Write protection for the PFM region is implemented by pages, defined by the NVMPWPLT and
NVMPWPGTE registers. The NVMPWP* registers define an area within the program space (PFM) that
is write-protected. This write-protected address resolves to Flash page boundaries; therefore, the 12
LSBs for a 4 KB page Flash of any address written to the NVMPWP* registers are ignored. The width
of each NVMPWP* address register is determined by the size of the Flash. The NVMPWPLT register
is used to set the Program Flash pages lower than the provided address as write-protected. The
NVMPWPGTE register is used to set the Program Flash pages greater than or equal to the provided
address as write-protected. Therefore, a value of all 0s in the NVMPWPLT register and all 1s in the
NVMPWPGTE register results in no region of Flash being write-protected (default state at Reset).

There is also an unlock bit, ULOCK (NVMPWPLT [31] and NVMPWPGTE[31]), that is set at Reset and
can be cleared by the user software. When cleared, changes to the write-protection of the PFM

can no longer be made, including the ULOCK bit. The NVMPWPLT and NVMPWPGTE write-protected
register can only be changed when the unlock sequence is followed. See NVMKEY Register Unlocking
Sequence from Related Links.

Related Links
24.11. NVMKEY Register Unlocking Sequence

24.8 Error Correcting Code (ECC) and Flash Programming

The PIC32CX-BZ2 devices incorporate Error Correcting Code (ECC) features that detect and correct
errors resulting in extended Flash memory life. For more details on this feature, see Prefetch Cache
from Related Links.

ECCis implemented in 128-bit Quad Flash Words or 32-bit Single Word. As a result, when
programming Flash memory on a device where ECC is employed, the programming operation must
be, at minimum, four instruction Words or in groups of four instruction Words. This is the reason
that the Quad Word programming command exists and why row programming always programs
multiples of four Words.

For a given software application, ECC can be enabled at all times, disabled at all times or dynamically
enabled using the ECCCTL Configuration bits in the CFGCONO register. When ECC is enabled at all
times, the Single Word NVMOP programming command does not function and the Quad Word is the
smallest unit of memory that can be programmed. When ECC is disabled or enabled dynamically,
both the Single Word and Quad Word programming NVMOP commands are functional and the
programming method used determines how ECC is handled.

In the case of dynamic ECC, if the memory was programmed with the Singe Word command, ECC
is turned off for that Word, and, when it is read, no error correction is performed. If the memory
was programmed with the Quad Word or Row Programming commands, ECC data is written and
tested for errors (and corrected if needed) when read. The following table describes the different
ECC scenarios.

Table 24-2. ECC Programming Summary

ECCCTL Setting Programming Operation Data Read
Single Word Write Quad Word Write

Disabled Allowed Allowed Allowed ECC is never applied on
a Flash read
Enabled Not allowed Allowed Allowed ECCis applied on every

Flash Word read

456

@ MICROCHIP

........... continued

ECCCTL Setting Programming Operation Data Read
Single Word Write Quad Word Write

Dynamic Allowed but when used, Writes ECC data Writes ECC data ECCis only applied on
the programmed word and flags programmed and flags programmed words that are flagged
is flagged to NOT USE words to USE ECC words to USE ECC to USE ECC
ECC

Note: When using dynamic ECC, all non-ECC locations must be programmed with the 32-bit Word
programming command, while all ECC-enabled locations must be programmed with a 128-bit Quad
Word or Row programming command. Divisions between ECC and non-ECC memory must be on
even Quad Word boundaries (address bits 0 through 3 are equal to ‘0’).

Related Links
9. Prefetch Cache (PCHE)

24.9 Interrupts

An interrupt is generated when the WR bit is cleared by the Flash Controller upon completion of a
Flash program or erase operation. The interrupt event will cause a CPU interrupt if it was configured
and enabled in the Nested Interrupt Vector Controller. See Nested Vector Interrupt Controller (NVIC)
from Related Links for the vector mapping table. The interrupt occurs regardless of the outcome of
the program or erase operation, successful or unsuccessful. The only exception is the No Operation
(NOP) programming operation (NVMOP = 0), which is used to manually clear the error flags and
does not create an interrupt event on completion but does clear the WR bit.

The Flash Controller interrupts are not persistent, and, therefore, no additional steps are required to
clear the cause or source of the interrupt.

Once the Interrupt Controller is configured, the Flash event causes the CPU to jump to the vector
assigned to the Flash event. The CPU starts executing the code at the vector address. The user
software at this vector address must perform the required operations and, then, exit.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

24.9.1 Interrupts and CPU Stalling
Code cannot be fetched by the CPU from the same Flash bank, either BFM or PFM, that is the
target of the programming operation. When this operation is attempted, the CPU will cease to
execute code (stall) while the programming operation is in progress. CPU code execution does not
resume until the programming operation is complete, and, when this occurs, any pending interrupts,
including those from the Flash Controller, will be processed in order of priority.

Note: Code that is already loaded into the processor cache will continue to execute up to the
point where an attempt is made to fetch code or data from the same Flash bank as the active
programming operation. At this point the CPU will stall.

The stalling of the CPU can also be avoided by placing any needed executable code in SRAM during
Flash programming.

24.10 Error Detection

The NVMCON register includes two bits for detecting error conditions during a program or erase
operation. They are Low-Voltage detect error, LVDERR bit (NVMCONT[12]), and Write Error, WRERR bit
(NVMCONI13]).

The WRERR is set each time the WR bit (NVMCON[15]) is set, initiating a programming operation.
When the Flash operation is complete, indicated by hardware clearing the value of the WR bit
(i.e., WR bit is set to ‘0’), hardware will update the value in the WRERR bit to indicate if an error
occurred. Firmware must check the value of the WR bit to see if the Flash operation completed

457

@ MICROCHIP

before checking the value of the WRERR bit. When the WRERR bit is set, any future attempt to
initiate programming or erase operation is ignored. WRERR must be cleared before commencing
Flash program or erase operations.

The LVDERR bit is set when a Brown-out Reset (BOR) occurs during a programming operation. The
only Reset that clears the LVDERR bit is a Power-on Reset (POR). Other Reset types do not affect the
LVDERR bit. When the LVDERR bit is set, any attempt to initiate programming or erase operation is
ignored. The LVDERR bit must be cleared before commencing Flash program or erase operations.

Both the WRERR and LVDERR bits must be cleared manually in software by initiating a Flash
operation (setting WR) referred to as NOP (0x00) (see the NVMOP bit fields).

Note: Executing the NVMOP NOP command clears WRERR, LVDERR and WR bits, but does not
generate an interrupt event on completion.

Table 24-3. Programming Error Cause and Effects

Cause of Error Effect on Programming Erase Indication
Operation

A low-voltage event occurred during a The last programming or erase LVDERR = 1, WRERR = 1
programming sequence. operation may not have completed.

A non-POR Reset occurred during Programming or erase operation is WRERR =1
programming. aborted.

Attempt to program or erase a page out Erase or programming operation isnot WRERR =1
of the Flash memory range. initiated.

Attempt to erase or program a write- Erase or programming operation isnot WRERR =1
protected PFM page. initiated.

Attempt to erase or program a write- Operation occurs, but the page is not WRERR = 0
protected BFM page. programmed or erased.

Bus host error or row programming Programming or erase operation is WRERR =1
data underrun error during aborted.

programming.

24.11 NVMKEY Register Unlocking Sequence

Important register settings that could compromise the Flash memory if inadvertently changed are
protected by a register unlocking sequence. This feature is implemented using the NVMKEY register.
The NVMKEY register is a write-only register that is used to implement an unlock sequence to help
prevent accidental writes or erasures of Flash memory.

In some instances, the operation is also dependent on the setting of the WREN bit (NVMCON[14]), as
shown in the following table.

Table 24-4. NVMKEY Register Unlocking and WREN

WREN Setting Unlock Sequence Required

Changing value of NVMOP[3:0] 0 No
(NVMCON[3:0])

Setting WR (NVMCONJ[15]) to start a 1 Yes
write or erase operation

Changing any fields in the NVMPWP* — Yes
register

Changing any fields in the NVMLBWP — Yes
register

The following steps must be followed in the exact order as shown to enable writes to registers that
require this unlock sequence:

1. Write 0x00000000 to NVMKEY.
2. Write OxAA996655 to NVMKEY.

458

@ MICROCHIP

3. Write Ox556699AA to NVMKEY.

4. Write the value to the register NVMCON, NVMCON2, NVMPWP* or NVMLBWP requiring the
unlock sequence.

When using the unlock sequence to set or clear bits in the NVMCON register, as shown in Step 4,
Steps 2 through 4 must be executed without any other activity on the peripheral bus that is in use by
the Flash Controller. Interrupts and DMA transfers that access the same peripheral bus as the Flash
Controller must be disabled. In addition, the operation in Step 4 must be atomic. The Set, Clear and
Invert registers may be used, where applicable, for the target register in Step 4.

The following code shows code written in the C language to initiate a NVM Operation (NVMOP)
command. In this particular example, the WR bit is being set in the NVMCON register and, therefore,
must include the unlock sequence.

Initiate NVM Operation (System Unlock Sequence Example):

void NVMInitiateOperation (void)
{
// Disable Interrupts
asm volatile (“di%0” : “=r” (int_ status));
uint32 t globallnterruptState= get PRIMASK();
// Disable Interrupts
__disable irqg();
NVMKEY = 0x0;
NVMKEY = 0xAA996655;
NVMKEY = 0x556699AA;
NVMCONSET = 1 << 15;// must be an atomic instruction

// Restore Interrupts
~_set PRIMASK(globallInterruptState);
}

Note: Once the unlock codes are written to the NVMKEY register, the next activity on the same
peripheral bus as the Flash Controller will Reset the lock. As a result, only atomic operations can
be used. Use of the NVMCONSET register sets the WR bit in a single instruction without changing
other bits in the register. Using NVMCONDbits.WR = 1 will fail, as this line of code compiles to a
read-modify-write sequence.

24.12 Word Programming

The smallest block of data that can be programmed in a single operation is one Flash write Word
(32-bit). The data to be programmed must be written to the NVMDATAO register, and the address

of the Word must be loaded into the NVMADDR register before the programming sequence is
initiated. The instruction Word at the physical location pointed to by the NVMADDR register is,

then, programmed. Programming occurs on 32-bit Word boundaries; therefore, bits ‘0’ and ‘1’ of the
NVMADDR register are ignored.

When a Word is programmed, it must be erased before it can be programmed again, even if
changing a bit from an erased ‘1’ state to a ‘0’ state.

Word programming will only succeed if the target address is in a page that is not write-protected.
Programming to a write-protected PFM page will fail and result in the WRERR bit being set in the
NVMCON register. Programming a write-protected BFM page will fail but does not set the WRERR bit.

A programming sequence consists of the following steps:
1. Write 32-bit data to be programmed to the NVMDATAQO register.

Load the NVMADDR register with the address to be programmed.

Set the WREN bit = 1 and NVMOP bits = 1 in the NVMCON register. This defines and enables the
programming operation.

4. Initiate the programming operation. (See NVMKEY Register Unlocking Sequence from Related
Links.)

459

@ MICROCHIP

5. Monitor the WR bit of the NVMCON register to flag completion of the operation.
6. Clear the WREN bit in the NVMCON register.
7. Check for errors and process accordingly.

The following code shows code for Word programming, where a value of 0x12345678 is
programmed into location 0x1008000.

Word Programming Code Example:

// Set up Address and Data Registers
NVMADDR= 0x1008000; // physical address
NVMDATAO = 0x12345678; // value

// set the operation, assumes WREN = 0
NVMCONbits.NVMOP = 0x1; // NVMOP for Word programming

// Enable Flash for write operation and set the NVMOP
NVMCONbits.WREN = 1;

// Start programming
NVMInitiateOperation () ; // see Initiate NVM Operation (Unlock Sequence
Example)

// Wait for WR bit to clear
while (NVMCONbits.WR) ;

// Disable future Flash Write/Erase operations
NVMCONbits.WREN = 0;

// Check Error Status
if (NVMCON & 0x3000) // mask for WRERR and LVDERR
{

// process errors

Related Links
24.11. NVMKEY Register Unlocking Sequence

24.13 Quad Word Programming

The process for Quad Word programming is identical to Word programming except that all four of
the NVMDATAX registers are used. The value of the NVMDATAO register is programmed at address
NVMADDR, NVMDATA1 at NVMADDR + 0x4, NVMDATA2 at NVMADDR + 0x8, and NVMDATA3 at
address NVMDATA + OxC.

Quad Word programming is always performed on a Quad Word boundary; therefore, NVMADDR
address bits 3 through 0 are ignored.

Quad Word programming will only succeed if the target address is in a page that is not write-
protected. When a Quad Word is programmed, it must be erased before any Word in it can be
programmed again, even if changing a bit from an erased ‘1’ state to a ‘0’ state.

Where a value of 0x11111111 is programmed into location 0x1008000, 0x22222222 into 0x1008004,
0x33333333 into 0x1008008, and 0x44444444 into location 0x100800C. Refer to the following code
example for details.

Quad Word Programming Code Example:

// Set up Address and Data Registers

NVMADDR = 0x1008000; // physical address

NVMDATAO = 0x11111111; // value written to 0x1008000
NVMDATALl = 0x22222222; // value written to 0x1008004
NVMDATA2 = 0x33333333; // value written to 0x1008008
NVMDATA3 = 0x44444444; // value written to 0x100800C

460

@ MICROCHIP

// set the operation, assumes WREN = 0
NVMCONbits.NVMOP = 0x2; // NVMOP for Quad Word programming

// Enable Flash for write operation and set the NVMOP
NVMCONbits.WREN = 1;

// Start programming
NVMInitiateOperation () ; // see Initiate NVM Operation (Unlock Sequence Example)

// Wait for WR bit to clear
while (NVMCON & NVMCON_WR) ;

// Disable future Flash Write/Erase operations
NVMCONbits.WREN = 0;

// Check Error Status
if (NVMCON & 0x3000) // mask for WRERR and LVDERR bits

24.14 Row Programming

The largest block of data that can be programmed is a row.

Unlike Word and Quad Word Programming where the data source is stored in SFR memory, Row
programming source data is stored in SRAM. The NVMSRCADDR register is a pointer to the physical
location of the source data for Row programming.

Like other Non-Volatile Memory (NVM) programming commands, the NVMADDR register points to
the target address of the operation. Row programming always occurs on row boundaries with the
row size of 1024, bits 0 through 9 of the NVMADDR register are ignored.

Row Word programming will only succeed if the target address is in a page that is not write-
protected. When a row is programmed, it must be erased before any Word in it can be programmed
again, even if changing a bit from an erased ‘1’ state to a ‘0’ state.

Array rowbuff is populated with data and programmed into a row located at physical address
0x1008000.

Note: When assigning the value to the NVMSRCADDR register, it must be converted to a physical
address.

Row Programming Code Example:

unsigned long rowbuff[256]; // example is for a 256 Word row size.
int x; // loop counter

// put some data in the source buffer
for (x = 0; x < (sizeof (rowbuff) * sizeof (int)); =x++)
((char *)rowbuff) [x] = x;

// set destination row address
NVMADDR = 0x1008000; // row physical address

// set source address. Must be converted to a physical address.
NVMSRCADDR = (unsigned int) ((int)rowbuff & Ox1FFFFFF);

// define Flash operation
NVMCONbits.NVMOP = 0x3; // NVMOP for Row programming

// Enable Flash Write
NVMCONbits.WREN = 1;

// commence programming
NVMInitiateOperation () ; // see Initiate NVM Operation (Unlock Sequence
Example)

// Wait for WR bit to clear
while (NVMCONbits.WR) ;

// Disable future Flash Write/Erase operations
NVMCONbits.WREN = 0;

@ MICROCHIP

461

// Check Error Status
if (NVMCON & 0x3000) // mask for WRERR and LVDERR bits

// process errors

}

24.15 Page Erase

A Page Erase performs an erase of a single page of either PFM or BFM.

The page to be erased is selected using the NVMADDR register. Pages are always erased on page
boundaries; therefore, for a device with an instruction Word page size of 4096, bits 0 through 11 of
the NVMADDR register are ignored.

A Page Erase will only succeed if the target address is a page that is not write-protected. Erasing a
write-protected page will fail and result in the WRERR bit being set in the NVMCON register.

The following code shows the code for a single Page Erase operation at address 0x1008000.

Page Erase Code Example:

// set destination page address
NVMADDR = 0x1008000; // page physical address

// define Flash operation
NVMCONbits.NVMOP = 0x4; // NVMOP for Page Erase

// Enable Flash Write
NVMCONbits.WREN = 1;

// commence programming
NVMInitiateOperation(); // see Initiate NVM Operation (Unlock Sequence Example)

// Wait for WR bit to clear
while (NVMCONbits.WR) ;

// Disable future Flash Write/Erase operations
NVMCONbits.WREN = 0;

// Check Error Status
if (NVMCON & 0x3000) // mask for WRERR and LVDERR bits
{
// process errors

}

24.15.1 Page Erase Retry

Page Erase Retry is a method to improve the life of a Flash by attempting to erase again if the Page
Erase was not successful. Page Erase Retry can only be used for a Page Erase.

Page Erase Retry works by increasing the voltage used on the Flash when erasing. Initially, the
minimum voltage necessary is applied by setting the RETRY[1:0] bits (NVMCONZ2[9:8]) = 00. If the
page erase is not successful, the voltage may be increased by incrementing the setting of the
RETRY[1:0] bits.

Note: Each Flash page, as it ages and wears, may have different voltage requirements; therefore, a

higher setting on one Flash page does not indicate that the same setting must be used on all pages.

The maximum voltage for Page Erase is used when the RETRY[1:0] bits = 11. If Page Erase is not
successful after 7 trials, this means that the Flash for that page, or the Words that did not erase,
must be considered “non-functional”.

Together with the normal Page Erase controls, Page Erase Retry also uses the WS[4:0], CREADT,
VREAD1 and RETRY[1:0] bits in the NVMCONZ2 register. The ERS[3:0] bits (NVMCONZ2[31:28]) are for
the benefit of software performing the programming sequence in the event that a drop in power
causes a BOR event but not a POR event.

@ MICROCHIP

462

Perform the following steps to set up a Page Erase Retry:
1.

2.
3.
4

O N ow

Set the NVMADDR register with the address of the page to be erased.
Execute the write unlock sequence.
Save the value of the NVMCON2 register.

Do the following in the NVMCON2 register:
Set the ERS[3:0] bits as desired.

a

b. Setthe WS[4:0] bits per the description.

c. Setthe VREAD1 bit to '1".

d. Setthe CREAD1 bitto ‘1"

e. Setthe RETRY[1:0] bits to ‘00"

Run the unlock sequence using the Page Erase command to start the sequence.
Wait for the WR bit (NVMCONI[15]) to be cleared by hardware.

Clear the WREN bit (NVMCON[14]).

Verify the erase using the CPU. To shorten the verify time, use CREAD1 = 1 to perform a
hardware compare to logic ‘1’ of each bit in the Flash Word including ECC. A successful compare
yields a read of 0x00000001 in the lowest addressed word in a Flash Word (128 bits). This is the
Compare Word. All other Words are 0x00010000. If any bit is logic ‘0’, all Words in the Flash Word
read 0x00000000. Remember to increment the address by the number of bytes in a Flash Word
between reads.

If all Compare Words verify correctly, the Page Erase Retry process is complete. Go to step 11.

. If a Compare Word yields a read of 0x00000000, perform steps 4 through 9 up to six more times

with the following change to step 4:
a. Increment the RETRY[1:0] bits by one if the bit has not already reached the ‘11’ setting.

b. Maintain all other fields.

11. Restore the value of the NVMCONZ2 register, which was saved in step 3.

Notes:
1.

When the VREAD1 = 1, the Flash uses the WS[3:0] bits for Flash access wait state generation to
the panel selected by NVMADDR. Software is responsible for writing the VREAD1 bit back to ‘0’
when both erase and verify is complete.

The device configuration boot page (the page containing the DEVCFGXx values) does not support
Page Erase Retry.

The following code provides code for a single page erase operation at address 0x1008000, where
Page Erase Retry is used.

Page Erase Retry Code Example:

uint32 tsaveNVMCON2;
uint32 t*cmpPtr;
uint8 terased;

uint8 ttryCount;

/7

/7

/7

//

set destination page address
NVMADDR = 0x1008000; // Page physical address

define flash operation
NVMCONbits.NVMOP = 0x4; // NVMOP for Page Erase

Unlock sequence
NVMKEY 0x0;
NVMKEY 0xAA996655;
NVMKEY 0x556699AA;

save NVMCONZ2

@ MICROCHIP

463

saveNVMCON2 = NVMCONZ2;

// set up Page Erase Retry
NVMCON2bits.ERS = 0; // Stage 0 - SW use only
NVMCON2bits.VREAD1 g
NVMCON2bits.CREADL g
NVMCON2bits.RETRY = 0b00;

tryCount = 0; // Up to 4 attempts

do {
tryCount++;

// commence programming
NVMInitiateOperation() ;

// Wait for WR bit to clear
while (NVMCONbits.WR) ;

// Turn off WREN
NVMCONbits.WREN = 0;

// Check that the page was erased
erased = 1;

cmpPtr = (uint327t *) NVMADDR;;
erased &= (*cmpPtr == 0x00000001) ;
cmpPtr++;

erased &= (*cmpPtr == 0x00010000) ;
cmpPtr++;

erased &= (*cmpPtr == 0x00010000) ;
cmpPtr++;

erased &= (*cmpPtr == 0x00010000) ;

if (lerased) {
// Erase failed. Try with different settings.
NVMCON2bits.RETRY++;

NVMCONbits.NVMOP = 0x4;
NVMCONbits.WREN = 1;

}
} while (!erased && (tryCount < 4));

// Restore settings
NVMCON2 = saveNVMCON2;

24.16 Program Flash Memory (PFM) Erase

Program Flash memory can be erased entirely. All three discrete NVMOP values, 0111, 0110, 0101,
do the same operation of erase of entire Flash. When erasing the entire PFM area, in case of RTSP

(Run Time Self Programming), the code must be executing from BFM. When erasing the entire PFM
area, PFM write-protection must be completely disabled.

The following code shows code for erasing the entire Flash bank.

Program Flash Erase Code Example:

// define Flash operation
NVMCONbits.NVMOP = 0x7; // NVMOP for entire PFM erase

// Enable Flash Write
NVMCONbits.WREN = 1;

// commence programming
NVMInitiateOperation () ; // see Initiate NVM Operation (Unlock Sequence Example)

// Wait for WR bit to clear
while (NVMCONbits.WR) ;

// Disable future Flash Write/Erase operations
NVMCONbits.WREN = 0;

// Check Error Status
if (NVMCON & 0x3000) // mask for WRERR and LVDERR bits
{

464

@ MICROCHIP

// process errors

24.17 Pre-Program

The PIC32CX-BZ2 Flash supports an option to programming that increases endurance and retention.
This feature is called Pre-Program, and it requires the user to perform the programming operation
twice, first, with NVMCON2.NVMPREPG = 1 and, secondly, with NVMCONZ2.NVMPREPG = 0. Any of
the programming operations (Single, Quad, Row) can be performed with this method. In all other
respects, the SFR setup is identical. To use this feature, set or clear the NVMCON2.NVMPREPG

SFR bit prior to setting the NVMWR bit. Pre-Program, typically double, the native Endurance and
Retention of the Flash.

24.18 Device Code Protection bit (CP)

The PIC32CX-BZ2 family of devices features code protection, which, when enabled, prevents reading
of the Flash memory by an external programming device (SWD through DSU).

When code protection is enabled, it can only be disabled by erasing the device with the Chip Erase
command through an external programmer. See Device Service Unit (DSU) from Related Links.

When programming a device that has opted to utilize code protection, the external programming
device must perform verification prior to enabling code protection. Enabling code protection must
be the last step of the programming process. For the location of the code protection enable bits,
refer to PIC32CX-BZ2 Programming Specification and System Configuration Registers (CFG) from Related
Links.

Related Links
12. Device Service Unit (DSU)
18. System Configuration and Register Locking (CFG)

24.19 Operation in Power-Saving Modes
The Flash Controller does not operate in power-saving modes. If a WAIT instruction is encountered
when programming, the CPU will stop execution (stall), wait for the programming operation to
complete, then enter the Power-Saving mode.

24.20 Operation in Debug Mode

Programming operations will continue to completion if the processor execution is halted in Debug
mode.

24.21 Effects of Various Resets

Device Resets, other than a Power-on Reset (POR), reset the entire contents of the NVMPWP and
NVMLBWP registers. All other register content persists through a non-POR reset.

All Flash Controller registers are forced to their reset states upon a POR.

24.22 Control Registers
Note: The following conventions are used in the following registers:
+ R =Readable bit
+ W =Writable bit
+ U= Unimplemented bit, read as ‘0’
+ 1=Bitis set
* 0= Bitis cleared
* X = Bitis unknown

465

@ MICROCHIP

* -n=Value at POR
+ HS = Hardware Set
+ HC = Hardware Cleared

Note: All registers in this table have corresponding CLR, SET and INV registers at its virtual address,
plus an offset of Ox4, 0x8 and 0OxC, respectively. See CLR, SET and INV Registers from Related Links.

Related Links
6.1.9. CLR, SET and INV Registers

466

@ MICROCHIP

24.22.1 Register Summary

0x00
0x04
OxOF
0x10
0x14
Ox1F
0x20
0x24
Ox2F
0x30
0x34
Ox3F
0x40
0x44
Ox4F
0x50
0x54
Ox5F
0x60
0x64
Ox6F
0x70

0x74

O0xBF

@ MICROCHIP

The following registers provides a brief summary of the Flash programming-related registers.

I S T B S N S N

NVMCON

Reserved

NVMCON2

Reserved

NVMKEY

Reserved

NVMADDR

Reserved

NVMDATAOQ

Reserved

NVMDATA1

Reserved

NVMDATA2

Reserved

NVMDATA3

Reserved

15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

WR

WREN

TEMP

WRERR

CREAD1

ERS[3:0]

NVMOP[3:0]
LVDERR HTDPGM
NVMPREPG
VREAD1 RETRY[1:0]
WS[4:0]
SLEEP

NVMKEY[7:0]
NVMKEY[15:8]
NVMKEY[23:16]
NVMKEY[31:24]

NVMADDR[7:0]
NVMADDR[15:8]
NVMADDR[23:16]
NVMADDR[31:24]

NVMDATA[7:0]
NVMDATA[15:8]
NVMDATA[23:16]
NVMDATA[31:24]

NVMDATA[7:0]
NVMDATA[15:8]
NVMDATA[23:16]
NVMDATA[31:24]

NVMDATA[7:0]

NVMDATA[15:8]
NVMDATA[23:16]
NVMDATA[31:24]

NVMDATA[7:0]

NVMDATA[15:8]
NVMDATA[23:16]
NVMDATA[31:24]

467

........... continued

[ofisec | Name [Bitpos| 7 | 6 | 5 | 4 | 3 | 2 | 1 | o0 |
7:0

0xCO0
0xC4
OxCF
0xD0
0xD4
O0xDF
OXEO
OxE4
OXEF

0xFO

NVMSRCADDR[7:0]

NVMSRCADDR 15:8 NVMSRCADDR([15:8]
23:16 NVMSRCADDR[23:16]
31:24 NVMSRCADDR[31:24]
Reserved
7:0 PWPLT[7:0]
15:8 PWPLT[15:8]
NVMPWPLT
23:16 PWPLT[23:16]
31:24 ULOCK
Reserved
7:0 PWPGTE[7:0]
15:8 PWPGTE[15:8]
NVMPWPGTE
23:16 PWPGTE[23:16]
31:24 ULOCK
Reserved
7:0 LBWP[7:0]
15:8 LBWP[15:8]
NVMLBWP
23:16 LBWP[23:16]
31:24 ULOCK

24.22.2 Register Description

The following NVM control registers control the Flash program, erase and write protection
operations:

NVMCON: Programming Control Register

- This register is the control register for Flash program/erase operations. The following are the
uses of this register:

+ Selects the operation to be performed
+ Initiates the operation
+ Provides status of the result after completing the operation
NVMCONZ2: Programming Control2 Register
- This register is the control and status register for Flash program/erase operations.
NVMKEY: Programming Unlock Register

- This is a write-only register that helps to or that helps the user to implement an unlock
sequence to help prevent accidental writes/erasures of Flash memory and write permission
settings.

NVMADDR: Flash Address Register

- This register stores the physical target address for row, Quad Double Word and Single
Double Word programming as well as page erasing.

NVMDATAX: Flash Program Data Register (x = 0-3)
- These registers hold the data to be programmed during Flash Word program operations.
NVMSRCADDR: Source Data Address Register

- This register points to the physical address of the data to be programmed when executing a
row program operation.

NVMPWPLT: Flash Program Write Protect Lower Register
- This register sets the program flash pages lower than provided address as a write protected.

@ MICROCHIP

468

+ NVMPWPGTE: Flash Program Write Protect Greater Register

- This register sets the program flash pages greater than provided address as a write
protected.

+ NVMLBWP: Flash Boot Write Protect Register
- This register sets the boot flash partition pages as a write protected.
The following is the list of conventions available in the register description:
* - R=Readable bit
+ - W =Writable bit
+ - U=Unimplemented bit, read as ‘0’
* --n=Value at POR
+ -1=Bitisset
* - 0=Bitis cleared
* - Xx=Bitis unknown
* HS =Hardware Set
+ HC=Hardware Cleared

469

@ MICROCHIP

24.22.2.1 NVMCON - Programming Control Register

Name: NVMCON
Offset: 0x00
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
| | | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
WR | WREN | WRERR | LVDERR | | | | HTDPGM |
Access R/HS/HC R/W R/HS/HC ~ R/HS/HC R/HS/HC
Reset 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| | | | | NVMOPI[3:0] |
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 15 - WR Write Control Bit(")
Note: This field can only be modified when WREN = 1, TEMP = 1 and the NVMKEY unlock sequence

is satisfied.

Value Description
1 Initiate a Flash operation. Hardware clears this bit when the operation completes
0 Flash operation complete or inactive

Bit 14 - WREN Write Enable Bit(!)

1 Enables writes to WR
0 Disables writes to WR

Bit 13 - WRERR Write Error Bit(!)
Note: Cleared by setting NVMOP == 0000b and initiating a Flash operation (WR).

Value Description
1 Program or erase sequence did not complete successfully
0 Program or erase sequence completed normally

Bit 12 - LVDERR Low Voltage Detect Error Bit(")
The error is only captured for programming/erase operations (when WR = 1).
Note: Cleared by setting NVMOP == 0000b and initiating a Flash operation (WR).

VIS Description
1 Low voltage is detected (possible data corruption if WRERR is set)
0 Normal voltage is detected

@ MICROCHIP

470

Bit 8 - HTDPGM High Temperature Detected during Program/Erase Operation bit
This status is only captured for programming/erase operations (when WR = 1).
Note: Cleared by setting NVMOP == 0000b and initiating a Flash operation (WR).

Value Description

1
0

High temperature is detected (possible data corruption, verify operation)
High temperature is not detected

Bits 3:0 - NVMOP[3:0] NVM Operation bits
These bits are only writable when WREN = 0.

VEIS Description

1111
1110

1000
0111
0110

0101

0100
0011
0010

0001
0000

Notes:

Reserved

Chip Erase Operation: Erases PFM, BFM (except configuration page) when accessed through SWD interface
only.

Reserved
Program erase operation: erase all of program Flash memory (PFM) (all pages must be unprotected)

Upper program Flash memory erase operation: erases only the upper mapped region of program Flash (all
pages in that region must be unprotected). It is a single bank Flash in PIC32CX-BZ2; therefore, this NVMOP
performs the same as NVMOP = 0111.

Lower program Flash memory erase operation: erases only the lower mapped region of program Flash (all
pages in that region must be unprotected). It is a single bank Flash in PIC32CX-BZ2; therefore, this NVMOP
performs the same as NVMOP = 0111.

Page erase operation: erases the page selected by NVMADDR if it is not write-protected.
Row program operation: programs the row selected by NVMADDR if it is not write-protected.

Quad Word (128-bit) program operation: programs the 128-bit Flash Word selected by NVMADDR if it is not
write-protected.

Word program operation: programs the Word selected by NVMADDR if it is not write-protected®.
No operation

1. These bits are reset by a POR only and are not affected by other Reset sources.

2. This operation results in a No Operation (NOP) when the Dynamic Flash ECC Configuration bits
= 00 (ECCCTL[1:0](CFGCONO0[29:28])), which enables ECC at all times. For all other ECCCTL[1:0] bit
settings, this command will execute but will not write the ECC bits for the Word. It can cause DED
(Double-bit Error Detected) errors if dynamic Flash ECC is enabled (ECCCTL[1:0] = 01).

@ MICROCHIP

471

24.22.2.2 NVMCON2 - Programming Control 2 Register

Name: NVMCON2
Offset: 0x10
Reset: 0x011F4000

Property: -
Bit 31 30 29 28 27 26 25 24
| ERS[3:0] | | | | SLEEP
Access R/W R/W RIW R/W RIW
Reset 0 0 0 0 1
Bit 23 22 21 20 19 18 17 16
| | | | WS[4:0] |
Access R/W R/W R/W R/W R/W
Reset 1 1 1 1 1
Bit 15 14 13 12 11 10 9 8
TEMP | CREAD1 | VREAD1 | | | RETRY[1:0] |
Access R R/W R/W R/W R/W
Reset 1 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| | | | | | [NVMPREPG |
Access R/W
Reset 0

Bits 31:28 - ERS[3:0] Erase Retry State
These bits are used by software to track the software state of the erase retry procedure in the event
of a system Reset (NMCLR) or Brown-out Reset (BOR) event.

Bit 24 - SLEEP Power Down in Sleep mode
Note: This field can only be modified when the NVMKEY unlock sequence is satisfied.

Value Description

Configures Flash for power-down when the system is in Sleep mode

1
0 Configures Flash for standby when the system is in Sleep mode

Bits 20:16 - WS[4:0] Flash Access Wait State Control for VREAD1 =1
Notes:

1. When VREAD1 = 1, WS[4:0] only affects the memory containing NVMADDR[31:0].
2. This field can only be modified when the NVMKEY unlock sequence is satisfied.

Value Description

11111 31 wait states (32 total system clocks)
11110 30 wait states (31 total system clocks)
00010 2 wait states (3 total system clocks)
00001 1 wait state (2 total system clocks)
00000 0 wait state (1 total system clock)

Bit 14 - TEMP Operating Temperature Control bit

472

@ MICROCHIP

Bit 13 - CREAD1 Compare Read of Logic 1 bit
Compare read 1 causes all bits in a Flash Word (including ECC if it exists) to be evaluated during the
read. If all bits are ‘1, the lowest Word in the Flash Word evaluates to 0x0000_0001, all other Words
are 0x0001_0000. If any bit is ‘0’, the read evaluates to 0x0000_0000 for all Words in the Flash Word.
Notes:

1.

When using erase retry in an ECC Flash system, CREAD1 = 1 must be used.

2. This field can only be modified when the NVMKEY unlock sequence is satisfied.
Value Description

1 Compare read enabled only if VREAD1 = 1

0 Compare read disabled

Bit 12 - VREAD1 Verify Read of logic 1 Control bit
Notes:

1.

When VREAD1 = 1, the Flash wait state control is from WS[4:0] for the memory containing
NVMADDR[31:0].

2. Using Page Erase Retry and Verify Read procedure increase the life of the Flash memory.

3. This field can only be modified when NVMCON.WR == 0 and the NVMKEY unlock sequence is
satisfied.

Value Description

1
0

Selects erase retry procedure with verify read
Selects single erase without verify read

Bits 9:8 - RETRY[1:0] Erase Retry Control bit, only used when VREAD1 =1
Note: This field can only be modified when NVMCON.WR == 0.

Value Description

11 Erase strength for last retry cycle

10 Erase strength for third retry cycle
01 Erase strength for second retry cycle
00 Erase strength for first retry cycle

Bit 0 - NVMPREPG NVM Pre-Program Control Bit
Note: This field can only be modified when NVMCON.NVMWR= = 0.

Value Description
1 Program Operations include the Pre-Program step
0 Program Operations exclude the Pre-Program step

@ MICROCHIP

473

24.22.2.3 NVMKEY - Programming Unlock Register

Name: NVMKEY
Offset: 0x20
Reset: 0x00000000

Property: -

Bit 31 30 29 28 27 26 25 24

| NVMKEY[31:24] |
Access w W w w w w W w
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16

| NVMKEY[23:16] |
Access W W W W w W W W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8

| NVMKEY[15:8] |
Access W W W W W w W w
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0

| NVMKEY[7:0] |
Access W W W W W W W w
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - NVMKEY[31:0] Unlock Register bits
These bits are write-only and read ‘0’ on any read.
Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the
program Flash.

474

@ MICROCHIP

24.22.2.4 NVMADDR - Flash Address Register

Name: NVMADDR
Offset: 0x30
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
| NVMADDR[31:24] |
Access RIW R/W RIW R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| NVMADDR[23:16] |
Access R/W R/W R/W R/W RIW RIW R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| NVMADDR[15:8] |
Access R/W R/W R/W R/W RIW RIW R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| NVMADDR[7:0] |
Access R/W R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - NVMADDR[31:0] Flash (Word) Address bits

Table 24-5. Flash (Word) Address Bits

NVMOP Flash Address Bits

Page Erase Address identifies the page to erase

Any address within a 4 Kbytes page boundary will cause
the page to be erased

Row program « Address identifies the row to program
The value of the address must be aligned to a row
boundary

Word program + Address identifies the 32-bit Word to program

NVMADDR([1:0] bits are ignored
Must be aligned to a Word boundary
Quad Word program + Address identifies the 128-bit Quad Word to program
NVMADDR([3:0] bits are ignored
Must be aligned to a Quad Word boundary

Notes:
1. Hardware prevents writes to this register when NVMCON.WR = 1.

2. For all other NVMOP[3:0] bit settings, the Flash address is ignored. For additional information on
these bits, see the NVMCON register from Related Links.

3. The bits in this register are reset by a POR only and are not affected by other Reset sources.

Related Links
24.22.2.1. NVMCON

@ MICROCHIP

475

24.22.2.5 NVMDATAO - Flash Program Data Register 0

Name: NVMDATAO
Offset: 0x40
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
| NVMDATA[31:24] |
Access RIW R/W RIW R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| NVMDATA[23:16] |
Access R/W R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| NVMDATA[15:8] |
Access RIW R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| NVMDATA[7:0] |
Access R/W R/W RIW R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - NVMDATA[31:0] Flash Programming Data bits
The value in this register is written to Flash when a program operation is commanded.

+ Single Word program (32-bit)
- Writes NVMDATAQO to the target Flash address defined in NVMADDR[31:2].
* Quad Word program (128-bit)
- Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATAQ to the target Flash address defined in
NVMADDR[31:4]. NVMDATAO contains the Least Significant Instruction Word.
Notes:
1. Hardware prevents writes to this register when NVMCON.WR = 1.

2. The bits in this register are reset on a POR only and are unaffected by other Reset sources.

476

@ MICROCHIP

24.22.2.6 NVMDATA1 - Flash Program Data Register 1

Name: NVMDATA1
Offset: 0x50
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
| NVMDATA[31:24] |
Access RIW R/W RIW R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| NVMDATA[23:16] |
Access R/W R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| NVMDATA[15:8] |
Access RIW R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| NVMDATA[7:0] |
Access R/W R/W RIW R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - NVMDATA[31:0] Flash Programming Data bits
The value in this register is written to Flash when a program operation is commanded.

+ Single Word program (32-bit)
- Writes NVMDATAQO to the target Flash address defined in NVMADDR[31:2].
* Quad Word program (128-bit)
- Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATAQ to the target Flash address defined in
NVMADDR[31:4]. NVMDATAO contains the Least Significant Instruction Word.
Notes:
1. Hardware prevents writes to this register when NVMCON.WR = 1.

2. The bits in this register are reset on a POR only and are unaffected by other Reset sources.

477

@ MICROCHIP

24.22.2.7 NVMDATA2 - Flash Program Data Register 2

Name: NVMDATA2
Offset: 0x60
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
| NVMDATA[31:24] |
Access RIW R/W RIW R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| NVMDATA[23:16] |
Access R/W R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| NVMDATA[15:8] |
Access RIW R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| NVMDATA[7:0] |
Access R/W R/W RIW R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - NVMDATA[31:0] Flash Programming Data bits
The value in this register is written to Flash when a program operation is commanded.

+ Single Word program (32-bit)
- Writes NVMDATAQO to the target Flash address defined in NVMADDR[31:2].
* Quad Word program (128-bit)
- Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATAQ to the target Flash address defined in
NVMADDR[31:4]. NVMDATAO contains the Least Significant Instruction Word.
Notes:
1. Hardware prevents writes to this register when NVMCON.WR = 1.

2. The bits in this register are reset on a POR only and are unaffected by other Reset sources.

478

@ MICROCHIP

24.22.2.8 NVMDATAS3 - Flash Program Data Register 3

Name: NVMDATA3
Offset: 0x70
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
| NVMDATA[31:24] |
Access RIW R/W RIW R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| NVMDATA[23:16] |
Access R/W R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| NVMDATA[15:8] |
Access RIW R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| NVMDATA[7:0] |
Access R/W R/W RIW R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - NVMDATA[31:0] Flash Programming Data bits
The value in this register is written to Flash when a program operation is commanded.

+ Single Word program (32-bit)
- Writes NVMDATAQO to the target Flash address defined in NVMADDR[31:2].
* Quad Word program (128-bit)
- Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATAQ to the target Flash address defined in
NVMADDR[31:4]. NVMDATAO contains the Least Significant Instruction Word.
Notes:
1. Hardware prevents writes to this register when NVMCON.WR = 1.

2. The bits in this register are reset on a POR only and are unaffected by other Reset sources.

479

@ MICROCHIP

24.22.2.9 NVMSRCADDR - Source Data Address Register

Name: NVMSRCADDR
Offset: 0xCO
Reset: 0x00000000
Property: -
Bit 31 30 29 28 27 26 25 24
| NVMSRCADDR[31:24]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| NVMSRCADDR[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| NVMSRCADDR[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| NVMSRCADDR[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - NVMSRCADDR[31:0] Source Data (Word) Address bits
This is the system physical Word address of the data (in DRM) to be programmed into the Flash
when NVMCON.NVMOP is set to row programming.

Notes:

1. Hardware prevents writes to this register when NVMCON.WR = 1.

2. The bits in this register are reset on a POR only and are unaffected by other reset sources.

@ MICROCHIP

480

24.22.2.10 NVMPWPLT - Flash Program Write Protect Lower Register

Name: NVMPWPLT
Offset: 0xDO
Reset: 0x80000000
Property: -
Bit 31 30 29 28 27 26 25 24
| ULOCK | |
Access R/C
Reset 1
Bit 23 22 21 20 19 18 17 16
| PWPLT[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| PWPLT[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| PWPLT[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 31 - ULOCK NVMPWPLT Register Unlock bit

Notes:

1. This field can only be modified when the NVMKEY unlock sequence is satisfied.

2. This field can be cleared at the same time as writing to PWPLT[23:0].

Value Description

NVMPWPLT register is not locked and can be modified
NVMPWPLT register is locked and cannot be modified

1
0

Bits 23:0 - PWPLT[23:0] Flash Program Write Protect Less Than Address
Pages at Flash addresses less than this value are write-protected.

Notes:

1. This field can only be modified when the NVMKEY unlock sequence is satisfied, and ULOCK = 1.
2. This is a byte address force to align to page boundaries.

@ MICROCHIP

481

24.22.2.11 NVMPWPGTE - Flash Program Write Protect Greater Register

Name: NVMPWPGTE

Offset: OxEO

Reset: Ox80FFFFFF
Property: -
Bit 31 30 29 28 27 26 25 24
| ULOCK | |
Access R/C
Reset 1
Bit 23 22 21 20 19 18 17 16
| PWPGTE[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1
Bit 15 14 13 12 11 10 9 8
PWPGTE[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1
Bit 7 6 5 4 3 2 1 0
PWPGTE[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 31 - ULOCK NVMPWPGTE Register Unlock bit

Notes:

1. This field can only be modified when the NVMKEY unlock sequence is satisfied.

2. This field can be cleared at the same time as writing to PWPGTE[23:0].

Value Description

1 NVMPWPGTE register is not locked and can be modified
0 NVMPWPGTE register is locked and cannot be modified

Bits 23:0 - PWPGTE[23:0] Flash Program Write Protect Address

Pages at Flash addresses greater than or equal to this value are write-protected.

Notes:

1. This field can only be modified when the NVMKEY unlock sequence is satisfied and ULOCK = 1.
2. This is a byte address forced to align to page boundaries.

@ MICROCHIP

482

24.22.2.12 NVMLBWP - Flash Boot Write Protect Register

Name: NVMLBWP

Offset: OxFO

Reset: Ox80FFFFFF
Property: -
Bit 31 30 29 28 27 26 25 24
| ULOCK | |
Access R/C
Reset 1
Bit 23 22 21 20 19 18 17 16
| LBWP[23:16] |
Access RIW R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1
Bit 15 14 13 12 11 10 9 8
LBWP[15:8] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1
Bit 7 6 5 4 3 2 1 0
LBWP[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Bit 31 - ULOCK Lower Boot Write Protect (LBWPnN) Unlock bit

Notes:

1. This field can only be modified when the NVMKEY unlock sequence is satisfied.

2. This field can be cleared at the same time as writing to LBWP[msb:Isb].

Value Description

1 LBWPn bits are not locked and can be modified
0 LBWPn bits are locked and cannot be modified

Bits 23:0 - LBWP[23:0] Boot Pages Write Protect bits

Notes:

1. This field can only be modified when the NVMKEY unlock sequence is satisfied and ULOCK = 1.
2. The OTP page is always erase-protected and its associated LBWP bit is only for write-protection.

Value Description

1 Erase and write-protection for upper boot page n is enabled
0 Erase and write-protection for upper boot page n is disabled

@ MICROCHIP

483

25. Integrity Check Monitor (ICM)

25.1 Overview

The Integrity Check Monitor (ICM) is a DMA controller that performs hash calculation over multiple
memory regions using transfer descriptors located in memory (ICM Descriptor Area). The Hash
function is based on the Secure Hash Algorithm (SHA). The ICM controller integrates two modes of
operation. The first mode is used to hash a list of memory regions and save the digests to memory
(ICM Hash Area). The second mode is an active monitoring of the memory. In this mode, the hash
function is evaluated and compared to the digest located at a predefined memory address (ICM
Hash Area). If a mismatch occurs, an interrupt is raised.

25.2 Features

DMA AHB manager interface

Supports monitoring of up to four non-contiguous memory regions
Supports block gathering using a linked list

Supports Secure Hash Algorithm (SHA1, SHA256)

Compliant with FIPS Publication 180-2

Configurable processing period:
- When SHAT1 algorithm is processed, the run-time period is either 85 or 209 clock cycles

- When SHA256 algorithm is processed, the run-time period is either 72 or 194 clock cycles
Programmable bus burden

@ MICROCHIP

484

25.3 Block Diagram

Figure 25-1. Integrity Check Monitor Block Diagram

T Host Configuration
APB Interface Registers

'

SHA
Hash
Engine

Context
Registers

| r——

Monitoring Integrity
FSM Scheduler

l

Host
DMA Interface

—

Bus Layer

25.4 Signal Description
Not applicable.

25.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

25.5.1 Power Management

25.5.2 Clocks

The ICM bus clocks (PB2_CLK) can be enabled and disabled in the CRU module or the PMD2.ICMMD
bit. For more details, see Peripheral Module Disable Register (PMD) from Related Links.

Related Links
20. Peripheral Module Disable Register (PMD)

25.5.3 DMA
Not applicable.

25.5.4 Events
Not applicable.

485

@ MICROCHIP

25.5.5 Debug Operation
Not applicable.

25.6 Functional Description

25.6.1 Overview

The Integrity Check Monitor (ICM) is a DMA controller that performs SHA-based memory hashing
over memory regions. As shown in the Block Diagram (see Block Diagram from Related Links), it
integrates a DMA interface, a Monitoring Finite State Machine (FSM), an integrity scheduler, a set of
context registers, a SHA engine, an interface for configuration and status registers.

The SHA engine requires a message padded according to FIPS180-4 specification when used as a
SHA calculation unit only. Otherwise, if the ICM is used as an integrated check for memory content,
the padding is not mandatory. The SHA module produces an N-bit message digest each time a block
is read and a processing period ends. N is 160 for SHA1, 256 for SHA256.

When the ICM module is enabled, it sequentially retrieves a circular list of region descriptors from
the memory (Main List described in the following figure). Up to four regions may be monitored.
Each region descriptor is composed of four words indicating the layout of the memory region (see
Region Descriptor Structure from Related Links). It also contains the hashing engine configuration

on a per region basis. As soon as the descriptor is loaded from the memory and context registers
are updated with the data structure, the hashing operation starts. A programmable number of
blocks (see TRSIZE field of the RCTRL structure member) is transferred from the memory to the SHA
engine. When the desired number of blocks have transferred, the digest is either moved to memory
(Write Back function) or compared with a digest reference located in the system memory (Compare
function). If a digest mismatch occurs, an interrupt is triggered if enabled. The ICM module parses
through the region descriptor list until the end of the list, marked by an end of list bit set to one. To
continuously monitor the list of regions, the WRAP bit must be set to one in the last data structure,
and EOM must be cleared.

486

@ MICROCHIP

Figure 25-2. ICM Region Descriptor and Hash Areas

Main List infinite loop
________ when wrap bit is set
[I— ____________
| | . RAP=1_| End of Region N |
| i | Region N‘N_ |
I 1 | Descriptor T +
I I I I I
I I I - - - = = s
ICM Descriptor ! I !
Area - Contiguous : == =
Read-only Memory | |
| | | End of Region 1 List
| | . RAP=0
: | Region 1 | }/
| , | Descriptor 1
| | | End of Region 0
. RAP=()
! 'l Region 0 |
' ''| Descriptor :
| | +—
T R
/__/ /__/
/—_/ /__/

Region N Hash

ICM Hash Area -

—

Contiguous —= —=
Read-write once]
Memory Region 1 Hash

Region 0 Hash

Each region descriptor supports gathering of data through the use of the Secondary List. Unlike the
Main List, the Secondary List cannot modify the configuration attributes of the region. When the end
of the Secondary List is encountered, the ICM returns to the Main List. Memory integrity monitoring
can be considered a background service, and the mandatory bandwidth is very limited. To limit the
ICM memory bandwidth, use the BBC field of the CFG register to control the ICM memory load.

Figure 25-3. Region Descriptor

Main List

Region 3 Descriptor

Region 2 Descriptor

Region 1 Descriptor Optlonal Reg|on OSecondary List

Region 0 Descriptor : Ill—’lll—’ E
R R REEELILEEEEEELIL LY End of Region 0

DSCR __,

| |
oxooc ! Region NEXT ! ox00c ! Region NEXT !
L] L]
|) | |) |
0x008 | Region CTRL | 0x008 | Region CTRL |
| | | |
0x004 | Region CFG 0x004 | Unused |
1
0x000 I Region ADDR | 0x000 | Region ADDR |
| |

487

@ MICROCHIP

Related Links
25.3. Block Diagram
25.6.3. Region Descriptor Structure

25.6.2 ICM Hash Area

The ICM Hash Area is a contiguous area of system memory that the controller and the processor can
access. The physical location is configured in the ICM hash area start address register. This address
is a multiple of bytes. If the CDWBN bit of the context register is cleared (i.e., Write Back activated),
the ICM controller performs a digest write operation at the following starting location: *(HASH) +
(RID<<), where RID is the current region context identifier. If the CDWBN bit of the context register

is set (i.e., Digest Comparison activated), the ICM controller performs a digest read operation at the
same address.

25.6.2.1 Message Digest Example
Considering the following 512 bits message (example given in FIPS 180-4):

"616263800
00018"

The message is written to memory in a Little Endian (LE) system architecture.

Memory Address Address Offset / Byte Lane
0x3/31:24 0x2/23:16 0x1/15:8 0x0/7:0
80 63 62 61

0x000
0x004-0x038 00 00 00 00
0x03C 18 00 00 00

The digest is stored at the memory location pointed at by the ICM_HASH pointer with a Region
Offset.

Memory Address Address Offset / Byte Lane
0x3/31:24 0x2/23:16 0x1/15:8 0x0/7:0
36 3e 99 a9

0x000

0x004 6a 81 06 47
0x008 71 25 3e ba
0x00C 6¢C 2 50 78
0x010 9d ds do 9c

Memory Address Address Offset / Byte Lane
0x3/31:24 0x2/23:16 0x1/15:8 0x0/7:0
22 7d 09 23

0x000

0x004 22 ds 05 34
0x008 77 ad 42 86
0x00C b3 55 a2 bd
0x010 e4 bc ad 2a
0x014 7 b3 a0 bd
0x018 a7 9d 6C e3

Memory Address Address Offset / Byte Lane
bf 16 78 ba

0x000
0x004 ea cf 01 8f
0x008 de 40 41 41

488

@ MICROCHIP

........... continued

Memory Address Address Offset / Byte Lane
0x3/31:24 0x2/23:16 0x1/15:8 0x0/7:0
23 22 ae 5d

0x00C

0x010 a3 61 03 b0
0x014 e 7a 17 96
0x018 61 ff 10 b4
0x01C ad 15 00 2

Considering the following 1024 bits message (example given in FIPS 180-4):

"6162638000
00
00
0018"

The message is written to memory in a Little Endian (LE) system architecture.

Memory Address Address Offset / Byte Lane
0x3/31:24 0x2/23:16 0x1/15:8 0x0/7:0
80 63 62 61

0x000
0x004-0x078 00 00 00 00
0x07C 18 00 00 00

25.6.3 Region Descriptor Structure

The ICM Region Descriptor Area is a contiguous area of system memory that the controller and the
processor can access. When the ICM controller is activated, the controller performs a descriptor
fetch operation at the DSCR address. If the Main List contains more than one descriptor (i.e., more
than one region is to be moderated), the fetch address is DSCR + RID<<4, where RID is the region
identifier.

Table 25-1. Region Descriptor Structure (Main List)

et [stmcremember ——————name]

DSCR+0x00+RID*(0x10) ICM Region Start Address RADDR
DSCR+0x04+RID*(0x10) ICM Region Configuration RCFG

DSCR+0x08+RID*(0x10) ICM Region Control RCTRL
DSCR+0x0C+RID*(0x10) ICM Region Next Address RNEXT

Example 25-1. ICM Monitoring of 3 Memory Data Blocks (Defined as 2 Regions)

The following figure shows the mandatory ICM settings to monitor three memory
data blocks of the system memory (defined as two regions), with one region being
not contiguous (two separate areas) and one contiguous memory area. For each said
region, the SHA algorithm may be independently selected (different for each region).
The wrap allows continuous monitoring.

489

@ MICROCHIP

Figure 25-4. Example — Monitoring of 3 Memory Data Blocks (Defined as 2 Regions)

System Memory, data areas System Memory, region descriptor structure

Size of
region1 Region 1
block (S1) > Single
Descriptor
—
Siz_e of Region 0
region0 ~ Main
block 1 Descriptor
(S0B1) _
(
Region 0
> Second
Size of Descriptor
region0
block 0 '<
(S0BO)
<
@r0db0

490

@ MICROCHIP

25.6.3.1 Region Descriptor Structure Overview

I S T B R

0x00 RADDR
0x04 RCFG

0x08 RCTRL
0x0C RNEXT

@ MICROCHIP

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

RADDR[7:0]

RADDR[15:8]

RADDR[23:16]

RADDR[31:24]

WCIEN BEIEN DMIEN RHIEN EOM WRAP
ALGO[2:0] PROCDLY SUIEN

TRSIZE[7:0]
TRSIZE[15:8]

4 | 3| 2 | 1| 0

CDWBN
ECIEN

491

25.6.3.1.1 Region Start Address Structure Member

Name: RADDR
Offset: 0x00

Reset: 0x00000000
Property: Read/Write

Bit 31 30 29 28 27 26 25 24
| RADDR[31:24] |
Access R/W R/W R/W R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| RADDR[23:16] |
Access R/W R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| RADDR[15:8] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| RADDR[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - RADDR[31:0] Region Start Address
This field indicates the first byte address of the region

492

@ MICROCHIP

25.6.3.1.2 Region Configuration Structure Member

Name: RCFG
Offset: 0x04

Reset: 0x00000000
Property: Read/Write

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
| ALGOI[2:0] | | PROCDLY | SUIEN | ECEN |
Access RIW R/W R/W RIW RIW
Reset 0 0 0 1 1
Bit 7 6 5 4 3 2 1 0
| WCEN | BEEN | DMIEN | RHEN | | EOM | WRAP | CDWBN |
Access R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 0 0 0

Bits 14:12 - ALGO[2:0] User SHA Algorithm

Value Name Description

0 SHA1 SHAT1 algorithm processed

1 SHA256 SHA256 algorithm processed
Other - Reserved

Bit 10 - PROCDLY Processing Delay
For a given SHA algorithm, the runtime period has two possible lengths:

Table 25-2. SHA Processing Runtime Periods

Algorithm SHORTEST [number of cycles] LONGEST [number of cycles]

SHA1 85 209
SHA256 72 194
Value Name Description

0 SHORTEST SHA processing runtime is the shortest one

1 LONGEST SHA processing runtime is the longest one

Bit 9 - SUIEN Monitoring Status Updated Condition Interrupt Enable
0: The RSU flag is set when the corresponding descriptor is loaded from memory to ICM.
1: The RSU flag remains cleared even if the condition is met.

Bit 8 - ECIEN End Bit Condition Interrupt Enable
0: The REC flag is set when the descriptor having the EOM bit set is processed.
1: The REC flag remains cleared even if the setting condition is met.

493

@ MICROCHIP

Bit 7 - WCIEN Wrap Condition Interrupt Disable
0: The RWC flag is set when the WRAP
1: The RWC flag remains cleared even if the setting condition is met.

Bit 6 - BEIEN Bus Error Interrupt Disable
0: The flag is set when an error is reported on the system bus by the bus MATRIX.
1: The flag remains cleared even if the setting condition is met.

Bit 5 - DMIEN Digest Mismatch Interrupt Disable
0: The RBE flag is set when the hash value just calculated from the processed region dffers from
expected hash value.
1: The RBE flag remains cleared even if the setting condition is met.

Bit 4 - RHIEN Region Hash Completed Interrupt Disable
0: The RHC flag is set when the field NEXT = 0 in a descriptor of the main or second list.
1: The RHC flag remains cleared even if the setting condition is met.

Bit 2 - EOM End of Monitoring
0: The current descriptor does not terminate the monitoring.
1: The current descriptor terminates the Main List. WRAP bit value has no effect.

Bit 1 - WRAP Wrap Command
0: The next region descriptor address loaded is the current region identifier descriptor address
incremented by 0x10.
1: The next region descriptor address loaded is DSCR.

Bit 0 - CDWBN Compare Digest or Write Back Digest
0: The digest is written to the Hash area.
1: The digest value is compared to the digest stored in the Hash area.

494

@ MICROCHIP

25.6.3.1.3 Region Control Structure Member

Name: RCTRL
Offset: 0x08

Reset: 0x00000000
Property: R/W

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
| TRSIZE[15:8]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| TRSIZE[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 15:0 - TRSIZE[15:0] Transfer Size for the Current Chunk of Data

@ MICROCHIP

495

25.6.3.1.4 Region Next Address Structure Member

Name: RNEXT
Offset: 0x0C

Reset: 0x00000000
Property: Read/Write

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16

Access
Reset

Bit 15 14 13 12 11 10 9 8

Access
Reset

Bit 7 6 5 4 3 2 1 0

Access
Reset

25.6.4 Using ICM as an SHA Engine
The ICM can be configured to only calculate a SHA1, SHA256 digest value.

25.6.4.1 Settings for Simple SHA Calculation

The start address of the system memory containing the data to hash must be configured in the
transfer descriptor of the DMA embedded in the ICM.

The transfer descriptor is a system memory area integer multiple of 4 x 32-bit word and the start
address of the descriptor must be configured in DSCR (the start address must be aligned on 64-
bytes; six LSB must be cleared). If the data to hash is already padded according to SHA standards,
only a single descriptor is required, and the EOM bit of RCFGn must be written to ‘1". If the data to
hash does not contain a padding area, it is possible to define the padding area in another system
memory location, the ICM can be configured to automatically jump from a memory area to another
one by writing the descriptor register RNEXT with a value that differs from 0. Writing the RNEXT
register with the start address of the padding area forces the ICM to concatenate both areas, thus
providing the SHA result from the start address of the hash area configured in HASH.

Whether the system memory is configured as a single or multiple data block area, the bits CDWBN
and WRAP must be cleared in the region descriptor structure member RCFGn. The bits WBDIS,
EOMDIS, SLBDIS must be cleared in CFG.

Write the bits RHIEN and ECIEN in the Region Configuration Structure Member (RCFGn) to ‘0":

+ The flag RHC[i], ‘i being the region index, is set (if RHIEN is ‘0') when the hash result is available at
address defined in HASH.

+ The flag RECIi], ‘i being the region index, is set (if ECIEN is ‘0") when the hash result is available at
the address defined in HASH.

496

@ MICROCHIP

An interrupt is generated if the bit RHC[i] is written to ‘1" in the IER (if RHC[i] is set in RCTRL of region
i) or if the bit REC[i] is written to ‘1" in the IER (if RECIi] is set in RCTRL of region i).

25.6.4.2 Processing Period
The SHA engine processing period can be configured by writing to the Region Configuration
Structure Member register (RCFGn).

The short processing period allows to allocate bandwidth to the SHA module whereas the long
processing period allocates more bandwidth on the system bus to other applications.

In SHA mode, the shortest processing period is 85 clock cycles + 2 clock cycles for start command
synchronization. The longest period is 209 clock cycles + 2 clock cycles.

In SHA256 mode, the shortest processing period is 72 clock cycles + 2 clock cycles for start command
synchronization. The longest period is 194 clock cycles + 2 clock cycles.

25.6.5 ICM Automatic Monitoring Mode

The ASCD bit of the CFG register is used to activate the ICM Automatic Mode. When CFG.ASCD is set,
the ICM performs the following actions:

+ The ICM controller passes through the Main List once with CDWBN bit in RCFGn at ‘0’ (in other
words, Write Back activated) and EOM bit in the RCFGn context register at ‘0".

* When RCFGn.WRAP=1, the ICM controller enters active monitoring, with CDWBN bit in context
register now set, and EOM bit in context register cleared. Writing to the CDWBN and EOM bits in
RCFGnN has no effect.

25.6.6 ICM Configuration Parameters

Transfer Type Main RCFG RNEXT Comments
List CDWBN| WRAP EOM [NEXT
0 1 0

Single Contiguous list of litem O The Main List contains
Region blocks only one descriptor. The
Secondary List is empty
Digest written to for that descriptor. The
memory digest is computed and

saved to memory.
Monitoring disabled

Non-contiguous listof 1item 0 0 1 Secondary The Main List contains

blocks List address only one descriptor. The
of the Secondary List describes

Digest written to current the layout of the non-

memory region contiguous region.
identifier

Monitoring disabled

Contiguous list of 1item 1 1 0 0 When the hash

blocks computation is

Digest comparison terminated, the digest is

enabled compared with the one

Monitoring enabled saved in memory.

497

@ MICROCHIP

........... continued

Transfer Type Main RCFG RNEXT Comments
List CDWBN|WRAP [EOM [NEXT

Multiple Contiguous list of More 1 for the 0 ICM passes through the
Regions blocks than one last, O list once.
Digest written to item otherwise
memory
Monitoring disabled
Contiguous list of More 1 1 for the 0 0 ICM performs active
blocks than one last, O monitoring of the regions.
item otherwise If a mismatch occurs, an
Digest comparison is interrupt is raised.
enabled

Monitoring is enabled

Non-contiguous list of More 0 0 1 Secondary ICM performs hashing
blocks than one List address and saves digests to the
Digest is written to item Hash area.

memory

Monitoring is disabled

Non-contiguous list of More 1 1 0 Secondary ICM performs data
blocks than one List address gathering on a per region
Digest comparison is item basis.

enabled

Monitoring is enabled

25.6.7 Security Features

When an undefined register access occurs, the URAD bit in the Interrupt Status Register (ISR) is set if
unmasked. Its source is then reported in the Undefined Access Status Register (UASR). Only the first
undefined register access is available through the UASR.URAT field.

Several kinds of unspecified register accesses can occur:

+ Unspecified structure member set to one detected when the descriptor is loaded

+ Configuration register (CFG) modified during active monitoring

+ Descriptor register (DSCR) modified during active monitoring

+ Hash register (HASH) modified during active monitoring

+ Write-only register read access

The URAD bit and the URAT field can only be reset by writing a ‘1’ to the CTRL.SWRST bit.

@ MICROCHIP

498

25.7

7:0

0x00

0x04

0x08

0x0C

O0xOF

0x10

0x14

0x18

0x1C

0x20

0x24

O0x2F

0x30

0x34

0x38

0x3C

0x40

Register Summary - ICM

CFG

CTRL

SR

Reserved

IER

IDR

IMR

ISR

UASR

Reserved

DSCR

HASH

UIHVALX0

UIHVALX1

UIHVALx2

@ MICROCHIP

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24

T . —

BBC[3:0

UALGO[2:0]

DASA[1:0]

REHASHI[3:0]
RMEN[3:0]

RMDIS[3:0]

RDM[3:0]
RWC[3:0]
RSU[3:0]

RDM[3:0]
RWC[3:0]
RSU[3:0]

RDM[3:0]
RWC[3:0]
RSU[3:0]

RDM[3:0]
RWC[3:0]
RSU[3:0]

UIHASH

DASA[9:2]
DASA[17:10]
DASA[25:18]

VAL[7:0]
VAL[15:8]
VAL[23:16]
VAL[31:24]
VAL[7:0]
VAL[15:8]
VAL[23:16]
VAL[31:24]
VAL[7:0]
VAL[15:8]
VAL[23:16]
VAL[31:24]

2 1 0

SLBDIS EOMDIS
DUALBUFF
SWRST DISABLE
RMDIS[3:0]

RAWRMDIS[3:0]

RHC[3:0]
RBE[3:0]
REC[3:0]

RHC[3:0]
RBE[3:0]
REC[3:0]

RHC[3:0]
RBE[3:0]
REC[3:0]

RHC[3:0]
RBE[3:0]
REC[3:0]

URAT[2:0]

WBDIS

ASCD

ENABLE

ENABLE

URAD

URAD

URAD

URAD

499

........... continued

Coisr | tame L Bicros] 7 e 15 4 L
7:0]

0x44

0x48

0x4C

0x50

0x54

25.8

VAL[7:0

UHVAL 15:8 VAL[15:8]
23:16 VAL[23:16]

31:24 VAL[31:24]

7:0 VAL[7:0]

UHVALX 15:8 VAL[15:8]
23:16 VAL[23:16]

31:24 VAL[31:24]

7:0 VAL[7:0]

UHVALXS 15:8 VAL[15:8]
23:16 VAL[23:16]

31:24 VAL[31:24]

7:0 VAL[7:0]

UHVALXG 15:8 VAL[15:8]
23:16 VAL[23:16]

31:24 VAL[31:24]

7:0 VAL[7:0]

UHVALY 15:8 VAL[15:8]
23:16 VAL[23:16]

31:24 VAL[31:24]

Register Description

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register and the 8-bit halves of a 16-bit register can be
accessed directly.

Some registers are optionally write protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the “PAC Write-Protection” property in each individual register
description. For details, refer to 22.5.7. Register Access Protection.

Some registers are enable protected, meaning they can only be written when the peripheral is
disabled. Enable protection is denoted by the “Enable-Protected” property in each individual register
description.

@ MICROCHIP

500

25.8.1 Configuration Register

Name: CFG
Offset: 0x00

Reset: 0x0
Property: -
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
UALGO[2:0] | UIHASH | | | DUALBUFF | ASCD |
Access - - - - - R/W
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
BBC[3:0] SLBDIS EOMDIS WBDIS
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bits 15:13 - UALGO[2:0] User SHA Algorithm

VEIS Name Description

0 SHA1 SHA1 algorithm processed

1 SHA256 SHA256 algorithm processed
Other - Reserved

Bit 12 - UIHASH User Initial Hash Value

0 The secure hash standard provides the initial hash value.

1 The initial hash value is programmable. Field UALGO provides the SHA algorithm. The ALGO field of the RCFGn
structure member has no effect.

Bit 9 - DUALBUFF Dual Input Buffer
VEIS Description
0 Dual Input buffer mode is disabled.
1 Dual Input buffer mode is enabled (Better performances, higher bandwidth required on system bus).

Bit 8 - ASCD Automatic Switch To Compare Digest

0 Automatic mode is disabled.

1 When this mode is enabled, the ICM controller automatically switches to active monitoring after the first Main
List pass. Both CDWBN and WBDIS bits have no effect. A ‘1’ must be written to the End of Monitoring bit in the
Region Configuration register (RCFG.EOM) to terminate the monitoring.

Bits 7:4 - BBC[3:0] Bus Burden Control
This field is used to control the burden of the ICM system bus. The number of system clock cycles
between the end of the current processing and the next block transfer is set to 288C, Up to 32768
cycles can be inserted.

@ MICROCHIP

501

Bit 2 - SLBDIS Secondary List Branching Disable
0 Branching to the Secondary List is permitted.
1 Branching to the Secondary List is forbidden. The NEXT field of the RNEXT structure member has no effect and
is always considered as zero.
Bit 1 - EOMDIS End of Monitoring Disable
0 End of Monitoring is permitted.
1

End of Monitoring is forbidden. The EOM bit of the RCFG structure member has no effect.
Bit 0 - WBDIS Write Back Disable

When the Automatic Switch to Compare Digest bit of this register (CFG.ASCD) is written to ‘1’, this bit
value has no effect.

Value Description
0 Write Back Operations are permitted.
1

Write Back Operations are forbidden: Context register COWBN bit is internally set to ‘1’ and cannot be modified
by a linked list element. The CDWBN bit of the RCFG structure member has no effect.

@ MICROCHIP

502

25.8.2 Control Register

Name: CTRL
Offset: 0x04

Property: -
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
RMEN[3:0] | RMDIS[3:0] |
Access w w W W W W W W
Reset
Bit 7 6 5 4 3 2 1 0
REHASH[3:0] SWRST DISABLE ENABLE
Access W W W W W W W
Reset 0 0

Bits 15:12 - RMEN[3:0] Region Monitoring Enable

VEIS Description
0 No effect.
1 When bit RMENT[i] is written to '1', the monitoring of region with identifier i is activated.

Bits 11:8 - RMDIS[3:0] Region Monitoring Disable

Value Description
0 No effect.
1 When REHASH]I] is written to '1', Region i digest is re-computed. This bit is only available when region

monitoring is disabled.

Bits 7:4 - REHASH[3:0] Recompute Internal Hash

VEIS Description
0 No effect.
1 When REHASHII] is written to '1', Region i digest is re-computed. This bit is only available when region

monitoring is disabled.

Bit 2 - SWRST Software Reset

Value Description
0 No effect.
1 Resets the ICM controller.

Bit 1 - DISABLE ECM Disable

VEIS Description
0 No effect.
1 The ICM controller is disabled. If a region is activated, the region is terminated.

Bit 0 - ENABLE ICM Enable

@ MICROCHIP

503

Value Description

0 No effect.
1 The ICM controller is activated.

504

@ MICROCHIP

25.8.3 Status Register

Name: SR
Offset: 0x08
Property: Read-Only

Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
RMDIS[3:0] | RAWRMDIS[3:0] |
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
ENABLE
Access R
Reset 0

Bits 15:12 - RMDIS[3:0] Region Monitoring Disabled Status

0 Region i is being monitored (occurs after integrity check value has been calculated and written to Hash area).
1 Region i is not being monitored.

Bits 11:8 - RAWRMDIS[3:0] Region Monitoring Disabled Raw Status

Value Description
0 Region i monitoring has been activated by writing a 1 in RMEN[i] of CTRL

1 Region i monitoring has been deactivated by writing a 1 in RMDIS[i] of CTRL

Bit 0 - ENABLE ICM Controller Enable Register

0 ICM controller is disabled.
1 ICM controller is activated.

. 505
ﬁ\ MICROCHIP

25.8.4 Interrupt Enable Register

Name: IER

Offset: 0x10

Reset: 0x00000000
Property: Write-Only

Bit 31 30 29 28 27 26 25 24
| | | | | | | [URAD_]
Access w
Reset 0
Bit 23 22 21 20 19 18 17 16
| RSU[3:0] | REC[3:0] |
Access W W w W W w W w
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
RWC[3:0] RBE[3:0]
Access W W w w w w W w
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
RDM[3:0] RHC[3:0]
Access W w W W w w W w
Reset 0 0 0 0 0 0 0 0

Bit 24 - URAD Undefined Register Access Detection Interrupt Enable
0: No effect
1: The Undefined Register Access interrupt is enabled.

Bits 23:20 - RSU[3:0] Region Status Updated Interrupt Enable
0: No effect
1: When RSUIi] is written to 1, the region i Status Updated interrupt is enabled.

Bits 19:16 - REC[3:0] Region End bit Condition Detected Interrupt Enable
0: No effect
1: When REC[i] is written to ‘1', the region i End bit Condition interrupt is enabled.

Bits 15:12 - RWC[3:0] Region Wrap Condition detected Interrupt Enable
0: No effect
1: When RWC([i] is written to ‘1", the Region i Wrap Condition interrupt is enabled.

Bits 11:8 - RBE[3:0] Region Bus Error Interrupt Enable

0 No effect.
1 When RBE[i] is written to '1', the Region i Bus Error interrupt is enabled.

Bits 7:4 - RDM[3:0] Region Digest Mismatch Interrupt Enable

0 No effect.
1 When RDMIi] is written to '1', the Region i Digest Mismatch interrupt is enabled.

Bits 3:0 - RHC[3:0] Region Hash Completed Interrupt Enable

506

@ MICROCHIP

Value Description

0 No effect.
1 When RHC[i] is written to '1', the Region i Hash Completed interrupt is enabled.

507

@ MICROCHIP

25.8.5 Interrupt Disable Register

Name: IDR
Offset: 0x14
Property: Write-Only

Bit 31 30 29 28 27 26 25 24
| | | | | | | URAD
Access w
Reset
Bit 23 22 21 20 19 18 17 16
| RSU[3:0] | REC[3:0] |
Access W W w W w w W w
Reset
Bit 15 14 13 12 11 10 9 8
RWC[3:0] RBE[3:0]
Access W W w w w w W w
Reset
Bit 7 6 5 4 3 2 1 0
RDM[3:0] RHC[3:0]
Access W W W W w w w w
Reset

Bit 24 - URAD Undefined Register Access Detection Interrupt Disable

Value Description
0 No effect.
1 Undefined Register Access Detection interrupt is disabled.

Bits 23:20 - RSU[3:0] Region Status Updated Interrupt Disable

Value Description
0 No effect.
1 When RSUIi] is written to '1', the region i Status Updated interrupt is disabled.

Bits 19:16 - REC[3:0] Region End bit Condition detected Interrupt Disable

Value Description
0 No effect.
1 When REC[i] is written to '1', the region i End bit Condition interrupt is disabled.

Bits 15:12 - RWC[3:0] Region Wrap Condition Detected Interrupt Disable

Value Description
0 No effect.
1 When RW(C[i] is written to '1', the Region i Wrap Condition interrupt is disabled.

Bits 11:8 - RBE[3:0] Region Bus Error Interrupt Disable

Value Description
0 No effect.
1 When RBE[i] is written to '1', the Region i Bus Error interrupt is disabled.

Bits 7:4 - RDM[3:0] Region Digest Mismatch Interrupt Disable
Value Description
0 No effect.

@ MICROCHIP

508

Value Description
When RDMIi] is written to '1', the Region i Digest Mismatch interrupt is disabled.

1

Bits 3:0 - RHC[3:0] Region Hash Completed Interrupt Disable

0 No effect.
1 When RHC[i] is written to '1', the Region i Hash Completed interrupt is disabled.

509

@ MICROCHIP

25.8.6 Interrupt Mask Register

Name: IMR

Offset: 0x18

Reset: 0x00000000
Property: Read-Only

Bit 31 30 29 28 27 26 25 24
| | | | | | | [URAD_]
Access R
Reset 0
Bit 23 22 21 20 19 18 17 16
| RSU[3:0] | REC[3:0] |
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
RWC[3:0] RBE[3:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
RDM[3:0] RHC[3:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 24 - URAD Undefined Register Access Detection Interrupt Mask
Value Description
0 The interrupt is disabled.
1 The interrupt is enabled.

Bits 23:20 - RSU[3:0] Region Status Updated Interrupt Mask
Value Description
0 When RSUIi] is reading '0', the interrupt is disabled for region i.
1 When RSUIi] is reading '1', the interrupt is enabled for region i.

Bits 19:16 - REC[3:0] Region End bit Condition Detected Interrupt Mask

Value Description
0 When REC[i] is reading '0', the interrupt is disabled for region i.
1 When REC[i] is reading '1', the interrupt is enabled for region i.

Bits 15:12 - RWC[3:0] Region Wrap Condition Detected Interrupt Mask

Value Description
0 When RWC[i] is reading '0', the interrupt is disabled for region i.
1 When RW(C[i] is reading '1', the interrupt is enabled for region i.

Bits 11:8 - RBE[3:0] Region Bus Error Interrupt Mask

Value Description
0 When RBE[i] is reading '0', the interrupt is disabled for region i.
1 When RBE[i] is reading '1', the interrupt is enabled for region i.

Bits 7:4 - RDM[3:0] Region Digest Mismatch Interrupt Mask

@ MICROCHIP

510

Value Description
0 When RDMIi] is reading '0', the interrupt is disabled for region i.
1

When RDMIi] is reading '1', the interrupt is enabled for region i.

Bits 3:0 - RHC[3:0] Region Hash Completed Interrupt Mask

0 When RHC[i] is reading '0', the interrupt is disabled for region i.

1 When RHC[i] is reading '1', the interrupt is enabled for region i.

o 511
ﬁ\ MICROCHIP

25.8.7 Interrupt Status Register

Name: ISR
Offset: 0x1C
Reset: 0x0

Property: Read-Only

Bit 31 30 29 28 27 26 25 24
| | | | | | | [URAD_]
Access R
Reset 0
Bit 23 22 21 20 19 18 17 16
| RSU[3:0] | REC[3:0] |
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
RWC[3:0] RBE[3:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
RDM[3:0] RHC[3:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 24 - URAD Undefined Register Access Detection Status
The URAD bit is only reset by the SWRST bit in the CTRL register.
The Undefined Register Access Trace bit field in the Undefined Access Status Register (UASR.URAT)
indicates the unspecified access type.

Value Description

0 No undefined register access has been detected since the last SWRST.
1 At least one undefined register access has been detected since the last SWRST.

Bits 23:20 - RSU[3:0] Region Status Updated Detected
RSUIi] is set when a region status updated condition is detected.

Bits 19:16 - REC[3:0] Region End bit Condition Detected
RECIi] is set when an end bit condition is detected.

Bits 15:12 - RWC[3:0] Region Wrap Condition Detected
RWC[i] is set when a wrap condition is detected.

Bits 11:8 - RBE[3:0] Region Bus Error
RBE[i] is set when a bus error is detected while hashing memory region i.

Bits 7:4 - RDM[3:0] Region Digest Mismatch
RDM[i] is set when there is a digest comparison mismatch between the hash value of region i and
the reference value located in the Hash Area.

Bits 3:0 - RHC[3:0] Region Hash Completed
RHC[i] is set when the ICM has completed the region with identifier i.

512

@ MICROCHIP

25.8.8 Undefined Access Status Register

Name: UASR
Offset: 0x20
Reset: 0x0
Property: Read-Only

Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
URAT[2:0]
Access R R R
Reset 0 0 0

Bits 2:0 - URAT[2:0] Undefined Register Access Trace
Only the first Undefined Register Access Trace is available through the URAT field.
The URAT field is only reset by the Software Reset bit in the Control register (CTRL.SWRST).

VEIS Name Description

0 UNSPEC_STRUCT_MEMBER Unspecified structure member set to '1' detected when the descriptor is loaded.
1 ICM_CFG_MODIFIED CFG modified during active monitoring.

2 ICM_DSCR_MODIFIED DSCR modified during active monitoring.

3 ICM_HASH_MODIFIED HASH modified during active monitoring

4 READ_ACCESS Write-only register read access

Only the first Undefined Register Access Trace is available through the URAT field.
The URAT field is only reset by the SWRST bit in the CTRL register.

513

@ MICROCHIP

25.8.9 Descriptor Area Start Address Register

Name: DSCR
Offset: 0x30

Reset: 0x0
Property: -
Bit 31 30 29 28 27 26 25 24
| DASA[25:18]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| DASA[17:10]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
DASA[9:2]
Access R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
DASA[1:0]
Access R/W R/W
Reset 0 0

Bits 31:6 - DASA[25:0] Descriptor Area Start Address
The start address is a multiple of the total size of the data structure (64 bytes).

@ MICROCHIP

514

25.8.10 Hash Area Start Address Register

Name: HASH
Offset: 0x34

Reset: 0x00000000
Property: -

Bit 31 30 29

28

27

26

25

24

Access
Reset

Bit 23 22 21

20

19

18

17

16

Access
Reset

Bit 15 14 13

12

11

10

Access
Reset

Bit 7 6 5

Access
Reset

@ MICROCHIP

515

25.8.11

Bit

Access
Reset

Bit

Access
Reset

Bit

Access
Reset

Bit

Access
Reset

User Initial Hash Value Register

Name: UIHVALX
Offset: 0x38 + x*0x04 [x=0..7]
Reset: 0
Property: -
31 30 29 28 27 26 25 24
| VAL[31:24] |
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
23 22 21 20 19 18 17 16
| VAL[23:16] |
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8
VAL[15:8]
R/W RIW R/W R/W RIW R/W RIW RIW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
VAL[7:0]
R/W R/W R/W R/W R/W R/W R/W RIW
0 0 0 0 0 0 0 0

Bits 31:0 - VAL[31:0] Initial Hash Value

When UIHASH bit of CFG register is set, the Initial Hash Value is user-programmable.
To meet the desired standard, use the following example values.
For UIHVALDO field:

0x67452301 SHA1 algorithm
O0x6A09E667 SHA256 algorithm

For UIHVAL1 field:

OxEFCDAB89 SHA1 algorithm
0xBB67AE85 SHA256 algorithm

For UIHVAL2 field:

0x98BADCFE SHA1 algorithm
0x3C6EF372 SHA256 algorithm

For UIHVALS field:

0x10325476 SHA1 algorithm
OxA54FF53A SHA256 algorithm

For UIHVAL4 field:

@ MICROCHIP

516

O0xC3D2E1FO SHA1 algorithm
0x510E527F SHA256 algorithm

For UIHVALS field:

0x9B05688C SHA256 algorithm
For UIHVALSG field:

0x1F83D9AB SHA256 algorithm
For UIHVALY field:

0x5BEOCD19 SHA256 algorithm

Example of Initial Value for SHA-1 Algorithm

Register Address Address Offset / Byte Lane

0x3/31:24 0x2/23:16 0x1/15:8 0x0/7:0
01 23 45 67

0x000 UIHVALO

0x004 UIHVAL1 89 ab cd ef
0x008 UIHVAL2 fe dc ba 98
0x00C UIHVAL3 76 54 32 10
0x010 UIHVAL4 fo el d2 3

517

@ MICROCHIP

26. Peripheral Access Controller (PAC)

26.1 Overview

The Peripheral Access Controller provides an interface for the locking and unlocking of peripheral
registers within the device. It reports all violations that could happen when accessing a peripheral:
write protected access, illegal access, enable protected access, access when clock synchronization or
software reset is on-going. These errors are reported in a unique interrupt flag for a peripheral. The
PAC module also reports errors occurring at the client bus level, when an access to a non-existing
address is detected.

Notes:

1. The modules attached to the PB-PIC bridge and wireless subsystem as well as RTCC, DSCON,
PUKCC and ICM are excluded from the PAC. The protection mechanism described in the System
Configuration Registers (CFG) protects critical system registers (see System Configuration Registers
(CFG) from Related Links).

2. Traditional Peripheral Access Controller (PAC) documentation uses the terminology “Master”
and “Slave”. The equivalent Microchip terminology used in this document is “Host” and “Client”,
respectively.

Related Links
18. System Configuration and Register Locking (CFG)

26.2 Features

+ Manages write protection access and reports access errors for the peripheral modules or
bridges.

26.3 Block Diagram

Figure 26-1. PAC Block Diagram

PAC
JRQ ‘ Client ERROR CLIENTS
APB INTFLAG
Peripheral ERROR |
PERIPHERAL m
BUSNn
| PERIPHERAL O
WRITE CONTROL
Peripheral ERROR]
PERIPHERAL m
BUSO
WRITE CONTROL PERIPHERAL 0

26.4 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

518

@ MICROCHIP

26.4.1

26.4.2

26.4.3

26.4.4

26.4.5

26.4.6

26.4.7

26.5

26.5.1

10 Lines
Not applicable.

Power Management

The PAC can continue to operate in any Sleep mode where the selected source clock is running. The
PAC interrupts can be used to wake up the device from Sleep modes. The events can trigger other
operations in the system without exiting sleep modes.

DMA
Not applicable.

Interrupts

The interrupt request line is connected to the Interrupt Controller (NVIC). Using the PAC interrupt
requires the Interrupt Controller to be configured first.

Table 26-1. Interrupt Lines

PAC PACERR

Events

The events are connected to the Event System, which may need configuration. See Event System
(EVSYS) from Related Links.

Related Links

28. Event System (EVSYS)

Debug Operation

When the CPU is halted in Debug mode, write protection of all peripherals is disabled and the PAC
continues normal operation.

Register Access Protection

All registers with write access can be write-protected optionally by the Peripheral Access Controller
(PAC), except for the following PAC registers:

+ Write Control (WRCTRL) register

+ AHB Subordinate Bus Interrupt Flag Status and Clear (INTFLAGAHB) register

+ Peripheral Interrupt Flag Status and Clear n (INTFLAG A/B/C...) registers

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the “PAC Write
Protection” property in each individual register description.

Note: PAC write protection does not apply to accesses through an external debugger.

Functional Description

Principle of Operation

The Peripheral Access Control module allows the user to set a write protection on peripheral
modules and generate an interrupt in case of a peripheral access violation. The peripheral’s
protection can be set, cleared or locked at the user discretion. A set of Interrupt Flag and Status
registers informs the user on the status of the violation in the peripherals. In addition, client bus
errors can be also reported in the cases where reserved area is accessed by the application.

@ MICROCHIP

519

26.5.2 Basic Operation

26.5.2.1 Initialization, Enabling and Resetting
The PAC is always enabled after reset.

Only a hardware reset will reset the PAC module.

26.5.2.2 Operations
The PAC module allows the user to set, clear or lock the write protection status of all peripherals on
all Peripheral Bridges, except the peripherals on PB-PIC bus.

If a peripheral register violation occurs, the Peripheral Interrupt Flag n registers (INTFLAGnN) are
updated to inform the user on the status of the violation in the peripherals connected to the
Peripheral Bridge n (n = A,B,C ...). The corresponding Peripheral Write Control Status n register
(STATUSN) gives the state of the write protection for all peripherals connected to the corresponding
Peripheral Bridge n. See Peripheral Access Errors from Related Links.

The PAC module also report the errors occurring at client bus level when an access to reserved
area is detected. AHB Subordinate Bus Interrupt Flag register (INTFLAGAHB) informs the user on the
status of the violation in the corresponding client. See AHB Subordinate Bus Errors from Related Links.

Related Links
26.5.2.3. Peripheral Access Errors
26.5.2.6. AHB Subordinate Bus Errors

26.5.2.3 Peripheral Access Errors
The following events will generate a Peripheral Access Error:

+ Protected write: To avoid unexpected writes to a peripheral's registers, each peripheral can be
write protected. Only the registers denoted as “PAC Write-Protection” in the module’s datasheet
can be protected. If a peripheral is not write protected, write data accesses are performed
normally. If a peripheral is write protected and if a write access is attempted, data will not
be written and peripheral returns an access error. The corresponding interrupt flag bit in the
INTFLAGN register will be set.

+ lllegal access: Access to an unimplemented register within the module.

+ Synchronized write error; For write-synchronized registers an error will be reported if the register
is written while a synchronization is ongoing.

When any of the INTFLAGN registers bit are set, an interrupt will be requested if the PAC interrupt
enable bit is set.

26.5.2.4 Write Access Protection Management
Peripheral access control can be enabled or disabled by writing to the WRCTRL register.

The data written to the WRCTRL register is composed of two fields; WRCTRL.PERID and WRCTRL.KEY.
The WRCTRL.PERID is an unique identifier corresponding to a peripheral. The WRCTRL.KEY is a key
value that defines the operation to be done on the control access bit. These operations can be “clear

"o,

protection”, “set protection” and “set and lock protection bit".

The “clear protection” operation will remove the write access protection for the peripheral selected
by WRCTRL.PERID. Write accesses are allowed for the registers in this peripheral.

The “set protection” operation will set the write access protection for the peripheral selected by
WRCTRL.PERID. Write accesses are not allowed for the registers with write protection property in this
peripheral.

The “set and lock protection” operation will set the write access protection for the peripheral
selected by WRCTRL.PERID and locks the access rights of the selected peripheral registers. The write
access protection will only be cleared by a hardware reset.

The peripheral access control status can be read from the corresponding STATUSn register.

520

@ MICROCHIP

26.5.2.5 Write Access Protection Management Errors

Only word-wise writes to the WRCTRL register will effectively change the access protection. Other
type of accesses will have no effect and will cause a PAC write access error. This error is reported in
the INTFLAGA.PAC bit.

PAC also offers an additional safety feature for correct program execution with an interrupt
generated on double write clear protection or double write set protection. If a peripheral is write
protected and a subsequent set protection operation is detected then the PAC returns an error, and
similarly for a double clear protection operation.

In addition, an error is generated when writing a “set and lock” protection to a write-protected
peripheral or when a write access is done to a locked set protection. This can be used to ensure
that the application follows the intended program flow by always following a write protect with an
unprotect and conversely. However in applications where a write protected peripheral is used in
several contexts, for example, interrupt, care must be taken so that either the interrupt can not
happen while the main application or other interrupt levels manipulates the write protection status
or when the interrupt handler needs to unprotect the peripheral based on the current protection
status by reading the STATUS register.

The errors generated while accessing the PAC module registers (for example, key error, double
protect error and so on) will set the INTFLAGA.PAC flag.

26.5.2.6 AHB Subordinate Bus Errors
The PAC module reports errors occurring at the AHB Subordinate bus level. These errors are
generated when an access is performed at an address where no subordinate (bridge or peripheral)
is mapped. These errors are reported in the corresponding bits of the INTFLAGAHB register.
26.5.2.7 Generating Events

The PAC module can also generate an event when any of the Interrupt Flag registers bit are set. To
enable the PAC event generation, the control bit EVCTRL.ERREO must be seta '1".

26.5.3 DMA Operation
Not applicable.

26.5.4 Interrupts
The PAC has the following interrupt source:

+ Error (ERR): Indicates that a peripheral access violation occurred in one of the peripherals
controlled by the PAC module, or a bridge error occurred in one of the bridges reported by
the PAC

- This interrupt is a synchronous wake-up source

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag
Status and Clear (INTFLAGAHB and INTFLAGN) registers is set when the interrupt condition occurs.
Each interrupt can be individually enabled by writing a '1' to the corresponding bit in the Interrupt
Enable Set (INTENSET) register, and disabled by writing a '1' to the corresponding bit in the Interrupt
Enable Clear (INTENCLR) register.

An interrupt request is generated when the interrupt flag is set and the corresponding interrupt

is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is
disabled, or the PAC is reset. All interrupt requests from the peripheral are ORed together on system
level to generate one combined interrupt request to the NVIC. The user must read the INTFLAGAHB
and INTFLAGN registers to determine which interrupt condition is present.

Note that interrupts must be globally enabled for interrupt requests to be generated.

26.5.5 Events
The PAC can generate the following output event:

@ MICROCHIP

521

« Error (ERR): Generated when one of the interrupt flag registers bits is set

Writing a '1' to an Event Output bit in the Event Control Register (EVCTRL.ERREO) enables the
corresponding output event. Writing a '0' to this bit disables the corresponding output event.

26.5.6 Sleep Mode Operation

In Sleep mode, the PAC is kept enabled if an available bus host (CPU, DMA) is running. The PAC will
continue to catch access errors from the module and generate interrupts or events.

26.5.7 Synchronization
Not applicable.

522

@ MICROCHIP

26.6

Register Summary

Comser | ameapos | 716 |5 | 4 | 5 o
7:0 1

0x00

0x04
0x05

0x07
0x08

0x09
0x0A

OxOF
0x10
0x14

0x18

0x1C

0x20
0x33
0x34

0x38

0x3C

26.7

PERID[7:0
WRCTRL 15:8 PERID[15:8]
23:16 KEY[7:0]
31:24
EVCTRL 7:0 ERREO
Reserved
INTENCLR 7:0 ERR
INTENSET 7:0 ERR
Reserved
7:0 PBBB PBAB PFLASH CFLASH SRAM3 SRAM2 SRAM1 SRAMO
15:8 QSPI PBPICB PBCB
INTFLAGAHB
23:16
31:24
7:0 TC2 TC1 TCO SERCOM1 SERCOMO EIC FREQM PAC
INTELAGA 15:8 TCC2 TCCT TCCO TC3
23:16
31:24
7:0 RAMECC EVSYS DMAC DSU
15:8
INTFLAGB 2316
31:24
7:0 AC CCL
15:8
INTFLAGC 2316
31:24
Reserved
7:0 TC2 TC1 TCO SERCOM1 SERCOMO EIC FREQM PAC
15:8 TCCT TC3
STATUSA 2316
31:24
7:0 RAMECC EVSYS DMAC
15:8
STATUSB 2316
31:24
7:0 AC CCL SERCOM3 SERCOM2
15:8
STATUSC 2316
31:24

Register Description

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register and the 8-bit halves of a 16-bit register can be
accessed directly.

Some registers are optionally write protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the “PAC Write-Protection” property in each individual register
description. For details, refer to the related links.

@ MICROCHIP

523

26.7.1 Write Control

Name: WRCTRL
Offset: 0x00
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| KEY[7:0] |
Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| PERID[15:8] |
Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
PERID[7:0]
Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0

Bits 23:16 - KEY[7:0] Peripheral Access Control Key
These bits define the peripheral access control key:

Value Name Description

0x0 OFF No action

0x1 CLEAR Clear the peripheral write control

0x2 SET Set the peripheral write control

0x3 LOCK Set and lock the peripheral write control until the next hardware reset

Bits 15:0 - PERID[15:0] Peripheral Identifier
The PERID represents the peripheral whose control is changed using the WRCTRL.KEY. The
Peripheral Identifier is calculated following formula:
PERID = 32* BridgeNumber + N

Where BridgeNumber represents the Peripheral Bridge Number (O for Peripheral Bridge A, 1 for
Peripheral Bridge B, etc). N represents the peripheral index from the respective Bridge Number:

Table 26-2. PERID Values

Periph. Bridge Name BridgeNumber PERID Values

A 0 0+N

B 1 32+N
C 2 64+N
D 3 96+N

Note: GMAC, ICM, SDHC, CAN and PCC peripherals do not support that feature.

524

@ MICROCHIP

26.7.2 Event Control

Name: EVCTRL
Offset: 0x04

Reset: 0x00
Property: -
Bit 7 6 5 4 3 2 1 0
| | | | [ERRED_|
Access RW
Reset 0

Bit 0 - ERREO Peripheral Access Error Event Output

This bit indicates if the Peripheral Access Error Event Output is enabled or disabled. When enabled,
an event will be generated when one of the interrupt flag registers bits (INTFLAGAHB, INTFLAGN) is

set:
0 Peripheral Access Error Event Output is disabled.
1 Peripheral Access Error Event Output is enabled.

. 525
@ MICROCHIP

26.7.3 Interrupt Enable Clear

Name: INTENCLR
Offset: 0x08
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit 7 6 5 4 3 2 1 0
| | | | | | | | ERR |
Access RW
Reset 0

Bit 0 - ERR Peripheral Access Error Interrupt Disable
This bit indicates that the Peripheral Access Error Interrupt is enabled and an interrupt request will
be generated when one of the interrupt flag registers bits (INTFLAGAHB, INTFLAGN) is set:
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the Peripheral Access Error interrupt Enable bit and disables the
corresponding interrupt request.

Value Description

0 Peripheral Access Error interrupt is disabled.
1 Peripheral Access Error interrupt is enabled.

526

@ MICROCHIP

26.7.4 Interrupt Enable Set

Name: INTENSET
Offset: 0x09
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set register (INTENCLR).

Bit 7 6 5 4 3 2 1 0
| | | | | | | | ERR |
Access RW
Reset 0

Bit 0 - ERR Peripheral Access Error Interrupt Enable
This bit indicates that the Peripheral Access Error Interrupt is enabled and an interrupt request will
be generated when one of the interrupt flag registers bits (INTFLAGAHB, INTFLAGN) is set:
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will set the Peripheral Access Error interrupt Enable bit and enables the
corresponding interrupt request.

Value Description

0 Peripheral Access Error interrupt is disabled.
1 Peripheral Access Error interrupt is enabled.

527

@ MICROCHIP

26.7.5 Bridge Interrupt Flag Status

Name: INTFLAGAHB
Offset: 0x10

Reset: 0x00000000
Property: -

These flags are cleared by writing a ‘1’ to the corresponding bit.

These flags are set when an access error is detected by the corresponding AHB Subordinate, and will
generate an interrupt request if INTENCLR/SET.ERR is ‘1".

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
| QsPl | PBPICB PBCB
Access RW RW RW
Reset 0 0 0
Bit 7 6 5 4 3 2 1 0
| PBBB | PBAB | PFLASH | CFLASH | SRAM3 | SRAM2 | SRAM1 | SRAMO
Access RW RW RW RW RW u U RW
Reset 0 0 0 0 0 0 0 0

Bit 10 - QSPI Interrupt Flag for QSPI
This flag is set when an access error is detected by the QSPI AHB Subordinate, and will generate an
interrupt request if INTENCLR/SET.ERR is ‘1'.
Writing a ‘0" has no effect.
Writing a ‘1" to this bit will clear the QSPI interrupt flag.

Bit 9 - PBPICB Interrupt Flag for PBPICB (PB-PIC-Bridge)
This flag is set when an access error is detected by the PBPICB AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1.
Writing a ‘0" has no effect.
Writing a ‘1’ to this bit will clear the PBPICB interrupt flag.

Bit 8 - PBCB Interrupt Flag for PBCB (PB-Bridge-C)
This flag is set when an access error is detected by the PBCB AHB Subordinate, and will generate an
interrupt request if INTENCLR/SET.ERR is ‘1".
Writing a ‘0" has no effect.
Writing a ‘1’ to this bit will clear the PBCB interrupt flag.

Bit 7 - PBBB Interrupt Flag for PBBB (PB-Bridge-B)
This flag is set when an access error is detected by the PBBB AHB Subordinate, and will generate an
interrupt request if INTENCLR/SET.ERR is ‘1'.
Writing a ‘0" has no effect.

@ MICROCHIP

528

Writing a ‘1’ to this bit will clear the PBBB interrupt flag.

Bit 6 - PBAB Interrupt Flag for HPB1 (PB-Bridge-A)
This flag is set when an access error is detected by the PBAB AHB Subordinate, and will generate an
interrupt request if INTENCLR/SET.ERR is ‘1'.
Writing a ‘0" has no effect.
Writing a ‘1" to this bit will clear the PBAB interrupt flag.

Bit 5 - PFLASH Interrupt Flag for PFLASH (Peripheral Flash)
This flag is set when an access error is detected by the PFLASH AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1.
Writing a ‘0" has no effect.
Writing a ‘1" to this bit will clear the PFLASH interrupt flag.

Bit 4 - CFLASH Interrupt Flag for CFLASH (CPU Flash)
This flag is set when an access error is detected by the CFLASH AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1.
Writing a ‘0" has no effect.
Writing a ‘1’ to this bit will clear the CFLASH interrupt flag.

Bit 3 - SRAM3 Interrupt Flag for SRAM3
This flag is set when an access error is detected by the SRAM3 AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1".
Writing a ‘0" has no effect.
Writing a ‘1’ to this bit will clear the SRAM3 interrupt flag.

Bit 2 - SRAM2 Interrupt Flag for SRAM2
This flag is set when an access error is detected by the SRAM2 AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1.
Writing a ‘0" has no effect.
Writing a ‘1" to this bit will clear the SRAM2 interrupt flag.

Bit 1 - SRAM1 Interrupt Flag for SRAM1
This flag is set when an access error is detected by the SRAM1 AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1.
Writing a ‘0" has no effect.
Writing a ‘1" to this bit will clear the SRAM1 interrupt flag.

Bit 0 - SRAMO Interrupt Flag for SRAMO
This flag is set when an access error is detected by the SRAMO AHB Subordinate, and will generate
an interrupt request if INTENCLR/SET.ERR is ‘1".
Writing a ‘0’ has no effect.
Writing a ‘1" to this bit will clear the SRAMO interrupt flag.

@ MICROCHIP

529

26.7.6 Peripheral Interrupt Flag Status — Bridge A

Name:
Offset:
Reset:

Property:

These flags are set when a Peripheral Access Error occurs while accessing the peripheral associated
with the respective INTFLAGXx bit, and will generate an interrupt request if INTENCLR/SET.ERR is ‘1".

INTFLAGA

0x00000000

Writing a ‘0’ to these bits has no effect.

Writing a ‘1’ to these bits will clear the corresponding INTFLAGX interrupt flag.

Bit 31 30 29 28 27 26 25 24
Access
Reset

Bit 23 22 21 20 19 18 17 16
Access
Reset

Bit 15 14 13 12 11 10 9 8

| TCC2 | TCC TCCO | T3

Access RW RW RW RW

Reset 0 0 0 0

Bit 7 6 5 4 3 2 1 0

| TQ TC1 TCO [SERCOM1 | SERCOMO | EIC FREQM | PAC

Access RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

Bit 11 - TCC2 Interrupt Flag for TCC2
This bit is set when a Peripheral Access Error occurs while accessing the TCC2, and will generate an

interrupt request if SET.ERR is ‘1".

Writing a ‘0" to this bit has no effect.

Writing a ‘1" to this bit will clear the flag.

Bit 10 - TCC1 Interrupt Flag for TCC1
This bit is set when a Peripheral Access Error occurs while accessing the TCC1, and will generate an

interrupt request if SET.ERR is ‘1".

Writing a ‘0’ to this bit has no effect.

Writing a ‘1" to this bit will clear the flag.

Bit 9 - TCCO Interrupt Flag for TCCO
This bit is set when a Peripheral Access Error occurs while accessing the TCCO, and will generate an

interrupt request if SET.ERR is ‘1".

Writing a ‘0’ to this bit has no effect.

Writing a ‘1’ to this bit will clear the flag.

Bit 8 - TC3 Interrupt Flag for TC3
This bit is set when a Peripheral Access Error occurs while accessing the TC3, and will generate an

interrupt request if SET.ERR is ‘1".

@ MICROCHIP

530

Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 7 - TC2 Interrupt Flag for TC2
This bit is set when a Peripheral Access Error occurs while accessing the TC2, and will generate an
interrupt request if SET.ERR is ‘1",
Writing a ‘0" to this bit has no effect.
Writing a ‘1" to this bit will clear the flag.

Bit 6 - TC1 Interrupt Flag for TC1
This bit is set when a Peripheral Access Error occurs while accessing the TC1, and will generate an
interrupt request if SET.ERR is ‘1".
Writing a ‘0" to this bit has no effect.
Writing a ‘1" to this bit will clear the flag.

Bit 5 - TCO Interrupt Flag for TCO
This bit is set when a Peripheral Write Access Error occurs while accessing the TCO, and will generate
an interrupt request if SET.ERR is ‘1".
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 4 - SERCOM1 Interrupt Flag for SERCOM1
This bit is set when a Peripheral Access Error occurs while accessing the SERCOM1, and will generate
an interrupt request if SET.ERR is ‘1".
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 3 - SERCOMO Interrupt Flag for SERCOMO
This bit is set when a Peripheral Access Error occurs while accessing the SERCOMO, and will generate
an interrupt request if SET.ERR is ‘1".
Writing a ‘0’ to this bit has no effect.
Writing a ‘1" to this bit will clear the flag.

Bit 2 - EIC Interrupt Flag for EIC
This bit is set when a Peripheral Access Error occurs while accessing the EIC, and will generate an
interrupt request if SET.ERR is ‘1".
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 1 - FREQM Interrupt Flag for FREQM
This bit is set when a Peripheral Access Error occurs while accessing the FREQM, and will generate
an interrupt request if SET.ERR is ‘1".
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the flag.

Bit 0 - PAC Interrupt Flag for PAC
This bit is set when a Peripheral Write Access Error occurs while accessing the PAC, and will generate
an interrupt request if SET.ERR is ‘1".
Writing a ‘0" to this bit has no effect.
Writing a ‘1" to this bit will clear the flag.

@ MICROCHIP

531

26.7.7 Peripheral Interrupt Flag Status — Bridge B

Name: INTFLAGB
Offset: 0x18

Reset: 0x00000000
Property: -

These flags are set when a Peripheral Access Error occurs while accessing the peripheral associated
with the respective INTFLAGXx bit, and will generate an interrupt request if INTENCLR/SET.ERR is ‘1".

Writing a ‘0’ to these bits has no effect.

Writing a ‘1’ to these bits will clear the corresponding INTFLAGx interrupt flag.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
| RAMECC | EVSYS | DMAC | DSU
Access RW RW RW RW
Reset 0 0 0 0

Bit 4 - RAMECC Interrupt Flag for RAMECC
This flag is set when a Peripheral Access Error occurs while accessing the RAMECC, and will generate

an interrupt request if INTENCLR/SET.ERR is ‘1".

Writing a ‘0’ to this bit has no effect.

Writing a ‘1" to this bit will clear the RAMECC interrupt flag.

Bit 3 - EVSYS Interrupt Flag for EVSYS
This flag is set when a Peripheral Access Error occurs while accessing the EVSYS, and will generate an

interrupt request if INTENCLR/SET.ERR is ‘1".

Writing a ‘0" to this bit has no effect.

Writing a ‘1" to this bit will clear the EVSYS interrupt flag.

Bit 2 - DMAC Interrupt Flag for DMAC
This flag is set when a Peripheral Access Error occurs while accessing the DMAC, and will generate

an interrupt request if INTENCLR/SET.ERR is ‘1.

Writing a ‘0’ to this bit has no effect.

Writing a ‘1’ to this bit will clear the DMAC interrupt flag.

Bit 0 - DSU Interrupt Flag for DSU
This flag is set when a Peripheral Access Error occurs while accessing the DSU, and will generate an

interrupt request if INTENCLR/SET.ERR is ‘1'.

@ MICROCHIP

532

Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the DSU interrupt flag.

533

@ MICROCHIP

26.7.8 Peripheral Interrupt Flag Status — Bridge C

Name: INTFLAGC
Offset: 0x1C

Reset: 0x00000000
Property: -

These flags are set when a Peripheral Access Error occurs while accessing the peripheral associated
with the respective INTFLAGx bit and will generate an interrupt request if INTENCLR/SET.ERR is ‘1".
Writing a ‘0’ to these bits has no effect.

Writing a ‘1’ to these bits will clear the corresponding INTFLAGXx interrupt flag.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
| AC | CCL |
Access RW RW
Reset 0 0

Bit 7 - AC Interrupt Flag for AC
This flag is set when a Peripheral Access Error occurs while accessing the peripheral associated with
the AC and will generate an interrupt request if INTENCLR/SET.ERR is ‘1".
Writing a ‘0’ to this bit has no effect.
Writing a ‘1" to this bit will clear the AC interrupt flag.

Bit 6 - CCL Interrupt Flag for CCL
This flag is set when a Peripheral Access Error occurs while accessing the peripheral associated with
the CCL and will generate an interrupt request if INTENCLR/SET.ERR is ‘1.
Writing a ‘0" to this bit has no effect.
Writing a ‘1" to this bit will clear the CCL interrupt flag.

534

@ MICROCHIP

26.7.9 Peripheral Write Protection Status A

Name: STATUSA

Offset: 0x34

Reset: 0x00010000
Property: PAC Write-Protection

Writing to this register has no effect.

Reading STATUS register returns peripheral write protection status:

0 Peripheral is not write protected.
1 Peripheral is write protected.
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | T1CCH | | TC3 |
Access R R
Reset 0 0
Bit 7 6 5 4 3 2 1 0
TC2 TC1 TCO SERCOM1 SERCOMO EIC | FREQM | PAC
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 10 - TCC1 TCC1 APB Protect Enable
VEIS Description
0 TCC1 is not write protected
1 TCC1 is write protected

Bit 8 - TC3 TC3 APB Protect Enable

0 TC3 is not write protected
1 TC3 is write protected

Bit 7 - TC2 TC2 APB Protect Enable

Value Description
0 TC2 is not write protected
1 TC2 is write protected

Bit 6 - TC1 TC1 APB Protect Enable

VEIS Description
0 TC1 is not write protected
1 TC1 is write protected

Bit 5 - TCO TCO APB Protect Enable

@ MICROCHIP

535

Value Description
TCO is not write protected
TCO is write protected

= O

Bit 4 - SERCOM1 SERCOM1 APB Protect Enable

Value Description
0 SERCOMT1 is not write protected
1 SERCOM1 is write protected

Bit 3 - SERCOMO SERCOMO APB Protect Enable

Value Description
0 SERCOMO is not write protected
1 SERCOMO is write protected

Bit 2 - EIC EIC APB Protect Enable

Value Description
0 EIC is not write protected
1 EIC is write protected

Bit 1 - FREQM FREQM APB Protect Enable

Value Description
0 FREQM is not write protected
1 FREQM is write protected

Bit 0 - PAC PAC APB Protect Enable

Value Description
0 PAC is not write protected
1 PAC is write protected

536

@ MICROCHIP

26.7.10 Peripheral Write Protection Status — Bridge B

Name: STATUSB

Offset: 0x38

Reset: 0x00000002
Property: PAC Write-Protection

Writing to this register has no effect.

Reading STATUS register returns peripheral write protection status:

0 Peripheral is not write protected.
1 Peripheral is write protected.
Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
RAMECC EVSYS DMAC
Access R R R
Reset 0 0 0

Bit 4 - RAMECC RAMECC APB Protect Enable

0 RAMECC peripheral is not write protected
1 RAMECC peripheral is write protected

Bit 3 - EVSYS EVSYS APB Protect Enable

0 EVSYS peripheral is not write protected
1 EVSYS peripheral is write protected

Bit 2 - DMAC DMAC APB Protect Enable

0 DMAC peripheral is not write protected
1 DMAC peripheral is write protected

@ MICROCHIP

537

26.7.11 Peripheral Write Protection Status — Bridge C

Name: STATUSC

Offset: 0x3C

Reset: 0x00000000
Property: PAC Write-Protection

Writing to this register has no effect.

Reading STATUS register returns peripheral write protection status:

0 Peripheral is not write protected.
1 Peripheral is write protected.
Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
AC CCL SERCOM3 SERCOM?2
Access R R R R
Reset 0 0 0 0

Bit 7 - AC AC APB Protection Enable

VEIS Description
0 Peripheral is not write protected
1 Peripheral is write protected

Bit 6 - CCL CCL APB Protection Enable

0 Peripheral is not write protected
1 Peripheral is write protected

Bit 4 - SERCOM3 SERCOMS3 APB Protection Enable

Value Description
0 Peripheral is not write protected
1 Peripheral is write protected

Bit 3 - SERCOM2 SERCOM?2 APB Protection Enable

VIS Description
0 Peripheral is not write protected
1 Peripheral is write protected

@ MICROCHIP

538

27.
27.1

27.2

27.3

27.4

27.5

27.5.1

27.5.2

27.5.3

27.5.4

27.5.5

Frequency Meter (FREQM)

Overview

The Frequency Meter (FREQM) can be used to accurately measure the frequency of a clock by
comparing it to a known reference clock.

Features

+ Ratio can be measured with 24-bit accuracy

+ Accurately measures the frequency of an input clock with respect to a reference clock

« Reference clock can be selected from the available GCLK_FREQM_REF sources

+ Measured clock can be selected from the available GCLK_FREQM_MSR sources

Block Diagram

Figure 27-1. FREQM Block Diagram

Signal Description
Not applicable.

Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

1/0 Lines

The REFO lines (REFO[4:1]) can be used as measurement or reference clock sources. This requires
the 1/0 pins to be configured.

Power Management

The FREQM will continue to operate in idle sleep mode where the selected source clock is running.
The FREQM's interrupts can be used to wake up the device from idle sleep mode. See Power
Management Unit (PMU) from Related Links for details on the different sleep modes.

Related Links
15. Power Management Unit (PMU)

Clocks
Two generic clocks are used by the FREQM: Reference Clock (GCLK_FREQM_REF) and Measurement
Clock (GCLK_FREQM_MSR).

GCLK_FREQM_REF is required to clock the internal reference timer, which acts as the frequency
reference.

GCLK_FREQM_MSR is required to clock a ripple counter for frequency measurement. These clocks
must be configured and enabled in the generic clock controller before using the FREQM.

DMA
Not applicable.

Interrupts

The interrupt request line is connected to the interrupt controller. Using FREQM interrupt requires
the interrupt controller to be configured first.

@ MICROCHIP

539

27.5.6 Events
Not applicable.

27.5.7 Debug Operation

When the CPU is halted in debug mode the FREQM continues its normal operation. The FREQM
cannot be halted when the CPU is halted in debug mode. If the FREQM is configured in a way that
requires it to be periodically serviced by the CPU, improper operation or data loss may result during
debugging.

27.5.8 Register Access Protection

All registers with write access can be write-protected optionally by the Peripheral Access Controller
(PAC), except the following registers:

+ Control B register (CTRLB)
+ Interrupt Flag Status and Clear register (INTFLAG)
+ Status register (STATUS)

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

Write-protection does not apply to accesses through an external debugger.

27.6 Functional Description

27.6.1 Principle of Operation

FREQM counts the number of periods of the measured clock (GCLK_FREQM_MSR) with respect to
the reference clock (GCLK_FREQM_REF). The measurement is done for a period of REFNUM/fc |k rer
and stored in the Value register (VALUE.VALUE). REFNUM is the number of Reference clock cycles
selected in the Configuration A register (CFGA.REFNUM).

The frequency of the measured clock, fcik msr, is calculated by

fCLK MSR = (%)RLKREF . The error can be maximum two measured clock cycles.

27.6.2 Basic Operation

27.6.2.1 Initialization
Before enabling FREQM, the device and peripheral must be configured:
+ Write the number of Reference clock cycles for which the measurement is to be done in the
Configuration A register (CFGA.REFNUM). This must be a non-zero number.
+ Configuration A register (CFGA)

Enable-protection is denoted by the "Enable-Protected" property in the register description.

27.6.2.2 Enabling, Disabling and Resetting
The FREQM is enabled by writing a '1' to the Enable bit in the Control A register (CTRLA.ENABLE). The
peripheral is disabled by writing CTRLA.ENABLE=0.

The FREQM is reset by writing a '1' to the Software Reset bit in the Control A register (CTRLA.SWRST).
On software reset, all registers in the FREQM will be reset to their initial state, and the FREQM will be
disabled.

Then ENABLE and SWRST bits are write-synchronized.

Related Links
27.6.7. Synchronization

540

@ MICROCHIP

27.6.2.3 Measurement
In the Configuration A register, the Number of Reference Clock Cycles field (CFGA.REFNUM) selects
the duration of the measurement. The measurement is given in number of GCLK_FREQM_REF
periods.
Note: The REFNUM field must be written before the FREQM is enabled.

After the FREQM is enabled, writing a ‘1’ to the START bit in the Control B register (CTRLB.START)
starts the measurement. The BUSY bit in Status register (STATUS.BUSY) is set when the
measurement starts, and cleared when the measurement is complete.

There is also an interrupt request for Measurement Done: When the Measurement Done bit

in Interrupt Enable Set register (INTENSET.DONE) is ‘1’ and a measurement is finished, the
Measurement Done bit in the Interrupt Flag Status and Clear register (INTFLAG.DONE) will be set
and an interrupt request is generated.

The result of the measurement can be read from the Value register (VALUE.VALUE). The frequency of
the measured clock GCLK_FREQM_MSR is then:

VALUE
fcLk MsR = (m)f CLK_REF
Notes:
1. In order to make sure the measurement result (VALUE.VALUE[23:0]) is valid, the overflow status
(STATUS.OVF) must be checked.

2. Due to asynchronous operations, the VALUE Error measurement can be up to two samples.

If an overflow condition occurred, indicated by the overflow bit in the STATUS register (STATUS.OVF),
either the number of reference clock cycles must be reduced (CFGA.REFNUM) or a faster reference
clock must be configured. Once the configuration is adjusted, clear the overflow status by writing a
‘1’ to STATUS.OVF. Then, another measurement can be started by writing a ‘1’ to CTRLB.START.

Note: See CFGA, CTRLB, STATUS, INTENSET, INTFLAG, VALUE registers in the Register Summary - FREQM
from Related Links.

Related Links
27.7. Register Summary - FREQM

27.6.3 DMA Operation
Not applicable.

27.6.4 Interrupts
+ DONE: A frequency measurement is done.

The interrupt flag in the Interrupt Flag Status and Clear INTLFLAG register is set when the interrupt
condition occurs. The interrupt can be enabled by writing a ‘1’ to the corresponding bit in the
Interrupt Enable Set register, and disabled by writing a ‘1’ to the corresponding bit in the Interrupt
Enable Clear (INTENCLR) register. The status of enabled interrupts can be read from either INTENSET
or INTENCLR.

An interrupt request is generated when the interrupt flag is set and the corresponding interrupt

is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt

is disabled, or the FREQM is reset. See INTLFLAG for details on how to clear interrupt flags. All
interrupt requests from the peripheral are ORed together on system level to generate one combined
interrupt request to the NVIC. The user must read the INTLFLAG register to determine which
interrupt condition is present.

This interrupt is a synchronous wake-up source.

Note: Interrupts must be globally enabled for interrupt requests to be generated.

541

@ MICROCHIP

27.6.5 Events
Not applicable.

27.6.6 Sleep Mode Operation

For lowest chip power consumption in sleep modes, FREQM must be disabled before entering a
Sleep mode.

27.6.7 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some
registers need to be synchronized when written or read.

The following bits and registers are write-synchronized:

« Software Reset bit in Control A register (CTRLA.SWRST)
+ Enable bitin Control A register (CTRLA.ENABLE)

Required write synchronization is denoted by the "Write-Synchronized" property in the register
description.

542

@ MICROCHIP

27.7 Register Summary - FREQM
0x00 CTRLA 7:0 ENABLE SWRST
0x01 CTRLB 7:0 START
7:0 REFNUM[7:
0x02 CFGA (70l
15:8
0x04
Reserved
0x07
0x08 INTENCLR 7:0 DONE
0x09 INTENSET 7:0 DONE
0x0A INTFLAG 7:0 DONE
0x0B STATUS 7:0 OVF BUSY
7:0 ENABLE SWRST
15:8
YNCBUSY
0x0C SYNCBUS 2316
31:24
7:0 VALUE[7:0]
15: .
0x10 VALUE 5:8 VALUE[15:8]
23:16 VALUE[23:16]
31:24
27.8 Register Description

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the
“Read-Synchronized” and/or “Write-Synchronized” property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register
description.

Some registers are optionally write protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the “PAC Write-Protection” property in each individual register
description.

@ MICROCHIP

543

27.8.1 Control A

Name: CTRLA
Offset: 0x00
Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| | | | | ENABLE | SWRST |
Access R/W R/W
Reset 0 0

Bit 1 - ENABLE Enable
Due to synchronization there is delay from writing CTRLA.ENABLE until the peripheral is enabled
or disabled. The value written to CTRLA.ENABLE will read back immediately and the ENABLE bit in
the Synchronization Busy register (SYNCBUSY.ENABLE) will be set. SYNCBUSY.ENABLE will be cleared
when the operation is complete.

Value Description
0 The peripheral is disabled.

1 The peripheral is enabled.

Bit 0 - SWRST Software Reset
Writing a '0' to this bit has no effect.
Writing a '1' to this bit resets all registers in the FREQM to their initial state, and the FREQM will be
disabled. Writing a '1' to this bit will always take precedence, meaning that all other writes in the
same write-operation will be discarded.
Notes:

1. When the CTRLA.SWRST is written, the user must poll the SYNCBUSY.SWRST bit to know when
the reset operation is complete.

2. During a SWRST, access to registers/bits without SWRST are disallowed until the
SYNCBUSY.SWRST is cleared by hardware.

Value Description

0 There is no ongoing Reset operation.
1 The Reset operation is ongoing.

544

@ MICROCHIP

27.8.2 Control B

Name: CTRLB
Offset: 0x01

Reset: 0x00
Property: -
Bit 7 6 5 4 3 2 1 0
| | | | [START |
Access W
Reset 0

Bit 0 - START Start Measurement

Value Description

0 Writing a '0' has no effect.
1 Writing a '1' starts a measurement.

545

@ MICROCHIP

27.8.3 Configuration A

Name: CFGA

Offset: 0x02

Reset: 0x0000

Property: PAC Write-Protection, Enable-protected

Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
| REFNUM[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - REFNUM([7:0] Number of Reference Clock Cycles
Selects the duration of a measurement in number of CLK_FREQM_REF cycles. This must be a non-
zero value, i.e. 0x01 (one cycle) to OxFF (255 cycles).

546

@ MICROCHIP

27.8.4 Interrupt Enable Clear

Name: INTENCLR
Offset: 0x08
Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| | | | | DONE |
Access R/W
Reset 0

Bit 0 - DONE Measurement Done Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the Measurement Done Interrupt Enable bit, which disables the
Measurement Done interrupt.

0 The Measurement Done interrupt is disabled.
1 The Measurement Done interrupt is enabled.

547

@ MICROCHIP

27.8.5 Interrupt Enable Set

Name: INTENSET
Offset: 0x09
Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| | | | | DONE |
Access R/W
Reset 0

Bit 0 - DONE Measurement Done Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will set the Measurement Done Interrupt Enable bit, which enables the
Measurement Done interrupt.

0 The Measurement Done interrupt is disabled.
1 The Measurement Done interrupt is enabled.

548

@ MICROCHIP

27.8.6 Interrupt Flag Status and Clear

Name: INTFLAG
Offset: Ox0A
Reset: 0x00
Property: -
Bit 7 6 5 4 3 2 1 0
| | | | [DONE]
Access R/W
Reset 0

Bit 0 - DONE Mesurement Done
This flag is cleared by writing a ‘1" to it.
This flag is set when a new measurement is completed.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit clears the DONE interrupt flag.

549

@ MICROCHIP

27.8.7 Status

Name: STATUS
Offset: 0x0B

Reset: 0x00
Property: -
Bit 7 6 5 4 3 2 1 0
| | | | [OovF | BUSY_]
Access R/W R
Reset 0 0

Bit 1 - OVF Sticky Count Value Overflow
This bit is cleared by writing a '1' to it.
This bit is set when an overflow condition occurs to the value counter.
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the OVF status.

Bit 0 - BUSY FREQM Status

0 No ongoing frequency measurement.
1 Frequency measurement is ongoing.

550

@ MICROCHIP

27.8.8 Synchronization Busy

Name: SYNCBUSY
Offset: 0x0C
Reset: 0x00000000
Property: -
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
ENABLE SWRST
Access R R
Reset 0 0

Bit 1 - ENABLE Enable

This bit is cleared when the synchronization of CTRLA.ENABLE is complete.
This bit is set when the synchronization of CTRLA.ENABLE is started.

Bit 0 - SWRST Synchronization Busy
This bit is cleared when the synchronization of CTRLA.SWRST is complete.
This bit is set when the synchronization of CTRLA.SWRST is started.

Note: During a SWRST, access to registers/bits without SWRST are disallowed until

SYNCBUSY.SWRST cleared by hardware.

@ MICROCHIP

551

27.8.9 \Value

Name: VALUE
Offset: 0x10
Reset: 0x00000000
Property: -
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| VALUE[23:16]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| VALUE[15:8]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
VALUE[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 23:0 - VALUE[23:0] Measurement Value
Result from measurement.

@ MICROCHIP

552

28.
28.1

28.2

28.3

28.4

28.4.1

28.4.2

Event System (EVSYS)

Overview

The Event System allows autonomous, low-latency, and configurable communication between
peripherals.

Several peripherals can be configured to generate and/or respond to signals known as events. The
exact condition to generate an event, or the action taken upon receiving an event, is specific to

each peripheral. Peripherals that respond to events are called event users. Peripherals that generate
events are called event generators. A peripheral can have one or more event generators and can
have one or more event users.

Communication is made without CPU intervention and without consuming system resources, such
as bus or RAM bandwidth. This reduces the load on the CPU and other system resources, compared
to a traditional interrupt-based system.

Features
+ 32 configurable event channels:
- All channels can be connected to any event generator

- All channels provide a pure asynchronous path
- Twelve channels provide a resynchronized or synchronous path
* 69 event generators.
+ 52 event users.
+ Configurable edge detector.
+ Peripherals can be event generators, event users, or both.
+ SleepWalking and interrupt for operation in sleep modes.
+ Software event generation.
+ Each event user can choose which channel to respond to.
+ Optional Static or Round-Robin interrupt priority arbitration.

Block Diagram

Figure 28-1. Event System Block Diagram

Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

1/0 Lines
Not applicable.

Power Management

The EVSYS can be used to wake up the CPU from all sleep modes (Deep Sleep/BACKUP and Extreme
Deep Sleep/OFF Mode), even if the clock used by the EVSYS channel and the EVSYS bus clock are
disabled. See Power Management Unit (PMU) from Related Links for details on the different sleep
modes.

Although the clock for the EVSYS is stopped, the device still can wake up the EVSYS clock. Some
event generators can generate an event when their clocks are stopped. The generic clock for the
channel (GCLK_EVSYS_CHANNEL_n) will be restarted if that channel uses a synchronized path or a
resynchronized path. It does not need to wake the system from sleep.

@ MICROCHIP

553

28.4.3

28.4.4

28.4.5

28.4.6

28.4.7

28.4.8

28.4.9

Related Links
15. Power Management Unit (PMU)

Clocks

Each EVSYS channel which can be configured as synchronous or resynchronized has a dedicated
generic clock (GCLK_EVSYS_CHANNEL_n). These are used for event detection and propagation for
each channel. These clocks must be configured and enabled in the generic clock controller before
using the EVSYS (see Clock and Reset (CRU) from Related Links).

Important: Only EVSYS channel 0 to 11 can be configured as synchronous or
resynchronized.

Related Links
13. Clock and Reset Unit (CRU)

DMA
Not applicable.

Interrupts

The interrupt request line is connected to the interrupt controller. Using the EVSYS interrupts
requires the interrupt controller to be configured first (see Nested Vector Interrupt Controller (NVIC)
from Related Links).

Related Links

10.2. Nested Vector Interrupt Controller (NVIC)

Events
Not applicable.

Debug Operation

When the CPU is halted in Debug mode, this peripheral will continue normal operation. If the
peripheral is configured to require periodical service by the CPU through interrupts or similar,
improper operation or data loss may result during debugging. This peripheral can be forced to halt
operation during debugging.

Register Access Protection

Registers with write access can be optionally write-protected by the Peripheral Access Controller
(PAC), except for the following:

+ Channel Pending Interrupt (INTPEND)
« Channel n Interrupt Flag Status and Clear (CHINTFLAGN)

Note: Optional write protection is indicated by the "PAC Write Protection" property in the register
description.

Write protection does not apply for accesses through an external debugger.

Analog Connections
Not applicable.

@ MICROCHIP

554

28.5 Functional Description

28.5.1 Principle of Operation

The Event System consists of channels which route the internal events from peripherals (generators)
to other internal peripherals. Each event generator can be selected as source for multiple channels,
but a channel cannot be set to use multiple event generators at the same time.

A channel path can be configured in asynchronous, synchronous or resynchronized mode of
operation. The mode of operation must be selected based on the requirements of the application.

When using synchronous or resynchronized path, the Event System includes options to transfer
events to users when rising, falling or both edges are detected on event generators.

See Channel Path from Related Links.

Related Links
28.5.2.6. Channel Path

28.5.2 Basic Operation

28.5.2.1 Initialization
Before enabling event routing within the system, the Event Users Multiplexer and Event Channels
must be selected in the Event System (EVSYS), and the two peripherals that generate and use the
event must be configured. Follow these steps to configure the event:
1. In the event generator peripheral, enable output of event by writing a '1' to the respective
Event Output Enable bit ("EO") in the peripheral's Event Control register, for example,
AC.EVCTRLWINEOO, RTC.EVCTRL.OVFEO.

2. Configure the EVSYS:
a. Configure the Event User multiplexer by writing the respective EVSYS.USERm register, refer to
28.5.2.3. User Multiplexer Setup.

b. Configure the Event Channel by writing the respective EVSYS.CHANNELn register, refer to
28.5.2.4. Event System Channel.

3. Configure the action to be executed by the event user peripheral by writing to the Event Action
bits (EVACT) in the respective Event control register, for example, TC.EVCTRL.EVACT.
Note: This step is not applicable for all the peripherals.

4. Inthe event user peripheral, enable event input by writing a '1' to the respective Event
Input Enable bit ("EI") in the peripheral's Event Control register, for example, AC.EVCTRL.IVEIQ,
ADC.EVCTRL.STARTEL.

28.5.2.2 Enabling, Disabling, and Resetting
The EVSYS is always enabled.

The EVSYS is reset by writing a ‘1’ to the Software Reset bit in the Control A register (CTRLA.SWRST).
All registers in the EVSYS will be reset to their initial state and all ongoing events will be canceled.

Refer to CTRLA.SWRST register for details.

28.5.2.3 User Multiplexer Setup
The user multiplexer defines the channel to be connected to which event user. Each user multiplexer
is dedicated to one event user. A user multiplexer receives all event channels output and must
be configured to select one of these channels, as shown in Block Diagram section. The channel is
selected with the Channel bit group in the User register (USERmM.CHANNEL).

The user multiplexer must always be configured before the channel. A list of all available event users
is found in the User (USERm) register description.

Related Links
28.3. Block Diagram

555

@ MICROCHIP

28.5.2.4 Event System Channel

An event channel can select one event from a list of event generators. Depending on configuration,
the selected event could be synchronized, resynchronized or asynchronously sent to the users.
When synchronization or resynchronization is required, the channel includes an internal edge
detector, allowing the Event System to generate internal events when rising, falling or both edges
are detected on the selected event generator.

An event channel is able to generate internal events for the specific software commands. A channel
block diagram is shown in Block Diagram section.

Related Links

28.3. Block Diagram

28.5.2.5 Event Generators

Each event channel can receive the events form all event generators. All event generators are listed
in the Event Generator bit field in the Channel n register (CHANNELN.EVGEN). For details on event
generation, refer to the corresponding module chapter. The channel event generator is selected by
the Event Generator bit group in the Channel register (CHANNELN.EVGEN). By default, the channels
are not connected to any event generators (ie, CHANNELNn.EVGEN = 0)

28.5.2.6 Channel Path
There are different ways to propagate the event from an event generator;
+ Asynchronous path
* Resynchronized path

The path is decided by writing to the Path Selection bit group of the Channel register
(CHANNELN.PATH).

Asynchronous Path

When using the asynchronous path, the events are propagated from the event generator

to the event user without intervention from the Event System. The GCLK for this channel
(GCLK_EVSYS_CHANNEL_n) is not mandatory, meaning that an event will be propagated to the user
without any clock latency.

When the asynchronous path is selected, the channel cannot generate any interrupts, and the
Channel x Status register (CHSTATUSX) is always zero. The edge detection is not required and must
be disabled by software. Each peripheral event user has to select which event edge must trigger
internal actions. For further details, refer to each peripheral chapter description.

Resynchronized Path

The resynchronized path are used when the event generator and the event channel do not share the
same generator for the generic clock. When the resynchronized path is used, resynchronization of
the event from the event generator is done in the channel.

When the resynchronized path is used, the channel is able to generate interrupts. The channel
status bits in the Channel Status register (CHSTATUS) are also updated and available for use.
28.5.2.7 Edge Detection

When synchronous or resynchronized paths are used, edge detection must be enabled. The event
system can execute edge detection in three different ways:

+ Generate an event only on the rising edge
+ Generate an event only on the falling edge
+ Generate an event on rising and falling edges.

Edge detection is selected by writing to the Edge Selection bit group of the Channel register
(CHANNELN.EDGSEL).

556

@ MICROCHIP

28.5.2.8 Event Latency
The latency from event generator to event user depends on the channel's configuration:

+ Asynchronous Path: The maximum routing latency of an external event is related to the internal

signal routing and it is device dependent.

+ Resynchronized Path: The maximum routing latency of an external event is three
GCLK_EVSYS_CHANNEL_n clock cycles.

The maximum propagation latency of a user event to the peripheral clock core domain is three
peripheral clock cycles.

The event generators, event channel and event user clocks ratio must be selected in relation with
the internal event latency constraints. Events propagation or event actions in peripherals may be
lost if the clock setup violates the internal latencies.

28.5.2.9 The Overrun Channel n Interrupt

The Overrun Channel n Interrupt flag in the Interrupt Flag Status and Clear register (INTFLAGN.OVR)

will be set, and the optional interrupt will be generated in the following cases:

+ One or more event users on channel n is not ready when there is a new event

* Anevent occurs when the previous event on channel m has not been handled by all event users

connected to that channel

The flag will only be set when using resynchronized paths. In the case of asynchronous path, the
INTFLAGN.OVR is always read as zero.

28.5.2.10 The Event Detected Channel n Interrupt

The Event Detected Channel n Interrupt flag in the Interrupt Flag Status and Clear register
(INTFLAGN.EVD) is set when an event coming from the event generator configured on channel n
is detected.

The flag will only be set when using a resynchronized path. In the case of an asynchronous path, the

INTFLAGN.EVD is always zero.
28.5.2.11 Channel Status

The Channel Status register (CHSTATUS) shows the status of the channels when using a synchronous

or resynchronized path. There are two different status bits in CHSTATUS for each of the available
channels:

+ The CHSTATUSN.BUSYCH bit will be set when an event on the corresponding channel n has not
been handled by all event users connected to that channel.
+ The CHSTATUSN.RDYUSR bit will be set when all event users connected to the corresponding
channel are ready to handle incoming events on that channel.
28.5.2.12 Software Event
A software event can be initiated on a channel by writing a '1' to the Software Event bit in
the Channel register (SWEVT.CHANNELN). Then the software event can be serviced as any event
generator; i.e., when a bit is set to ‘1, the corresponding event will be generated on the respective
channel.
28.5.2.13 Interrupt Status and Interrupts Arbitration
The Interrupt Status register stores all channels with pending interrupts, as shown below.

@ MICROCHIP

557

Figure 28-2. Interrupt Status Register

INTSTATUS

CHINTFLAG31.0VR
CHINTENSET31.0VR

CHINTFLAG31.EVD
CHINTENSET31.EVD

CHINTFLAG0.OVR
CHINTENSET0.0VR

CHINTFLAGO.EVD
CHINTENSETO0.EVD

The Event System can arbitrate between all channels with pending interrupts. The arbiter can be
configured to prioritize statically or dynamically the incoming events. The priority is evaluated each
time a new channel has an interrupt pending, or an interrupt has been cleared. The Channel
Pending Interrupt register (INTPEND) will provide the channel number with the highest interrupt
priority, and the corresponding channel interrupt flags and status bits.

By default, static arbitration is enabled (PRICTRL.RRENX is '0'), the arbiter will prioritize a low channel
number over a high channel number as shown below. When using the status scheme, there is a risk
of high channel numbers never being granted access by the arbiter. This can be avoided using a
dynamic arbitration scheme.

. 558
@ MICROCHIP

Figure 28-3. Static Priority

Lowest Channel Channel 0
Channel x

Channel x+1
Highest Channel Channel N

Highest Priority

A

Lowest Priority

The dynamic arbitration scheme available in the Event System is round-robin. Round-robin
arbitration is enabled by writing PRICTRL.RREN to one. With the round-robin scheme, the channel
number of the last channel being granted access will have the lowest priority the next time the
arbiter has to grant access to a channel, as shown below. The channel number of the last channel
being granted access, will be stored in the Channel Priority Number bit group in the Priority Control

register (PRICTRL.PRI).

@ MICROCHIP

559

Figure 28-4. Round-Robin Scheduling

Channel x last acknowledge request Channel (x+1) last acknowledge request
Channel 0 Channel 0
Channel x Lowest Priority Channel x
Channel x+1 Highest Priority Channel x+1 Lowest Priority
Channel x+2 Highest Priority
Channel N Channel N

The Channel Pending Interrupt register (INTPEND) also offers the possibility to indirectly clear the
interrupt flags of a specific channel. Writing a flag to one in this register, will clear the corresponding
interrupt flag of the channel specified by the INTPEND.ID bits.

28.5.3 Interrupts
The EVSYS has the following interrupt sources for each channel:

* Overrun Channel ninterrupt (OVR)
+ Event Detected Channel n interrupt (EVD)

These interrupts events are asynchronous wake-up sources.

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the corresponding
Channel n Interrupt Flag Status and Clear (CHINTFLAG) register is set when the interrupt condition
occurs.

Note: Interrupts must be globally enabled to allow the generation of interrupt requests.

Each interrupt can be individually enabled by writing a '1' to the corresponding bit in the Channel n
Interrupt Enable Set (CHINTENSET) register, and disabled by writing a '1' to the corresponding bit in
the Channel n Interrupt Enable Clear (CHINTENCLR) register. An interrupt request is generated when
the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains
active until the interrupt flag is cleared, the interrupt is disabled or the Event System is reset. All
interrupt requests are ORed together on system level to generate one combined interrupt request
to the NVIC,

The user must read the Channel Interrupt Status (INTSTATUS) register to identify the channels with
pending interrupts, and must read the Channel n Interrupt Flag Status and Clear (CHINTFLAG)
register to determine which interrupt condition is present for the corresponding channel. It is

also possible to read the Interrupt Pending register (INTPEND), which provides the highest priority
channel with pending interrupt and the respective interrupt flags.

28.5.4 Sleep Mode Operation
The Event System can generate interrupts to wake up the device from Idle or Standby mode.

To be able to run in standby, the run in Standby bit in the Channel register (CHANNELn.RUNSTDBY)
must be set to '1'. When the Generic Clock On Demand bit in the Channel register

560

@ MICROCHIP

(CHANNELN.ONDEMAND) is set to '1' and the event generator is detected, the event channel will
request its clock (GCLK_EVSYS_CHANNEL_n). The event latency for a resynchronized channel path
will increase by two GCLK_EVSYS_CHANNEL_n clock (that is., up to five GCLK_EVSYS_CHANNEL_n

clock cycles).

A channel will behave differently in different sleep modes regarding to CHANNELN.RUNSTDBY and

CHANNELN.ONDEMAND:

Table 28-1. Event Channel Sleep Behavior

CHANNELN.PATH CHANNELN. CHANNELN. Sleep Behavior
ONDEMAND RUNSTDBY

ASYNC

SYNC/RESYNC
SYNC/RESYNC
SYNC/RESYNC

SYNC/RESYNC

Only run in Idle mode if an event must be propagated.
Disabled in Standby mode.

N/A. Works only in Active mode.
Run in both Idle and Standby modes.

Only run in Idle mode if an event must be propagated.
Disabled in Standby mode. Two GCLK_EVSYS_n latency
added in RESYNC path before the event is propagated
internally.

Run in both Idle and Standby modes. Two
GCLK_EVSYS_n latency added in RESYNC path before
the event is propagated internally.

Note: The ONDEMAND and RUNSTDBY bits have no effect for channels when asynchronous path is

selected.

@ MICROCHIP

561

28.6

0x00 CTRLA
0x01

Reserved
0x03
0x04 SWEVT
0x08 PRICTRL
0x09

Reserved
OxOF
0x10 INTPEND
0x12

Reserved
0x13
0x14 INTSTATUS
0x18 BUSYCH
0x1C READYUSR
0x20 CHANNELO
0x24 CHINTENCLRO
0x25 CHINTENSETO
0x26 CHINTFLAGO
0x27 CHSTATUSNO
0x28 CHANNEL1
0x2C CHINTENCLR1
0x2D CHINTENSET1
0x2E CHINTFLAG1
Ox2F CHSTATUSN1
0x30 CHANNEL2
0x34 CHINTENCLR2
0x35 CHINTENSET2
0x36 CHINTFLAG2
0x37 CHSTATUSN2
0x38 CHANNEL3
0x3C CHINTENCLR3

0x3D CHINTENSET3

@ MICROCHIP

7:0

15:8
23:16
31:24

7:0

7:0
15:8

7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
7:0
7:0
7:0
7:0
15:8
23:16
31:24
7:0
7:0
7:0
7:0
7:0
15:8
23:16
31:24
7:0
7:0
7:0
7:0
7:0
15:8
23:16
31:24
7:0
7:0

Register Summary

Coffset | Name [Bitpos| 7| 6 | 5 | 4 | 3 | 2 | 1 | o
7:0

CHANNEL7 = CHANNEL6 = CHANNEL5 = CHANNEL4 CHANNEL3
CHANNEL15 CHANNEL14 CHANNEL13 CHANNEL12 CHANNEL11

CHANNEL2
CHANNEL10 CHANNELS

CHANNEL1

SWRST

CHANNELO
CHANNELS

CHANNEL23 CHANNEL22 CHANNEL21 CHANNEL20 CHANNEL19 CHANNEL18 CHANNEL17 CHANNEL16
CHANNEL31 CHANNEL30 CHANNEL29 CHANNEL28 CHANNEL27 CHANNEL26 CHANNEL25 CHANNEL24

ID[4:0]

RREN
BUSY READY
CHINT7 CHINT6 CHINTS CHINT4 CHINT3
CHINT11
BUSYCH7 BUSYCH6 BUSYCH5 BUSYCH4 BUSYCH3
BUSYCH11

READYUSR7 READYUSR6 READYUSR5 READYUSR4 READYUSR3

PRI[4:0]

CHINT2
CHINT10

BUSYCH2
BUSYCH10

READYUSR2 READYUSR1

EVD OVR
CHINT1 CHINTO
CHINT9 CHINT8

BUSYCH1 BUSYCHO
BUSYCH9 BUSYCHS8

READYUSRO

READYUSR11 READYUSR10 READYUSR9 READYUSRS8

EVGEN[7:0]

ONDEMAND = RUNSTDBY EDGSEL[1:0]
EVGEN[7:0]

ONDEMAND = RUNSTDBY EDGSEL[1:0]
EVGEN[7:0]

ONDEMAND =~ RUNSTDBY EDGSEL[1:0]
EVGEN[7:0]

ONDEMAND RUNSTDBY EDGSEL[1:0]

PATHI[1:0]
EVD OVR
EVD OVR
EVD OVR
BUSYCH RDYUSR
PATHI[1:0]
EVD OVR
EVD OVR
EVD OVR
BUSYCH RDYUSR
PATHI[1:0]
EVD OVR
EVD OVR
EVD OVR
BUSYCH RDYUSR
PATHI[1:0]
EVD OVR
EVD OVR

562

........... continued

Corser | name |

0x3E CHINTFLAG3
O0x3F CHSTATUSN3
0x40 CHANNEL4
0x44 CHINTENCLR4
0x45 CHINTENSET4
0x46 CHINTFLAG4
0x47 CHSTATUSN4
0x48 CHANNELS
0x4C CHINTENCLRS
0x4D CHINTENSETS
0x4E CHINTFLAGS
Ox4F CHSTATUSN5
0x50 CHANNEL6
0x54 CHINTENCLR6
0x55 CHINTENSET6
0x56 CHINTFLAG6
0x57 CHSTATUSN6
0x58 CHANNEL7
0x5C CHINTENCLR7
0x5D CHINTENSET?7
Ox5E CHINTFLAG7
Ox5F CHSTATUSN7
0x60 CHANNELS
0x64 CHINTENCLR8
0x65 CHINTENSET8
0x66 CHINTFLAG8
0x67 CHSTATUSN8
0x68 CHANNEL9
0x6C CHINTENCLR9
0x6D CHINTENSET9
0x6E CHINTFLAGY9
Ox6F CHSTATUSN9
0x70 CHANNEL10
0x74 CHINTENCLR10
0x75 CHINTENSET10
0x76 CHINTFLAG10
0x77 CHSTATUSN10

@ MICROCHIP

I N N I S N S N
7:0 EVD OVR

7:0
7:0
15:8
23:16
31:24
7:0
7:0
7:0
7:0
7:0
15:8
23:16
31:24
7:0
7:0
7:0
7:0
7:0
15:8
23:16
31:24
7:0
7:0
7:0
7:0
7:0
15:8
23:16
31:24
7:0
7:0
7:0
7:0
7:0
15:8
23:16
31:24
7:0
7:0
7:0
7:0
7:0
15:8
23:16
31:24
7:0
7:0
7:0
7:0
7:0
15:8
23:16
31:24
7:0
7:0
7:0
7:0

EVGEN([7:0]
ONDEMAND = RUNSTDBY EDGSEL[1:0]
EVGEN([7:0]
ONDEMAND = RUNSTDBY EDGSEL[1:0]
EVGEN([7:0]
ONDEMAND = RUNSTDBY EDGSEL[1:0]
EVGENI[7:0]
ONDEMAND = RUNSTDBY EDGSEL[1:0]
EVGENI[7:0]
ONDEMAND = RUNSTDBY EDGSEL[1:0]
EVGENI[7:0]
ONDEMAND = RUNSTDBY EDGSEL[1:0]
EVGEN[7:0]

ONDEMAND = RUNSTDBY EDGSEL[1:0]

BUSYCH RDYUSR
PATH[1:0]
EVD OVR
EVD OVR
EVD OVR
BUSYCH RDYUSR
PATH[1:0]
EVD OVR
EVD OVR
EVD OVR
BUSYCH RDYUSR
PATH[1:0]
EVD OVR
EVD OVR
EVD OVR
BUSYCH RDYUSR
PATH[1:0]
EVD OVR
EVD OVR
EVD OVR
BUSYCH RDYUSR
PATH[1:0]
EVD OVR
EVD OVR
EVD OVR
BUSYCH RDYUSR
PATH[1:0]
EVD OVR
EVD OVR
EVD OVR
BUSYCH RDYUSR
PATH[1:0]
EVD OVR
EVD OVR
EVD OVR
BUSYCH RDYUSR

563

........... continued

I S T R

0x78

0x7C
0x7D
Ox7E
Ox7F

0x80
0x84
0x87
0x88
0x8C
Ox8F
0x90
0x94
0x97
0x98
0x9C
Ox9F
0xA0
0xA4
0xA7
0xA8
O0xAC
OXAF
0xB0
0xB4
0xB7

0xB8

@ MICROCHIP

CHANNEL11

CHINTENCLR11

CHINTENSET11

CHINTFLAG11

CHSTATUSN11

CHANNEL12

Reserved

CHANNEL13

Reserved

CHANNEL14

Reserved

CHANNEL15

Reserved

CHANNEL16

Reserved

CHANNEL17

Reserved

CHANNEL18

Reserved

CHANNEL19

15:8
23:16
31:24

7:0
7:0
7:0
7:0
7:0

15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

RUNSTDBY

RUNSTDBY

RUNSTDBY

RUNSTDBY

RUNSTDBY

RUNSTDBY

RUNSTDBY

RUNSTDBY

RUNSTDBY

EVGEN[7:0]

EVGEN[7:0]

EVGEN[7:0]

EVGEN[7:0]

EVGEN[7:0]

EVGEN[7:0]

EVGEN[7:0]

EVGEN[7:0]

EVGEN[7:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

PATH[1:0]

EVD
EVD
EVD

4 | 3 2 | 1 | 0

OVR
OVR
OVR

BUSYCH RDYUSR

PATH[1:0]

PATH[1:0]

PATH[1:0]

PATH[1:0]

PATH[1:0]

PATH[1:0]

PATH[1:0]

PATH[1:0]

564

........... continued

Cosec | wame Jmeron| 7 | 6 | s | 4 | 3 | 2 | 1 | o

0xBC
O0xBF
0xCO
0xC4
0xC7
0xC8
0xCC
OxCF
0xD0
0xD4
0xD7
0xD8
0xDC
OxDF
OxEOQ
OxE4
OxE7
OXE8
OxEC
OXEF
OxFO
OxF4
OxF7
OxF8

OxFC

OxFF

@ MICROCHIP

Reserved

CHANNEL20

Reserved

CHANNEL21

Reserved

CHANNEL22

Reserved

CHANNEL23

Reserved

CHANNEL24

Reserved

CHANNEL25

Reserved

CHANNEL26

Reserved

CHANNEL27

Reserved

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

RUNSTDBY

RUNSTDBY

RUNSTDBY

RUNSTDBY

RUNSTDBY

RUNSTDBY

RUNSTDBY

RUNSTDBY

EVGEN[7:0]

EVGEN[7:0]

EVGEN[7:0]

EVGEN[7:0]

EVGEN[7:0]

EVGENI[7:0]

EVGEN[7:0]

EVGEN[7:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

PATH[1:0]

PATH[1:0]

PATH[1:0]

PATH[1:0]

PATH[1:0]

PATH[1:0]

PATH[1:0]

PATH[1:0]

565

........... continued

I S T R

0x0100
0x0104
0x0107
0x0108

0x010C

0x010F
0x0110

0x0114

0x0117
0x0118

0x011C

0x011F
0x0120

0x0153

28.7

CHANNEL28

Reserved

CHANNEL29

Reserved

CHANNEL30

Reserved

CHANNEL31

Reserved

USERO

USER51

15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0

7:0

ONDEMAND

ONDEMAND

ONDEMAND

ONDEMAND

Register Description

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write

RUNSTDBY

RUNSTDBY

RUNSTDBY

RUNSTDBY

EVGEN[7:0]

EVGEN[7:0]

EVGEN[7:0]

EVGEN[7:0]

CHANNEL[7:0]

CHANNEL[7:0]

Protection" property in each individual register description.

For more details, see Register Access Protection and Peripheral Access Controller (PAC) from Related

Links.

Related Links

28.4.8. Register Access Protection
26. Peripheral Access Controller (PAC)

@ MICROCHIP

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

EDGSEL[1:0]

4 | 3 2 | 1 | 0

PATH[1:0]

PATH[1:0]

PATH[1:0]

PATH[1:0]

566

28.7.1 Control A

Name: CTRLA

Offset: 0x00

Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0

| | | | | SWRST |
Access W
Reset 0

Bit 0 - SWRST Software Reset
Writing '0' to this bit has no effect.
Writing '1' to this bit resets all registers in the EVSYS to their initial state.
Note: Before applying a Software Reset it is recommended to disable the event generators.

567

@ MICROCHIP

28.7.2 Software Event

Name: SWEVT

Offset: 0x04

Reset: 0x00000000
Property: PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
| CHANNEL31 | CHANNEL30 | CHANNEL29 | CHANNEL28 | CHANNEL27 | CHANNEL26 | CHANNEL25 | CHANNEL24 |
Access W W W W W W W W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| CHANNEL23 | CHANNEL22 | CHANNEL21 | CHANNEL20 | CHANNEL19 | CHANNEL18 | CHANNEL17 | CHANNEL16 |
Access W W W W W W W w
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
CHANNEL15 | CHANNEL14 | CHANNEL13 | CHANNEL12 | CHANNEL11 | CHANNEL10 | CHANNEL9 | CHANNELB
Access W W W W W w W w
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
CHANNEL7 | CHANNEL6 | CHANNEL5 | CHANNEL4 [CHANNEL3 | CHANNEL2 | CHANNELT | CHANNELO
Access W W W W W W W
Reset 0 0 0 0 0 0 0 0

Bits 0,1, 2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 -
CHANNELX Channel x Software Selection [x=0..7]

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will trigger a software event for channel x.

These bits always return '0' when read.

568

@ MICROCHIP

28.7.3 Priority Control

Name: PRICTRL

Offset: 0x08

Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| RREN | | | PRI[4:0] |
Access RW RW RW RW RW RW
Reset 0 0 0 0 0 0

Bit 7 - RREN Round-Robin Scheduling Enable
For details on scheduling schemes, refer to Interrupt Status and Interrupts Arbitration

Value Description

0 Static scheduling scheme for channels with level priority
1 Round-robin scheduling scheme for channels with level priority

Bits 4:0 - PRI[4:0] Channel Priority Number
When round-robin arbitration is enabled (PRICTRL.RREN=1) for priority level, this register holds the
channel number of the last EVSYS channel being granted access as the active channel with priority
level. The value of this bit group is updated each time the INTPEND or any of CHINTFLAG registers
are written.
When static arbitration is enabled (PRICTRL.RREN=0) for priority level, and the value of this bit group
is nonzero, it will not affect the static priority scheme.
This bit group is not reset when round-robin scheduling gets disabled (PRICTRL.RREN written to
zero).

569

@ MICROCHIP

28.7.4 Channel Pending Interrupt

Name: INTPEND
Offset: 0x10
Reset: 0x4000

An interrupt that handles several channels must consult the INTPEND register to find out which
channel number has priority (ignoring/filtering each channel that has its own interrupt line). An

interrupt dedicated to only one channel must not use the INTPEND register.

Bit 15 14 13 12 11 10 9 8
| BUSY | READY | | | | | EVD OVR
Access R R RW RW

Reset 0 1 0 0

Bit 7 6 5 4 3 2 1 0

| | | | ID[4:0]

Access RW RW RW RW RW

Reset 0 0 0 0 0

Bit 15 - BUSY Busy

This bit is read '1' when the event on a channel selected by Channel ID field (ID) has not been

handled by all the event users connected to this channel.

Bit 14 - READY Ready

This bit is read '1' when all event users connected to the channel selected by Channel ID field (ID) are

ready to handle incoming events on this channel.

Bit 9 - EVD Channel Event Detected

This flag is set on the next CLK_EVSYS_APB cycle when an event is being propagated through the
channel, and an interrupt request will be generated if CHINTENCLR/SET.EVD is '1".

When the event channel path is asynchronous, the EVD bit will not be set.
Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear it. It will also clear the corresponding flag in the Channel n

Interrupt Flag Status and Clear register (CHINTFLAGN) of this peripheral, where n is determined

by the Channel ID bit field (ID) in this register.

Bit 8 - OVR Channel Overrun

This flag is set on the next CLK_EVSYS cycle after an overrun channel condition occurs, and an

interrupt request will be generated if CHINTENCLR/SET.OVRx is '1".
There are two possible overrun channel conditions:

+ One or more of the event users on channel selected by Channel ID field (ID) are not ready when a

new event occurs

+ An event happens when the previous event on channel selected by Channel ID field (ID) has not

yet been handled by all event users

When the event channel path is asynchronous, the OVR interrupt flag will not be set.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear it. It will also clear the corresponding flag in the Channel n

Interrupt Flag Status and Clear register (CHINTFLAGN) of this peripheral, where n is determined

by the Channel ID bit field (ID) in this register.

Bits 4:0 - ID[4:0] Channel ID
These bits store the channel number of the highest priority.

@ MICROCHIP

570

When the bits are written, indirect access to the corresponding Channel Interrupt Flag register is
enabled.

571

@ MICROCHIP

28.7.5

Interrupt Status

Name: INTSTATUS
Offset: 0x14
Reset: 0x00000000
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
| CHINT11 | CHINT10 | CHINT9 [CHINT8 |
Access R R R R
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
CHINT? CHINT®6 CHINTS CHINT4 CHINT3 CHINTZ2 CHINT1 CHINTO
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 0,1, 2,3,4,5,6,7,8,9, 10, 11 - CHINTx Channel x Pending Interrupt
This bit is set when Channel x has a pending interrupt.

This bit is cleared when the corresponding Channel x interrupts are disabled, or the source interrupt

sources are cleared.

@ MICROCHIP

572

28.7.6 Busy Channels

Name: BUSYCH
Offset: 0x18
Reset: 0x00000000
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | BUSYCH11 | BUSYCH10 | BUSYCH9 | BUSYCHS |
Access R R R R
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
BUSYCH7 BUSYCH6 BUSYCH5 BUSYCH4 BUSYCH3 BUSYCH2 BUSYCH1 BUSYCHO
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits0,1,2,3,4,5,6,7,8,9, 10, 11 - BUSYCHx Busy Channel x
This bit is set if an event occurs on channel x has not been handled by all event users connected to
channel x.
This bit is cleared when channel x is idle.
When the event channel x path is asynchronous, this bit is always read '0'.

573

@ MICROCHIP

28.7.7 Ready Users

Name: READYUSR
Offset: 0x1C
Reset: M1I1111111M
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | |[READYUSR11|READYUSR10| READYUSR9 | READYUSRS |
Access R R R R
Reset 1 1 1 1
Bit 7 6 5 4 3 2 1 0
READYUSR7 | READYUSR6 | READYUSR5 | READYUSR4 | READYUSR3 | READYUSR2 | READYUSRT | READYUSRO
Access R R R R R R R R
Reset 1 1 1 1 1 1 1 1

Bits0,1,2,3,4,5,6,7,8,9,10, 11 - READYUSRn Ready User for Channel n
This bit is set when all event users connected to channel n are ready to handle incoming events on
channel n.

This bit is cleared when at least one of the event users connected to the channel is not ready.
When the event channel n path is asynchronous, this bit is always read zero.

574

@ MICROCHIP

28.7.8 Channel n Control

Name: CHANNEL

Offset: 0x20 + n*0x08 [n=0..31]

Reset: 0x00008000

Property: PAC Write-Protection, Mix-Secure

This register allows the user to configure channel n. To write to this register, do a single, 32-bit write
of all the configuration data.

Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| ONDEMAND | RUNSTDBY | | | EDGSEL[1:0] | PATH[1:0] |
Access RW RW RW RW RW RW
Reset 1 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
EVGEN[7:0]
Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 0

Bit 15 - ONDEMAND Generic Clock On Demand

0 Generic clock for a channel is always on, if the channel is configured and generic clock source is enabled.
1 Generic clock is requested on demand while an event is handled

Bit 14 - RUNSTDBY Run in Standby
This bit is used to define the behavior during standby sleep mode.

Value Description

0 The channel is disabled in standby sleep mode.
1 The channel is not stopped in standby sleep mode and depends on the CHANNEL.ONDEMAND bit.

Bits 11:10 - EDGSEL[1:0] Edge Detection Selection
These bits set the type of edge detection to be used on the channel.
These bits must be written to zero when using the asynchronous path.

Value Name Description

0x0 NO_EVT_OUTPUT No event output when using the resynchronized path

0x1 RISING_EDGE Event detection only on the rising edge of the signal from the event generator
0x2 FALLING_EDGE Event detection only on the falling edge of the signal from the event generator
0x3 BOTH_EDGES Event detection on rising and falling edges of the signal from the event generator

Bits 9:8 - PATH[1:0] Path Selection
These bits are used to choose which path will be used by the selected channel.
Note: The path choice can be limited by the channel source (see USERm from Related Links).

@ MICROCHIP

575

Important: Only EVSYS channel 0 to 3 can be configured as synchronous or
resynchronized.

Value Name

0x1 RESYNCHRONIZED
0x2 ASYNCHRONOUS
Other -

Bits 7:0 - EVGEN[7:0] Event Generator Selection

Description
Resynchronized path
Asynchronous path
Reserved

These bits are used to choose the event generator to connect to the selected channel.

Table 28-2. Event Generator Selection

Voo Thame —oeapion

0x00 - 0x07
0x08 - 0x0B
0x0C

0x0D

OxOE - 0x11
0x12 - 0x15
0x16

0x17

0x18

0x19
Ox1A-Ox1F
0x20

0x21

0x22

0x23 - 0x28
0x29

0x2A

0x2B

0x2C - Ox2D
Ox2E
0x2F-0x30
0x31

0x32 - 0x33
0x34

0x35 - 0x36
0x37

0x38 - 0x39
O0x3A

0x3B - 0x3C
0x3D - Ox3E
Ox3F

0x40

0x41 - 0x42
0x43

0x44

Related Links
28.7.13. USERm

@ MICROCHIP

RTC_PERx
RTC_CMPx
RTC_TAMPER
RTC_OVF
EIC_EXTINTX
DMAC_CHx
PAC_ACCERR
TCCO_OVF
TCCO_TRG
TCCO_CNT
TCCO_MCx
TCC1_OVF
TCC1_TRG
TCC1_CNT
TCC1_MCx
TCC2_OVF
TCC2_TRG
TCC2_CNT
TCC2_MCx
TCO_OVF
TCO_MCx
TC1_OVF
TC1_MCx
TC2_OVF
TC2_MCx
TC3_OVF
TC3_MCx
ADC_RESRDY
Not used
AC_COMPx
AC_WIN_O
TRNG_READY
CCL_LUTOUTx
ZB_TX_TS_ACTIVE
ZB_RX_TS_ACTIVE

RTC period x=0..7

RTC comparison x=0..3

RTC tamper detection

RTC Overflow

EIC external interrupt x=0..3
DMA channel x=0..3

PAC Acc. error

TCCO Overflow

TCCO Trigger Event

TCCO Counter

TCCO Match/Compare x=0..5
TCC1 Overflow

TCC1 Trigger Event

TCC1 Counter

TCC1 Match/Compare x=0..5
TCC2 Overflow

TCC2 Trigger Event

TCC2 Counter

TCC2 Match/Compare x=0..1
TCO Overflow

TCO Match/Compare x=0..1
TC1 Overflow

TC1 Match/Compare x=0..1
TC2 Overflow

TC2 Match/Compare x=0..1
TC3 Overflow

TC3 Match/Compare x=0..1
ADC End-Of-Scan Ready Interrupt
AC Comparator, x=0..1

ACO Window

TRNG ready

CCL LUTOUT x-0..1

Zigbee Transmit Packet Active time
Zigbee Receive Packet Active time

576

28.7.9 Channel n Interrupt Enable Clear

Name: CHINTENCLR

Offset: 0x24 + n*0x08 [n=0..11]
Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| | | | | B&D [OW |
Access RW RW
Reset 0 0

Bit 1 - EVD Channel Event Detected Interrupt Disable
Writing a ‘0" to this bit has no effect.

Writing a ‘1" to this bit will clear the Event Detected Channel Interrupt Enable bit, which disables the
Event Detected Channel interrupt.

Value Description
0 The Event Detected Channel interrupt is disabled.
1 The Event Detected Channel interrupt is enabled.

Bit 0 - OVR Channel Overrun Interrupt Disable
Writing a ‘0’ to this bit has no effect.

Writing a ‘1" to this bit will clear the Overrun Channel Interrupt Enable bit, which disables the
Overrun Channel interrupt.

Value Description
0 The Overrun Channel interrupt is disabled.
1 The Overrun Channel interrupt is enabled.

o 577
ﬁ\ MICROCHIP

28.7.10 Channel n Interrupt Enable Set

Name: CHINTENSET

Offset: 0x25 + n*0x08 [n=0..11]
Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| | | | | B&D [OW |
Access RW RW
Reset 0 0

Bit 1 - EVD Channel Event Detected Interrupt Enable
Writing a ‘0" to this bit has no effect.

Writing a ‘1" to this bit will set the Event Detected Channel Interrupt Enable bit, which enables the
Event Detected Channel interrupt.

Value Description
0 The Event Detected Channel interrupt is disabled.
1 The Event Detected Channel interrupt is enabled.

Bit 0 - OVR Channel Overrun Interrupt Enable
Writing a ‘0’ to this bit has no effect.

Writing a ‘1" to this bit will set the Overrun Channel Interrupt Enable bit, which enables the Overrun
Channel interrupt.

Value Description
0 The Overrun Channel interrupt is disabled.
1 The Overrun Channel interrupt is enabled.

o 578
ﬁ\ MICROCHIP

28.7.11 Channel n Interrupt Flag Status and Clear

Name: CHINTFLAG
Offset: 0x26 + n*0x08 [n=0..11]

Reset: 0x00
Bit 7 6 5 4 3 2 1 0
| | | | | B&D [OW |
Access RW RW
Reset 0 0

Bit 1 - EVD Channel Event Detected
This flag is set on the next CLK_EVSYS_APB cycle when an event is being propagated through the
channel, and an interrupt request will be generated if CHINTENCLR/SET.EVD is ‘1".
When the event channel path is asynchronous, the EVD interrupt flag will not be set.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1" to this bit will clear the Event Detected Channel interrupt flag.

Bit 0 - OVR Channel Overrun
This flag is set on the next CLK_EVSYS cycle after an overrun channel condition occurs, and an
interrupt request will be generated if CHINTENCLR/SET.OVR is ‘1".
There are two possible overrun channel conditions:

+ One or more of the event users on the channel are not ready when a new event occurs.

+ Anevent happens when the previous event on channel has not yet been handled by all event
users.

When the event channel path is asynchronous, the OVR interrupt flag will not be set.
Writing a ‘0" to this bit has no effect.
Writing a ‘1" to this bit will clear the Overrun Channel interrupt flag.

579

@ MICROCHIP

28.7.12 Channel n Status

Name: CHSTATUSN
Offset: 0x27 + n*0x08 [n=0..11]

Reset: 0x01
Bit 7 6 5 4 3 2 1 0
| | | | | BUSYCH | RDYUSR |
Access R R
Reset 0 0

Bit 1 - BUSYCH Busy Channel
This bit is cleared when channel is idle.
This bit is set if an event on channel has not been handled by all event users connected to channel.
When the event channel path is asynchronous, this bit is always read '0'.

Bit 0 - RDYUSR Ready User
This bit is cleared when at least one of the event users connected to the channel is not ready.
This bit is set when all event users connected to channel are ready to handle incoming events on the
channel.
When the event channel path is asynchronous, this bit is always read zero.

580

@ MICROCHIP

28.7.13 Event User m

Name: USERmM

Offset: 0x0120 + m*0x01 [m=0..51]
Reset: 0x0

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| CHANNEL([7:0] |
Access R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - CHANNEL[7:0] Channel Event Selection
These bits select channel n to connect to the event user m.
Note: A value x of this bit field selects channel n = x-1.

USERm UserMultiplerer PathTypel

RTC_TAMPER RTCTamper A 'S R
m=1.8 DMAC_CHO0..7 Channel0..7 S,R
m=9 CM4_TRACE_START CMd4trace start A S R
m=10 CM4_TRACE_STOP CMd4trace stop A S R
m=11 CM4_TRACE_TRIG CM4trace trigger A S R
m=12.13 TCCOEVO..1 TCCO EVx A S R
m=14..19 TCCOMCO..5 TCCO MCx A 'S R
m = 20..21 TCC1EVO..1 TCC1 EVx A S R
m = 22..27 TCC1MCO..5 TCC1 MCx A 'S R
m = 28..29 TCC2EVO0..1 TCC2 EVx A S R
m = 30..31 TCC2MCO..1 TCC2 MCx A 'S R
m = 32 TCO EVU TCO EVU A S R
m =33 TC1 EVU TC1 EVU A 'S R
m =34 TC2 EVU TC2 EVU A S R
m =35 TC3 EVU TC3 EVU A 'S R
m = 36..47 ADC_TRIGGERS5..16 ADC_TRIGGERX A
m = 48..49 AC_S0CO0..1 AC_SOCx A 'S R
m = 50..51 CCL_LUTINO..1 CCL_LUTINX A S R

1) A= Asynchronous path, S = Synchronous path, R = Resynchronized path

11 12 bits (default)
10 10 bits

01 8 bits

00 6 bits

581

@ MICROCHIP

29. Serial Communication Interface (SERCOM)

29.1 Overview
There are instances of the Serial Communication interface (SERCOM) peripheral.

A SERCOM can be configured to support a number of modes: I2C, SPI and USART. When an
instance of SERCOM is configured and enabled, all of the resources of that SERCOM instance will
be dedicated to the selected mode.

The SERCOM serial engine consists of a transmitter and receiver, baud-rate generator and address
matching functionality. It can use the internal generic clock or an external clock. Using an external
clock allows the SERCOM to be operated in all Sleep modes.

Note: Traditional Serial Communication Interface documentation uses the terminology “Master”
and “Slave”. The equivalent Microchip terminology used in this document is “Host” and “Client”,
respectively.

Note: SERCOMS3 (4th instance of SERCOM) is only supported using Peripheral Pin Select (PPS).

29.2 Features
+ Interface for Configuring into one of the following (selected by CTRLA.MODE[2:0]):
- Inter-Integrated Circuit (12C) two-wire serial interface
- System Management Bus (SMBus™) compatible
- Serial Peripheral Interface (SPI)
- Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
+ Single Transmit Buffer and Double Receive Buffer
* Baud-rate Generator
+ Address Match/mask Logic
« Operational in all Sleep modes with an External Clock Source
+ Can be used with DMA

See the Related Links for full feature lists of the interface configurations.

29.3 Block Diagram

Figure 29-1. SERCOM Block Diagram

SERCOM

Register Interface

Mode Specific Serial Engine

Baud Rate
Transmitter Generator

PADI3:0]
> >

Address
Match

Receiver

582

@ MICROCHIP

29.4 Signal Description
See the respective SERCOM mode chapters for details.

29.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

29.5.1 1/0 Lines
Using the SERCOM 1/0 lines requires the I/0 pins to be configured using the System Configuration
registers or PPS registers.

The SERCOM has four internal pads, PAD[3:0], and the signals from 12C, SPI and USART are routed
through these SERCOM pads through a multiplexer. The configuration of the multiplexer is available
from the different SERCOM modes. Refer to the mode specific chapters for additional information.

29.5.2 Power Management

The SERCOM can operate in any Sleep mode provided the selected clock source is running. SERCOM
interrupts can be configured to wake the device from sleep modes.

29.5.3 Clocks

The SERCOM uses two generic clocks: GCLK_SERCOMx_CORE and
GCLK_SERCOMx_SLOWGCLK_SERCOMx_SLOW. The core clock (GCLK_SERCOMx_CORE) is required to
clock the SERCOM while working as a host. The slow clock (GCLK_SERCOMx_SLOW) is only required
for certain functions. See specific mode chapters for details.

These clocks must be configured and enabled in the Clock and Reset Unit (CRU) registers before
using the SERCOM.

The generic clocks are asynchronous to the bus clock (PBx_CLK). Therefore, writing to certain
registers will require synchronization between the clock domains.

29.5.4 DMA

The DMA request lines are connected to the DMA Controller (DMAC). The DMAC must be configured
before the SERCOM DMA requests are used.

29.5.5 Interrupts

The interrupt request line is connected to the Interrupt Controller (NVIC). The NVIC must be
configured before the SERCOM interrupts are used.

29.5.6 Events
Not applicable.

29.5.7 Debug Operation

When the CPU is halted in Debug mode, this peripheral will continue normal operation. If the
peripheral is configured to require periodical service by the CPU through interrupts or similar,
improper operation or data loss may result during debugging. This peripheral can be forced to halt
operation during debugging - refer to the Debug Control (DBGCTRL) register for details.

29.5.8 Register Access Protection

Registers with write-access can be write-protected optionally by the Peripheral Access Controller
(PAC).

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

PAC write protection does not apply to accesses through an external debugger.

583

@ MICROCHIP

29.5.9 Analog Connections
Not applicable.

29.6 Functional Description

29.6.1 Principle of Operation

The basic structure of the SERCOM serial engine is shown in SERCOM Serial Engine. Labels in capital
letters are synchronous to the system clock and accessible by the CPU; labels in lowercase letters
can be configured to run on the GCLK_SERCOMx_CORE clock or an external clock.

Figure 29-2. SERCOM Serial Engine

Selectable
Internal Clk
(GCLK)

BAUD

Transmitter Address Match

TX DATA ADDR/ADDRMASK

v

%'
Baud Rate Generator
Ext Slk *{
1/-12- 116

v

v

TX Shift Register ‘

Baud Rate Generator

—
Receiver v
=} RX Shift Register ‘
v v
Equal
> Status RX Buffer
STATUS RX DATA

The transmitter consists of a single write buffer and a Shift register.

The receiver consists of a one-level (12C), or two-level (USART, SPI) receive buffer and a Shift register.
The baud-rate generator is capable of running on the GCLK_SERCOMx_CORE clock or an external

clock.

Address matching logic is included for SPI and 12C operation.

29.6.2 Basic Operation

29.6.2.1 Initialization

The SERCOM must be configured to the desired mode by writing the Operating Mode bits in the
Control A register (CTRLA.MODE) as shown in the table below.

Table 29-1. SERCOM Modes

0x0
0x1
0x2
0x3
0x4
0x5

@ MICROCHIP

USART with external clock
USART with internal clock
SPlin client operation

SPl in host operation

I2C client operation

I2C host operation

584

........... continued

0x6-0x7 Reserved

For further initialization information, see the respective SERCOM mode chapters:

29.6.2.2 Enabling, Disabling, and Resetting

This peripheral is enabled by writing '1' to the Enable bit in the Control A register (CTRLA.ENABLE),
and disabled by writing '0' to it.

Writing ‘1" to the Software Reset bit in the Control A register (CTRLA.SWRST) will reset all registers of
this peripheral to their initial states, except the DBGCTRL register, and the peripheral is disabled.

Refer to the CTRLA register description for details.
Related Links
30.8.1. CTRLA

29.6.2.3 Clock Generation — Baud-Rate Generator

The baud-rate generator, as shown in the following figure, generates internal clocks for
asynchronous and synchronous communication. The output frequency (fgaup) is determined by the
Baud register (BAUD) setting and the baud reference frequency (fi.f). The baud reference clock is the
serial engine clock, and it can be internal or external.

For asynchronous communication, the /16 (divide-by-16) output is used when transmitting, whereas
the /1 (divide-by-1) output is used while receiving.

For synchronous communication, the /2 (divide-by-2) output is used.

This functionality is automatically configured, depending on the selected operating mode.

Figure 29-3. Baud Rate Generator

Selectable

Internal Clk
(GCLK) Baud Rate Generator
fret
Ext Clk . Base) /8
7 e Period
CTRLA.MODEI0] n 12 /16

Tx Clk

CTRLA.MODE

Rx Clk

Clock
Recovery

The following table contains equations for the baud rate (in bits per second) and the BAUD register
value for each operating mode.

For asynchronous operation, there are two modes:
+ Arithmetic mode: the BAUD register value is 16 bits (0 to 65,535)

* Fractional mode: the BAUD register value is 13 bits, while the fractional adjustment is 3 bits. In this
mode the BAUD setting must be greater than or equal to 1.

For synchronous operation, the BAUD register value is 8 bits (0 to 255).

. 585
ﬁ\ MICROCHIP

Table 29-2. Baud Rate Equations

Operating Mode Baud Rate (Bits Per Second) BAUD Register Value Calculation

Asynchronous fref fref(BAUD /BAUD
Arithmetic fBAUD < g~ fpaup = g-(1 - §553¢) BAUD = 65536 (1-5-7¢
Asynchronous fref fref fref FP
Fractional fBAUD < —<— fBauD = SN S o -8
S s- (Bavp + &) Sfpavp 8
Synchronous fref fref fref
< = ‘'ref __Jref
fBAUD £ — fBAUD = 5 (Gaup + 1) 00 = T s aup

S- Number of samples per bit, which can be 16, 8, or 3.
The Asynchronous Fractional option is used for auto-baud detection.

The baud rate error is represented by the following formula:

Error = 1 — <ExpectedBaudRate>

ActualBaudRate

29.6.3 Additional Features

29.6.3.1 Address Match and Mask

The SERCOM address match and mask feature is capable of matching either one address, two
unique addresses, or a range of addresses with a mask, based on the mode selected. The match
uses seven or eight bits, depending on the mode.

29.6.3.1.1 Address With Mask

An address written to the Address bits in the Address register (ADDR.ADDR), and a mask written to
the Address Mask bits in the Address register (ADDR.ADDRMASK) will yield an address match. All
bits that are masked are not included in the match. Note that writing the ADDR.ADDRMASK to 'all
zeros' will match a single unique address, while writing ADDR.ADDRMASK to 'all ones' will result in all
addresses being accepted.

Figure 29-4. Address With Mask

i
rx shift register
29.6.3.1.2 Two Unique Addresses

The two addresses written to ADDR and ADDRMASK will cause a match.

. 586
ﬁ\ MICROCHIP

Figure 29-5. Two Unique Addresses

rx shift register { Match
29.6.3.1.3 Address Range

The range of addresses between and including ADDR.ADDR and ADDR.ADDRMASK will cause a
match. ADDR.ADDR and ADDR.ADDRMASK can be set to any two addresses, with ADDR.ADDR acting
as the upper limit and ADDR.ADDRMASK acting as the lower limit.

Figure 29-6. Address Range

29.6.4 DMA Operation

The available DMA interrupts and their depend on the operation mode of the SERCOM peripheral.
Refer to the Functional Description sections of the respective SERCOM mode.

29.6.5 Interrupts
Interrupt sources are mode specific. See the respective SERCOM mode chapters for details.
Each interrupt source has its own Interrupt flag.

The Interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG) will be set when the
Interrupt condition is met.

Each interrupt can be individually enabled by writing '1' to the corresponding bit in the Interrupt
Enable Set register (INTENSET), and disabled by writing '1' to the corresponding bit in the Interrupt
Enable Clear register (INTENCLR).

An interrupt request is generated when the Interrupt flag is set and the corresponding interrupt is
enabled. The interrupt request remains active until either the Interrupt flag is cleared, the interrupt
is disabled, or the SERCOM is reset. For details on clearing Interrupt flags, refer to the INTFLAG
register description.

The value of INTFLAG indicates which Interrupt condition occurred. The user must read the INTFLAG
register to determine which Interrupt condition is present.

Note: Interrupts must be globally enabled for interrupt requests to be generated.

Related Links
30.8.8. INTFLAG

29.6.6 Events
Not applicable.

29.6.7 Sleep Mode Operation

The peripheral can operate in any Sleep mode where the selected serial clock is running. This clock
can be external or generated by the internal baud-rate generator.

587

@ MICROCHIP

The SERCOM interrupts can be used to wake-up the device from Sleep modes. Refer to the different
SERCOM mode chapters for details.
29.6.8 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some
registers need to be synchronized when written or read.

Required write synchronization is denoted by the "Write-Synchronized" property in the register
description.

Required read synchronization is denoted by the "Read-Synchronized" property in the register
description.

. 588
@ MICROCHIP

30. SERCOM Synchronous and Asynchronous Receiver and Transmitter
(SERCOM USART)

30.1 Overview

The Universal Synchronous and Asynchronous Receiver and Transmitter (USART) is one of the
available modes in the Serial Communication Interface (SERCOM).

The USART uses the SERCOM transmitter and receiver (see USART Block Diagram in the Block Diagram
section from Related Links). Labels in uppercase letters are synchronous to PBx_CLK and accessible
for CPU. Labels in lowercase letters can be programmed to run on the internal generic clock or an
external clock.

The transmitter consists of a single write buffer, a Shift register, and control logic for different

frame formats. The write buffer supports data transmission without any delay between frames. The

receiver consists of a two-level receive buffer and a Shift register. Status information of the received

data is available for error checking. Data and clock recovery units ensure robust synchronization and
noise filtering during asynchronous data reception.

Note: Traditional Universal Synchronous and Asynchronous Receiver and Transmitter (USART)
documentation uses the terminology “Master” and “Slave”. The equivalent Microchip terminology
used in this document is “Commander” and “Responder”, respectively.

Related Links
30.3. Block Diagram

30.2 USART Features
+ Full-duplex Operation
+ Asynchronous (with Clock Reconstruction) or Synchronous Operation
+ Internal or External Clock source for Asynchronous and Synchronous Operation
+ Baud-rate Generator
+ Supports Serial Frames with 5, 6, 7, 8 or 9 Data bits and 1 or 2 Stop bits
+ 0Odd or Even Parity Generation and Parity Check
+ Selectable LSB- or MSB-first Data Transfer
+ Buffer Overflow and Frame Error Detection
+ Noise Filtering, Including False Start bit Detection and Digital Low-pass Filter
+ Collision Detection
+ (Can Operate in all Sleep modes
+ Operation at Speeds up to Half the System Clock for Internally Generated Clocks
« Operation at Speeds up to the System Clock for Externally Generated Clocks
« RTS and CTS Flow Control
+ IrDA Modulation and Demodulation up to 115.2 kbps
+ LIN Commander Support

« LIN Responder Support
- Auto-baud and break character detection

+ Start-of-frame detection
« Can work with DMA

589

@ MICROCHIP

30.3

30.4

30.5

30.5.1

30.5.2

Block Diagram

Figure 30-1. USART Block Diagram

| BAUD \ TX DATA
GCLK
(internal) *
'—{ Baud Rate Generator ‘
CTRLA.MODE n-/12 -/16
h J
———»| TXshittRegister || ™0

XCK

CTRLAMODE [—] RXShift Register || | R

Y
- Status Two-level RX Buffer
STATUS RX DATA

Signal Description

Table 30-1. SERCOM USART Signals

PADI[3:0] Digital I/0 General SERCOM pins

One signal can be mapped to one of several pins.

Product Dependencies
To use this peripheral, other parts of the system must be configured correctly, as described below.

1/0 Lines

Using the USART's I/0 lines requires the 1/0 pins to be configured using the System Configuration
registers or PPS registers.

When the SERCOM is used in USART mode, the SERCOM controls the direction and value of the I/0
pins according to the table below. If the receiver or transmitter is disabled, these pins can be used
for other purposes.

Table 30-2. USART Pin Configuration

XD Output
RxD Input
XCK Output or input

The combined configuration of PORT and the Transmit Data Pinout and Receive Data Pinout bit
fields in the Control A register (CTRLA.TXPO and CTRLA.RXPO, respectively) will define the physical
position of the USART signals in the above table.

Power Management

This peripheral can continue to operate in any Sleep mode where its source clock is running. The
interrupts can wake-up the device from Sleep modes.

@ MICROCHIP

590

30.5.3 Clocks

A generic clock (GCLK_SERCOMx_CORE) is required to clock the SERCOMx_CORE. This clock must be
configured and enabled in the CRU registers before using the SERCOMx_CORE. See Clock and Reset
(CRU) and Peripheral Module Disable Register (PMD) from Related Links.

This generic clock is asynchronous to the bus clock (PBx_CLK). Therefore, writing to certain registers
will require synchronization to the clock domains.

Related Links
20. Peripheral Module Disable Register (PMD)
13. Clock and Reset Unit (CRU)

30.5.4 DMA

The DMA request lines are connected to the DMA Controller (DMAC). To use DMA requests with
this peripheral, the DMAC must be configured first (see Direct Memory Access Controller (DMAC) from
Related Links).

Related Links
22. Direct Memory Access Controller (DMAC)

30.5.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. In order to use interrupt requests
of this peripheral, the NVIC must be configured first. See Nested Vector Interrupt Controller (NVIC) from
Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)
30.8.8. INTFLAG

30.5.6 Events
Not applicable.

30.5.7 Debug Operation

When the CPU is halted in Debug mode, this peripheral will continue normal operation. If the
peripheral is configured to require periodical service by the CPU through interrupts or similar,
improper operation or data loss may result during debugging. This peripheral can be forced to halt
operation during debugging - refer to the Debug Control (DBGCTRL) register for details.

Related Links
30.8.12. DBGCTRL

30.5.8 Register Access Protection

Registers with write access can be write-protected optionally by the Peripheral Access Controller
(PAQ).

PAC write protection is not available for the following registers:

+ Interrupt Flag Clear and Status register (INTFLAG)
+ Status register (STATUS)
+ Data register (DATA)

Optional PAC write protection is denoted by the "PAC Write-Protection" property in each individual
register description.

Write-protection does not apply to accesses through an external debugger.

591

@ MICROCHIP

30.5.9 Analog Connections
Not applicable.

30.6 Functional Description

30.6.1 Principle of Operation
The USART uses the following lines for data transfer:
+ RxD for receiving
« TxD for transmitting
+ XCK for the transmission clock in synchronous operation
USART data transfer is frame based. A serial frame consists of:
« 1 startbit
* From 5 to 9 data bits (MSB or LSB first)
+ No, even or odd parity bit
« 1 or 2 stop bits

A frame starts with the Start bit followed by one character of Data bits. If enabled, the parity bit is
inserted after the Data bits and before the first Stop bit. After the stop bit(s) of a frame, either the
next frame can follow immediately, or the communication line can return to the Idle (high) state. The
figure below illustrates the possible frame formats. Values inside brackets ([x]) denote optional bits.

Figure 30-2. Frame Formats

“ Frame

(IDLE) St 0 1 2 3 4 [5] [6] [71 8] Pl / Sp1 [Sp2] [SYIDL]
St Start bit. Signal is always low.
n, [n] Data bits. 0 to [5..9]
[P] Parity bit. Either odd or even.
Sp, [Sp] Stop bit. Signal is always high.

IDLE No frame is transferred on the communication line. Signal is always high in this state.

30.6.2 Basic Operation

30.6.2.1 Initialization

The following registers are enable-protected, meaning they can only be written when the USART is
disabled (CTRL.ENABLE=0):

« Control A register (CTRLA), except the Enable (ENABLE) and Software Reset (SWRST) bits.
+ Control B register (CTRLB), except the Receiver Enable (RXEN) and Transmitter Enable (TXEN) bits.

+ Baud register (BAUD)
When the USART is enabled or is being enabled (CTRLA.ENABLE=1), any writing attempt to these
registers will be discarded. If the peripheral is being disabled, writing to these registers will be

executed after disabling is completed. Enable-protection is denoted by the "Enable-Protection”
property in the register description.

Before the USART is enabled, it must be configured by these steps:

592

@ MICROCHIP

1. Select either external (0x0) or internal clock (0x1) by writing the Operating Mode value in the
CTRLA register (CTRLA.MODE).

2. Select either Asynchronous (0) or Synchronous (1) Communication mode by writing the
Communication Mode bit in the CTRLA register (CTRLA.CMODE).

3. Select pin for receive data by writing the Receive Data Pinout value in the CTRLA register
(CTRLA.RXPO).

4. Select pads for the transmitter and external clock by writing the Transmit Data Pinout bit in the
CTRLA register (CTRLA.TXPO).

Configure the Character Size field in the CTRLB register (CTRLB.CHSIZE) for character size.

Set the Data Order bit in the CTRLA register (CTRLA.DORD) to determine MSB- or LSB-first data
transmission.

7. To use parity mode:

a. Enable Parity mode by writing 0x1 to the Frame Format field in the CTRLA register
(CTRLA.FORM).

b. Configure the Parity Mode bit in the CTRLB register (CTRLB.PMODE) for even or odd parity.

8. Configure the number of stop bits in the Stop Bit Mode bit in the CTRLB register
(CTRLB.SBMODE).

9. When using an internal clock, write the Baud register (BAUD) to generate the desired baud rate.
10. Enable the transmitter and receiver by writing '1' to the Receiver Enable and Transmitter Enable
bits in the CTRLB register (CTRLB.RXEN and CTRLB.TXEN).

30.6.2.2 Enabling, Disabling, and Resetting
This peripheral is enabled by writing '1' to the Enable bit in the Control A register (CTRLA.ENABLE),
and disabled by writing '0' to it.

Writing 1" to the Software Reset bit in the Control A register (CTRLA.SWRST) will reset all registers of
this peripheral to their initial states, except the DBGCTRL register, and the peripheral is disabled.

Refer to the CTRLA register description for details.

Related Links
30.8.1. CTRLA

30.6.2.3 Clock Generation and Selection

For both Synchronous and Asynchronous modes, the clock used for shifting and sampling data can
be generated internally by the SERCOM baud-rate generator or supplied externally through the XCK
line.

The Synchronous mode is selected by writing a ‘1’ to the Communication Mode bit in the Control A
register (CTRLA.CMODE), the Asynchronous mode is selected by writing ‘0’ to CTRLA.CMODE.

The internal clock source is selected by writing ‘1’ to the Operation Mode bit field in the Control A
register (CTRLA.MODE), the external clock source is selected by writing ‘0’ to CTRLA.MODE.

The SERCOM baud-rate generator is configured as in the following figure.
In Asynchronous mode (CTRLA.CMODE=0), the 16-bit Baud register value is used.

In Synchronous mode (CTRLA.CMODE=1), the eight LSBs of the Baud register are used. For more
details on configuring the baud rate (see Clock Generation - Baud-Rate Generator from Related Links).

593

@ MICROCHIP

Figure 30-3. Clock Generation

XCKinternal Clk
(GCLK) 1 Baud Rate Generator
Base
2
0 Period > w8
CTRLA.MODE[0] " 2 16
I T—
(1J Tx Clk
1 CTRLA.CMODE
xex [Y e N —
1] Rx Clk
0

Related Links
29.6.2.3. Clock Generation - Baud-Rate Generator

30.6.2.3.1 Synchronous Clock Operation
In Synchronous mode, the CTRLA.MODE bit field determines whether the transmission clock line
(XCK) serves either as input or output. The dependency between clock edges, data sampling, and
data change is the same for internal and external clocks. Data input on the RxD pin is sampled at the
opposite XCK clock edge when data is driven on the TxD pin.

The Clock Polarity bit in the Control A register (CTRLA.CPOL) selects which XCK clock edge is used for
RxD sampling, and which is used for TxD change:

When CTRLA.CPOL is '0', the data will be changed on the rising edge of XCK, and sampled on the
falling edge of XCK.

When CTRLA.CPOL is '1', the data will be changed on the falling edge of XCK, and sampled on the
rising edge of XCK.

Figure 30-4. Synchronous Mode XCK Timing
Change

XCK
CTRLA.CPOL=1

RxD / TxD -~
Change bSample

XCK
CTRLA.CPOL=0

RxD / TxD ~
+;Sample

When the clock is provided through XCK (CTRLA.MODE=0x0), the Shift registers operate directly on
the XCK clock. This means that XCK is not synchronized with the system clock and, therefore, can
operate at frequencies up to the system frequency.

@ MICROCHIP

594

30.6.2.4 Data Register
The USART Transmit Data register (TxDATA) and USART Receive Data register (RXDATA) share the
same |/O address, referred to as the Data register (DATA). Writing the DATA register will update the
TxDATA register. Reading the DATA register will return the contents of the RxDATA register.

30.6.2.5 Data Transmission
Data transmission is initiated by writing the data to be sent into the DATA register. Then, the data in
TxDATA will be moved to the Shift register when the Shift register is empty and ready to send a new
frame. After the Shift register is loaded with data, the data frame will be transmitted.

When the entire data frame including Stop bit(s) has been transmitted and no new data was
written to DATA, the Transmit Complete Interrupt flag in the Interrupt Flag Status and Clear register
(INTFLAG.TXC) will be set, and the optional interrupt will be generated.

The Data Register Empty flag in the Interrupt Flag Status and Clear register (INTFLAG.DRE) indicates
that the register is empty and ready for new data. The DATA register must be written to when
INTFLAG.DRE is set.

Disabling the Transmitter

The transmitter is disabled by writing ‘0’ to the Transmitter Enable bit in the CTRLB register
(CTRLB.TXEN).

Disabling the transmitter will complete only after any ongoing and pending transmissions are
completed, in other words, there is no data in the transmit shift register and TxDATA to transmit.

30.6.2.5.1 Disabling the Transmitter
The transmitter is disabled by writing '0' to the Transmitter Enable bit in the CTRLB register
(CTRLB.TXEN).

Disabling the transmitter will complete only after any ongoing and pending transmissions are
completed, that is, there is no data in the Transmit Shift register and TxDATA to transmit.

30.6.2.6 Data Reception
The receiver accepts data when a valid Start bit is detected. Each bit following the Start bit will be
sampled according to the baud rate or XCK clock, and shifted into the receive Shift register until the
first Stop bit of a frame is received. The second Stop bit will be ignored by the receiver.

When the first Stop bit is received and a complete serial frame is present in the Receive Shift
register, the contents of the Shift register will be moved into the two-level receive buffer. Then, the
Receive Complete Interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.RXC) will be
set, and the optional interrupt will be generated.

The received data can be read from the DATA register when the Receive Complete Interrupt flag is
set.

Disabling the Receiver

Writing '0' to the Receiver Enable bit in the CTRLB register (CTRLB.RXEN) will disable the receiver,
flush the two-level receive buffer, and data from ongoing receptions will be lost.

Error Bits

The USART receiver has three error bits in the Status (STATUS) register: Frame Error (FERR), Buffer
Overflow (BUFOVF), and Parity Error (PERR). Once an error happens, the corresponding error bit will
be set until it is cleared by writing “1’ to it. These bits are also cleared automatically when the receiver
is disabled.

There are two methods for buffer overflow notification, selected by the Immediate Buffer Overflow
Notification bit in the Control A register (CTRLA.IBON):

When CTRLA.IBON=1, STATUS.BUFOVF is raised immediately upon buffer overflow. Software can
then empty the receive FIFO by reading RXDATA, until the receiver complete interrupt flag
(INTFLAG.RXC) is cleared.

595

@ MICROCHIP

When CTRLA.IBON=0, the buffer overflow condition is attending data through the receive FIFO. After
the received data is read, STATUS.BUFOVF will be set along with INTFLAG.RXC.

Asynchronous Data Reception

The USART includes a clock recovery and data recovery unit for handling asynchronous data
reception.

The clock recovery logic can synchronize the incoming asynchronous serial frames at the RxD pin to
the internally generated baud-rate clock.

The data recovery logic samples and applies a low-pass filter to each incoming bit, thereby
improving the noise immunity of the receiver.

Asynchronous Operational Range

The operational range of the asynchronous reception depends on the accuracy of the internal
baud-rate clock, the rate of the incoming frames, and the frame size (in number of bits). In addition,
the operational range of the receiver is depending on the difference between the received bit rate
and the internally generated baud rate. If the baud rate of an external transmitter is too high or too
low compared to the internally generated baud rate, the receiver will not be able to synchronize the
frames to the start bit.

There are two possible sources for a mismatch in baud rate: First, the reference clock will always
have some minor instability. Second, the baud-rate generator cannot always do an exact division
of the reference clock frequency to get the baud rate desired. In this case, the BAUD register value
must be set to give the lowest possible error, see Clock Generation - Baud-Rate Generator from
Related Links.

Recommended maximum receiver baud-rate errors for various character sizes are shown in the
table below.

Table 30-3. Asynchronous Receiver Error for 16-fold Oversampling

Rsiow [%] Reast [%] Max. total error [%] Recommended max. Rx error [%]
(Data bits+Parity)

94.12 107.69 +5.88/-7.69 2.5
6 94.92 106.67 +5.08/-6.67 2.0
7 95.52 105.88 +4.48/-5.88 +2.0
8 96.00 105.26 +4.00/-5.26 +2.0
9 96.39 104.76 +3.61/-4.76 1.5
10 96.70 104.35 +3.30/-4.35 +1.5

The following equations calculate the ratio of the incoming data rate and internal receiver baud rate:

R _16(D+ 1) Re _16(D+2)
SLOW™= 16D+ 1) +6 FAST™ 16(D+ 1) +8

* RsLow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate

* ReasT is the ratio of the fastest incoming data rate that can be accepted in relation to the receiver
baud rate

« Disthe sum of character size and parity size (D =5 to 10 bits)
The recommended maximum Rx Error assumes that the receiver and transmitter equally divide the

maximum total error. Its connection to the SERCOM Receiver error acceptance is depicted in this
figure:

596

@ MICROCHIP

Figure 30-5. USART Rx Error Calculation

SERCOM Receiver error acceptance .

from RsLow and RFasT formulas —_— _—
Baud Generator offset error cjock source error
Error Max (%) - - - - - - - - T _ depends on BAUD register value _ Recommended max. Rx Error (%)
Baud Rate T

Error Min (%) - - - - - - - -

The recommendation values in the table above accommodate errors of the clock source and the
baud generator. The following figure gives an example for a baud rate of 3Mbps:

Figure 30-6. USART Rx Error Calculation Example

SERCOM Receiver error acceptance
sampling = x16

data bits = 10 Accepted
_ No baud generator offset error Receiver Error

parity =0 Fbaud(2Mbps) = 32MHz *1(BAUD=0) /16
startbit=stopbit=1" o — — = .7 — &

Error Max 3.3% I Error Max 3.3% r oo N 3.0%

. (]

Baud Rate 2Mbps
Error Min -4.35% Error Min -4.35%

*Transmitter Error depends on the external transmitter used in the application.
It is advised that it is within the Recommended max. Rx Error (+/-1.5% in this example).
Larger Transmitter Errors are acceptable but must lie within the Accepted Receiver Error.

Related Links
29.6.2.3. Clock Generation - Baud-Rate Generator

30.6.2.6.1 Disabling the Receiver

Writing '0' to the Receiver Enable bit in the CTRLB register (CTRLB.RXEN) will disable the receiver,
flush the two-level receive buffer, and data from ongoing receptions will be lost.

30.6.2.6.2 Error Bits
The USART receiver has three error bits in the Status (STATUS) register: Frame Error (FERR), Buffer
Overflow (BUFOVF), and Parity Error (PERR). Once an error happens, the corresponding error bit
will be set until it is cleared by writing ‘1’ to it. These bits are also cleared automatically when the
receiver is disabled.

There are two methods for buffer overflow notification, selected by the Immediate Buffer Overflow
Notification bit in the Control A register (CTRLA.IBON):

597

@ MICROCHIP

When CTRLA.IBON=1, STATUS.BUFOVF is raised immediately upon buffer overflow. Software can
then empty the receive FIFO by reading RxDATA, until the Receiver Complete Interrupt flag
(INTFLAG.RXCQ) is cleared.

When CTRLA.IBON=0, the Buffer Overflow condition is attending data through the receive FIFO,
which will then set the INTFLAG.ERROR bit. After the received data is read, STATUS.BUFOVF (and
INTFLAG.ERROR) will be set along with INTFLAG.RXC.

30.6.2.6.3 Asynchronous Data Reception

The USART includes a clock recovery and data recovery unit for handling asynchronous data
reception.

The clock recovery logic can synchronize the incoming asynchronous serial frames at the RxD pin to
the internally generated baud-rate clock.

The data recovery logic samples and applies a low-pass filter to each incoming bit, thereby
improving the noise immunity of the receiver.

30.6.2.6.4 Asynchronous Operational Range
The operational range of the asynchronous reception depends on the accuracy of the internal
baud-rate clock, the rate of the incoming frames, and the frame size (in number of bits). In addition,
the operational range of the receiver is depending on the difference between the received bit rate
and the internally generated baud rate. If the baud rate of an external transmitter is too high or too
low compared to the internally generated baud rate, the receiver will not be able to synchronize the
frames to the start bit.

There are two possible sources for a mismatch in baud rate: First, the reference clock will always
have some minor instability. Second, the baud-rate generator cannot always do an exact division
of the reference clock frequency to get the baud rate desired. In this case, the BAUD register value
must be set to give the lowest possible error (see Clock Generation - Baud-Rate Generator from
Related Links).

Recommended maximum receiver baud-rate errors for various character sizes are shown in the
following table.

Table 30-4. Asynchronous Receiver Error for 16-fold Oversampling

RsLow [%] Rrast [%] Max. total error [%] Recommended max. Rx error [%]
(Data bits+Parity)

94.12 107.69 +5.88/-7.69 2.5
6 94.92 106.67 +5.08/-6.67 +2.0
7 95.52 105.88 +4.48/-5.88 2.0
8 96.00 105.26 +4.00/-5.26 2.0
9 96.39 104.76 +3.61/-4.76 1.5
10 96.70 104.35 +3.30/-4.35 1.5

The following equations calculate the ratio of the incoming data rate and internal receiver baud rate:

— (D+ 1)S R e D+ 2)S
SLOW™ §—1+D-S+S¢ ’ FAST™ (D +1)S + Sy

* Rs ow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate

* Reast is the ratio of the fastest incoming data rate that can be accepted in relation to the receiver
baud rate

+ Dis the sum of character size and parity size (D =5 to 10 bits)
« Sisthe number of samples per bit (S =16, 8 or 3)

598

@ MICROCHIP

+ Sgis the first sample number used for majority voting (S = 7, 3 or 2) when CTRLA.SAMPA=0.
+ Spis the middle sample number used for majority voting (Sy, = 8, 4 or 2) when CTRLA.SAMPA=0.

The recommended maximum Rx Error assumes that the receiver and transmitter equally divide the
maximum total error. Its connection to the SERCOM Receiver error acceptance is depicted in this
figure:

Figure 30-7. USART Rx Error Calculation

SERCOM Receiver error acceptance N

from RsLow and RFasT formulas —_— —_
Baud Generator offset error cjock source error
Error Max (%) - - ------ l _ depends on BAUD register value Recommended max. Rx Error (%)
Baud Rate T t

Error Min (%) - - - - - - - -

The recommendation values in the table above accommodate errors of the clock source and the
baud generator. The following figure gives an example for a baud rate of 3 Mbps:

Figure 30-8. USART Rx Error Calculation Example

SERCOM Receiver error acceptance

sampling = x16 + 5 Accepted
data bits = 10 No baud generator offset error Receiver Error
parity = 0 Fbaud(2Mbps) = 32MHz *1(BAUD=0) /16
stat bit stop bt =+ T ~ 7 TEmorMax33% T _______
. Error Max 3.0%
Baud Rate 2Mbps
_ Error Min -4.05%_ I
Error Min -4.35% Error Min -4.35%

*Transmitter Error depends on the external transmitter used in the application.
It is advised that it is within the Recommended max. Rx Error (+/-1.5% in this example).
Larger Transmitter Errors are acceptable but must lie within the Accepted Receiver Error.

Related Links
29.6.2.3. Clock Generation - Baud-Rate Generator

30.6.3 Additional Features

30.6.3.1 Parity
Even or odd parity can be selected for error checking by writing 0x1 to the Frame Format bit field in
the Control A register (CTRLA.FORM).

599

@ MICROCHIP

If even parity is selected (CTRLB.PMODE=0), the Parity bit of an outgoing frame is '1" if the data
contains an odd number of bits that are '1', making the total number of '1' even.

If odd parity is selected (CTRLB.PMODE=1), the Parity bit of an outgoing frame is '1' if the data
contains an even number of bits that are '0', making the total number of '1' odd.

When parity checking is enabled, the parity checker calculates the parity of the data bits in incoming
frames and compares the result with the Parity bit of the corresponding frame. If a parity error is
detected, the Parity Error bit in the Status register (STATUS.PERR) is set.

30.6.3.2 Hardware Handshaking
The USART features an out-of-band hardware handshaking flow control mechanism, implemented
by connecting the RTS and CTS pins with the remote device, as shown in the figure below.

Figure 30-9. Connection with a Remote Device for Hardware Handshaking

USART Remote
Device

TXD RXD

RXD TXD

CTS RTS

RTS > CTS

Hardware handshaking is only available in the following configuration:
* USART with internal clock (CTRLA.MODE=1),

« Asynchronous mode (CTRLA.CMODE=0), and

* Flow control pinout (CTRLATXPO=2).

When the receiver is disabled or the receive FIFO is full, the receiver will drive the RTS pin high. This
notifies the remote device to stop transfer after the ongoing transmission. Enabling and disabling
the receiver by writing to CTRLB.RXEN will set/clear the RTS pin after a synchronization delay. When
the receive FIFO goes full, RTS will be set immediately and the frame being received will be stored in
the Shift register until the receive FIFO is no longer full.

Figure 30-10. Receiver Behavior when Operating with Hardware Handshaking

RXD L I | L |
RXEN l _
Two-Level L
Rx Buffer
The current CTS Status is in the STATUS register (STATUS.CTS). Character transmission will start only

if STATUS.CTS=0. When CTS is set, the transmitter will complete the ongoing transmission and stop
transmitting.

Figure 30-11. Transmitter Behavior when Operating with Hardware Handshaking

CTSj—] " L \

o T U7

30.6.3.3 IrDA Modulation and Demodulation
Transmission and reception can be encoded IrDA compliant up to 115.2 kb/s. IrDA modulation and
demodulation work in the following configuration:

600

@ MICROCHIP

« IrDA encoding enabled (CTRLB.ENC=1)

+ Asynchronous mode (CTRLA.CMODE=0)

+ 16x sample rate (CTRLA.SAMPR[0]=0)

During transmission, each low bit is transmitted as a high pulse. The pulse width is 3/16 of the baud
rate period, as illustrated in the following figure.

Figure 30-12. IrDA Transmit Encoding

.1 baud clock .
TXD
IrDA encoded TXD |_|

—> i«—3/16 baud clock

The reception decoder has two main functions:
+ To synchronize the incoming data to the IrDA baud rate counter. Synchronization is performed at
the start of each zero pulse.

+ To decode incoming Rx data. If a pulse width meets the minimum length set by configuration
(RXPL.RXPL), it is accepted. When the baud rate counter reaches its middle value (1/2 bit length),
it is transferred to the receiver.

Note: The polarity of the transmitter and receiver are opposite: During transmission, a ‘0’ bit is
transmitted as a ‘1’ pulse. During reception, an accepted ‘0’ pulse is received as a ‘0’ bit.

Example: The following figure illustrates reception where RXPL.RXPL is set to 19.
This indicates that the pulse width must be at least 20 SE clock cycles. When using
BAUD=0xE666 or 160 SE cycles per bit, this corresponds to 2/16 baud clock as
minimum pulse width required. In this case the first bit is accepted as a ‘0’, the
second bitis a ‘1, and the third bit is also a ‘1". A low pulse is rejected since it does
not meet the minimum requirement of 2/16 baud clock.

Figure 30-13. IrDA Receive Decoding

Baud clock 0 0.5 1 15 2 2.5

IrDA encoded RXD_l_§_|

RXD

— f<—20ISE clocklcycles -

30.6.3.4 Break Character Detection and Auto-Baud

Break character detection and auto-baud are available in this configuration:

+ Auto-baud frame format (CTRLA.FORM = 0x04 or 0x05),
+ Asynchronous mode (CTRLA.CMODE = 0),
+ and 16x sample rate using fractional baud rate generation (CTRLA.SAMPR = 1).

The USART uses a break detection threshold of greater than 11 nominal bit times at the configured
baud rate. At any time, if more than 11 consecutive dominant bits are detected on the bus, the
USART detects a Break Field. When a break field has been detected, the Receive Break Interrupt Flag
(INTFLAG.RXBRK) is set and the USART expects the sync field character to be 0x55. This field is used
to update the actual baud rate in order to stay synchronized. If the received sync character is not
0x55, then the Inconsistent Sync Field error flag (STATUS.ISF) is set along with the Error Interrupt Flag
(INTFLAG.ERROR), and the baud rate is unchanged.

@ MICROCHIP

601

After a break field is detected and the Start bit of the sync field is detected, a counter is started.
The counter is then incremented for the next 8 bit times of the sync field. At the end of these 8

bit times, the counter is stopped. At this moment, the 13 Most Significant bits of the counter (value
divided by 8) give the new clock divider (BAUD.BAUD), and the 3 Least Significant bits of this value
(the remainder) give the new Fractional Part (BAUD.FP).

When the sync field has been received, the clock divider (BAUD.BAUD) and the Fractional Part
(BAUD.FP) are updated after a synchronization delay. After the break and sync fields are received,
multiple characters of data can be received.

30.6.3.5 LIN Commander
LIN commander is available with the following configuration:
* LIN commander format (CTRLA.FORM = 0x02)
* Asynchronous mode (CTRLA.CMODE = 0)
+ 16x sample rate using fractional baud rate generation (CTRLA.SAMPR = 1)

LIN frames start with a header transmitted by the commander. The header consists of the break,
sync, and identifier fields. After the commander transmits the header, the addressed responder will
respond with 1-8 bytes of data plus checksum.

Figure 30-14. LIN Frame Format

Header

TxD | Break [Sync | ID
Responder response

RxD 1-8 Data bytes |Checksum|

Using the LIN command field (CTRLB.LINCMD), the complete header can be automatically
transmitted, or software can control transmission of the various header components.

When CTRLB.LINCMD=0x1, software controls transmission of the LIN header. In this case, software
uses the following sequence.

* CTRLB.LINCMD is written to 0x1.

« DATA register written to 0x00. This triggers transmission of the break field by hardware. Note that
writing the DATA register with any other value will also result in the transmission of the break
field by hardware.

+ DATA register written to 0x55. The 0x55 value (sync) is transmitted.
+ DATA register written to the identifier. The identifier is transmitted.

When CTRLB.LINCMD=0x2, hardware controls transmission of the LIN header. In this case, software
uses the following sequence.

* CTRLB.LINCMD is written to 0x2.

+ DATA register written to the identifier. This triggers transmission of the complete header by
hardware. First the break field is transmitted. Next, the sync field is transmitted, and finally the
identifier is transmitted.

In LIN commander mode, the length of the break field is programmable using the break length
field (CTRLC.BRKLEN). When the LIN header command is used (CTRLB.LINCMD=0x2), the delay
between the break and sync fields, in addition to the delay between the sync and ID fields are

configurable using the header delay field (CTRLC.HDRDLY). When manual transmission is used
(CTRLB.LINCMD=0x1), software controls the delay between break and sync.

602

@ MICROCHIP

Figure 30-15. LIN Header Generation

LIN Header
Configurable
: Break Field Length i Sync Field H Identifier Field :

™~ 7
Configurable delay using CTRLC.HDRDLY

After header transmission is complete, the responder responds with 1-8 data bytes plus checksum.

30.6.3.6 Collision Detection

When the receiver and transmitter are connected either through pin configuration or externally,
transmit collision can be detected after selecting the Collision Detection Enable bit in the CTRLB
register (CTRLB.COLDEN=1). To detect collision, the receiver and transmitter must be enabled
(CTRLB.RXEN=1 and CTRLB.TXEN=1).

Collision detection is performed for each bit transmitted by comparing the received value with
the transmit value, as shown in the figure below. While the transmitter is idle (no transmission in
progress), characters can be received on RxD without triggering a collision.

Figure 30-16. Collision Checking

8-bit character, single stop bit

I B
RXD LT T T T T T T
S ST ST S S S S S

Collision checked

The next figure shows the conditions for a collision detection. In this case, the Start bit and the first
Data bit are received with the same value as transmitted. The second received Data bit is found to
be different than the transmitted bit at the detection point, which indicates a collision.

Figure 30-17. Collision Detected

Collision checked and ok

i : — Tri-state
TXD H :

TXEN X

Collision detected —>

When a collision is detected, the USART follows this sequence:
1. Abort the current transfer.

2. Flush the transmit buffer.
3. Disable transmitter (CTRLB.TXEN=0)

- This is done after a synchronization delay. The CTRLB Synchronization Busy bit
(SYNCBUSY.CTRLB) will be set until this is complete.

- After disabling, the TxD pin will be tri-stated.
4. Set the Collision Detected bit (STATUS.COLL) along with the Error Interrupt Flag (INTFLAG.ERROR).

. 603
@ MICROCHIP

5. Set the Transmit Complete Interrupt Flag (INTFLAG.TXC), since the transmit buffer no longer
contains data.

After a collision, software must manually enable the transmitter again before continuing, after
assuring that the CTRLB Synchronization Busy bit (SYNCBUSY.CTRLB) is not set.
30.6.3.7 Loop-Back Mode

For Loop-Back mode, configure the Receive Data Pinout (CTRLA.RXPO) and Transmit Data Pinout
(CTRLA.TXPO) to use the same data pins for transmit and receive. The loop-back is through the pad,
so the signal is also available externally.

30.6.3.8 Start-of-Frame Detection
The USART start-of-frame detector can wake up the CPU when it detects a Start bit. In Standby Sleep
mode, the internal fast start-up oscillator must be selected as the GCLK_SERCOMx_CORE source.

When a 1-to-0 transition is detected on RxD, the 8 MHz Internal Oscillator is powered up and the
USART clock is enabled. After start-up, the rest of the data frame can be received, provided that the
baud rate is slow enough in relation to the fast start-up internal oscillator start-up time. See Electrical
Characteristics from Related Links for details. The start-up time of this oscillator varies with supply
voltage and temperature.

The USART start-of-frame detection works both in Asynchronous and Synchronous modes. It
is enabled by writing ‘1’ to the Start of Frame Detection Enable bit in the Control B register
(CTRLB.SFDE).

If the Receive Start Interrupt Enable bit in the Interrupt Enable Set register (INTENSET.RXS) is set, the
Receive Start interrupt is generated immediately when a start is detected.

When using start-of-frame detection without the Receive Start interrupt, start detection will force the
8 MHz internal oscillator and USART clock active while the frame is being received. In this case, the
CPU will not wake up until the receive complete interrupt is generated.

Related Links
43. Electrical Characteristics

30.6.3.9 Sample Adjustment

In asynchronous mode (CTRLA.CMODE = 0), three samples in the middle are used to determine the
value based on majority voting. The three samples used for voting can be selected using the Sample
Adjustment bit field in the Control A register (CTRLA.SAMPA). When CTRLA.SAMPA = 0, samples 7-8-9
are used for 16x oversampling, and samples 3-4-5 are used for 8x oversampling.

Note: In full asynchronous mode, the start of frame may not occur at the UART clock reference
rising edge meaning the counter can start incrementing from 0 to 1 in less than one UART clock
reference period. The counter will then continue to increment at each positive edge of the UART
clock reference regardless of the incoming bits.

30.6.4 DMA, Interrupts and Events

30.6.4.1 DMA Operation
The USART generates the following DMA requests:

30.6.4.2 Interrupts

The USART has the following interrupt sources. These are asynchronous interrupts, and can wake-up
the device from any Sleep mode:

+ Data Register Empty (DRE)
+ Receive Complete (RXC)
+ Transmit Complete (TXC)

604

@ MICROCHIP

* Receive Start (RXS)
+ Clear to Send Input Change (CTSIC)
* Received Break (RXBRK)

* Error (ERROR)

Each interrupt source has its own Interrupt flag. The Interrupt flag in the Interrupt Flag Status

and Clear register (INTFLAG) will be set when the Interrupt condition is met. Each interrupt can

be individually enabled by writing '1' to the corresponding bit in the Interrupt Enable Set register
(INTENSET), and disabled by writing '1' to the corresponding bit in the Interrupt Enable Clear register
(INTENCLR). The status of enabled interrupts can be read from either INTENSET or INTENCLR.

An interrupt request is generated when the Interrupt flag is set and if the corresponding interrupt is
enabled. The interrupt request remains active until either the Interrupt flag is cleared, the interrupt
is disabled, or the USART is reset. For details on clearing Interrupt flags, see INTFLAG from Related
Links.

The value of INTFLAG indicates which interrupt is executed. Note that interrupts must be globally
enabled for interrupt requests. See Nested Vector Interrupt Controller (NVIC) from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)
30.8.8. INTFLAG

30.6.4.3 Events
Not applicable.

30.6.5 Sleep Mode Operation

The behavior in Sleep mode is depending on the clock source and the Run In Standby bit in the
Control A register (CTRLA.RUNSTDBY):

+ Internal clocking, CTRLA.RUNSTDBY=1: GCLK_SERCOMx_CORE can be enabled in all Sleep modes.
Any interrupt can wake-up the device.

+ External clocking, CTRLA.RUNSTDBY=1: The Receive Complete interrupt(s) can wake-up the
device.

+ Internal clocking, CTRLA.RUNSTDBY=0: Internal clock will be disabled, after any ongoing transfer
was completed. The Receive Complete interrupt(s) can wake-up the device.

+ External clocking, CTRLA.RUNSTDBY=0: External clock will be disconnected, after any ongoing
transfer was completed. All reception will be dropped.

30.6.6 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some
registers need to be synchronized when written or read.

The following bits are synchronized when written:

« Software Reset bit in the CTRLA register (CTRLA.SWRST)

« Enable bit in the CTRLA register (CTRLA.ENABLE)

+ Receiver Enable bit in the CTRLB register (CTRLB.RXEN)

+ Transmitter Enable bit in the Control B register (CTRLB.TXEN)

Note: CTRLB.RXEN is write-synchronized somewhat differently. See also 30.8.2. CTRLB for details.

Required write synchronization is denoted by the "Write-Synchronized" property in the register
description.

605

@ MICROCHIP

30.7

[Offset | Name [Bitpos| 7 |6 | 5 | 4 | 3 | 2 | 1 | o
7:0

0x00

0x04

0x08

0x0C

0xO0E
OxOF

0x13
0x14
0x15
0x16
0x17

0x18
0x19

Ox1A

0x1C
0x20
ox27
0x28
0x2C

Ox2F
0x30

30.8

Register Summary

RUNSTDBY MODE[2:0] ENABLE SWRST
15: AMPR[2:
CTRLA 5:8 S [2:0] IBON
23:16 SAMPA[1:0] RXPO[1:0] TXPO[1:0]
31:24 DORD CPOL CMODE FORM[3:0]
7:0 SBMODE CHSIZE[2:0]
15: PMODE EN
CTRLB 5:8 (0] C COLDEN
23:16 RXEN TXEN
31:24
7:0
15:
CTRLC 8
23:16
31:24
7:0 BAUDI7:0]
BAUD
15:8 BAUDI[15:8]
RXPL 7:0 RXPL[7:0]
Reserved
INTENCLR 7:0 ERROR RXBRK CTSIC RXC TXC DRE
Reserved
INTENSET 7:0 ERROR RXBRK CTSIC RXC TXC DRE
Reserved
INTFLAG 7:0 ERROR RXBRK CTSIC RXC TXC DRE
Reserved
7:0 TXE COLL ISF CTS BUFOVF FERR PERR
STATUS
15:8
7:0 CTRLB ENABLE SWRST
SYNCBUSY 15:8
23:16
31:24
Reserved
7:0 DATA[7:0]
DATA 15:8 DATA[15:8]
23:16 DATA[23:16]
31:24 DATA[31:24]
Reserved
DBGCTRL 7:0 DBGSTOP

Register Description

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the
“Read-Synchronized” and/or “Write-Synchronized” property in each individual register description.

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register
description.

@ MICROCHIP

606

30.8.1 Control A

Name: CTRLA
Offset: 0x00
Reset: 0x00000000
Property: PAC Write-Protection, Enable-Protected, Write-Synchronized
Bit 31 30 29 28 27 26 25 24
| | DORD | CPOL | CMODE | FORM[3:0] |
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| SAMPA[1:0] | RXPO[1:0] | | | TXPO[1:0] |
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
SAMPR[2:0] IBON
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
RUNSTDBY MODE[2:0] ENABLE SWRST
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 30 - DORD Data Order
This bit selects the data order when a character is shifted out from the Data register.
This bit is not synchronized.

Value Description

0 MSB is transmitted first.
1 LSB is transmitted first.

Bit 29 - CPOL Clock Polarity
This bit selects the relationship between data output change and data input sampling in
synchronous mode.
This bit is not synchronized.

CPOL TxD Change RxD Sample

0x0 Rising XCK edge Falling XCK edge
0x1 Falling XCK edge Rising XCK edge

Bit 28 - CMODE Communication Mode
This bit selects asynchronous or synchronous communication.
This bit is not synchronized.

VEINS Description

0 Asynchronous communication.
1 Synchronous communication.

Bits 27:24 - FORM[3:0] Frame Format
These bits define the frame format.
These bits are not synchronized.

@ MICROCHIP

607

0x0 USART frame

0x1 USART frame with parity

0x4 Auto-baud (LIN Responder) - break detection and auto-baud.
0x5 Auto-baud - break detection and auto-baud with parity

Bits 23:22 - SAMPA[1:0] Sample Adjustment
These bits define the sample adjustment.
These bits are not synchronized.

SAMPA[1:0] 16x Over-sampling (CTRLA.SAMPR=0 or 1) 8x Over-sampling (CTRLA.SAMPR=2 or 3)

0x0 7-8-9 3-4-5
Ox1 9-10-11 4-5-6
0x2 11-12-13 5-6-7
0x3 13-14-15 6-7-8

Bits 21:20 - RXPO[1:0] Receive Data Pinout
These bits define the receive data (RxD) pin configuration.
These bits are not synchronized.

wrorio

0x0 PAD[0] SERCOM PADI0] is used for data reception
0x1 PAD[1] SERCOM PADI1] is used for data reception
0x2 PAD[2] SERCOM PADI2] is used for data reception
0x3 PAD[3] SERCOM PADI3] is used for data reception

Bits 17:16 - TXPO[1:0] Transmit Data Pinout
These bits define the transmit data (TxD) and XCK pin configurations.
This bit is not synchronized.

Bits 15:13 - SAMPR[2:0] Sample Rate
These bits select the sample rate.
These bits are not synchronized.

Saurr0

0x0 16x over-sampling using arithmetic baud rate generation.
0x1 16x over-sampling using fractional baud rate generation.
0x2 8x over-sampling using arithmetic baud rate generation.
0x3 8x over-sampling using fractional baud rate generation.
0x4 3x over-sampling using arithmetic baud rate generation.
0x5-0x7 Reserved

Bit 8 - IBON Immediate Buffer Overflow Notification
This bit controls when the buffer overflow status bit (STATUS.BUFOVF) is asserted when a buffer
overflow occurs.
This bit is not synchronized.

VEIS Description

0 STATUS.BUFOVF is asserted when it occurs in the data stream.
1 STATUS.BUFOVF is asserted immediately upon buffer overflow.

Bit 7 - RUNSTDBY Run In Standby
This bit defines the functionality in standby sleep mode.
This bit is not synchronized.

608

@ MICROCHIP

RUNSTDBY| External Clock Internal Clock

0x0 External clock is disconnected when Generic clock is disabled when ongoing transfer is finished. The device
ongoing transfer is finished. All will not wake up on Transfer Complete interrupt unless the appropriate
reception is dropped. ONDEMAND bits are set in the clocking chain.
0x1 Wake on Receive Complete interrupt. Generic clock is enabled in all sleep modes. Any interrupt can wake up
the device.

Bits 4:2 - MODE[2:0] Operating Mode
These bits select the USART serial communication interface of the SERCOM.
These bits are not synchronized.

Value Description

0x0 USART with external clock
0x1 USART with internal clock

Bit 1 - ENABLE Enable
Due to synchronization, there is delay from writing CTRLA.ENABLE until the peripheral is
enabled/disabled. The value written to CTRLA.ENABLE will read back immediately and the Enable
Synchronization Busy bit in the Synchronization Busy register (SYNCBUSY.ENABLE) will be set.
SYNCBUSY.ENABLE is cleared when the operation is complete.
This bit is not enable-protected.

Value Description

0 The peripheral is disabled or being disabled.
1 The peripheral is enabled or being enabled.

Bit 0 - SWRST Software Reset
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit resets all registers in the SERCOM, except DBGCTRL, to their initial state, and the
SERCOM will be disabled.
Writing ‘1’ to CTRLA.SWRST will always take precedence, meaning that all other writes in the same
write-operation will be discarded. Any register write access during the ongoing reset will result in an
APB error. Reading any register will return the reset value of the register.
Due to synchronization, there is a delay from writing CTRLA.SWRST until the reset is complete.
CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the reset is complete.
This bit is not enable-protected.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description

0 There is no reset operation ongoing.
The reset operation is ongoing.

609

@ MICROCHIP

30.8.2 Control B

Name: CTRLB

Offset: 0x04

Reset: 0x00000000

Property: PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit 31 30 29 28 27 26 25 24

| | | | | | |
Access
Reset

Bit 23 22 21 20 19 18 17 16

| | | | | | [REN | TXeN]
Access R/W R/W
Reset 0 0
Bit 15 14 13 12 11 10 9 8

| PMODE | | ENC | | COLDEN |
Access R/W R/W R/W
Reset 0 0 0
Bit 7 6 5 4 3 2 1 0
SBMODE CHSIZE[2:0]

Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 17 - RXEN Receiver Enable
Writing ‘0’ to this bit will disable the USART receiver. Disabling the receiver will flush the receive
buffer and clear the FERR, PERR and BUFOVF bits in the STATUS register.
Writing ‘1’ to CTRLB.RXEN when the USART is disabled will set CTRLB.RXEN immediately. When the
USART is enabled, CTRLB.RXEN will be cleared, and SYNCBUSY.CTRLB will be set and remain set until
the receiver is enabled. When the receiver is enabled, CTRLB.RXEN will read back as ‘1".
Writing ‘1’ to CTRLB.RXEN when the USART is enabled will set SYNCBUSY.CTRLB, which will remain set
until the receiver is enabled, and CTRLB.RXEN will read back as ‘1'.
This bit is not enable-protected.

Value Description

0 The receiver is disabled or being enabled.
1 The receiver is enabled or will be enabled when the USART is enabled.

Bit 16 - TXEN Transmitter Enable
Writing ‘0" to this bit will disable the USART transmitter. Disabling the transmitter will not become
effective until ongoing and pending transmissions are completed.
Writing ‘1" to CTRLB.TXEN when the USART is disabled will set CTRLB.TXEN immediately. When the
USART is enabled, CTRLB.TXEN will be cleared, and SYNCBUSY.CTRLB will be set and remain set until
the transmitter is enabled. When the transmitter is enabled, CTRLB.TXEN will read back as ‘1".
Writing ‘1’ to CTRLB.TXEN when the USART is enabled will set SYNCBUSY.CTRLB, which will remain set
until the transmitter is enabled, and CTRLB.TXEN will read back as ‘1".
This bit is not enable-protected.

Value Description

0 The transmitter is disabled or being enabled.
1 The transmitter is enabled or will be enabled when the USART is enabled.

610

@ MICROCHIP

Bit 13 - PMODE Parity Mode
This bit selects the type of parity used when parity is enabled (CTRLA.FORM is ‘1’). The transmitter
will automatically generate and send the parity of the transmitted data bits within each frame. The
receiver will generate a parity value for the incoming data and parity bit, compare it to the parity
mode and, if a mismatch is detected, STATUS.PERR will be set.
This bit is not synchronized.

Value Description
0 Even parity.
1 Odd parity.

Bit 10 - ENC Encoding Format
This bit selects the data encoding format.
This bit is not synchronized.

0 Data is not encoded.
1 Data is IrDA encoded.

Bit 8 - COLDEN Collision Detection Enable
This bit enables collision detection.
This bit is not synchronized.

Value Description
0 Collision detection is not enabled.
1 Collision detection is enabled.

Bit 6 - SBMODE Stop Bit Mode
This bit selects the number of stop bits transmitted.
This bit is not synchronized.

Value Description
0 One stop bit.
1 Two stop bits.

Bits 2:0 - CHSIZE[2:0] Character Size
These bits select the number of bits in a character.
These bits are not synchronized.

0x0 8 bits
0x1 9 bits
0x2-0x4 Reserved
0x5 5 bits
0x6 6 bits
0x7 7 bits

@ MICROCHIP

611

30.8.3 Control C

Name: CTRLC

Offset: 0x08

Reset: 0x00000000

Property: PAC Write-Protection, Enable-Protected

Bit 31 30 29 28

27

26

25

24

Access
Reset

Bit 23 22 21 20

19

18

17

16

Access
Reset

Bit 15 14 13 12

11

10

Access
Reset

Bit 7 6 5 4

Access
Reset

@ MICROCHIP

612

30.8.4 Baud

Name: BAUD

Offset: 0x0C

Reset: 0x0000

Property: Enable-Protected, PAC Write-Protection

Bit 15 14 13 12 11 10 9 8
| BAUDI[15:8]
Access R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| BAUDI[7:0]
Access R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 15:0 - BAUD[15:0] Baud Value
Arithmetic Baud Rate Generation (CTRLA.SAMPR[0]=0):
These bits control the clock generation, as described in the SERCOM Baud Rate section.

If Fractional Baud Rate Generation (CTRLA.SAMPR[0]=1 or =3) bit positions 15 to 13 are replaced

by FP[2:0] Fractional Part:
« Bits 15:13 - FP[2:0]: Fractional Part

These bits control the clock generation, as described in the SERCOM Clock Generation - Baud-Rate

Generator section.
+ Bits 12:0 - BAUD[12:0]: Baud Value

These bits control the clock generation, as described in the SERCOM Clock Generation - Baud-Rate

Generator section.

@ MICROCHIP

613

30.8.5 Receive Pulse Length Register

Name: RXPL
Offset: 0xOE
Reset: 0x00
Property: Enable-Protected, PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| RXPL[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - RXPL[7:0] Receive Pulse Length
When the encoding format is set to IrDA (CTRLB.ENC=1), these bits control the minimum pulse
length that is required for a pulse to be accepted by the IrDA receiver with regards to the serial
engine clock period SEp;.

PULSE = (RXPL + 1) - SE¢r

614

@ MICROCHIP

30.8.6 Interrupt Enable Clear

Name: INTENCLR
Offset: 0x14
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit 7 6 5 4 3 2 1 0
| ERROR | | RXBRK | CTSIC | | RXC | T | DRE |
Access R/W RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 7 - ERROR Error Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Error Interrupt Enable bit, which disables the Error interrupt.

Value Description
0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 5 - RXBRK Receive Break Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Receive Break Interrupt Enable bit, which disables the Receive
Break interrupt.

Value Description
0 Receive Break interrupt is disabled.
1 Receive Break interrupt is enabled.

Bit 4 - CTSIC Clear to Send Input Change Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Clear To Send Input Change Interrupt Enable bit, which disables
the Clear To Send Input Change interrupt.

VEINS Description
0 Clear To Send Input Change interrupt is disabled.
1 Clear To Send Input Change interrupt is enabled.

Bit 2 - RXC Receive Complete Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Receive Complete Interrupt Enable bit, which disables the Receive
Complete interrupt.
Value Description
0 Receive Complete interrupt is disabled.
1 Receive Complete interrupt is enabled.

Bit 1 - TXC Transmit Complete Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Transmit Complete Interrupt Enable bit, which disables the Receive
Complete interrupt.

Value Description
0 Transmit Complete interrupt is disabled.
1 Transmit Complete interrupt is enabled.

@ MICROCHIP

615

Bit 0 - DRE Data Register Empty Interrupt Enable
Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Data Register Empty Interrupt Enable bit, which disables the Data
Register Empty interrupt.

Value Description

0 Data Register Empty interrupt is disabled.
1 Data Register Empty interrupt is enabled.

o 616
ﬁ\ MICROCHIP

30.8.7 Interrupt Enable Set

Name: INTENSET
Offset: 0x16
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit 7 6 5 4 3 2 1 0
| ERROR | | RXBRK | CTSIC | | RXC | T | DRE |
Access R/W RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 7 - ERROR Error Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.

Value Description
0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 5 - RXBRK Receive Break Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Receive Break Interrupt Enable bit, which enables the Receive Break

interrupt.

Value Description

0 Receive Break interrupt is disabled.
1 Receive Break interrupt is enabled.

Bit 4 - CTSIC Clear to Send Input Change Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Clear To Send Input Change Interrupt Enable bit, which enables the
Clear To Send Input Change interrupt.

VEINS Description
0 Clear To Send Input Change interrupt is disabled.
1 Clear To Send Input Change interrupt is enabled.

Bit 2 - RXC Receive Complete Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Receive Complete Interrupt Enable bit, which enables the Receive
Complete interrupt.
Value Description
0 Receive Complete interrupt is disabled.
1 Receive Complete interrupt is enabled.

Bit 1 - TXC Transmit Complete Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Transmit Complete Interrupt Enable bit, which enables the Transmit
Complete interrupt.

Value Description
0 Transmit Complete interrupt is disabled.
1 Transmit Complete interrupt is enabled.

@ MICROCHIP

617

Bit 0 - DRE Data Register Empty Interrupt Enable
Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Data Register Empty Interrupt Enable bit, which enables the Data
Register Empty interrupt.

Value Description

0 Data Register Empty interrupt is disabled.
1 Data Register Empty interrupt is enabled.

o 618
ﬁ\ MICROCHIP

30.8.8 Interrupt Flag Status and Clear

Name: INTFLAG

Offset: 0x18

Reset: 0x00

Property: -

Bit 7 6 5 4 3 2 1 0

| ERROR | | RXBRK | CTSIC | | RXC | T | DRE |
Access R/W R/W R/W R R/W R
Reset 0 0 0 0 0 0

Bit 7 - ERROR Error
This flag is cleared by writing '1' to it.
This bit is set when any error is detected. Errors that will set this flag have corresponding status flags
in the STATUS register. Errors that will set this flag are COLL, ISF, BUFOVF, FERR, and PERR.Writing '0'
to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 5 - RXBRK Receive Break
This flag is cleared by writing '1' to it.
This flag is set when auto-baud is enabled (CTRLA.FORM) and a break character is received.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 4 - CTSIC Clear to Send Input Change
This flag is cleared by writing a '1' to it.
This flag is set when a change is detected on the CTS pin.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 2 - RXC Receive Complete
This flag is cleared by reading the Data register (DATA) or by disabling the receiver.
This flag is set when there are unread data in DATA.
Writing '0' to this bit has no effect.
Writing '1' to this bit has no effect.

Bit 1 - TXC Transmit Complete
This flag is cleared by writing '1' to it or by writing new data to DATA.
This flag is set when the entire frame in the Transmit Shift register has been shifted out and there
are no new data in DATA.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 0 - DRE Data Register Empty
This flag is cleared by writing new data to DATA.
This flag is set when DATA is empty and ready to be written.
Writing '0' to this bit has no effect.
Writing '1' to this bit has no effect.

619

@ MICROCHIP

30.8.9 Status

Name: STATUS
Offset: Ox1A
Reset: 0x0000

Property: -
Bit 15 14 13 12 11 10 9 8
| | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
| T™E | coL | IS [CIS | BUFOVF | FERR | PERR |
Access R/W R/W R/W R R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bit 6 - TXE Transmitter Empty
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear it.

Bit 5 - COLL Collision Detected
This bit is cleared by writing '1' to the bit or by disabling the receiver.
This bit is set when collision detection is enabled (CTRLB.COLDEN) and a collision is detected.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear it.

Bit 4 - ISF Inconsistent Sync Field
This bit is cleared by writing '1' to the bit or by disabling the receiver.
This bit is set when the frame format is set to auto-baud (CTRLA.FORM) and a sync field not equal to
0x55 is received.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear it.

Bit 3 - CTS Clear to Send
This bit indicates the current level of the CTS pin when flow control is enabled (CTRLA.TXPO).
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit has no effect.

Bit 2 - BUFOVF Buffer Overflow
Reading this bit before reading the Data register will indicate the error status of the next character
to be read.
This bit is cleared by writing ‘1’ to the bit or by disabling the receiver.
This bit is set when a buffer overflow condition is detected. A buffer overflow occurs when the
receive buffer is full, there is a new character waiting in the receive shift register and a new start bit
is detected.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear it.

Bit 1 - FERR Frame Error
Reading this bit before reading the Data register will indicate the error status of the next character
to be read.
This bit is cleared by writing '1' to the bit or by disabling the receiver.

@ MICROCHIP

620

This bit is set if the received character had a frame error, i.e., when the first stop bit is zero.
Writing ‘0’ to this bit has no effect.
Writing ‘1" to this bit will clear it.

Bit 0 - PERR Parity Error
Reading this bit before reading the Data register will indicate the error status of the next character

to be read.

This bit is cleared by writing ‘1’ to the bit or by disabling the receiver.

This bit is set if parity checking is enabled (CTRLA.FORM is Ox1, 0x5) and a parity error is detected.
Writing ‘0" to this bit has no effect.

Writing ‘1’ to this bit will clear it.

621

@ MICROCHIP

30.8.10 Synchronization Busy

Name: SYNCBUSY
Offset: 0x1C
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
CTRLB ENABLE SWRST
Access R R R
Reset 0 0 0

Bit 2 - CTRLB CTRLB Synchronization Busy
Writing to the CTRLB register when the SERCOM is enabled requires synchronization. When writing
to CTRLB the SYNCBUSY.CTRLB bit will be set until synchronization is complete. If CTRLB is written
while SYNCBUSY.CTRLB is asserted, an APB error will be generated.

VEIS Description

0 CTRLB synchronization is not busy.

1 CTRLB synchronization is busy.

Bit 1 - ENABLE SERCOM Enable Synchronization Busy
Enabling and disabling the SERCOM (CTRLA.ENABLE) requires synchronization. When written, the
SYNCBUSY.ENABLE bit will be set until synchronization is complete.

0 Enable synchronization is not busy.
1 Enable synchronization is busy.

Bit 0 - SWRST Software Reset Synchronization Busy
Resetting the SERCOM (CTRLA.SWRST) requires synchronization. When written, the
SYNCBUSY.SWRST bit will be set until synchronization is complete.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description

0 SWRST synchronization is not busy.
1 SWRST synchronization is busy.

@ MICROCHIP

622

30.8.11 Data

Name: DATA

Offset: 0x28

Reset: 0x0000

Property: -
Bit 31 30 29 28 27 26 25 24
| DATA[31:24]
Access R/W R/W R/W R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| DATA[23:16]
Access R/W R/W R/W R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
DATA[15:8]
Access R/W R/W R/W R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
DATA[7:0]
Access R/W R/W RIW R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - DATA[31:0] Data

Reading these bits will return the contents of the Receive Data register. The register must be read

only when the Receive Complete Interrupt Flag bit in the Interrupt Flag Status and Clear register

(INTFLAG.RXC) is set. The status bits in STATUS must be read before reading the DATA value in order

to get any corresponding error.

Writing these bits will write the Transmit Data register. This register must be written only when the
Data Register Empty Interrupt Flag bit in the Interrupt Flag Status and Clear register (INTFLAG.DRE) is

set.

Reads and writes are 32-bit or CTLB.CHSIZE based on the CTRLC.DATA32B setting.

@ MICROCHIP

623

30.8.12 Debug Control

Name: DBGCTRL

Offset: 0x30

Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| | | | | DBGSTOP |
Access R/W
Reset 0

Bit 0 - DBGSTOP Debug Stop Mode
This bit controls the baud-rate generator functionality when the CPU is halted by an external
debugger.

Value Description

0 The baud-rate generator continues normal operation when the CPU is halted by an external debugger.
1 The baud-rate generator is halted when the CPU is halted by an external debugger.

624

@ MICROCHIP

31. SERCOM Serial Peripheral Interface (SERCOM SPI)

31.1 Overview

The Serial Peripheral Interface (SPI) is one of the available modes in the Serial Communication
Interface (SERCOM).

The SPI uses the SERCOM transmitter and receiver configured as shown in the Block Diagram (see
Full-Duplex SPI Host Client Interconnection in the Block Diagram from Related Links). Each side, host
and client, depicts a separate SPI containing a Shift register, a transmit buffer and a two-level receive
buffer. In addition, the SPI host uses the SERCOM baud-rate generator, while the SPI Client can

use the SERCOM address match logic. Labels in capital letters are synchronous to PBx_CLK and
accessible by the CPU, while labels in lowercase letters are synchronous to the SCK clock.

Note: Traditional Serial Peripheral Interface (SPl) documentation uses the terminology “Master”
and “Slave”. The equivalent Microchip terminology used in this document is “Host” and “Client”,
respectively.

Related Links
31.3. Block Diagram

31.2 Features
SERCOM SPl includes the following features:
* Full-duplex, four-wire interface (MISO, MOSI, SCK, SS)
* One-level transmit buffer, two-level receive buffer
« Supports all four SPI modes of operation
+ Single data direction operation allows alternate function on MISO or MOSI pin
+ Selectable LSB- or MSB-first data transfer
+ Can be used with DMA
* Host operation:
- Serial clock speed up to half the system clock
- 8-bit clock generator
- Hardware controlled SS
+ Client operation:
Serial clock speed up to half the system clock

Optional 8-bit address match operation

Operation in all sleep modes
Wake on SS transition

625

@ MICROCHIP

31.3 Block Diagram

Figure 31-1. Full-Duplex SPI Host Client Interconnection

Host Client

| |
\ BAUD \ \ Tx DATA \ ! : \ Tx DATA | [ADDR/ADDRMASK
ol SCK I
—»
| |
A A4 I miso | Y
‘ baud rate generator ’7? shift register ‘ shift register ﬁ
>: MOSI >:
| l —
A] 1 Y Y
rx buffer : : rx buffer ‘ ==
Rx DATA | 1 Rx DATA Address Match
| |
]]

31.4 Signal Description

Table 31-1. SERCOM SPI Signals

PAD[3:0] Digital I1/0 General SERCOM pins

One signal can be mapped to one of several pins.

31.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

31.5.1 1/0 Lines

In order to use the SERCOM's I/0 lines, the 1/0 pins must be configured using the System
Configuration registers or PPS registers.

When the SERCOM is configured for SPI operation, the SERCOM controls the direction and value

of the I/0 pins according to the following table. Both PORT Control bits PINCFGn.PULLEN and
PINCFGN.DRVSTR are still effective. If the receiver is disabled, the data input pin can be used for
other purposes. In Host mode, the Client Select line (SS) is hardware controlled when the Host Client
Select Enable bit in the Control B register (CTRLB.MSSEN) i$ ‘1".

Table 31-2. SPI Pin Configuration

MOSI Output Input
MISO Input Output
SCK Output Input

The combined configuration of PORT, the Data In Pinout and the Data Out Pinout bit groups in the
Control A register (CTRLA.DIPO and CTRLA.DOPO) define the physical position of the SPI signals in
the table above.

31.5.2 Power Management

This peripheral can continue to operate in any Sleep mode where its source clock is running. The
interrupts can wake-up the device from Sleep modes.

31.5.3 Clocks

A generic clock (GCLK_SERCOMx_CORE) is required to clock the SPI. This clock must be configured
and enabled in the Clock and Reset Unit (CRU) and Configuration (CFG.CFGPCLKGEN1) registers
before using the SPI.

626

@ MICROCHIP

This generic clock is asynchronous to the bus clock (PBx_CLK). Therefore, writes to certain registers
will require synchronization to the clock domains.

31.54 DMA
The DMA request lines are connected to the DMA Controller (DMAC). To use DMA requests with
this peripheral, the DMAC must be configured first (see Direct Memory Access Controller (DMAC) from
Related Links).
Related Links
22. Direct Memory Access Controller (DMAC)

31.5.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. In order to use interrupt requests
of this peripheral, the Interrupt Controller (NVIC) must be configured first. See Nested Vector Interrupt
Controller (NVIC) from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

31.5.6 Events
Not applicable.

31.5.7 Debug Operation

When the CPU is halted in Debug mode, this peripheral will continue normal operation. If the
peripheral is configured to require periodical service by the CPU through interrupts or similar,
improper operation or data loss may result during debugging. This peripheral can be forced to halt
operation during debugging - refer to the Debug Control (DBGCTRL) register for details.

Related Links
31.8.11. DBGCTRL

31.5.8 Register Access Protection

Registers with write access can be write-protected optionally by the Peripheral Access Controller
(PAC).

PAC write protection is not available for the following registers:

+ Interrupt Flag Clear and Status register (INTFLAG)
+ Status register (STATUS)
+ Data register (DATA)

Optional PAC write protection is denoted by the "PAC Write-Protection" property in each individual
register description.

Write-protection does not apply to accesses through an external debugger.

31.5.9 Analog Connections
Not applicable.

31.6 Functional Description

31.6.1 Principle of Operation
The SPI is a high-speed synchronous data transfer interface. It allows high-speed communication
between the device and peripheral devices.

The SPI can operate as Host or Client. As Host, the SPIl initiates and controls all data transactions.
The SPI is single buffered for transmitting and double buffered for receiving.

627

@ MICROCHIP

When transmitting data, the Data register can be loaded with the next character to be transmitted
during the current transmission.

When receiving, the data is transferred to the two-level receive buffer, and the receiver is ready for a
new character.

The SPI transaction format is shown in SPI Transaction Format. Each transaction can contain one or
more characters. The character size is configurable, and can be either 8 or 9 bits.

Figure 31-2. SPI Transaction Format

) J

- Transaction

— Character —P{

MOSI/MISO Character 0 Character 1 Character 2

N o

The SPI Host must pull the SPI select line (SS) of the desired Client low to initiate a transaction. The
Host and Client prepare data to send via their respective Shift registers, and the Host generates the
serial clock on the SCK line.

Data are always shifted from Host to Client on the Host Output Client Input line (MOSI); data is
shifted from Client to Host on the Host Input Client Output line (MISO).

Each time character is shifted out from the Host, a character will be shifted out from the Client
simultaneously. To signal the end of a transaction, the Host will pull the SS line high

31.6.2 Basic Operation

31.6.2.1 Initialization

The following registers are enable-protected, meaning that they can only be written when the SPI is
disabled (CTRL.ENABLE=0):

+ Control A register (CTRLA), except Enable (CTRLA.ENABLE) and Software Reset (CTRLA.SWRST)
+ Control B register (CTRLB), except Receiver Enable (CTRLB.RXEN)

« Baud register (BAUD)

+ Address register (ADDR)

When the SPI is enabled or is being enabled (CTRLA.ENABLE=1), any writing to these registers will be
discarded.

When the SPI is being disabled, writing to these registers will be completed after the disabling.
Enable-protection is denoted by the Enable-Protection property in the register description.

Initialize the SPI by following these steps:

1. Select SPI mode in host/client operation in the Operating Mode bit group in the CTRLA register
(CTRLA.MODE= 0x2 or 0x3).

2. Select Transfer mode for the Clock Polarity bit and the Clock Phase bit in the CTRLA register
(CTRLA.CPOL and CTRLA.CPHA) if desired.

3. Select the Frame Format value in the CTRLA register (CTRLA.FORM).

Configure the Data In Pinout field in the Control A register (CTRLA.DIPO) for SERCOM pads of the
receiver.

5. Configure the Data Out Pinout bit group in the Control A register (CTRLA.DOPO) for SERCOM
pads of the transmitter.

628

@ MICROCHIP

6. Select the Character Size value in the CTRLB register (CTRLB.CHSIZE).

Write the Data Order bit in the CTRLA register (CTRLA.DORD) for data direction.
8. Ifthe SPlis used in Host mode:

a. Select the desired baud rate by writing to the Baud register (BAUD).

b. If Hardware SS control is required, write '1' to the Host SPI Select Enable bit in CTRLB register
(CTRLB.MSSEN).

9. Enable the receiver by writing the Receiver Enable bit in the CTRLB register (CTRLB.RXEN=1).

31.6.2.2 Enabling, Disabling, and Resetting
This peripheral is enabled by writing '1' to the Enable bit in the Control A register (CTRLA.ENABLE),
and disabled by writing '0' to it.

Writing ‘1" to the Software Reset bit in the Control A register (CTRLA.SWRST) will reset all registers of
this peripheral to their initial states, except the DBGCTRL register, and the peripheral is disabled.

Refer to the CTRLA register description for details.

Related Links
31.8.1. CTRLA

31.6.2.3 Clock Generation

In the SPI host operation (CTRLA.MODE = 0x3), the serial clock (SCK) is generated internally by the
SERCOM Baud Rate Generator (BRG).

In the SPI mode, the BRG is set to Synchronous mode. The 8-bit Baud register (BAUD) value is used
for generating SCK and clocking the Shift register (see Clock Generation - Baud-Rate Generator from
Related Links).

In the SPI client operation (CTRLA.MODE = 0x2), the clock is provided by an external host on the SCK
pin. This clock is used to clock the SPI Shift register.

Related Links
29.6.2.3. Clock Generation - Baud-Rate Generator

31.6.2.4 Data Register

The SPI Transmit Data register (TXDATA) and SPI Receive Data register (RXDATA) share the same 1/0
address, referred to as the SPI Data register (DATA). Writing DATA register will update the Transmit
Data register. Reading the DATA register will return the contents of the Receive Data register.

31.6.2.5 SPI Transfer Modes
There are four combinations of SCK phase and polarity to transfer serial data. The SPI Data Transfer
modes are shown in SPI Transfer Modes (Table) and SPI Transfer Modes (Figure).

SCK phase is configured by the Clock Phase bit in the CTRLA register (CTRLA.CPHA). SCK polarity is
programmed by the Clock Polarity bit in the CTRLA register (CTRLA.CPOL). Data bits are shifted out
and latched in on opposite edges of the SCK signal. This ensures sufficient time for the data signals
to stabilize.

Table 31-3. SPI Transfer Modes

m CPOL CPHA Leading Edge Trailing Edge

0 Rising, sample Falling, setup
1 0 1 Rising, setup Falling, sample
2 1 0 Falling, sample Rising, setup
3 1 1 Falling, setup Rising, sample

629

@ MICROCHIP

Note:
Leading edge is the first clock edge in a clock cycle.

Trailing edge is the second clock edge in a clock cycle.

Figure 31-3. SPI Transfer Modes

Mode 0

Mode 2

SAMPLE |
MOSI/MISO

CHANGE 0
MOSI PIN

\

Ho A

CHANGE 0
MISO PIN

A A

3¢

A

X
Ho A

SS

\

Dﬁ
e

MSB
LSB

Bit 6
Bit 1

MSB first (DORD = 0)
LSB first (DORD = 1)

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

Mode 1

Mode 3

SAMPLE |
MOSI/MISO

CHANGE 0
MOSI PIN

o

AN

CHANGE 0
MISO PIN

O
A

H
s

3!

H_ A

Bahy

SS

[\

/

MSB
LSB

MSB first (DORD = 0)
LSB first (DORD = 1)

31.6.2.6 Transferring Data
31.6.2.6.1 Host

Bit 6 Bit 5
Bit 1 Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

In Host mode (CTRLA.MODE=0x3), when Host SPI Select Enable (CTRLB.MSSEN) is ‘1", hardware will

control the SS line.

When Host SPI Select Enable (CTRLB.MSSEN) is '0', the SS line must be configured as an output.
SS can be assigned to any general purpose I/0 pin. When the SPI is ready for a data transaction,

software must pull the SS line low.

When writing a character to the Data register (DATA), the character will be transferred to the Shift
register. Once the content of TXDATA has been transferred to the Shift register, the Data Register
Empty flag in the Interrupt Flag Status and Clear register (INTFLAG.DRE) will be set. And a new

character can be written to DATA.

@ MICROCHIP

630

Each time one character is shifted out from the Host, another character will be shifted in from the
Client simultaneously. If the receiver is enabled (CTRLA.RXEN=1), the contents of the Shift register
will be transferred to the two-level receive buffer. The transfer takes place in the same clock cycle as
the last data bit is shifted in. And the Receive Complete Interrupt flag in the Interrupt Flag Status and
Clear register (INTFLAG.RXC) will be set. The received data can be retrieved by reading DATA.

When the last character has been transmitted and there is no valid data in DATA, the Transmit
Complete Interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.TXC) will be set.
When the transaction is finished, the Host must pull the SS line high to notify the Client. If Host SPI
Select Enable (CTRLB.MSSEN) is set to '0', the software must pull the SS line high.

31.6.2.6.2 Client

In Client mode (CTRLA.MODE = 0x2), the SPI interface will remain inactive with the MISO line
tri-stated as long as the SS pin is pulled high. Software may update the contents of DATA at any time
as long as the Data Register Empty flag in the Interrupt Status and Clear register (INTFLAG.DRE) is
set.

When SS is pulled low and SCK is running, the client will sample and shift out data according to the
Transaction mode set. Once the content of TXxDATA is loaded into the Shift register, INTFLAG.DRE will
be set and new data can be written to DATA.

Similar to the host, the client will receive one character for each character transmitted. A character
will be transferred into the two-level receive buffer within the same clock cycle its last data bit is
received. The received character can be retrieved from DATA when the Receive Complete interrupt
flag (INTFLAG.RXC) is set.

When the host pulls the SS line high, the transaction is done and the Transmit Complete Interrupt
flag in the Interrupt Flag Status and Clear register (INTFLAG.TXC) will be set.

After DATA is written it takes up to three SCK clock cycles until the content of DATA is ready to be
loaded into the Shift register on the next character boundary. As a consequence, the first character
transferred in a SPI transaction will not be the content of DATA. This can be avoided by using the
preloading feature (see Preloading of the Client Shift Register from Related Links).

When transmitting several characters in one SPI transaction, the data has to be written into DATA
register with at least three SCK clock cycles left in the current character transmission. If this criteria is
not met, the previously received character will be transmitted.

Once the DATA register is empty, it takes three CLK_SERCOM_APB cycles for INTFLAG.DRE to be set.

Related Links
31.6.3.2. Preloading of the Client Shift Register

31.6.2.7 Receiver Error Bit
The SPI receiver has one error bit: the Buffer Overflow bit (BUFOVF), which can be read from the
Status register (STATUS). Once an error happens, the bit will stay set until it is cleared by writing '1' to
it. The bit is also automatically cleared when the receiver is disabled.

There are two methods for buffer overflow notification, selected by the immediate Buffer Overflow
Notification bit in the Control A register (CTRLA.IBON):

If CTRLA.IBON=1, STATUS.BUFOVF is raised immediately upon buffer overflow. Software can then
empty the receive FIFO by reading RXDATA until the receiver complete Interrupt flag in the Interrupt
Flag Status and Clear register (INTFLAG.RXC) goes low.

If CTRLA.IBON=0, the Buffer Overflow condition travels with data through the receive FIFO. After the
received data is read, STATUS.BUFOVF and INTFLAG.ERROR will be set along with INTFLAG.RXC, and
RxDATA will be zero.

631

@ MICROCHIP

31.6.3 Additional Features

31.6.3.1 Address Recognition
When the SPI is configured for client operation (CTRLA.MODE=0x2) with address recognition
(CTRLA.FORM is 0x2), the SERCOM address recognition logic is enabled: the first character in a
transaction is checked for an address match.

If there is a match, the Receive Complete Interrupt flag in the Interrupt Flag Status and Clear register
(INTFLAG.RXC) is set, the MISO output is enabled, and the transaction is processed. If the device is in
Sleep mode, an address match can wake-up the device in order to process the transaction.

If there is no match, the complete transaction is ignored.

If a 9-bit frame format is selected, only the lower 8 bits of the Shift register are checked against the
Address register (ADDR).

Preload must be disabled (CTRLB.PLOADEN=0) in order to use this mode.

Related Links
29.6.3.1. Address Match and Mask

31.6.3.2 Preloading of the Client Shift Register

When starting a transaction, the client will first transmit the contents of the shift register before
loading new data from DATA. The first character sent can be either the reset value of the shift
register (if this is the first transmission since the last reset) or the last character in the previous
transmission.

Preloading can be used to preload data into the shift register while SS is high: this eliminates
sending a dummy character when starting a transaction. If the shift register is not preloaded, the
current contents of the shift register will be shifted out.

Only one data character will be preloaded into the shift register while the synchronized SS signal is
high. If the next character is written to DATA before SS is pulled low, the second character will be
stored in DATA until transfer begins.

For proper preloading, sufficient time must elapse between SS going low and the first SCK sampling
edge, as shown in the following figure. For timing details, see Electrical Characteristics from Related
Links.

Preloading is enabled by writing ‘1’ to the Client Data Preload Enable bit in the CTRLB register
(CTRLB.PLOADEN).

Figure 31-4. Timing Using Preloading

| : X ; |
Required SS-to-SCK time
o I‘ using PRELOADEN .I
SS I | |
| |
| | |
SS synchronized f | |
to system domain : | :
i | I T B
SCK : :
le Synchronization MISO to SCK
| to system domain setup time 1
. |

Related Links
43. Electrical Characteristics

632

@ MICROCHIP

31.6.3.3 Host with Several Clients
If the bus consists of several SPI clients, a SPI host can use general purpose I/0 pins to control the
SS line to each of the clients on the bus, as shown in the following figure. In this configuration, the
single selected SPI client will drive the tri-state MISO line.

Figure 31-5. Multiple Clients in Parallel

T» shift register MOSI MOSI P shift register b—‘
MISO MISO
SCK p-|SCK
SS[0] p|SS SPI Client 0
° °
° °
SPI Host ° °
SSin-1 MOS!
MISO
»|SCK
»lSS SPI Client n-1

Another configuration is multiple clients in series, as shown in the following figure. In this
configuration, all n attached clients are connected in series. A common SS line is provided to all
clients, enabling them simultaneously. The host must shift n characters for a complete transaction.

The SS line is controlled by a normal GPIO.

Figure 31-6. Multiple Clients in Series

31.6.3.4 Loop-Back Mode
For Loop-back mode, configure the Data In Pinout (CTRLA.DIPO) and Data Out Pinout (CTRLA.DOPO)
to use the same data pins for transmit and receive. The loop-back is through the pad, so the signal is
also available externally.

31.6.3.5 Hardware Controlled SS
In Host mode, a single SS chip select can be controlled by hardware by writing the Host SPI Select
Enable (CTRLB.MSSEN) bit to '1'. In this mode, the SS pin is driven low for a minimum of one baud
cycle before transmission begins, and stays low for a minimum of one baud cycle after transmission
completes. The SS pin will always be driven high for a minimum of one baud cycle between each

data sent.

> shitregser | MOS MOSL_pf it regster |
MISO MISO
SCK p-| SCK
SPI Host SS »|SS SPI Client 0
°
°
°
MOSI shift register
MISO

L m|SCK

SS

SPI Client n-1

In Hardware Controlled SS, the time T is between one and two baud cycles depending on the SPI
Transfer mode.

@ MICROCHIP

633

Figure 31-7. Hardware Controlled SS

T =1 to 2 baud cycles

When CTRLB.MSSEN=0, the SS pin(s) is/are controlled by user software and normal GPIO.

31.6.3.6 SPI Select Low Detection
In Client mode, the SPI can wake the CPU when the SPI Select (SS) goes low. When the SPI Select Low
Detect is enabled (CTRLB.SSDE=1), a high-to-low transition will set the SPI Select Low Interrupt flag
(INTFLAG.SSL) and the device will wake-up if applicable.

31.6.3.7 Host Inter-Character Spacing
When configured as host, inter-character spacing can be increased by writing a non-zero value
to the Inter-Character Spacing bit field in the Control C register (CTRLC.ICSPACE). When non-zero,
CTRLC.ICSPACE represents the minimum number of baud cycles that the SCK clock line does not
toggle and the next character is stalled.

The figure gives an example for CTRLC.ICSPACE=4; In this case, the SCK is inactive for 4 baud cycles.

Figure 31-8. Four Cycle Inter-Character Spacing Example

TATITIT

SCK

T =1 baud cycle

31.6.3.8 32-bit Extension
For better system bus utilization, 32-bit data receive and transmit can be enabled by writing to the
Data 32-bit bit field in the Control C register (CTRLC.DATA32B=1). When enabled, write and read
transaction to/from the DATA register are 32 bit in size.

If frames are not multiples of 4 Bytes, the Length Counter (LENGTH.LEN) and Length Enable
(LENGTH.LENEN) must be configured before data transfer begins. LENGTH.LEN must be enabled
only when CTRLC.DATA32B is enabled.

The following figure shows the order of transmit and receive when using 32-bit mode. Bytes are
transmitted or received and stored in order from 0 to 3.

Only 8-bit character size is supported.

Figure 31-9. 32-bit Extension Byte Ordering

APB Write/Read | BYTE3 BYTE2 BYTE1 BYTEO
Bit Position 31 0

32-bit Extension Client Operation

The following figure shows a transaction with 32-bit Extension enabled (CTRLC.DATA32B=1). When
address recognition is enabled (CTRLA.FORM=0x2) and there is an address match, the address is
loaded into the FIFO as Byte zero and data begins with Byte 1. INTFLAGS.RXC will then be raised for

634

@ MICROCHIP

every 4 Bytes transferred. For transmit, there is a 32-bit holding buffer in the core domain. Once
DATA has been registered in the core domain, INTFLAG.DRE will be raised, so that the next 32 bits
can be written to the DATA register.

Figure 31-10. 32-bit Extension Client Operation

RXC interrupt RXC interrupt

ADDRESS | » ﬁ} ‘ Byte 0 ‘ Byte 1 Byte 3 }_.®_>

When utilizing the length counter, the LENGTH register must be written before the frame begins.
If the frame length while SS is low is not a multiple of LENGTH.LEN Bytes, the Length Error Status
bit (STATUS.LENERR) is raised. If LENGTH.LEN is not a multiple of 4 Bytes, the final INTFLAG.RXC
interrupt will be raised when the last Byte is received.

Byte 2

The length count is based on the received Bytes, or the number of clocks if the receiver is not
enabled. If pre-loading is disabled and DATA is written to for transmit before SCK starts, transmitted
data will be delayed by one Byte, but the length counter will still increment for the first (empty) Byte
transmission. When the counter reaches LENGTH.LEN, the internal length counter, Rx Byte counter,
and Tx Byte counter are reset. If multiple lengths are to be transmitted, INTFLAG.TXC must go high
before writing DATA for subsequent lengths.

If there is a Length Error (STATUS.LENERR), the remaining Bytes in the length will be transmitted at
the beginning of the next frame. If this is not desired, the SERCOM must be disabled and re-enabled
in order to flush the Tx and Rx pipelines.

Writing the LENGTH register while a frame is in progress will produce unpredictable results. If
LENGTH.LENEN is not configured and a frame is not a multiple of 4 Bytes (while SS is low), the
remainder will be transmitted in the next frame.

32-bit Extension Host Operation

When using the SPI configured as Host, the Length and the Length Enable bit fields (LENGTH.LEN
and LENGTH.LENEN) must be written before the frame begins. When LENGTH.LENEN is written to
1", the value of LENGTH.LEN determines the number of data bytes in the transaction from 1 to 255.

For receive data, INTFLAG.RXC is raised every 4 Bytes received. If LENGTH.LEN is not a multiple of 4
Bytes, the final INTFLAG.RXC is set when the final byte is received.

For transmit, there is a holding buffer for the 32-bit data in the core domain. Once DATA has been
registered in the core domain, INTFLAG.DRE will be raised so that the next 32 bits can be written to
the DATA register.

If multiple lengths are to be transmitted, INTFLAG.TXC must go high before writing DATA for
subsequent lengths.

635

@ MICROCHIP

31.6.4 DMA, Interrupts, and Events

Table 31-4. Module Request for SERCOM SPI

Data Register Empty (DRE) Yes Yes NA
(request cleared when data is

written)

Receive Complete (RXC) Yes Yes
(request cleared when data is
read)

Transmit Complete (TXC) NA Yes

Client Select low (SSL) NA Yes

Error (ERROR) NA Yes

31.6.4.1 DMA Operation
The SPI generates the following DMA requests:

31.6.4.2 Interrupts
The SPI has the following interrupt sources. These are asynchronous interrupts, and can wake-up
the device from any Sleep mode:
+ Data Register Empty (DRE)
* Receive Complete (RXC)
« Transmit Complete (TXC)
* SPI Select Low (SSL)
* Error (ERROR)
Each interrupt source has its own Interrupt flag. The Interrupt flag in the Interrupt Flag Status
and Clear register (INTFLAG) will be set when the Interrupt condition is met. Each interrupt can
be individually enabled by writing ‘1’ to the corresponding bit in the Interrupt Enable Set register

(INTENSET), and disabled by writing ‘1’ to the corresponding bit in the Interrupt Enable Clear register
(INTENCLR). The status of enabled interrupts can be read from either INTENSET or INTENCLR.

An interrupt request is generated when the Interrupt flag is set and if the corresponding interrupt
is enabled. The interrupt request remains active until either the Interrupt flag is cleared, the
interrupt is disabled, or the SPI is reset. For details on clearing Interrupt flags, see INTFLAG register
description.

The value of INTFLAG indicates which interrupt is executed. Note that interrupts must be globally
enabled for interrupt requests. See Nested Vector Interrupt Controller (NVIC) from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

31.6.4.3 Events
Not applicable.

31.6.5 Sleep Mode Operation
The behavior in sleep mode is depending on the Host/Client configuration and the Run In Standby
bit in the Control A register (CTRLA.RUNSTDBY):

+ Host operation, CTRLA.RUNSTDBY=1: The peripheral clock GCLK_SERCOM_CORE will continue
to run in idle sleep mode and in standby sleep mode. Any interrupt can wake up the device.

636

@ MICROCHIP

* Host operation, CTRLA.RUNSTDBY=0: GLK_SERCOMx_CORE will be disabled after the ongoing
transaction is finished. Any interrupt can wake up the device.

+ Client operation, CTRLA.RUNSTDBY=1: The Receive Complete interrupt can wake up the device

+ Client operation, CTRLA.RUNSTDBY=0: All reception will be dropped, including the ongoing
transaction

31.6.6 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some
registers need to be synchronized when written or read.

The following bits are synchronized when written:

+ Software Reset bit in the CTRLA register (CTRLA.SWRST)
+ Enable bit in the CTRLA register (CTRLA.ENABLE)

+ Receiver Enable bit in the CTRLB register (CTRLB.RXEN)

Note: CTRLB.RXEN is write-synchronized somewhat differently. See CTRLB register from Related
Links.

Required write synchronization is denoted by the "Write-Synchronized" property in the register
description.

Related Links
31.8.2. CTRLB

637

@ MICROCHIP

31.7

7:0

0x00

0x04

0x08
0x0B
0x0C
0x0D
0x13
0x14
0x15
0x16
0x17

0x18
0x19

Ox1A

0x1C
0x20
0x23

0x24

0x28

0x2C
Ox2F
0x30

31.8

@ MICROCHIP

Register Summary

CTRLA

CTRLB

Reserved
BAUD
Reserved
INTENCLR
Reserved
INTENSET
Reserved

INTFLAG
Reserved

STATUS

SYNCBUSY

Reserved

ADDR

DATA

Reserved

DBGCTRL

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

7:0

7:0

7:0

7:0
15:8
7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24

7:0

7 | 6 | s | 4 0 3 1 2 0 1 | 0 |

RUNSTDBY MODE[2:0]
DIPO[1:0]
DORD cpPoL CPHA
PLOADEN
AMODE[1:0] MSSEN

BAUDI[7:0]

ERROR ssL

ERROR SsL

ERROR SsL
ADDRI[7:0]

Register Description

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can

be accessed directly.

ADDRMASK[7:0]

DATA[7:0]
DATA[15:8]
DATA[23:16]
DATA[31:24]

ENABLE SWRST
IBON
DOPO[1:0]
FORMI[3:0]
CHSIZE[2:0]
SSDE
RXEN
RXC TXC DRE
RXC TXC DRE
RXC TXC DRE
BUFOVF
CTRLB ENABLE SWRST
DBGSTOP

Some registers require synchronization when read and/or written. Synchronization is denoted by the
“Read-Synchronized” and/or “Write-Synchronized” property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register

description.

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

See Peripheral Access Controller (PAC) from Related Links.

638

Related Links
26. Peripheral Access Controller (PAC)

639

@ MICROCHIP

31.8.1 Control A

Name: CTRLA
Offset: 0x00
Reset: 0x00000000
Property: PAC Write-Protection, Enable-Protected, Write-Synchronized
Bit 31 30 29 28 27 26 25 24
| | DORD | CPOL | CPHA | FORM[3:0] |
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| | | DIPO[1:0] | | | DOPO[1:0] |
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 15 14 13 12 11 10 9 8
IBON
Access R/W
Reset 0
Bit 7 6 5 4 3 2 1 0
RUNSTDBY MODE[2:0] ENABLE SWRST
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 30 - DORD Data Order
This bit selects the data order when a character is shifted out from the shift register.
This bit is not synchronized.

Value Description

0 MSB is transferred first.
1 LSB is transferred first.

Bit 29 - CPOL Clock Polarity
In combination with the Clock Phase bit (CPHA), this bit determines the SPI transfer mode.
This bit is not synchronized.

Value Description

0 SCKis low when idle. The leading edge of a clock cycle is a rising edge, while the trailing edge is a falling edge.
1 SCK is high when idle. The leading edge of a clock cycle is a falling edge, while the trailing edge is a rising edge.

Bit 28 - CPHA Clock Phase
In combination with the Clock Polarity bit (CPOL), this bit determines the SPI transfer mode.
This bit is not synchronized.

Rising, sample Falling, change

0x1 0 1 Rising, change Falling, sample
0x2 1 0 Falling, sample Rising, change
0x3 1 1 Falling, change Rising, sample

Value Description

0 The data is sampled on a leading SCK edge and changed on a trailing SCK edge.
1 The data is sampled on a trailing SCK edge and changed on a leading SCK edge.

@ MICROCHIP

640

Bits 27:24 - FORM[3:0] Frame Format
This bit field selects the various frame formats supported by the SPI in client mode. When the 'SPI
frame with address' format is selected, the first byte received is checked against the ADDR register.

T ame ——oespron

0x0 SPI SPI frame
0x1 — Reserved
0x2 SPI_ADDR SPI frame with address
0x3-0xF — Reserved

Bits 21:20 - DIPO[1:0] Data In Pinout
These bits define the data in (DI) pad configurations.
In host operation, DI is MISO.
In client operation, DI is MOSI.
These bits are not synchronized.

0x0 PAD[0] SERCOM PAD[0] is used as data input
0x1 PAD[1] SERCOM PAD[1] is used as data input
0x2 PAD[2] SERCOM PAD[2] is used as data input
0x3 PAD[3] SERCOM PAD[3] is used as data input

Bits 17:16 - DOPO[1:0] Data Out Pinout
This bit defines the available pad configurations for data out (DO), the serial clock (SCK) and the SPI
Select (SS). In Client operation, the SPI Select line (SS) is controlled by DOPO. In host operation, the
SPI Select line (SS) is either controlled by DOPO when CTRLB.MSSEN=1, or by a GPIO driven by the
application when CTRLB.MSSEN=0.
In host operation, DO is MOSI.
In client operation, DO is MISO.
These bits are not synchronized.

DOPO | DO | ScK | clientss Host 55 (MSSEN =1) | Host 55 (MSSEN = 0)

0x0 PADI[O] PAD[1] PAD[2] PAD[2] Any GPIO configured by the application
0x2 PAD[3] PAD[1] PAD[2] PAD[2] Any GPIO configured by the application

Bit 8 - IBON Immediate Buffer Overflow Notification
This bit controls when the Buffer Overflow Status bit (STATUS.BUFOVF) is set when a buffer overflow
occurs.
This bit is not synchronized.

Value Description

0 STATUS.BUFOVF is set when it occurs in the data stream.
1 STATUS.BUFOVF is set immediately upon buffer overflow.

Bit 7 - RUNSTDBY Run In Standby
This bit defines the functionality in Standby mode.
These bits are not synchronized.

0x0 Disabled. All reception is dropped, including the Generic clock is disabled when ongoing transaction is
ongoing transaction. finished. All interrupts can wake up the device.

0x1 Ongoing transaction continues, wake on Receive Generic clock is enabled while in sleep modes. All
Complete interrupt. interrupts can wake up the device.

Bits 4:2 - MODE[2:0] Operating Mode
These bits must be written to 0x2 or 0x3 to select the SPI serial communication interface of the
SERCOM.
0x2: SPI client operation

641

@ MICROCHIP

0x3: SPI host operation
These bits are not synchronized.

Bit 1 - ENABLE Enable
Due to synchronization, there is delay from writing CTRLA.ENABLE until the peripheral is
enabled/disabled. The value written to CTRL.ENABLE will read back immediately and the
Synchronization Enable Busy bit in the Synchronization Busy register (SYNCBUSY.ENABLE) will be
set. SYNCBUSY.ENABLE is cleared when the operation is complete.
This bit is not enable-protected.

Value Description

0 The peripheral is disabled or being disabled.
1 The peripheral is enabled or being enabled.

Bit 0 - SWRST Software Reset
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit resets all registers in the SERCOM, except DBGCTRL, to their initial state, and the
SERCOM will be disabled.
Writing ‘1’ to CTRL.SWRST will always take precedence, meaning that all other writes in the same
write-operation will be discarded. Any register write access during the ongoing reset will result in an
APB error. Reading any register will return the reset value of the register.
Due to synchronization, there is a delay from writing CTRLA.SWRST until the reset is complete.
CTRLA.SWRST and SYNCBUSY. SWRST will both be cleared when the reset is complete.
This bit is not enable-protected.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description

0 There is no reset operation ongoing.
1 The reset operation is ongoing.

642

@ MICROCHIP

31.8.2

Bit

Access
Reset

Bit

Access
Reset

Bit

Access
Reset

Bit

Access
Reset

Control B
Name: CTRLB
Offset: 0x04
Reset: 0x00000000
Property: PAC Write-Protection, Enable-Protected, Write-Synchronized
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| | | | | | [RN |
R/W
0
15 14 13 12 11 10 9 8
AMODE[1:0] | MSSEN | | | SSDE | |
R/W R/W R/W R/W
0 0 0 0
7 6 5 4 3 2 1 0
PLOADEN CHSIZE[2:0]
R/W R/W R/W R/W
0 0 0 0

Bit 17 - RXEN Receiver Enable

Writing ‘0’ to this bit will disable the SPI receiver immediately. The receive buffer will be flushed, data
from ongoing receptions will be lost and STATUS.BUFOVF will be cleared.

Writing ‘1 to CTRLB.RXEN when the SPI is disabled will set CTRLB.RXEN immediately. When the SPI is
enabled, CTRLB.RXEN will be cleared, SYNCBUSY.CTRLB will be set and remain set until the receiver is
enabled. When the receiver is enabled CTRLB.RXEN will read back as ‘1".

Writing ‘1’ to CTRLB.RXEN when the SPI is enabled will set SYNCBUSY.CTRLB, which will remain set
until the receiver is enabled, and CTRLB.RXEN will read back as ‘1'.

This bit is not enable-protected.

Value Description

0 The receiver is disabled.
1 The receiver is enabled or it will be enabled when SPI is enabled.

Bits 15:14 - AMODE[1:0] Address Mode

These bits set the Client Addressing mode when the frame format (CTRLA.FORM) with address is
used. They are unused in Host mode.
These bits are not synchronized.

AMODE1] Name | Descrption

0x0 MASK ADDRMASK is used as a mask to the ADDR register

0x1 2_ADDRS The client responds to the two unique addresses in ADDR and ADDRMASK

0x2 RANGE The client responds to the range of addresses between and including ADDR and ADDRMASK. ADDR
is the upper limit

0x3 — Reserved

Bit 13 - MSSEN Host SPI Select Enable

This bit enables hardware SPI Select (SS) control.

@ MICROCHIP

643

This bit is not synchronized.

Value Description

0 Hardware SS control is disabled.
1 Hardware SS control is enabled.

Bit 9 - SSDE SPI Select Low Detect Enable
This bit enables wake-up when the SPI Select (SS) pin transitions from high-to-low.
This bit is not synchronized.

Value Description

0 SS low detector is disabled.
1 SS low detector is enabled.

Bit 6 - PLOADEN Client Data Preload Enable
Setting this bit will enable preloading of the Client Shift register when there is no transfer in
progress. If the SS line is high when DATA is written, it will be transferred immediately to the Shift
register.
This bit is not synchronized.

Bits 2:0 - CHSIZE[2:0] Character Size
These bits are not synchronized.

e

0x0 8BIT 8 bits
0x1 9BIT 9 bits
0x2-0x7 — Reserved

@ MICROCHIP

644

31.8.3 Baud Rate

Name: BAUD

Offset: 0x0C

Reset: 0x00

Property: PAC Write-Protection, Enable-Protected

Bit 7 6 5 4 3 2 1 0
| BAUDI[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - BAUD[7:0] Baud Register
These bits control the clock generation, as described in the SERCOM Clock Generation - Baud-Rate

Generator.

645

@ MICROCHIP

31.8.4 Interrupt Enable Clear

Name: INTENCLR
Offset: 0x14
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to disable an interrupt without read-modify-write operation. Changes in
this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit 7 6 5 4 3 2 1 0
| ERROR | | | | ssL | R | T | DRE |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 7 - ERROR Error Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Error Interrupt Enable bit, which disables the Error interrupt.

Value Description
0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 3 - SSL Client Select Low Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Client Select Low Interrupt Enable bit, which disables the Client
Select Low interrupt.

Value Description
0 Client Select Low interrupt is disabled.
1 Client Select Low interrupt is enabled.

Bit 2 - RXC Receive Complete Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Receive Complete Interrupt Enable bit, which disables the Receive
Complete interrupt.
Value Description
0 Receive Complete interrupt is disabled.
1 Receive Complete interrupt is enabled.

Bit 1 - TXC Transmit Complete Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Transmit Complete Interrupt Enable bit, which disable the Transmit
Complete interrupt.

Value Description
0 Transmit Complete interrupt is disabled.
1 Transmit Complete interrupt is enabled.

Bit 0 - DRE Data Register Empty Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Data Register Empty Interrupt Enable bit, which disables the Data
Register Empty interrupt.

Value Description
0 Data Register Empty interrupt is disabled.
1 Data Register Empty interrupt is enabled.

@ MICROCHIP

646

31.8.5 Interrupt Enable Set

Name: INTENSET
Offset: 0x16
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to disable an interrupt without read-modify-write operation. Changes in
this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit 7 6 5 4 3 2 1 0
| ERROR | | | | ssL | R | T | DRE |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 7 - ERROR Error Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.

Value Description
0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 3 - SSL Client Select Low Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will set the Client Select Low Interrupt Enable bit, which enables the Client Select
Low interrupt.

Value Description
0 Client Select Low interrupt is disabled.
1 Client Select Low interrupt is enabled.

Bit 2 - RXC Receive Complete Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will set the Receive Complete Interrupt Enable bit, which enables the Receive

Complete interrupt.

Value Description
0 Receive Complete interrupt is disabled.
1 Receive Complete interrupt is enabled.

Bit 1 - TXC Transmit Complete Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will set the Transmit Complete Interrupt Enable bit, which enables the Transmit
Complete interrupt.

Value Description
0 Transmit Complete interrupt is disabled.
1 Transmit Complete interrupt is enabled.

Bit 0 - DRE Data Register Empty Interrupt Enable
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will set the Data Register Empty Interrupt Enable bit, which enables the Data
Register Empty interrupt.

Value Description
0 Data Register Empty interrupt is disabled.
1 Data Register Empty interrupt is enabled.

@ MICROCHIP

647

31.8.6 Interrupt Flag Status and Clear

Name: INTFLAG

Offset: 0x18

Reset: 0x00

Property: -

Bit 7 6 5 4 3 2 1 0

| ERROR | | | ssL | R | T | DRE |
Access R/W R/W R R/W R
Reset 0 0 0 0 0

Bit 7 - ERROR Error
This flag is cleared by writing '1' to it.
This bit is set when any error is detected. Errors that will set this flag have corresponding Status flags
in the STATUS register. The BUFOVF error will set this Interrupt flag.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 3 - SSL SPI Select Low
This flag is cleared by writing '1' to it.
This bit is set when a high to low transition is detected on the SS pin in Client mode and SPI Select
Low Detect (CTRLB.SSDE) is enabled.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 2 - RXC Receive Complete
This flag is cleared by reading the Data (DATA) register or by disabling the receiver.
This flag is set when there are unread data in the receive buffer. If address matching is enabled, the
first data received in a transaction will be an address.
Writing '0' to this bit has no effect.
Writing '1' to this bit has no effect.

Bit 1 - TXC Transmit Complete
This flag is cleared by writing '1' to it or by writing new data to DATA.
In Host mode, this flag is set when the data have been shifted out and there are no new data in
DATA.
In Client mode, this flag is set when the SS pin is pulled high. If address matching is enabled, this flag
is only set if the transaction was initiated with an address match.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 0 - DRE Data Register Empty
This flag is cleared by writing new data to DATA.
This flag is set when DATA is empty and ready for new data to transmit.
Writing '0' to this bit has no effect.
Writing '1' to this bit has no effect.

648

@ MICROCHIP

31.8.7 Status

Name: STATUS
Offset: Ox1A

Reset: 0x0000
Property: -
Bit 15 14 13 12 11 10 9 8
| | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
| | | BUFOVF | |
Access R/W
Reset 0

Bit 2 - BUFOVF Buffer Overflow

Reading this bit before reading DATA will indicate the error status of the next character to be read.
This bit is cleared by writing ‘1’ to the bit or by disabling the receiver.
This bit is set when a Buffer Overflow condition is detected. See CTRLA from Related Links for

overflow handling.

When set, the corresponding RxDATA will be zero.
Writing ‘0’ to this bit has no effect.

Writing ‘1’ to this bit will clear it.

VEIS Description

0 No Buffer Overflow has occurred.
1 A Buffer Overflow has occurred.

Related Links
31.8.1. CTRLA

@ MICROCHIP

649

31.8.8 Synchronization Busy

Name: SYNCBUSY
Offset: 0x1C
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
CTRLB ENABLE SWRST
Access R R R
Reset 0 0 0

Bit 2 - CTRLB CTRLB Synchronization Busy
Writing to the CTRLB when the SERCOM is enabled requires synchronization. Ongoing
synchronization is indicated by SYNCBUSY.CTRLB=1 until synchronization is complete. If CTRLB is
written while SYNCBUSY.CTRLB=1, an APB error will be generated.

Value Description

0 CTRLB synchronization is not busy.
1 CTRLB synchronization is busy.

Bit 1 - ENABLE SERCOM Enable Synchronization Busy
Enabling and disabling the SERCOM (CTRLA.ENABLE) requires synchronization. Ongoing
synchronization is indicated by SYNCBUSY.ENABLE=1 until synchronization is complete.

VEIS Description

0 Enable synchronization is not busy.
1 Enable synchronization is busy.

Bit 0 - SWRST Software Reset Synchronization Busy
Resetting the SERCOM (CTRLA.SWRST) requires synchronization. Ongoing synchronization is
indicated by SYNCBUSY.SWRST=1 until synchronization is complete.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description

0 SWRST synchronization is not busy.
1 SWRST synchronization is busy.

@ MICROCHIP

650

31.8.9 Address

Name: ADDR
Offset: 0x24
Reset: 0x00000000
Property: PAC Write-Protection, Enable-Protected
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| ADDRMASK[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
ADDR[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:16 - ADDRMASK][7:0] Address Mask

These bits hold the address mask when the transaction format with address is used (CTRLA.FORM,

CTRLB.AMODE).

Bits 7:0 - ADDR[7:0] Address

These bits hold the address when the transaction format with address is used (CTRLA.FORM,

CTRLB.AMODE).

@ MICROCHIP

651

31.8.10 Data

Name: DATA
Offset: 0x28
Reset: 0x0000

Property: -
Bit 31 30 29 28 27 26 25 24
| DATA[31:24]
Access R/W R/W R/W R/W R/W RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| DATA[23:16]
Access R/W R/W R/W R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
DATA[15:8]
Access R/W R/W R/W R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
DATA[7:0]
Access R/W R/W RIW R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - DATA[31:0] Data

Reading these bits will return the contents of the receive data buffer. The register must be read
only when the Receive Complete Interrupt Flag bit in the Interrupt Flag Status and Clear register

(INTFLAG.RXC) is set.

Writing these bits will write the transmit data buffer. This register must be written only when the

Data Register Empty Interrupt Flag bit in the Interrupt Flag Status and Clear register (INTFLAG.DRE) is

set.

Reads and writes are 32-bit or CTLB.CHSIZE based on the CTRLC.DATA32B setting.

@ MICROCHIP

652

31.8.11 Debug Control

Name: DBGCTRL

Offset: 0x30

Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| | | | | DBGSTOP |
Access R/W
Reset 0

Bit 0 - DBGSTOP Debug Stop Mode
This bit controls the functionality when the CPU is halted by an external debugger.

Value Description

0 The baud-rate generator continues normal operation when the CPU is halted by an external debugger.
1 The baud-rate generator is halted when the CPU is halted by an external debugger.

653

@ MICROCHIP

32. SERCOM Inter-Integrated Circuit (SERCOM 12C)

32.1 Overview

The Inter-Integrated Circuit (12C) interface is one of the available modes in the serial communication
interface (SERCOM).

The 12C interface uses the SERCOM transmitter and receiver configured as shown in Figure 32-1.
Labels in capital letters are registers accessible by the CPU, while lowercase labels are internal to the
SERCOM.

A SERCOM instance can be configured to be either an 12C host or an I12C client. Both host and client
have an interface containing a shift register, a transmit buffer and a receive buffer. In addition, the
12C host uses the SERCOM baud-rate generator, while the I12C client uses the SERCOM address match
logic.

Note: Traditional Inter-Integrated Circuit (12C) documentation uses the terminology “Master” and
“Slave”. The equivalent Microchip terminology used in this document is “Host” and “Client”,
respectively.
32.2 Features
SERCOM I2C includes the following features:
+ Host or Client Operation
« Can be used with DMA
* Philips I2C Compatible
+ SMBus Compatible
+ PMBus™ Compatible
* Support of 100 kHz and 400 kHz, 1 MHz I12C mode
* 4-Wire Operation Supported
+ Physical interface includes:
- Slew-rate limited outputs

- Filtered inputs
+ Client Operation:
Operation in all Sleep modes

Wake-up on address match

7-bit Address match in hardware for:

-+ Unique address and/or 7-bit general call address
+ Address range

« Two unique addresses can be used with DMA

654

@ MICROCHIP

32.3 Block Diagram

Figure 32-1. 12C Single-Host Single-Client Interconnection

‘ baud rate generator | SCL hold low|—

32.4 Signal Description

PAD[0] Digital 110 SDA
PADI[1] Digital I1/0 SCL
PADI[2] Digital I1/0 SDA_OUT (4-wire operation)
PADI[3] Digital I1/0 SCL_OUT (4-wire operation)

One signal can be mapped on several pins.
Not all the pins are I°C pins.

Related Links
32.6.3.3. 4-Wire Mode

32.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

32.5.1 1/0 Lines

In order to use the SERCOM's I/0 lines, the 1/0 pins must be configured using the System
Configuration registers only. 12C does not operate through PPS. See DEVCFG1 configuration bits
SCOMN_HSEN in Configuration Bits Fuses and also CFGCON1 SCOMn_HSEN in CFGCON1(L) register.
See CFGCONT/(L) register from Related Links.

When the SERCOM is used in I2C mode, the SERCOM controls the direction and value of the 1/0
pins. In I2C mode pull-up resistors are disabled. External pull-up resistors are required for proper
function.

Related Links

18.4.2. CFGCON1(L)

32.5.2 Power Management

This peripheral can continue to operate in any Sleep mode where its source clock is running. The
interrupts can wake-up the device from Sleep modes.

655

@ MICROCHIP

32.5.3 Clocks

Two generic clocks are used by SERCOM, GCLK_SERCOMx_CORE and GCLK_SERCOMx_SLOW. The
core clock (GCLK_SERCOMx_CORE) can clock the I2C when working as a host. The slow clock
(GCLK_SERCOMx_SLOW) is required only for certain functions, e.g., SMBus timing. These two clocks
must be configured and enabled in the CRU registers before using the 12C.

These generic clocks are asynchronous to the bus clock (PBx_CLK). Due to this asynchronicity, writes
to certain registers will require synchronization between the clock domains.

32.54 DMA

The DMA request lines are connected to the DMA Controller (DMAC). To use DMA requests with
this peripheral, the DMAC must be configured first (see Direct Memory Access Controller (DMAC) from
Related Links).

Related Links
22. Direct Memory Access Controller (DMAC)

32.5.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. In order to use interrupt requests
of this peripheral, the Interrupt Controller (NVIC) must be configured first. See Nested Vector Interrupt
Controller (NVIC) from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

32.5.6 Events
Not applicable.

32.5.7 Debug Operation

When the CPU is halted in Debug mode, this peripheral will continue normal operation. If the
peripheral is configured to require periodical service by the CPU through interrupts or similar,
improper operation or data loss may result during debugging. This peripheral can be forced to halt
operation during debugging - refer to the Debug Control (DBGCTRL) register for details.

Related Links
32.10.11. DBGCTRL

32.5.8 Register Access Protection

Registers with write access can be write-protected optionally by the Peripheral Access Controller
(PAC).

PAC write protection is not available for the following registers:

+ Interrupt Flag Clear and Status register (INTFLAG)
+ Status register (STATUS)

+ Data register (DATA)

+ Address register (ADDR) in Host mode

Optional PAC write protection is denoted by the "PAC Write-Protection" property in each individual
register description.

Write-protection does not apply to accesses through an external debugger.

32.5.9 Analog Connections
Not applicable.

656

@ MICROCHIP

32.6 Functional Description

32.6.1 Principle of Operation

The I2C interface uses two physical lines for communication:

« Serial Data Line (SDA) for data transfer
« Serial Clock Line (SCL) for the bus clock

A transaction starts with the 12C host sending the Start condition, followed by a 7-bit address and a

direction bit (read or write to/from the client).

The addressed 12C client will then Acknowledge (ACK) the address, and data packet transactions can
begin. Every 9-bit data packet consists of 8 data bits followed by a one-bit reply indicating whether

the data was acknowledged or not.

If a data packet is Not Acknowledged (NACK), whether by the 12C client or host, the I2C host takes
action by either terminating the transaction by sending the Stop condition, or by sending a repeated

start to transfer more data.

The figure below illustrates the possible transaction formats and Transaction Diagram Symbols
explains the transaction symbols. These symbols will be used in the following descriptions.

Figure 32-2. Transaction Diagram Symbols

Bus Driver

Host driving bus

Client driving bus

Either Host or Client driving bus

Data Package Direction

R Host Read

W Host Write

@ MICROCHIP

Special Bus Conditions

S

Sr

START condition

repeated START condition

STOP condition

Acknowledge

Acknowledge (ACK)

Not Acknowledge (NACK)

657

Figure 32-3. Basic |12C Transaction Diagram

_ XN [__\ [X \ /

(7]
=)
ﬁ

_5__
%
|

——-l

SCL

&

|
N 6.0 7.0 7.0 !
| : [—) - - - - - - | :
!_S | ADDRESS R/W ACK DATA ACK DATA ACK/NACK [P |
S ADDRESS DATA A DATA
|—Direction 4 4
— Address Packet ——»«— Data Packet #0——»<«——— Data Packet #1——»

Transaction >

32.6.2 Basic Operation

32.6.2.1 Initialization

The following registers are enable-protected, meaning they can be written only when the 12C
interface is disabled (CTRLA.ENABLE is ‘0"):

+ Control A register (CTRLA), except Enable (CTRLA.ENABLE) and Software Reset (CTRLA.SWRST) bits

« Control B register (CTRLB), except Acknowledge Action (CTRLB.ACKACT) and Command
(CTRLB.CMD) bits

« Baud register (BAUD)
+ Address register (ADDR) in client operation.

When the I12C is enabled or is being enabled (CTRLA.ENABLE=1), writing to these registers will be
discarded. If the 12C is being disabled, writing to these registers will be completed after the disabling.

Enable-protection is denoted by the "Enable-Protection" property in the register description.

Before the 12C is enabled it must be configured as outlined by the following steps:

1. Select I12C Host or Client mode by writing 0x4 (Client mode) or 0x5 (Host mode) to the Operating
Mode bits in the CTRLA register (CTRLA.MODE).

If desired, select the SDA Hold Time value in the CTRLA register (CTRLA.SDAHOLD).

If desired, enable smart operation by setting the Smart Mode Enable bit in the CTRLB register
(CTRLB.SMEN).

4. |If desired, enable SCL low time-out by setting the SCL Low Time-Out bit in the Control A register
(CTRLA.LOWTOUT).

5. In Host mode:

a. Select the inactive bus time-out in the Inactive Time-Out bit group in the CTRLA register
(CTRLA.INACTOUT).

b. Write the Baud Rate register (BAUD) to generate the desired baud rate.

In Client mode:

a. Configure the address match configuration by writing the Address Mode value in the CTRLB
register (CTRLB.AMODE).

b. Setthe Address and Address Mask value in the Address register (ADDR.ADDR and
ADDR.ADDRMASK) according to the address configuration.

658

@ MICROCHIP

32.6.2.2 Enabling, Disabling, and Resetting
This peripheral is enabled by writing '1' to the Enable bit in the Control A register (CTRLA.ENABLE),
and disabled by writing '0' to it.

Writing 1" to the Software Reset bit in the Control A register (CTRLA.SWRST) will reset all registers of
this peripheral to their initial states, except the DBGCTRL register, and the peripheral is disabled.

32.6.2.3 I2C Bus State Logic
The Bus state logic includes several logic blocks that continuously monitor the activity on the I2C bus
lines in all Sleep modes with running GCLK_SERCOM_x clocks. The start and stop detectors and the
bit counter are all essential in the process of determining the current Bus state. The Bus state is
determined according to Bus State Diagram. Software can get the current Bus state by reading the
Host Bus State bits in the Status register (STATUS.BUSSTATE). The value of STATUS.BUSSTATE in the
figure is shown in binary.

Figure 32-4. Bus State Diagram

Timeobut or Stop Condition

Start Condition

Timeout or Stop Condition

22
A3
Q9L
é g
Write ADDR L 5
Start Condition Lost Arbitration =

Repeated Start Condition

The Bus state machine is active when the 12C host is enabled.

After the 12C host has been enabled, the Bus state is UNKNOWN (0b00). From the UNKNOWN state,
the bus will transition to IDLE (Ob01) by either:

+ Forcing by writing 0b01 to STATUS.BUSSTATE

« A Stop condition is detected on the bus

+ If the inactive bus time-out is configured for SMBus compatibility (CTRLA.INACTOUT) and a time-
out occurs.

Note: Once a known Bus state is established, the Bus state logic will not re-enter the UNKNOWN
state.

When the bus is IDLE it is ready for a new transaction. If a Start condition is issued on the bus by
another 12C host in a multi-host setup, the bus becomes BUSY (0b11). The bus will re-enter IDLE
either when a Stop condition is detected, or when a time-out occurs (inactive bus time-out needs to
be configured).

659

@ MICROCHIP

If a Start condition is generated internally by writing the Address bit group in the Address register
(ADDR.ADDR) while IDLE, the OWNER state (0b10) is entered. If the complete transaction was
performed without interference, i.e., arbitration was not lost, the I2C host can issue a Stop condition,
which will change the Bus state back to IDLE.

However, if a packet collision is detected while in OWNER state, the arbitration is assumed lost
and the Bus state becomes BUSY until a Stop condition is detected. A repeated Start condition will
change the Bus state only if arbitration is lost while issuing a repeated start.

Note: Violating the protocol may cause the 12C to hang. If this happens it is possible to recover from
this state by a software Reset (CTRLA.SWRST='1").

32.6.2.4 12C Host Operation

The 12C host is byte-oriented and interrupt based. The number of interrupts generated is kept at a
minimum by automatic handling of most incidents. The software driver complexity and code size are
reduced by auto-triggering of operations, and a Special Smart mode, which can be enabled by the
Smart Mode Enable bit in the Control A register (CTRLA.SMEN).

The I12C host has two interrupt strategies.

When SCL Stretch Mode (CTRLA.SCLSM) is '0', SCL is stretched before or after the Acknowledge bit .
In this mode the 12C host operates according to 2C Host Behavioral Diagram (SCLSM=0) as shown in
the following figure. The circles labeled "Mn" (M1, M2..) indicate the nodes the bus logic can jump to,
based on software or hardware interaction.

This diagram is used as reference for the description of the I2C host operation throughout the
document.

Figure 32-5. 12C Host Behavioral Diagram (SCLSM=0)

'APPLICATION

| S ADDRESS }—

Wait for
IDLE

Addressed client provides data on the bus

[1
1 1
1 [
1 1
1 [
: D The host provides data on the bus [

[
1 1
1 [
L '
1 [
[

E ‘
.
.
[
.
.
.

DATA ’—

660

@ MICROCHIP

In the second strategy (CTRLA.SCLSM=1), interrupts only occur after the ACK bit, as in Host Behavioral
Diagram (SCLSM=1) shown in the following figure. This strategy can be used when it is not necessary
to check DATA before acknowledging.

Figure 32-6. I2C Host Behavioral Diagram (SCLSM=1)

'APPLICATION Host Bus INTERRUPT + SCL HOLD

% poess | oo
S

Client Bus INTERRUPT + SCL HOLD

RPN

|
|
|
|
|
| The host provides data on the bus
|
|
|
|

Addressed client provides data on the bus

b e e e e e e e - - —— o ——————————

SrR]af—L DATA | A

32.6.2.4.1 Host Clock Generation
The SERCOM peripheral supports several I2C bidirectional modes:

+ Standard mode (Sm) up to 100 kHz
+ Fast mode (Fm) up to 400 kHz
+ Fast mode Plus (Fm+) up to 1 MHz

The Host clock configuration for Sm, Fm and Fm+ are described in Clock Generation (Standard-Mode,
Fast-Mode and Fast-Mode Plus) as follows.

Clock Generation (Standard-Mode, Fast-Mode, and Fast-Mode Plus)
In 12C Sm, Fm, and Fm+ mode, the Host clock (SCL) frequency is determined as described in this
section:

The low (T ow) and high (ThigH) times are determined by the Baud Rate register (BAUD), while the
rise (Trise) and fall (Tgar) times are determined by the bus topology. Because of the wired-AND logic
of the bus, Tga . Will be considered as part of T ow. Likewise, Tgise will be in a state between T ow and
Thign until a high state has been detected.

661

@ MICROCHIP

Figure 32-7. SCL Timing

SCL

SDA

o |

Tiow

Tsur

~~————"-

The following parameters are timed using the SCL low time period T, gw. This comes from the Host
Baud Rate Low bit group in the Baud Rate register (BAUD.BAUDLOW). When BAUD.BAUDLOW=0, or

>

[R N

)
Tsu;sto

TraLL

€— Trise

ThicH

SrI

AL e e e e —

HD;STA

| S

)
Tsu;sta

the Host Baud Rate bit group in the Baud Rate register (BAUD.BAUD) determines it.

* Tow - Low period of SCL clock

* Tsy:sTo - Set-up time for stop condition

* Tgyur - Bus free time between stop and start conditions

* Tup:sta - Hold time (repeated) start condition

* Tsu.sta - Set-up time for repeated start condition

* Thign is timed using the SCL high time count from BAUD.BAUD
* Trise is determined by the bus impedance; for internal pull-ups.
* TeaLLis determined by the open-drain current limit and bus impedance; can typically be regarded

as zero.

The SCL frequency is given by:

fscL =

When BAUD.BAUDLOW is zero, the BAUD.BAUD value is used to time both SCL high and SCL low. In
this case the following formula will give the SCL frequency:

fscL =

When BAUD.BAUDLOW is non-zero, the following formula determines the SCL frequency:

fscL =

The following formulas can determine the SCL T ow and Ty gn times:
_ BAUDLOW +5

T1ow

Tyign

Note: The I2C standard Fm+ (Fast-mode plus) requires a nominal high to low SCL ratio of 1:2,
and BAUD must be set accordingly. At a minimum, BAUD.BAUD and/or BAUD.BAUDLOW must be

1

Trow + Thigh + TrisE

facLk

10 + 2BAUD + fgoik * TriSE

feeLk

10 + BAUD + BAUDLOW + fqcik - TRISE

facLk

_ BAUD+5

facik

non-zero.

@ MICROCHIP

662

Start-up Timing: The minimum time between SDA transition and SCL rising edge is 6 APB cycles
when the DATA register is written in smart mode. If a greater start-up time is required due to long
rise times, the time between DATA write and IF clear must be controlled by software.

Note: When timing is controlled by user, the Smart Mode cannot be enabled.

32.6.2.4.2 Transmitting Address Packets
The 12C host starts a bus transaction by writing the I12C client address to ADDR.ADDR and the
direction bit, as described in Principle of Operation, see Principle of Operation from Related Links. If
the bus is busy, the 12C host will wait until the bus becomes idle before continuing the operation.
When the bus is idle, the I2C host will issue a start condition on the bus. The 12C host will then
transmit an address packet using the address written to ADDR.ADDR. After the address packet has
been transmitted by the 12C host, one of four cases will arise according to arbitration and transfer
direction.

Case 1: Arbitration lost or bus error during address packet transmission

If arbitration was lost during transmission of the address packet, the Host on Bus bit in the Interrupt
Flag Status and Clear register (INTFLAG.MB) and the Arbitration Lost bit in the Status register
(STATUS.ARBLOST) are both set. Serial data output to SDA is disabled, and the SCL is released, which
disables clock stretching. In effect the 12C host is no longer allowed to execute any operation on the
bus until the bus is idle again. A bus error will behave similarly to the Arbitration Lost condition. In
this case, the MB Interrupt flag and Host Bus Error bit in the Status register (STATUS.BUSERR) are
both set in addition to STATUS.ARBLOST.

The Host Received Not Acknowledge bit in the Status register (STATUS.RXNACK) will always contain
the last successfully received acknowledge or not acknowledge indication.

In this case, software will typically inform the application code of the condition and then clear the
Interrupt flag before exiting the interrupt routine. No other flags have to be cleared at this moment,
because all flags will be cleared automatically the next time the ADDR.ADDR register is written.

Case 2: Address packet transmit complete - No ACK received

If there is no I2C client device responding to the address packet, then the INTFLAG.MB Interrupt flag
and STATUS.RXNACK will be set. The clock hold is active at this point, preventing further activity on
the bus.

The missing ACK response can indicate that the I12C client is busy with other tasks or sleeping.
Therefore, it is not able to respond. In this event, the next step can be either issuing a Stop condition
(recommended) or resending the address packet by a repeated Start condition. When using SMBus
logic, the client must ACK the address. If there is no response, it means that the client is not available
on the bus.

Case 3: Address packet transmit complete - Write packet, Host on Bus set

If the I2C host receives an acknowledge response from the 12C client, INTFLAG.MB will be set and
STATUS.RXNACK will be cleared. The clock hold is active at this point, preventing further activity on
the bus.

In this case, the software implementation becomes highly protocol dependent. Three possible
actions can enable the 12C operation to continue:

+ Initiate a data transmit operation by writing the data byte to be transmitted into DATA.DATA.

« Transmit a new address packet by writing ADDR.ADDR. A repeated Start condition will
automatically be inserted before the address packet.

+ Issue a Stop condition, consequently terminating the transaction.
Case 4: Address packet transmit complete - Read packet, Client on Bus set

If the 12C host receives an ACK from the I12C client, the I2C host proceeds to receive the next byte of
data from the 12C client. When the first data byte is received, the Client on Bus bit in the Interrupt

663

@ MICROCHIP

Flag register (INTFLAG.SB) will be set and STATUS.RXNACK will be cleared. The clock hold is active at
this point, preventing further activity on the bus.

In this case, the software implementation becomes highly protocol dependent. Three possible
actions can enable the 12C operation to continue:

+ Let the I2C host continue to read data by acknowledging the data received. ACK can be sent by
software, or automatically in Smart mode.

+ Transmit a new address packet.
+ Terminate the transaction by issuing a Stop condition.

Note: An ACK or NACK will be automatically transmitted if Smart mode is enabled. The
Acknowledge Action bit in the Control B register (CTRLB.ACKACT) determines whether ACK or NACK
must be sent.

Related Links
32.6.1. Principle of Operation

32.6.2.4.3 Transmitting Data Packets
When an address packet with direction Host Write (see Figure 32-3) was transmitted successfully,
INTFLAG.MB will be set. The I12C host will start transmitting data via the 12C bus by writing to
DATA.DATA, and monitor continuously for packet collisions.

If a collision is detected, the 12C host will lose arbitration and STATUS.ARBLOST will be set. If the
transmit was successful, the 12C host will receive an ACK bit from the 12C client, and STATUS.RXNACK
will be cleared. INTFLAG.MB will be set in both cases, regardless of arbitration outcome.

It is recommended to read STATUS.ARBLOST and handle the arbitration lost condition in the
beginning of the I12C Host on Bus interrupt. This can be done as there is no difference between
handling address and data packet arbitration.

STATUS.RXNACK must be checked for each data packet transmitted before the next data packet
transmission can commence. The 12C host is not allowed to continue transmitting data packets if a
NACK is received from the I2C client.

32.6.2.4.4 Receiving Data Packets (SCLSM=0)
When INTFLAG.SB is set, the 12C host will already have received one data packet. The 12C host must
respond by sending either an ACK or NACK. Sending a NACK may be unsuccessful when arbitration
is lost during the transmission. In this case, a lost arbitration will prevent setting INTFLAG.SB.
Instead, INTFLAG.MB will indicate a change in arbitration. Handling of lost arbitration is the same as
for data bit transmission.

32.6.2.4.5 Receiving Data Packets (SCLSM=1)
When INTFLAG.SB is set, the 12C host will already have received one data packet and transmitted an
ACK or NACK, depending on CTRLB.ACKACT. At this point, CTRLB.ACKACT must be set to the correct
value for the next ACK bit, and the transaction can continue by reading DATA and issuing a command
if not in the Smart mode.

32.6.2.4.6 10-Bit Addressing
When 10-bit addressing is enabled by the Ten Bit Addressing Enable bit in the Address register
(ADDR.TENBITEN=1) and the Address bit field ADDR.ADDR is written, the two address bytes will
be transmitted, see 10-bit Address Transmission for a Read Transaction. The addressed client
acknowledges the two address bytes, and the transaction continues. Regardless of whether the
transaction is a read or write, the host must start by sending the 10-bit address with the direction bit
(ADDR.ADDRI[0]) being zero.

If the host receives a NACK after the first byte, the Write Interrupt flag will be raised and the
STATUS.RXNACK bit will be set. If the first byte is acknowledged by one or more clients, then the
host will proceed to transmit the second address byte and the host will first see the Write Interrupt
flag after the second byte is transmitted. If the transaction direction is read-from-client, the 10-bit

664

@ MICROCHIP

address transmission must be followed by a repeated start and the first 7 bits of the address with
the read/write bit equal to '1".

Figure 32-8. 10-bit Address Transmission for a Read Transaction

MB INTERRUPT

S 11110 addr[9:8] | W A addr[7:0] A %@» S

This implies the following procedure for a 10-bit read operation:
1. Write the 10-bit address to ADDR.ADDR[10:1]. ADDR.TENBITEN must be "1, the direction bit
(ADDR.ADDR[0]) must be '0' (can be written simultaneously with ADDR).

2. Once the Host on Bus interrupt is asserted, Write ADDR[7:0] register to '11110 address[9:8] 1"
ADDR.TENBITEN must be cleared (can be written simultaneously with ADDR).

3. Proceed to transmit data.

32.6.2.5 I2C Client Operation

The I2C client is byte-oriented and interrupt-based. The number of interrupts generated is kept at a
minimum by automatic handling of most events. The software driver complexity and code size are
reduced by auto-triggering of operations, and a special smart mode, which can be enabled by the
Smart Mode Enable bit in the Control A register (CTRLA.SMEN).

-

11110 addr[9:8] | R | A

The I2C client has two interrupt strategies.

When SCL Stretch Mode bit (CTRLA.SCLSM) is '0', SCL is stretched before or after the acknowledge
bit. In this mode, the 12C client operates according to /2C Client Behavioral Diagram (SCLSM=0) as
shown in the following figure. The circles labelled "Sn" (S1, S2..) indicate the nodes the bus logic can
jump to, based on software or hardware interaction.

This diagram is used as reference for the description of the I12C client operation throughout the
document.

665

@ MICROCHIP

Figure 32-9. I2C Client Behavioral Diagram (SCLSM=0)

AMATCH INTERRUPT DRDY INTERRUPT
H ‘ ADDRESS n A T DATA

PREC INTERRUPT

»{ DATA A/IA

. Interrupton STOP _ _
Condition Enabled

--------.3-----‘

‘ Software interaction

I:‘ The host provides data on the bus

D Addressed client provides data on the bus

In the second strategy (CTRLA.SCLSM=1), interrupts only occur after the ACK bit is sent as shown

in the following figure /2C Client Behavioral Diagram (SCLSM=1). This strategy can be used when it is
not necessary to check DATA before acknowledging. For host reads, an address and data interrupt
will be issued simultaneously after the address acknowledge. However, for host writes, the first data
interrupt will be seen after the first data byte has been received by the client and the acknowledge
bit has been sent to the host.

Figure 32-10. 12C Client Behavioral Diagram (SCLSM=1)

AMATCH INTERRUPT (+ DRDY INTERRUPT in Host Read mode) DRDY INTERRUPT

O
g 6

S2 i ’ ADDRESS R IA/Z\}“*’ ‘ DATA ‘Ni\h
B~

’ DATA |aa]+ ﬁ

PREC INTERRUPT

Interrupt on STOP

> Condition Enabled ~

.........‘.....‘

‘ Software interaction

1
|
!
1
1
!
D The host provides data on the bus :
]
1
1
1
1
1

D Addressed client provides data on the bus

———— e 4

666

@ MICROCHIP

32.6.2.5.1 Receiving Address Packets (SCLSM=0)

When CTRLA.SCLSM=0, the I2C client stretches the SCL line according to Figure 32-9. When the 12C
client is properly configured, it will wait for a Start condition.

When a Start condition is detected, the successive address packet will be received and checked by
the address match logic. If the received address is not a match, the packet will be rejected, and the
12C client will wait for a new Start condition. If the received address is a match, the Address Match bit
in the Interrupt Flag register (INTFLAG.AMATCH) will be set.

SCL will be stretched until the I2C client clears INTFLAG.AMATCH. As the I2C client holds the clock by
forcing SCL low, the software has unlimited time to respond.

The direction of a transaction is determined by reading the Read/Write Direction bit in the Status
register (STATUS.DIR). This bit will be updated only when a valid address packet is received.

If the Transmit Collision bit in the Status register (STATUS.COLL) is set, this indicates that the last
packet addressed to the I12C client had a packet collision. A collision causes the SDA and SCL lines to
be released without any notification to software. Therefore, the next AMATCH interrupt is the first
indication of the previous packet’s collision. Collisions are intended to follow the SMBus Address
Resolution Protocol (ARP).

After the address packet has been received from the 12C host, one of two cases will arise based on
transfer direction.

Case 1: Address packet accepted - Read flag set

The STATUS.DIR bit is 1", indicating an 12C host read operation. The SCL line is forced low, stretching
the bus clock. If an ACK is sent, 12C client hardware will set the Data Ready bit in the Interrupt Flag
register (INTFLAG.DRDY), indicating data are needed for transmit. If a NACK is sent, the 12C client will
wait for a new Start condition and address match.

Typically, software will immediately acknowledge the address packet by sending an ACK/NACK bit.
The I12C client Command bit field in the Control B register (CTRLB.CMD) can be written to '0x3'

for both read and write operations as the command execution is dependent on the STATUS.DIR
bit. Writing ‘1" to INTFLAG.AMATCH will also cause an ACK/NACK to be sent corresponding to the
CTRLB.ACKACT bit.

Case 2: Address packet accepted - Write flag set

The STATUS.DIR bit is cleared, indicating an I12C host write operation. The SCL line is forced low,
stretching the bus clock. If an ACK is sent, the 12C client will wait for data to be received. Data,
repeated start or stop can be received.

If a NACK is sent, the I2C client will wait for a new Start condition and address match. Typically,
software will immediately acknowledge the address packet by sending an ACK/NACK. The I2C client
command CTRLB.CMD = 3 can be used for both read and write operation as the command execution
is dependent on STATUS.DIR.

Writing “1" to INTFLAG.AMATCH will also cause an ACK/NACK to be sent corresponding to the
CTRLB.ACKACT bit.

32.6.2.5.2 Receiving Address Packets (SCLSM=1)

When SCLSM=1, the I2C client will stretch the SCL line only after an ACK (see Figure 32-10). When the
12C client is properly configured, it will wait for a Start condition to be detected.

When a Start condition is detected, the successive address packet will be received and checked by
the address match logic.

If the received address is not a match, the packet will be rejected and the 12C client will wait for a
new Start condition.

If the address matches, the acknowledge action as configured by the Acknowledge Action bit Control
B register (CTRLB.ACKACT) will be sent and the Address Match bit in the Interrupt Flag register

667

@ MICROCHIP

(INTFLAG.AMATCH) is set. SCL will be stretched until the 12C client clears INTFLAG.AMATCH. As the
12C client holds the clock by forcing SCL low, the software is given unlimited time to respond to the
address.

The direction of a transaction is determined by reading the Read/Write Direction bit in the Status
register (STATUS.DIR). This bit will be updated only when a valid address packet is received.

If the Transmit Collision bit in the Status register (STATUS.COLL) is set, the last packet addressed to
the I12C client had a packet collision. A collision causes the SDA and SCL lines to be released without
any notification to software. The next AMATCH interrupt is, therefore, the first indication of the
previous packet’s collision. Collisions are intended to follow the SMBus Address Resolution Protocol
(ARP).

After the address packet has been received from the 12C host, INTFLAG.AMATCH can be set to ‘1’ to
clear it.

32.6.2.5.3 Receiving and Transmitting Data Packets
After the I12C client has received an address packet, it will respond according to the direction either
by waiting for the data packet to be received or by starting to send a data packet by writing to
DATA.DATA. When a data packet is received or sent, INTFLAG.DRDY will be set. After receiving data,
the I12C client will send an acknowledge according to CTRLB.ACKACT.

Case 1: Data received
INTFLAG.DRDY is set, and SCL is held low, pending for SW interaction.
Case 2: Data sent

When a byte transmission is successfully completed, the INTFLAG.DRDY Interrupt flag is set. If NACK
is received, indicated by STATUS.RXNACK=1, the 12C client must expect a stop or a repeated start to
be received. The I2C client must release the data line to allow the 12C host to generate a stop or
repeated start. Upon detecting a Stop condition, the Stop Received bit in the Interrupt Flag register
(INTFLAG.PREC) will be set and the 12C client will return to IDLE state.

32.6.2.5.4 PMBus Group Command
When the PMBus Group Command bit in the CTRLB register is set (CTRLB.GCMD=1) and 7-bit
addressing is used, INTFLAG.PREC will be set if the client has been addressed since the last
STOP condition. When CTRLB.GCMD=0, a STOP condition without address match will not set
INTFLAG.PREC.

The group command protocol is used to send commands to more than one device. The commands
are sent in one continuous transmission with a single STOP condition at the end. When the STOP
condition is detected by the clients addressed during the group command, they all begin executing
the command they received.

The following figure shows an example where this client, bearing ADDRESS 1, is addressed after

a repeated START condition. There can be multiple clients addressed before and after this client.
Eventually, at the end of the group command, a single STOP is generated by the host. At this point a
STOP interrupt is asserted.

668

@ MICROCHIP

Figure 32-11. PMBus Group Command Example

te— Command/Data—,

S ADDRESSO0 | W | A n Bytes A

AMATCH INTERRUPT DRDY INTERRUPT

«— Command/Data—|

ADDRESS 1 —
. . A
Sr | (thisclienty | W " @ A n Bytes : @

PREC INTERRUPT

«— Command/Data—|

n Bytes Al P 4@

g
>

Sr ADDRESS 2

32.6.3 Additional Features

32.6.3.1 SMBus

The 12C includes three hardware SCL low time-outs which allow a time-out to occur for SMBus SCL
low time-out, host extend time-out, and client extend time-out. This allows for SMBus functionality
These time-outs are driven by the GCLK_SERCOM_SLOW clock. The GCLK_SERCOM_SLOW clock is
used to accurately time the time-out and must be configured to use a 32.768 kHz oscillator. The 12C
interface also allows for a SMBus compatible SDA hold time.

Trimeout: SCL low time of 25..35ms - Measured for a single SCL low period. It is enabled by
CTRLA.LOWTOUTEN

* Trow:sext: Cumulative clock low extend time of 25 ms - Measured as the cumulative SCL low
extend time by a client device in a single message from the initial START to the STOP. It is enabled
by CTRLA.SEXTTOEN.

* Trow:mext: Cumulative clock low extend time of 10 ms - Measured as the cumulative SCL low
extend time by the host device within a single byte from START-to-ACK, ACK-to-ACK, or ACK-to-
STOP. It is enabled by CTRLA.MEXTTOEN.

32.6.3.2 Smart Mode

The I12C interface has a Smart mode that simplifies application code and minimizes the user
interaction needed to adhere to the 12C protocol. The Smart mode accomplishes this by

automatically issuing an ACK or NACK (based on the content of CTRLB.ACKACT) as soon as
DATA.DATA is read.

32.6.3.3 4-Wire Mode

Writing a '1' to the Pin Usage bit in the Control A register (CTRLA.PINOUT) will enable 4-Wire mode
operation. In this mode, the internal 12C tri-state drivers are bypassed, and an external I2C compliant
tri-state driver is needed when connecting to an 12C bus.

@ MICROCHIP

669

Figure 32-12. 12C Pad Interface

scL_ouT/ SCL OUT/
SDA_OUT SDA OUT
PINOU pad
> 12C o SCL/SDA
‘ Driver Inllal pad
SCL_IN/
SDAIN * |
PINOUT

32.6.3.4 Quick Command

Setting the Quick Command Enable bit in the Control B register (CTRLB.QCEN) enables quick
command. When quick command is enabled, the corresponding Interrupt flag (INTFLAG.SB or
INTFLAG.MB) is set immediately after the client acknowledges the address. At this point, the
software can either issue a Stop command or a repeated start by writing CTRLB.CMD or ADDR.ADDR.

32.6.3.5 32-bit Extension

For better system bus utilization, 32-bit data receive and transmit can be enabled by writing to the
Data 32-bit bit field in the Control C register (CTRLC.DATA32B=1). When enabled, write and read
transaction to/from the DATA register are 32 bit in size.

If frames are not multiples of 4 Bytes, the Length Counter (LENGTH.LEN) and Length Enable
(LENGTH.LENEN) must be configured before data transfer begins. LENGTH.LEN must be enabled
only when CTRLC.DATA32B is enabled.

The following figure shows the order of transmit and receive when using 32-bit mode. Bytes are
transmitted or received and stored in order from 0 to 3.

Figure 32-13. 32-bit Extension Byte Ordering

APB WriteIReadl BYTE3 | BYTE2 | BYTE1 | BYTEO
Bit Position 31 0

32-bit Extension Client Operation

The following figure shows a transaction with 32-bit Extension enabled (CTRLC.DATA32B=1). In
client operation, the Address Match interrupt in the Interrupt Flag Status and Clear register
(INTFLAG.AMATCH) is set after the address is received and available in the DATA register. The Data
Ready interrupt (INTFLAG.DRDY) will then be raised for every 4 Bytes transferred.

Figure 32-14. 32-bit Extension Client Operation

CLIENT ADDRESS CLIENT DATA
INTERRUPT INTERRUPT

‘s‘ ADDRESS ‘WW‘A‘ByteO A‘Byte3’—é®—>

The LENGTH register can be written before the frame begins, or when the AMATCH interrupt is set.
If the frame size is not LENGTH.LEN Bytes, the Length Error status bit (STATUS.LENERR) is raised. If
LENGTH.LEN is not a multiple of 4 Bytes, the final INTFLAG.DRDY interrupt is raised when the last
Byte is received for host reads. For host writes, the last data byte will be automatically NACKed. On
address recognition, the internal length counter is reset in preparation for the incoming frame.

A ‘Byte1

A ‘ Byte 2

High Speed transactions start with a Full Speed Host Code. When a Host Code is detected, no data
is received and the next expected operation is a repeated start. For this reason, the length is not

670

@ MICROCHIP

counted after a Host Code is received. In this case, no Length Error (STATUS.LENERR) is registered,
regardless of the LENGTH.LENEN setting.

When SCL clock stretch mode is selected (CTRLA.SCLSM=1) and the transaction is a host write, the
selected Acknowledge Action (CTRLB.ACKACT) will only be used to ACK/NACK each 4th byte. All other
bytes are ACKed. This allows the user to write CTRLB.ACKACT=1 in the final interrupt, so that the last
byte in a 32-bit word will be NACKed.

Writing to the LENGTH register while a frame is in progress will produce unpredictable results. If
LENGTH.LENEN is not set and a frame is not a multiple of 4 Bytes, the remainder will be lost.

32-bit Extension Host Operation

When using the I2C configured as Host, the Address register must be written with the desired
address (ADDR.ADDR), and optionally, the transaction Length and transaction Length Enable bits
(ADDR.LEN and ADDR.LENEN) can be written. When ADDR.LENEN is written to '1' along with
ADDR.ADDR, ADDR.LEN determines the number of data bytes in the transaction from 0 to 255.
Then, the ADDR.LEN bytes are transferred, followed by an automatically generated NACK (for host
reads) and a STOP.

The INTFLAG.SB or INTFLAG.MB are raised for every 4 Bytes transferred. If the transaction is a host
read and ADDR.LEN is not a multiple of 4 Bytes, the final INTFLAG.SB is set when the last byte is
received.

When SCL clock stretch mode is enabled (CTRLA.SCLSM=1) and the transaction is a host read, the
selected Acknowledge Action (CTRLB.ACKACT) will only be used to ACK/NACK each 4th Byte. All other
bytes are ACKed. This allows the user to set CTRLB.ACKACT=1 in the final interrupt, so that the last
byte in a 32-bit word will be NACKed.

If a NACK is received by the client for a host write transaction before ADDR.LEN bytes, a STOP
will be automatically generated, and the length error (STATUS.LENERR) is raised along with the
INTFLAG.ERROR interrupt.

32.6.4 DMA, Interrupts and Events

Each interrupt source has its own Interrupt flag. The Interrupt flag in the Interrupt Flag Status

and Clear register (INTFLAG) will be set when the Interrupt condition is meet. Each interrupt can

be individually enabled by writing ‘1’ to the corresponding bit in the Interrupt Enable Set register
(INTENSET), and disabled by writing ‘1’ to the corresponding bit in the Interrupt Enable Clear register
(INTENCLR). An interrupt request is generated when the Interrupt flag is set and the corresponding
interrupt is enabled. The interrupt request is active until the Interrupt flag is cleared, the interrupt is
disabled or the I2C is reset. See the INTFLAG (Client) or INTFLAG (Host) register for details on how to
clear Interrupt flags.

Table 32-1. Module Request for SERCOM 12C Client

— NA

Data needed for transmit (TX) (Client Yes
Transmit mode) (request cleared
when data is written)

Data received (RX) (Client Receive mode) Yes —
(request cleared
when data is read)

Data Ready (DRDY) — Yes
Address Match (AMATCH) — Yes
Stop received (PREC) — Yes
Error (ERROR) — Yes

671

@ MICROCHIP

Table 32-2. Module Request for SERCOM I2C Host

Data needed for transmit (TX) (Host Yes — NA
Transmit mode) (request cleared when
data is written)
Data needed for transmit (RX) (Host Yes —
Transmit mode) (request cleared when
data is read)
Host on Bus (MB) — Yes
Stop received (SB) — Yes
Error (ERROR) — Yes

32.6.4.1 DMA Operation
Smart mode must be enabled for DMA operation in the Control B register by writing CTRLB.SMEN=1.

32.6.4.1.1 Client DMA

When using the I2C client with DMA, an address match will cause the address Interrupt flag
(INTFLAG.ADDRMATCH) to be raised. After the interrupt has been serviced, data transfer will be
performed through DMA.

The 12C client generates the following requests:

32.6.4.1.2 Host DMA

When using the 12C host with DMA, the ADDR register must be written with the desired address
(ADDR.ADDR), transaction length (ADDR.LEN), and transaction length enable (ADDR.LENEN). When
ADDR.LENEN is written to 1 along with ADDR.ADDR, ADDR.LEN determines the number of data bytes
in the transaction from 0 to 255. DMA is then used to transfer ADDR.LEN bytes followed by an
automatically generated NACK (for host reads) and a STOP.

If a NACK is received by the client for a host write transaction before ADDR.LEN bytes, a STOP
will be automatically generated and the length error (STATUS.LENERR) will be raised along with the
INTFLAG.ERROR interrupt.

The I2C host generates the following requests:

32.6.4.2 Interrupts

The 12C client has the following interrupt sources. These are asynchronous interrupts. They can
wake-up the device from any Sleep mode:

* Error (ERROR)

+ Data Ready (DRDY)

+ Address Match (AMATCH)
+ Stop Received (PREC)

The I12C host has the following interrupt sources. These are asynchronous interrupts. They can
wake-up the device from any Sleep mode:

* Error (ERROR)
« Client on Bus (SB)
* Host on Bus (MB)

Each interrupt source has its own Interrupt flag. The Interrupt flag in the Interrupt Flag Status

and Clear register (INTFLAG) will be set when the Interrupt condition is met. Each interrupt can

be individually enabled by writing ‘1’ to the corresponding bit in the Interrupt Enable Set register
(INTENSET), and disabled by writing ‘1’ to the corresponding bit in the Interrupt Enable Clear register
(INTENCLR).

672

@ MICROCHIP

The status of enabled interrupts can be read from either INTENSET or INTENCLR. An interrupt
request is generated when the Interrupt flag is set and the corresponding interrupt is enabled. The
interrupt request remains active until the Interrupt flag is cleared, the interrupt is disabled or the 12C
is reset. For details on how to clear Interrupt flags, see INTFLAG register from Related Links.

The value of INTFLAG indicates which interrupt is executed. Note that interrupts must be globally
enabled for interrupt requests. See Nested Vector Interrupt Controller (NVIC) from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)
32.10.6. INTFLAG

32.6.4.3 Events
Not applicable.

32.6.5 Sleep Mode Operation
I2C Host Operation

The generic clock (GCLK_SERCOMx_CORE) will continue to run in idle sleep mode. If the Run In
Standby bit in the Control A register (CTRLA.RUNSTDBY) is '1', the GLK_SERCOMx_CORE will also run
in Standby Sleep mode. Any interrupt can wake-up the device.

If CTRLA.RUNSTDBY=0, the GLK_SERCOMx_CORE will be disabled after any ongoing transaction is
finished. Any interrupt can wake-up the device.

I2C Client Operation
Writing CTRLA.RUNSTDBY=1 will allow the Address Match interrupt to wake-up the device.
When CTRLA.RUNSTDBY=0, all receptions will be dropped.

673

@ MICROCHIP

32.7

7:0

0x00

0x04

0x08

0x0C
0x13
0x14
0x15
0x16
0x17

0x18
0x19

Ox1A

0x1C

0x20
0x23

0x24

0x28

32.8

@ MICROCHIP

Register Summary - 12C Client

CTRLA

CTRLB

CTRLC

Reserved

INTENCLR
Reserved
INTENSET
Reserved
INTFLAG
Reserved

STATUS

SYNCBUSY

Reserved

ADDR

DATA

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

7:0

7:0

7:0
15:8
7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24

7 | 6 | s | 4 0 3 1 2 0 1 | 0 |

RUNSTDBY MODE[2:0]
SEXTTOEN SDAHOLDI[1:0]
LOWTOUT SCLSM
AMODE[1:0] AACKEN
ACKACT
ERROR DRDY
ERROR DRDY
ERROR DRDY
CLKHOLD LOWTOUT SR DIR RXNACK
LENERR
ADDR[6:0]
ADDRMASK[6:0]
DATA[7:0]
DATA[15:8]

DATA[23:16]
DATA[31:24]

Register Description - 12C Client

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,

ENABLE SWRST
PINOUT
SPEED[1:0]
GCMD SMEN
CMDI[1:0]
DATA32B
AMATCH PREC
AMATCH PREC
AMATCH PREC
COLL BUSERR
SEXTTOUT
ENABLE SWRST
GENCEN
ADDRI[9:7]

ADDRMASK[9:7]

the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can

be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the “PAC Write-Protection” property in each individual register

description.

Some registers are synchronized when read and/or written. Synchronization is denoted by the
“Write-Synchronized” or the “Read-Synchronized” property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the peripheral is

disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register

description.

674

32.8.1 Control A

Name: CTRLA

Offset: 0x00

Reset: 0x00000000

Property: PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit 31 30 29 28 27 26 25 24
| | LOWTOUT | | | scism | | SPEED[1:0] |
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| SEXTTOEN | | SDAHOLD[1:0] | | | | PINOUT |
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
RUNSTDBY MODE[2:0] ENABLE SWRST
Access RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 30 - LOWTOUT SCL Low Time-Out
This bit enables the SCL low time-out. If SCL is held low for 25 ms-35 ms, the client will release its
clock hold, if enabled, and reset the internal state machine. Any interrupt flags set at the time of
time-out will remain set.
This bit is not synchronized.

0 Time-out disabled.
1 Time-out enabled.

Bit 27 - SCLSM SCL Clock Stretch Mode
This bit controls when SCL will be stretched for software interaction.
This bit is not synchronized.

0 SCL stretch according to Figure 32-9
1 SCL stretch only after ACK bit according to Figure 32-10

Bits 25:24 - SPEED[1:0] Transfer Speed
These bits define bus speed.
These bits are not synchronized.

0x0 Standard-mode (Sm) up to 100 kHz and Fast-mode (Fm) up to 400 kHz
0x1 Fast-mode Plus (Fm+) up to 1 MHz

0x2 Reserved

0x3 Reserved

@ MICROCHIP

675

Bit 23 - SEXTTOEN Client SCL Low Extend Time-Out
This bit enables the client SCL low extend time-out. If SCL is cumulatively held low for greater than
25 ms from the initial START to a STOP, the client will release its clock hold if enabled and reset the
internal state machine. Any interrupt flags set at the time of time-out will remain set. If the address
was recognized, PREC will be set when a STOP is received.
This bit is not synchronized.

Value Description
0 Time-out disabled
1 Time-out enabled

Bits 21:20 - SDAHOLD[1:0] SDA Hold Time
These bits define the SDA hold time with respect to the negative edge of SCL.
These bits are not synchronized.

Value Name Description

0x0 DIS Disabled

0x1 75 50-100ns hold time
0x2 450 300-600ns hold time
0x3 600 400-800ns hold time

Bit 16 - PINOUT Pin Usage
This bit sets the pin usage to either two- or four-wire operation:
This bit is not synchronized.

Value Description
0 4-wire operation disabled
1 4-wire operation enabled

Bit 7 - RUNSTDBY Run in Standby
This bit defines the functionality in standby sleep mode.
This bit is not synchronized.

Value Description
0 Disabled - All reception is dropped.
1 Wake on address match, if enabled.

Bits 4:2 - MODE[2:0] Operating Mode
These bits must be written to 0x04 to select the I2C client serial communication interface of the
SERCOM.
These bits are not synchronized.

Bit 1 - ENABLE Enable
Due to synchronization, there is delay from writing CTRLA.ENABLE until the peripheral is
enabled/disabled. The value written to CTRL.ENABLE will read back immediately and the Enable
Synchronization Busy bit in the Synchronization Busy register (SYNCBUSY.ENABLE) will be set.
SYNCBUSY.ENABLE will be cleared when the operation is complete.
This bit is not enable-protected.

0 The peripheral is disabled or being disabled.
1 The peripheral is enabled.

Bit 0 - SWRST Software Reset
Writing ‘0" to this bit has no effect.
Writing ‘1’ to this bit resets all registers in the SERCOM, except DBGCTRL, to their initial state, and the
SERCOM will be disabled.
Writing ‘1’ to CTRLA.SWRST will always take precedence, meaning that all other writes in the same
write-operation will be discarded. Any register write access during the ongoing reset will result in an
APB error. Reading any register will return the reset value of the register.

@ MICROCHIP

676

Due to synchronization, there is a delay from writing CTRLA.SWRST until the reset is complete.
CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the reset is complete.

This bit is not enable-protected.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until

SYNCBUSY.SWRST cleared by hardware.

Value Description

0 There is no reset operation ongoing.
1 The reset operation is ongoing.

677

@ MICROCHIP

32.8.2 ControlB

Name: CTRLB

Offset: 0x04

Reset: 0x00000000

Property: PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | ACKACT | CMD[1:0] |
Access R/W W w
Reset 0 0 0
Bit 15 14 13 12 11 10 9 8
AMODE[1:0] | | | AACKEN | GCMD [SMEN |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
Access
Reset

Bit 18 - ACKACT Acknowledge Action
This bit defines the client's acknowledge behavior after an address or data byte is received from
the host. The acknowledge action is executed when a command is written to the CMD bits. If smart
mode is enabled (CTRLB.SMEN=1), the acknowledge action is performed when the DATA register is
read.
ACKACT shall not be updated more than once between each peripheral interrupts request.
This bit is not enable-protected.

VEIS Description

0 Send ACK
1 Send NACK

Bits 17:16 - CMD[1:0] Command
This bit field triggers the client operation as the below. The CMD bits are strobe bits, and
always read as zero. The operation is dependent on the client interrupt flags, INTFLAG.DRDY and
INTFLAG.AMATCH, in addition to STATUS.DIR.
All interrupt flags (INTFLAG.DRDY, INTFLAG.AMATCH and INTFLAG.PREC) are automatically cleared
when a command is given.
This bit is not enable-protected.

Table 32-3. Command Description

T

0x0 X (No action)
0x1 X (Reserved)
0x2 Used to complete a transaction in response to a data interrupt (DRDY)

0 (Host write) Execute acknowledge action succeeded by waiting for any start (S/Sr) condition
1 (Host read) Wait for any start (S/Sr) condition

678

@ MICROCHIP

........... continued

0x3 Used in response to an address interrupt (AMATCH)
0 (Host write) Execute acknowledge action succeeded by reception of next byte
1 (Host read) Execute acknowledge action succeeded by client data interrupt
Used in response to a data interrupt (DRDY)
0 (Host write) Execute acknowledge action succeeded by reception of next byte
1 (Host read) Execute a byte read operation followed by ACK/NACK reception

Bits 15:14 - AMODE[1:0] Address Mode
These bits set the addressing mode.

Value Name Description

0x0 MASK The client responds to the address written in ADDR.ADDR masked by the value in ADDR.ADDRMASK.

0x1 2_ADDRS The client responds to the two unique addresses in ADDR.ADDR and ADDR.ADDRMASK.

0x2 RANGE The client responds to the range of addresses between and including ADDR.ADDR and
ADDR.ADDRMASK. ADDR.ADDR is the upper limit.

0x3 — Reserved.

Bit 10 - AACKEN Automatic Acknowledge Enable
This bit enables the address to be automatically acknowledged if there is an address match.

Value Description

0 Automatic acknowledge is disabled.
1 Automatic acknowledge is enabled.

Bit 9 - GCMD PMBus Group Command
This bit enables PMBus group command support. When enabled, the Stop Received interrupt flag
(INTFLAG.PREC) will be set when a STOP condition is detected if the client has been addressed since
the last STOP condition on the bus.

Value Description
0 Group command is disabled.
1 Group command is enabled.

Bit 8 - SMEN Smart Mode Enable
When smart mode is enabled, data is acknowledged automatically when DATA.DATA is read.

Value Description
0 Smart mode is disabled.
1 Smart mode is enabled.

@ MICROCHIP

679

32.8.3 Control C

Name: CTRLC
Offset: 0x08
Reset: 0x00000000

Property: PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24
| | | DATA32B |
Access R/W
Reset 0
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
Access
Reset

Bit 24 - DATA32B Data 32 Bit
This bit enables 32-bit data writes and reads to/from the DATA register.

VEIS Description

0 Data transaction to/from DATA are 8-bit in size
1 Data transaction to/from DATA are 32-bit in size

@ MICROCHIP

680

32.8.4 Interrupt Enable Clear

Name: INTENCLR
Offset: 0x14
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit 7 6 5 4 3 2 1 0
| ERROR | | | | | DRDY | AMATCH | PREC |
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 - ERROR Error Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Error Interrupt Enable bit, which disables the Error interrupt.

Value Description

0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 2 - DRDY Data Ready Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Data Ready bit, which disables the Data Ready interrupt.

Value Description
0 The Data Ready interrupt is disabled.
1 The Data Ready interrupt is enabled.

Bit 1 - AMATCH Address Match Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Address Match Interrupt Enable bit, which disables the Address
Match interrupt.

VEINS Description
0 The Address Match interrupt is disabled.
1 The Address Match interrupt is enabled.

Bit 0 - PREC Stop Received Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Stop Received Interrupt Enable bit, which disables the Stop
Received interrupt.

Value Description

0 The Stop Received interrupt is disabled.
1 The Stop Received interrupt is enabled.

@ MICROCHIP

681

32.8.5 Interrupt Enable Set

Name: INTENSET
Offset: 0x16
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit 7 6 5 4 3 2 1 0
| ERROR | | | | | DRDY | AMATCH | PREC |
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 - ERROR Error Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.

Value Description

0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 2 - DRDY Data Ready Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Data Ready bit, which enables the Data Ready interrupt.

Value Description
0 The Data Ready interrupt is disabled.
1 The Data Ready interrupt is enabled.

Bit 1 - AMATCH Address Match Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Address Match Interrupt Enable bit, which enables the Address
Match interrupt.

VEINS Description
0 The Address Match interrupt is disabled.
1 The Address Match interrupt is enabled.

Bit 0 - PREC Stop Received Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Stop Received Interrupt Enable bit, which enables the Stop Received
interrupt.

Value Description

0 The Stop Received interrupt is disabled.
1 The Stop Received interrupt is enabled.

@ MICROCHIP

682

32.8.6 Interrupt Flag Status and Clear

Name: INTFLAG

Offset: 0x18

Reset: 0x00

Property: -

Bit 7 6 5 4 3 2 1 0

| ERROR | | | | DRDY | AMATCH | PREC |
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 - ERROR Error
This bit is set when any error is detected. Errors that will set this flag have corresponding status
flags in the STATUS register. The corresponding bits in STATUS are SEXTTOUT, LOWTOUT, COLL and
BUSERR.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the flag.

Bit 2 - DRDY Data Ready
This flag is set when a I12C client byte transmission is successfully completed.
The flag is cleared by hardware when either:

+ Writing to the DATA register.
+ Reading the DATA register with Smart mode enabled.
+ Writing a valid command to the CMD register.

Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Data Ready Interrupt flag.

Bit 1 - AMATCH Address Match
This flag is set when the I12C client address match logic detects that a valid address has been
received.
The flag is cleared by hardware when CTRL.CMD is written.
Writing ‘0’ to this bit has no effect.
Writing ‘1’ to this bit will clear the Address Match Interrupt flag. When cleared, an ACK/NACK will be
sent according to CTRLB.ACKACT.

Bit 0 - PREC Stop Received
This flag is set when a Stop condition is detected for a transaction being processed. A Stop condition
detected between a bus host and another client will not set this flag, unless the PMBus Group
Command is enabled in the Control B register (CTRLB.GCMD=1).
This flag is cleared by hardware after a command is issued on the next address match.
Writing ‘0" to this bit has no effect.
Writing ‘1’ to this bit will clear the Stop Received Interrupt flag.

683

@ MICROCHIP

32.8.7 Status

Name: STATUS
Offset: Ox1A
Reset: 0x0000

Property: -
Bit 15 14 13 12 11 10 9 8
| | | LENERR | | SEXTTOUT | |
Access R/W R/W
Reset 0 0
Bit 7 6 5 4 3 2 1 0
| CLKHOLD | LOWTOUT | | SR | DIR | RXNACK | COLL [BUSERR |
Access R R/W R R R R/W R/W
Reset 0 0 0 0 0 0 0

Bit 11 - LENERR Transaction Length Error
This bit is set when the length counter is enabled (LENGTH.LENEN) and a STOP or repeated START is
received before or after the length in LENGTH.LEN is reached.
This bit is cleared automatically if responding to a new start condition with ACK or NACK (write 3 to
CTRLB.CMD) or when INTFLAG.AMATCH is cleared.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the status.

VIS Description

0 No length error has occurred.
1 Length error has occurred.

Bit 9 - SEXTTOUT Client SCL Low Extend Time-Out
This bit is set if a client SCL low extend time-out occurs.
This bit is cleared automatically if responding to a new start condition with ACK or NACK (write 3 to
CTRLB.CMD) or when INTFLAG.AMATCH is cleared.
Writing a ‘0" to this bit has no effect.
Writing a ‘1" to this bit will clear the status.

Value Description

0 No SCL low extend time-out has occurred.
1 SCL low extend time-out has occurred.

Bit 7 - CLKHOLD Clock Hold
The client Clock Hold bit (STATUS.CLKHOLD) is set when the client is holding the SCL line low,
stretching the 12C clock. Software must consider this bit a read-only status flag that is set when
INTFLAG.DRDY or INTFLAG.AMATCH is set.
This bit is automatically cleared when the corresponding interrupt is also cleared.

Bit 6 - LOWTOUT SCL Low Time-out
This bit is set if an SCL low time-out occurs.
This bit is cleared automatically if responding to a new start condition with ACK or NACK (write 3 to
CTRLB.CMD) or when INTFLAG.AMATCH is cleared.
Writing a ‘0" to this bit has no effect.
Writing a ‘1" to this bit will clear the status.

Value Description

0 No SCL low time-out has occurred.
1 SCL low time-out has occurred.

684

@ MICROCHIP

Bit 4 - SR Repeated Start
When INTFLAG.AMATCH is raised due to an address match, SR indicates a repeated start or start

condition.
This flag is only valid while the INTFLAG.AMATCH flag is one.
Value Description

0 Start condition on last address match

1 Repeated start condition on last address match

Bit 3 - DIR Read / Write Direction
The Read/Write Direction (STATUS.DIR) bit stores the direction of the last address packet received
from a host .
Value Description
0 Host write operation is in progress.
1 Host read operation is in progress.

Bit 2 - RXNACK Received Not Acknowledge
This bit indicates whether the last data packet sent was acknowledged or not.

Value Description
0 Host responded with ACK.
1 Host responded with NACK.

Bit 1 - COLL Transmit Collision
If set, the 12C client was not able to transmit a high data or NACK bit, the 12C client will immediately
release the SDA and SCL lines and wait for the next packet addressed to it.
This flag is intended for the SMBus address resolution protocol (ARP). A detected collision in non-
ARP situations indicates that there has been a protocol violation, and must be treated as a bus error.
Note: This status will not trigger any interrupt, and must be checked by software to verify that the
data were sent correctly. This bit is cleared automatically if responding to an address match with an
ACK or a NACK (writing 0x3 to CTRLB.CMD), or INTFLAG.AMATCH is cleared.

Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the status.

Value Description
0 No collision detected on last data byte sent.
1 Collision detected on last data byte sent.

Bit 0 - BUSERR Bus Error
The Bus Error bit (STATUS.BUSERR) indicates that an illegal bus condition has occurred on the
bus, regardless of bus ownership. An illegal bus condition is detected if a protocol violating start,
repeated start or stop is detected on the I2C bus lines. A start condition directly followed by a stop
condition is one example of a protocol violation. If a time-out occurs during a frame, this is also
considered a protocol violation, and will set STATUS.BUSERR.
This bit is cleared automatically if responding to an address match with an ACK or a NACK (writing
0x3 to CTRLB.CMD) or INTFLAG.AMATCH is cleared.
Writing a ‘0’ to this bit has no effect.
Writing a ‘1’ to this bit will clear the status.

Value Description
0 No bus error detected.
1 Bus error detected.

@ MICROCHIP

685

32.8.8 Synchronization Busy

Name: SYNCBUSY
Offset: 0x1C
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
ENABLE SWRST
Access R R
Reset 0 0

Bit 1 - ENABLE SERCOM Enable Synchronization Busy
Enabling and disabling the SERCOM (CTRLA.ENABLE) requires synchronization. Ongoing
synchronization is indicated by SYNCBUSY.ENABLE = 1 until synchronization is complete.

VEIS Description

0 Enable synchronization is not busy.

1 Enable synchronization is busy.

Bit 0 - SWRST Software Reset Synchronization Busy
Resetting the SERCOM (CTRLA.SWRST) requires synchronization. Ongoing synchronization is
indicated by SYNCBUSY.SWRST = 1 until synchronization is complete.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description

0 SWRST synchronization is not busy.
1 SWRST synchronization is busy.

686

@ MICROCHIP

32.8.9 Address

Name:
Offset:
Reset:

ADDR
0x24

0x00000000

Property: PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24
| | | | ADDRMASK[9:7] |
Access R/W R/W R/W
Reset 0 0 0
Bit 23 22 21 20 19 18 17 16
| ADDRMASK[6:0] | |
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
ADDR[9:7]
Access R/W R/W R/W
Reset 0 0 0
Bit 7 6 5 4 3 2 1 0
ADDR[6:0] GENCEN
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 26:17 - ADDRMASK][9:0] Address Mask

These bits act as a second address match register, an address mask register or the lower limit of an

address range, depending on the CTRLB.AMODE setting.

Bits 10:1 - ADDR[9:0] Address

These bits contain the I12C client address used by the client address match logic to determine if a

host has addressed the client.

When using 7-bit addressing, the client address is represented by ADDR[6:0].

When the address match logic detects a match, INTFLAG.AMATCH is set and STATUS.DIR is updated
to indicate whether it is a read or a write transaction.

Bit 0 - GENCEN General Call Address Enable

A general call address is an address consisting of all-zeroes, including the direction bit (host write).

General call address recognition disabled.
General call address recognition enabled.

0
1

@ MICROCHIP

687

32.8.10 Data

Name: DATA
Offset: 0x28

Reset: 0x00000000
Property: Read/Write

Bit 31 30 29 28 27 26 25 24
| DATA[31:24]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| DATA[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
DATA[15:8]
Access R/W R/W RIW R/W RIW R/W R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
DATA[7:0]
Access R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - DATA[31:0] Data
The client data register I/0 location (DATA.DATA) provides access to the host transmit and receive
data buffers. Reading valid data or writing data to be transmitted can be successfully done only
when SCL is held low by the client (STATUS.CLKHOLD is set). An exception occurs when reading the
last data byte after the stop condition has been received.
Accessing DATA.DATA auto-triggers I2C bus operations. The operation performed depends on the
state of CTRLB.ACKACT, CTRLB.SMEN and the type of access (read/write).
When CTRLC.DATA32B=1, read and write transactions from/to the DATA register are 32 bit in size.
Otherwise, reads and writes are 8 bit.

@ MICROCHIP

688

32.9

7:0

0x00

0x04

0x08
0x0B
0x0C

0x10
0x13
0x14
0x15
0x16
0x17

0x18
0x19

Ox1A

0x1C
0x20
0x23

0x24

0x28

0x2C
Ox2F
0x30

Register Summary - 12C Host

7 | 6 | s | 4 0 3 1 2 0 1 | 0 |

CTRLA

CTRLB

Reserved

BAUD

Reserved
INTENCLR
Reserved
INTENSET
Reserved

INTFLAG
Reserved

STATUS

SYNCBUSY

Reserved

ADDR

DATA

Reserved

DBGCTRL

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0
15:8
23:16
31:24

7:0

7:0

7:0

7:0
15:8
7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24

7:0

RUNSTDBY MODE[2:0]
SEXTTOEN = MEXTTOEN SDAHOLD[1:0]
LOWTOUT INACTOUT[1:0] SCLSM
BAUDI[7:0]
BAUDLOW(7:0]
ERROR
ERROR
ERROR
CLKHOLD = LOWTOUT BUSSTATE[1:0]
ADDRI[7:0]
TENBITEN LENEN
LEN[7:0]
DATA[7:0]
DATA[15:8]
DATA[23:16]
DATA[31:24]

32.10 Register Description — 12C Host

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can

@ MICROCHIP

be accessed directly.

ACKACT

RXNACK
LENERR
SYSOP

ENABLE SWRST
PINOUT
SPEED[1:0]
QCEN SMEN
CMDI[1:0]
SB MB
SB MB
SB MB
ARBLOST BUSERR
SEXTTOUT = MEXTTOUT
ENABLE SWRST
ADDR[10:8]
DBGSTOP

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the “PAC Write-Protection” property in each individual register

description.

Some registers are synchronized when read and/or written. Synchronization is denoted by the
“Write-Synchronized” or the “Read-Synchronized” property in each individual register description.

689

Some registers are enable-protected, meaning they can only be written when the peripheral is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register
description.

690

@ MICROCHIP

32.10.1 Control A

Name: CTRLA
Offset: 0x00
Reset: 0x00000000
Property: PAC Write-Protection, Enable-Protected, Write-Synchronized
Bit 31 30 29 28 25 24
| | LOWTOUT | INACTOUT[1:0] | SPEED[1:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 23 22 21 20 17 16
| SEXTTOEN | MEXTTOEN | SDAHOLD[1:0] | | PINOUT |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
RUNSTDBY MODE[2:0] ENABLE SWRST
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bit 30 - LOWTOUT SCL Low Time-Out
This bit enables the SCL low time-out. If SCL is held low for 25ms-35ms, the host will release its
clock hold, if enabled, and complete the current transaction. A stop condition will automatically be
transmitted.
INTFLAG.SB or INTFLAG.MB will be set as normal, but the clock hold will be released. The
STATUS.LOWTOUT and STATUS.BUSERR status bits will be set.
This bit is not synchronized.

Value Description

0
1

Bits 29:28 - INACTO

Time-out disabled.
Time-out enabled.

UT[1:0] Inactive Time-Out

If the inactive bus time-out is enabled and the bus is inactive for longer than the time-out setting,
the bus state logic will be set to idle. An inactive bus arise when either an I12C host or client is holding
the SCL low.

Enabling th
set-up.

is option is necessary for SMBus compatibility, but can also be used in a non-SMBus

Calculated time-out periods are based on a 100kHz baud rate.
These bits are not synchronized.

Value Name Description

0x0 DIS Disabled

0x1 55US 5-6 SCL cycle time-out (50-60ps)

0x2 105US 10-11 SCL cycle time-out (100-110us)
0x3 205US 20-21 SCL cycle time-out (200-210us)

Bit 27 - SCLSM SCL
This bit con

@ MICROCHIP

Clock Stretch Mode
trols when SCL will be stretched for software interaction.

691

This bit is not synchronized.

Value Description
0 SCL stretch according to Figure 32-5
1 SCL stretch only after ACK bit, Figure 32-6

Bits 25:24 - SPEED[1:0] Transfer Speed
These bits define bus speed.
These bits are not synchronized.

0x0 Standard-mode (Sm) up to 100 kHz and Fast-mode (Fm) up to 400 kHz
0x1 Fast-mode Plus (Fm+) up to 1 MHz

0x2 Reserved

0x3 Reserved

Bit 23 - SEXTTOEN Client SCL Low Extend Time-Out
This bit enables the client SCL low extend time-out. If SCL is cumulatively held low for greater than
25ms from the initial START to a STOP, the host will release its clock hold if enabled, and complete
the current transaction. A STOP will automatically be transmitted.
SB or MB will be set as normal, but CLKHOLD will be release. The MEXTTOUT and BUSERR status bits
will be set.
This bit is not synchronized.
Value Description
0 Time-out disabled
1 Time-out enabled

Bit 22 - MEXTTOEN Host SCL Low Extend Time-Out
This bit enables the host SCL low extend time-out. If SCL is cumulatively held low for greater than
10ms from START-to-ACK, ACK-to-ACK, or ACK-to-STOP the host will release its clock hold if enabled,
and complete the current transaction. A STOP will automatically be transmitted.
SB or MB will be set as normal, but CLKHOLD will be released. The MEXTTOUT and BUSERR status
bits will be set.
This bit is not synchronized.

Value Description
0 Time-out disabled
1 Time-out enabled

Bits 21:20 - SDAHOLD[1:0] SDA Hold Time
These bits define the SDA hold time with respect to the negative edge of SCL.
These bits are not synchronized.

Value Name Description

0x0 DIS Disabled

0x1 75NS 50-100ns hold time
0x2 450NS 300-600ns hold time
0x3 600NS 400-800ns hold time

Bit 16 - PINOUT Pin Usage
This bit set the pin usage to either two- or four-wire operation:
This bit is not synchronized.

Value Description
0 4-wire operation disabled.
1 4-wire operation enabled.

Bit 7 - RUNSTDBY Run in Standby
This bit defines the functionality in standby sleep mode.
This bit is not synchronized.

@ MICROCHIP

692

Value Description

0 GCLK_SERCOMx_CORE is disabled and the I2C host will not operate in standby sleep mode.
1 GCLK_SERCOMXx_CORE is enabled in all sleep modes.

Bits 4:2 - MODE[2:0] Operating Mode
These bits must be written to 0x5 to select the 12C host serial communication interface of the
SERCOM.
These bits are not synchronized.

Bit 1 - ENABLE Enable
Due to synchronization, there is delay from writing CTRLA.ENABLE until the peripheral is
enabled/disabled. The value written to CTRL.ENABLE will read back immediately and the
Synchronization Enable Busy bit in the Synchronization Busy register (SYNCBUSY.ENABLE) will be
set. SYNCBUSY.ENABLE will be cleared when the operation is complete.
This bit is not enable-protected.

Value Description

0 The peripheral is disabled or being disabled.
1 The peripheral is enabled.

Bit 0 - SWRST Software Reset
Writing ‘0" to this bit has no effect.
Writing ‘1’ to this bit resets all registers in the SERCOM, except DBGCTRL, to their initial state, and the
SERCOM will be disabled.
Writing ‘1’ to CTRLA.SWRST will always take precedence, meaning that all other writes in the same
write-operation will be discarded. Any register write access during the ongoing reset will result in an
APB error. Reading any register will return the reset value of the register.
Due to synchronization there is a delay from writing CTRLA.SWRST until the reset is complete.
CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the reset is complete.
This bit is not enable-protected.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description

0 There is no reset operation ongoing.
1 The reset operation is ongoing.

693

@ MICROCHIP

32.10.2 Control B

Name: CTRLB

Offset: 0x04

Reset: 0x00000000

Property: PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | ACKACT | CMD[1:0] |
Access R/W W W
Reset 0 0 0
Bit 15 14 13 12 11 10 9 8
| | | | QCEN | SMEN |
Access R/W R/W
Reset 0 0
Bit 7 6 5 4 3 2 1 0
Access
Reset

Bit 18 - ACKACT Acknowledge Action
This bit defines the I2C Host's acknowledge behavior after a data byte is received from the 12C Client.
The acknowledge action is executed when a command is written to CTRLB.CMD, or if Smart mode is
enabled (CTRLB.SMEN is written to one), when DATA.DATA is read.
This bit is not enable-protected.
This bit is not write-synchronized.

VEIS Description

0 Send ACK.
1 Send NACK.

Bits 17:16 - CMD[1:0] Command
Writing these bits triggers a Host operation as described below. The CMD bits are strobe bits, and
always read as zero. The acknowledge action is only valid in Host Read mode. In Host Write mode, a
command will only result in a repeated Start or Stop condition. The CTRLB.ACKACT bit and the CMD
bits can be written at the same time, and then the acknowledge action will be updated before the
command is triggered.
Commands can only be issued when either the Client on Bus Interrupt flag (INTFLAG.SB) or Host on
Bus Interrupt flag (INTFLAG.MB) is '1".
If CMD 0x1 is issued, a repeated start will be issued followed by the transmission of the current
address in ADDR.ADDR. If another address is desired, ADDR.ADDR must be written instead of the
CMD bits. This will trigger a repeated start followed by transmission of the new address.
Issuing a command will set the System Operation bit in the Synchronization Busy register
(SYNCBUSY.SYSOP).

Table 32-4. Command Description

cuorr0

0x0 X (No action)

694

@ MICROCHIP

........... continued

0x1 X Execute acknowledge action succeeded by repeated Start
0x2 0 (Write) No operation

1 (Read) Execute acknowledge action succeeded by a byte read operation
0x3 X Execute acknowledge action succeeded by issuing a Stop condition

These bits are not enable-protected.

Bit 9 - QCEN Quick Command Enable
This bit is not write-synchronized.

Value Description
0

Quick Command is disabled.
1 Quick Command is enabled.

Bit 8 - SMEN Smart Mode Enable
When Smart mode is enabled, acknowledge action is sent when DATA.DATA is read.
This bit is not write-synchronized.

Value Description

0 Smart mode is disabled.
1 Smart mode is enabled.

695

@ MICROCHIP

32.10.3 Baud Rate

Name: BAUD

Offset: 0x0C

Reset: 0x0000

Property: PAC Write-Protection, Enable-Protected

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
BAUDLOW([7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
BAUD[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 15:8 - BAUDLOW][7:0] Host Baud Rate Low
If this bit field is non-zero, the SCL low time will be described by the value written.
For more details on how to calculate the frequency, see Clock Generation - Baud-Rate Generator from
Related Links.

Bits 7:0 - BAUD[7:0] Host Baud Rate
This bit field is used to derive the SCL high time if BAUD.BAUDLOW is non-zero. If BAUD.BAUDLOW is
zero, BAUD will be used to generate both high and low periods of the SCL.
For more details on how to calculate the frequency, see Clock Generation - Baud-Rate Generator from
Related Links.
Related Links

29.6.2.3. Clock Generation - Baud-Rate Generator

@ MICROCHIP

696

32.10.4 Interrupt Enable Clear

Name: INTENCLR
Offset: 0x14
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit 7 6 5 4 3 2 1 0
| ERROR | | | | | | SB | MB |
Access R/W R/W R/W
Reset 0 0 0

Bit 7 - ERROR Error Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Error Interrupt Enable bit, which disables the Error interrupt.

Value Description

0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 1 - SB Client on Bus Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Client on Bus Interrupt Enable bit, which disables the Client on Bus
interrupt.

Value Description

0 The Client on Bus interrupt is disabled.
1 The Client on Bus interrupt is enabled.

Bit 0 - MB Host on Bus Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the Host on Bus Interrupt Enable bit, which disables the Host on Bus
interrupt.

VEINS Description

0 The Host on Bus interrupt is disabled.
1 The Host on Bus interrupt is enabled.

@ MICROCHIP

697

32.10.5 Interrupt Enable Set

Name: INTENSET
Offset: 0x16
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit 7 6 5 4 3 2 1 0
| ERROR | | | | | | SB | MB |
Access R/W R/W R/W
Reset 0 0 0

Bit 7 - ERROR Error Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.

Value Description

0 Error interrupt is disabled.
1 Error interrupt is enabled.

Bit 1 - SB Client on Bus Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Client on Bus Interrupt Enable bit, which enables the Client on Bus
interrupt.

Value Description

0 The Client on Bus interrupt is disabled.
1 The Client on Bus interrupt is enabled.

Bit 0 - MB Host on Bus Interrupt Enable
Writing '0' to this bit has no effect.
Writing '1' to this bit will set the Host on Bus Interrupt Enable bit, which enables the Host on Bus
interrupt.

VEINS Description

0 The Host on Bus interrupt is disabled.
1 The Host on Bus interrupt is enabled.

@ MICROCHIP

698

32.10.6 Interrupt Flag Status and Clear

Name: INTFLAG
Offset: 0x18
Reset: 0x00
Property: -
Bit 7 6 5 4 3 2 1 0
| ERROR | | | | | SB | MB |
Access R/W R/W R/W
Reset 0 0 0

Bit 7 - ERROR Error
This flag is cleared by writing '1' to it.
This bit is set when any error is detected. Errors that will set this flag have corresponding status bits
in the STATUS register. These status bits are LENERR, SEXTTOUT, MEXTTOUT, LOWTOUT, ARBLOST,
and BUSERR.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear the flag.

Bit 1 - SB Client on Bus
The Client on Bus flag (SB) is set when a byte is successfully received in Host Read mode, for
example, no arbitration lost or bus error occurred during the operation. When this flag is set, the
host forces the SCL line low, stretching the 12C clock period. The SCL line will be released and SB will
be cleared on one of the following actions:

+ Writing to ADDR.ADDR

+ Writing to DATA.DATA

+ Reading DATA.DATA when Smart mode is enabled (CTRLB.SMEN)
« Writing a valid command to CTRLB.CMD

Writing '1' to this bit location will clear the SB flag. The transaction will not continue or be terminated
until one of the above actions is performed.
Writing '0' to this bit has no effect.

Bit 0 - MB Host on Bus
This flag is set when a byte is transmitted in Host Write mode. The flag is set regardless of the
occurrence of a bus error or an Arbitration Lost condition. MB is also set when arbitration is lost
during sending of NACK in Host Read mode, or when issuing a Start condition if the bus state is
unknown. When this flag is set and arbitration is not lost, the host forces the SCL line low, stretching
the I12C clock period. The SCL line will be released and MB will be cleared on one of the following
actions:

+ Writing to ADDR.ADDR

+ Writing to DATA.DATA

+ Reading DATA.DATA when Smart mode is enabled (CTRLB.SMEN)

+ Writing a valid command to CTRLB.CMD

Writing '1' to this bit location will clear the MB flag. The transaction will not continue or be

terminated until one of the above actions is performed.
Writing '0' to this bit has no effect.

699

@ MICROCHIP

32.10.7 Status

Name: STATUS

Offset: Ox1A

Reset: 0x0000

Property: Write-Synchronized

Bit 15 14 13 12 11 10 9 8

| | | LENERR | SEXTTOUT | MEXTTOUT |
Access R/W R/W R/W
Reset 0 0 0
Bit 7 6 5 4 3 2 1 0

| CLKHOLD | LOWTOUT | BUSSTATE[1:0] | | RXNACK | ARBLOST | BUSERR |
Access R R/W R/W R/W R R/W R/W
Reset 0 0 0 0 0 0 0

Bit 10 - LENERR Transaction Length Error
This bit is set when automatic length is used for a DMA transaction and the client sends a NACK
before ADDR.LEN bytes have been written by the host.
Writing '1' to this bit location will clear STATUS.LENERR. This flag is automatically cleared when
writing to the ADDR register.
Writing '0' to this bit has no effect.
This bit is not write-synchronized.

Bit 9 - SEXTTOUT Client SCL Low Extend Time-Out
This bit is set if a client SCL low extend time-out occurs.
This bit is automatically cleared when writing to the ADDR register.
Writing '1' to this bit location will clear SEXTTOUT. Normal use of the I12C interface does not require
the SEXTTOUT flag to be cleared by this method.
Writing '0' to this bit has no effect.
This bit is not write-synchronized.

Bit 8 - MEXTTOUT Host SCL Low Extend Time-Out
This bit is set if a Host SCL low time-out occurs.
Writing '1' to this bit location will clear STATUS.MEXTTOUT. This flag is automatically cleared when
writing to the ADDR register.
Writing '0' to this bit has no effect.
This bit is not write-synchronized.

Bit 7 - CLKHOLD Clock Hold
This bit is set when the host is holding the SCL line low, stretching the 12C clock. Software must
consider this bit when INTFLAG.SB or INTFLAG.MB is set.
This bit is cleared when the corresponding Interrupt flag is cleared and the next operation is given.
Writing '0' to this bit has no effect.
Writing '1' to this bit has no effect.
This bit is not write-synchronized.

Bit 6 - LOWTOUT SCL Low Time-Out
This bit is set if an SCL low time-out occurs.
Writing '1' to this bit location will clear this bit. This flag is automatically cleared when writing to the
ADDR register.
Writing '0' to this bit has no effect.
This bit is not write-synchronized.

700

@ MICROCHIP

Bits 5:4 - BUSSTATE[1:0] Bus State
These bits indicate the current I1°C Bus state.
When in UNKNOWN state, writing Ox1 to BUSSTATE forces the bus state into the IDLE state. The bus
state cannot be forced into any other state.
Writing BUSSTATE to idle will set SYNCBUSY.SYSOP.

Value Name Description

0x0 UNKNOWN The Bus state is unknown to the I12C host and will wait for a Stop condition to be detected or wait
to be forced into an Idle state by software

0x1 IDLE The Bus state is waiting for a transaction to be initialized

0x2 OWNER The I12C host is the current owner of the bus

0x3 BUSY Some other I12C host owns the bus

Bit 2 - RXNACK Received Not Acknowledge
This bit indicates whether the last address or data packet sent was acknowledged or not.
Writing '0' to this bit has no effect.
Writing '1' to this bit has no effect.
This bit is not write-synchronized.

Value Description

0 Client responded with ACK.
1 Client responded with NACK.

Bit 1 - ARBLOST Arbitration Lost
This bit is set if arbitration is lost while transmitting a high data bit or a NACK bit, or while issuing a
Start or Repeated Start condition on the bus. The Host on Bus Interrupt flag (INTFLAG.MB) will be set
when STATUS.ARBLOST is set.
Writing the ADDR.ADDR register will automatically clear STATUS.ARBLOST.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear it.
This bit is not write-synchronized.

Bit 0 - BUSERR Bus Error
This bit indicates that an illegal Bus condition has occurred on the bus, regardless of bus ownership.
An illegal Bus condition is detected if a protocol violating start, repeated start or stop is detected on
the 12C bus lines. A Start condition directly followed by a Stop condition is one example of a protocol
violation. If a time-out occurs during a frame, this is also considered a protocol violation, and will set
BUSERR.
If the 12C host is the bus owner at the time a bus error occurs, STATUS.ARBLOST and INTFLAG.MB will
be set in addition to BUSERR.
Writing the ADDR.ADDR register will automatically clear the BUSERR flag.
Writing '0' to this bit has no effect.
Writing '1' to this bit will clear it.
This bit is not write-synchronized.

701

@ MICROCHIP

32.10.8 Synchronization Busy

Name: SYNCBUSY
Offset: 0x1C
Reset: 0x00000000

Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
SYSOP ENABLE SWRST
Access R R R
Reset 0 0 0

Bit 2 - SYSOP System Operation Synchronization Busy

0 System operation synchronization is not busy.

1 System operation synchronization is busy.

Bit 1 - ENABLE SERCOM Enable Synchronization Busy
Enabling and disabling the SERCOM (CTRLA.ENABLE) requires synchronization. When written, the
SYNCBUSY.ENABLE bit will be set until synchronization is complete.

0 Enable synchronization is not busy.
1 Enable synchronization is busy.

Bit 0 - SWRST Software Reset Synchronization Busy
Resetting the SERCOM (CTRLA.SWRST) requires synchronization. When written, the
SYNCBUSY.SWRST bit will be set until synchronization is complete.
Note: During a SWRST, access to registers/bits without SWRST are disallowed until
SYNCBUSY.SWRST cleared by hardware.

Value Description

0 SWRST synchronization is not busy.
1 SWRST synchronization is busy.

@ MICROCHIP

702

32.10.9 Address

Name: ADDR

Offset: 0x24

Reset: 0x0000

Property: Write-Synchronized

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| LEN[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| TENBITEN | | LENEN | | | ADDR[10:8] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
ADDR[7:0]
Access R/W RIW RIW R/W RIW R/W R/W RIW
Reset 0 0 0 0 0 0 0 0

Bits 23:16 - LEN[7:0] Transaction Length
These bits define the transaction length of a DMA transaction from 0 to 255 bytes. The Transfer
Length Enable (LENEN) bit must be written to '1' in order to use DMA.

Bit 15 - TENBITEN Ten Bit Addressing Enable
This bit enables 10-bit addressing. This bit can be written simultaneously with ADDR to indicate a
10-bit or 7-bit address transmission.

Value Description

0 10-bit addressing disabled.
1 10-bit addressing enabled.

Bit 13 - LENEN Transfer Length Enable

0 Automatic transfer length disabled.
1 Automatic transfer length enabled.

Bits 10:0 - ADDR[10:0] Address
When ADDR is written, the consecutive operation will depend on the bus state:
UNKNOWN: INTFLAG.MB and STATUS.BUSERR are set, and the operation is terminated.
BUSY: The I12C host will await further operation until the bus becomes IDLE.
IDLE: The 12C host will issue a start condition followed by the address written in ADDR. If the address
is acknowledged, SCL is forced and held low, and STATUS.CLKHOLD and INTFLAG.MB are set.
OWNER: A repeated start sequence will be performed. If the previous transaction was a read, the
acknowledge action is sent before the repeated start bus condition is issued on the bus. Writing
ADDR to issue a repeated start is performed while INTFLAG.MB or INTFLAG.SB is set.
STATUS.BUSERR, STATUS.ARBLOST, INTFLAG.MB and INTFLAG.SB will be cleared when ADDR is
written.

703

@ MICROCHIP

The ADDR register can be read at any time without interfering with ongoing bus activity, as a read
access does not trigger the host logic to perform any bus protocol related operations.

The I12C host control logic uses bit 0 of ADDR as the bus protocol's read/write flag (R/W); 0 for write
and 1 for read.

o 704
@ MICROCHIP

32.10.10 Data

Name: DATA
Offset: 0x28

Reset: 0x00000000
Property: Read/Write

Bit 31 30 29 28 27 26 25 24
| DATA[31:24] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| DATA[23:16] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
DATA[15:8]
Access R/W R/W RIW R/W RIW R/W R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
DATA[7:0]
Access R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - DATA[31:0] Data
The host data register 1/0 location (DATA) provides access to the host transmit and receive data
buffers. Reading valid data or writing data to be transmitted can be successfully done only when SCL
is held low by the host (STATUS.CLKHOLD is set). An exception is reading the last data byte after the
stop condition has been sent.
Accessing DATA.DATA auto-triggers I2C bus operations. The operation performed depends on the
state of CTRLB.ACKACT, CTRLB.SMEN and the type of access (read/write).
When CTRLC.DATA32B=1, read and write transactions from/to the DATA register are 32 bit in size.
Otherwise, reads and writes are 8 bit.

@ MICROCHIP

705

32.10.11 Debug Control

Name: DBGCTRL

Offset: 0x30

Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| | | | | DBGSTOP |
Access R/W
Reset 0

Bit 0 - DBGSTOP Debug Stop Mode
This bit controls functionality when the CPU is halted by an external debugger.

Value Description

0 The baud-rate generator continues normal operation when the CPU is halted by an external debugger.
1 The baud-rate generator is halted when the CPU is halted by an external debugger.

706

@ MICROCHIP

33. Quad Serial Peripheral Interface (QSPI)

33.1 Overview

The Quad SPI Interface (QSPI) circuit is a synchronous serial data link that provides communication
with external devices in Host mode.

The QSPI can be used in “SPI mode” to interface serial peripherals, such as ADCs, DACs, LCD
controllers and sensors, or in “Serial Memory Mode” to interface serial Flash memories.

The QSPI allows the system to execute code directly from a serial Flash memory (XIP) without code
shadowing to SRAM. The serial Flash memory mapping is seen in the system as other memories
(ROM, SRAM, DRAM, embedded Flash memories, etc.,).

With the support of the quad-SPI protocol, the QSPI allows the system to use high performance
serial Flash memories which are small and inexpensive, in place of larger and more expensive
parallel Flash memories.

Note: Traditional Quad SPI Interface (QSPI) documentation uses the terminology “Master” and
“Slave”. The equivalent Microchip terminology used in this document is “Host” and “Client”
respectively.
33.2 Features
* Host SPI Interface:
- Programmable clock phase and clock polarity

- Programmable transfer delays between consecutive transfers, between clock and data,
between deactivation and activation of chip select (CS)

+ SPI Mode:
- To use serial peripherals, such as ADCs, DACs, LCD controllers, and sensors
- 8-bit, 16-bit, or 32-bit programmable data length
+ Serial Memory Mode:
- To use serial Flash memories operating in single-bit SPI, Dual SPI and Quad SPI

- Supports “execute in place” (XIP). The system can execute code directly from a Serial Flash
memory

- Flexible instruction register, to be compatible with all serial Flash memories

- 32-bit Address mode (default is 24-bit address) to support serial Flash memories larger than
128 Mbit

- Continuous Read mode
- Scrambling/Unscrambling “On-the-Fly”
- Double data rate support

+ Connection to DMA Channel Capabilities Optimizes Data Transfers
- One channel for the receiver and one channel for the transmitter

* Register Write Protection

707

@ MICROCHIP

33.3 Block Diagram

Figure 33-1. QSPI Block Diagram

PBx_CLK
(CLK_QSPI_APB)

Clock Source
Generator
(CLK_GEN) sys_clk

(CLK_QSPI_AHB)

——> SCK

QSPI l«— MOSI/DATAO
. APB
P(Er:?d}geeral p > l«—> MISO/DATA1
CPU [«—> « > DATA2
AHB
MATRIX DATA3
DMA [€=—> < > ¢S

Interrupt Control

QSPI Interrupt

33.4 Signal Description

Table 33-1. Quad-SPI Signals

SCK Serial Clock Output

cs Chip Select Output

MOSI(DATAOQ) Data Output (Data Input Output 0) Output (Input/Output)
MISO(DATA1) Data Input (Data Input Output 1) Input (Input/Output)
DATA2 Data Input Output 2 Input/Output

DATA3 Data Input Output 3 Input/Output
Notes:

1. MOSI and MISO are used for single-bit SPI operation.
2. DATAO-DATA1 are used for Dual SPI operation.
3. DATAOQ-DATAS3 are used for Quad SPI operation.

See I/0 Ports and Peripheral Pin Select (PPS) from Related Links for details on the pin mapping for the
QSPI peripheral.

Related Links
6. I/0 Ports and Peripheral Pin Select (PPS)

33.5 Product Dependencies
In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

33.5.1 1/0 Lines
Using the QSPI I/0 lines requires the 1/0 pins to be configured.

708

@ MICROCHIP

33.5.2 Power Management
The QSPI will continue to operate in any Sleep mode where the selected source clock is running. The
QSPI interrupts can be used to wake up the device from sleep modes. See Power Management Unit
(PMU) from Related Links for details on the different sleep modes.
Related Links
15. Power Management Unit (PMU)

33.5.3 Clocks
An AHB clock (CLK_QSPI_AHB) is required to clock the QSPI. This clock can be enabled and disabled
in the CRU.

A FAST clock (CLK_QSPI2X_AHB) is required to clock the QSPI. This clock can be enabled and disabled
in the CFGCON1 register, bit 29 (CFGCON1.QSPIDDRM). When using QSPI DDR mode, the System
Clock (SYS_CLK) must be <= 48 MHz.

Figure 33-2. QSPI Clock Organization

HS Clock CLK_QSPI2X_AHB o
Domain: fHs e
QsPI
CLK_QSPI_AHB o
CPU Clock >
Domain: fcPu -
CLK_QSPI_APB -

Important: The CLK_QSPI2x_AHB must be 2 times faster to CLK_QSPI_AHB when
the QSPI is operated in DDR mode. In SDR, the CLK_QSPI2x_AHB is not used.

CLK_QSPI_APB, CLK_QSPI_AHB and CLK_QSPI2X_AHB, respectively, are all synchronous but can be
divided by a prescaler and may run even when the module clock is turned off.

33.5.4 DMA
The DMA request lines are connected to the DMA Controller (DMAC). Using the QSPI DMA requests
requires the DMA Controller to be configured first.

Note: DMAC write access must be 32-bit aligned. If a single byte is to be written in a 32-bit word, the
rest of the word must be filled with 'ones’.

33.5.5 Interrupts
The interrupt request lines are connected to the interrupt controller. Using the QSPI interrupts
requires the interrupt controller to be configured first. See Nested Vector Interrupt Controller (NVIC)
from Related Links.
Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

33.5.6 Events
Not applicable.

709

@ MICROCHIP

33.5.7 Debug Operation

When the CPU is halted in debug mode the QSPI continues normal operation. If the QSPI is
configured in a way that requires it to be periodically serviced by the CPU through interrupts or
similar, improper operation or data loss may result during debugging.

33.5.8 Register Access Protection

All registers with write-access are optionally write-protected by the peripheral access controller
(PAC), except the following registers:

+ Control A (CTRLA) register

+ Transmit Data (TXDATA) register

+ Interrupt Flag Status and Clear (INTFLAG) register
+ Scrambling Key (SCRAMBKEY) register

PAC write-protection is denoted by the ‘PAC Write-Protection’ property in the register description.

Write-protection does not apply to accesses through an external debugger.

33.6 Functional Description

33.6.1 Principle of Operation

The QSPI is a high-speed synchronous data transfer interface. It allows high-speed communication
between the device and peripheral or serial memory devices.

The QSPI operates as a host. It initiates and controls all data transactions.

When transmitting, the TXDATA register can be loaded with the next character to be transmitted
during the current transmission.

When receiving, the data is transferred to the RXDATA register, and the receiver is ready for a new
character.

33.6.2 Basic Operation

33.6.2.1 Initialization
After Power-On Reset, this peripheral is enabled .

33.6.2.2 Enabling, Disabling and Resetting
The peripheral is enabled by writing a ‘1’ to the Enable bit in the Control A register (CTRLA.ENABLE).
The peripheral is disabled by writing a ‘0’ to CTRLA.ENABLE.

The peripheral is reset by writing a ‘1’ to the Software Reset bit (CTRLA.SWRST).

33.6.3 Transfer Data Rate
By default, the QSPI module is enabled in single data rate mode. In this operating mode, the
CLK_QSPI2X_AHB clock is not used and must be disabled.

The dual data rate operating mode is enabled by writing a ‘1’ to the Double Data Rate Enable bit
in the CFGCON1 register (CFGCON1.QSPIDDRM). This operating mode requires the CLK_QSPI2X_AHB
clock and must be enabled before writing the DDREN bit.

33.6.4 Serial Clock Baud Rate

The QSPI Baud rate clock is generated by dividing the module clock (CLK_QSPI_AHB) by a value
between 1 and 255.

This allows a maximum operating baud rate at up to Host Clock and a minimum operating baud rate
of CLK_QSPI_AHB divided by 255.

@ MICROCHIP

710

33.6.5 Serial Clock Phase and Polarity
Four combinations of polarity and phase are available for data transfers. Writing the Clock Polarity

bit in the QSPI Baud register (BAUD.CPOL) selects the polarity. The Clock Phase bit in the BAUD

register programs the clock phase (BAUD.CPHA). These two parameters determine the edges of the
clock signal on which data is driven and sampled. Each of the two parameters has two possible

states, resulting in four possible combinations

Note: The polarity/phase combinations are incompatible. Thus, the interfaced client must use the

same parameter values to communicate.

Table 33-2. SPI Transfer Mode

Clock Mode BAUD.CPOL BAUD.CPHA
0 0 0

1
2
3

0
1
1

1
0
1

Falling Rising
Rising Falling
Rising Falling
Falling Rising

Figure 33-3. QSPI Transfer Modes (BAUD.CPHA = 0, 8-bit transfer)

SCK Cycle (for reference)
SCK

Low
High
High

shift SCK Edge Capture SCK Edge

CK Inactive Level
Low

(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(from host)

MSB

>< LSB

X

MISO
(from client)

Ccs
(to client)

@ MICROCHIP

MSB

>< LSB

>< *

* Not defined, but normally MSB of previous character received

711

Figure 33-4. QSPI Transfer Modes (BAUD.CPHA = 1, 8-bit transfer)

SCK Cycle (for reference) 1 2 3 4 5 6 7 8

(oo =0) | | | | | | | |

hoL= 1 | | | | | | | |

MOSI
MSB 6 5 4 3 2 1 LsB
(from host) >< ><

MISO
*
(from client) >< MSB 6 5 4 3 2 ! >< LSB

Cs
(to client)

* Not defined, but normally LSB of previous character received

33.6.6 Transfer Delays

The QSPI supports several consecutive transfers while the chip select is active. Three delays can be
programmed to modify the transfer waveforms:

+ The delay between the inactivation and the activation of CS is programmed by writing the
Minimum Inactive CS Delay bit field in the Control B register (CTRLB.DLYCS), allowing to tune
the minimum time of CS at high level.

+ The delay between consecutive transfers is programmed by writing the Delay Between
Consecutive Transfers bit field in the Control B register (CTRLB.DLYBCT), allowing to insert a delay
between two consecutive transfers. In Serial Memory mode, this delay is not programmable and
DLYBCT settings are ignored.

+ The delay before SCK is programmed by writing the Delay Before SCK bit field in the BAUD
register (BAUD.DLYBS), allowing to delay the start of SPCK after the chip select has been asserted.

These delays allow the QSPI to be adapted to the interfaced peripherals and their speed and bus
release time.

Figure 33-5. Programmable Delay

S)))

SCK DLYCS | DLYBS S S DLYBCT S S DLYBCT
»|< > < f————>

33.6.7 QSPI SPI Mode
In this mode, the QSPI acts as a regular SPI Host.

To activate this mode, the MODE bit in the Control B register must be cleared (CTRLB.MODE=0).

712

@ MICROCHIP

33.6.7.1 SPI Mode Operations
The QSPI in standard SPI mode operates on the clock generated by the internal programmable baud
rate generator. It fully controls the data transfers to and from the client connected to the SPI bus.
The QSPI drives the chip select line to the client (CS) and the serial clock signal (SCK).

The QSPI features a single internal shift register and two holding registers: the Transmit Data
Register (TXDATA) and the Receive Data Register (RXDATA). The holding registers maintain the data
flow at a constant rate.

After enabling the QSPI, a data transfer begins when the processor writes to the TXDATA. The written
data is immediately transferred into the internal shift register and transfer on the SPI bus starts.
While the data in the internal shift register is shifted on the MOSI line, the MISO line is sampled and
shifted into the internal shift register. Receiving data cannot occur without transmitting data.

If new data is written in TXDATA during the transfer, it stays in TXDATA until the current transfer is
completed. Then, the received data is transferred from the internal shift register to the RXDATA, the
data in TXDATA is loaded into the internal shift register, and a new transfer starts.

The transfer of data written in TXDATA in the internal shift register is indicated by the Transmit Data
Register Empty (DRE) bit in the Interrupt Flag Status and Clear register (INTFLAG.DRE). When new
data is written in TXDATA, this bit is cleared. The DRE bit is used to trigger the Transmit DMA channel.

The end of transfer is indicated by the Transmission Complete flag (INTFLAG.TXC). If the transfer
delay for the last transfer was configured to be greater than 0 (CTRLB.DLYBCT), TXC is set after the
completion of the delay. The module clock (CLK_QSPI_AHB) can be switched off at this time.

Ongoing transfer of received data from the internal shift register into RXDATA is indicated by the
Receive Data Register Full flag (INTFLAG.RXC). When the received data is read, the RXC bit is cleared.

If the RXDATA has not been read before new data is received, the Overrun Error flag in INTFLAG
register (INTFLAG.ERROR) is set. As long as this flag is set, data is loaded in RXDATA.

The SPI Mode Block Diagram shows a flow chart describing how transfers are handled.
33.6.7.2 SPI Mode Block Diagram

Figure 33-6. SPI Mode Block Diagram

BAUD
BAUD
Peripheral Clock Baud Rate Generator i SCK
Serial
Clock
BAUD RXDATA —> RXC
CPHA | DATA ERROR
CPOL
| y
MISO LSB Shift Register MSB—D MOSI
1 1
CTRLB |
DATALEN TXDATA
[DATA DRE |
Chip Select Controller —D CS
I
CTRLB |
CSMODE

713

@ MICROCHIP

33.6.7.3 SPI Mode Flow Diagram

Figure 33-7. SPI Mode Flow Diagram

QSI Enable

| Delay

DLYBS

Serializer = TXDATA
DRE =1

Data Ti

ransfer

RXDATA = Serializer
RXC =1

Delay DLYBCT

| Cs=1

| Delay DLYCS

@ MICROCHIP

714

Figure 33-8. Interrupt Flags Behaviour

1 2 3 4 5 6 7 8
SCK | | |
s\l
?frgz'host) MSB 6 5 4 3 2 1 >< LSB ><
DRE
< RXDATA Read

Write in TXDATA

4

RXC
MISO
MSB 6 5 4 3 2 1 LSB
(from client) >< >< >< >C

TXC

<

Shift register emptyi

33.6.7.4 Peripheral Deselection with DMA

When the Direct Memory Access Controller is used, the Chip Select line will remain low during the
whole transfer because the Transmit Data Register Empty flag in the Interrupt Flag Status and Clear
register (INTFLAG.DRE) is managed by the DMA itself. The reloading of the TXDATA by the DMA is
done as soon as the INTFLAG.DRE flag is set. In this case, setting the Chip Select mode bit field in the
Control B register (CTRLB.CSMODE) to 0x1 is not mandatory.

However, it may happen that when other DMA channels connected to other peripherals are in use
as well, the QSPI DMA could be delayed by another DMA transfer with a higher priority on the bus.
Having DMA buffers in slower memories, like Flash memory or SDRAM (compared to fast internal
SRAM), may lengthen the reload time of the TXDATA by the DMA as well. This means that TXDATA
might not be reloaded in time to keep the Chip Select line low. In this case, the Chip Select line may
toggle between data transfer and some SPI Client devices, and the communication might get lost.
Writing CTRLB.CSMODE=0x1 can prevent this loss.

When CTRLB.CSMODE=0x0, the CS does not rise in all cases between two transfers on the same
peripheral. During a transfer on a Chip Select, the INTFLAG.DRE flag is raised as soon as the content
of the TXDATA is transferred into the internal shifter. When this flag is detected, the TXDATA can

be reloaded. If this reload occurs before the end of the current transfer and if the next transfer

is performed on the same Chip Select as the current transfer, the Chip Select is not de-asserted
between the two transfers. This may lead to difficulties for interfacing with some serial peripherals
requiring the Chip Select to be de-asserted after each transfer. To facilitate interfacing with such
devices, it is recommended to write CTRLB.CSMODE to 0x2.

33.6.7.5 Peripheral Deselection without DMA

During multiple data transfers on a Chip Select without the DMA, the TXDATA is loaded by the
processor, and the Transmit Data Register Empty flag in the Interrupt Flag Status and Clear register
(INTFLAG.DRE) rises as soon as the content of the RXDATA is transferred into the internal shift
register. When this flag is detected high, the TXDATA can be reloaded. If this reload-by-processor
occurs before the end of the current transfer and if the next transfer is performed on the same Chip
Select as the current transfer, the Chip Select is not de-asserted between the two transfers.

Depending on the application software handling the flags or servicing other interrupts or other
tasks, the processor may not reload the TXDATA in time to keep the Chip Select active (low). A null

715

@ MICROCHIP

Delay Between Consecutive Transfer bit field value in the CTRLB register (CTRLB.DLYBCT) will give
even less time for the processor to reload the TXDATA. With some SPI client peripherals, requiring
the Chip Select line to remain active (low) during a full set of transfers might lead to communication
errors.

To facilitate interfacing with such devices, the Chip Select Mode bit field in the CTRLB register
(CTRLB.CSMODE) can be written to 0x1. This allows the Chip Select lines to remain in their current
state (low = active) until the end of transfer is indicated by the Last Transfer bit in the CTRLA register
(CTRLA.LASTXFER). Even if the TXDATA is not reloaded, the Chip Select will remain active. To have the
Chip Select line rise at the end of the last data transfer, the LASTXFER bit in the CTRLA must be set
before writing the last data to transmit into the TXDATA.

33.6.8 QSPI Serial Memory Mode
In this mode the QSPI acts as a serial Flash memory controller. The QSPI can be used to read data
from the serial Flash memory allowing the CPU to execute code from it (XIP execute in place). The
QSPI can also be used to control the serial Flash memory (Program, Erase, Lock, and so on) by
sending specific commands. In this mode, the QSPI is compatible with single-bit SPI, Dual-SPI and
Quad-SPI protocols.

To activate this mode, the MODE bit in Control B register must be set to one (CTRLB.MODE = 1).

In serial memory mode, data cannot be transferred by the TXDATA and the RXDATA, but by writing or
reading the QSPI memory space (0x0400 0000 - 0x0500 0000).

Important: QSPI memory space region can be cached to improve data transfer
speed.

However, external Flash devices which have command/status registers mapped in
the QSPI memory space region must be managed carefully by applying any one of
the following configurations:

+ Data cache must be disabled.

+ If data cache is required, then cache line must be invalidated before reading
the status register.

33.6.8.1 Instruction Frame

In order to control serial Flash memories, the QSPI is able to sent instructions by the SPI bus (ex:
READ, PROGRAM, ERASE, LOCK, etc.). Because instruction set implemented in serial Flash memories
is memory vendor dependent, the QSPI includes a complete instruction registers, which makes it
very flexible and compatible with all serial Flash memories.

An instruction frame includes:

« An instruction code (size: 8 bits): The instruction can be optional in some cases

+ An address (size: 24 bits or 32 bits): The address is optional but is required by instructions such
as READ, PROGRAM, ERASE, LOCK. By default the address is 24 bits long, but it can be 32 bits long
to support serial Flash memories larger than 128 Mbit (16 Mbyte).

« An option code (size: 1/2/4/8 bits): The option code is optional but is useful for activate the
“XIP mode” or the “Continuous Read Mode” for READ instructions, in some serial Flash memory
devices. These modes allow to improve the data read latency.

+ Dummy cycles: Dummy cycles are optional but required by some READ instructions

+ Data bytes are optional: Data bytes are present for data transfer instructions such as READ or
PROGRAM

The instruction code, the address/option and the data can be sent with Single-bit SPI, Dual SPI or
Quad SPI protocols.

716

@ MICROCHIP

Figure 33-9. Instruction Frame

cs | [

DATAO EZHATOETHABXATXA0XO2X 00 (DaXDoX -+
DATA1 A2 KATXATHAI XAS XATXO5X O p———————D5XD1X == D1
DATA2

DATA3 A2HA1HATHATIXAT XAZXO7X OF—————D7XD3X ==~ D3

Instruction EBh - Address ~ Option Dummy cycle; Data

33.6.8.2 Instruction Frame Sending

To send an instruction frame, the user must first configure the address to send by writing the field
ADDR in the Instruction Address Register (INSTRADDR.ADDR). This step is required if the instruction
frame includes an address and no data. When data is present, the address of the instruction is
defined by the address of the data accesses in the QSPI memory space, and not by the INSTRADDR
register.

If the instruction frame includes the instruction code and/or the option code, the user must
configure the instruction code and/or the option code to send by writing the fields INST and
OPTCODE bit fields in the Instruction Control Register (INSTRCTRL.OPTCODE, INSTRCTRL.INSTR).

Then, the user must write the Instruction Frame Register (INSTRFRAME) to configure the instruction
frame depending on which instruction must be sent. If the instruction frame does not include data,
writing in this register triggers the send of the instruction frame in the QSPI. If the instruction frame
includes data, the send of the instruction frame is triggered by the first data access in the QSPI
memory space.

The instruction frame is configured by the following bits and fields of INSTRFRAME:

+ WIDTH field is used to configure which data lanes are used to send the instruction code, the
address, the option code and to transfer the data. It is possible to use two unidirectional data
lanes (MISO-MOSI Single-bit SPI), two bidirectional data lanes (DATAO - DATA1 Dual SPI) or four
bidirectional data lanes (DATAO - DATA3).

Table 33-3. WIDTH Encoding

0 Single-bit SPI Single-bit SPI Single-bit SPI
1 Single-bit SPI Single-bit SPI Dual SPI

2 Single-bit SPI Single-bit SPI Quad SPI

3 Single-bit SPI Dual SPI Dual SPI

4 Single-bit SPI Quad SPI Quad SPI

5 Dual SPI Dual SPI Dual SPI

6 Quad SPI Quad SPI Quad SPI

7 Reserved

INSTREN bit enables sending an instruction code

+ ADDREN bit enables sending of an address after the instruction code

+ OPTCODEEN bit enables sending of an option code after the address

« DATAEN bit enables the transfer of data (READ or PROGRAM instruction)

+ OPTCODELEN field configures the option code length (0 -> 1-bit / 1 -> 2-bit / 2 -> 4-bit / 3 -> 8-bit).
The value written in OPTCODELEN must be consistent with value written in the field WIDTH. For

717

@ MICROCHIP

example: OPTCODELEN = 0 (1-bit option code) is not coherent with WIDTH = 6 (option code sent
with QuadsSPI protocol, thus the minimum length of the option code is 4-bit).

« ADDRLEN bit configures the address length (0 -> 24 bits / 1-> 32 bits)
+ TFRTYPE field defines which type of data transfer must be performed

« DUMMYLEN field configures the number of dummy cycles when reading data from the serial
Flash memory. Between the address/option and the data, with some instructions, dummy cycles
are inserted by the serial Flash memory.

If data transfer is enabled, the user can access the serial memory by reading or writing the QSPI
memory space following these rules:

+ Reading from the serial memory, but not memory data (for example reading the JEDEC-ID or the
STATUS), requires TFRTYPE to be written to 0x0

+ Reading from the serial memory, and particularly memory data, requires TFRTYPE to be written
to "'

+ Writing to the serial memory, but not memory data (for example writing the configuration or
STATUS), requires TFRTYPE to be written to 0x2

+ Writing to the serial memory, and particularly memory data, requires TFRTYPE to be written to
0x3

If TFRTYP has a value other than 0x1 and CTRLB.SMEMREG=0, the address sent in the instruction
frame is the address of the first system bus accesses. The addresses of the subsequent access
actions are not used by the QSPI. At each system bus access, an SPI transfer is performed with the
same size. For example, a half-word system bus access leads to a 16-bit SPI transfer, and a byte
system bus access leads to an 8-bit SPI transfer.

If CTRLB.SMEMREG=1, accesses are made via the QSPI registers and the address sent in the
instruction frame is the address defined in the INSTRADDR register. Each time the INSTRFRAME
or TXDATA registers are written, an SPI transfer is performed with a byte size. Another byte is read
each time RXDATA register is read or written each time TXDATA register is written. The SPI transfer
ends by writing the LASTXFER bit in Control A register (CTRLA.LASTXFER).

If TFRTYP=0x1, the address of the first instruction frame is the one of the first read access in

the QSPI memory space. Each time the read accesses become non-sequential (addresses are not
consecutive), a new instruction frame is sent with the last system bus access address. In this way,
the system can read data at a random location in the serial memory. The size of the SPI transfers
may differ from the size of the system bus read accesses.

When data transfer is not enabled, the end of the instruction frame is indicated when the INSTREND
interrupt flag in the INTFLAG register is set. When data transfer is enabled, the user must indicate
when data transfer is completed in the QSPI memory space by setting the bit LASTXFR in the CTRLA.
The end of the instruction frame is indicated when the INSTREND interrupt flag in the INTFLAG
register is set.

718

@ MICROCHIP

Figure 33-10. Instruction Transmission Flow Diagram

START

nstruction frame’

with address
but no data
?

Write the address
in INSTRADDR

Instruction frame
with instruction code and/or’
option code

No

Write the instruction code
and/or the option code
in INSTRCTRL

Configure and send instruction
frame by writing INSTRFRAME

Instruction frame
with data
?

Yes

Read INSTRFRAME
to synchronize APB and AHB
accesses

Instruction frame No

with address
?

Read memory
transfer
(TFRTYP = 1)
?

Yes

Read DATA in the QSPI AHB
memory space.
If accesses are not sequential
a new instruction is sent
automatically.

Read/Write DATA in the QSPI
AHB memory space
(SMEMREG = 0) or APB
register space (SMEMREG = 1).
The address of the first access
is sent after the instruction code.

Read/Write DATA in the QSPI
AHB memory space.
Address of accesses are not
used by the QSPI.

y
Write CTRLA.LASTXFR to 1
when all data have been
transferred.

Wait for INTFLAG.INSTREND
to rise by polling or interrupt.

!

Depending on CSMODE configuration
wait for INTFLAG.CSRISE
to rise by polling or interrupt.

@ MICROCHIP

719

33.6.8.3 Read Memory Transfer

The user can access the data of the serial memory by sending an instruction with DATAEN=1 and
TFRTYP=0x1 in the Instruction Frame register (INSTRFRAME).

In this mode the QSPI is able to read data at random address into the serial Flash memory, allowing
the CPU to execute code directly from it (XIP execute-in-place).

In order to fetch data, the user must first configure the instruction frame by writing the
INSTRFRAME. Then data can be read at any address in the QSPI address space mapping. The
address of the system bus read accesses match the address of the data inside the serial Flash
memory.

When Fetch Mode is enabled, several instruction frames can be sent before writing the bit LASTXFR
in the CTRLA. Each time the system bus read accesses become non-sequential (addresses are not
consecutive), a new instruction frame is sent with the corresponding address.

33.6.8.4 Continuous Read Mode

The QSPI is compatible with Continuous Read Mode (CRM) which is implemented in some Serial
Flash memories.

The CRM allows to reduce the instruction overhead by excluding the instruction code from the
instruction frame. When CRM is activated in a Serial Flash memory (by a specific option code), the
instruction code is stored in the memory. For the next instruction frames, the instruction code is not
required, as the memory uses the stored one.

In the QSPI, CRM is used when reading data from the memory (INSTFRAME.TFRTYPE=0x1). The
addresses of the system bus read accesses are often non-sequential, this leads to many instruction
frames with always the same instruction code. By disabling the sending of the instruction code, the
CRM reduces the access time of the data.

To be functional, this mode must be enabled in both the QSPI and the Serial Flash memory. The CRM
is enabled in the QSPI by setting the CRM bit in the INSTRFRAME register (INSTFRAME.CRMODE=1,
INSTFRAME.TFRTYPE must be 0x1). The CRM is enabled in the Serial Flash memory by sending a
specific option code.

If CRM is not supported by the Serial Flash memory or disabled, the CRMODE bit

CAUTION) . . .
A must not be set. Otherwise, data read out the Serial Flash memory is not valid.

Figure 33-11. Continuous Read Mode

cs | 1

Address
Instruction code is not
required

Instruction Address Option

to activate the
Continuous Read Mode
in the serial flash memory

33.6.8.5 Instruction Frame Transmission Examples
All waveforms in the following examples describe SPI transfers in SPI Clock mode 0 (BAUD.CPOL=0

and BAUD.CPHA=0). All system bus accesses described below refer to the system bus address phase.
System bus wait cycles and system bus data phases are not shown.
Example 33-1. Example 1

Instruction in Single-bit SPI, without address, without option, without data.

720

@ MICROCHIP

Command: CHIP ERASE (C7h).

* Write 0x0000_00C7 to INSTRCTRL register
+ Write 0x0000_0010 to INSTRFRAME register
« Wait for INTFLAG.INSTREND to rise

Figure 33-12. Instruction Transmission Waveform 1

Write INSTRFRAME T

Cs | I
SCK
MOSI / DATAO I

Instruction C7h
INTFLAG.INSTREND

Example 33-2. Example 2

Instruction in Quad SPI, without address, without option, without data.
Command: POWER DOWN (B9h)

* Write 0x0000_00B9 to INSTRCTRL register

+ Write 0x0000_0016 to INSTRFRAME register
« Wait for INTFLAG.INSTREND to rise

Figure 33-13. Instruction Transmission Waveform 2

Write INSTRFRAME—1
cs -~ -
SCK L1

DATAO |

DATA1

DATA2

DATA3 |

“«—>
Instruction B9h
INTFLAG.INSTREND

Example 33-3. Example 3

Instruction in Single-bit SPI, with address in Single-bit SPI, without option, without
data.

Command: BLOCK ERASE (20h)

« Write the address (of the block to erase) to QSPI_AR
* Write 0x0000_0020 to INSTRCTRL register

+ Write 0x0000_0030 toINSTRFRAME register

« Wait for INTFLAG.INSTREND to rise

721

@ MICROCHIP

Figure 33-14. Instruction Transmission Waveform 3

INTFLAG.INSTREND

Write INSTRADDR 1

Write INSTRFRAME 1

MOSI / DATAO _ (2NENE2 2K -+

Instruction 20h Address

Example 33-4. Example 4

Instruction in Single-bit SPI, without address, without option, with data write in
Single-bit SPI.

Command: SET BURST (77h)

Write 0x0000_0077 to INSTRCTRL register.
Write 0x0000_2090 to INSTRFRAME register.
Read INSTRFRAME register (dummy read) to synchronize system bus accesses.

Write data to the system bus memory space (0x0400_0000-0x0500_0000). The
address of the system bus write accesses is not used.

Write the LASTXFR bit in CTRLA register to '1".
Wait for INTFLAG.INSTREND to rise.

Figure 33-15. Instruction Transmission Waveform 4

INTFLAG.INSTREND

Write INSTRFRAME t

—

Cs

sk MMM L e L

MOSI / DATAO 1 (D7XDEXD5XD4XD3XD2XD1XDOX -+ XD7XD6XD5XD4XD3XD2XD1X D0
Instruction 77h Data

Write AHB T T

Set CTRLA.LASTXFER 1

Example 33-5. Example 5

Instruction in Single-bit SPI, with address in Dual SPI, without option, with data write

in Dual SPI.
Command: BYTE/PAGE PROGRAM (02h)

Write 0x0000_0002 to INSTRCTRL register.

Write 0x0000_30B3 to INSTRFRAME register.

Read INSTRFRAME register (dummy read) to synchronize system bus accesses.
Write data to the QSPI system bus memory space (0x040 00000-0x0500_0000).

The address of the first system bus write access is sent in the instruction frame.

The address of the next system bus write accesses is not used.

@ MICROCHIP

722

* Write LASTXFR bit in CTRLA register to '1".
« Wait for INTFLAG.INSTREND to rise.

Figure 33-16. Instruction Transmission Waveform 5

Write INSTRFRAME __1

DATAO
DATA1
Instruction 02h Address Data
INTFLAG.INSTREND —
write AHB 2 4
Set CTRLA.LASTXFER 1

Example 33-6. Example 6

Instruction in Single-bit SPI, with address in Single-bit SPI, without option, with data
read in Quad SPI, with eight dummy cycles.

Command: QUAD_OUTPUT READ ARRAY (6Bh)

* Write 0x0000_006B to INSTRCTRL register.

+ Write 0x0008_10B2 ti INSTRFRAME register.

+ Read QSPL_IR (dummy read) to synchronize system bus accesses.

+ Read data from the QSPI system bus memory space (0x040 00000-0x0500_0000).
The address of the first system bus read access is sent in the instruction frame.
The address of the next system bus read accesses is not used.

+ Write the LASTXFR bit in CTRLA register to '1".

« Wait for INTFLAG.INSTREND to rise.

Figure 33-17. Instruction Transmission Waveform 6

Write INSTRFRAME T

cs I

DATAO (2NE2DETNEZK -+ XEIXEZXATXEON J o7 (1) $EEE XoaXDo
[N N EEEEEEE—————————————syen el D1
DATA2 (DBXD2X -+
bATA3 O OO0 O OO _AD/XD3X - D3
Instruction 6Bh Address Dummy cycles Data
INTFLAG.INSTREND —
Read AHB T ?
Set CTRLA.LASTXFER ?

Example 33-7. Example 7

Instruction in Single-bit SPI, with address and option in Quad SPI, with data read
from Quad SPI, with four dummy cycles, with fetch and continuous read.

Command: FAST READ QUAD I/0 (EBh) - 8-BIT OPTION (0x30h)
+ Write 0x0030_00EB to INSTRCTRL register.

723

@ MICROCHIP

* Write 0x0004_33F4 to INSTRFRAME register.
+ Read INSTRFRAME register (dummy read) to synchronize system bus accesses.

+ Read data from the QSPI system bus memory space (0x040 00000-0x0500_0000).
Fetch is enabled, the address of the system bus read accesses is always used.

+ Write LASTXFR bit in CTRLA register to '1".
+ Wait for INTFLAG.INSTREND to rise.

Figure 33-18. Instruction Transmission Waveform 7

2 INSTRFRAME __ 4

DATA1 NN XATXTEXTD GEXTTX -+ XOEXO XA NATHEOXEE XATXTEXTD CEXTTX -+
DATA2 ¥ (NENE /NI G 6¥D (01D (67 (CEXTZX -+ X XA XAZXTEXTD) (CEXEZX -+
DATA3 D EDEEDAEXTDD OO -+ XoOE EDEDEDEDEDTEEXCID OO -

Instruction EBh Address Option Dummy cycles D?ta Address Option Dummy cycles DFta
Read AHB *

Example 33-8. Example 8

Instruction in Quad SPI, with address in Quad SPI, without option, with data read
from Quad SPI, with two dummy cycles, with fetch.

Command: HIGH-SPEED READ (0Bh)

* Write 0x0000_000B to INSTRCTRL register.

+ Write 0x0002_20B6 to INSTRFRAME register.

+ Read INSTRFRAME register (dummy read) to synchronize system bus accesses.

* Read data in the QSPI system bus memory space (0x040 00000-0x0500_0000).
Fetch is enabled, the address of the system bus read accesses is always used.

* Write LASTXFR bit in CTRLA register to '1".

+ Wait for INTFLAG.INSTREND to rise.

Figure 33-19. Instruction Transmission Waveform 8

Write INSTRFRAME T

DATAO T ETETHEE XA XAD) BEXGEX - EDE N WEXETHETXEEXALXED) (BZXGEX -+
DATA1 N ETHNETH S XEE XA ———DEXDTX 2N ETHETXESXEEXAD) GEXDTX -+

DATA2

DATA3 B2XATHATHATIXAT XASF———D7XD3X -+ P2XATHATHATIXATXAS—D7XD3X -+
Instruction 0Bh my i my
nstruction Address Dummy cycles Data Instruction 0Bh Address Dummy cycles Data
Read AHB T T

33.6.9 Scrambling/Unscrambling Function

The scrambling/unscrambling function cannot be performed on devices other than memories. Data
is scrambled when written to memory and unscrambled when data is read.

724

@ MICROCHIP

The external data lines can be scrambled to prevent intellectual property data located in off-chip
memories from being easily recovered by analyzing data at the package pin level of either the
micro-controller or the QSPI client device (e.g., memory).

The scrambling/unscrambling function can be enabled by writing a ‘1’ to the ENABLE bit in the
Scrambling Control register (SCRAMBCTRL.ENABLE).

The scrambling and unscrambling are performed on-the-fly without impacting the throughput.

The scrambling method depends on the user-configurable Scrambling User Key in the Scrambling
Key register (SCRAMBKEY.KEY). This register is only accessible in Write mode.

By default, the scrambling and unscrambling algorithm includes the scrambling user
key, plus a device-dependent random value. This random value is not included when

the Scrambling/Unscrambling Random Value Disable bit in the Scrambling Mode register
(SCRAMBCTRL.RANDOMDIS) is written to ‘1".

The random value is neither user-configurable nor readable. If SCRAMBCTRL.RANDOMDIS=0, data
scrambled by a given circuit cannot be unscrambled by a different circuit.

If SCRAMBCTRL.RANDOMDIS=1, the scrambling/unscrambling algorithm includes only the
scrambling user key, making it possible to manage data by different circuits.

The scrambling user key must be securely stored in a reliable Non-Volatile Memory to recover data
from the off-chip memory. Any data scrambled with a given key cannot be recovered if the key is
lost.

33.6.10 DMA Operation
The QSPI generates the following DMA requests:

+ Data received (RX): The request is set when data is available in the RXDATA register, and cleared
when RXDATA is read.

« Data transmit (TX): The request is set when the transmit buffer (TXDATA) is empty, and cleared
when TXDATA is written.

Note: If DMA and RX memory modes are selected, a QSPI memory space read operation is required
to force the first triggering.

If the CPU accesses the registers which are source of DMA request set/clear condition, the DMA
request can be lost or the DMA transfer can be corrupted.

33.6.11 Interrupts
The QSPI has the following interrupt source:

* Interrupt Request (INTREQ): Indicates that at least one bit in the Interrupt Flag Status and Clear
register (INTFLAG) is set to '1".

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt
Flag Status and Clear (INTFLAG) register is set when the interrupt condition occurs. Each interrupt
can be individually enabled by writing a '1' to the corresponding bit in the Interrupt Enable Set
(INTENSET) register, and disabled by writing a '1' to the corresponding bit in the Interrupt Enable
Clear (INTENCLR) register. An interrupt request is generated when the interrupt flag is set and the
corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is
cleared, the interrupt is disabled, or the QSPI is reset. All interrupt requests from the peripheral are
ORed together on system level to generate one combined interrupt request to the NVIC. The user
must read the INTFLAG register to determine which interrupt condition is present.

Note that interrupts must be globally enabled for interrupt requests to be generated.

725

@ MICROCHIP

33.7

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

0x20
0x24
Ox2F

0x30

0x34

0x38
0x3C
O0x3F

0x40

Register Summary

I S T 2 S S

CTRLA

CTRLB

BAUD

RXDATA

TXDATA

INTENCLR

INTENSET

INTFLAG

STATUS

Reserved

INSTRADDR

INSTRCTRL

INSTRFRAME

Reserved

SCRAMBCTRL

@ MICROCHIP

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24

DATAEN
DDREN

ENABLE SWRST

LASTXFER
CSMODE[1:0] SMEMREG WDRBT LOOPEN MODE
DATALEN[3:0]
DLYBCT[7:0]
DLYCS[7:0]
CPHA cpPoL
BAUDI[7:0]
DLYBS[7:0]
DATA[7:0]
DATA[15:8]
DATA[7:0]
DATA[15:8]
ERROR TXC DRE RXC
INSTREND CSRISE
ERROR TXC DRE RXC
INSTREND CSRISE
ERROR TXC DRE RXC
INSTREND CSRISE
ENABLE
CSSTATUS
ADDRI[7:0]
ADDRI[15:8]
ADDRI[23:16]
ADDR[31:24]
INSTR[7:0]
OPTCODE[7:0]
OPTCODEEN ~ ADDREN INSTREN WIDTH[2:0]
CRMODE TFRTYPE[1:0] ADDRLEN OPTCODELEN[1:0]

DUMMYLEN[4:0]

RANDOMDIS ENABLE

726

........... continued

[ofsec | Name [Bitpos| 7 | 6 | 5 | 4 | 3 | 2 | 1 | o0 |
7:0

KEY[7:0]

0x44 SCRAMBKEY 15:8 KEY[15:8]
23:16 KEY[23:16]

31:24 KEY[31:24]

33.8 Register Description

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

See Peripheral Access Controller (PAC) from Related Links.

Some registers are enable-protected, meaning they can only be written when the QSPI is
disabled. Enable-protection is denoted by the Enable-protected property in each individual register
description.

Related Links
26. Peripheral Access Controller (PAC)

727

@ MICROCHIP

33.8.1 Control A

Name: CTRLA
Offset: 0x00
Reset: 0x00000000

Property: -
Control A
Bit 31 30 29 28 27 26 25 24
| | | | | | | | LASTXFER |
Access W
Reset 0
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
ENABLE SWRST
Access W W
Reset 0 0

Bit 24 - LASTXFER Last Transfer
0: No effect.
1: The chip select will be de-asserted after the character written in TD has been transferred.

Bit 1 - ENABLE Enable
Writing a '0' to this bit disables the QSPI.
Writing a '1' to this bit enables the QSPI to transfer and receive data.
As soon as ENABLE is reset, QSPI finishes its transfer.
All pins are set in input mode and no data is received or transmitted.
If a transfer is in progress, the transfer is finished before the QSPI is disable.

Bit 0 - SWRST Software Reset
Writing a '0' to this bit has no effect.
Writing a '1' to this bit resets the QSPI. A software-triggered hardware reset of the QSPI interface is
performed.
DMAC channels are not affected by software reset.

728

@ MICROCHIP

33.8.2 Control B

Name: CTRLB

Offset: 0x04

Reset: 0x00000000
Property: PAC Write-Protection

Control B
Bit 31 30 29 28 27 26 25 24
| DLYCS[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| DLYBCT[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
DATALEN(3:0]
Access RIW R/W RIW RIW
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
CSMODE[1:0] | SMEMREG | WDRBT LOOPEN MODE
Access RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0

Bits 31:24 - DLYCS[7:0] Minimum Inactive CS Delay
This bit field defines the minimum delay between the inactivation and the activation of CS. The
DLYCS time guarantees the client minimum deselect time.
If DLYCS is 0x00, one CLK_QSPI_AHB period will be inserted by default.
Otherwise, the following equation determines the delay:
DLYCS = Minimum inactive x fperipheral clock

Bits 23:16 - DLYBCT[7:0] Delay Between Consecutive Transfers
This field defines the delay between two consecutive transfers with the same peripheral without

removing the chip select. The delay is always inserted after each transfer and before removing the
chip select if needed.

When DLYBCT=0x00, no delay between consecutive transfers is inserted and the clock keeps its duty
cycle over the character transfers. In Serial Memory mode (MODE=1), DLYBCT is ignored and no
delay is inserted. Otherwise, the following equation determines the delay:

DLYBCT = (Delay Between Consecutive Transfers x fperipheral clock) / 32

Bits 11:8 - DATALEN[3:0] Data Length
The DATALEN field determines the number of data bits transferred. Reserved values must not be

used.

Value Name Description
0x0 8BITS 8-bits transfer
0x1 9BITS 9-bits transfer
0x2 10BITS 10-bits transfer
0x3 11BITS 11-bits transfer
0x4 12BITS 12-bits transfer
0x5 13BITS 13-bits transfer

o 729
@ MICROCHIP

Value Name Description

0x6 14BITS 14-bits transfer
0x7 15BITS 15-bits transfer
0x8 16BITS 16-bits transfer
0x9-0xF Reserved

Bits 5:4 - CSMODE[1:0] Chip Select Mode
The CSMODE field determines how the chip select is de-asserted.

Value Name Description

0x0 NORELOAD The chip select is de-asserted if TD has not been reloaded before the end of the current
transfer.

0x1 LASTXFER The chip select is de-asserted when the bit LASTXFER is written at 1 and the character written
in TD has been transferred.

0x2 SYSTEMATICALLY The chip select is de-asserted systematically after each transfer.

0x3 Reserved

Bit 3 - SMEMREG Serial Memory Register Mode

Value Description
0 Serial memory registers are written via AHB access.
1 Serial memory registers are written via APB access. Reset the QSPI.

Bit 2 - WDRBT Wait Data Read Before Transfer
This bit determines the Wait Data Read Before Transfer option.

Bit 1 - LOOPEN Local Loopback Enable
This bit defines if the Local Loopback is enabled or disabled.

LOOPEN controls the local loopback on the data serializer for testing in SPI Mode only. (MISO is
internally connected on MOSI).
Value Description

0 Local Loopback is disabled.
1 Local Loopback is enabled.

Bit 0 - MODE Serial Memory Mode
This bit defines if the QSPI is in SPI Mode or Serial Memory Mode.

Value Name Description
0 SPI SPI operating mode
1 MEMORY Serial Memory operating mode

o 730
ﬁ\ MICROCHIP

33.8.3 Baud Rate

Name: BAUD

Offset: 0x08

Reset: 0x00000000
Property: PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| DLYBS[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| BAUDI[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
CPHA CPOL
Access R/W R/W
Reset 0 0

Bits 23:16 - DLYBS[7:0] Delay Before SCK
This field defines the delay from CS valid to the first valid SCK transition.
When DLYBS equals zero, the CS valid to SCK transition is 1/2 the SCK clock period.
Otherwise, the following equation determines the delay:

Equation 33-1. Delay Before SCK

DLYBS

Delay Before SCK = MCK

Bits 15:8 - BAUD[7:0] Serial Clock Baud Rate
The QSPI uses a modulus counter to derive the SCK baud rate from the module clock (MCK)
CLK_QSPI_AHB. The Baud rate is selected by writing a value from 1 to 255 in the BAUD field. The
following equation determines the SCK baud rate:

Equation 33-2. SCK Baud Rate

_ MCK
SCK Baud Rate = —(BAUD)
Bit 1 - CPHA Clock Phase
CPHA determines which edge of SCK causes data to change and which edge causes data to be
captured. CPHA is used with CPOL to produce the required clock/data relationship between host and
client devices.

VEINS Description

0 Data is captured on the leading edge of SCK and changed on the following edge of SCK.
1 Data is changed on the leading edge of SCK and captured on the following edge of SCK.

731

@ MICROCHIP

Bit 0 - CPOL Clock Polarity
CPOL is used to determine the inactive state value of the serial clock (SCK). It is used with CPHA to
produce the required clock/data relationship between host and client devices.

Value Description

0 The inactive state value of SCK is logic level zero.
0 The inactive state value of SCK is logic level 'one'.

732

@ MICROCHIP

33.8.4 Receive Data

Name: RXDATA
Offset: 0x0C
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
DATA[15:8]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
DATA[7:0]
Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 15:0 - DATA[15:0] Receive Data

Data received by the QSPI is stored in this register right-justified. Unused bits read zero.

@ MICROCHIP

733

33.8.5 Transmit Data

Name: TXDATA

Offset: 0x10

Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
DATA[15:8]
Access W W W w W w W W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
DATA[7:0]
Access w W w W W W W W
Reset 0 0 0 0 0 0 0 0

Bits 15:0 - DATA[15:0] Transmit Data
Data to be transmitted by the QSPI is stored in this register. Information to be transmitted must be
written to the transmit data register in a right-justified format.

@ MICROCHIP

734

33.8.6 Interrupt Enable Clear

Name: INTENCLR

Offset: 0x14

Reset: 0x00000000
Property: PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | INSTREND | | CSRISE |
Access R/W R/W
Reset 0 0
Bit 7 6 5 4 3 2 1 0
ERROR TXC DRE RXC
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 10 - INSTREND Instruction End Interrupt Disable
Writing a '0' to this bit has no effect.
Writing a '1" will clear the corresponding interrupt request.
VEIS Description
0 The INSTREND interrupt is disabled.
1 The INSTREND interrupt is enabled.
Bit 8 - CSRISE Chip Select Rise Interrupt Disable
Writing a '0' to this bit has no effect.
Writing a '1' will clear the corresponding interrupt request.

Value Description

0 The CSRISE interrupt is disabled.
1 The CSRISE interrupt is enabled.

Bit 3 - ERROR Overrun Error Interrupt Disable
Writing a '0' to this bit has no effect.
Writing a '1' will clear the corresponding interrupt request.

Value Description
0 The ERROR interrupt is disabled.
1 The ERROR interrupt is enabled.

Bit 2 - TXC Transmission Complete Interrupt Disable
Writing a '0' to this bit has no effect.
Writing a '1" will clear the corresponding interrupt request.
VEIS Description

The TXC interrupt is disabled.

0
1 The TXC interrupt is enabled.

@ MICROCHIP

735

Bit 1 - DRE Transmit Data Register Empty Interrupt Disable
Writing a '0' to this bit has no effect.
Writing a '1' will clear the corresponding interrupt request.

Value Description

0 The DRE interrupt is disabled.
1 The DRE interrupt is enabled.

Bit 0 - RXC Receive Data Register Full Interrupt Disable
Writing a '0' to this bit has no effect.
Writing a '1' will clear the corresponding interrupt request.

Value Description

0 The RXC interrupt is disabled.
1 The RXC interrupt is enabled.

736

@ MICROCHIP

33.8.7 Interrupt Enable Set

Name: INTENSET

Offset: 0x18

Reset: 0x00000000
Property: PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | INSTREND | | CSRISE |
Access R/W R/W
Reset 0 0
Bit 7 6 5 4 3 2 1 0
ERROR TXC DRE RXC
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 10 - INSTREND Instruction End Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' will set the corresponding interrupt request.
VEIS Description
0 The INSTREND interrupt is disabled.
1 The INSTREND interrupt is enabled.
Bit 8 - CSRISE Chip Select Rise Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' will set the corresponding interrupt request.

Value Description

0 The CSRISE interrupt is disabled.
1 The CSRISE interrupt is enabled.

Bit 3 - ERROR Overrun Error Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' will set the corresponding interrupt request.

Value Description
0 The ERROR interrupt is disabled.
1 The ERROR interrupt is enabled.

Bit 2 - TXC Transmission Complete Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' will set the corresponding interrupt request.
VEIS Description

The TXC interrupt is disabled.

0
1 The TXC interrupt is enabled.

@ MICROCHIP

737

Bit 1 - DRE Transmit Data Register Empty Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' will set the corresponding interrupt request.

Value Description

0 The DRE interrupt is disabled.
1 The DRE interrupt is enabled.

Bit 0 - RXC Receive Data Register Full Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' will set the corresponding interrupt request.

Value Description

0 The RXC interrupt is disabled.
1 The RXC interrupt is enabled.

738

@ MICROCHIP

33.8.8 Interrupt Flag Status and Clear

Name: INTFLAG

Offset: 0x1C

Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
| INSTREND | CSRISE |
Access R/W R/W
Reset 0 0
Bit 7 6 5 4 3 2 1 0
ERROR TXC DRE RXC
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 10 - INSTREND Instruction End

This bit is set when an Instruction End has been detected.

Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the flag.

Bit 8 - CSRISE Chip Select Rise

The bit is set when a Chip Select Rise has been detected.

Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the flag.

Bit 3 - ERROR Overrun Error

This bit is set when an ERROR has occurred.
An ERROR occurs when RXDATA is loaded at least twice from the serializer.

Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the flag.

Bit 2 - TXC Transmission Complete
0: As soon as data is written in TXDATA.

1: TXDATA and internal shifter are empty. If a transfer delay has been defined, TXC is set after the

completion of such delay.

Bit 1 - DRE Transmit Data Register Empty

0: Data has been written to TXDATA and not yet transferred to the serializer.
1: The last data written in the TXDATA has been transferred to the serializer.

This bit is '0' when the QSPI is disabled or at reset.
The bit is set as soon as ENABLE bit is set.

@ MICROCHIP

739

Bit 0 - RXC Receive Data Register Full
0: No data has been received since the last read of RXDATA.
1: Data has been received and the received data has been transferred from the serializer to RXDATA
since the last read of RXDATA.

740

@ MICROCHIP

33.8.9 Status

Name: STATUS
Offset: 0x20
Reset: 0x00000200

Property: -
Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | CSSTATUS | |
Access R
Reset 1
Bit 7 6 5 4 3 2 1 0
ENABLE
Access R
Reset 0

Bit 9 - CSSTATUS Chip Select

0 Chip Select is asserted.
1 Chip Select is not asserted.

Bit 1 - ENABLE Enable

0 QSPl is disabled.
1 QSPl is enabled.

741

@ MICROCHIP

33.8.10 Instruction Address

Name: INSTRADDR
Offset: 0x30
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
| ADDR[31:24] |
Access R/W R/W R/W R/W RIW RIW R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| ADDR[23:16] |
Access R/W R/W R/W R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
ADDRI15:8]
Access R/W R/W R/W R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
ADDR[7:0]
Access R/W R/W R/W R/W RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - ADDR[31:0] Instruction Address
Address to send to the serial Flash memory in the instruction frame.

742

@ MICROCHIP

33.8.11 Instruction Code

Name: INSTRCTRL
Offset: 0x34
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| OPTCODE[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
INSTR[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 23:16 - OPTCODE[7:0] Option Code
These bits define the option code to send to the serial flash memory.

Bits 7:0 - INSTR[7:0] Instruction Code
Instruction code to send to the serial flash memory.

@ MICROCHIP

743

33.8.12 Instruction Frame

Name: INSTRFRAME
Offset: 0x38
Reset: 0x00000000

Property: -
Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | DUMMYLEN[4:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
DDREN CRMODE | TFRTYPE[1:0] | | ADDRLEN | OPTCODELEN[1:0] |
Access R/W R/W RIW R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
DATAEN [OPTCODEEN]| ADDREN | INSTREN WIDTH[2:0]
Access R/W R/W RIW R/W R/W R/W RIW
Reset 0 0 0 0 0 0 0

Bits 20:16 - DUMMYLEN[4:0] Dummy Cycles Length
The DUMMYLEN field defines the number of dummy cycles required by the serial Flash memory
before data transfer.

Bit 15 - DDREN Double Data Rate Enable
Note: Double Data Rate operating is only supported in Read.

Value Description

0 Double Data Rate operating mode is disabled.
1 Double Data Rate operating mode is enabled.

Bit 14 - CRMODE Continuous Read Mode
This bit defines if the Continuous Read Mode is enabled or disabled.

0 Continuous Read Mode is disabled.
1 Continuous Read Mode is enabled.

Bits 13:12 - TFRTYPE[1:0] Data Transfer Type
These bits define the data type transfer.

Value Name Description

0x0 READ Read transfer from the serial memory.Scrambling is not performed.Read at random location
(fetch) in the serial flash memory is not possible.

0x1 READMEMORY Read data transfer from the serial memory.If enabled, scrambling is performed.Read at
random location (fetch) in the serial flash memory is possible.

0x2 WRITE Write transfer into the serial memory.Scrambling is not performed.

0x3 WRITEMEMORY Write data transfer into the serial memory. If enabled, scrambling is performed.

@ MICROCHIP

744

Bit 10 - ADDRLEN Address Length
The ADDRLEN bit determines the length of the address.

Value Name Description
0x0 24BITS 24-bits address length
0x1 32BITS 32-bits address length

Bits 9:8 - OPTCODELEN([1:0] Option Code Length
The OPTCODELEN field determines the length of the option code. The value written in OPTCODELEN
must be coherent with value written in the field WIDTH. For example: OPTCODELEN=0 (1-bit option
code) is not coherent with WIDTH=6 (option code sent with QuadSPI protocol, thus the minimum
length of the option code is 4-bit).

Value Name Description

0x0 1BIT 1-bit length option code
0x1 2BITS 2-bits length option code
0x2 4BITS 4-bits length option code
0x3 8BITS 8-bits length option code

Bit 7 - DATAEN Data Enable

Value Description
0 No data is sent/received to/from the serial flash memory.
1 Data is sent/received to/from the serial flash memory.

Bit 6 - OPTCODEEN Option Enable

Value Description
0 The option is not sent to the serial flash memory
1 The option is sent to the serial flash memory.

Bit 5 - ADDREN Address Enable

Value Description
0 The transfer address is not sent to the serial flash memory.
1 The transfer address is sent to the serial flash memory.

Bit 4 - INSTREN Instruction Enable

Value Description
0 The instruction is not sent to the serial flash memory.
1 The instruction is sent to the serial flash memory.

Bits 2:0 - WIDTH[2:0] Instruction Code, Address, Option Code and Data Width
This field defines the width of the instruction code, the address, the option and the data.

Value Name Description

0x0 SINGLE_BIT_SPI Instruction: Single-bit SPI / Address-Option: Single-bit SPI / Data: Single-bit SPI
0x1 DUAL_OUTPUT Instruction: Single-bit SPI / Address-Option: Single-bit SPI / Data: Dual SPI

0x2 QUAD_OUTPUT Instruction: Single-bit SPI / Address-Option: Single-bit SPI / Data: Quad SPI
0x3 DUAL_IO Instruction: Single-bit SPI / Address-Option: Dual SPI / Data: Dual SPI

0x4 QUAD_IO Instruction: Single-bit SPI / Address-Option: Quad SPI / Data: Quad SPI

0x5 DUAL_CMD Instruction: Dual SPI / Address-Option: Dual SPI / Data: Dual SPI

0x6 QUAD_CMD Instruction: Quad SPI / Address-Option: Quad SPI / Data: Quad SPI

0x7 Reserved

@ MICROCHIP

745

33.8.13 Scrambling Mode

Name: SCRAMBCTRL
Offset: 0x40

Reset: 0x00000000
Property: PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
RANDOMDIS ENABLE
Access R/W R/W
Reset 0 0

Bit 1 - RANDOMDIS Scrambling/Unscrambling Random Value Disable

0 The scrambling/unscrambling algorithm includes the scrambling user key plus a random value that may differ
from chip to chip.
1 The scrambling/unscrambling algorithm includes only the scrambling user key.

Bit 0 - ENABLE Scrambling/Unscrambling Enable
This bit defines if the scrambling/unscrambling is enabled or disabled.

Value Description

0 Scrambling/unscrambling is disabled.
1 Scrambling/unscrambling is enabled.

746

@ MICROCHIP

33.8.14 Scrambling Key

Name:
Offset:
Reset:

SCRAMBKEY

0x00000000

Property: PAC Write-Protection

Bit 31 30 29 28 27 26 25 24

| KEY[31:24]
Access W W w W W w W w
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16

| KEY[23:16]
Access W W w W W W W w
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8

KEY[15:8]
Access W W w W W w W w
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0

KEY[7:0]

Access W w W W W w W w
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - KEY[31:0] Scrambling User Key
This field defines the user key value.

@ MICROCHIP

747

34.
34.1

34.2

34.3

@ MICROCHIP

Configurable Custom Logic (CCL)

Overview

The Configurable Custom Logic (CCL) is a programmable logic peripheral which can be connected
to the device pins, to events, or to other internal peripherals. This allows the user to eliminate logic
gates for simple glue logic functions on the PCB.

Each LookUp Table (LUT) consists of three inputs, a truth table, an optional synchronizer/filter,
and an optional edge detector. Each LUT can generate an output as a user programmable logic
expression with three inputs. Inputs can be individually masked.

The output can be combinatorially generated from the inputs, and can be filtered to remove
spikes. Optional sequential logic can be used. The inputs of the sequential module are individually
controlled by two independent, adjacent LUT (LUTO/LUT1) outputs, enabling complex waveform
generation.

Features

* Glue logic for general purpose PCB design

+ Two programmable Look-up Tables (LUTs)

« Combinatorial logic functions: AND, NAND, OR, NOR, XOR, XNOR, NOT

+ Sequential logic functions: Gated D Flip-Flop, JK Flip-Flop, gated D Latch, RS Latch

+ Flexible LUT inputs selection:
- 1/0s

Events

Internal peripherals

Subsequent LUT output
« Output can be connected to the I/0O pins or the Event System
« Optional synchronizer, filter or edge detector available on each LUT output

Block Diagram

Figure 34-1. Configurable Custom Logic

] LuTo
(INSEL)

Internal

LUTCTRLO LUTCTRLO
Events (FILTSEL) (EDGESEL) SEQCTRL CTRL
] (SEQSELO) (ENABLE)

Event System
Truth Tabl & >
Fiter / Synch Edge Detector i 0{
‘ o an Sequential o
Peripherals I “r

i
LUTCTRLO J J l
(ENABLE)

CLK_CCL_APB D

GCLK_CCL

110

LUTCTRLA LUT1
(INSEL)
Internal
LUTCTRLA LUTCTRL1
Events (FILTSEL) (EDGESEL)
(ENABLE)
Event System
Vo Truth Table 8 -OUT1
” Filter / Synch Edge Detector
or ar 110
Peripherals T T
LUTCTRLT J J
(ENABLE)
CLK_CCL_APB N
LK L
GeLk co UNIT 0
UNIT 1

748

34.4 Signal Description

OUT[1:0] Digital output Output from lookup table
IN[5:0] Digital input Input to lookup table

For details on the pin mapping for this peripheral, see I/0 Ports and Peripheral Pin Select (PPS) from
Related Links. One signal can be mapped on several pins.

Related Links
6. 1/0 Ports and Peripheral Pin Select (PPS)

34.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described
below.

34.5.1 1/0 Lines

The CCL can take inputs and generate output through 1/0 pins. For this to function properly, the I/0
pins must be configured to be used by a Look Up Table (LUT).

34.5.2 Power Management

This peripheral can continue to operate in any Sleep mode where its source clock is running. Events
connected to the event system can trigger other operations in the system without exiting Sleep
modes.

34.5.3 Clocks

A generic clock (GCLK_CCL) is optionally required to clock the CCL. This clock must be configured and
enabled in the Generic Clock Controller (GCLK) before using input events, filter, edge detection or
sequential logic. GCLK_CCL is required when input events, a filter, an edge detector or a sequential
sub-module is enabled.

This generic clock is asynchronous to the user interface clock (PB2_CLK).

34.5.4 DMA
Not applicable.

34.5.5 Interrupts
Not applicable.

34.5.6 Events

The CCL can use events from other peripherals and generate events that can be used by other
peripherals. For this feature to function, the events have to be configured properly. Refer to the
Related Links below for more information about the event users and event generators.

Related Links
28. Event System (EVSYS)

34.5.7 Debug Operation

When the CPU is halted in Debug mode the CCL continues normal operation. However, the CCL
cannot be halted when the CPU is halted in Debug mode. If the CCL is configured in a way that
requires it to be periodically serviced by the CPU, improper operation or data loss may result during
debugging.

749

@ MICROCHIP

34.5.8 Register Access Protection

All registers with write access can be write-protected optionally by the Peripheral Access Controller
(PAC). See Peripheral Access Controller (PAC) from Related Links.

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

PAC write protection does not apply to accesses through an external debugger.

Related Links
26. Peripheral Access Controller (PAC)

34.5.9 Analog Connections
Not applicable.

34.6 Functional Description

34.6.1 Principle of Operation

Configurable Custom Logic (CCL) is a programmable logic block that can use the device port pins,
internal peripherals, and the internal Event System as both input and output channels. The CCL can
serve as glue logic between the device and external devices. The CCL can eliminate the need for
external logic component and can also help the designer overcome challenging real-time constrains
by combining core independent peripherals in clever ways to handle the most time critical parts of
the application independent of the CPU.

34.6.2 Operation

34.6.2.1 Initialization

The following bits are enable-protected, meaning that they can only be written when the
corresponding even LUT is disabled (LUTCTRLx.ENABLE=0):

+ Sequential Selection bits in the Sequential Control x (SEQCTRLx.SEQSEL) register

The following registers are enable-protected, meaning that they can only be written when the
corresponding LUT is disabled (LUTCTRLX.ENABLE=0):

« LUT Control x (LUTCTRLXx) register, except the ENABLE bit

Enable-protected bits in the LUTCTRLXx registers can be written at the same time as
LUTCTRLx.ENABLE is written to 1", but not at the same time as LUTCTRLx.ENABLE is written to
'0".

Enable-protection is denoted by the Enable-Protected property in the register description.

34.6.2.2 Enabling, Disabling, and Resetting
The CCL is enabled by writing a '1' to the Enable bit in the Control register (CTRL.ENABLE). The CCL is
disabled by writing a '0' to CTRL.ENABLE.

Each LUT is enabled by writing a '1' to the Enable bit in the LUT Control x register
(LUTCTRLX.ENABLE). Each LUT is disabled by writing a '0' to LUTCTRLx.ENABLE.

The CCL is reset by writing a '1' to the Software Reset bit in the Control register (CTRL.SWRST).
All registers in the CCL will be reset to their initial state, and the CCL will be disabled. Refer to
34.8.1. CTRL for details.

34.6.2.3 Lookup Table Logic

The lookup table in each LUT unit can generate any logic expression OUT as a function of three
inputs (IN[2:0]), as shown in Figure 34-2. One or more inputs can be masked. The truth table for the
expression is defined by TRUTH bits in LUT Control x register (LUTCTRLX.TRUTH).

@ MICROCHIP

750

Figure 34-2. Truth Table Output Value Selection

LUT

TRUTHIO]
TRUTH[1]
TRUTH[2]
TRUTH[3]
TRUTH[4] . ouT
TRUTH[5]
TRUTH[6] LUTCTRL
TRUTH[7] (ENABLE)

IN[2:0]

Table 34-1. Truth Table of LUT

el dwo oo
0

0 TRUTHIO]
0 1 TRUTH[1]
1 0 TRUTH[2]
1 1 TRUTH[3]
0 0 TRUTH[4]
0 1 TRUTH[5]
1 0 TRUTH[6]
1 1

0
0
0
0
1
1
1
1 TRUTH[7]
34.6.2.4 Truth Table Inputs Selection

Input Overview
The inputs can be individually:

+ Masked
+ Driven by peripherals:
- Analog comparator output (AC)
- Timer/Counters waveform outputs (TC)
- Serial Communication output transmit interface (SERCOM)
+ Driven by internal events from Event System
« Driven by other CCL sub-modules

The Input Selection for each input 'y’ of LUT x is configured by writing the Input 'y’ Source Selection
bit in the LUT x Control register (LUTCTRLx.INSELy).

Masked Inputs (MASK)
When a LUT input is masked (LUTCTRLx.INSELy = MASK), the corresponding TRUTH input (IN) is
internally tied to zero, as shown in this figure:
Figure 34-3. Masked Input Selection

Mask
LUT

TRUTH —» OUT

Sk

751

@ MICROCHIP

Internal Feedback Inputs (FEEDBACK)

When selected (LUTCTRLx.INSELy = FEEDBACK), the Sequential (SEQ) output is used as input for the
corresponding LUT.

The output from an internal sequential sub-module can be used as input source for the LUT, see
figure below for an example for LUTO and LUT1. The sequential selection for each LUT follows the
formula:

IN[2N][i] = SEQ[N]
IN[2N+1][i] = SEQ[N]

With N representing the sequencer number and i=0,1,2 representing the LUT input index.
See Sequential Logic from Related Links.

Figure 34-4. Feedback Input Selection
FEEDBACK

LUTO
-}» -

LUT1

|

SEQO

v

+
L

Linked LUT (LINK)

When selected (LUTCTRLx.INSELy=LINK), the subsequent LUT output is used as the LUT input (for
example, LUT2 is the input for LUT1), as shown in the figure below:

752

@ MICROCHIP

Figure 34-5. Linked LUT Input Selection

LUTO SEQO
LUT1
LUT2 SEQ 1
LUT3
. . . .
. . .
. . . .
LUT(2n - 2) SEQn
LUT(2n-1)

Internal Events Inputs Selection (EVENT)

Asynchronous events from the Event System can be used as input selection, as shown in the
following figure. For each LUT, one event input line is available and can be selected on each LUT
input. Before enabling the event selection by writing LUTCTRLX.INSELy=EVENT, the Event System
must be configured first.

By default, CCL includes an edge detector. When the event is received, an internal strobe is
generated when a rising edge is detected. The pulse duration is one GCLK_CCL clock cycle. Writing
the LUTCTRLX.INSELy=ASYNCEVENT will disable the edge detector. In this case, it is possible to
combine an asynchronous event input with any other input source. This is typically useful with event
levels inputs for example, (external I/0 pin events). The following steps ensure proper operation:

Enable the GCLK_CCL clock.
Configure the Event System to route the event asynchronously.
Select the event input type (LUTCTRLx.INSEL = ASYNCEVENT).

If a strobe must be generated on the event input falling edge, write a '1' to the Inverted Event
Input Enable bit in the LUT Control register (LUTCTRLX.INVEI) .

5. Enable the event input by writing the Event Input Enable bit in the LUT Control register
(LUTCTRLX.LUTEI) to "1".

A wN -

753

@ MICROCHIP

Figure 34-6. Event Input Selection

Event

LUT

TRUTH —» OUT

Event Input
Detector
/
O\
INVE! LUTEI
GCLK_CCL

1/0 Pin Inputs (10)
When the I/0 pin is selected as LUT input (LUTCTRLX.INSELy = 10), the corresponding LUT input will
be connected to the pin, as shown in the figure below.
Figure 34-7. 1/0 Pin Input Selection
10

LUT

TRUTH —» OUT

INx XH

Analog Comparator Inputs (AC)
The AC outputs can be used as input source for the LUT (LUTCTRLx.INSELy=AC).

The analog comparator outputs are distributed following the formula:

IN[N][i] = AC[N % ComparatorOutput_Number]

With N representing the LUT number and i=[0,1,2] representing the LUT input index.

Before selecting the comparator output, the AC must be configured first.

Figure 34-8. AC Input Selection

Timer/Counter Inputs (TC)

The TC waveform output WOI[0] can be used as input source for the LUT (LUTCTRLX.INSELy = TC).
Only consecutive instances of the TC, that is, TCx and the subsequent TC(x+1), are available as
default and alternative TC selections (for example, TCO and TC1 are sources for LUTO, TC1 and

TC2 are sources for LUT1). See the figure below for an example for LUTO. More general, the Timer/
Counter selection for each LUT follows the formula:

IN[N][i] = DefaultTC[N % TC_Instance_Number]
IN[N][i] = AlternativeTC[(N + 1) % TC_Instance_Number]
Where N represents the LUT number and i represents the LUT input index (i=0,1,2).

Before selecting the waveform outputs, the TC must be configured first.

754

@ MICROCHIP

Figure 34-9. TC Input Selection

Timer/Counter for Control Application Inputs (TCC)

The TCC waveform outputs can be used as input source for the LUT. Only WOI[2:0] outputs can be
selected and routed to the respective LUT input (that is, INO is connected to WOQO, IN1 to WO1, and
IN2 to WO2), as shown in the figure below.

Before selecting the waveform outputs, the TCC must be configured first.

Figure 34-10. TCC Input Selection
TCC

LUTx
TRUTH —» OUTO

TCCx L wop2:0—

Serial Communication Output Transmit Inputs (SERCOM)

The serial engine transmitter output from Serial Communication Interface (SERCOM TX, TXd for
USART, MOSI for SPI) can be used as input source for the LUT. The figure below shows an example
for LUTO and LUT1. The SERCOM selection for each LUT follows the formula:

IN[N][i] = SERCOM[N % SERCOM _Instance_Number]
With N representing the LUT number and i=0,1,2 representing the LUT input index.

Before selecting the SERCOM as input source, the SERCOM must be configured first: the SERCOM TX
signal must be output on SERCOMn/pad[0], which serves as input pad to the CCL.

LUTO
TRUTH —» OUTO
SERCOMO F
LUT1
TRUTH —» OUT1
SERCOM1 F

Figure 34-11. SERCOM Input Selection

Related Links
34.6.2.7. Sequential Logic

34.6.2.5 Filter

By default, the LUT output is a combinatorial function of the LUT inputs. This may cause some short
glitches when the inputs change value. These glitches can be removed by clocking through filters, if
demanded by application needs.

The Filter Selection bits in LUT Control register (LUTCTRLx.FILTSEL) define the synchronizer or digital
filter options. When a filter is enabled, the OUT output will be delayed by two to five GCLK cycles.
One APB clock after the corresponding LUT is disabled, all internal filter logic is cleared.

Note: Events used as LUT input will also be filtered, if the filter is enabled.

755

@ MICROCHIP

Figure 34-12. Filter

Input

— OUT

GCLK_CCL
CLR

34.6.2.6 Edge Detector
The edge detector can be used to generate a pulse when detecting a rising edge on its input. To
detect a falling edge, the TRUTH table must be inverted.

The edge detector is enabled by writing ‘1’ to the Edge Selection bit in LUT Control register
(LUTCTRLx.EDGESEL). In order to avoid unpredictable behavior, either the filter or synchronizer must
be enabled.

Edge detection is disabled by writing a ‘0’ to LUTCTRLx.EDGESEL. After disabling a LUT, the
corresponding internal Edge Detector logic is cleared one APB clock cycle later.

Figure 34-13. Edge Detector
Edge Detector

—» OUT
Input —

GCLK_CCL —

CLR —

34.6.2.7 Sequential Logic

Each LUT pair can be connected to the internal sequential logic, which can be configured to work
as D flip flop, JK flip flop, gated D-latch or RS-latch by writing the Sequential Selection bits on the
corresponding Sequential Control x register (SEQCTRLx.SEQSEL). Before using sequential logic, the
GCLK_CCL clock and optionally each LUT filter or edge detector must be enabled.

Note: While configuring the sequential logic, the even LUT must be disabled. When configured, the
even LUT must be enabled.

Gated D Flip-Flop (DFF)
When the DFF is selected, the D-input is driven by the even LUT output LUTO, and the G-input is
driven by the odd LUT output LUT1, as shown in the following figure.

Figure 34-14. D Flip Flop

DFF

ouT

GCLK_CCL

756

@ MICROCHIP

When the even LUT is disabled LUTCTRLO.ENABLE=O0, the flip-flop is asynchronously cleared. The
reset command (R) is kept enabled for one APB clock cycle. In all other cases, the flip-flop output
(OUT) is refreshed on rising edge of the GCLK_CCL, as shown in the following table.

Table 34-2. DFF Characteristics

R ¢ o _Joor |
1 X

X Clear
0 1 Set

0 Clear

X

0 Hold state (no change)

JK Flip-Flop (JK)

When this configuration is selected, the J-input is driven by the even LUT output LUTO, and the
K-input is driven by the odd LUT output LUT1, as shown in the following figure.

Figure 34-15. JK Flip Flop

[o Gl s our

GCLK_CcCL —

LUT1 l— K R

When the even LUT is disabled LUTCTRLO.ENABLE=0, the flip-flop is asynchronously cleared. The
reset command (R) is kept enabled for one APB clock cycle. In all other cases, the flip-flop output
(OUT) is refreshed on rising edge of the GCLK_CCL, as shown in the following table.

Table 34-3. JK Characteristics

Rk Joor |

1 X X Clear

0 0 0 Hold state (no change)
0 0 1 Clear

0 1 0 Set

0 1 1 Toggle

Gated D-Latch (DLATCH)
When the DLATCH is selected, the D-input is driven by the even LUT output LUTO, and the G-input is
driven by the odd LUT output LUT1, as shown in the following figure.

Figure 34-16. D-Latch

b Q- our
odd LUT | €

When the even LUT is disabled LUTCTRLO.ENABLE=0, the latch output will be cleared. The G-input is
forced enabled for one more APB clock cycle, and the D-input to zero. In all other cases, the latch
output (OUT) is refreshed as shown in the following table.

Table 34-4. D-Latch Characteristics

0 X Hold state (no change)

757

@ MICROCHIP

RS Latch (RS)

When this configuration is selected, the S-input is driven by the even LUT output LUTO, and the
R-input is driven by the odd LUT output LUT1, as shown in the following figure.

Figure 34-17. RS-Latch

S Q> out
odd LUT R

When the even LUT is disabled LUTCTRLO.ENABLE=0, the latch output will be cleared. The R-input is
forced enabled for one more APB clock cycle and S-input to zero. In all other cases, the latch output
(OUT) is refreshed as shown in the following table.

Table 34-5. RS-Latch Characteristics
0 0 Hold state (no change)
0 1 Clear
1 0 Set
1 1 Forbidden state
34.6.3 Events
The CCL can generate the following output events:

* LUTn where n=0-1: Lookup Table Output Value

Writing a '1' to the LUT Control Event Output Enable bit (LUTCTRL.LUTEO) enables the corresponding
output event. Writing a '0' to this bit disables the corresponding output event.

The CCL can take the following actions on an input event:

+ INSELx where x=0-2: The event is used as input for the TRUTH table. For additional information,
refer to 34.5.6. Events.

Writing a '1' to the LUT Control Event Input Enable bit (LUTCTRL.LUTEI) enables the corresponding
action on input event. Writing a '0' to this bit disables the corresponding action on input event.

Related Links
28. Event System (EVSYS)

34.6.4 Sleep Mode Operation

When using the GCLK_CCL internal clocking, writing the Run In Standby bit in the Control register
(CTRL.RUNSTDBY) to "1" will allow GCLK_CCL to be enabled in Standby Sleep mode.

If CTRL.RUNSTDBY=0, the GCLK_CCL will be disabled in Standby Sleep mode. If the Filter, Edge
Detector or Sequential logic are enabled, the LUT output will be forced to zero in STANDBY mode.
In all other cases, the TRUTH table decoder will continue operation and the LUT output will be
refreshed accordingly.

758

@ MICROCHIP

34.7 Register Summary
[Ofet | Name [itbos.| 7 | & _
0x00 CTRL 7:0
0x01
Reserved
0x03
0x04 SEQCTRLX 7:0
0x05
Reserved
0x07
7:0 EDGESEL
15:8
0x08 LUTCTRLO
23:16
31:24
7:0 EDGESEL
15:8
0x0C LUTCTRL1
23:16
31:24
34.8 Register Description

RUNSTDBY

FILTSEL[1:0]

INSEL1[3:0]
LUTEO LUTEI INVEI
TRUTH[7:0]
FILTSEL[1:0]
INSEL1[3:0]
LUTEO LUTEI INVEI
TRUTH[7:0]

ENABLE

SEQSEL[3:0]

ENABLE
INSELO[3:0]
INSEL2[3:0]

ENABLE
INSELO[3:0]
INSEL2[3:0]

s | 4 | 3 | 2 0 1 | 0 |

SWRST

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register and the 8-bit halves of a 16-bit register can be

accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the "PAC Write-Protection" property in each individual register
description. See Register Access Protection from Related Links.

Some registers are enable protected, meaning they can only be written when the peripheral is
disabled. Enable protection is denoted by the “Enable-Protected” property in each individual register

description.
Related Links

34.5.8. Register Access Protection

@ MICROCHIP

759

34.8.1 Control

Name: CTRL
Offset: 0x00
Reset: 0x00
Property: PAC Write-Protection

Note: CTRL register (except the bits ENABLE & SWRST) is Enable Protected when CCL.CTRL.ENABLE =
1.

Bit 7 6 5 4 3 2 1 0

| | RUNSTDBY | | | | ENABLE | SWRST |
Access R/W R/W W
Reset 0 0 0

Bit 6 - RUNSTDBY Run in Standby
This bit indicates if the GCLK_CCL clock must be kept running in standby mode. The setting is
ignored for configurations where the generic clock is not required. For details refer to 34.6.4. Sleep
Mode Operation.

Important: This bit must be written before enabling the CCL.

Value Description

0 Generic clock is not required in standby sleep mode.
1 Generic clock is required in standby sleep mode.

Bit 1 - ENABLE Enable

0 The peripheral is disabled.
1 The peripheral is enabled.

Bit 0 - SWRST Software Reset
Writing a '0' to this bit has no effect.
Writing a '1' to this bit resets all registers in the CCL to their initial state.

0 There is no reset operation ongoing.
1 The reset operation is ongoing.

760

@ MICROCHIP

34.8.2 Sequential Control X

Name: SEQCTRLX

Offset: 0x04

Reset: 0x00

Property: PAC Write-Protection, Enable-protected

Note: SEQCTRLX register is Enable-protected when CCL.LUTCTRLO.ENABLE = 1.

Bit 7 6 5 4 3 2 1 0
| | | | | SEQSEL[3:0] |
Access RIW RAW RAW RIW
Reset 0 0 0 0

Bits 3:0 - SEQSEL[3:0] Sequential Selection
These bits select the sequential configuration:
Sequential Selection

Value Name Description

0x0 DISABLE Sequential logic is disabled
0x1 DFF D flip flop

0x2 JK JKflip flop

0x3 LATCH D latch

0x4 RS RS latch

0x5 - OxF — Reserved

o 761
ﬁ\ MICROCHIP

34.8.3 LUT Control n

Name: LUTCTRL

Offset: 0x08 + n*0x04 [n=0..1]

Reset: 0x00000000

Property: PAC Write-Protection, Enable-protected

Note: The LUTCTRLnN register is Enable Protected when CCL.LUTCTRLN.ENABLE = 1.

Bit 31 30 29 28 27 26 25 24
| TRUTH[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| | LUTEO | LUTEl [INVEIl | INSEL2[3:0] |
Access R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
INSEL1[3:0] INSELO[3:0]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
EDGESEL FILTSEL[1:0] | ENABLE
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bits 31:24 - TRUTH[7:0] Truth Table
These bits define the value of truth logic as a function of inputs IN[2:0].

Bit 22 - LUTEO LUT Event Output Enable

Value Description
0 LUT event output is disabled.
1 LUT event output is enabled.

Bit 21 - LUTEI LUT Event Input Enable

0 LUT incoming event is disabled.
1 LUT incoming event is enabled.

Bit 20 - INVEI Inverted Event Input Enable

Value Description
0 Incoming event is not inverted.
1 Incoming event is inverted.

Bits 8:11, 12:15, 16:19 - INSELx LUT Input x Source Selection
These bits select the LUT input x source.

Value Name Description

0x0 MASK Masked input

0x1 FEEDBACK Feedback input source
0x2 LINK Linked LUT input source
0x3 EVENT Event input source

0x4 10 I/0 pin input source

@ MICROCHIP

762

Value Name Description

0x5 AC AC input source: CMP[0] (LUTO) / CMP[1] (LUT1)

0x6 TC TC input source: TCO WO[O0] (LUTO) / TC1 WO[O0] (LUT1)

0x7 ALTTC Alternative TC input source: TC1 WO[0] (LUTO) / TC2 WOI0] (LUT1)

0x8 TCC TCC input source: TCCO (LUTO) / TCC1 (LUT1T)

0x9 SERCOM SERCOM input source: SERCOMO PADO (LUTO) / SERCOM1 PADO (LUT1)
0xA ALT2TC 1'b0

0xB ASYNCEVENT 1'b0

0xC - OxF Reserved Reserved

Bit 7 - EDGESEL Edge Selection

Value Description
0 Edge detector is disabled.
1 Edge detector is enabled.

Bits 5:4 - FILTSEL[1:0] Filter Selection
These bits select the LUT output filter options:
Filter Selection

Value Name Description

0x0 DISABLE Filter disabled

0x1 SYNCH Synchronizer enabled
0x2 FILTER Filter enabled

0x3 — Reserved

Bit 1 - ENABLE LUT Enable
Note: Prevents/protects write access to the other bits in the LUTCTRL registers.

Value Description
0 The LUT is disabled.
1 The LUT is enabled.

o 763
ﬁ\ MICROCHIP

35.
35.1

35.2

35.3

354

35.5

35.5.1

35.5.2

35.5.3

35.54

True Random Number Generator (TRNG)

Overview

The True Random Number Generator (TRNG) generates unpredictable random numbers that are not
generated by an algorithm.

Features
+ Provides a 32-bit random number for every 84-clock cycles,

Block Diagram

Figure 35-1. TRNG Block Diagram.

TRNG Interrupt
Controller

Control Logic Event
T Controller

CLKGEN User Interface |¢uuudp| Entropy Source

t

APB

Signal Description
Not applicable.

Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described
as follows.

1/0 Lines
Not applicable.

Power Management
The functioning of TRNG depends on the Sleep mode of the device.

The TRNG interrupts can be used to wake up the device from sleep modes. Events connected to the
event system can trigger other operations in the system without exiting sleep modes.

Related Links
35.6.5. Sleep Mode Operation

Clocks

The TRNG bus clock () can be enabled and disabled in the CRU module or PMD3.RNGMD bit (see
Peripheral Module Disable Register (PMD) from Related Links).

Related Links
20. Peripheral Module Disable Register (PMD)

DMA
Not applicable.

@ MICROCHIP

764

35.5.5

35.5.6

35.5.7

35.5.8

35.5.9

35.6

35.6.1

@ MICROCHIP

Interrupts

The interrupt request line is connected to the interrupt controller. Using the TRNG interrupt(s)
requires the interrupt controller to be configured first. See Nested Vector Interrupt Controller (NVIC)
from Related Links.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

Events
TRNG can generate Events that are used by the Event System (EVSYS) and EVSYS users.
TRNG cannot use any Events from other peripherals, as it is not an Event User.

Related Links
28. Event System (EVSYS)

Debug Operation

When the CPU is halted in debug mode the TRNG continues normal operation. If the TRNG is
configured in a way that requires it to be periodically serviced by the CPU through interrupts or
similar, improper operation or data loss may result during debugging.

Register Access Protection

All registers with write access are optionally write-protected by the Peripheral Access Controller
(PAC), except the following register:

+ Interrupt Flag Status and Clear (INTFLAG) register
Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

Analog Connections
Not applicable.

Functional Description

Principle of Operation

When the TRNG is enabled, the peripheral starts providing new 32-bit random numbers every 84
PB2_CLK clock cycles.

The TRNG can be configured to generate an interrupt or event when a new random number is
available.

Figure 35-2. TRNG Data Generation Sequence

I
ENABLE —/

: 84 clock cycles 84 clock ¢ cles \ 84 clock cycles
‘ \

Interrupt y _/\’ _

Read TRNG_ISR T ‘ Read TRNG_ISR I ‘
Read DATA Read DATA

765

35.6.2 Basic Operation

35.6.2.1 Initialization
To operate the TRNG, do the following:
« Ensure PB2_CLK is enabled in the CRU and TRNG is enabled in the PMD3 register, PMD3.RNGMD
bit.
+ Optional: Enable the output event by writing a ‘1’ to the EVCTRL.DATARDYEO bit.
+ Optional: Enable the TRNG to Run in Standby sleep mode by writing a ‘1’ to CTRLA.RUNSTDBY.

+ Enable the TRNG operation by writing a ‘1" to CTRLA.ENABLE.

35.6.2.2 Enabling, Disabling and Resetting

The TRNG is enabled by writing '1' to the Enable bit in the Control A register (CTRLA.ENABLE). The
TRNG is disabled by writing a zero to CTRLA.ENABLE.

35.6.3 Interrupts
The TRNG has the following interrupt source:
+ Data Ready (DATARDY): Indicates that a new random number is available in the DATA register and

ready to be read.
This interrupt is a synchronous wake-up source. See Sleep Mode Controller for details.

The interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag
Status and Clear register (INTFLAG.DATARDY) is set to ‘1’ when the interrupt condition occurs. The
interrupt can be enabled by writing a ‘1’ to the corresponding bit in the Interrupt Enable Set register
(INTENSET.DATARDY), and disabled by writing a ‘1’ to the corresponding bit in the Interrupt Enable
Clear (INTENCLR) register.

An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is
enabled. The interrupt request remains active until the interrupt flag is cleared, or the interrupt is
disabled. See INTFLAG register from Related Links for details on how to clear interrupt flags.

Note that interrupts must be globally enabled for interrupt requests to be generated.

Related Links
35.8.5. INTFLAG

35.6.4 Events
The TRNG can generate the following output event:

+ Data Ready (DATARDY): Generated when a new random number is available in the DATA register.

Writing '1' to the Data Ready Event Output bit in the Event Control Register (EVCTRL.DATARDYEO)
enables the DTARDY event. Writing a '0' to this bit disables the corresponding output event. Refer to
EVSYS - Event System for details on configuring the Event System.

Related Links

28. Event System (EVSYS)

35.6.5 Sleep Mode Operation

The Run in Standby bit in Control A register (CTRLA.RUNSTDBY) controls the behavior of the TRNG
during standby sleep mode:

When this bit is '0', the TRNG is disabled during sleep, but maintains its current configuration.

When this bitis '1', the TRNG continues to operate during sleep and any enabled TRNG interrupt
source can wake up the CPU.

766

@ MICROCHIP

35.7

offset L Name sithos L7 L6 L s L L s L2 L Lo

0x00
0x01
0x03
0x04
0x05
0x07
0x08
0x09

0x0A
0x0B

Ox1F

0x20

35.8

Register Summary

CTRLA RUNSTDBY ENABLE
Reserved
EVCTRL 7:0 DATARDYEO
Reserved
INTENCLR 7:0 DATARDY
INTENSET 7:0 DATARDY
INTFLAG 7:0 DATARDY
Reserved
7:0 DATA[7:0]
15: DATA[15:
DATA >8 [15:8]
23:16 DATA[23:16]
31:24 DATA[31:24]

Register Description

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can
be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the
“Read-Synchronized” and/or “Write-Synchronized” property in each individual register description.

Optional write protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write
Protection" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is
disabled. Enable-protection is denoted by the “Enable-Protected” property in each individual register
description.

@ MICROCHIP

767

35.8.1 Control A

Name: CTRLA

Offset: 0x00

Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| RUNSTDBY | | | | ENABLE | |
Access R/W R/W
Reset 0 0

Bit 6 - RUNSTDBY Run in Standby
This bit controls how the TRNG behaves during standby sleep mode:

0 The TRNG is halted during standby sleep mode.
1 The TRNG is not stopped in standby sleep mode.

Bit 1 - ENABLE Enable

Value Description
0 The TRNG is disabled.
1

The TRNG is enabled.

o 768
ﬁ\ MICROCHIP

35.8.2 Event Control

Name: EVCTRL

Offset: 0x04

Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| | | | | DATARDYEO |
Access R/W
Reset 0

Bit 0 - DATARDYEO Data Ready Event Output
This bit indicates whether the Data Ready event output is enabled and whether an output event will
be generated when a new random value is ready.

Value Description

0 Data Ready event output is disabled and an event will not be generated.
1 Data Ready event output is enabled and an event will be generated.

@ MICROCHIP

769

35.8.3 Interrupt Enable Clear

Name: INTENCLR
Offset: 0x08
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set (INTENSET) register.

Bit 7 6 5 4 3 2 1 0
| | | | | | | | _DATARDY |
Access R/W
Reset 0

Bit 0 - DATARDY Data Ready Interrupt Enable
Writing a '1' to this bit will clear the Data Ready Interrupt Enable bit, which disables the
corresponding interrupt request.

Value Description

0 The DATARDY interrupt is disabled.
1 The DATARDY interrupt is enabled.

@ MICROCHIP

770

35.8.4 Interrupt Enable Set

Name: INTENSET
Offset: 0x09
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Clear (INTENCLR) register.

Bit 7 6 5 4 3 2 1 0
| | | | | | | | _DATARDY |
Access R/W
Reset 0

Bit 0 - DATARDY Data Ready Interrupt Enable
Writing a '1' to this bit will set the Data Ready Interrupt Enable bit, which enables the corresponding
interrupt request.

Value Description

0 The DATARDY interrupt is disabled.
1 The DATARDY interrupt is enabled.

@ MICROCHIP

771

35.8.5 Interrupt Flag Status and Clear

Name: INTFLAG
Offset: 0x0A
Reset: 0x00
Property: -
Bit 7 6 5 4 3 2 1 0
| | | | | DATARDY |
Access R/W
Reset 0

Bit 0 - DATARDY Data Ready
This flag is set when a new random value is generated, and an interrupt will be generated if
INTENCLR/SET.DATARDY=1.
This flag is cleared by writing a ‘1’ to the flag or by reading the DATA register. Writing a ‘0’ to this bit

has no effect.

772

@ MICROCHIP

35.8.6 Output Data

Name: DATA
Offset: 0x20

Reset: -
Property: -
Bit 31 30 29 28 27 26 25 24
| DATA[31:24]
Access R R R R R R R R
Reset - - - - - - - -
Bit 23 22 21 20 19 18 17 16
| DATA[23:16]
Access R R R R R R R R
Reset - - - - - - - -
Bit 15 14 13 12 11 10 9 8
DATA[15:8]
Access R R R R R R R R
Reset - - - - - - - -
Bit 7 6 5 4 3 2 1 0
DATA[7:0]
Access R R R R R R R R
Reset - - - - - - - -

Bits 31:0 - DATA[31:0] Output Data

These bits hold the 32-bit randomly generated output data.

@ MICROCHIP

773

36. Advanced Encryption Standard (AES)

36.1 Overview

The Advanced Encryption Standard peripheral (AES) provides a means for symmetric-key encryption
of 128-bit blocks, in compliance to NIST specifications.

The symmetric-key algorithm requires the same key for both encryption and decryption.

Different key sizes are supported. The key size determines the number of repetitions of
transformation rounds that convert the input (called the "plaintext") into the final output
("ciphertext"). The number of rounds of repetition is as follows:

« 10 rounds of repetition for 128-bit keys
+ 12 rounds of repetition for 192-bit keys
« 14 rounds of repetition for 256-bit keys

36.2 Features
+ Compliant with FIPS Publication 197, Advanced Encryption Standard (AES)
« 128/192/256 bit cryptographic key supported
« Encryption time of 57/67/77 cycles with 128-bit/192-bit/256-bit cryptographic key
+ Five confidentiality modes of operation as recommended in NIST Special Publication 800-38A
+ Electronic Code Book (ECB)
+ Cipher Block Chaining (CBC)
+ Cipher Feedback (CFB)
+ Output Feedback (OFB)
* Counter (CTR)
« Supports Counter with CBC-MAC (CCM/CCM*) mode for authenticated encryption
+ 8,16, 32, 64, 128-bit data sizes possible in CFB mode
+ Galois Counter mode (GCM) encryption and authentication

774

@ MICROCHIP

36.3 Block Diagram

Figure 36-1. AES Block Diagram

PLAINTEXT

;

ADD ROUND KEY

A

A

SUBBYTES

|

SHIFT ROWS

!

MIX COLUMNS

ENCRYPTION ROUND

.

ENCRYPTION ADD ROUND KEY

A

SUBBYTES

.

SHIFT ROWS

FINAL ROUND

|

ADD ROUND KEY

CIPHERTEXT

@ MICROCHIP

Nr-1 rounds

DECRYPTION

CIPHERTEXT

.

ADD ROUND KEY

DECRYPTION ROUND

INV SHIFT ROWS

I

INV SUBBYTES

!

ADD ROUND KEY

;

INV MIX COLUMNS

FINAL ROUND

A

INV SHIFT ROWS

!

INV SUBBYTES

;

ADD ROUND KEY

PLAINTEXT

Nr-1 rounds

36.4 Signal Description
Not applicable.

36.5 Product Dependencies

In order to use this AES module, other parts of the system must be configured correctly, as
described below.

36.5.1 1/0 Lines
Not applicable.

36.5.2 Power Management
The AES will continue to operate in Standby sleep mode, if it's source clock is running.

The AES interrupts can be used to wake up the device from Standby sleep mode. Refer to the Power
Manager chapter for details on the different sleep modes.

AES is clocked only on the following conditions:
+ When the DMA is enabled.

« Whenever there is an APB access for any read and write operation to the AES registers. (Not in
Standby sleep mode.)

« When the AES is enabled & encryption/decryption is ongoing.

Related Links
15. Power Management Unit (PMU)

36.5.3 Clocks
The AES bus clock (PB2_CLK) can be enabled and disabled in the CRU module.

36.5.4 DMA
The AES has two DMA request lines; one for input data and one for output data. They are both
connected to the DMA Controller (DMAC). These DMA request triggers will be acknowledged by the
DMAC ACK signals. Using the AES DMA requests requires the DMA Controller to be configured first.
See Direct Memory Access Controller (DMAC) from Related Links.
Related Links
22. Direct Memory Access Controller (DMAC)

36.5.5 Interrupts

The interrupt request line is connected to the interrupt controller. Using the AES interrupt requires
the interrupt controller to be configured first. Refer to the Processor and Architecture chapter for
details.

All the AES interrupts are synchronous wake-up sources. See Sleep Mode Controller for details.

Related Links
10. Processor and Architecture

36.5.6 Events
Not applicable.

36.5.7 Debug Operation
When the CPU is halted in debug mode, the AES module continues normal operation. If the AES
module is configured in a way that requires it to be periodically serviced by the CPU through
interrupts or similar, improper operation or data loss may result during debugging. The AES module
can be forced to halt operation during debugging.

776

@ MICROCHIP

36.5.8 Register Access Protection

All registers with write access are optionally write-protected by the peripheral access controller
(PAC), except the following register:

+ Interrupt Flag Register (INTFLAG)
Write protection is denoted by the Write-Protected property in the register description.

Write protection does not apply to accesses through an external debugger. See Peripheral Access
Controller (PAC) from Related Links.

Related Links
26. Peripheral Access Controller (PAC)

36.5.9 Analog Connections
Not applicable.

36.6 Functional Description

36.6.1 Principle of Operation
The following is a high level description of the algorithm. These are the steps:

+ KeyExpansion: Round keys are derived from the cipher key using Rijndael's key schedule.
+ InitialRound:
- AddRoundKey: Each byte of the state is combined with the round key using bitwise XOR.

* Rounds:

- SubBytes: A non-linear substitution step where each byte is replaced with another according
to a lookup table.

- ShiftRows: A transposition step where each row of the state is shifted cyclically a certain
number of steps.

- MixColumns: A mixing operation which operates on the columns of the state, combining the
four bytes in each column.

- AddRoundKey
* Final Round (no MixColumns):

- SubBytes

- ShiftRows

- AddRoundKey
The relationship between the module's clock frequency and throughput (in bytes per second) is
given by:

Clock Frequency = (Throughput/2) x (Nr+1) for 2 byte parallel processing
Clock Frequency = (Throughput/4) x (Nr+1) for 4 byte parallel processing

where Nr is the number of rounds, depending on the key length.

36.6.2 Basic Operation

36.6.2.1 Initialization
The following register is enable-protected:

« Control A (CTRLA)

Enable-protection is denoted by the Enable-Protected property in the register description.

777

@ MICROCHIP

36.6.2.2 Enabling, Disabling, and Resetting
The AES module is enabled by writing a one to the Enable bit in the Control A register
(CTRLA.ENABLE). The module is disabled by writing a zero to CTRLA.ENABLE. The module is reset
by writing a one to the Software Reset bit in the Control A register (CTRLA.SWRST).

36.6.2.3 Basic Programming

The CIPHER bit in the Control A Register (CTRLA.CIPHER) allows selection between the encryption
and the decryption processes. The AES is capable of using cryptographic keys of 128/192/256 bits
to encrypt and decrypt data in blocks of 128 bits. The Key Size (128/192/256) can be programmed

in the KEYSIZE field in the Control A Register (CTRLA.KEYSIZE). This 128-bit/192-bit/256-bit key is
defined in the Key Word Registers (KEYWORD). By setting the XORKEY bit of CTRLA register, keyword
can be updated with the resulting XOR value of user keyword and previous keyword content.

The input data for processing is written to a data buffer consisting of four 32-bit registers through
the Data register address. The data buffer register (note that input and output data shares the
same data buffer register) that is written to when the next write is performed is indicated by the
Data Pointer in the Data Buffer Pointer (DATABUFPTR) register. This field is incremented by one or
wrapped by hardware when a write to the INDATA register address is performed. This field can also
be programmed, allowing the user direct control over which input buffer register to write. Note that
when AES module is in the CFB operation mode with the data segment size less than 128 bits, the
input data must be written to the first (DATABUFPTR = 0) and second (DATABUFPTR = 1) input buffer
registers (see Table 36-1).

The input to the encryption processes of the CBC, CFB and OFB modes includes, in addition to

the plaintext, a 128-bit data block called the Initialization Vector (IV), which must be set in the
Initialization Vector Registers (INTVECT). Additionally, the GCM mode 128-bit authentication data
needs to be programmed. The Initialization Vector is used in the initial step in the encryption of a
message and in the corresponding decryption of the message. The Initialization Vector Registers are
also used by the Counter mode to set the counter value.

It is necessary to notify AES module whenever the next data block it is going to process is the
beginning of a new message. This is done by writing a one to the New Message bit in the Control B
register (CTRLB.NEWMSG).

The AES modes of operation are selected by setting the AESMODE field in the Control A Register
(CTRLA.AESMODE). In Cipher Feedback Mode (CFB), five data sizes are possible (8, 16, 32, 64 or 128
bits), configurable by means of the CFBS field in the Control A Register (CTRLA.CFBS). In Counter
mode, the size of the block counter embedded in the module is 16 bits. Therefore, there is a rollover
after processing 1 megabyte of data. The data pre-processing, post-processing and data chaining for
the concerned modes are automatically performed by the module.

When data processing has completed, the Encryption Complete bit in the Interrupt Flag register
(INTFLAG.ENCCMP) is set by hardware (which triggers an interrupt request if the corresponding
interrupt is enabled). The processed output data is read out through the Output Data register
(INDATA) address from the data buffer consisting of four 32-bit registers. The data buffer register
that is read when the next read is performed is indicated by the Data Pointer field in the Data Buffer
Pointer register (DATABUFPTR). This field is incremented by one or wrapped by hardware when a
read from the INDATA register address is performed. This field can be programmed, giving the user
direct control over which output buffer register to read from. Note that when AES module is in the
CFB operation mode with the data segment size less than 128 bits, the output data must be read
from the first (DATABUFPTR = 0) and second (DATABUFPTR = 1) output buffer registers (see Table
36-1). The Encryption Complete bit (INTFLAG.ENCCMP) is cleared by hardware after the processed
data has been read from the relevant output buffer registers.

Table 36-1. Relevant Input/Output Data Registers for Different Confidentiality Modes

Confidentiality Mode Relevant Input / Output Data Registers

ECB All

778

@ MICROCHIP

........... continued

Confidentiality Mode Relevant Input / Output Data Registers

CBC All

OFB All

128-bit CFB All

64-bit CFB First and Second
32-bit CFB First

16-bit CFB First

8-bit CFB First

CTR All

36.6.2.4 Start Modes

The Start mode field in the Control A Register (CTRLA.STARTMODE) allows the selection of encryption
start mode.

1. Manual Start Mode
In the Manual Start Mode the sequence is as follows:

a. Write the 128/192/256 bit key in the Key Register (KEYWORD)

b. Write the initialization vector or counter in the Initialization Vector Register (INTVECT). The
initialization vector concerns all modes except ECB

c. Enable interrupts in Interrupt Enable Set Register (INTENSET), depending on whether an
interrupt is required or not at the end of processing.

d. Write the data to be encrypted or decrypted in the Data Registers (INDATA).

Set the START bit in Control B Register (CTRLB.START) to begin the encryption or the
decryption process.

f. When the processing completes, the Encryption Complete bit in the Interrupt Flag Register
(INTFLAG.ENCCMP) raises. If Encryption Complete interrupt has been enabled, the interrupt
line of the AES is activated.

g. When the software reads one of the Output Data Registers (INDATA), INTFLAG.ENCCMP bit is
automatically cleared.

2. Auto start Mode
The Auto Start Mode is similar to the manual one, but as soon as the correct number of input
data registers is written, processing is automatically started without setting the START bit in the
Control B Register. DMA operation uses this mode.

3. Last Output Data Mode (LOD)
This mode is used to generate message authentication code (MAC) on data in CCM mode of
operation. The CCM mode combines counter mode for encryption and CBC-MAC generation for
authentication.

When LOD is disabled in CCM mode then counter mode of encryption is performed on the input
data block.

When LOD is enabled in CCM mode then CBC-MAC generation is performed. Zero block is used

as the initialization vector by the hardware. Reading from the Output Data Register (INDATA)

is not required to clear the ENCCMP flag. The ENCCMP flag is automatically cleared by writing

into the Input Data Register (INDATA). This allows retrieval of only the last data in several
encryption/decryption processes. No output data register reads are necessary between each block
of encryption/decryption process.

Note that assembling message depending on the security level identifier in CCM* has to be done in
software.

779

@ MICROCHIP

36.6.2.5 Computation of last Nk words of expanded key

The AES algorithm takes the cryptographic key provided by the user and performs a Key Expansion
routine to generate an expanded key. The expanded key contains a total of 4(Nr + 1) 32-bit words,
where the first Nk (4/6/8 for a 128-/192-/256-bit key) words are the user-provided key. For data
encryption, the expanded key is used in the forward direction, i.e., the first four words are used in
the initial round of data processing, the second four words in the first round, the third four words in
the second round, and so on. On the other hand, for data decryption, the expanded key is used in
the reverse direction, i.e.,the last four words are used in the initial round of data processing, the last
second four words in the first round, the last third four words in the second round, and so on.

To reduce gate count, the AES module does not generate and store the entire expanded key prior
to data processing. Instead, it computes on-the-fly the round key (four 32-bit words) required for
the current round of data processing. In general, the round key for the current round of data
processing can be computed from the Nk words of the expanded key generated in the previous
rounds. When AES module is operating in the encryption mode, the round key for the initial round
of data processing is simply the user-provided key written to the KEY registers. On the other hand,
when AES module is operating in the decryption mode, the round key for the initial round of data
processing is the last four words of the expanded key, which is not available unless AES module has
performed at least one encryption process prior to operating in the decryption mode.

In general, the last Nk words of the expanded key must be available before decryption can start.

If desired, AES module can be instructed to compute the last Nk words of the expanded key in
advance by writing a one to the Key Generate (KEYGEN) bit in the CTRLA register (CTRLA.KEYGEN).
The computation takes Nr clock cycles. Alternatively, the last Nk words of the expanded key can be
automatically computed by AES module when a decryption process is initiated if they have not been
computed in advance or have become invalid. Note that this will introduce a latency of Nr clock
cycles to the first decryption process.

36.6.2.6 Hardware Countermeasures against Differential Power Analysis Attacks

The AES module features four types of hardware countermeasures that are useful for protecting
data against differential power analysis attacks:

+ Type 1: Randomly add one cycle to data processing
+ Type 2: Randomly add one cycle to data processing (other version)

+ Type 3: Add a random number of clock cycles to data processing, subject to a maximum of
11/13/15 clock cycles for key sizes of 128/192/256 bits

+ Type 4: Add random spurious power consumption during data processing

By default, all countermeasures are enabled, but require a write in DRNGSEED register to

be effective. One or more of the countermeasures can be disabled by programming the
Countermeasure Type field in the Control A (CTRLA.CTYPE) register. The countermeasures use
random numbers generated by a deterministic random number generator embedded in AES
module. The seed for the random number generator is written to the RANDSEED register. Note also
that a new seed must be written after a change in the keysize. Note that enabling countermeasures
reduces AES module’s throughput. In short, the throughput is highest with all the countermeasures
disabled. On the other hand, with all of the countermeasures enabled, the best protection is
achieved but the throughput is worst.

36.6.3 Galois Counter Mode (GCM)

GCM is comprised of the AES engine in CTR mode along with a universal hash function (GHASH
engine) that is defined over a binary Galois field to produce a message authentication tag. The
GHASH engine processes data packets after the AES operation. GCM provides assurance of the
confidentiality of data through the AES Counter mode of operation for encryption. Authenticity of
the confidential data is assured through the GHASH engine. Refer to the NIST Special Publication
800-38D Recommendation for more information.

780

@ MICROCHIP

Counter0 —» ncr32 —»| Counter 1 —»| Incr32 —»| Counter2
v v v
CIPHK) CIPH(K) CIPH(K)
Plaintext 1 Plaintext2
Ciphertext 1 Ciphertext2
Encryption
v v
>\+ — (4
v v
GF128Mult(H) GF128Mult(H) GF128Mult(H)
A
Auth Data 1 Len (A)]| Len (C)
GF128Mult(H)
» +
Auth Tag
Authentication

781

@ MICROCHIP

36.6.3.1 GCM Operation
36.6.3.1.1 Hashkey Generation

Configure CTRLA register as follows:
CTRLA.STARTMODE as Manual (Auto for DMAC)

a
b. CTRLA.CIPHER as Encryption

¢. CTRLA.KEYSIZE as per the key used

d. CTRLA.AESMODE as ECB

e. CTRLA.CTYPE as per the countermeasures required.
Set CTRLA.ENABLE

Write zero to CIPLEN reg.

Write the key in KEYWORD register

Write the zeros to INDATA reg

Set CTRLB.Start.

Wait for INTFLAG.ENCCMP to be set

AES Hardware generates Hash Subkey in HASHKEY register.

36.6.3.1.2 Authentication Header Processing

Configure CTRLA register as follows:
CTRLA.STARTMODE as Manual

a
b. CTRLA.CIPHER as Encryption

c. CTRLA.KEYSIZE as per the key used

d. CTRLA.AESMODE as GCM

e. CTRLA.CTYPE as per the countermeasures required.
Set CTRLA.ENABLE

Write the key in KEYWORD register

Set CTRLB.GFMUL

Write the Authdata to INDATA reg

Set CTRLB.START as1

Wait for INTFLAG.GFMCMP to be set.

AES Hardware generates output in GHASH register

Continue steps 4 to 7 for remaining Authentication Header.
Note: If the Auth data is less than 128 bit, it has to be padded with zero to make it 128 bit aligned.

@ MICROCHIP

782

GHASH

AUTHDAT

GF128Mult(H)

GHASH

36.6.3.1.3 Plain text Processing
+ Set CTRLB.NEWMSG for the new set of plain text processing.

* Load CIPLEN reg.
« Load (JO+1) in INTVECT register.

+ As described in NIST documentationJ 0=1V || 031 || 1 when len(IV)=96 and JO =GHASHy (IV
|| 0s+64 || [len(IV)] 64) (s is the minimum number of zeroes that must be padded with the
Initialization Vector to make it a multiple of 128) if len(IV) != 96.

* Load plain text in INDATA register.
* Set CTRLB.START as 1.
+ Wait for INTFLAG.ENCCMP to be set.
* AES Hardware generates output in INDATA register.
+ Intermediate GHASH is stored in GHASH register and Cipher Text available in INDATA register.
+ Continue 3 to 6 till the input of plain text to get the cipher text and the Hash keys.
+ Atthe lastinput, set CTRLB.EOM.
« Write last in-data to INDATA reg.
* Set CTRLB.START as 1.
+ Wait for INTFLAG.ENCCMP to be set.
« AES Hardware generates output in INDATA register and final Hash key in GHASH register.
+ Load [LEN(A)164 | | [LEN(C)164 in INDATA register and set CTRLB.GFMUL and CTRLB.START as 1.
+ Wait for INTFLAG.GFMCMP to be set.
+ AES Hardware generates final GHASH value in GHASH register.
36.6.3.1.4 Plain text processing with DMAC
+ Set CTRLB.NEWMSG for the new set of plain text processing.
* Load CIPLEN reg.
« Load (JO+1) in INTVECT register.
+ Load plain text in INDATA register.
+ Wait for INTFLAG.ENCCMP to be set.

783

@ MICROCHIP

AES Hardware generates output in INDATA register.

Intermediate GHASH is stored in GHASH register and Cipher Text available in INDATA register.

Continue 3 to 5 till the input of plain text to get the cipher text and the Hash keys.

At the last input, set CTRLB.EOM.

Write last in-data to INDATA reg.

Wait for INTFLAG.ENCCMP to be set.

AES Hardware generates output in INDATA register and final Hash key in GHASH register.

Load [LEN(A)164 | | [LEN(C)]64 in INDATA register and set CTRLB.GFMUL and CTRLB.START as 1.

Wait for INTFLAG.GFMCMP to be set.
AES Hardware generates final GHASH value in GHASH register.

36.6.3.1.5 Tag Generation

Configure CTRLA
a. Set CTRLA.ENABLEto O

b. Set CTRLA.AESMODE as CTR

€. Set CTRLA.ENABLE to 1

Load JO value to INITVECTV reg.

Load GHASH value to INDATA reg.

Set CTRLB.NEWMSG and CTRLB.START to start the Counter mode operation.
Wait for INTFLAG.ENCCMP to be set.

AES Hardware generates the GCM Tag output in INDATA register.

36.6.4 Synchronization
Not applicable.

@ MICROCHIP

784

36.7

0x00

0x04
0x05
0x06
0x07
0x08
0x09
0x0A

0x0B

0C

20

24

28
0x2C
0x37

0x38

3C

@ MICROCHIP

Register Summary

[Offset | Name | Bitpos.| 7|6
7:0

CTRLA

CTRLB
INTENCLR
INTENSET

INTFLAG
DATABUFPTR
DBGCTRL

Reserved

KEYWORDO

KEYWORD1

KEYWORD2

KEYWORD3

KEYWORD4

KEYWORD5

KEYWORD6

KEYWORD7

Reserved

INDATA

INTVECTVO

15:8
23:16
31:24

7:0
7:0
7:0
7:0
7:0
7:0

7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24

s |4 3
AESMODE[2:0]
LOD STARTMODE

GFMUL

KEYWORD[7:0]
KEYWORD[15:8]
KEYWORDI[23:16]
KEYWORD[31:24]
KEYWORD[7:0]
KEYWORD[15:8]
KEYWORDI[23:16]
KEYWORD[31:24]
KEYWORD[7:0]
KEYWORD[15:8]
KEYWORDI[23:16]
KEYWORD[31:24]
KEYWORD[7:0]
KEYWORD[15:8]
KEYWORDI[23:16]
KEYWORD[31:24]
KEYWORD[7:0]
KEYWORD[15:8]
KEYWORDI[23:16]
KEYWORD[31:24]
KEYWORD[7:0]
KEYWORD[15:8]
KEYWORDI[23:16]
KEYWORD[31:24]
KEYWORD[7:0]
KEYWORD[15:8]
KEYWORDI[23:16]
KEYWORD[31:24]
KEYWORD[7:0]
KEYWORD[15:8]
KEYWORDI[23:16]
KEYWORD[31:24]

INDATA[7:0]
INDATA[15:8]
INDATA[23:16]
INDATA[31:24]
INTVECTV[7:0]
INTVECTV[15:8]
INTVECTV[23:16]
INTVECTV[31:24]

ENABLE SWRST
CIPHER KEYSIZE[1:0]
CTYPE[3:0]
EOM NEWMSG START

GFMCMP ENCCMP
GFMCMP ENCCMP
GFMCMP ENCCMP

INDATAPTR[1:0]
DBGRUN

785

........... continued

[offset | Name [Bitpos| 7 | 6 | 5 _
7:0

40

44

48

0x4C

0x5B

0x5C

0x60

0x64

0x68

0x6C

0x70

0x74

0x78
0x7C
Ox7F

0x80

0x84

@ MICROCHIP

INTVECTV1

INTVECTV2

INTVECTV3

Reserved

HASHKEYO

HASHKEY1

HASHKEY2

HASHKEY3

GHASHO

GHASH1

GHASH2

GHASH3

Reserved

CIPLEN

RANDSEED

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24

7:0
15:8
23:16
31:24
7:0
15:8
23:16
31:24

T IR T .

INTVECTV[7:0
INTVECTV[15:8]
INTVECTV[23:16]
INTVECTV[31:24]
INTVECTV[7:0]
INTVECTV[15:8]
INTVECTV[23:16]
INTVECTV[31:24]
INTVECTV[7:0]
INTVECTV[15:8]
INTVECTV[23:16]
INTVECTV[31:24]

HASHKEY[7:0]
HASHKEY[15:8]
HASHKEY[23:16]
HASHKEY[31:24]
HASHKEY[7:0]
HASHKEY[15:8]
HASHKEY[23:16]
HASHKEY[31:24]
HASHKEY[7:0]
HASHKEY[15:8]
HASHKEY[23:16]
HASHKEY[31:24]
HASHKEY[7:0]
HASHKEY[15:8]
HASHKEY[23:16]
HASHKEY[31:24]
GHASH[7:0]
GHASH[15:8]
GHASH[23:16]
GHASH[31:24]
GHASH[7:0]
GHASH[15:8]
GHASH[23:16]
GHASH[31:24]
GHASH[7:0]
GHASH[15:8]
GHASH[23:16]
GHASH[31:24]
GHASH[7:0]
GHASH[15:8]
GHASH[23:16]
GHASH[31:24]

CIPLEN[7:0]
CIPLEN[15:8]
CIPLEN[23:16]
CIPLEN[31:24]
RANDSEED[7:0]
RANDSEED[15:8]
RANDSEED[23:16]
RANDSEED([31:24]

786

36.8 Register Description

Registers can be 8, 16 or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition,
the 8-bit quarters and 16-bit halves of a 32-bit register and the 8-bit halves of a 16-bit register can be
accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional
PAC write protection is denoted by the “PAC Write-Protection” property in each individual register
description. See Register Access Protection from Related Links.

Some registers are enable protected, meaning they can only be written when the peripheral is
disabled. Enable protection is denoted by the “Enable-Protected” property in each individual register
description.

Related Links

36.5.8. Register Access Protection

787

@ MICROCHIP

36.8.1 Control A

Name: CTRLA

Offset: 0x00

Reset: 0x00000000

Property: PAC Write-Protection, Enable-protected

Access
Reset

Bit 31 30 29 28 27 26 25 24
Bit 23 22 21 20 19 18 17 16
| | | | | CTYPE[3:0] |
Access R/W R/W RIW R/W
Reset 0 0 0 0
Bit 15 14 13 12 11 10 9 8
XORKEY | KEYGEN | LOD [STARTMODE| CIPHER | KEYSIZE[1:0] |
Access R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
CFBS[2:0] AESMODE[2:0] ENABLE SWRST
Access R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 19:16 - CTYPE[3:0] Counter Measure Type

Value Name Description

XXX0 CTYPE1 disabled Countermeasure1 disabled
XXX1 CTYPE1 enabled Countermeasurel enabled
XX0X CTYPE2 disabled Countermeasure2 disabled
XX1X CTYPE2 enabled Countermeasure2 enabled
X0XX CTYPE3 disabled Countermeasure3 disabled
X1XX CTYPE3 enabled Countermeasure3 enabled
0XXX CTYPE4 disabled Countermeasure4 disabled
1XXX CTYPE4 enabled Countermeasure4 enabled

Bit 14 - XORKEY XOR Key Operation

Value Description

0 No effect
1 The user keyword gets XORed with the previous keyword register content.

Bit 13 - KEYGEN Last Key Generation

Value Description
0 No effect
1 Start Computation of the last NK words of the expanded key

Bit 12 - LOD Last Output Data Mode

Value Description
0 No effect
1 Start encryption in Last Output Data mode

Bit 11 - STARTMODE Start Mode Select

@ MICROCHIP

788

Value Name
0 Manual Mode
1 Auto Mode

Bit 10 - CIPHER Cipher Mode Select

Description
Start Encryption / Decryption in Manual mode
Start Encryption / Decryption in Auto mode

Value Description
0 Decryption
1 Encryption

Bits 9:8 - KEYSIZE[1:0] Encryption Key Size

Value Name

0 128-bit Key
1 192-bit Key
2 256-bit Key
3 Reserved

Description

128-bit Key for Encryption / Decryption
192-bit Key for Encryption / Decryption
256-bit Key for Encryption / Decryption
Reserved

Bits 7:5 - CFBS[2:0] Cipher Feedback Block Size

Value Name

0 128-bit data block
1 64-bit data block
2 32-bit data block
3 16-bit data block
4 8-bit data block
5-7 Reserved

Description

128-bit Input data block for Encryption/Decryption in Cipher Feedback mode
64-bit Input data block for Encryption/Decryption in Cipher Feedback mode
32-bit Input data block for Encryption/Decryption in Cipher Feedback mode
16-bit Input data block for Encryption/Decryption in Cipher Feedback mode
8-bit Input data block for Encryption/Decryption in Cipher Feedback mode
Reserved

Bits 4:2 - AESMODE[2:0] AES Modes of Operation

Name
ECB

CBC

OFB

CFB
Counter
CCM
GCM
Reserved

Value

~ o U W N B O

Bit 1 - ENABLE Enable

Description

Electronic code book mode
Cipher block chaining mode
Output feedback mode
Cipher feedback mode
Counter mode

CCM mode

Galois counter mode
Reserved

Value Description
0 The peripheral is disabled
1 The peripheral is enabled

Bit 0 - SWRST Software Reset

Writing a '0' to this bit has no effect.
Writing a '1' to this bit resets all registers in the AES module to their initial state, and the module will

be disabled.

Writing a '1' to SWRST will always take precedence, meaning that all other writes in the same write

operation will be discarded.

Value Description
0 There is no reset operation ongoing
1 The reset operation is ongoing

@ MICROCHIP

789

36.8.2 Control B

Name: CTRLB

Offset: 0x04

Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0

| | | GFMUL | EOM | NEWMSG | START |
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 3 - GFMUL GF Multiplication
This bit is applicable only to GCM mode.

Value Description
0 No action
1 Setting this bit calculates GF multiplication with data buffer content and hashkey register content.

Bit 2 - EOM End of Message
This bit is applicable only to GCM mode.

Value Description
0 No action
1 Setting this bit generates final GHASH value for the message.

Bit 1 - NEWMSG New Message
This bit is used in cipher block chaining (CBC), cipher feedback (CFB) and output feedback (OFB),
counter (CTR) modes to indicate the hardware to use Initialization vector for encrypting the first
block of message.

VEINS Description
0 No action
1 Setting this bit indicates start of new message to the module.

Bit 0 - START Start Encryption/Decryption

Value Description
0 No action
1 Start encryption / decryption in manual mode.

@ MICROCHIP

790

36.8.3 Interrupt Enable Clear

Name: INTENCLR
Offset: 0x05
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Set (INTENSET) register.

Bit 7 6 5 4 3 2 1 0

| | | | | | | GFMCMP | ENCCMP |
Access R/W R/W
Reset 0 0

Bit 1 - GFMCMP GF Multiplication Complete Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1' to this bit will clear the GF Multiplication Complete Interrupt Enable bit, which disables
the GF Multiplication Complete interrupt.

Value Description

0 The GF Multiplication Complete interrupt is disabled.
1 The GF Multiplication Complete interrupt is enabled.

Bit 0 - ENCCMP Encryption Complete Interrupt Enable
Writing a '0' to this bit has no effect.
Writing a '1" to this bit will clear the Encryption Complete Interrupt Enable bit, which disables the
Encryption Complete interrupt.

Value Description

0 The Encryption Complete interrupt is disabled.
1 The Encryption Complete interrupt is enabled.

791

@ MICROCHIP

36.8.4 Interrupt Enable Set

Name: INTENSET
Offset: 0x06
Reset: 0x00

Property: PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation.
Changes in this register will also be reflected in the Interrupt Enable Clear (INTENCLR) register.

Bit 7 6 5 4 3 2 1 0

| | | | | | | GFMCMP | ENCCMP |
Access R/W R/W
Reset 0 0

Bit 1 - GFMCMP GF Multiplication Complete Interrupt Enable
Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the GF Multiplication Complete
Interrupt Enable bit, which enables the GF Multiplication Complete interrupt.

Value Description

0 The GF Multiplication Complete interrupt is disabled.
1 The GF Multiplication Complete interrupt is enabled.

Bit 0 - ENCCMP Encryption Complete Interrupt Enable
Writing a '0' to this bit has no effect. Writing a '1" to this bit will clear the Encryption Complete
Interrupt Enable bit, which enables the Encryption Complete interrupt.

Value Description

0 The Encryption Complete interrupt is disabled.
1 The Encryption Complete interrupt is enabled.

@ MICROCHIP

792

36.8.5 Interrupt Flag Status and Clear

Name: INTFLAG
Offset: 0x07
Reset: 0x00
Bit 7 6 5 1 0
| | | GFMCMP | ENCCMP |
Access R/W R/W
Reset 0 0

Bit 1 - GFMCMP GF Multiplication Complete
This flag is cleared by writing a '1' to it.

This flag is set when GHASH value is available on the Galois Hash Registers (GHASHx) in GCM mode.
Writing a '0' to this bit has no effect.

This flag is also automatically cleared in the following cases.
1. Manual encryption/decryption occurs (START in CTRLB register).
2. Reading from the GHASHx register.

Bit 0 - ENCCMP Encryption Complete

This flag is cleared by writing a '1' to it.

This flag is set when encryption/decryption is complete and valid data is available on the Data

Register.

Writing a '0' to this bit has no effect.
This flag is also automatically cleared in the following cases:

1. Manual encryption/decryption occurs (START in CTRLA register). (This feature is needed only if
we do not support double buffering of INDATA registers).

Reading from the data register (INDATAx) when LOD = 0.
Writing into the data register (INDATAx) when LOD = 1.
4. Reading from the Hash Key register (HASHKEYx).

@ MICROCHIP

793

36.8.6 Data Buffer Pointer

Name: DATABUFPTR
Offset: 0x08

Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0
| | | | | INDATAPTR[1:0] |
Access R/W R/W
Reset 0 0

Bits 1:0 - INDATAPTR[1:0] Input Data Pointer
Writing to this field changes the value of the input data pointer, which determines which of the four
data registers is written to/read from when the next write/read to the INDATA register address is
performed.

794

@ MICROCHIP

36.8.7 Debug

Name: DBGCTRL

Offset: 0x09

Reset: 0x00

Property: PAC Write-Protection

Bit 7 6 5 4 3 2 1 0

| | | | | DBGRUN |
Access W
Reset 0

Bit 0 - DBGRUN Debug Run
Writing a '0' to this bit causes the AES to halt during debug mode.
Writing a '1' to this bit allows the AES to continue normal operation during debug mode. This bit can
only be changed while the AES is disabled.

795

@ MICROCHIP

36.8.8 Keyword

Name: KEYWORD

Offset: 0x0C + n*0x04 [n=0..7]
Reset: 0x00000000
Property: PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
| KEYWORD[31:24]
Access w W w W W w W w
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| KEYWORDI[23:16]
Access w W w W W w W w
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
KEYWORD[15:8]
Access w W w W W w W w
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
KEYWORDI[7:0]
Access W w W w w w W w
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - KEYWORD[31:0] Key Word Value

The four/six/eight 32-bit Key Word registers set the 128-bit/192-bit/256-bit cryptographic key used
for encryption/decryption. KEYWORDO . KEYWORD corresponds to the first word of the key and
KEYWORD3/KEYWORD5/KEYWORD7 . KEYWORD to the last one.

Note: By setting the XORKEY bit of CTRLA register, keyword will update with the resulting XOR value

of user keyword and previous keyword content.

@ MICROCHIP

796

36.8.9 Data

Name: INDATA
Offset: 0x38
Reset: 0x00000000

Bit 31 30 29 28 27 26 25 24
| INDATA[31:24] |
Access R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| INDATA[23:16] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
INDATA[15:8]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
INDATA[7:0]
Access R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - INDATA[31:0] Data Value
A write to or read from this register corresponds to a write to or read from one of the four data
registers. The four 32-bit Data registers set the 128-bit data block used for encryption/decryption.
The data register that is written to or read from is given by the DATABUFPTR. INDATPTR field.
Note: Both input and output shares the same data buffer. Reading INDATA register will return 0's
when AES is performing encryption or decryption operation.

797

@ MICROCHIP

36.8.10 Initialization Vector Register

Name:
Offset:

INTVECTV

0x3C + n*0x04 [n=0..3]
Reset: 0x00000000
Property: PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
| INTVECTV[31:24]
Access w W w W W w W w
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| INTVECTV[23:16]
Access w W w W W w W w
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
INTVECTV[15:8]
Access w W w W W w W w
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
INTVECTV[7:0]
Access W w W w w w W w
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - INTVECTV[31:0] Initialization Vector Value

The four 32-bit Initialization Vector registers INTVECTVn set the 128-bit Initialization Vector data
block that is used by some modes of operation as an additional initial input. INTVECTVO0 . INTVECTV

corresponds to the first word of the Initialization Vector, INTVECTV3 . INTVECTV to the last one.

These registers are write-only to prevent the Initialization Vector from being read by another
application. For CBC, OFB, and CFB modes, the Initialization Vector corresponds to the initialization
vector. For CTR mode, it corresponds to the counter value.

@ MICROCHIP

798

36.8.11 Hash Key (GCM mode only)

Name: HASHKEY

Offset: 0x5C + n*0x04 [n=0..3]
Reset: 0x00000000
Property: PAC Write-protection

Bit 31 30 29 28 27 26 25 24
| HASHKEY[31:24]
Access R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| HASHKEY[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
HASHKEY[15:8]
Access R/W R/W RIW R/W RIW R/W R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
HASHKEY[7:0]
Access R/W R/W RIW R/W RIW R/W R/W RIW
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - HASHKEY[31:0] Hash Key Value

The four 32-bit HASHKEY registers contain the 128-bit Hash Key value computed from the AES KEY.

The Hash Key value can also be programmed offering single GF128 multiplication possibilities.

@ MICROCHIP

799

36.8.12 Galois Hash (GCM mode only)

Name: GHASH

Offset: 0x6C + n*0x04 [n=0..3]
Reset: 0x00000000
Property: PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
| GHASH[31:24] |
Access R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| GHASH[23:16] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
GHASH[15:8]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
GHASH[7:0]
Access R/W R/W RIW R/W RIW R/W R/W RIW
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - GHASH[31:0] Galois Hash Value
The four 32-bit Hash Word registers GHASHcontain the GHASH value after GF128 multiplication in
GCM mode. Writing a new key to KEYWORD registers causes GHASH to be initialized with zeroes.
These registers can also be programmed.

800

@ MICROCHIP

36.8.13 Galois Hash x (GCM mode only)

Name: CIPLEN

Offset: 0x80

Reset: 0x00000000
Property: PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
| CIPLEN[31:24] |
Access R/W R/W R/W R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| CIPLEN[23:16] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
CIPLEN[15:8]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
CIPLEN[7:0]
Access R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - CIPLEN[31:0] Cipher Length
This register contains the length in bytes of the Cipher text that is to be processed. This is
programmed by the user in GCM mode for Tag generation.

801

@ MICROCHIP

36.8.14 Random Seed

Name: RANDSEED

Offset: 0x84

Reset: 0x00000000
Property: PAC Write-Protection

Bit 31 30 29 28 27 26 25 24
| RANDSEED[31:24]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| RANDSEED[23:16]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
RANDSEED[15:8]
Access R/W R/W RIW R/W RIW R/W RIW RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
RANDSEED[7:0]
Access R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:0 - RANDSEED[31:0] Random Seed

A write to this register corresponds to loading a new seed into the Random

@ MICROCHIP

number generator.

802

37. Public Key Cryptography Controller (PUKCC)

37.1 Overview

The Public Key Cryptography Controller (PUKCC) processes public key cryptography algorithm
calculus in both GF(p) and GF(2n) fields.

The Public Key Cryptography Library (PUKCL) is stored in ROM inside the device. The library can be
used in applications to access features of PUKCC, and includes the complete implementation of the
following public key cryptography algorithms:

* RSA (Rivest-Shamir-Adleman public key cryptosystem), DSA (Digital Signature Algorithm):
Modular Exponentiation with CRT up to 7168 bits

Modular Exponentiation without CRT up to 5376 bits

Prime generation

Utilities: GCD/modular Inverse, Divide, Modular reduction, Multiply, ...

+ Elliptic Curves:
- ECDSA GF(p) up to 521 bits for common curves (up to 1120 bits for future use)

- ECDSA GF(2n) up to 571 bits for common curves (up to 1440 bits for future use)

- Choice of the curve parameters for compatibility with NIST Curves or other curves in
Weierstrass equation

- Point Multiply
- Point Add/Doubling

- Other high level elliptic curve algorithms (ECDH, ...) can be implemented by user using library
functions

+ Deterministic Random Number Generation (DRNG ANSI X9.31) for DSA

37.2 Product Dependencies

37.2.1 1/0 Lines
Not applicable.

37.2.2 Power Management
The PUKCC will continue to operate in any sleep mode, as long as its source clock is running.

37.2.3 Clocks
The bus clock (PB2_CLK) can be enabled and disabled by the CRU.

37.2.4 DMA
Not applicable.

37.2.5 Interrupts
Not applicable.

37.2.6 Events
Not applicable.

803

@ MICROCHIP

37.3 Functional Description

37.3.1 Public Key Cryptography Library (PUKCL) Application Programming Interface (API)

The Public Key Cryptography Controller (PUKCC) is a peripheral that can be used to accelerate public
key cryptography, and processes public key cryptography algorithm calculus in both Prime field
(GF(p)) and Binary field (GF(2M)). Different functionalities of the PUKCC are accessed with the help of
the Public Key Cryptography Library (PUKCL), which is embedded into a dedicated ROM inside the
microcontroller.

The PUKCL provides access to many algorithms and functions. The features provided, start from
basic addition or comparison, up to the RSA or ECDSA complete computation. The library can be
utilized by including the PUKCL Driver in the application and passing parameters through a common
Application Programming Interface (API). The PUKCC Driver is available in Harmony 3. This library
can be used in conjunction with a SSL software stack to improve performance and helps to reduce
the RAM usage and time taken to perform different cryptographic functions.

37.3.2 PUKCL Features
PUKCL features include:
+ 37.3.4. Basic Arithmetic and Cryptographic Services - PUKCL self-test, GCD, integral division, etc.

+ 37.3.5. Modular Arithmetic Services - Modular reduction, modular exponentiation, probable
prime generation and modular exponentiation

+ 37.3.6. Elliptic Curves Over GF(p) Services - Point addition and doubling on an elliptic curve in a
prime field, ECDSA signature generation and verification on an elliptic curve over GF(p)

« 37.3.7. Elliptic Curves Over GF(2n) Services - Point addition and doubling on an elliptic curve in a
prime field, ECDSA signature generation and verification on an elliptic curve over GF(2")

37.3.3 PUKCL Usage
The following sections provide details on accessing the PUKCL and its features.

37.3.3.1 Initializing the PUKCC and PUKCL
For a project created with Harmony 3, the clock initialization is handled by the initialization function
CLK _Initialize(). After a power-on reset, and when the PUKCC Clock is enabled, a Crypto RAM clear
process is launched. It is mandatory to wait until the end of this process before using the Crypto
Library.

The following code shows how to wait for the Crypto RAM clear process.
while ((PUKCCSR & BIT_ PUKCCSR CLRRAM BUSY) != 0);

The next task to be done is self-test. From the generated project in Harmony 3, copy the example for
the PUKCC Driver SelfTest and add it to the main source file. This is a mandatory step before using
the library. The return values from the SelfTest service must be compared against known values
mentioned in the service description (see the Description section in 37.3.4.1. SelfTest).

Example 37-1. PUKCC Initialization

void PUKCC_self test (void)
{
// Clear contents of PUKCLParam
memset (§PUKCLParam, 0, sizeof (PUKCL_ PARAM)) ;

pvPUKCLParam = &PUKCLParam;
VPUKCL Process (SelfTest, pvPUKCLParam);

// In case of error, loop here
while (PUKCL (u2Status) != PUKCL_OK) {

804

@ MICROCHIP

}
while (pvPUKCLParam->P.PUKCL SelfTest.u4Version != PUKCL VERSION) {

’

}
while (pvPUKCLParam->P.PUKCL SelfTest.u4CheckNuml != O0x6E70DDD2) {

’

}
while (pvPUKCLParam->P.PUKCL SelfTest.u4CheckNum2 != 0x25C8D64F) {
}

}

int main (void)

{
/* Initializes MCU, drivers and middleware */
SYS Initialize();

// Wait for Crypto RAM clear process
while ((PUKCCSR & BIT PUKCCSR CLRRAM BUSY) != 0);

// Initialize PUKCC and perform self test
PUKCC self test():;

while (1)

{

}

Note: It may also be necessary to initialize the Random Number Generator (RNG) on the
microcontroller, as some services in the library use the peripheral. Before calling such services,

be sure to follow the directives given for random number generation on the selected microcontroller
(particularly initialization and seeding) and compulsorily start the RNG. For details refer to each
service.

37.3.3.2 Accessing Different Library Services

All cryptographic services in the library are accessed by the macro vPUKCL_Process. All of these
services use the same process for receiving and returning parameters. PUKCL receives two
arguments: the requested service and a pointer to a structure called the parameter block. The
parameter block contains two structures, a common parameter structure for all commands and
specific parameter structure for each service. A specific service is accessed with vPUKCL_Process
by passing the service name as the first argument. For example, to perform SelfTest, use
vPUKCL_Process(SelfTest, pvPUKCLParam).

Example 37-2. PUKCL Parameter Block

typedef struct PUKCL param {
PUKCL_ HEADER PUKCL_Header;

@ MICROCHIP

union {

_PUKCL_CLEARFLAGS PUKCL ClearFlags;
__PUKCL_COMP PUKCL_Comp;

_ PUKCL_CONDCOPY PUKCL CondCopy;
_PUKCL_CRT PUKCL_CRT;
_PUKCL_DIV PUKCL Div;

~PUKCL_EXPMOD
_PUKCL_FASTCOPY
“PUKCL_FILL
~PUKCL_FMULT
_PUKCL_GCD
~PUKCL_PRIMEGEN
~PUKCL_REDMOD
_PUKCL_RNG
_PUKCL_SELFTEST
~PUKCL_SMULT
_PUKCL_SQUARE
“PUKCL_SWAP

// ECC

_ PUKCL_ZPECCADD
~PUKCL_ZPECCDBL
~PUKCL_ZPECCADDSUB
~PUKCL_ZPECCMUL

_ PUKCL_ZPECDSAGENERATE

PUKCL_ExpMod;
PUKCL_FastCopy;
PUKCL_Fill;
PUKCL Fmult;
PUKCL_GCD;
PUKCL_ PrimeGen;
PUKCL_RedMod;
PUKCL_Rng;
PUKCL_ SelfTest;
PUKCL Smult;
PUKCL_Square;
PUKCL_Swap;

PUKCL_ZpEccAdd;

PUKCL ZpEccDbl;
PUKCL_ZpEccAddSub;
PUKCL_ZpEccMul;
PUKCL_ZpEcDsaGenerate;

805

PUKCL ZPECDSAVERIFY PUKCL ZpEcDsaVerify;

_PUKCL_ZPECDSAQUICKVERIFY PUKCL_ZpEcDsaQuickVerify;

_PUKCL_ZPECCQUICKDUALMUL PUKCL_ZpEccQuickDualMul;

_PUKCL_ZPECCONVPROJTOAFFINE PUKCL_ZpEcConvProjToAffine;

_PUKCL_ZPECCONVAFFINETOPROJECTIVE PUKCL_ZpEcConvAffineToProjective;

_PUKCL_ZPECRANDOMIZECOORDINATE PUKCL_ZpEcRandomiseCoordinate;

_PUKCL_ZPECPOINTISONCURVE PUKCL_ZpEcPointIsOnCurve;

// ECC

_PUKCL_GF2NECCADD PUKCL_GF2NEccAdd;
_PUKCL_GF2NECCDBL PUKCL_GF2NEccDbl;
_PUKCL_GF2NECCMUL PUKCL_GF2NEccMul;
_PUKCL_GF2NECDSAGENERATE PUKCL_GF2NEcDsaGenerate;

_PUKCL_GF2NECDSAVERIFY PUKCL_GF2NEcDsaVerify;

_PUKCL_GF2NECCONVPROJTOAFFINE PUKCL_GF2NEcConvProjToAffine;
_PUKCL_GF2NECCONVAFFINETOPROJECTIVE PUKCL_GF2NEcConvAffineToProjective;
_ PUKCL_GF2NECRANDOMIZECOORDINATE PUKCL_GF2NEcRandomiseCoordinate;
_PUKCL_GF2NECPOINTISONCURVE PUKCL_GF2NEcPointIsOnCurve;

1 p;

} PUKCL_PARAM,

37.3.3.2.1 PUKCL_HEADER Structure
The PUKCL_HEADER is common for all services of the library. This header includes standard fields
to indicate the requested service, sub-service, options, return status, and so on, as shown in the
following tables.

Different terms used in the below description to be understood, are as follows:

+ Parameter - Represents a variable used by the PUKCL. Every parameter belongs to either
PUKCL_HEADER or PUKCL Service Specific Header

+ Type - Indicates the data type. For details on data type, please refer to
CryptoLib typedef pb.h filein the library

+ Dir - Direction. Indicates whether PUKCL considers the variable as input or output. Input means
that the application passes data to the PUKCL using the variable. Output means that the PUKCL
uses the variable to pass data to the application.

+ Location - Suggests whether the parameter need to be stored in Crypto RAM or device SRAM.
The PUKCL driver has macros for placing parameters into Crypto RAM, so that the user does not
have to worry about the addresses

+ Data Length - If a parameter is a pointer variable, the Data Length column shows the size of the
data pointed by the pointer

Table 37-1. PUKCL_HEADER Structure

Data Length Before Executing the After Executing the Service
Service

ulService Required service Executed service
ulSubService ul | - - Required sub-service Executed sub-service
u20ption u2 I - - Required option Executed option
pecc UCLSTNUS w0 - - Seebellungate | sedeloloungene
u2Status u2 110 - - - Output Status
Reserved u2 - = = = =
Reserved ud - - - - -

The Specific field in the PUKCL_HEADER structure is another structure named PUKCL_STATUS. The
following table describes this structure. The details of the use of these bits are provided in the
individual service descriptions.

37.3.3.2.2 PUKCL_STATUS Structure
Members of the PUKCL_STATUS structure are shown in the following table.

806

@ MICROCHIP

Table 37-2. PUKCL_STATUS Structure

Data Length| Before Executing the Service | After Executing the Service

Carryln (see Note 1) bit Carryln
CarryOut bit 0] - - - CarryOut
1: Result is zero
Zero bit 0 - - -

0: Result is not zero

Mathematical field O: Integers
t - - (Zp) -
1: Field GF(2M)

Gf2n (see Note 1) bi

Violation bit 0 - - - Indicates a violation

Note:

1. Two of these fields must be filled in to avoid problems during computations. If the Gf2n
and Carryln fields are not reset or initialized properly, problems may be encountered during
computations. For instance, not initializing the Gf2n field may result in getting a correct
mathematical result, but computed over GF(2") instead of Zj,.

37.3.3.2.3 PUKCL Service Specific Header

Details about each service specific header are provided with service descriptions in a subsequent
section. Such structures may contain input or output parameters. A parameter is considered as an
input parameter when it used for passing information to the PUKCL, and it is considered as an
output parameter when the PUKCL uses it to pass a result back to the application code.

The following code provides the service specific header example for the SelfTest service.

typedef struct PUKCL selftest {
u4 u4dVersion;
u4 udPUKCCVersion;
u4 u4CheckNuml;
u4 ud4CheckNum2;
ul ulStep;
} _PUKCL SELFTEST;

After the SelfTest service is invoked (with vVPUKCL_Process(SelfTest, pvPUKCLParam)), the service
specific return values can be checked using pvPUKCLParam.

To check whether the version returned by the PUKCL is correct, the following code can be used.
while (pvPUKCLParam->P.PUKCL SelfTest.u4Version != PUKCL VERSION) ;
In a similar way, other returns can also be accessed.

37.3.3.3 Parameter Passing (Special Considerations)

Most of the PUKCL services work with memory area and accept pointers and lengths as parameters
to define input and output areas. Most of the time, the pointers and lengths are untouched by

the services, while the defined areas are read, filled, or overwritten. These memory areas are
defined with an initial pointer and a byte length. For most of the commands, the memory area
location must be in the PUKCC Cryptographic RAM. The Cryptographic RAM is the memory area for
parameter exchange with the PUKCL and is 4 Kbytes large. Sometimes memory areas can be located
in Embedded SRAM, which is detailed in the Location column of the parameters description tables.

When working with binary fields, polynomials in GF(2") need no transformation to be written in an
area:

+ Each bit represents a polynomial coefficient 0 or 1

+ The polynomials must be written Low Significant Byte First

+ Azero padding on the Most Significant Bytes may be added if the area is larger than the real size
of the polynomial

807

@ MICROCHIP

Important: The Cryptographic RAM is 4 Kbytes in size and is dedicated to PUKCC.
However, to ensure correct library operation, the two last 32-bit words must not
be used. Unless otherwise specified, these memory areas contain integers in
GF(p) or polynomials in GF(2") with the Less Significant Byte first.

Unless otherwise specified, the length must be a multiple of four and the pointers must be four
bytes aligned. This is because most of the services work with 32-bit words.

37.3.3.4 Aligned Significant Length

Parameters in memory areas can have any Significant Length in bytes. As the lengths in PUKCL
must be a multiple of four, a padding is processed on the Most Significant Side with zero to three
bytes cleared to zero. Now the parameter can be considered to meet the Aligned Significant Length
requirement for PUKCL.

37.3.3.5 Processing Field GF(p) and GF(2")

The library can process arithmetic functions over GF(p) (or Zp integers) and GF(2"), when applicable.
The choice of these processing fields is made using the following rules:

+ If a processing field is not applicable to the function, it is not mentioned and the Specific.GF2n bit
has no effect.

+ If the function can support both processing fields, the choice is mentioned and the Specific.GF2n
bit must be filled according to the choice.

+ If the function supports only one of the processing fields, the processing field is mentioned and
the Specific.GF2n bit has no effect.

37.3.3.6 Return Codes

Each call to one of the PUKCL services returns a status code indicating whether or not the execution
is correct, which can be decoded, as shown in the following figure.

Figure 37-1. Return Code Status Decoding

Returned Code (u25tatus field)
|

15| 14 312|110

Severity Indicator Reason code

The following table shows how the severity indicators must be decoded.

Table 37-3. Severity Indicators

0xC000 Severe Indicates a blocking error condition

0x8000 Warning Indicates a cautionary use of the return values
0x4000 Information Indicates the result is correct and gives information
0x0000 - No error or no severity given

The following table contains the exhaustive list of all reason codes.

808

@ MICROCHIP

Table 37-4. Return Codes

0x0000
0x4001

0x4002
0xC001

0xC002
0xC003
0xC004
0xC005
0xC006
0xC007
0xC008
0xC101

0xC102
0xC103
0xC104

Informative
Informative
Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe
Severe

Severe

PUKCL_OK
PUKCL_NUMBER_IS_NOT_PRIME
PUKCL_NUMBER_IS_PRIME
PUKCL_COMPUTATION_NOT_STARTED
PUKCL_UNKNOWN_SERVICE
PUKCL_UNEXPLOITABLE_OPTIONS
PUKCL_HARDWARE_ISSUE
PUKCL_WRONG_HARDWARE
PUKCL_LIBRARY_MALFORMED
PUKCL_ERROR
PUKCL_UNKNOWN_SUBSERVICE
PUKCL_DIVISION_BY_ZERO
PUKCL_MALFORMED_MODULUS
PUKCL_FAULT_DETECTED
PUKCL_MALFORMED_KEY

Please note the following rules about return codes:

+ A status value indicating a severe error, means that an expected operation has not been
executed or has been corrupted. Therefore, the result of such an operation must not be used.

+ A status value indicating a warning must be looked at precisely, as the expected correctness of
the result cannot be guaranteed.

+ A status value indicating an information always means that the result is correct with no possible
misinterpretation of the values.

+ A status value zero indicates that there is no error or no severity.

In the following sections, for each service, the constraints on the parameters placement are detailed.
For reduced code size and higher execution speed, tests are processed on these constraints. It is
important that PUKCL users take these placement constraints into consideration at the development
and test stages to ensure the correct functioning of the library.

37.3.4 Basic Arithmetic and Cryptographic Services

37.3.4.1 SelfTest
37.3.4.1.1 Purpose

This service is used to initialize the PUKCL. It resets the PUKCC, clears the Crypto RAM, and returns
the library and PUKCC version numbers.

It must be called before using any other services in the library and the user must verify the return
status at the end of the service execution.

37.3.4.1.2 How to Use the Service

37.3.4.1.3 Description

This service processes internal tests and returns information and status codes as described in
37.3.4.1.7. Status Returned Values. The service name for this operation is SelfTest.

37.3.4.1.4 Parameters Definition

It is possible to directly address this service through the PUKCL SelfTest () macro.

@ MICROCHIP

809

Table 37-5. SelfTest Service Parameters

Data Length | Before Executing the Service | After Executing the Service

u4Version PUKCL version
u4PUKCCVersion u4 - PUKCC Version
u4CheckNum1 u4 - Test result value 1
u4CheckNum?2 u4
ulStep ul

(0]
]
(0] - Test result value 2
(0]

- Latest correctly executed step

37.3.4.1.5 Code Example

PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

// VPUKCL Process () is a macro command, which populates the service name
// and then calls the library
VPUKCL_Process (SelfTest, pvPUKCLParam) ;

if (PUKCL(u2Status) == PUKCL OK)
{
// The Library version is available
// in PUKCL_SelfTest (u4Version)
// The PUKCL version is available
// in PUKCL SelfTest (u4PUKCCVersion)
}

37.3.4.1.6 Returned Values
The expected u4Version value depends on the version of PUKCL being used, and the
u4PUKCCVersion value depends on the version of PUKCC being used.

The expected u4CheckNum1 value is 0x6e70ddd2 and the expected one for u4CheckNum2 is
0x25c8d64f. The expected final u1Step value is 3.

37.3.4.1.7 Status Returned Values

Table 37-6. SelfTest Service Return Codes

PUKCL_OK - Service functioned correctly.
PUKCL_ERROR Severe An issue has been encountered.

37.3.4.2 Clear Flags

37.3.4.2.1 Purpose
This service can be used to clear parameter structure flags.

37.3.4.2.2 How to Use the Service

37.3.4.2.3 Description
This service clears CarryOut, Carryln, Zero and Violation flags in the Specific bit field. The Gf2n flag is
untouched.

The service name for this operation is ClearFlags.

37.3.4.2.4 Parameters Definition
It is possible to directly address this service through the PUKCL ClearFlags () macro.

Table 37-7. Clear Flags Service Parameters

Data Length | Before Executing the Service | After Executing the Service

Specific/CarryOut Bit 0 Cleared
Specific/Carryln Bit (0] - - - Cleared
Specific/Zero Bit O - - - Cleared

@ MICROCHIP

810

........... continued

Parameter Type| Direction| Location| Data Length | Before Executing the Service | After Executing the Service
yp 3 g g

Specific/Violation Bit Cleared

37.3.4.2.5 Code Example

PUKCL_ PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;
// VPUKCL Process () is a macro command, which populates the service name
// and then calls the library...
VPUKCL_Process (ClearFlags, pvPUKCLParam) ;
if (PUKCL (u2Status) == PUKCL_OK)
{

// Success

}

else // Manage the error

37.3.4.2.6 Status Returned Values

Table 37-8. ClearFlags Service Return Codes

PUKCL_OK - Service functioned correctly.

37.3.4.3 Swap

37.3.4.3.1 Purpose
This service performs swapping of two buffers.

37.3.4.3.2 How to Use the Service

37.3.4.3.3 Description
This service swaps two buffers, X and Y, of the same size in memory.

The service name for this operation is swap.

37.3.4.3.4 Parameters Definition
This service can easily be accessed through the use of the PUKCL Swap () macro.

Table 37-9. Swap Service Parameters

Data Length | Before Executing the Service | After Executing the Service

nuiXBase nul I Crypto RAM u2Length Base of the number X Base of X filled with Y

nulYBase nul | Crypto RAM u2length Base of the number Y Base of Y filled with X

u2XLength u2 I - - Length of Xand Y Length of Xand Y
37.3.4.3.5 Code Example

_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// Initialize parameters

PUKCL Swap (nulXBase) = <Base of the X number>;

PUKCL_Swap (nulYBase) = <Base of the Y number>;

PUKCL_ Swap (u2XLength) = <Length of the numbers>;

// VPUKCL_ Process() is a macro command, which populates the service name

// and then calls the library...
vPUKCL Process (Swap, pvPUKCLParam) ;
if (PUKCL(u2Status) == PUKCL_ OK)

{

else // Manage the error

@ MICROCHIP

811

37.3.4.3.6 Constraints
The following conditions must be avoided to ensure that the service works correctly:

* nul1XBase or nulYBase are not aligned on 32-bit boundaries

+ u2XLength is either <4, > 0xffc, or not a 32-bit length

+ {nu1XBase, u2XLength} or {nu1YBase, u2XLength} do not entirely lie in PUKCCRAM
+ {nu1XBase, u2XLength} overlaps {nu1YBase,u2YLength}

37.3.4.3.7 Status Returned Values

Table 37-10. Swap Service Return Codes

PUKCL_OK - Service functioned correctly

37.3.4.4Fill

37.3.4.4.1 Purpose
This service performs a memory fill operation, with a given 32-bit constant.

37.3.4.4.2 How to Use the Service

37.3.4.4.3 Description
This service fills a Crypto RAM space with a provided 32-bit constant: Fill (R, FillValue)

The service name for this operationis Fill.

37.3.4.4.4 Parameters Definition
This service can easily be accessed through the use of the PUKCL Fill () macro.

Table 37-11. Fill Service Parameters

Data Length Before Executing the After Executing the Service
Service

nu1RBase nu1l I Crypto RAM u2RLength Base of R Base of R value filled repetitively with
u4rFillvalue

u2RLength u2 I Crypto RAM - Length of R Length of R

u4FillValue u4 | - - Filling value Filling value

37.3.4.4.5 Code Example

PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

// Initialize parameters

PUKCL Fill (nulRBase) = <Base of the R number>;
PUKCL_Fill (u2RLength) = <Length of the R number>;

PUKCL Fill (u4FillValue) = <32-bits value to fill with>;

// VPUKCL Process () is a macro command, which populates the service name
// and then calls the library...

VPUKCL Process (Fill, pvPUKCLParam) ;
if (PUKCL(u2Status) == PUKCL OK)

i“

else // Manage the error

37.3.4.4.6 Constraints
The following conditions must be avoided to ensure that the service works correctly:

+ nulRBase are not aligned on 32-bit boundaries
* U2RLength is either: <4, >0xffc or not a 32-bit length

812

@ MICROCHIP

+ {nu1RBase, u2RLength} do not entirely lie in Crypto RAM
37.3.4.4.7 Status Returned Values

Table 37-12. Fill Service Return Codes

PUKCL_OK - Service functioned correctly.

37.3.4.5 Fast Copy/Clear

37.3.4.5.1 Purpose
This service performs a copy from a memory area to another or a memory area clear.

37.3.4.5.2 How to Use the Service

37.3.4.5.3 Description

This service copies a number X into another number R, padding with zero on the MSB side up to the
length specified for R.

R=X
If the lengths of R and X are equal, a complete fast copy is processed.

If the length of R is strictly greater than the length of X, X is first copied in the Low Significant Bytes
side of R, and R is padded with zeros on the Most Significant Bytes side.

If the pointer on the X area equals zero, R is filled with zeros. This operation can also be made by
using the Fill service (see 37.3.4.4. Fill).

The service name for this operation is FastCopy:.

Important: The length of R must be greater or equal to the length of X.

37.3.4.5.4 Parameters Definition
This service can easily be accessed through the use of the PUKCL FastCopy () macro.

Table 37-13. FastCopy Service Parameters

Data Length | Before Executing the Service After Executing the Service

nulXBase nu1l | Crypto RAM u2XLength Base of X Base of X number untouched
nuiRBase nul I Crypto RAM u2RLength Base of R Base of R filled with X
u2RLength u2 | - - Length of R Length of R
u2XLength u2 | - - Length of X Length of X

37.3.4.5.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_ PARAM pvPUKCLParam = &PUKCLParam;

// Initialize parameters

PUKCL FastCopy (nulXBase) <Base of the X number>;
PUKCL FastCopy (nulRBase) <Base of the R number>;
PUKCL FastCopy (u2XLength) = <Length of the X number>;
PUKCL FastCopy (u2RLength) = <Length of the R number>;

// VPUKCL Process() is a macro command, which populates the service name
// and then calls the library...
VPUKCL Process (FastCopy, pvPUKCLParam) ;
if (PUKCL(u2Status) == PUKCL OK)
{

813

@ MICROCHIP

}

else // Manage the error

37.3.4.5.6 Constraints
The parameter placements that are not allowed are are as follows.

If nu1XBase equals zero, no checks are made on nu1XBase (fixed) and u2XLength (unused).
The following conditions must be avoided to ensure that the service works correctly:

* nul1XBase or nu1RBase are not aligned on 32-bit boundaries

+ u2XLength or u2RLength is either: <4, >0xffc or not a 32-bit length or u2XLength >u2RLength
+ {nu1XBase, u2XLength} or {nu1RBase, u2RLength} do not entirely lie in Crypto RAM

+ {nu1XBase, u2XLength} overlaps {nu1RBase,u2RLength}

37.3.4.5.7 Status Returned Values

Table 37-14. FastCopy Service Return Codes

PUKCL_OK - Service functioned correctly

37.3.4.6 Conditional Copy/Clear

37.3.4.6.1 Purpose
This service conditionally performs a copy from a memory area to another or a memory area clear.

37.3.4.6.2 How to Use the Service

37.3.4.6.3 Description

This service copies a number X into another number R, padding with zero on the MSB side up to
the length specified for R. This copy operation is performed under the conditions specified in the
options.

If the condition is verified, R = X.
The copy or clear action is made under condition.

The four possible options for the condition are described in the following table. Two of the
conditions check the Specific.Carryln bit.

The processing is done as follows:

+ If the condition is not verified, nothing is processed.
+ If the condition is verified the copy or clear follows the rules:
- Ifthe lengths of R and X are equal, a complete fast copy is processed

- If the length of R is strictly greater than the length of X, X is first copied in the Low Significant
Bytes side of R, and R is padded with zeros on the Most Significant Bytes side.

- If the pointer on the X area equals zero, R is filled with zeros.

The service name for this operation is CondCopy.

Important: If the condition is verified, the length of R must be greater or equal to
the length of X.

37.3.4.6.4 Parameters Definition

This service can easily be accessed through the use of the PUKCL CondCopy () and PUKCL ()
macros.

@ MICROCHIP

814

Table 37-15. CondCopy Service Parameters

Data Length Before Executing the After Executing the Service
Service

u20ptions Option for condition (see Option for condition (see the
the following table) following table)

Specific/Carryln Bit | = = Bit Carryln Bit Carryln

nu1XBase nul I Crypto RAM u2XLength Base of X Base of X number untouched

nu1RBase nu1 I Crypto RAM u2RLength Base of R Base of R filled with X if condition

holds
u2RLength u2 | - - Length of R Length of R
u2XLength u2 | - - Length of X Length of X

37.3.4.6.5 Available Options

The option for the condition is set by the u20ptions input parameter that must take one of the
values listed in the following table.

Table 37-16. CondCopy Service Options

PUKCL_CONDCOPY_ALWAYS Always perform the copy nu1XBase,u2XLength,nu1RBase, u2RLength
PUKCL_CONDCOPY_NEVER Never perform the copy None
PUKCL_CONDCOPY_IF_CARRY Perform the copy if Carrylnis 1 Specific/Carryln nu1XBase,u2XLength,nu1RBase,
u2RLength
PUKCL_CONDCOPY_IF_NOT_CARRY Perform the copy if Carryln is zero Specific/Carryln nu1XBase,u2XLength,nu1RBase,
u2RLength
37.3.4.6.6 Code Example

PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

// CarryIn shall be beforehand filled (with zero or one) PUKCL (Specific).CarryIn = ...;
// Condition Option PUKCL (u20ptions) = ...;

// Initialize parameters
PUKCL_CondCopy (nulXBase)
PUKCL CondCopy (nulRBase)
PUKCL CondCopy (u2XLength)
PUKCL_CondCopy (u2RLength)

<Base of the X number>;
<Base of the R number>;
<Length of the X number>;
<Length of the R number>;

// VPUKCL Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL Process (CondCopy, pvPUKCLParam) ;
if (PUKCL (u2Status) == PUKCL OK)
{
}

else // Manage the error

37.3.4.6.7 Constraints
The parameters placement that are not allowed are listed below.

If the conditional option and the Carryln do not lead to execute the copy, no checks are made on the
constraints to be respected.

If nu1XBase equals zero, no checks are made on nu1XBase (fixed) and u2XLength (unused).
The following conditions must be avoided to ensure that the service works correctly:

* nul1XBase or nu1RBase are not aligned on 32-bit boundaries
« u2XLength or u2RLength is either: <4, >0xffc or not a 32-bit length or u2XLength >u2RLength
+ {nu1XBase, u2XLength} or {nu1RBase, u2RLength} do not entirely lie in Crypto RAM

815

@ MICROCHIP

+ {nu1XBase, u2XLength} overlaps {nu1RBase,u2RLength}
37.3.4.6.8 Status Returned Values

Table 37-17. CondCopy Service Return Codes

PUKCL_WRONG_SERVICE Severe An inconsistency has been detected between the called service and the provided
service number.

PUKCL_OK - Service functioned correctly

37.3.4.7 Small Multiply, Add, Subtract, Exclusive OR
Related Links
37.3.4.5. Fast Copy/Clear
37.3.5.1. Modular Reduction

37.3.4.7.1 Purpose

This purpose of this service is to multiply a large number X by a single-word number, MulValue, and
perform an optional accumulation/subtract with a large number Z, returning the result R.

The following options are available:

« Work in the GF(2") or in the standard GF(p) arithmetic integer field

+ Add of a supplemental CarryOperand

+ Overlap of the operands is possible, taking into account some constraints

« Modulo-reduction of the computation result (see Modular Reduction from Related Links)

In addition to a multiply, possible uses of this service can include:

+ Copy a block of data from one place to another (if u4MulValue is 1). This operation can
alternatively be made by using the Fast Copy service (see Fast Copy/Clear from Related Links)

+ Adding/Subtracting two numbers (if u4MulValue is1)
« Xoring two blocks of data (if u4MulValue is 1 and the selected mathematical field is GF(2"))
37.3.4.7.2 How to Use the Service

37.3.4.7.3 Description
This service processes the following operation (if not computing a modular reduction of the result):

R =[Z] £ (MulValue x X + CarryOperand)

Or (if computing a modular reduction of the result):
R =([Z] £ (MulValue x X + CarryOperand))mod N

The service name for this operation is smult.

The result of the Small Multiply Operation is stored on u2RLength bytes, so the choice of this length
compared to u2XLength may lead to:

« Atruncation if the result is too big to be stored on u2RLengthbytes.

+ A padding on the MSB side if the result does not take all the u2RLengthbytes.
However, in all cases this rule must be followed:

Important: The length of R must be greater than or equal to the length of X.

In these computations, the following parameters need to be provided:

@ MICROCHIP

816

+ R theresult (pointed by{nu1RBase,u2Rlength})

« Xoneinput number or GF(2") polynomial (pointed by{nu1XBase,u2XLength})

+ Zone optional input number or GF(2") polynomial (pointed by{nu1ZBase,u2Rlength}).

+ MulValue one input number or GF(2")polynomial on one word (provided in u4MulValue)
+ CarryOperand (provided through the CarryOptions and Carry values).

Important: Even if neither accumulation nor subtraction is specified, the
nu1ZBase must always be filled and point to a Crypto RAM space. It this case,
nu1ZBase can point to the same space as the nu1RBase.

If using the modular reduction option, the Multiply operation is followed by a reduction (see Modular
Reduction from Related Links) and the following parameters must be additionally provided:

* N—the modulus (pointed by {nu1ModBase,u2Modlength +4})
+ Cns—the reduction constant
- In case of Big reduction, Cns is pointed by {nu1CnsBase,64bytes}.
- In case of Fast or Normalized reduction, Cns is pointed by {nu1CnsBase,u2ModLength +8}

Important:

The result buffer R must first be padded with zero bytes until its length is
sufficient to perform the reduction (2*u2ModLength + 8) to be used by the
Modular Reduction service as an input parameter.

The result of the reduction is written in the area X pointed by {nu1XBase,
u2ModLength + 4}.

« For example, if relevant u2ModLength is 0x80 bytes and u2XLength is 0x80 too, the length of the
Rspace may be 2*(u2ModLength + 4) = 0x108 bytes.
In case of fast or normalized reduction, the length of the result may be u2ModLength + 4 so 0x84
bytes. Therefore, the zone X may lengths 0x84 bytes (at least). The multiplication of X by 1 word
provide a result in the zone R which MSB bytes will be padded with zero bytes.

In that example, the length of the zone R will be 2*u2ModLength + 8 = 0x108 bytes.
37.3.4.7.4 Parameters Definition

Table 37-18. Smult Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service

u20ptions Options (see below) Options (see below)

Specific/Gf2n Bits | — — GF(2") Bit and Carry In —
Carryln
Specific/CarryOut = Bits — — — Carry Out, Zero Bit
Zero Violation and Violation Bit filled
according to the result

nulModBase nul I Crypto RAM u2ModLength + 4 Base of N Base of N untouched
nul1CnsBase nul | Crypto RAM u2ModLength + 8 Base of Cns Base of Cns untouched
u2ModLength u2 | — — Length of N Length of N

nu1XBase nut I Crypto RAM u2XLength or Base of X Base of X@

u2ModLength + 4™
u2XLength u2 — — Length of X Length of X

817

@ MICROCHIP

........... continued

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service

nu1ZBase nu Crypto RAM u2RLength Base of Z Base of Z untouched
nu1RBase nul | Crypto RAM u2RLength Base of R Base of R (see Note 3)
u2RLength u2 | — — Length of R Length of R
u4MulValue u4 | — — Value of MulValue Value of MulValue
untouched
Notes:
1. If areduction option is specified, the area X will be, if necessary, extended to u2ModLength + 4
bytes.

2. If Smult is without reduction, X is untouched. If Smult is with reduction, X is filled with the final
result.

3. If Smult is without reduction, R is filled with the final result. If Smult is with reduction, R is
corrupted.

37.3.4.7.5 Available Options
The options are set by the u2Options input parameter, which is composed of:

+ The mandatory Small Multiplication operation option described in the following table.

+ The mandatory CarryOperand option described in Smult Service (with Accumulate/Subtract
From) Carry Settings and Smult Service Carry Settings tables.

+ The facultative Modular Reduction option (see Modular Reduction). If the Modular Reduction is
not requested, this option is absent.

The u20ptions number is calculated by an “Inclusive OR” of the options. Some examples in C
language are:

* Operation: Small Multiply only without carry and without Modular Reduction
PUKCL (u20ptions) = SET MULTIPLIEROPTION (PUKCL SMULT ONLY) |
SET_CARRYOPTION (CARRY NONE) ;

« Operation: Small Multiply with addition with Specific/Carryln addition and with Fast Modular
Reduction
PUKCL (u20ptions) =SET MULTIPLIEROPTION (PUKCL_ SMULT ADD) |
SET CARRYOPTION (ADD CARRY) | PUKCL REDMOD REDUCTION |
PUKCL_REDMOD USING FASTRED;

The following table lists all of the necessary parameters for the Small Multiply option. When the
Addition or Subtraction option is not chosen, it is not necessary to fill in the nu1ZBase parameter.

Table 37-19. Smult Service Operation Options

SET_MULTIPLIEROPTION(PUKCL_SMULT_ ONLY) Perform R = MulValue*X + nu1RBase, u2RLength, nu1XBase,
CarryOperand u2XLength, u4MulValue
SET_MULTIPLIEROPTION(PUKCL_SMULT_ADD) Perform R =Z + MulValue*X + nu1RBase, u2RLength, nu1ZBase,
CarryOperand nul1XBase, u2XLength,u4MulValue
SET_MULTIPLIEROPTION(PUKCL_SMULT_SUB) Perform R =Z - (MulValue*X + nu1RBase, u2RLength, nu1ZBase,
CarryOperand) nul1XBase, u2XLength,u4MulValue
37.3.4.7.6 Code Example

PUKCL_ PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

// Gf2n and CarryIn shall be beforehand filled (with zero or one)
PUKCL (Specific) .Gf2n = ...;

818

@ MICROCHIP

PUKCL (Specific) .CarryIn = ...; PUKCL(u20ptions) =...;

// Depending on the option specified, all fields must not be filled

PUKCL Smult (nulXBase) = <Base of the X number>;

PUKCL Smult (u2XLength) = <Length of the X number>;

PUKCL_Smult (nulRBase) = <Base of the R number>;

PUKCL Smult (u2RLength) = <Length of the R number>;

PUKCL Smult (nulZBase) = <Base of the Z number>;

PUKCL_Smult (u4MulValue) = <Value to be multiplied with>;

// VPUKCL Process() is a macro command, which populates the service name

// and then calls the library...
vPUKCL Process (Smult, pvPUKCLParam) ;
if (PUKCL (u2Status) == PUKCL_OK)

{

// The Small multiplication has been executed correctly

i“

else // Manage the error

Note:

The length of R must be greater or equal to the length of X. Additional options are available through
the use of a modular reduction to be executed at the end of this operation. Some important
considerations have to be taken into account concerning the length of resulting operands to get a
mathematically correct result.

The output of this operation is not obviously compatible with the modular reduction, as it may be
either smaller or bigger. In the case (most of the time) where the result (pointed by nu1RBase)

is smaller in size than twice the modulus plus one word, it is mandatory to add padding bytes

to zero. Otherwise, the reduced value will be taken considering the high order words (potentially
uninitialized) as part of the number, thus resulting in a mathematically correct but unexpected
result.

In the case that the result is bigger than twice the modulus plus one word, the modular reduction
feature has to be executed as a separate operation, using an Euclidean division.

37.3.4.7.7 Constraints

For the case of a small multiplication with an option indicating either subtraction or accumulation,
the following conditions must be avoided to ensure the service works correctly:

* nulXBase, nu1RBase or nu1ZBase are not aligned on 32-bit boundaries

+ {nu1XBase, u2XLength}, {nu1ZLength, u2RLength} or {nu1RBase, u2RLength} do not entirely lie in
Crypto RAM

+ u2XLength or u2RLength is either: < 4, > Oxffc or not a 32-bit length or u2XLength >u2RLength

+ {nu1RBase, u2RLength} overlaps {nu1XBase, u2XLength} or nu1R < nu1Z and
{nu1RBase,u2RLength} overlaps {nu1ZBase, u2RLength}

If the nu1R value is greater or equals to the nu1Z one, the overlapping between R and Z is allowed.

If a modular reduction is specified, the relevant parameters must be defined according to the
chosen reduction and follow the description in Modular Reduction. Additional constraints to be
respected and error codes are described in this section and in Smult Service Return Codes.

Multiplication with Accumulation or Subtraction
When the options bits specify that either an Accumulation or a Subtraction must be performed, this
service performs the following operation:

R=(Z+ (MU/VG/UE x X + CarryOperand))mod BRLength

Table 37-20. Smult Service (with Accumulate/Subtract From) Carry Settings

Carry Options CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_CARRY) Carryln R =7Z + (MulValue*X + CarryIn)
SET_CARRYOPTION(SUB_CARRY) - Carryln R =Z + (MulValue*X - Carryln)

819

@ MICROCHIP

........... continued

Carry Options CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_1_PLUS_CARRY) 1+ Carryin R =7+ (MulValue*X + 1 + Carryln)
SET_CARRYOPTION(ADD_1_MINUS_CARRY) 1-Carryln R=Z + (MulValue*X + 1 - Carryln)
SET_CARRYOPTION(CARRY_NONE) 0 R =Z + (MulValue*X)
SET_CARRYOPTION(ADD_1) 1 R=7Z £ (MulValue*X + 1)
SET_CARRYOPTION(SUB_1) -1 R=Z+ (MulValue*X - 1)
SET_CARRYOPTION(ADD_2) 2 R =Z + (MulValue*X + 2)

Multiplication without Accumulation or Subtraction

When the case the options bits specify that neither an Accumulation nor a Subtraction must be
performed, this service performs the following operation:

R = (MulValue x X + CarryOperand)mod BRLensth

Table 37-21. Smult Service Carry Settings

Carry Options CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_CARRY) Carryln R = MulValue*X + Carryin
SET_CARRYOPTION(SUB_CARRY) - Carryln R = MulValue*X - Carryin
SET_CARRYOPTION(ADD_1_PLUS_CARRY) 1+ Carryin R =MulValue*X + 1 + Carryln
SET_CARRYOPTION(ADD_1_MINUS_CARRY) 1-Carryln R = MulValue*X + 1 - Carryln
SET_CARRYOPTION(CARRY_NONE) 0 R = MulValue*X
SET_CARRYOPTION(ADD_1) 1 R = MulValue*X + 1
SET_CARRYOPTION(SUB_1) -1 R = MulValue*X - 1
SET_CARRYOPTION(ADD_2) 2 R = MulValue*X + 2

37.3.4.7.8 Status Returned Values

Table 37-22. Smult Service Return Codes

PUKCL_OK — Service functioned correctly

37.3.4.8 Compare

37.3.4.8.1 Purpose
The purpose of this service is to compare two numbers in classical arithmetic GF(p).

Important: This service works only with integers.

37.3.4.8.2 How to Use the Service

37.3.4.8.3 Description

This service accepts two numbers in classical arithmetic in input and performs a comparison,
virtually subtracting (X + Carryln) from Y:

CompareGetFlags (Y - (X + Carryln))

The numbers X and Y are untouched but the resulting flags CarryOut and the Zero Bit are filled. If
the lengths of Y and X are equal, a comparison is processed.

If the length of Y is strictly greater than the length of X, X is first virtually padded with zeros on the
Most Significant Bytes side, then a comparison is processed.

@ MICROCHIP

820

Note: The length of Y must be greater or equal to the length of X.
In this computation, the following data need to be provided:

+ X (pointed by{nu1XBase,u2XLength})
* Y (pointed by{nu1YBase,u2YLength})

The service name for this operation is Comp.

37.3.4.8.4 Parameters Definition

Table 37-23. Comp Service Parameters

Data Length| Before Executing the After Executing the Service
Service

Specific/Gf2n Bits GF(2n) Bit and Carry In -

Carryln

Specific/CarryOut Bits | - - - Carry Out, Zero Bit and

Zero Violation Violation Bit filled according to
the result

nulXBase nul | Crypto RAM u2XLength Base of X Base of X

u2XLength u2 | - - Length of X Length of X

nulYBase nul | Crypto RAM u2YLength Base of Y Base of Y

u2YLength u2 | - - Length of Y Length of Y

37.3.4.8.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_ PARAM pvPUKCLParam = &PUKCLParam;

// CarryIn shall be beforehand filled (with zero or one) PUKCL(Specific).CarryIn = ...;

// Initializing parameters

PUKCL_Comp (nulXBase) = <Base of the ram location of X>;
PUKCL Comp (u2XLength) = <Length of X>;
PUKCL Comp (nulYBase) = <Base of the ram location of Y>;
PUKCL Comp (u2YLength) = <Length of Y>;
// vPUKCL Process() is a macro command,

// and then calls the library...
vPUKCL Process (Comp, pvPUKCLParam) ;
if (PUKCL (u2Status) == PUKCL_ OK)

// The COMPARE has been executed correctly
// CarryOut, Zero ... are available

PUKCL (Specific) .CarryOut;

PUKCL (Specific) .Zero;

}

else // Manage the error
37.3.4.8.6 Constraints
The following conditions must be avoided to ensure that the service works correctly:

* nuilXBase or nu1YBase are not aligned on 32-bit boundaries
« {nu1XBase, u2XLength} or {nu1YLength, u2YLength} are not in Crypto RAM
+ u2XLength or u2YLength is either: < 4, > Oxffc or not a 32-bit length or u2XLength >u2YLength

37.3.4.8.7 Status Returned Values

Table 37-24. Comp Service Return Codes

PUKCL_OK - Service functioned correctly

@ MICROCHIP

821

37.3.4.9 Full Multiply
Related Links
37.3.5.1. Modular Reduction

37.3.4.9.1 Purpose

The purpose of this service is to multiply two large numbers, X and Y, and optionally accumulate/
subtract from a third large number, Z, returning the result, R.

The available options are as follows:

* Work in the GF(2") field or in the standard arithmetic field

+ Add of a supplemental CarryOperand

+ Overlap of the operands is possible, taking into account some constraints

« Modular Reduction of the computation result (see Modular Reduction from Related Links)
37.3.4.9.2 How to Use the Service

37.3.4.9.3 Description
This service provides the following (if not computing a modular reduction of the result):

R=1[Z] £ (X x Y+ CarryOperand)

Or (if computing a modular reduction of the result):

R=([Z] £ (X x Y+ CarryOperand))mod N

The service name for this operation is Fmult.

In these computations, the following data has to be provided:

+ Rtheresult (pointed by {nu1RBase,u2Xlength +u2YLength})

+ Xoneinput number or GF(2") polynomial (pointed by{nu1XBase,u2XLength})
* Y oneinput number or GF(2") polynomial (pointed by{nu1YBase,u2YLength})

* Zone optional input number or GF(2n) polynomial (pointed by {nu1ZBase,u2Xlength
+u2YLength})

+ CarryOperand (provided through the Carry Options and Carry values)

Important: Even if neither accumulation nor subtraction is specified, the
nu1ZBase must always be filled and point to a Crypto RAM space. It this case,
nu1ZBase can point to the same space as the nu1RBase.

If using the big modular reduction option, the Multiply operation is followed by a reduction (see
Modular Reduction from Related Links). In this case, the length of Cns is 64 bytes.

If using the modular reduction option, the Multiply operation is followed by a reduction (see Modular
Reduction from Related Links). In this case the following parameters must be additionally provided:

+ N—the modulus (pointed by {nu1ModBase,u2Modlength +4})
* Cns—the reduction constant
- In case of Big reduction, Cns is pointed by {nu1CnsBase,64bytes}.

- In case of Fast or Normalized reduction, Cns is pointed by (pointed by
{nu1CnsBase,u2ModLength+ 8})

822

@ MICROCHIP

Note:
The result buffer R must first be padded with zero bytes until its length is sufficient to perform the
reduction (2*u2ModLength + 8) to be used by the Modular Reduction service as an input parameter.

The result of the reduction is written in the area X pointed by {nu1XBase, u2ModLength + 4}

For example, if uZModLength, u2XLength and u2YLength are 0x80 bytes, the length of the R space is
2*(u2ModLength + 4) = 0x108 bytes because of the constraints of modular reduction.

In case of Fast or Normalized Reduction, the length of the result is u2ZModLength + 4 so 0x84 bytes.
Thus, the zone X has a length of 0x84 bytes (at least). The multiplication of X by Y provides a result of
length 0x100 bytes in the zone R so the 8 MSB bytes must be previously padded with zero bytes (in
offsets 0x100 to 0x107).

37.3.4.9.4 Parameters Definition

Table 37-25. Fmult Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the | After Executing the
Service Service

u20ptions Options (see below) Options (see below)

Specific/Gf2n Bits | - - GF(2n) Bitand Carry -

Carryln In

Specific/CarryOut Bits | - - - Carry Out, Zero Bit

Zero Violation and Violation Bit filled

according to the result

nulModBase nul | Crypto RAM u2ModLength + 4 Base of N Base of N untouched

nulCnsBase nul | Crypto RAM u2ModLength + 8 or Base of Cns Base of Cns untouched
64 bytes

u2ModLength u2 | - - Length of N Length of N

nu1XBase nul | Crypto RAM u2XLength or Base of X Base of X@
u2ModLength + 40

u2XLength u2 | - - Length of X Length of X

nulYBase nutl | Crypto RAM u2YLength Base of Y Base of Y

u2YLength u2 | - - Length of Y Length of Y

nulZBase nul | Crypto RAM u2XLength + Base of Z Base of Z untouched
u2YLength

nu1RBase nutl | Crypto RAM u2XLength + Base of R Base of R®)
u2YLength

Notes:

1. In case of a reduction option is specified, if necessary, the area X will be extended to
u2ModLength + 4 bytes.

2. If FMult is without reduction, X is untouched. If FMult is with reduction, X is filled with the final
result.

3. If FMult is without reduction, R is filled with the final result. If FMult is with reduction, R is
corrupted.

37.3.4.9.5 Available Options
The options are set by the u20ptions input parameter, which is composed of:

+ the mandatory Full Multiplication operation option described in Table 37-26
+ the mandatory CarryOperand option described in Table 37-27 and Table 37-28

+ the facultative Modular Reduction option(see Modular Reduction from Related Links). If the
Modular Reduction is not requested, this option is absent.

The u20ptions number is calculated by an Inclusive OR of the options.

@ MICROCHIP

823

Some Examples in C language are:

+ Operation: Full Multiply only without carry and without Modular Reduction
PUKCL (u20ptions) = SET MULTIPLIEROPTION (PUKCL FMULT ONLY) |
SET_CARRYOPTION (CARRY NONE) ;

+ Operation: Full Multiply with addition with Specific/Carryln addition and with Fast Modular
Reduction
PUKCL (u20ptions) = SET MULTIPLIEROPTION (PUKCL FMULT ADD) |
SET CARRYOPTION (ADD CARRY) |
PUKCL_REDMOD REDUCTION |

PUKCL_REDMOD USING FASTRED;

The following table shows all of the necessary parameters for the Full Multiply option. When the
Addition or Subtraction option is not chosen, it is not necessary to fill in the nu1ZBase parameter.

Table 37-26. Fmult Service Options

SET_MULTIPLIEROPTION(PUKCL_FMUL_ONLY) Perform R = X*Y + CarryOperand nu1RBase, nu1YBase, u2YLength,
nu1XBase, u2XLength

SET_MULTIPLIEROPTION(PUKCL_FMUL_ADD) Perform R =Z + X*Y + CarryOperand nu1RBase, nu1ZBase, nul1YBase,
u2YLength, nu1XBase, u2XLength

SET_MULTIPLIEROPTION(PUKCL_FMUL_SUB) Perform R =Z - (X*Y + CarryOperand) nu1RBase, nu1ZBase, nu1YBase,
u2YLength, nu1Xlength, u2XLength

37.3.4.9.6 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_ PARAM pvPUKCLParam = &PUKCLParam;

// Gf2n and CarryIn shall be beforehand filled (with zero or one)
PUKCL (Specific) .Gf2n = ...;
PUKCL (Specific) .CarryIn = ...;

PUKCL (u20ption) =...;
// Depending on the option specified, not all fields must be filled

PUKCL Fmult (nulXBase) = <Base of the ram location of X>;
PUKCL Fmult (u2XLength) = <Length of X>;
PUKCL_Fmult (nulYBase) = <Base of the ram location of Y>;
PUKCL Fmult (u2YLength) = <Length of Y>;

(

(

PUKCL Fmult (nulZBase) = <Base of the ram location of Z>;
PUKCL_Fmult (nulRBase) = <Base of the ram location of R>;
// VPUKCL Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL Process (Fmult, pvPUKCLParam) ;
if (PUKCL (u2Status) == PUKCL_ OK)

{

// The Full multiply has been executed correctly

else // Manage the error

824

@ MICROCHIP

37.3.4.9.7 Important Considerations for Modular Reduction of a Fmult Computation Result
Note:
Additional options are available through the use of a modular reduction to be executed at the end of
this operation. Some important considerations have to be taken into account concerning the length
of resulting operands to get a mathematically correct result.

The output of this operation is not always compatible with the modular reduction as it may

be either smaller or bigger. In the case (most of the time) the result (pointed by nu1RBase)

is smaller in size than “twice the modulus plus one word” by one word, a padding word must

be added to zero. Otherwise, the reduced value will be taken considering the high order words
(potentially uninitialized) as part of the number, thus resulting in getting a mathematically correct
but unexpected result.

In the case that the result is bigger than twice the modulus plus one word, the modular reduction
feature has to be executed as a separate operation, using an Euclidean division.

37.3.4.9.8 Constraints
The following conditions must be avoided to ensure that the service works correctly:
* nulXBase, nulYBase, nu1RBase or nu1ZBase are not aligned on 32-bit boundaries

+ {nu1XBase, u2XLength}, {nu1YLength, u2YLength}, {nu1ZBase, u2XLength+u2YLength}
or{nu1RBase, u2XLength+u2YLength} are not in Crypto RAM

« u2XLength, u2YLength is either: < 4, > Oxffc or not a 32-bit length

+ {nu1RBase, u2XLength+u2YLength} overlaps {nu1YBase, u2YLength} or{nu1RBase,
u2XLength+u2YLength} overlaps {nu1XBase, u2XLength}

+ {nu1RBase, u2XLength+u2YLength} overlaps {nu1ZBase, u2XLength+u2YLength} and nu1RBase>
nuiZBase

If a modular reduction is specified, the relevant parameters must be defined according to the
chosen reduction and follow the description in Modular Reduction (see Modular Reduction from
Related Links). Additional constraints to be respected and error codes are described in this section
and in Table 37-49.

Multiplication with Accumulation or Subtraction

In the case where the options bits specify that either an Accumulation or a subtraction must be
performed, this service performs the following operation:

R =(Z + (X x Y + CarryOperand))mod BXLensth + Yiength

Table 37-27. Fmult Service (with Accumulate/Subtract From) Carry Settings

Option AND CARRYOPTIONS CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_CARRY) Carryln R = Z £ (X*Y + Carryln)
SET_CARRYOPTION(SUB_CARRY) - Carryln R =Z + (X*Y - Carryln)
SET_CARRYOPTION(ADD_1_PLUS_CARRY) 1+ Carryln R=Z+(X*Y + 1+ Carryln)
SET_CARRYOPTION(ADD_1_MINUS_CARRY) 1- Carryln R=Z+ (X*Y + 1 - Carryln)
SET_CARRYOPTION(CARRY_NONE) 0 R=2Z + (X*Y)
SET_CARRYOPTION(ADD_1) 1 R=Z+(X*Y +1)
SET_CARRYOPTION(SUB_1) -1 R=Z+(X*Y-1)
SET_CARRYOPTION(ADD_2) 2 R=Z 4 (X*Y +2)

Multiplication without Accumulation or Subtraction

In the case the options bits specify that either an Accumulation or a subtraction must be performed,
this service performs the following operation:

= (X x Y + CarryOperand)mod BXtength + YLength

825

@ MICROCHIP

Table 37-28. Fmult Service Carry Settings

Option AND CARRYOPTIONS CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_CARRY) Carryln R =X*Y + Carryln
SET_CARRYOPTION(SUB_CARRY) - Carryln R = X*Y - Carryln
SET_CARRYOPTION(ADD_1_PLUS_CARRY) 1+ Carryln R=X*Y + 1+ Carryln
SET_CARRYOPTION(ADD_1_MINUS_CARRY) 1- Carryln R=X*Y + 1 - Carryln
SET_CARRYOPTION(CARRY_NONE) 0 R =X*Y
SET_CARRYOPTION(ADD_1) 1 R=X*Y +1
SET_CARRYOPTION(SUB_1) -1 R=X*Y-1
SET_CARRYOPTION(ADD_2) 2 R=X*Y +2

37.3.4.9.9 Status Returned Values

Table 37-29. Fmult Service Return Codes

PUKCL_OK - Service functioned correctly

37.3.4.10 Square
Related Links
37.3.5.1. Modular Reduction

37.3.4.10.1 Purpose

The purpose of this service is to compute the square of a big number and optionally accumulate/
subtract from a second big number.

Please note that this service uses an optimized implementation of the squaring. It also means that
when the GF(2") flag is set, the execution time will be smaller than when not set (in that case, the
squaring execution time will still be smaller than for a standard multiplication).

The available options are as follows:
+ Work in the GF(2") or in the standard integer arithmetic field
+ Add of a supplemental CarryOperand
+ Overlapping of the operands is possible, taking into account some constraints
+ Modular Reduction of the computation result
37.3.4.10.2 How to Use the Service

37.3.4.10.3 Description
This service provides the following (if not computing a modular reduction of the result):

R =[Z] + (X2 + CarryOperand)

Or (if computing a modular reduction of the result):

R = ([Z] + (X2 + CarryOperand))mod N

The service name for this operation is Square.

In these computations, the following data has to be provided:

* Rthe result (pointed by {nu1RBase,2 *u2Xlength})

+ Xone input number or GF(2n) polynomial (pointed by{nu1XBase,u2XLength})

* Zone optional input number or GF(2n) polynomial (pointed by {nu1ZBase,2 *u2Xlength})
+ CarryOperand (provided through the CarryOptions and Carry values)

826

@ MICROCHIP

Important: Even if neither accumulation nor subtraction is specified, the
nu1ZBase must always be filled and point to a Crypto RAM space. It this case,
nulZBase can point to the same space as the nu1RBase.

If using the big modular reduction option, the Multiply operation is followed by a reduction (see
Modular Reduction from Related Links). In this case, the length of Cns is 64 bytes.

If using the modular reduction option the Square operation is followed by a reduction (see Modular
Reduction from Related Links). In this case the following parameters must be additionally provided:

* N—the modulus (pointed by {nu1ModBase,u2Modlength +4}).
* Cns—the reduction constant (pointed by {nu1CnsBase,u2Modlength +8})
- In case of big reduction option, the length of Cns is 64bytes.

Note:
The result buffer R must first be padded with zero bytes until its length is sufficient to perform the
reduction (2*u2ModLength + 8) to be used by the Modular Reduction service as an input parameter.

The result of the reduction is written in the area X pointed by {nu1XBase, u2ModLength + 4}.

For example, if u2ZModLength, u2XLength is 0x80 bytes, the length of the R space is 2*(u2ModLength
+4) = 0x108 bytes because of the constraints of modular reduction.

In case of Fast or Normalized Reduction, the length of the result is uZModLength + 4 so 0x84 bytes.
Thus, the zoneX has a length of 0x84 bytes (at least). The square of X provides a result of length
0x100 bytes in the zone R so the 8 MSB bytes previously must be previously padded with zero bytes
(in offsets 0x100 to 0x107).

37.3.4.10.4 Parameters Definition

Table 37-30. Square Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the | After Executing the
Service Service

u20ptions Options (see below) Options (see below)

Specific/Gf2n Bits | - - GF(2n) Bitand Carry -

Carryln In

Specific/CarryOut Bits | - - - Carry Out, Zero Bit

Zero Violation and Violation Bit filled

according to the result

nulModBase nul | Crypto RAM u2ModLength + 4 Base of N Base of N untouched

nulCnsBase nutl | Crypto RAM u2ModLength + 8 or 64 Base of Cns Base of Cns untouched
bytes

u2ModLength u2 | - - Length of N Length of N

nu1XBase nul | Crypto RAM u2XLength or Base of X Base of X(2)
u2ModLength + 4™

u2XLength u2 | - - Length of X Length of X

nulZBase nul | Crypto RAM 2 * u2XLength Base of Z Base of Z

nulRBase nul | Crypto RAM 2 * u2XLength Base of R Base of RG)

827

@ MICROCHIP

Notes:
1. In case of a reduction option is specified, the area X will be, if necessary, extended to
u2ModLength + 4 bytes.

2. If Square is without reduction, X is untouched. If Square is with reduction, X is filled with the final
result.

3. If Square is without reduction, R is filled with the final result. If Square is with reduction, R is
corrupted.

37.3.4.10.5 Available Options
The options are set by the u20ptions input parameter, which is composed of;

+ the mandatory Square operation option described in Table 37-31
+ the mandatory CarryOperand option described in Table 37-32 and Table 37-33

+ the facultative Modular Reduction option (see Modular Reduction from Related Links). If the
Modular Reduction is not requested, this option is absent.

The u20ptions number is calculated by an Inclusive OR of the options. Some Examples in C
language are:

+ Operation: Square only without carry and without Modular Reduction
PUKCL (u20ptions) = SET MULTIPLIEROPTION (PUKCL SQUARE ONLY) |
SET CARRYOPTION (CARRY NONE) ;

+ Operation: Square with addition with Specific/Carryln addition and with Fast Modular Reduction
PUKCL (u20ptions) = SET MULTIPLIEROPTION (PUKCL SQUARE ADD) |
SET CARRYOPTION (ADD CARRY) | PUKCL REDMOD REDUCTION |
PUKCL REDMOD USING FASTRED;

The following table lists all of the necessary parameters for the Square option. When the Addition or
Subtraction option is not chosen it is not necessary to fill in the nu1ZBase parameter.

Table 37-31. Square Service Options
SET_MULTIPLIEROPTION(PUKCL_ SQUARE_ONLY) Perform R = X2 + CarryOperand nu1RBase, nu1ZBase,
nul1XBase, u2XLength
SET_MULTIPLIEROPTION(PUKCL_ SQUARE_ADD) Perform R=Z + X2 + CarryOperand nul1RBase, nu1ZBase,
nul1XBase, u2XLength

SET_MULTIPLIEROPTION(PUKCL_ SQUARE_SUB) Perform R = Z - (X2 + CarryOperand) nuiRBase, nu1ZBase,
nu1Xlength, u2XLength

37.3.4.10.6 Code Example

PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

// Gf2n and CarryIn shall be beforehand filled (with zero or one)
PUKCL (Specific) .Gf2n = ...;
PUKCL (Specific) .CarryIn = ...;

PUKCL (u20ption) =...;
// Depending on the option specified, not all fields must be filled

PUKCL Fmult (nulXBase) = <Base of the ram location of X>;

PUKCL_Fmult (u2XLength) = <Length of X>;

PUKCL Fmult (nulZBase) = <Base of the ram location of z>;

// VPUKCL Process() is a macro command, which populates the service name

// and then calls the library...
VvPUKCL Process (Square, pvPUKCLParam) ;
if (PUKCL(u2Status) == PUKCL OK)

{

// The Squaring has been executed correctly

828

@ MICROCHIP

else // Manage the error

37.3.4.10.7 Important Considerations for Modular Reduction of a Square Computation
Note:
Additional options are available through the use of a modular reduction to be executed at the end of
this operation. Some important considerations have to be taken into account concerning the length
of resulting operands to get a mathematically correct result.

The output of this operation is not obviously compatible with the modular reduction as it may

be either smaller or bigger. In the case (most of the time) the result (pointed by nu1RBase)

is smaller in size than “twice the modulus plus one word” by one word, a padding word must

be added to zero. Otherwise, the reduced value will be taken considering the high order words
(potentially uninitialized) as part of the number, thus resulting in getting a mathematically correct
but unexpected result.

In the case that the result is greater than twice the modulus plus one word, the modular reduction
feature has to be executed as a separate operation, using an Euclidean division.

37.3.4.10.8 Constraints

When the options only indicate a square, the constraints involving nu1ZBase are not checked. The
following conditions must be avoided to ensure that the service works correctly:

* nulXBase, nu1RBase or nu1ZBase are not aligned on 32-bit boundaries

+ {nu1XBase, u2XLength}, {nu1ZBase, 2*u2XLength} or {nu1RBase, 2*u2XLength} are not in Crypto
RAM

+ u2XLength is either: < 4, > 0xffc or not a 32-bit length
+ {nu1RBase, 2*u2XLength} overlaps {nu1XBase,u2XLength}
« {nu1RBase, 2*u2XLength} overlaps {nu1ZBase, 2*u2XLength} and nu1RBase >nu1ZBase

If a modular reduction is specified, the relevant parameters must be defined according to the
chosen reduction and follow the description in Modular Reduction (see Modular Reduction from
Related Links). Additional constraints to be respected and error codes are described in this section
and in Table 37-49.

Multiplication with Accumulation or Subtraction

Where the options bits specify that either an Accumulation or a subtraction must be performed, this
command performs the following operation:

R = (Z + (X2 + CarryOperand))mod B2 " XLength

Table 37-32. Multiplication with Accumulation or Subtraction

Option AND CARRYOPTIONS CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_CARRY) Carryln R=2Z+ (X2 + Carryln)
SET_CARRYOPTION(SUB_CARRY) - Carryln R=2Z+(X2- Carryln)
SET_CARRYOPTION(ADD_1_PLUS_CARRY) 1+ Carryln R=Z+(X2+1 + Carryln)
SET_CARRYOPTION(ADD_1_MINUS_CARRY) 1- Carryln R=Z+(X2+1-Carryln)
SET_CARRYOPTION(CARRY_NONE) 0 R=Z+(X2)
SET_CARRYOPTION(ADD_1) 1 R=Z+(X2+1)
SET_CARRYOPTION(SUB_1) -1 R=Z+(X2-1)
SET_CARRYOPTION(ADD_2) 2 R=Z+(X2+2)

37.3.4.10.9 Multiplication without Accumulation or Subtraction

Where the options bits specify that either an accumulation or a subtraction must be performed, this
command performs the following operation:

829

@ MICROCHIP

R = (X2 + CarryOperand)mod B2 XLength

Table 37-33. Square Service Carry Settings

Option AND CARRYOPTIONS CarryOperand Resulting Operation

SET_CARRYOPTION(ADD_CARRY) Carryln R=X2+ Carryln
SET_CARRYOPTION(SUB_CARRY) - Carryln R =X2 - Carryln
SET_CARRYOPTION(ADD_1_PLUS_CARRY) 1+ Carryln R=X2+1 + Carryln
SET_CARRYOPTION(ADD_1_MINUS_CARRY) 1- Carryln R=X2+1-Carryln
SET_CARRYOPTION(CARRY_NONE) 0 R=Xx2
SET_CARRYOPTION(ADD_1) 1 R=X2+1
SET_CARRYOPTION(SUB_1) -1 R=X2-1
SET_CARRYOPTION(ADD_2) 2 R=X2+2

37.3.4.10.10 Status Returned Values

Table 37-34. Square Service Return Codes

PUKCL_OK - Service functioned correctly

37.3.4.11 Integral (Euclidean) Division

37.3.4.11.1 Purpose

The purpose of this service is to compute the Euclidean Division of two multiple precision numbers
in GF(p) or polynomial in GF(2"). The Numerator is divided by the Denominator giving the Quotient
“Quo” and the Remainder “R".

The following options are available:
+ Work in the GF(2") field or in the standard integer arithmetic field GF(p)
37.3.4.11.2 How to Use the Service

37.3.4.11.3 Description
This service processes the calculus corresponding to:

Num = Mod X Quo + R with 0 <R < Mod and Quo:[Il\\l/;gC’ll

The Numerator is Num.

The Divisior (Modulus) is Mod.
The Quotient is Quo.

The Remainder is R.

The Inputs are, the Numerator Num, and the Denominator Mod. The service calculates the Quotient
and the Remainder. The Remainder overwrites the Numerator and is copied to the R area.

If the parameter nu1QuoBase equals zero, the Quotient is not stored in memory.

If nu1QuoBase is different from zero, the Quotient length is (<Numerator Length> - <Denominator
Length>) + 4 bytes.

In this computation, the following areas need to be provided:

+ Num (pointed by {nu1NumBase,u2NumLength}) filled with the Numerator (with MSB word to
Zero).

+ Mod (pointed by {nu1ModBase,u2ModLength}) filled with the Denominator.
+ Workspace (pointed by {nu1CnsBase,64 or68}).

@ MICROCHIP

830

* Quo (pointed by {nu1QuoBase,u2NumLength - u2ModLength + 4}) to contain calculated
Quotient.

- When the quotient is not needed, the nu1QuoBase pointer can be provided as NULL. In that
case, only the remainder will be provided as a result.

+ R (pointed by {nu1RBase,u2ModLength}) to contain the calculated Remainder.
The service name for this operation is Div.

37.3.4.11.4 Parameters Definition

Table 37-35. Div Service Parameters

Parameter Type| Dir.| Location Data Length Before Executing the After Executing the
Service Service

Specific/Gf2n Bit GF(2n) Bit
nulNumBase nul | Crypto RAM u2NumLength Base of Num Base of Num

Filled with the Numerator Filled with the Remainder
u2NumLength u2 | - - Length of the Numerator Length of the Numerator
nulModBase nul | Crypto RAM u2ModLengt Base of the Divisor Base of the Divisor

untouched
u2ModLength u2 | - - Length of the Divisor Length of the Divisor
nulQuoBase (see nul | Crypto RAM u2NumLength - Base of the Quotient Base of the Quotient
Note 1) u2ModLength + 4
nu1WorkSpace nul | Crypto RAM GF(p): 64 Base of the WorkSpace Base of the WorkSpace
GF(2n): 68 corrupted

nulRBase (see Note nu1l | Crypto RAM u2ModLength Base of the Remainder Base of the Remainder
2)
Notes:

1. If the quotient is not needed, set nu1QuoBase to zero and the quotient will not be written to
memory. If the quotient is needed, set the nu1QuoBase to the beginning of an area of size
(u2ZNumLength - u2ModLength + 4) to write the whole quotient.

2. The Remainder is present in the area {nu1NumBase, u2NumLength} at the end of the calculus.
The nu1RBase parameter makes it possible to copy this result in the other area {nu1RBase,
u2ModLength}, if this copy is not needed, set nu1RBase to the same value as nuTNumBase and
the copy will not be done.

Note: The parameter Num must have its most significant 32-bit word cleared to zero. The length
u2NumLength is the length of Num including this zero word.

One additional word is used on the LSB side of the Num parameter, this word is restored at the end
of the calculus. As a consequence the parameter nu1NumBase must never been at the beginning of
the Crypto RAM, i.e., ensure that nuTNumBase > <Crypto RAM Base> + 4 bytes.

One additional word is used on the MSB side of the Num parameter, this word is not corrupted. As a
consequence the Area {nu1NumBase, u2NumLength} must not be at the end of the Crypto RAM, i.e.,
en sure that nuTNumBase+u2NumLength < <Crypto RAM End> - 4.

u2ModLength must be the true length of the Modulus, i.e., the MSB word of the area {nu1ModBase,
u2ModLength} must be different from zero.

The minimum value for u2ModLength is 8 bytes, so the significant length of Num must be at least 8
bytes. To divide by a 32-bit value, the divider and numerator shall be multiplied by 232. The resulting
remainder will have to be divided by 232, the quotient will be exact.

37.3.4.11.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

831

@ MICROCHIP

// Fill all the fields

// In that case, the quotient will be computed

// If it was not needed, set nulQuoBase to NULL

PUKCL Div (nulNumBase) <Base of the ram location of Num>;

PUKCL Div(nulModBase) = <Base of the ram location of Mod>;

PUKCL_Div (nulQuoBase) = <Base of the ram location of Quo>;

PUKCL Div (nulWorkSpace) = <Base of the workspace>;

PUKCL Div(nulRBase) = <Base of the ram location of R>;

PUKCL_Div (u2NumLength) = <Length of Num>;

PUKCL Div (u2ModLength) = <Length of Mod>;

// VPUKCL Process() is a macro command, which populates the service name

// and then calls the library...

vPUKCL Process (Div, pvPUKCLParam) ;

if (PUKCL (u2Status) == PUKCL_OK)
{

// The Division has been executed correctly

}

else // Manage the error

37.3.4.11.6 Constraints
The following conditions must be avoided to ensure the service works correctly:

* nulModBase, nu1RBase, nu1QuoBase, nulWorkSpace or nuTNumBase are not aligned on 32-bit
boundaries

+ {nu1ModBase, u2ModLength}, {nu1RBase, u2ZModLength}, {nu1WorkSpace, 64} or{nu1NumBase,
u2NumLength} are not in Crypto RAM

* u2ModLength, u2NumLength is either: < 4, > Oxffc or not a 32-bit length

« One or more overlaps exist between two of the areas: {nu1ModBase,u2ModLength}{nu1RBase,
u2ModLength} {nu1NumBase, u2ZNumLength}(1) or {nu1WorkSpace,64}

« If nuTQuoBase is different from zero and: {nu1QuoBase, u2NumLength - u2ZModLength + 4} are
not in Crypto RAM

« If nuTQuoBase is different from zero and one or more overlaps exist between two of the areas:
{nu1QuoBase, u2NumLength - u2ModLength + 4}, {nu1ModBase, u2ZModLength}, {nu1RBase,
u2ModLength}, {nu1NumBase, u2ZNumLength} or {nu1WorkSpace, 64}

Overlaps between {nu1RBase, u2ModLength} and {nu1NumBase, u2ZNumLength} are forbidden, but
the equality between nu1RBase and nu1NumBase is authorized

37.3.4.11.7 Status Returned Values

Table 37-36. Div Service Return Codes

PUKCL_OK - Service functioned correctly.
PUKCL_DIVISION_BY_ZERO Severe The operation was not performed because the Denominator value is zero.

37.3.4.12 GCD, Modular Inverse

37.3.4.12.1 Purpose
The purpose of this command is to compute the Greatest Common Divisor (GCD) and the Modular
Inverse. The algorithm used is the Extended Euclidean Algorithm for the GCD.

This command accepts as input two multiple precision numbers in GF(p) or two polynomials in
GF(2™ X and Y and computes their GCD (D), if D equals one, the command also supplies the inverse
of Xmodulo Y.

The available options are as follows:
« Work in the GF(2") field or in the standard integer arithmetic field GF(p)

832

@ MICROCHIP

37.3.4.12.2 How to Use the Service

37.3.4.12.3 Description
This command calculates:

D = GCD(XY).
and parameter A in the Bezout equation:
AxX+BxY=D.

The first input, or input to inverse is X.

The second input, or modulus is Y.

The GCD is output in D.

The modular inverse if Xand Y are co-primes is output A:
A=X"mod(Y)

The command calculates the GCD and the value A. The value A is the multiplicative inverse of X, only
if Xand Y are co-prime. As a supplemental result, Z is given back, being the quotient of Y divided by
D only if D is different from zero:

2=]

At the end of the command: X is overwritten by D.

Y is cleared.

The value of A is calculated and stored.

The value of Z is calculated and stored if D is different from zero.
The service name for this operation is GcCD.

In this computation, the following areas have to be provided:

+ X(pointed by {nu1XBase,u2Length}) filled with X (with MSB word to zero)
* Y (pointed by {nu1YBase,u2Length}) filled with Y (with MSB word to zero)
* A(pointed by {nu1ABase,u2Length}) to contain calculated A

+ Z(pointed by {nu1ZBase,u2Length}) to contain calculated Z

+ The workspace (pointed by {nu1WorkSpace,32})

37.3.4.12.4 Parameters Definition

Table 37-37. GCD Service Parameters
Specific/Gf2n Bit | - - GF(2n) Bit -
nuiXBase nul | Crypto RAM u2Length Base of X Number X Base of X
Filled with the GCD D

u2length u2 | - - Length of the Areas X, Y, A, Z Length of the Areas X, Y, A, Z
nulYBase nul | Crypto RAM u2Length Base of Y Number Y Base of Y Cleared area
nulABase nutl | Crypto RAM u2Length Base of A Base of A
Filled with the result
nu1ZBase nul | Crypto RAM u2lLength + 4 (see Base of Z Base of Z
Note 1) Filled with the result
nulWorkSpace nu?l | Crypto RAM 32 bytes Base of the workspace Base of the workspace corrupted

833

@ MICROCHIP

Note:
1. The additional word is 4 zero bytes.

The parameters X and Y must have their most significant 32-bit word cleared to zero. The length
u2Length is the length of the longer of the parameters X and Y including this zero word.

To clarify here is an example:

+ Xis an 8 bytes number.
* Yisa 12 bytes number.

This example is processed this way before the use of the GCD service:

+ Thelonger number isY so its length is taken and increased by 4 bytes for the 32-bit word cleared
to zero, this gives u2Length = 16 bytes. Therefore, X, Y, A and Z areas have a length of 16 bytes.

+ Y is padded with 4 bytes cleared to zero on the MSB side and the u2Length = 16 bytes are written
in memory (LSB first).

+ Xis padded with 8 bytes cleared to zero on the MSB side and the u2Length = 16 bytes are written
in memory (LSB first).

+ The areas A and Z are mapped in memory with a size of u2Length = 16 bytes.
+ The workspace is mapped in memory with its constant size of 32 bytes

37.3.4.12.5 Code Example

PUKCL_ PARAM PUKCLParam;

PPUKCL PARAM pvPUKCLParam = &PUKCLParam;
// Fill all the fields

PUKCL (u20ption) = 0;
PUKCL GCD (nulXBase) <Base of the ram location of X>;
PUKCL_GCD (nulYBase) <Base of the ram location of Y>;
PUKCL_GCD (nulABase) <Base of the ram location of A>;

(
(
PUKCL GCD (nulZBase) <Base of the ram location of Z>;
(
(

PUKCL GCD (nulWorkSpace) = <Base of the workspace>;

PUKCL_GCD (u2Length) = <Length of X, Y, A and Z>;

// VPUKCL Process() is a macro command, which populates the service name
// and then calls the library...

vPUKCL Process (GCD, pvPUKCLParam) ;

if (PUKCL Param.Status == PUKCL OK)

// The GCD has been executed correctly

i..

else // Manage the error

37.3.4.12.6 Constraints
The following conditions must be avoided to ensure that the service works correctly:
* nulXBase, nulYBase, nu1ABase or nu1ZBase are not aligned on 32-bit boundaries

+ {nu1XBase, u2Length}, {nu1YBase, u2Length}, {nu1ABase, u2Length} or {nu1ZBase, u2Length}
are not in Crypto RAM
« u2length is either: < 4, > 0xffc or not a 32-bit length

« {nu1XBase, u2Length} overlaps {nu1YBase, u2Length} or {nu1XBase, u2Length} overlaps
{nu1ABase, u2Length} or {nu1XBase, u2Length} overlaps {nu1ZBase, u2Length} or {nu1YBase,
u2Length}overlaps

{nu1ABase, u2Length} or {nu1YBase, u2Length} overlaps {nu1ZBase, u2Length} or {nu1ABase,
u2Length} overlaps {nu1ZBase, u2Length}

834

@ MICROCHIP

37.3.4.12.7 Status Returned Values

Table 37-38. GCD Service Return Codes

PUKCL_OK - Service functioned correctly

37.3.4.13 Get Random Number

37.3.4.13.1 Purpose

The purpose of this command is to provide the user with a source of entropy. The options available
for this service are:

* Generation of random numbers from a Hardware Random Number Generator (TRNG).
+ Generation of random numbers from a Deterministic Random Number Generator (DRNG).

Important:

When using this service, be sure to strictly follow the directives given for the RNG
on the chip you use (particularly initialization, seeding) and compulsorily start the
RNG. If the directives require not to use this service, follow them and use the
proposed method to get random numbers.

This service only has the option to get random numbers and does not seed,
initialize or start the RNG. Other options are reserved for future use.

Neither continuous testing nor entropy testing is included in this service. If this is
needed (FIPS 140, ZKA, ...), this service must not be used and the users develops
their own command.

The DRNG is compatible with both ANSI X9.31 and FIPS 186-2 standards (see the important note
below). The DRNG is designed according to:

+ The algorithm described in the document ANSI Digital Signatures Using Reversible Public Key
Cryptography for the Financial Services Industry (rDSA) X9.31 dated September 9, 1998.

+ The Change recommendation for ANSI X9.0 - 1995 (Part 1) and ANSI X9.31 -1998:

The algorithm B.2.1 Algorithm for computing m Values of x is the one applied in the Toolbox 3 X9.31
DRNG. The DRNG is compatible with:

+ The DRNG is described in the document NIST Digital Signature Standard (DSS) FIPS Pub 186-2
January 27, 2000 Appendix 3.1

+ The FIPS 186-2 Change Notice 1 dated October 5, 2001 modifies this algorithm.

Important: To apply the FIPS 186-2 algorithm, the parameters XSeed[0] and
XSeed[1] must be set to the same value.

37.3.4.13.2 How to Use the Service

37.3.4.13.3 Description

This service has four possible options described in Table 37-41. Two of these options are reserved
for future use. This service performs the following operations:

* Generation of a random number from the Hardware RNG
* Generation of a random number from the Deterministic RNG

835

@ MICROCHIP

Generation of a Random Number from the Hardware RNG

This service, activated with the option PUKCL_RNG_GET, makes it possible to get a random number R
from the Hardware RNG:

R = HardwareRandomGenerate()

In the Generation of random from the RNG service, the following parameters need to be provided:

+ Rthe generated number area (pointed by{nu1RBase,u2RLength})

37.3.4.13.4 Generation of a Random Number from the Deterministic RNG

This service, activated with the option PUKCL_RNG_X931_GET, makes it possible to get a random
number R from the Deterministic Random Number Generator with input parameters the Key XKey

and the Seed XSeed:

(XKey, R) =

DeterministicRandomGenerateFromSeed (XKey, XSeed, Q)

In the generation of a random number from the Deterministic RNG service, the following
parameters need to be provided:

+ XKey the input and output Key (pointed by {nu1XKeyBase,u2XKeyLength})

+ XSeed the input Seed (pointed by {nu1XseedBase,u2XKeylLength})

* Q the prime number (pointed by {nu1QBase, 20bytes})

* Rthe generated number area (pointed by {nu1RBase, 20bytes})

37.3.4.13.5 Hardware RNG Parameters Definition

The parameters for the generation of random from the Hardware RNG are described in the
following table. This service can easily be accessed through the use of the PUKCL Rng () and

PUKCL () macros.

Table 37-39. RNG Service Hardware Generated Parameters

Data Length| Before Executing the After Executing the Service
Service

Option (see Table 37-41)

u20ptions u2 |

Option (see Table 37-41)

nulRBase nul | Crypto RAM or u2RLength Base of R Base of R filled with random values
Device RAM depending on the option
u2RLength u2 | - - Length of R Length of R

37.3.4.13.6 Deterministic RNG Parameters Definition
The parameters for the generation of random from the Deterministic RNG are described in the

following table. This service can easily be accessed through the use of the PUKCL Rng ()

PUKCL () macros.

Table 37-40. RNG Service Deterministic Generated Parameters

Parameter Type| Direction| Location Data Length Before Executing the | After Executing the
Service Service

and

u20ptions Option (see Table Option (see Table 37-41)
37-41)

nu1XKeyBase nul 1/0 Crypto RAM u2XKeyLength Base of XKey Base of XKey filled with

the resulting XKey

nulWorkspace nul NA Crypto RAM 64 bytes Base of the Base of the workspace
workspace corrupted

nulWorkspace2 nu1l NA Crypto RAM 2*ui1XKeyLength + 4 Base of the Base of the workspace
workspace 2 corrupted

nu1XSeedBase nul I/0 Crypto RAM max Base of the Base of XSeed filled with

@ MICROCHIP

(2*u2XKeylLength, 44
bytes)

values XSeed[0] and
XSeed[1]

the result on 20 bytes

836

........... continued

Parameter Type| Direction| Location Data Length Before Executing the | After Executing the
Service Service

u2XKeyLength u2 Length of XKey, Length of XKey, Xseed[0]
Xseed[0] and Xseed[1] and Xseed[1]
nu1QBase nul | Crypto RAM 20 bytes Base of Q Base of Q
nu1RBase nul | Crypto RAM u2RLength Base of R Base of R filled with the
result on 20 bytes
Note:
1. The nu1 Workspace2 must be a multiple of 256.
37.3.4.13.7 Options

The option is set by the u20ptions input parameter that must take one of the values listed in the
following table.
Note: The values, OPTION_RNG_SEED and OPTION_RNG_GETSEED, are reserved for future use.

Table 37-41. RNG Service Options

PUKCL_RNG_SEED Reserved Reserved
PUKCL_RNG_GET Generation of a random number from the RNG nu1RBase, u2RLength
PUKCL_RNG_X931_GET Generation of a random number from the Deterministic nu1XKeyBase, nu1Workspace,
RNG nul1XSeedBase, u2XKeyLength, nu1QBase,
nu1RBase
PUKCL_RNG_GETSEED Reserved Reserved

37.3.4.13.8 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u20ption) =...;

// Initializing parameters

PUKCL_Rng (nulRBase) = <Base of the ram location to store the rng>;
PUKCL_Rng (u2RLength) = <Length of the rng to get>;
// vPUKCL Process () is a macro command, which populates the service name

// and then calls the library...

vPUKCL Process (Rng, pvPUKCLParam) ;

if (PUKCL (u2Status) == PUKCL_OK)
{

// The RNG generation has been executed correctly

i"

else // Manage the error

37.3.4.13.9 Constraints

Random Number Generation
The following conditions must be avoided to ensure that the service works correctly:

« {nu1RBase,u2RLength} not in RAM

+ {nu1RBase,u2RLength} not accessible or authorized for writing

Deterministic Random Number Generation
The length of the parameter nu1XSeedbase is: XSeedLength = max(2*u2XKeyLength, 44 bytes) The
max () macro takes a maximum of two values.

The following conditions must be avoided to ensure that the service works correctly:

837

@ MICROCHIP

+ nul1XKeyBase,nu1Workspace, nu1Workspace2, nu1XSeedBase, nu1QBase, nu1RBase are not
aligned on 32-bit boundaries

+ {nu1XKeyBase, u2XKeylLength}, {nu1Workspace, 64 bytes}, {nu1Workspace2, 2*u1XKeyLength
+4}, {nu1XSeedBase, XSeedLength}, {nu1QBase, 24 bytes} or {nu1RBase, 20 bytes} are not in
PUKCC RAM

+ u2XKeylLength is either: < 20, > 64 or not a 32-bit length
* nulWorkspace2 not multiple of 256.

+ Overlaps exist between two or more of the areas: {nu1XKeyBase, u2XKeyLength},
{nu1Workspace,64 bytes}, {nu1XSeedBase, XSeedLength}, {nu1QBase, 24 bytes} or {nu1RBase,
20 bytes}

The area {nu1RBase, 20} can overlap with {nu1Workspace, 64 bytes} or {nu1QBas, 24 bytes}. The
pointer nu1RBase can equal the pointer nu1XSeedBase.

37.3.4.13.10 Status Returned Values

Table 37-42. RNG Service Return Codes

PUKCL_OK Information Service functioned correctly

37.3.5 Modular Arithmetic Services

This section provides a complete description of the modular arithmetic services, which consists of
two sets:

« Modular reductions, which can be used as stand alone operations, or used as a final step of most
arithmetic operations (full and small multiplications, squaring).

+ Modular operations, which include modular exponentiations (with or without using the CRT) and
a probabilistic prime number generation.

These operations work on general data so the modulus has no special form. The modular services
are available through:

+ a Fast form (may return a congruence of the result, with a high probability to have a Normalized
result)

+ aNormalized form (returns the exact result, strictly lower than the modulus)
« a Euclidean form (returns the exact result, strictly lower than the modulus)

The following table describes the modes of the modular reduction with the hypothesis:
* In GF(p): The modulus is N with length NLength in bytes

* In GF(2"): The modulus is P[X] with length NLength in bytes

For the exact calculus of NLength see below.

Table 37-43. Modular Reduction Modes

Modular Input Dynamic Result Dynamic Comments
Reduction Form

Fast): 0 < Input < (N2) * (232) GF(p):0<Res<N*4 The fastest reduction available, needs a
GF(n): |I’1pUt < ((P[X])) (X32) (zn). Res < P[X] * (XZ) precomputed constant.
Normalized InputLength < NLength + 4 GF(p): 0 < Res < N GF(2"): Res < The correction step does not runs in
bytes P[X] constant time. Needs a precomputed
constant.

The Normalize function cannot be
applied to the product of two numbers
of length u2NLength.

838

@ MICROCHIP

........... continued

Modular Input Dynamic Result Dynamic Comments
Reduction Form

Using Euclidean InputLength <2 * NLength +4 GF(p): 0 <Res <N Does not need any precomputed
division bytes (Zn). Res < P[X] constant.

To be able to use these modular reduction services (except the Euclidean division), first the
implementer shall call the setup service, providing the modulus as well as one free memory space
for the constant (this constant is used to speed up the modular reduction). In most commands
(except the modular exponentiation), the quotient is stored in the high order bytes of the number to
be reduced, using only eight bytes more than the maximum size of the number to be reduced.

The following rules must be respected to ensure the modular reduction services function correctly:

+ The numbers to be reduced can have any significant length, given the fact it CANNOT BE
GREATER than 2*u2ModLength + 4 bytes.

+ The modulus SHALL ALWAYS HAVE a significant length of <u2ModLength> bytes. The modulus
must be provided as a <u2ModLength + 4> bytes long number, padded on the most significant
side with a 32-bit word cleared to zero. Not respecting this rule leads to unexpected and wrong
results from the modular reduction.

+ The normalization operation ALWAYS performs a modular reduction step, and will therefore have
the same memory usage as this one.

+ The very first operation before any modular operation SHALL BE a modular setup.
37.3.5.1 Modular Reduction

Related Links
37.3.3.4. Aligned Significant Length

37.3.5.1.1 Purpose

This service is used to perform the various steps necessary to perform a modular reduction and
accepts as input numbers in GF(p) or polynomials in GF(2") .

The available options for this service are:

« Work in the GF(2") or in the standard integer arithmetic field GF(p)
+ Operation is the generation of the reduction constant.

+ Operation is a Modular Reduction.

+ Operation is a Normalization.

37.3.5.1.2 How to Use the Service

37.3.5.1.3 Description
This service performs one of the following operations:

+ Setup of the Fast or Normalize functions: generation of the reduction constant
+ Fast Modular Reduction

+ Big Modular Reduction (using Euclide's division)

* Normalization

The service name for this operation is RedMod.

37.3.5.1.4 Modular Reduction Setup

This service calculates the constant Cns, computed from the modulus and used to speed up the
modular reduction:

Cns = SetupConstant(N)

@ MICROCHIP

839

This service must be processed before the use of the Fast or Normalize functions. In the Setup
computations, the following data must be provided:

« N the modulus (pointed by {nu1ModBase,u2ModLength +4}).
* Cns the Setup Constant Result (pointed by {nu1CnsBase,u2ModLength +12}).

+ Xused as a workspace (pointed by {nu1XBase,2 * u2ModLength + 8}) (include the supplementary
bytes; see Note 2 in Table 37-44

* Rused as a workspace (pointed by {nu1RBase,64 or 68bytes}).

« u2ModLength is the Aligned Significant Length of the modulus and is not the byte Significant
Length (see Aligned Significant Length from Related Links).

37.3.5.1.5 Fast Reductions and Normalization

These commands calculate an approximated or exact Modular Reduction, that is, the result may be
greater than the modulus, but is always congruent to the true result.

Important: Before using these functions, ensure that the constant Cns has been
calculated with the setup for the Modular Reduction service.

Input and Result significant values verify:

* For the Fast Modular Reduction:

0<X<N:x2%

R=Xmod(N)+kxN with 0<k<4
+ For the Normalize:

XLength < (NLength + 4)bytes R

= Xmod(N)

In these Fast Modular Reduction and Normalize computations, the following data have to be
provided:

+ X(pointed by {nu1XBase,2 * u2ModLength +8})

- The Normalize computation accept as entry a value whose length is lower or equal to
u2ModLength + 4 (that is, for example, a value yet reduced but not normalized.). The
u2ModLength + 4 MSB bytes are cleared at the beginning of the computation.

- in case of Fast RedMod computations, the value X mayverify: X < (N2) *(232),

- include the supplementary bytes; see Note 3 in 37.3.5.1.8. Fast Modular Reductions Service
Parameters Definition.

* R (pointed by {nu1RBase,u2Modlength +4})
* N (pointed by {nu1ModBase,u2ModLength +4})
* Cns (pointed by {nu1CnsBase,u2ModLength +12})

+ u2ModLength is the Aligned Significant Length of the modulus and is not the byte Significant
Length (see Aligned Significant Length from Related Links).

The Fast Modular Reduction is able to reduce inputs up to <2*u2ModLength + 4> bytes. The input
can come from a multiplication of 2 <u2ModLength + 4> bytes numbers. The input X is considered
as a <2*u2ModLength + 8> bytes number.

840

@ MICROCHIP

Important: Additionally the Fast Reduction and Normalize functions need
supplemental bytes located on the MSB side of the number to be reduced

but these bytes are restored at the end of the operation and are therefore
unchanged. However, these bytes are to be taken into account when the mapping
is created, and could lead to unexpected results if overlapping with other area
used by the function.

The Fast Modular Reduction returns a <u2ModLength + 4> bytes number, but this number is in fact
a <u2ModLength + 2> significant bytes number. When using the Fast Modular Reduction, the two
MSB bytes of the <u2ModLength + 2> can have a maximum of two Isb bits set (depending on the
reduced number and the modulo).

The Normalize computation accepts as entry a resulting value of Fast Modular Reduction and
computes an exact result. It can not be applied to the result of the product of two numbers of
size NLength: a Fast Modular Reduction must be applied before.

For the Normalize computation, the X value is limited by the preceding formula but the area
in memory is bigger as described in 37.3.5.1.8. Fast Modular Reductions Service Parameters
Definition.

As input, the Normalize sub-service only accept values, which length is lower or equal to
u2ModLength + 4. The Most Significant u2ZModLength + 4 bytes are firstly cleared by this service.

37.3.5.1.6 Big Modular Reduction Using Euclide's Division
This command calculates:

XLength < (2 X NLength + 4)bytes R
= Xmod(N)
In this Big Modular Reduction computations, the following data must be provided:

+ X(pointed by {nu1XBase,2 * u2ModLength + 8}) (include the supplementary bytes; see Note 1 in
Table 37-46)

* R (pointed by {nu1RBase,u2Modlength +4})
+ N (pointed by {nu1ModBase,u2ModLength +4})

« u2ModLength is the Aligned Significant Length of the modulus and is not the byte Significant
Length (see Aligned Significant Length from Related Links).

+ Workspace (pointed by {nu1CnsBase,64 or 68}).

37.3.5.1.7 Modular Reductions Service Parameters Definition

Table 37-44. RedMod Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the | After Executing the
Service Service

u20ptions u2 | Options (see below) Options (see below)

Specific/Carryln Bits | - - Must be set to zero. -

Specific/Gf2n Bit | - - GF(2") Bit -

Specific/CarryOut Bits | - - - Carry Out, Zero Bit

Zero Violation and Violation Bit filled
according to the result

nulModBase(" nul | Crypto RAM u2ModLength +4 Base of N Base of N untouched

nulCnsBase nul | Crypto RAM u2ModLength + 12 Base of Cns Base of Cns filled with the
Setup Constant

u2ModLength u2 | - - Length of N Length of N

841

@ MICROCHIP

........... continued

Parameter Type| Direction| Location Data Length Before Executing the | After Executing the
Service Service

nu1RBase nu1 Crypto RAM GF(p): 64 bytes Base of R Base of R workspace
GF(2n). 68 bytes as a workspace corrupted
nu1XBase!?) nutl | Crypto RAM 2*u2ModLength + 8 Base of Xas a Base of X workspace
workspace corrupted
Notes:

1. The Modulus is to be given as a u2ModLength Aligned Significant Length Bytes however, it has
to be provided as a u2ModLength + 4 bytes long number, having the four high-order bytes set to
zero.

2. Before the X (pointed by {nu1XBase,2 * u2ZModLength + 8}) LSB bytes, four supplementary bytes
will be saved/restored. Other four supplementary bytes will also be saved/restored after the X
MSB bytes. All these supplementary bytes may be entirely in the Crypto RAM (therefore, do not
place the X area too near the end of the Crypto RAM) and shall not overlap with other area used
by the service.

37.3.5.1.8 Fast Modular Reductions Service Parameters Definition

Table 37-45. Fast RedMode and Normalize Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the | After Executing the
Service Service

u20ptions Options (see below) Options (see below)
Specific/Carryln Bits | - - Must be set to zero. -
Specific/Gf2n Bit | - - GF(2n) Bit -
Specific/CarryOut Bits | - - - Carry Out, Zero Bit
Zero Violation and Violation Bit filled
according to the result
nulModBase(" nul | Crypto RAM u2ModLength +4 Base of N Base of N untouched
nulCnsBase nul | Crypto RAM u2ModLength + 12 Base of Cns Base of Cns untouched
u2ModLength u2 | - - Length of N Length of N
nu1RBase®@ nul | Crypto RAM u2ModLength +4 Base of R Base of R filled with the
result
nu1XBase® nul | Crypto RAM 2*u2ModLength + 8 Base of X the number Base of X corrupted
to reduce
Notes:

1. The Modulus is to be given as a u2ModLength Aligned Significant Length Bytes however, it has
to be provided as a u2ModLength + 4 bytes long number, having the four high-order bytes set to
zero.

To make profitable the space memory, it is possible to set nu1RBase exactly equal to nu1XBase.

After the X (pointed by {nu1XBase,2 * u2ModLength + 8}) MSB bytes, supplementary bytes will

be saved/restored (8 bytes in case of Fast RedMod, otherwise; 12 bytes). These supplementary
bytes may be entirely in the Crypto RAM (therefore, do not place the X area too near the end of
the Crypto RAM) and shall not overlap with other area used by the service.

37.3.5.1.9 Big Modular Reduction Parameters Definition

Table 37-46. Big RedMod Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the | After Executing the
Service Service

u20ptions Options (see below) Options (see below)

842

@ MICROCHIP

........... continued

Parameter Type| Direction| Location Data Length Before Executing the | After Executing the
Service Service

Specific/Carryln Bits Must be set to zero

Specific/Gf2n Bit | - - GF(2n) Bit -

Specific/CarryOut Bits | - - - Carry Out, Zero Bit

Zero Violation and Violation Bit filled
according to the result

nulModBase nutl | Crypto RAM u2ModLength +4 Base of N Base of N untouched

nuiCnsBase nul | Crypto RAM GF(p): 64 bytes Base of Cnsas a Base of Cns corrupted

GF(2n): 68 bytes ~ Workspace

u2ModLength u2 | - - Length of N Length of N

nu1RBase nul | Crypto RAM u2ModLength +4 Base of R Base of R filled with the
result

nu1XBase!! nutl | Crypto RAM 2*u2ModLength + 8 Base of X the number Base of X filled with the

to reduce result

Note:

1. Before the X (pointed by {nu1XBase,2 * u2ModLength + 8}) LSB bytes, four supplementary bytes
will be saved/restored. Other four supplementary bytes will also be saved/restored after the X
MSB bytes. All of these supplementary bytes may be entirely in the Crypto RAM (therefore, do
not place the X area too near the end of the Crypto RAM) and shall not overlap with other area
used by the service.

37.3.5.1.10 Options
The options are set by the u2Options input parameter, which is composed of:

+ the mandatory Operation Option described in Table 37-47

+ if the Operation Option is PUKCL_REDMOD_REDUCTION, the Modular Reduction Sub-Option
described in Table 37-48

The u20ptions number is calculated by an Inclusive OR of the options. Some Examples in C
language are:

+ Operation: Setup for the ModularReductions.
PUKCL (u20ptions) = PUKCL REDMOD SETUP;

+ Operation: Fast ModularReduction.
PUKCL (u20ptions) = PUKCL REDMOD REDUCTION | PUKCL REDMOD USING FASTRED;

For this command three exclusive options can be specified. The following table lists the operations
that can be performed.

Table 37-47. RedMod Service Options

PUKCL_REDMOD_SETUP Perform the Cns value computation nulModBase, u2ModLength, nu1CnsBase,
nu1XBase

PUKCL_REDMOD_REDUCTION Perform R =X Mod N, see sub-option for details nu1ModBase, u2ModLength, nu1CndBase,
nul1XBase, nu1RBase

PUKCL_REDMOD_NORMALIZE Perform R =X Mod N nulModBase, u2ModLength, nu1CndBase,
nu1XBase, nu1RBase

When selecting the PUKCL_REDMOD_REDUCTION option, one of the two sub-options listed in the
following table must be selected.

@ MICROCHIP

843

Table 37-48. RedMode Service Options with PUKCL_RED_MOD_REDUCTION

PUKCL_REDMOD _USING_DIVISION Perform R=X Mod N nu1ModBase, u2ModLength, nu1CndBase, nu1XBase

PUKCL_REDMOD _USING_FASTRED Perform R =X Mod N nu1ModBase, u2ModLength, nu1CndBase,
The entropy is minimized (~2 bits) NU1XBase, nuRBase

37.3.5.1.11 Code Example

PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (Specific) .CarryIn = 0;
PUKCL (Specific) .GF2n = ...;

PUKCL (u20ption) =...;

// Depending on the option specified, not all fields must be filled

PUKCL RedMod (nulModBase) = <Base of the ram location of N>;

PUKCL RedMod (u2ModLength) = <Length of N>;

PUKCL_RedMod (nulCnsBase) = <Base of the ram location of Cns>;

// VvPUKCL Process() is a macro command, which populates the service name

// and then calls the library...

vPUKCL Process (RedMod, pvPUKCLParam) ;

if (PUKCL Param.Status == PUKCL_OK)
{

// operation has correctly been performed

i..

else // Manage the error

37.3.5.1.12 Constraints
Depending on the options chosen the lengths of the R area and Cns area differ:
+ For the Setup:
- RLength = 64bytes
- CnsLength = u2ModLength +12
+ For the Fast Reduction and Normalize:
- RLength = u2ModLength +4
- CnsLength = u2ModLength +8
+ For the BigRedMod:
- RLength = u2ModLength +4
- CnsLength =64

The following combinations of input values must be avoided in the case of a modular reduction
‘alone’, meaning that it has not been requested as an option of any other command:
+ nulModBase, nu1CnsBase, nu1RBase, nu1XBase are not aligned on 32-bit boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2CnsLength}, {nu1XBase, 2*u2XLength + 8 + s}
or {nu1RBase, u2RLength} are not in Crypto RAM

* u2ModLength is either: < 4, > Oxffc or not a 32-bit length

« Overlaps exist between two or more of the areas: {nu1ModBase, u2ZModLength + 4},
{nu1CnsBase, u2CnsLength}, {nu1XBase, 2*u2XLength + 8 + s} or {nu1RBase, u2RLength}

Note: Overlaps between {nu1RBase, RLength} and {nu1XBase, 2*u2XLength + 8} are forbidden; but
if the operation is the Fast, Normalized or Big Modular Reduction, the equality between nu1RBase
and nu1XBase is authorized.

844

@ MICROCHIP

37.3.5.1.13 Status Returned Values

Table 37-49. RedMod Service Return Codes

PUKCL_OK - Service functioned correctly

PUKCL_DIVISION_BY_ZERO Severe When computing an Euclidean division, the Modulus was found to be
zero. This occurs ONLY when either reducing using an Euclidean division
or computing the reduction constant usable for a Fast or Normalize

Reduction.
PUKCL_UNEXPLOITABLE_OPTIONS Severe A bad combination of options has been detected.
PUKCL_MALFORMED_MODULUS Severe The Msw of the modulus is not zero.

37.3.5.2 Modular Exponentiation (Without CRT)

37.3.5.2.1 Purpose

This service is used to perform the Modular Exponentiation computation. This service processes
integers in GF(p) only.

The options available for this service are:
+ Fastimplementation
* Regular implementation
+ Exponentis located in Crypto RAM or not in Crypto RAM
+ Exponent window size
37.3.5.2.2 How to Use the Service
37.3.5.2.3 Description

Important: Before using these functions, ensure that the constant Cns has been
calculated with the Setup of the Modular Reductions service.

This service processes the following operation:

The service name for this operation is ExpMod.

R = XEX’mod(N)

In this computation, the following parameters need to be provided:

+ X:input number (pointed by {nu1XBase,u2ModLength +16})

* N: modulus (pointed by {nu1ModBase,u2ModLength +4}).

« Exp: exponent (pointed by {pfu1ExpBase,u2ExpLength +4})

* Cns: Fast Modular Constant (pointed by {nu1CnsBase,u2ModLength +8})

+ Precomp: precomputation workspace (pointed by{nu1PrecompBase,PrecompLen})
+ Blinding: exponent blinding value (provided inu1Blinding)

The length PrecompLen depends on the lengths and options chosen; its calculus is detailed in
Options below.

Note: The minimum value for u2ModLength is 12 bytes. Therefore, the significant length of N must
be at least three 32-bit words.

845

@ MICROCHIP

37.3.5.2.4 Parameters Definition

Table 37-50. ExpMod Service Parameters

Data Length Before Executing the After Executing the Service
Service

u20ptions | Options (see below) Options (see below)
nulModBase nul | Crypto RAM u2ModLength +4 Base of N Base of N untouched
nulCnsBase nul | Crypto RAM u2ModLength + 8 Base of Cns Base of Cns untouched
u2ModLength u2 | - - Length of N Length of N
nu1XBase(! nul | Crypto RAM u2ModLength + 16 Base of X Base of X
Filled with the result
nulPrecompBase nul | Crypto RAM See below Base of Precomp as a Base of Precomp workspace
workspace corrupted
pfulExpBase® pful | Any place®® u2ExplLength +4 Base of the Exponent Base of the Exponent
untouched
u2ExpLength® w2 | - - Significant length of Significant length of
Exponent Exponent
u1Blindingt®) ul 1 - - Exponent unblinding Exponent unblinding value
value untouched
Notes:

1. This zone contains the number to be exponentiated (u2ZModLength bytes) and is used during the
computations as a workspace (four 32-bit words longer than the number to be exponentiated).
At the end of the computation, it contains the correct result of the operation.

2. The exponent must be given with a supplemental word on the LSB side (low addresses). This
word shall be set to zero.

3. Ifthe PUKCL_EXPMOD_EXPINPUKCCRAM option is not set, the location of the exponent MUST
NOT be the Crypto RAM, even partially.

4. The u2ExplLength parameter does not take into account the supplemental word needed on the
LSB side of the exponent.

5. Itis possible to mask the exponent in memory using an 8-bits XOR mask value. Be aware that not
only the exponent, but also the supplemental word has to be masked. If masking is not desired,
then this parameter must be set to 0.

37.3.5.2.5 Options

The options are set by the u2Options input parameter, which is composed of:
+ the mandatory Calculus Mode Option described in Table 37-51

+ the mandatory Window Size Option described in Table 37-52

+ theindication of the presence of the exponent in Crypto RAM

Note: Please check precisely if one part of the exponent is in Crypto RAM. If this is the case the
PUKCL_EXPMOD_EXPINPUKCCRAM must be used.

The u20ptions number is calculated by an “Inclusive OR" of the options. Some examples in C
language are:

+ Operation:Fast Modular Exponentiation with the window size equal to 1 and with no part of the
Exponent in the Crypto RAM
PUKCL (u20ptions) = PUKCL EXPMOD FASTRSA | PUKCL EXPMOD WINDOWSIZE 1;

+ Operation: Regular Modular Exponentiation with the window size equal to 2 and with one part of
the Exponent in the Crypto RAM
PUKCL (u20ptions) = PUKCL EXPMOD REGULARRSA | PUKCL EXPMOD WINDOWSIZE 2 |
PUKCL_EXPMOD EXPINPUKCCRAM;

@ MICROCHIP

846

There is no difference on the final result when using any of the options for this service. The choice
has to be made according to the available resources (RAM, Time) and also taking into account the
expected security level.

For this service, two exclusive Calculus Modes are possible. The following table describes the
Calculus Mode Options.

Table 37-51. ExpMod Service Calculus Mode Option

PUKCL_EXPMOD_FASTRSA Performs a Fast computation
PUKCL_EXPMOD_REGULARRSA Performs a Regular computation, slower than the Fast version, but using Regular calculus
methods

For this service, four window sizes are possible. The window size in bits is those of the windowing
method used for the exponent.

The choice of the window size is a balance between the size of the parameters and the computation
time:

* Increasing the window size increases the precomputation workspace.

+ Increasing the window size reduces the computation time (may not be relevant for very small
exponents).

The following table details the size of the precomputation workspace, depending on the chosen
window size option.

Table 37-52. ExpMode Service Window Size Options and Precomputation Space Size

Option specified Size of the PrecompBase Workspace (bytes) Content of the Workspace

PUKCL_EXPMOD_WINDOWSIZE_1 3*(u2ModLength + 4) + 8 X
PUKCL_EXPMOD_WINDOWSIZE_2 4*(u2ModLength + 4) + 8 x x3
PUKCL_EXPMOD_WINDOWSIZE_3 6*(u2ModLength + 4) + 8 x x3 x5 x7
PUKCL_EXPMOD_WINDOWSIZE 4 10*(u2ModLength + 4) + 8 x x3 x5 x7 x9 x11 x13 x15

The exponent can be located in RAM or in the data space. If one part of the exponent is in Crypto
RAM this must be mandatory signaled by using the option PUKCL_EXPMOD_EXPINPUKCCRAM.

The following table describes this option.

Table 37-53. ExpMod Service Exponent in Crypto RAM Option

PUKCL_EXPMOD_EXPINPUKCCRAM The exponent can be read from any data space of memory, including Flash, RAM or even
Crypto RAM. When at least one word the exponent is in Crypto RAM, this option has to
be set.

37.3.5.2.6 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption) =...;

// Depending on the option specified, not all fields must be filled

PUKCL ExpMod (nulModBase) = <Base of the ram location of N>;

PUKCL ExpMod (u2ModLength) = <Length of N>;

PUKCL_ExpMod (nulCnsBase) = <Base of the ram location of Cns>;

PUKCL ExpMod (nulXBase) = <Base of the ram location of X>;

PUKCL ExpMod (nulPrecompBase) = <Base of the ram location of Precomp>;
PUKCL_ExpMod (pfulExpBase) = <Base of the location of Exp>;

PUKCL ExpMod (u2ExpLength) = <Length of Exp>;

@ MICROCHIP

847

// vPUKCL Process() 1is a macro command, which populates the service name
// and then calls the library...
VPUKCL Process (ExpMod, pvPUKCLParam) ;
if (PUKCL_Param.Status == PUKCL_OK)
{

// operation has been performed correctly

else // Manage the error

37.3.5.2.7 Constraints

The following combinations of input values must be avoided in the case of a modular reduction
‘alone’, meaning that it has not been requested as an option of any other command:

nulModBase,nu1CnsBase, nu1XBase,nu1PrecompBase,nu1ExpBase are not aligned on 32-bit
boundaries

{nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1XBase, u2ZModLength
+16},{nu1PrecompBase, <PrecomplLength>} are not in Crypto RAM

{nu1ExpBase,u2ExpLength + 4} has no part in Crypto RAM and
PUKCL_EXPMOD_EXPINPUKCCRAM is specified

u2ModLength or u2ExpLength are either: < 4, > Oxffc or not a 32-bit length
None or both PUKCL_EXPMOD_REGULARRSA and PUKCL_EXPMOD_FASTRSA are specified.

{nu1PrecompBase,<PrecomplLength>} overlaps with either: {nu1ModBase, u2ModLength +4},
{nu1CnsBase, u2ModLength + 8} {nu1XBase, u2ZModLength + 16} or {nu1ExpBase, u2ExpLength +
4}

{nu1XBase,u2ModLength + 16} overlaps with either: {nu1ModBase, u2ModLength + 4},
{nu1CnsBase, u2ModLength + 8} or {nu1ExpBase, u2ExpLength + 4}

{nu1ModBase, u2ModLength + 4} overlaps {nu1CnsBase, u2ModLength +8}

37.3.5.2.8 Maximum Sizes for the Modular Exponentiation

The following table provides the maximum sizes for the Modular Exponentiation, depending on the
window size and the presence of the exponent in Crypto RAM.

The figures below are calculated supposing that u2ExpLength =u2ModLength.

In case of the PUKCL_EXPMOD_EXPINPUKCCRAM option is specified, for the computation of the
maximum acceptable size, it is assumed the Exponent is entirely in the Crypto RAM and its length
is equal to the Modulus one.

Otherwise, the Exponent is entirely out of the Crypto RAM and so the computation do not
depend on its length.

Table 37-54. Maximum Exponentiation Sizes

Option Specified Maximum Modulus Size (bytes) Maximum Modulus Size (bits)

Exponentin Crypto RAM, 1 bit window 576 4608
Exponent in Crypto RAM, 2 bits window 504 4032
Exponent in Crypto RAM, 3 bits window 400 3200
Exponent in Crypto RAM, 4 bits window 284 2272
Exponent not in Crypto RAM, 1 bit window 672 5376
Exponent not in Crypto RAM, 2 bits window 576 4608
Exponent not in Crypto RAM, 3 bits window 448 3584
Exponent not in Crypto RAM, 4 bits window 308 2464

@ MICROCHIP

848

37.3.5.2.9 Status Returned Values

Table 37-55. ExpMod Service Return Codes

PUKCL_OK - Service functioned correctly

37.3.5.3 Probable Prime Generation (Using Rabin-Miller)

37.3.5.3.1 Purpose

This service is used to perform probable prime generation or test. This service processes integers in
GF(p) only.

The options available for this service are:

+ Choice of the number of iterations of the Rabin-Miller test
+ Generation or Test of a probable prime number

+ Fast Implementation

+ Regular Implementation

+ Exponent Window Size

37.3.5.3.2 Additional Information

The Rabin-Miller test is a probable-primality testing algorithm. As a consequence, the primality

of the generated number is not guaranteed at 100%, however, numerous publications have been
issued explaining how to estimate the probability of getting a composite number, giving the size of
the number and the number of iterations (the T parameter).

Useful information can be found in the “Handbook of Applied Cryptography (Discrete Mathematics
and Its Applications” by Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, in the following
sections:

+ 4.2.3."Rabin-Miller Test”
* 4.4.“Prime Number Generation”
37.3.5.3.3 How to Use the Service
37.3.5.3.4 Description
This service processes a test for probable primality or a generation of a probable prime number.

Note: When using this service be sure to follow the directives given for the RNG on the chip you
use (particularly initialization, seeding) and compulsorily start the RNG.

This service processes one of the following operations: CheckProbablePrimality(N)
or
N = GenerateProbablePrimeFromSeed (NSeed)
In this computation, the following parameters need to be provided:
* N the input number (pointed by {nu1NBase,u2NLength +4})
- Ifthe requested operation is a test, it is untouched after the operation.

- Ifthe requested operation is a generation and a probable prime number was found
before reaching the Maximum Increment, it contains the resulting probable prime after the
operation.

- If the requested operation was a generation and Maximum Increment was reached before a
probable prime number was found, it contains no relevant information.

+ Cns as a workspace (pointed by {nu1CnsBase,u2NLength +12})
* Rnd as a workspace (pointed by {nu1RndBase,u2NLength +16})

849

@ MICROCHIP

+ Precomp the precomputation workspace (pointed by{nu1PrecompBase,PrecompLen})

« Exp as a workspace (pointed by {pfu1ExpBase,u2ExpLength +4})

+ u1MillerRabinlterations the number of Miller Rabin Iterations requested

+ u2MaxIincrement, maximum increment of the number in case of probable prime generation

The length PrecompLen depends on the lengths and options chosen; its calculus is detailed in

Options below.

The service name for this operation is PrimeGen.

37.3.5.3.5 Parameters Definition

Table 37-56. PrimeGen Service Parameters

Parameter Type| Direction |Location |Data Length Before Executing the | After Executing the
Service Service

nu1NBase() nu1 Crypto u2NLength+4 Base of N Base of N unchanged

RAM Number to test or Seed if test(o)r generation
for the generation result(?

nulCnsBase nul Crypto u2NLength +12 Base of Cns as a Base of Cns workspace
RAM workspace corrupted

u2NLength u2 - - Length of N Length of N

nu1RndBase nul Crypto Max (u2NLength Internal Workspace Internal Workspace
RAM +16,64) corrupted

nuilPrecompBase nul Crypto See Options Base of Precomp Base of Precomp
RAM below workspace workspace corrupted

nu1RBase(?) nul - Crypto = = =
RAM

nu1ExpBase(3) nul | Crypto u2NLength + 4 Base of Exponent (R) Base of Exponent (R)
RAM

u1MillerRabin- ul | - - Miller Rabin's T Miller Rabin's T

Iterations parameter parameter

u2MaxIncrement uz2 | - - Maximum Increment® Maximum Increment

Notes:

1. This zone contains the number to be either tested or used as a seed for generation. It has to be
provided with one zero word on the MSB side. This area has supplementary constraints (see the
following Important note).

1. This parameter does not have to be provided and is used as an internal value for computing the
reduction’s constant.

The area {nu1ExpBase, u2NLength + 4} must be entirely in the Crypto RAM.

3. The generation starts from the number in {nu1NBase,u2NLength + 4} and increments it until a
number is found as probable prime. However, the generation may stop for two reasons: The
number has been incremented in a way it is bigger than <u2NLength> bytes, or the original
number has been incremented by more than <u2MaxIncrement>.

In case of probable prime generation, ensure that the addition of NSeed and Maximum Increment is
not a number with more bytes than u2NLength, as this would produce an overflow.

850

@ MICROCHIP

Important:

One additional word is used on the LSB side of the NBase parameter; this word is
restored at the end of the calculus. As a consequence, the parameter nu1NBase
must never be at the beginning of the Crypto RAM, but at least at one word from
the beginning.

One additional word is used on the MSB side of the NBase parameter; this word is
not corrupted. As a consequence the Area {nu1NBase, u2NLength} must not be at
the end of the Crypto RAM but at least at one word from the end.

Prime numbers of a size lower than 96 bits (three 32-bit words) cannot be
generated or tested by this service.

37.3.5.3.6 Options
Some of the Prime Generation options configure the Modular Exponentiation steps and so are very
similar to the Modular Exponentiation options.

The options are set by the u2Options input parameter, which is composed of:

+ the mandatory Operation Option described in Table 37-57
+ the mandatory Calculus Mode Option described in Table 37-58
+ the mandatory Window Size Option described in Table 37-59

The u20ptions number is calculated by an “Inclusive OR" of the options. Some Examples in C
language are:

+ Operation: Probable Prime Testing with Fast Modular Exponentiation and the window size equal
to1
PUKCL (u20ptions) = PUKCL PRIMEGEN TEST | PUKCL EXPMOD FASTRSA |
PUKCL EXPMOD WINDOWSIZE 1;

+ Operation: Probable Prime Generate with Regular Modular Exponentiation and the window size
equal to 2
PUKCL (u20ptions) = PUKCL EXPMOD REGULARRSA | PUKCL_EXPMOD WINDOWSIZE 2;

The following table describes the PrimeGen service features available from the various options.

Table 37-57. PrimeGen Service Options

PUKCL_PRIMEGEN_TEST This option is used to specify that only tests will be made on the provided
number.

When this option is not specified, a prime generation algorithm is selected,
starting from the given seed and incrementing it.

PUKCL_EXPMOD_WINDOWSIZE_1,2,3 or 4 Depending on this option, different bit-window sizes will be used. For long
exponents, the bigger the window, the faster the computation. However, this has
also an impact on the size of the precomputations table.

For this service, two exclusive Calculus Modes are possible. The following table describes the
Calculus Mode Options.

Table 37-58. PrimeGen Service Calculus Mode Options
PUKCL_EXPMOD_FASTRSA Perform a Fast computation.

PUKCL_EXPMOD_REGULARRSA Performs a Regular computation, slower than the Fast version, but using regular calculus
methods.

851

@ MICROCHIP

The length of the Precomp area depends on the window size W and u2NLength. The Precomp area
length is:

PrecomplLen = max(2*(u2NLength + 4) + 2W-1 * (uU2NLength + 4), u2NLength + 8 + 64) + 8

Note: Please calculate precisely the length PrecompLen with the formula and the max () macro,
which takes a maximum of two values.

The following table shows the size of the precomputation workspace (PrecompLen), depending on
the chosen window size option.

Table 37-59. PrimeGen Service Precomputation Space Size

Option Specified Size of the PrecompBase Workspace (bytes) Content of the Workspace

PUKCL_EXPMOD_WINDOWSIZE_1 max(3*(u2NLength + 4), u2NLength + 72) + 8 X
PUKCL_EXPMOD_WINDOWSIZE_2 max(4*(u2NLength + 4), u2NLength + 72) + 8 X x3
PUKCL_EXPMOD_WINDOWSIZE_3 max(6*(u2NLength + 4), u2NLength + 72) + 8 x x3 x5 x7
PUKCL_EXPMOD_WINDOWSIZE_4 max(10*(u2NLength + 4) u2NLength + 72) + 8 x x3 x5 x7 x9 x11 x13 x15

The following table provides the maximum sizes for the Prime Generation depending on the window
size.

Table 37-60. PrimeGen Service Maximum Sizes

Characteristics of the Operation Maximum Prime Sizes (bits)

1 bit window 4608

2 bits window 4032

3 bits window 3200

4 bits window 2272
37.3.5.3.7 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_ PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip PUKCL (u20ption) =...;
// Depending on the option specified, not all fields must be filled

PUKCL_PrimeGen (nulNBase) = <Base of the ram location of N>;

PUKCL PrimeGen (u2NLength) = <Length of N>;

PUKCL PrimeGen (nulCnsBase) = <Base of the ram location of Cns>;
PUKCL_PrimeGen (nulPrecompBase) = <Base of the ram location of Precomp>;
PUKCL PrimeGen (pfulExpBase) = <Base of the location of Exp>;

PUKCL PrimeGen (u2ExpLength) = <Length of Exp>;

PUKCL_PrimeGen (ulMillerRabinIterations) = <Number of iterations>;

PUKCL PrimeGen (u2MaxIncrement) = <Maximum Increment>;

// VPUKCL Process () is a macro command, which populates the service name

// and then calls the library...

VPUKCL_ Process (PrimeGen, pvPUKCLParam) ;

if (PUKCL_Param.Status == PUKCL NUMBER IS PRIME)
{
// The number is probably prime

}
else if (PUKCL Param.Status == PUKCL NUMBER IS NOT PRIME)
{

// The number is not prime

i..

else // Manage the error

37.3.5.3.8 Constraints

The following combinations of input values must be avoided in the case of a modular reduction
‘alone’, meaning that it has not been requested as an option of any other service:

852

@ MICROCHIP

* nuilNBase,nu1CnsBase, nu1RndBase,nu1PrecompBase,nu1ExpBase are not aligned on 32-bit
boundaries

« {nu1NBase, u2NLength + 4}, {nu1CnsBase, u2NLength + 12}, {nu1RndBase, u2NLength +12},
{nu1PrecompBase, <Precomplength>} are not in Crypto RAM

* U2NLength is either: < 12, > Oxffc or not a 32-bit length
* Both PUKCL_EXPMOD_REGULARRSA and PUKCL_EXPMOD_FASTRSA are specified.

* {nu1PrecompBase,<PrecomplLength>} overlaps with either: {nu1NBase, u2NLength + 4},
{nu1CnsBase, u2NLength + 12} {nu1RndBase, u2NLength + 12} or {nu1ExpBase, u2ExpLength
+ 4}

+ {nu1RndBase,3*u2NLength + 24} overlaps with either: {nu1NBase, u2NLength + 4} {nu1CnsBase,
u2NLength + 12} {nu1XBase, u2NLength + 12} or {nu1ExpBase, u2ExpLength + 4}

+ {nu1NBase, u2NLength + 4} overlaps {nu1CnsBase, u2NLength +12}
37.3.5.3.9 Status Returned Values

Table 37-61. PrimeGen Service Return Codes

PUKCL_NUMBER_IS_PRIME Information The generated or tested number has been detected as probably prime.
PUKCL_NUMBER_IS_NOT_PRIME Information The generated or tested number has been detected as composite.

37.3.5.4 Modular Exponentiation (With CRT)

37.3.5.4.1 Purpose

The purpose of this service is to perform the Modular Exponentiation with the Chinese Remainders
Theorem (CRT). This service processes integers in GF(p) only.

The options available for this service are:
+ Fastimplementation
* Regular implementation
+ Exponentis located in Crypto RAM or not
+ Exponent window size
37.3.5.4.2 How to Use the Service

37.3.5.4.3 Description
This service processes a Modular Exponentiation with the Chinese Remainder Theorem:

R = XPmod(N) with N = P *Q

Important: For this service, be sure to follow the directives given for the RSA
implementation on the chip you use.

This service requires that the modulus N is the product of two co-primes P and Q and that the
decryption exponents D is co-prime with the product ((P-1)*(Q-1)).

The Input data are P, Q, EP, EQ, Rvalue, and X. P and Q are the co-primes so that N = P*Q.
Xis the number to exponentiate.

EP, EQ and Rval are calculated as follows:

EP = Dmod(P - 1) EQ = Dmod(Q - 1) Rval = P-""'mod(Q)

In some cases, the decryption exponent D may not be available and the encryption exponent E may
be available instead. The possibilities to calculate the parameters are:

853

@ MICROCHIP

Calculate D from E with the formula:
D =E"mod((P-1)*(Q-1))

Calculate the parameters from E:
EP=E'mod(P - 1) EQ = E'mod(Q - 1) Rval = P"'mod(Q)

In this computation, the following parameters need to be provided:

X the input number (pointed by {nu1XBase,2*u2ModLength +16})

P and Q the primes (pointed by {nu1ModBase,2*u2ModLength +8}).

EP and EQ the reduced exponents (pointed by {pfu1ExpBase,2*u2ExpLength +8})
Rval and Precomp (pointed by{nu1PrecompBase,RAndPrecomplLen})

Blinding the exponent blinding value (provided inu1Blinding)

The length RAndPrecomplen depends on the lengths and options chosen; its calculus is detailed in
Options below.

The service for this operation is CRT.

Note: The minimum value for u2ModLength is 12 bytes. Therefore, the significant length of P or Q
must be at least three 32-bit words.

37.3.5.4.4 Parameters Definition
The following table shows the parameter block for the CRT service.

Many parameters have complex placement in memory; therefore, detailed figures are provided in
CRT Service Placement below.

Table 37-62. CRT Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service
|

u20ptions Options (see below) Options (see below)
nulModBase nul | Crypto RAM 2*u2ModLength +8 Base of P, Q Base of P, Q untouched
u2ModLength u2 | - - Length of P or Q greater Length of Por Q
than or equal to 12
nu1XBase(" nul | Crypto RAM 2*u2ModLength + 16 Base of X Base of X
Filled with the result
nulPrecompBase nul | Crypto RAM See Options below Base of Rvalue and Pre Corrupted
computations workspace
pfulExpBase® pful | Any place 2*u2ExplLength +8 Base of EP, EQ Base of EP, EQ
untouched
u2ExpLength u2 | - - Significant length of EP or Significant length of EP
EQ or EQ
u1Blindingt3) ué | - - Exponent unblinding value Exponent unblinding
value
Notes:

1.

This zone contains the number to be exponentiated (uZModLength bytes) and is used during the
computations as a workspace (four 32-bit words longer than the number to be exponentiated).
At the end of the computation, it contains the correct result of the operation.

If the PUKCL_EXPMOD_EXPINPUKCCRAM option is not set, the location of the exponent MUST
NOT be placed in the Crypto RAM, even partially.

It is possible to mask the exponent in memory using a 32-bit XOR mask value. Be aware that
not only the exponent, but also the supplemental spill word has to be masked. If masking is not
desired, the parameter must be set to 0.

@ MICROCHIP

854

37.3.5.4.5 Options
Most of the CRT options configure the Modular Exponentiation steps of the CRT and so are very
similar to the Fast Modular Exponentiation options.

The options are set by the u2Options input parameter, which is composed of;

+ the mandatory Calculus Mode Option described in Table 37-63
+ the mandatory Window Size Option described in Table 37-64
+ theindication of the presence of the exponent in Crypto RAM

Important: Please check precisely if one part of the exponent area
(containing EP and EQ) is in Crypto RAM. If this is the case, the
PUKCL_EXPMOD_EXPINPUKCCRAM option must be used.

The u20ptions number is calculated by an “Inclusive OR” of the options. Some Examples in C
language are:

+ Operation: CRT using the Fast Modular Exponentiation with the window size equal to 1 and with
no part of the Exponent area in the Crypto RAM
PUKCL (u20ptions) = PUKCL EXPMOD FASTRSA | PUKCL EXPMOD WINDOWSIZE 1;

+ Operation:CRT using the Regular Modular Exponentiation with the window size equal to 2 and
with one part the Exponent area in the Crypto RAM
PUKCL (u20ptions) = PUKCL EXPMOD REGULARRSA | PUKCL EXPMOD WINDOWSIZE 2 |
PUKCL EXPMOD EXPINPUKCCRAM;

For this service, two exclusive Calculus Modes for the Modular Exponentiation steps of the CRT are
possible. The following table describes the Calculus Mode Options.

Table 37-63. CRT Service Calculus Mode Options

PUKCL_EXPMOD_FASTRSA Perform a Fast computation.

PUKCL_EXPMOD_REGULARRSA Performs a Regular computation, slower than the Fast version, but using regular calculus
methods.

For this service, four window sizes for the Modular Exponentiation Steps are possible. The window
size in bits is those of the windowing method used for the exponent.

The choice of the window size is a balance between the size of the parameters and the computation
time:
+ Increasing the window size increases the precomputation workspace.

+ Increasing the window size reduces the computation time (may not be relevant for very small
exponents). The length of the Rval and Precomp area depends on the window size W and
u2ModLength.

The Rval and Precomp area length is:
RandPrecomplen = 4 * (u2ModLength + 4) + max(64 , 2W-D * (u2ModLength + 4)) + 8

Important: Please calculate precisely the length RandPrecompLen with the
formula and the max () macro, which takes the maximum of two values.

The following table shows the size of the Rval and Precomp area, depending on the chosen window
size option.

855

@ MICROCHIP

Table 37-64. CRT Service Window Size Options and Rval and Precomp Area Size

Option Specified Size of the Rval and Precomp Area (bytes)

PUKCL_EXPMOD_WINDOWSIZE_1 4*(u2ModLength + 4) + max(64 , (u2ModLength + 4)) + 8 X
PUKCL_EXPMOD_WINDOWSIZE_2 4*u2ModLength + 4) + max(64 , 2*(u2ModLength + 4)) + 8 x x3
PUKCL_EXPMOD_WINDOWSIZE_3 4*(u2ModLength + 4) + max(64 , 4*(u2ModLength + 4)) + 8 x x3 x5 x7
PUKCL_EXPMOD_WINDOWSIZE_4 10*(u2ModLength + 4) + max(64 , 8*(u2ModLength + 4)) +8 xx3 x> x” x? x!! x13 x5

The exponent area can be located in RAM or in the data space. If one part of the exponent area
is in Crypto RAM this must be mandatory signaled by using the PUKCL_EXPMOD_EXPINPUKCCRAM
option.

The following table describes this option.

Table 37-65. CRT Service Crypto RAM Option Exponent Area

PUKCL_EXPMOD_EXPINPUKCCRAM The exponent area can be read from any data space of memory, including Crypto RAM.
When at least one word the exponent is in Crypto RAM, this option has to be set.

37.3.5.4.6 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption) =...;

// Depending on the option specified, not all fields must be filled PUKCL CRT (nulModBase) =
<Base of the ram location of P and Q>; PUKCL CRT (u2ModLength) = <Length of P or Q>;
PUKCL CRT (nulXBase) = <Base of the ram location of X>;

PUKCL_CRT (nulPrecompBase) = <Base of the ram location of RVal and Precomp>;

PUKCL CRT (pfulExpBase) = <Base of the ram location of EP and EQ>;

PUKCL CRT (u2ExpLength) = <Length of EP or EQ>;

PUKCL_CRT (ulBlinding) = <Blinding value>;

// VPUKCL Process () is a macro command, which populates the service name
// and then calls the library...
vPUKCL Process (CRT, pvPUKCLParam);
if (PUKCL Param.Status == PUKCL_OK)
{

// operation has been performed correctly

else // Manage the error

37.3.5.4.7 Constraints

The following conditions must be avoided to ensure that the service works correctly:

* nulModBase, nu1XBase, nu1PrecompBase, pfulExpBase are not aligned on 32-bit boundaries

+ {nu1XBase, 2*u2ModLength + 16}, {nu1ModBase, 2*u2ModLength + 8},
{nu1PrecompBase,<Precomplength>} are not in Crypto RAM

« {nu1ExpBase,2*u2ExpLength + 8} is not in Crypto RAM and PUKCL_EXPMOD_EXPINPUKCCRAM is

specified
+ u2ModLength or u2ExpLength are either: < 4, > Oxffc or not a 32-bit length
* None or both PUKCL_EXPMOD_REGULARRSA and PUKCL_EXPMOD_FASTRSA are specified.

+ {nu1XBase,2*u2ModLength + 16} overlaps with either: {nu1ModBase, 2*u2ModLength +8},
{nu1PrecompBase, <PrecompLength>} or {pfu1ExpBase, 2*u2ExpLength + 8}

+ {nu1ModBase,2*u2ModLength + 8} overlaps with either: {nu1PrecompBase, <PrecompLength>}
or {pfulExpBase, 2*u2ExpLength + 8}

+ {nu1PrecompBase, <PrecompLength>} overlaps {pfulExpBase, 2*u2ExpLength +8}

@ MICROCHIP

856

37.3.5.4.8 CRT Service Parameter Placement
The parameters’ placements are described in detail in the following figures.

Figure 37-2. Modulus P and Q in {nulModBase, 2*u2ModLength + 8}

Figure 37-3. Value X in {nulXBase, 2*u2ModLength + 16}

@ MICROCHIP

High addresses

4 bytes to zero

2 modulus
u2ModLength bytes

4 bytes to zero

pulhodBase —e

P modulus
u2ModLength bytes

Low addresses

High addresses

& bytes Workspace

8 bytes to zero

puiXBase —=

X
2 uZModLength
bytes

Low addresses

857

Figure 37-4. Exponents EP and EQ in {fnulExpBase, 2*u2ExpLength + 8}

High addresses

EQ Exponent
uZ2ExpLength bytes

4 bytes to zero

EP Exponent
u2ExpLength bytes

4 bytes to zero

fpu1ExpBase —=

Low addresses

Figure 37-5. Value Rval and Precomp in {nulPrecompBase, RandPrecomplLen}

High addresses

Workspace and
Power table
(RandPrecomplLen -
UZModLength bytes)

Rvalue
u2ModLength bytes

puiPrecompBase —»
Low addresses

37.3.5.4.9 CRT Service Modular Exponentiation Maximum Size
The following table details the maximum size in bits of P or Q, of N and of EP or EQ.

The maximum size in bits of P or Q equals:

<Max Size Bits P> = <Max Size Bits Q> = 8 * <Max u2ModLength bytes>
The maximum size in bits of N=P*Q equals:

<Max Size Bits N> = 2 * <Max Size Bits P>

The maximum size in bits of EP or EQ equals:
<Max Size Bits EP> = <Max Size Bits EQ> = 8 * <Max u2ExpLength bytes>

In case of the PUKCL_EXPMOD_EXPINPUKCCRAM option is specified, for the computation of the
maximum acceptable size, it is assumed the Exponent is entirely in the Crypto RAM and its length
equal the Modulus one.

@ MICROCHIP

858

+ Otherwise, the Exponent is entirely out of the Crypto RAM and so the computation do not
depend on its length.

Table 37-66. CRT Service Maximum Sizes

Characteristics of the Operation P or Q Max Bit Sizes N Max Bit Sizes EP or EQ Max Bit Sizes

Exponent in Crypto RAM, 1 bit window 2912 5824 2912
Exponent in Crypto RAM, 2 bits window 2688 5376 2688
Exponent in Crypto RAM, 3 bits window 2464 4928 2464
Exponent in Crypto RAM, 4 bits window 2304 4608 2304
Exponent not in Crypto RAM, 1 bit window 3584 7168 <application dependent>
Exponent not in Crypto RAM, 2 bits window 3232 6464 <application dependent>
Exponent not in Crypto RAM, 3 bits window 2912 5824 <application dependent>
Exponent not in Crypto RAM, 4 bits window 2688 5376 <application dependent>

37.3.5.4.10 Status Returned Values

Table 37-67. CRT Service Return Codes

PUKCL_OK Information Service functioned correctly

37.3.6 Elliptic Curves Over GF(p) Services

This section provides a complete description of the currently available elliptic curve over Prime
Fields services. These services process integers in GF(p) only.

The offered services cover the basic operations over elliptic curves such as:
+ Adding two points over a curve

+ Doubling a point over a curve

« Multiplying a point by an integral constant

+ Converting a point’s projective coordinates (resulting from a doubling or an addition) to the affine
coordinates, and oppositely converting a point's affine coordinates to the projective coordinates.

+ Testing the point presence on the curve.

Additionally, some higher level services covering the needs for signature generation and verification
are offered:

+ Generating an ECDSA signature (compliant with FIPS186-2)

+ Verifying an ECDSA signature (compliant with FIPS186-2) The supported curves use the following
curve equation:

2=X3+aX+b
37.3.6.1 Coordinate Systems

Related Links
37.3.5.1. Modular Reduction

37.3.6.1.1 General Considerations

In this implementation, several choices have been made related to the coordinate systems managed
by the elliptic curve primitives.

There are two systems currently managed by the library:

+ Affine Coordinates System where each curve point has two coordinates (X, Y)
+ Projective Coordinates System where each point is represented with three coordinates (XY, Z)

859

@ MICROCHIP

Converting from the affine coordinates system to a projective coordinates system is performed by
extending its representation with Z = 1:

XN=>WXY2z=1)

Converting from a projective coordinate to an affine one is a service offered by the PUKCL. The
formula to perform this conversion is:
XY, 2)=>X/2Z2 Y123

37.3.6.1.2 Points Representations

Depending on the representation (Projective or Affine), points are represented tn memory, as shown
in the following figure.

Figure 37-6. Points Representation in Memory

Low Addresses

@Q
=
S Low Addresses High Addresses 8 3
."'C_-;. — _ o ®
3 0 X Coordinate " 5
22 - 23
-5 Y Coordinate E v
[T Rt = I
88 . q-
= O Z Coordinate =%
£ |
& High Addresses
=

Lsb Msb

Modulus 0

In this figure, the modulus is represented as a reference, and to show that coordinates are always to
be provided on the length of the modulus plus one 32-bit word.

The different types of representations are as follows:

15
X g < P % 2

Affine representation Pt s
¥ g < P % 213

— =
15
XP‘mjeca’fvs <Px1

< P x 210

Projective representation Pt "Pro jective

= Py 213

_Zijscm'a

Notes:

1. The minimum value for u2ModLength is 12 bytes. Therefore, the significant length of the
modulus must be at least three 32-bit words.

2. In some cases the point can be the infinite point. In this case, it is represented with its Z
coordinates equal or congruent to zero.

860

@ MICROCHIP

37.3.6.1.3 Modulus and Modular Constant Parameters
In most of the services the following parameters must be provided:

« P the Modulus (often pointed by {nu1ModBase,u2ModLength + 4}): This parameter contains the
Modulus Integer prime P defining the Galois Field used in points coordinates computations. The
Modulus must be u2ModLength bytes long, while having a supplemental zeroed 32-bit word on
the MSB side.

Note: Most of the Elliptic Curve computations are reduced modulo P. In many functions the
reductions are made with the Fast Reduction.

* Cns the Modular Constant (often pointed by {nu1CnsBase,u2ModLength + 12}): This parameter
contains the Modular Constant associated to the Modulus

Important: The Modular Constant must be calculated before using the GF(p)
Elliptic Curves functions by a call to the Setup for Modular Reductions with the
GF(p) option (see Modular Reduction Setup in the Modular Reduction from Related
Links).

37.3.6.2 Point Addition

37.3.6.2.1 Purpose
This service is used to perform a point addition, based on a given elliptic curve over GF(p). Please
note that:

+ This service is not intended to add the same point twice. In this particular case, use the doubling
service
(see 37.3.6.4. Fast Point Doubling).

37.3.6.2.2 How to Use the Service

37.3.6.2.3 Description
The operation performed is:

Ptc = Pty + Ptg
In this computation, the following parameters need to be provided:

+ Atheinput pointis filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

« Btheinput point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointBBase,3*u2ModLength + 12}). This point can be the Infinite Point.

* Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
+ P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
+ The workspace not initialized (pointed by {nu1WorkSpace, 5*u2ModLength +32}

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the very same
place than the input point A. This Point can be the Infinite Point.

The service name for this operation is ZpEccAddFast. This service uses Fast mode and Fast
Modular Reduction for computations.

Important: Before using this service, ensure that the constant Cns has been
calculated with the Setup of the Modular Reduction functions.

861

@ MICROCHIP

37.3.6.2.4 Parameters Definition

Table 37-68. ZpEccAddFast Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service

nulModBase nul Crypto RAM u2ModLength + 4 Base of Modulus P Base of Modulus P

nulCnsBase nul | Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 | - - Length of modulo Length of modulo

nulPointABase nul /O Crypto RAM 3*u2ModLength + 12 Input point A (projective Resulting point C
coordinates) (projective coordinates)

nulPointBBase nul | Crypto RAM 3*u2ModLength + 12 Input point B (projective Input point B
coordinates)

nulWorkspace nul | Crypto RAM 5*u2ModLength +32 - Corrupted workspace

37.3.6.2.5 Code Example

PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption) = 0;

PUKCL _ZpEccAdd
PUKCL ZpEccAdd
PUKCL _ZpEccAdd
PUKCL _ZpEccAdd
PUKCL ZpEccAdd
PUKCL _ZpEccAdd

nulModBase) = <Base of the ram location of P>;

nulCnsBase) = <Base of the ram location of Cns>;
u2ModLength) = <Byte length of P>;

nulPointABase) = <Base of the ram location of the A point>;
nulPointBBase) = <Base of the ram location of the B point>;
nulWorkspace) = <Base of the ram location of the workspace>;

// VPUKCL Process() is a macro command, which populates the service name
// and then calls the library...

vPUKCL Process (ZpEccAddFast, &PUKCLParam) ;

if (PUKCL (u2Status) == PUKCL_ OK)

}

else // Manage the error

37.3.6.2.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

* nulModBase, nu1CnsBase, nu1PointABase, nu1PointBBase, nu1Workspace are not aligned on
32-bit boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ZModLength + 8}, {nu1PointABase,
3*u2ModLength + 12}, {nu1PointBBase, 3*u2ModLength + 12}, {nu1Workspace,
<WorkspacelLength>} are not in Crypto RAM

+ u2ModLength is either: < 12, > 0xffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength
+8},{nu1PointABase, 3*u2ModLength + 12}, {nu1PointBBase, 3*u2ModLength + 12} and
{nu1Workspace, 5*u2ModLength + 32}

37.3.6.2.7 Status Returned Values

Table 37-69. ZpEccAddFast Service Return Codes

PUKCL_OK - The computation passed without problem.

862

@ MICROCHIP

37.3.6.3 Point Addition and Subtraction

37.3.6.3.1 Purpose

This service is used to perform a point addition and point subtraction, based on a given elliptic curve

over GF(p). Please note that:

+ This service is not intended to add the same point twice. In this particular case, use the doubling

service (see 37.3.6.4. Fast Point Doubling).

37.3.6.3.2 How to Use the Service

37.3.6.3.3 Description

The operation performed is:

Ptc = PtA + PtB

In this computation, the following parameters need to be provided:

+ Atheinput pointis filled in projective coordinates (X,Y,Z) (pointed by

{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

+ Btheinput point is filled in projective coordinates (X,Y,Z) (pointed by

{nu1PointBBase,3*u2ModLength + 12}). This point can be the Infinite Point.

+ Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
« P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
+ The workspace not initialized (pointed by {nu1WorkSpace, 5*u2ModLength +32}

+ The operator filled with the operation to perform (Addition or Subtraction)

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the very same

place than the input point A. This Point can be the Infinite Point.

The service name for this operation is ZpEccAddSubFast. This service uses Fast mode and Fast
Modular Reduction for computations.

Note: Before using this service, ensure that the constant Cns has been calculated with the setup of

the modular reduction functions.

37.3.6.3.4 Parameters Definition

Table 37-70. ZpEccAddSubFast Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service

nulModBase nul
nulCnsBase nuil
u2ModLength u2

nul1PointABase nu‘
nu1PointBBase nu1

u20perator u2
nulWorkspace nu1l

37.3.6.3.5 Code Example

PUKCL PARAM PUKCLParam;

|
|
I/0

Crypto RAM u2ModLength + 4 Base of Modulus P
Crypto RAM u2ModLength + 8 Base of Cns
- - Length of modulo

Crypto RAM 3*u2ModLength + 12 Input point A (projective
coordinates)

Crypto RAM 3*u2ModLength + 12 Input point B (projective
coordinates)

Addition or Subtraction
Crypto RAM 5*u2ModLength +32 -

PPUKCE_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption)

= 0;

PUKCL ZpEccAddSub (nulModBase) = <Base of the ram location of P>;

@ MICROCHIP

Base of Modulus P
Base of Cns
Length of modulo

Resulting point C
(projective coordinates)

Input point B

Addition or Subtraction
Corrupted workspace

863

PUKCL _ZpEccAddSub
PUKCL _ZpEccAddSub
PUKCL _ZpEccAddSub
PUKCL _ZpEccAddSub

nulCnsBase) = <Base of the ram location of Cns>;

u2ModLength) = <Byte length of P>;

nulPointABase) = <Base of the ram location of the A point>;
nulPointBBase) = <Base of the ram location of the B point>;
nulWorkspace) = <Base of the ram location of the workspace>;

u20perator) = <Operation to perform (PUKCL_ ZPECCADD or PUKCL_ ZPECCSUB)>;

PUKCL ZpEccAddSub
PUKCL ZpEccAddSub

// VPUKCL Process () is a macro command, which populates the service name
// and then calls the library...
vPUKCL Process (ZpEccAddSubFast, §PUKCLParam) ;
if (PUKCL (u2Status) == PUKCL_OK)
{
}

else // Manage the error

37.3.6.3.6 Constraints

No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

* nulModBase, nu1CnsBase, nu1PointABase, nu1PointBBase, nu1Workspace are not aligned on
32-bit boundaries

+ {nu1ModBase, u2ZModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength + 12}, {nu1PointBBase, 3*u2ModLength + 12}, {nu1Workspace,
<WorkspacelLength>} are not in Crypto RAM

* u2ModLength is either: < 12, > Oxffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ZModLength + 4}, {nu1CnsBase, u2ModLength
+8},{nu1PointABase, 3*u2ModLength + 12}, {nu1PointBBase, 3*u2ModLength + 12} and
{nu1Workspace, 5*u2ModLength + 32}

37.3.6.3.7 Status Returned Values

Table 37-71. ZpEccAddFast Service Return Codes

PUKCL_OK - The computation passed without problem.

37.3.6.4 Fast Point Doubling

37.3.6.4.1 Purpose
This service is used to perform a Point Doubling, based on a given elliptic curve over GF(p).

37.3.6.4.2 How to Use the Service

37.3.6.4.3 Description
These two services process the Point Doubling:

Ptc': 2 x PtA
In this computation, the following parameters need to be provided:

+ Atheinput pointis filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

* Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})

« P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})

+ The workspace not initialized (pointed by {nu1WorkSpace, 4*u2ModLength +28}

* The a parameter relative to the elliptic curve (pointed by {nu1ABase,u2ModLength +4})

« The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the same
location than the input point A. This point can be the Infinite Point.

@ MICROCHIP

864

The service name for this operation is ZpEccDblFast. This service uses Fast mode and Fast
Modular Reduction for computations.

Important: Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reduction service.

37.3.6.4.4 Parameters Definition

Table 37-72. ZpEccDblFastService

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service

nulModBase nu1 Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nulCnsBase nul | Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 | - - Length of modulus P Length of modulus P

nulABase u2 | Crypto RAM u2ModLength + 4 Parameter a of the elliptic Parameter a of the elliptic
curve curve

nulPointABase nul /O Crypto RAM 3*u2ModLength + 12 Input point A (projective Resulting point C
coordinates) (projective coordinates)

nulWorkspace nuil | Crypto RAM 4*u2ModLength + 28 - Corrupted workspace

37.3.6.4.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption) = 0;

PUKCL _ZpEccDbl (nulModBase) = <Base of the ram location of P>;

PUKCL _ZpEccDbl (u2ModLength) = <Byte length of P>;

PUKCL ZpEccDbl (nulCnsBase) = <Base of the ram location of Cns>;

PUKCL _ZpEccDbl (nulPointABase) = <Base of the ram location of the A point>;

PUKCL ZpEccDbl (nulABase) = <Base of the a parameter of the elliptic curve>;
(nulWorkspace) = <Base of the ram location of the workspace>;

PUKCL ZpEccDbl

// VPUKCL Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL Process (ZpEccDblFast, §PUKCLParam) ;
if (PUKCL (u2Status) == PUKCL OK)
{

}

else // Manage the error

37.3.6.4.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

* nulModBase, nu1CnsBase, nu1PointABase, nu1ABase, nu1Workspace are not aligned on 32-bit
boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12}, {nu1ABase, u2ModLength + 4}, {nu1Workspace, <WorkspacelLength>} are
not in Crypto RAM

* u2ModLength is either: < 12, > Oxffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},
{nu1PointABase, 3*u2ModLength + 12}, {nu1ABase, u2ModLength + 4} and {nu1Workspace,
4*u2ModLength + 28}

865

@ MICROCHIP

37.3.6.4.7 Status Returned Values

37.3.6.5 Fast Multiplying by a Scalar Number of a Point

PUKCL_OK

37.3.6.5.1 Purpose
This service is used to multiply a point by an integral constant K on a given elliptic curve over GF(p).

37.3.6.5.2 How to Use the Service

37.3.6.5.3 Description
These two services process the Multiplying by a scalar number:

Ptc=Kx Pt,

In this computation, the following parameters need to be provided:

The computation passed without problem.

A the input point is filled in projective coordinates (X,Y,Z) (pointed by

{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength +44}

The a parameter relative to the elliptic curve (pointed by {nu1ABase,u2ModLength +4})

K the scalar number (pointed by {nu1ScalarNumber,u2ScalarLength +4})

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the very same
place than the input point A. This point can be the Infinite Point.

The service name for this operation is ZpEccMulFast. This service uses Fast mode and Fast
Modular Reduction for computations.

Note: Before using this service, ensure that the constant Cns has been calculated with the setup of
the Fast Modular Reduction service.

37.3.6.5.4 Parameters Definition

Table 37-73. ZpEccMulFast Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service

nulModBase nul
nulCnsBase nul
u2ModLength u2

nulKBase nui

u2KLength u2
nulPointABase nul

nulABas nul

nu1Workspace nu1

37.3.6.5.5 Code Example

PUKCL_ PARAM PUKCLParam;

170

Crypto RAM u2ModLength + 4
Crypto RAM u2ModLength + 8

Crypto RAM u2KLength

Crypto RAM 3*u2ModLength + 12

Crypto RAM u2ModLength + 4

Base of modulus P
Base of Cns
Length of modulus P

Scalar number used to
multiply the point A

Length of scalar K
Input point A (projective
coordinates)

Parameter a of the elliptic
curve

Crypto RAM 8*u2ModLength + 44 -

PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption)

@ MICROCHIP

0;

Base of modulus P
Base of Cns

Length of modulus P
Unchanged

Length of scalar K

Resulting point C
(projective coordinates)

Unchanged

Corrupted workspace

866

PUKCL ZpEccMul (nulModBase) = <Base of the ram location of P>;

PUKCL ZpEccMul (u2ModLength) = <Byte length of P>;

PUKCL ZpEccMul (nulCnsBase) = <Base of the ram location of Cns>;

PUKCL ZpEccMul (nulPointABase) = <Base of the ram location of the A point>;

PUKCL ZpEccMul (nulABase) = <Base of the ram location of the parameter A of the elliptic
curve>;

PUKCL ZpEccMul (nulKBase) = <Base of the ram location of the scalar number>;

PUKCL _ZpEccMul (nulWorkspace) = <Base of the ram location of the workspace>;

PUKCL ZpEccMul (u2KLength) = <Byte length of the Scalar Number K>;

// vPUKCL Process() 1s a macro command, which populates the service name
// and then calls the library...

VPUKCL Process (ZpEccMulFast, &PUKCLParam) ;

if (PUKCL (u2Status) == PUKCL OK)

}

else // Manage the error

37.3.6.5.6 Constraints

No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

* nulModBase,nu1CnsBase, nu1PointABase, nu1ABase, nulScalarNumber, nu1Workspace are not
aligned on 32-bit boundaries

+ {nu1ModBase, u2ZModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12}, {nu1ABase, u2ModLength + 4}, {nu1ScalarNumber, u2ScalarLength} or
{nu1Workspace, 8*u2ModLength + 44} are not in Crypto RAM

* u2ModLength is either: < 12, > Oxffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},
{nu1PointABase, 3*u2ModLength + 12}, {nu1ABase, u2ModLength + 4}, {nu1ScalarNumber,
u2ScalarLength} and {nu1Workspace, 8*u2ModLength + 44}

37.3.6.5.7 Status Returned Values

PUKCL_OK - The computation passed without problem.

37.3.6.6 Quick Dual Multiplying by Two Scalar Numbers and Two Points

37.3.6.6.1 Purpose

This service is used to multiply two points by two integral constants K1 and K2, and then provide the
addition of these multiplications results.

Important: This service has a quick implementation without additional security.

37.3.6.6.2 How to Use the Service

37.3.6.6.3 Description
This service processes the dual Multiplying by two scalar numbers:
PtC =Ky x Pty + K, x Ptg
In this computation, the following parameters need to be provided:

+ Athe first input point is filled in projective coordinates (X,Y,Z) (pointed by {pu1PointABase,
(3*(u2ModLength + 4)) * (2(WA-2))}). This point can be the Infinite Point.

867

@ MICROCHIP

« Bthe 2nd input point is filled in projective coordinates (X,Y,Z) (pointed by {pu1PointBBase,
(3*(u2ModLength + 4)) * (2(WB-2))}). This point can be the Infinite Point.

+ P the modulus filled and Cns the Fast Modular Constant filled (pointed by
{pu1ModCnsBase,2*u2ModLength + 16})

+ The a parameter filled and the workspace not initialized (pointed by {pu1AWorkBase,

9*u2ModLength +48}

+ KAB the scalar numbers (pointed by {pu1KABBase, 2*u2KLength +8})

+ The options are set by the u20ptions input parameter, which is composed of:

- WA: Size of window for Point A between 2 and15

- wB: Size of window for Point B between 2 and15
- PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM flag: to set only if the scalars are entirely in Classic
RAM with no part in PUKCC RAM

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at (pu1AWorkBase
+ u2ModLength + 4). This point can be the Infinite Point.

Important: Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reduction service.

37.3.6.6.4 Parameters Definition

WA is the Point A window size and WB is the Point B window size (see Options below for details).

Important: Please calculate precisely the length of areas with the formulas.
Ensure that the pu1 type is a pointer on 4 bytes and contains the full address
(see 37.3.3.4. Aligned Significant Length).

Table 37-74. ZpEccQuickDualMulFast Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service

pulModCnsBase pu1

u20ption

u2ModLength
pulKABBase

u2KLength

pulPointABase
puilPointBBase

pulAWorkBase

@ MICROCHIP

pul

pu1l

pul

170

Crypto RAM 2 * u2ModLength + 16

Any RAM 2 * u2KLength + 8

Crypto RAM (3*(u2ModLength + 4)) *
(2WA-2) (1)

Crypto RAM (3*(u2ModLength + 4)) *
(2WB-2)) (2)

Crypto RAM 9*u2ModLength + 48

Base of modulus P, Base
of Cns

Option related to the
called service (see
below)

Length of modulus P

Scalar numbers used to
multiply the points A
and B

Length of scalars KA and
KB

Input point A (projective
coordinates)

Input point B (projective
coordinates)

Parameter a of the
elliptic curve

Base of modulus P,
Base of Cns

Length of modulus P
Unchanged

Length of scalars KA
and KB

Unchanged

Unchanged

Resulting point C
(projective coordinates)
in pu1AWorkBase Base
+ u2ModLength + 4

868

Notes:
1. The precalculus table size for the point A is calculated from chosen window size “WA".

2. The precalculus table size for the point B is calculated from chosen window size “WB".

37.3.6.6.5 Options
The options are set by the u2Options input parameter, which is composed of:
+ the mandatory windows sizes WA and WB
+ theindication of the presence of the scalars in system RAM

Note: Please check precisely if one part of the scalars is in Crypto RAM. If this is the case, the
PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM option must not be used.

The u20ptions number is calculated by an “Inclusive OR" of the options. Some Examples in C
language are:

* // Scalars are in system RAM
// The Point A window size is 3
// The Point B window size is 4
PUKCL (u20ptions) = PUKCL ZPECCMUL SCAL IN CLASSIC RAM |
PUKCL_ ZPECCMUL WINSIZE A VAL TO OPT(3) |
PUKCL_ZPECCMUL WINSIZE B VAL TO OPT (4);

* // Scalars are in the PUKCC Cryptographic RAM
// The Point A window size is 2
// The Point B window size is 5
PUKCL (u20ptions) = PUKCL ZPECCMUL WINSIZE A VAL TO OPT(2) |
PUKCL_ZPECCMUL WINSIZE B VAL TO OPT(5);

For this service, many window sizes are possible. The window sizes in bits are those of the
windowing method used for the scalar multiplying.

The choice of the window sizes is a balance between the size of the parameters and the
computation time:

+ Increasing the window size increases the precomputation table size.
* Increasing the window size to the optimum reduces the computation time.

The following table details the size of the point and the precomputation table, depending on the
chosen window size option.

Table 37-75. ZpEccQuickDualMulFast Service Window Size Options and Precomputation Table Size

Option Specified Size of the Point and the Precomputation Table

PUKCL_ZPECCMUL_WINSIZE_A_VAL_TO_OPT(WA) WA in [2, 15] (3*(u2ModLength + 4)) * (2(WA-2))
PUKCL_ZPECCMUL_WINSIZE_B_VAL_TO_OPT(WB) WB in [2, 15] (3*(u2ModLength + 4)) * (2(W8-2)

The scalars can be located in PUKCC RAM or in system RAM. If both scalars are entirely
in system RAM with no part in PUKCC RAM this can be signaled by using the option
PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM. In all other cases this option must not be used.

The following table describes this option.

869

@ MICROCHIP

Table 37-76. ZpEccQuickDualMulFast Service System RAM Scalar Options

PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM The scalars can be located in Crypto RAM or in system RAM.

If both scalars are entirely in system RAM with no part in Crypto RAM this can be

signaled by using this option . In all other cases this option must not be used.

37.3.6.6.6 Code Example

PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption) = <Configure scalar numbers location and windows sizes>;

PUKCL ZpEccQuickDualMulFast (pulModCnsBase) = <Base of the ram location of P and Cns>;

PUKCL_ ZpEccQuickDualMulFast (u2ModLength) = <Byte length of P>;

PUKCL ZpEccQuickDualMulFast (u2KLength) = <Byte length of scalars>;

PUKCL ZpEccQuickDualMulFast (pulPointABase) = <Base of the ram location of the A point>;
PUKCL_ZpEccQuickDualMulFast (pulPointBBase) = <Base of the ram location of the B point>;
PUKCL ZpEccQuickDualMulFast (pulAWorkBase) = <Base of the ram location of the parameter A of
the elliptic curve and workspace>;

PUKCL_ZpEccQuickDualMulFast (pulKABBase) = <Base of the ram location of the scalar numbers KA
and KB>;

// VPUKCL Process () is a macro command, which populates the service name

// and then calls the library...
VPUKCL_ Process (ZpEccQuickDualMulFast, pvPUKCLParam) ;
if (PUKCL (u2Status) == PUKCLioK)

{

else // Manage the error

37.3.6.6.7 Constraints

No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

+ pulModCnsBase,pulPointABase, pulPointBBase, pulAWorkBase, pu1KABBase are not aligned
on 32-bit boundaries

+ {pulModCnsBase, 2*u2ModLength + 16}, {pu1PointABase, (3*(u2ModLength + 4)) *(2(WA-2)y},
{pu1PointBBase, (3*(u2ModLength + 4)) * (2WB-2)} or { pu1AWorkBase, 9*u2ModLength + 48}
are not in PUKCC RAM

* u2ModLength is either: < 12, > Oxffc or not a 32-bit length

+ Alloverlapping between {pu1ModCnsBase, 2*u2ModLength + 16}, {pu1PointABase,
(3*(u2ModLength + 4)) * (2WA-2))y {pu1PointBBase, (3*(u2ZModLength + 4)) * (2WB-2))} or
{pu1AWorkBase, 9*u2ModLength + 48}.

37.3.6.6.8 Parameters Placement

The parameters’ placement is described in the following figures.

@ MICROCHIP

870

Figure 37-7. Modulus P and Cns{pulModCnsBase, 2*u2ModLength + 16}

High addresses

cns
uZzModLength + 12 bytes

4 bytes to zero

P modulus
u2ModLength bytes

puiiModCnsBase —=
Low addresses

Figure 37-8. Points A and B {pulPointABase, [(3*(u2ModLength + 4)) * (2WA-2))] Or [(3*(u2ModLength + 4)) *
(2(WB-2)1}

High addresses

Frecalculus Table

4 bytes fo zero

Point.Z
uZModLength bytes

4 bytes to zero

Point.Y
u2ModLength bytes

4 bytes to zero

Point. X
uzZhodLength bytes

pu1PointABase
or — -
pu1PointBBase

Low addresses

871

@ MICROCHIP

Figure 37-9. Scalars KA and KB {pulKABBase, 2 * u2KLength + 8}

High addresses

puikKABBase

Low addresses

— -

4 bytes to zero

KB
u2ModLength bytes

4 bytes to zero

KA
u2ModLength bytes

Figure 37-10. The a parameter and Workspace {pulAWorkBase, 9*u2ModLength + 48}

@ MICROCHIP

High addresses

pulAwWorkBase

Low addresses

-

Workspace

4 bytes to zero

Output Point Z
u2ModLength bytes

4 bytes to zero

Output Point.Y
u2ModLength bytes

4 bytes to zero

Output Point.X
uzModLength bytes

4 bytes to zero

Input A
u2ModLength bytes

872

37.3.6.6.9 Status Returned Values

PUKCL_OK - The computation passed without problem.

37.3.6.7 Projective to Affine Coordinates Conversion

37.3.6.7.1 Purpose
This service is used to perform a point coordinates conversion from projective representation to
affine.

37.3.6.7.2 How to Use the Service

37.3.6.7.3 Description
The operation performed is:

Pty Affine coordinate =

PtXProjective coordinate l

(PtZ Projective coordinate)2

Pty Affine coordinate =

PtY Projective coordinate
(PtZ Projective coordinate)3
In this computation, the following parameters need to be provided:

« Atheinput pointis filled in projective coordinates (X,Y,Z) or affine coordinates for X and Y, and
setting Z to 1(pointed by {nu1PointABase,3*u2ModLength + 12}). The Point A can be the point at
infinity. In this case, the u2Status returned is PUKCL_POINT_AT_INFINITY.

* Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
+ P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
« The workspace not initialized (pointed by {nu1WorkSpace, 4*u2ModLength +48}

The result is the point A with its (X,Y) coordinates converted to affine, and the Z coordinate set to 1.
The service for this operation is ZpEcConvProjToAffine.

Important: Before using this service, ensure that the constant Cns has been
calculated with the Setup of the fast Modular Reductions service.

37.3.6.7.4 Parameters Definition

Table 37-77. ZpEccConvAf‘ﬁneToProjective Service Parameters

Data Length Before Executing the After Executing the Service
Service

nuiModBase nu1 Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P
nulCnsBase nuil | Crypto RAM u2ModLength + 8 Base of Cns Base of Cns
u2ModLength u2 | - - Length of modulus P Length of modulus P
nu1PointABase nul | Crypto RAM 3*u2ModLength + 12 Input point A Resulting point A in affine

coordinates
nulWorkspace nuil | Crypto RAM 4*u2ModLength + 48 - Workspace

37.3.6.7.5 Code Example
PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption) = 0;

@ MICROCHIP

873

PUKCL ZpEcConvProjToAffine (nulModBase) = <Base of the ram location of P>;

PUKCL ZpEcConvProjToAffine (u2ModLength) = <Byte length of P>;

PUKCL ZpEcConvProjToAffine (nulCnsBase) = <Base of the ram location of Cns>;

PUKCL ZpEcConvProjToAffine (nulPointABase) = <Base of the ram location of the A point>;
PUKCL ZpEcConvProjToAffine (nulWorkspace) = <Base of the ram location of the workspace>;

// VPUKCL Process() is a macro command, which populates the service name
// and then calls the library...

vPUKCL Process (ZpEcConvProjToAffine, &PUKCLParam) ;

if (PUKCL (u2Status) == PUKCL_ OK)

i..

else // Manage the error

37.3.6.7.6 Constraints

No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

+ nulModBase, nu1CnsBase, nu1PointABase, nu1Workspace are not aligned on 32-bit boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ZModLength + 8},{nu1PointABase,
3*u2ModLength+ 12}, {nu1Workspace, <WorkspacelLength>} are not in Crypto RAM

+ u2ModLlength is either: < 12, > 0xffc or not a 32-bit length
+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},
{nu1PointABase, 3*u2ModLength + 12} and {nu1Workspace, 4*u2ModLength + 48}

37.3.6.7.7 Status Returned Values

Table 37-78. ZpEccConvAffineToProjective Service Return Codes

PUKCL_OK - The computation passed without problem.
PUKCL_POINT_AT_INFINITY Warning The input point has its Z equal to zero, so it's a representation of the infinite point.

37.3.6.8 Affine to Projective Coordinates Conversion

37.3.6.8.1 Purpose
This service is used to perform a point coordinates conversion from an affine point representation
to projective.

37.3.6.8.2 How to Use the Service

37.3.6.8.3 Description
The operation performed is:

affine(Xa, Ya) > projective(Xp, Yp, Zp)
In this computation, the following parameters need to be provided:

« Atheinput pointis filled in affine coordinates for X and Y, and setting Z to 1 (pointed by
{nu1PointABase,3*u2ModLength + 4}).

* Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
+ P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})

+ The workspace not initialized (pointed by {nu1WorkSpace, 2*u2ModLength +16}
The result is the point A with its (X,Y,Z) projective coordinates.

The service for this operation is ZpEcConvAffineToProjective

874

@ MICROCHIP

Important: Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reductions service.

37.3.6.8.4 Parameters Definition

Table 37-79. ZpEccConvAf‘ﬁneToProjective Service Parameters

Data Length Before Executing the After Executing the Service
Service

nulModBase nu1 Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P
nulCnsBase nuil | Crypto RAM u2ModLength + 8 Base of Cns Base of Cns
u2ModLength u2 | - - Length of modulus P Length of modulus P
nulPointABase nul | Crypto RAM 3*u2ModLength + 12 Input point A Resulting point A in affine

coordinates

nulWorkspace nuil | Crypto RAM 2*u2ModLength + 16 - Workspace

37.3.6.8.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption) = 0;

PUKCL ZpEcConvAffineToProjective (nulModBase) = <Base of the ram location of P>;

PUKCL ZpEcConvAffineToProjective (u2ModLength) = <Byte length of P>;

PUKCL ZpEcConvAffineToProjective (nulCnsBase) = <Base of the ram location of Cns>;

PUKCL ZpEcConvAffineToProjective (nulPointABase) = <Base of the ram location of the A point>;
PUKCL ZpEcConvAffineToProjective (nulWorkspace) = <Base of the ram location of the workspace>;
// VPUKCL Process () is a macro command, which populates the service name

// and then calls the library...
VPUKCL Process (ZpEcConvAffineToProjective, &PUKCLParam) ;
if (PUKCL (u2Status) == PUKCL_OK)

{

else // Manage the error

37.3.6.8.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

+ nulModBase, nu1CnsBase, nu1PointABase, nu1Workspace are not aligned on 32-bit boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12}, {nu1Workspace, <WorkspaceLength>} are not in Crypto RAM

* u2ModLength is either: < 12, > 0xffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ZModLength +8},
{nu1PointABase, 3*u2ModLength + 12}, and {nu1Workspace, 2*u2ModLength + 16}

37.3.6.8.7 Status Returned Values

Table 37-80. ZpEccConvAffineToProjective Service Return Codes

PUKCL_OK - The computation passed without problem.

875

@ MICROCHIP

37.3.6.9 Randomize a Coordinate

37.3.6.9.1 Purpose
This service is used to convert the projective representation of a point to another projective
representation.

37.3.6.9.2 How to Use the Service

37.3.6.9.3 Description
The operation performed is:

Projective(Xy, Yq, Z1) - Projective(Xy, Y2, Z5)
In this computation, the following parameters need to be provided:

+ Theinput pointis filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointBase,3*u2ModLength + 12}). This Point must not be the point at infinity.

* Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
+ P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})

+ The workspace not initialized (pointed by {nu1WorkSpace, 3*u2ModLength +28}
* Therandom number (pointed by {nu1RandomBase, u2ZModLength +4}).

The result is the point nu1PointBase with its (X,Y,Z) coordinates randomized.

The service for this operation is ZpEcRandomiseCoordinate.

Important: Before using this service:

« Ensure that the constant Cns has been calculated with the setup of the
Modular Reduction service.

+ Be sure to follow the directives given for the RNG on the chip you use
(particularly initialization, seeding) and compulsorily start the RNG

37.3.6.9.4 Parameters Definition

Table 37-81. ZpEccRandomiseCoordinate Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service

nulModBase nu1 Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P

nulCnsBase nul | Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 | - - Length of modulus P Length of modulus P

nu1PointBase nul | Crypto RAM 3*u2ModLength + 12 Input point Resulting point

nulRandomBase nul | Crypto RAM u2ModLength + 4 Random Corrupted

nulWorkspace nul | Crypto RAM 3*u2ModLength + 28 - Workspace
37.3.6.9.5 Code Example

PUKCL_ PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u20ption) = 0;

// Depending on the option specified, not all fields must be filled

PUKCL ZpEccRandomiseCoordinate (nulModBase) = <Base of the ram location of P>;
PUKCL ZpEccRandomiseCoordinate (u2ModLength) = <Byte length of P>;

876

@ MICROCHIP

PUKCL _ZpEccRandomiseCoordinate (nulCnsBase) = <Base of the ram location of Cns>;
PUKCL_ZpEccRandomiseCoordinate (nulRandomBase) = <Base of the ram location where the the RNG
is stored>;

PUKCL _ZpEccRandomiseCoordinate (nulPointBase)
PUKCL _ZpEccRandomiseCoordinate (nulWorkspace)

<Base of the ram location of the point>;
<Base of the ram location of the workspace>;

// VPUKCL Process() is a macro command, which populates the service name
// and then calls the library...

vPUKCL Process (ZpEccRandomiseCoordinate, §PUKCLParam) ;

if (PUKCL (u2Status) == PUKCL_ OK)

i..

else // Manage the error

37.3.6.9.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

+ nulModBase, nu1CnsBase, nu1PointABase, nu1RandomBase, nu1Workspace are not aligned on
32-bit boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength + 12}, {nu1RandomBase, u2ModLength + 4}, {nu1Workspace,
<WorkspacelLength>} are not in Crypto RAM

* u2ModLength is either: < 12, > Oxffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength
+8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1RandomBase, u2ZModLength + 4} and
{nu1Workspace, 3*u2ModLength + 28}

37.3.6.9.7 Status Returned Values

Table 37-82. ZpEccRandomiseCoordinate Service Return Codes

PUKCL_OK - The computation passed without problem.

37.3.6.10 Point is on Elliptic Curve

37.3.6.10.1 Purpose
This service is used to test whether or not the point is on the curve.

37.3.6.10.2 How to Use the Service

37.3.6.10.3 Description
The operation performed is:
Status = IsPointOnCurve(X, Y, 2)
In this computation, the following parameters need to be provided:

+ Theinput point s filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointBase,3*u2ModLength + 4}). This Point can be the point at infinity.

+ AParam and BParam are the Elliptic Curve Equation parameters. (pointed by{nu1AParam,
u2ModLength+4} and {nu1BParam, u2ModLength+4}).

* Cns the Fast Modular Constant filled (pointed by{nu1CnsBase,u2ModLength+8}).
+ P the modulus filled (pointed by {nu1ModBase,u2ModLength +4}).

+ The workspace not initialized (pointed by {nu1WorkSpace, 4*u2ModLength +28}.
The result is the status of the point (X,Y,Z) regarding the Elliptic Curve Equation.

The service name for this operation is ZpEcPointIsOnCurve.

877

@ MICROCHIP

Note: Before using this service, ensure that the constant Cns has been calculated with the setup of
the Fast Modular Reduction service.

37.3.6.10.4 Parameters Definition

Table 37-83. ZpEcPointlsOnCurve Service Parameters

Parameter Type Direction Location Data Length Before Executing the Service After Executing the Service
nulModBase nul | Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P
nulCnsBase nul | Crypto RAM u2ModLength + 8 Base of Cns Base of Cns

u2ModLength u2 | - - Length of modulus P Length of modulus P
nulPointBase nul | Crypto RAM 3*u2ModLength + 12 Input point unchanged

nulAParam nul | Crypto RAM u2ModLength + 4 The parameter a The parameter a
nul1BParam nul | Crypto RAM u2ModLlength + 4 The parameter b The parameter b
nulWorkspace nul | Crypto RAM 4*u2ModLength + 28 - Workspace

37.3.6.10.5 Code Example

PUKCL PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption) = 0;

PUKCL ZpEcPointIsOnCurve (nulModBase) = <Base of the ram location of P>;
PUKCL _ZpEcPointIsOnCurve (u2ModLength) = <Byte length of P>;

PUKCL ZpEcPointIsOnCurve (nulCnsBase) = <Base of the ram location of Cns>;

PUKCL _ZpEcPointIsOnCurve (nulBParam) <Base of the ram location of the parameter b>;
PUKCL ZpEcPointIsOnCurve (nulPointBase) <Base of the ram location of the point>;

(
(
(
PUKCL ZpEcPointIsOnCurve (nulAParam) = <Base of the ram location of the parameter a>;
(=
(=
PUKCL ZpEcPointIsOnCurve (nulWorkspace) = <Base of the ram location of the workspace>;

// vPUKCL Process() 1s a macro command, which populates the service name
// and then calls the library...
VPUKCL Process (ZpEcPointIsOnCurve, §PUKCLParam) ;
if (PUKCL (u2Status) == PUKCL OK)
{

else // Manage the error

37.3.6.10.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

+ nulModBase, nu1CnsBase, nu1PointABase, nu1AParam, nu1BParam, nul1Workspace are not
aligned on 32-bit boundaries

+ {nu1ModBase, u2ModLength+4}, {nu1CnsBase, u2ModLength+8}, {nu1PointABase,
3*u2ModLength +12}, {nu1AParam, u2ModLength + 4}, {nu1BParam, u2ModLength + 4},
{nu1Workspace, <WorkspaceLength>} are not in Crypto RAM.

+ u2ModLength is either: < 12, > Oxffc or not a 32-bit length.

+ All overlapping between {nu1ModBase, u2ZModLength+4}, {nu1CnsBase,u2ModLength+8},
{nu1PointABase, 3*u2ModLength+12}, {nu1AParam, u2ModLength+4}, {nu1AParam,
u2ModLength + 4} and {nu1Workspace, 4*u2ModLength+28}.

37.3.6.10.7 Status Returned Values

Table 37-84. ZpEcPointlsOnCurve Service Return Codes

PUKCL_OK - The point is on the curve.
PUKCL_POINT_IS_NOT_ON_ CURVE Warning The point is not on the curve.

878

@ MICROCHIP

........ continued

PUKCL_POINT_AT_INFINITY Warning The input point has its Z equal to zero, so it's a representation of the

infinite point.

37.3.6.11 Generating an ECDSA Signature (Compliant with FIPS 186-2)

37.3.6.11.1 Purpose
This service is used to generate an ECDSA signature following the FIPS 186-2. It performs the second
step of the Signature Generation. A hash value (HashVal) must be provided as input, it has to be
previously computed from the message to be signed using a secure hash algorithm.

A scalar number must be provided too as described in the FIPS 186-2. The result (R,S) is computed
by this service.

37.3.6.11.2 How to Use the Service

37.3.6.11.3 Description
The operation performed is:

(R, S) = EcDsaSign(Pt,, HashVal, k, CurveParameters, PrivateKey)

This service processes the following checks:

If the Scalar Number k is out of the range [1, PointOrder -1], the calculus is stopped and the
status is set to PUKCL_WRONG_SELECT_NUMBER.

If R equals zero, the calculus is stopped and the status is set to PUKCL_WRONG_SELECT_NUMBER.
If S equals zero, the calculus is stopped and the status is set to PUKCL_WRONG_SELECT_NUMBER.

In this computation, the following parameters need to be provided:

A the input point is filled in “mixed” coordinates (X,Y) with the affine values and Z = 1 (pointed by
{nu1PointABase,3*u2ModLength + 12})

Cns the working space for the Fast Modular Constant not initialized (pointed by
{nu1CnsBase,u2ScalarLength + 8})

P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength + 44}
The a parameter relative to the elliptic curve (pointed by {nu1ABase, u2ZModLength + 4})

The order of the Point A on the elliptic curve (pointed by {nu10OrderPointBase, u2ScalarLength +
4})

k the input Scalar Number beforehand generated and filled (pointed
by{nu1ScalarNumber,u2ScalarLength + 4})

HashVal the hash value beforehand generated and filled (pointed by {nu1HashBase,
u2ScalarLength + 4})

The Private Key (pointed by {nu1PrivateKey, u2ScalarLength +4})
Generally, u2ScalarLength is equal to (u2ZModLength) or (u2ZModLength + 4)

@ MICROCHIP

879

Important:

For the ECDSA signature generation be sure to follow the directives given for the
RNG on the chip you use (particularly initialization, seeding) and compulsorily
start the RNG.

The scalar number k must be selected at random. This random must be
generated before the call of the ECDSA signature. For this random generation

be sure to follow the directives given for the RNG on the chip you use (particularly
initialization, seeding) and compulsorily start the RNG.

The operation performed is:

« Compute the ECDSA (R,S) as described in FIPS 186-2, but leaving the user the role of computing
the input Hash Value, thus leaving the freedom of using any other algorithm than SHA-1.

+ Compute a R value using the input A point and the scalar number.

+ Compute a S value using R, the scalar number, the private key and the provided hash value. Note
that the resulting signature (R,S) is stored at the place of the input A point.

« Ifallis correct and S is different from zero, the status is set to PUKCL_OK. If all is correct and S
equals zero,the status is set to PUKCL_WRONG_SELECT_NUMBER. If an error occurs, the status is
set to the corresponding error value (see Status Returned Values below).

The service name for this operation is ZpEcDsaGenerateFast. This service uses Fast mode and
Fast Modular Reduction for computation.

+ The signature (R,S), when resulting from a computation is given back at address of the A point:
- Routputis at offset 0 and has length (u2ScalarLength + 4)bytes.
S output is at offset (u2ScalarLength + 4) bytes and has length (u2ScalarLength + 4) bytes.
- The MSB 4 zero bytes may be suppressed to get the R and S values on u2ScalarLength bytes

Low addresses

Low addresses High addresses

R value of the resulting signature (u25calarLength Bytes) 0

4 5 value of the resulting signature (u25calarLength Bytes) 0

Memory space used

to represent a point

Memory used for storing
an ECDSA Signature

Filled with zero

High addresses

Lsb Mshb

=]

Modulus

0 uZ2ModLength + 3

880

@ MICROCHIP

37.3.6.11.4 Parameters Definition

Table 37-85. ZpEcDsaGenerateFast Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the Service | After Executing
the Service

nulModBase nul Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P
nulCnsBase nutl | Crypto RAM u2ScalarLength + 8 Base of Cns Base of Cns
u2ModLength u2 | - - Length of modulus P Length of modulus
o]
nulScalarNumber nul | Crypto RAM u2ScalarLength +4 Scalar Number used to Unchanged
multiply the point A
nu1OrderPointBase nul | Crypto RAM u2ScalarLength + 4 Order of the Point Ain the Unchanged
elliptic curve
nu1PrivateKey nul 1/0 Crypto RAM u2ScalarLength + 4 Base of the Private Key Unchanged
nu1HashBase(nul | Crypto RAM u2ScalarLength +4 Base of the hash value Unchanged
resulting from the previous
SHA
u2ScalarLength u2 | - - Length of scalar (same length Length of scalar
as the length of order)
nulPointABase® nu1 I/0 Crypto RAM 3*u2ModLength + 12 Input point A (three Resulting

coordinates (X,Y) affineand Z signature (R,S,0)
=1)

nu1ABase nul | Crypto RAM u2ModLength + 4 Parameter a of the elliptic Unchanged
curve
nulWorkspace nutl | Crypto RAM 8*u2ModLength + 44 - Corrupted
workspace
Notes:

1. The hash value calculus is defined by the ECDSA norm and depends on the elliptic curve domain
parameters. To construct the input parameter, the 4 Most Significant Bytes must be set to zero.

2. The resulting signature format is different from the point A format (see Description above for
information on the point A format).

37.3.6.11.5 Code Example

PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

// ' The Random Number Generator must be initialized and started
// ' following the directives given for the RNG on the chip

PUKCL (u20ption) = 0;

// Depending on the option specified, not all fields must be filled

PUKCL ZpEcDsaGenerate (nulModBase) = <Base of the ram location of P>; PUKCL
_ZpEcDsaGenerate (u2ModLength) = <Byte length of P>;

PUKCL ZpEcDsaGenerate (nulCnsBase) = <Base of the ram location of Cns>;
PUKCL ZpEcDsaGenerate (nulPointABase) = <Base of the A point>;

PUKCL ZpEcDsaGenerate (nulPrivateKey) = <Base of the Private Key>;

PUKCL ZpEcDsaGenerate (nulScalarNumber) = <Base of the ScalarNumber>;

PUKCL ZpEcDsaGenerate (nulOrderPointBase) = <Base of the order of A point>;
PUKCL _ZpEcDsaGenerate (nulABase) = <Base of the a parameter of the curve>;
PUKCL ZpEcDsaGenerate (nulWorkspace) = <Base of the workspace>;

PUKCL ZpEcDsaGenerate (nulHashBase) = <Base of the SHA resulting hash>;
PUKCL_ZpEcDsaGenerate (u2ScalarLength) = < Length of ScalarNumber>;

// VPUKCL Process () is a macro command, which populates the service name

// and then calls the library...
VPUKCL Process (ZpEcDsaGenerateFast, pvPUKCLParam) ;
if (PUKCL (u2Status) == PUKCL_OK)

881

@ MICROCHIP

}

else // Manage the error

37.3.6.11.6 Constraints

No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

* nulModBase, nu1CnsBase, nu1PointABase, nu1PrivateKey, nulScalarNumber,
nu1OrderPointBase,nu1ABase, nu1Workspace or nu1HashBase are not aligned on 32-bit
boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ZModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12},{nu1PrivateKey, u2ScalarLength + 4},{nu1ScalarNumber, u2ScalarLength +
4},{nu10rderPointBase, u2ScalarLength + 4}, {nu1ABase, uZModLength + 4}, {nu1Workspace,
<WorkspaceLength>} or {nu1HashBase, u2ScalarLength + 4} are not in Crypto RAM

+ u2ModLength is either: < 12, > 0xffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},
{nu1PointABase, 3*u2ModLength + 12}, {nu1PrivateKey, u2ScalarLength + 4}, {nu1ScalarNumber,
u2ScalarLength + 4}, {nu10rderPointBase, u2ScalarLength + 4}, {nu1ABase, u2ModLength + 4},
{nu1Workspace, <WorkspacelLength>} and {nu1HashBase, u2ScalarLength + 4}

37.3.6.11.7 Status Returned Values

Table 37-86. ZpEcDsaGenerateFast Service Return Codes

PUKCL_OK - The computation passed without problem. The signature is the good one.
PUKCL_WRONG_SELECTNUMBER Warning The given value for nu1ScalarNumber is not good to perform this signature
generation.

37.3.6.12 Verifying an ECDSA Signature (Compliant with FIPS186-2)

37.3.6.12.1 Purpose

This service is used to verify an ECDSA signature following the FIPS 186-2. It performs the second
step of the Signature Verification.

A hash value (HashVal) must be provided as input, it has to be previously computed from the
message to be signed using a secure hash algorithm.

As second significant input, the Signature is provided to be checked. This service checks the
signature and fills the status accordingly.

37.3.6.12.2 How to Use the Service

37.3.6.12.3 Description
The operation performed is:

Verify = EcDsaVerifySignature(Pt,, HashVal, Signature, CurveParameters, PublicKey)

The points used for this operation are represented in different coordinate systems. In this
computation, the following parameters need to be provided:

+ Atheinput pointis filled with the affine values (X,Y) and Z = 1 (pointed
by{nu1PointABase,3*u2ModLength + 12})

+ Cns the working space for the Fast Modular Constant not initialized (pointed by
{nu1CnsBase,u2ScalarLength + 8})

« P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
+ The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength + 44}
+ The a parameter relative to the elliptic curve (pointed by {nu1ABase,u2ModLength + 4})

882

@ MICROCHIP

« The order of the Point A on the elliptic curve (pointed by {nu1OrderPointBase,u2ScalarLength +
4})

« HashVal the hash value is generated prior and filled (pointed by {nu1HashBase,u2ScalarLength +
43)

+ The Public Key point is filled in “mixed” coordinates (X,Y) with the affine values and Z = 1 (pointed
by {nu1PointPublicKeyGen, 3*u2ModLength + 12})

« Theinput signature (R,S), even if it is not a Point, is represented in memory like a point in affine
coordinates (X)Y) (pointed by {nu1PointSignature, 2*u2ScalarLength + 8})
Note: For the ECDSA signature verification be sure to follow the directives given for the RNG on
the chip you use (particularly initialization, seeding) and compulsorily start the RNG.

* The operation consists in obtaining a V value with all these input parameters and checking
that V equals the provided R. If all is correct and the signature is the good one, the
status is set to PUKCL_OK. If all is correct and the signature is wrong, the status is set to
PUKCL_WRONG_SIGNATURE. If an error occurs, the status is set to the corresponding error value
(see Status Returned Values below).

37.3.6.12.4 Parameters Definition

Table 37-87. ZpEcDsaVerifyFast Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service

nulModBase nul Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P
nuiCnsBase nul | Crypto RAM u2ScalarLength + 12 Base of Cns Base of Cns
u2ModLength u2 | - - Length of modulus P Length of modulus
p
nu1OrderPointBase nutl | Crypto RAM u2ScalarLength +4 Order of the Point A in the Unchanged
elliptic curve

nu1PointSignature nul | Crypto RAM 2*u2ScalarLength + 8 Signature(r, s) Corrupted
nulHashBase(" nul | Crypto RAM u2ScalarLength +4 Base of the hash Corrupted

value resulting from the
previous SHA

u2ScalarLength u2 | - - Length of scalar Length of scalar

nu1PointABase nul 1/0 Crypto RAM 3*u2ModLength + 12 Generator point Corrupted

nu1PointPublickeyGen nul I/0 Crypto RAM 3*u2ModLength + 12 Public point Corrupted

nu1ABase nul | Crypto RAM u2ModLength + 4 Parameter a of the elliptic Unchanged

curve

nulWorkspace nutl | Crypto RAM 8*u2ModLength + 44 - Corrupted
workspace

Note:

1. The hash value calculus is defined by the ECDSA norm and depends on the elliptic curve domain
parameters. To construct the input parameter, the 4 Most Significant Bytes must be set to zero.

37.3.6.12.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u20ption) = 0;

// Depending on the option specified, not all fields must be filled
PUKCL ZpEcDsaVerify (nulModBase) = <Base of the ram location of P>;
PUKCL_ZpEcDsaVerify (u2ModLength) = <Byte length of P>;

PUKCL ZpEcDsaVerify(nulCnsBase) = <Base of the ram location of Cns>;
PUKCL ZpEcDsaVerify (nulPointABase) = <Base of the A point>;

883

@ MICROCHIP

PUKCL ZpEcDsaVerify (nulPrivateKey) = <Base of the Private Key>;

PUKCL ZpEcDsaVerify (nulScalarNumber) = <Base of the ScalarNumber>;

PUKCL_ZpEcDsaVerify (nulOrderPointBase) = <Base of the order of A point>;

PUKCL ZpEcDsaVerify (nulABase) = <Base of the a parameter of the curve>;
PUKCL ZpEcDsaVerify (nulWorkspace) = <Base of the workspace>;

PUKCL_ ZpEcDsaVerify (nulHashBase) = <Base of the SHA resulting hash>;
PUKCL ZpEcDsaVerify (u2ScalarLength) = < Length of ScalarNumber>;

// VPUKCL Process() is a macro command, which populates the service name
// and then calls the library...
vPUKCL Process (ZpEcDsaVerifyFast, pvPUKCLParam) ;

if (PUKCL(u2Status) == PUKCL_OK)
{
}ou
else
if (PUKCL (u2Status) == PUKCL WRONG SIGNATURE)

{
e

else // Manage the error

37.3.6.12.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

* nulModBase, nu1CnsBase, nu1PointABase, nu1PointPublicKeyGen, nu1PointSignature,
nu1OrderPointBase,nu1ABase, nulWorkspace or nu1HashBase are not aligned on 32-bit
boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},
{nu1PointABase, 3*u2ModLength+ 12}, {nu1PointPublicKkeyGen, 3*u2ModLength + 12},
{nu1PointSignature,2*u2ScalarLength + 8}, {nu10rderPointBase, u2ScalarLength + 4}, {nu1ABase,
u2ModLength + 4}, {nu1Workspace, <WorkspaceLength>} or {nu1HashBase, u2ScalarLength + 4}
are not in Crypto RAM

* u2ModLength is either: < 12, > Oxffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength
+8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1PointPublicKeyGen, 3*u2ModLength +
12}, {nu1PointSignature, 2*u2ScalarLength + 8}, {nu10rderPointBase, u2ScalarLength + 43},
{nu1ABase, u2ModLength + 4}, {nu1Workspace, <WorkspaceLength>} and {nu1HashBase,
u2ScalarLength + 4}

37.3.6.12.7 Status Returned Values

Table 37-88. ZpEcDsaVerifyFast Service Return Codes

PUKCL_OK - The computation passed without problem. The signature is the good one.
PUKCL_WRONG_SIGNATURE ~ Warning The signature is wrong.

37.3.6.13 Quick Verifying an ECDSA Signature (Compliant with FIPS 186-2)

37.3.6.13.1 Purpose
This service is used to verify an ECDSA signature following the FIPS 186-2. It performs the second
step of the Signature Verification using Quick Dual Multiplying to perform computation.

A hash value (HashVal) must be provided as input, it has to be previously computed from the
message whose signature is verified using a secure hash algorithm.

As second significant input, the Signature is provided to be checked.

This service checks the signature and fills the status accordingly.

884

@ MICROCHIP

Important: This service has a quick implementation without additional security.

37.3.6.13.2 How to Use the Service

37.3.6.13.3 Description
The operation performed is:

Verify = EcDsaVerifySignature(Pt,, HashVal, Signature, CurveParameters, PublicKey)
The points used for this operation are represented in different coordinate systems.

In this computation, the following parameters need to be provided (such that u2ZMaxLength =
max(u2ModLength, u2ScalarLength)):

+ Atheinput point s filled with the affine values (X,Y) and Z = 1 (pointed by {pu1PointABase,
(3*(u2ModLength + 4)) * (2(WA-2))})

« P the modulus filled and Cns the working space for the Fast Modular Constant not initialized
(pointed by {pu1ModBase, u2ModLength + u2MaxLength + 16})

+ The a parameter relative to the elliptic curve filled and workspace not initialized (pointed by
{pulAWorkBase,8*u2MaxLength + u2ZModLength + 48})

+ The order of the Point A on the elliptic curve (pointed by {pu1OrderPointBase,u2ScalarLength
+4})

+ HashVal the hash value beforehand generated and filled (pointed by
{pulHashBase,u2MaxLength +4})

+ The Public Key point is filled in “mixed” coordinates (X,Y) with the affine values and Z = 1 (pointed
by {nu1PointPublickeyGen, (3*(u2ModLength + 4)) * (2WB-2))})

+ The input signature (R,S), even if it is not a Point, is represented in memory like a point in affine
coordinates (X)Y) (pointed by {nu1PointSignature, 2*u2ScalarLength + 8})

The operation consists of obtaining a V value with all input parameters and checks that V equals
the provided R. If all is correct and the signature is the good one, the status is set to PUKCL_OK. If
all is correct and the signature is wrong, the status is set to PUKCL_WRONG_SIGNATURE. If an error
occurs, the status is set to the corresponding error value (see Status Returned Values below).

37.3.6.13.4 Parameters Definition
To place the parameters correctly the maximum of u2ModLength and u2ScalarLength must be
calculated: u2MaxLength = max(u2ModLength, u2ScalarLength)

WA is the Point A window size and WB is the Point Public Key window size (see Options below for
details).

Important: Please calculate precisely the length of areas with the formulas and
the max () service which takes the maximum of two values. Ensure that the pu1
type is a pointer on 4 bytes and contains the full address (see 37.3.3.4. Aligned
Significant Length for details).

Table 37-89. ZpEcDsaQuickVerify Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the | After Executing
Service the Service

pulModCnsBase pul | Crypto RAM u2ModLength + 4 + Base of modulus P Base of
u2MaxLength + 12 modulus P

885

@ MICROCHIP

Parameter Type| Direction| Location Data Length Before Executing the | After Executing
Service the Service

.......... continued

u20ption

u2ModLength
pulOrderPointBase
pulPointSignature
pulHashBase (see Note

1)

u2ScalarLength
puilPointABase

pu1PointPublicKeyGen

pulAWorkBase

Note:

1.

u2

pul

pul
puf

u2
puf

pul

pul

1/10

1/0

Crypto RAM

Any RAM
Crypto RAM

Crypto RAM

Crypto RAM

Crypto RAM

u2ScalarLength + 4

2*u2ScalarLength + 8
u2MaxLength + 4

(3*u2ModLength + 12) *
(2(WA-2))

(3*u2ModLength + 12) *
(2(WB-2))

(u2ModLength + 4) +
(8*u2MaxLength + 44)

Option related to the
called service (see
below)

Length of modulus P

Order of the Point A in
the elliptic curve

Signature(r, s)

Base of the hash
value resulting from
the previous SHA

Length of scalar

Generator point

Public Key point

Parameter a of the
elliptic curve and
Workspace

Length of
modulus P
Unchanged
Corrupted
Corrupted

Length of scalar

Corrupted

Corrupted

Corrupted

1. The hash value calculus is defined by the ECDSA norm and depends on the elliptic curve

domain parameters. To construct the input parameter, the 4 Most Significant Bytes must be set

to zero.

A suggested parameters placement in Crypto RAM is:

37.3.6.13.

ModCnsBase
OrderPointBase

Signature may be placed here or in Classical RAM

HashBase
PointABase

PointPublickeyGen

AWorkBase
5 Options

The options are set by the u20ptions input parameter, which is composed of:

the mandatory windows sizes WA (window for Point A) and WB (window for Point Public Key)

the indication of the presence of the Point Signature in system RAM

Important: Please check precisely if the Point Signature is in Crypto RAM. If this is
the case the PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM must not be used.

The u20ptions number is calculated by an “Inclusive OR" of the options. Some Examples in C
language are:

// Point Signature in system RAM
// The Point A window size 1is 3

// The Point Public Key window size is 4

@ MICROCHIP

886

PUKCL (u20ptions) = PUKCL_ ZPECCMUL_ SCAL IN CLASSIC RAM |
PUKCL,_ZPECCMUL WINSIZE A VAL TO OPT(3) |
PUKCL_ZPECCMUL WINSIZE B VAL TO OPT (4);

* // Point Signature in the Cryptographic RAM
// The Point A window size is 2
// The Point Public Key window size is 5
PUKCL (u20ptions) = PUKCL_ ZPECCMUL WINSIZE A VAL TO OPT(2) |
PUKCI,_ZPECCMUL WINSIZE B VAL TO OPT(5);

For this service, many window sizes are possible. The window sizes in bits are those of the
windowing method used for the scalar multiplying.

The choice of the window sizes is a balance between the size of the parameters and the
computation time:

+ Increasing the window size increases the precomputation table size.
* Increasing the window size to the optimum reduces the computation time.

The following table details the estimated windows WA and WB optimum and possible for some
curves.

Table 37-90. ZpEcDsaQuickVerify Service Estimated WA and WB Window Size

Curve Size (bits) Optimum Window size Possible Window Sizes (WA, WB) or (WB, WA)

192 5 55
256 5 55
384 6 55
521 6 4,5

The following table details the size of the point and the precomputation table, depending on the
chosen window size option.

Table 37-91. ZpEcDsaQuickVerify Service Window Size and Precomputation Table Size Options

Option Specified Point and Precomputation Table Size

PUKCL_ZPECCMUL_WINSIZE_A_VAL_TO_OPT(WA) WA in [2, 15] (3*(u2ModLength + 4)) * (2(WA-2)
PUKCL_ZPECCMUL_WINSIZE_B_VAL_TO_OPT(WB) WB in [2, 15] (3*(u2ModLength + 4)) * (2(WB-2))

The Point Signature can be located in PUKCC RAM or in system RAM. If the Point Signature is
entirely in system RAM with no part in PUKCC RAM this can be signaled by us ing the option
PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM. In all other cases this option must not be used.

The following table describes this option.

Table 37-92. ZpEcDsaQuickVerify Service Point Signature in Classical RAM Option
Option Purpose

PUKCL_ZPECCMUL_SCAL_IN_CLASSIC_RAM The Point Signature can be located in Crypto RAM or in system RAM. If the Point
Signature is entirely in system RAM with no part in PUKCC RAM this can be
signaled by using this option. In all other cases this option must not be used.

37.3.6.13.6 Code Example

PUKCL_ PARAM PUKCLParam;

PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption) = <Point Signature location and windows sizes>;

PUKCL_ ZpEcDsaQuickVerify (pulModCnsBase) = <Base of the ram location of P and Cns>;
PUKCL ZpEcDsaQuickVerify (u2ModLength) = <Byte length of P>;
PUKCL_ZpEcDsaQuickVerify(pulPointABase) = <Base of the ram location of the A point>;
PUKCL ZpEcDsaQuickVerify(pulPointPublicKeyGen) = <Base of the Public Key>;

PUKCL ZpEcDsaQuickVerify(pulPointSignature) = <Base of the Signature (r, s)>;

887

@ MICROCHIP

PUKCL ZpEcDsaQuickVerify(pulOrderPointBase) = <Base of the order of the A point>;

PUKCL ZpEcDsaQuickVerify (pulAWorkBase) = <Base of the ram location of the parameter A of the
elliptic curve and workspace>;

PUKCL ZpEcDsaQuickVerify(pulHashBase) = <Base of the SHA resulting hash>;

PUKCL ZpEcDsaQuickVerify(u2ScalarLength) = <Byte length of R and S in Point Signature>;

// vPUKCL Process() 1s a macro command, which populates the service name
// and then calls the library...
VPUKCL Process (ZpEcDsaQuickVerify, pvPUKCLParam) ;
if (PUKCL (u2Status) == PUKCL_ OK)
{

}
else
if (PUKCL (u2Status) = PUKCL_WRONG_SIGNATURE)
{

i“

else // Manage the error

37.3.6.13.7 Constraints

No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

+ pulModCnsBase, pu1PointABase, pulPointPublicKeyGen,
pu1PointSignature,pulOrderPointBase, pu1AWorkBase or pu1HashBase are not aligned on 32-
bit boundaries

+ {puTModCnsBase, u2ModLength + 4 + u2MaxLength + 12}, {pu1PointABase, (3 * u2ModLength +
12)* (2WA-2)}, {pu1PointPublicKeyGen, (3 * u2ModLength + 12) * (2WPub-2)yy fpu1OrderPointBase,
u2ScalarLength + 4}, {nu1ABase, u2ModLength + 4}, {pu1AWorkBase, (u2ZModLength + 4) + (8 *
u2MaxLength + 44)} or {nu1HashBase, u2ScalarLength + 4} are not in Crypto RAM

* u2ModLength is either: < 12, > 0xffc or not a 32-bit length

+ All overlapping between {pu1ModCnsBase, u2ZModLength + 4 + u2MaxLength + 12},
{pu1PointABase, (3 * u2ModLength + 12) * (2WA-2)}, {pu1PointPublickeyGen, (3 * u2ZModLength
+12) *(2WPub-2y1 fnu10rderPointBase, u2ScalarLength + 4}, {pu1PointSignature, 2 *
u2ScalarLength + 8}, {nu1ABase, u2ModLength + 4}, {pu1AWorkBase, (u2ZModLength + 4) + (8
* u2MaxLength + 44)} and {nu1HashBase, u2ScalarLength + 4}

37.3.6.13.8 Status Returned Values

Table 37-93. ZpEcDsaQuickVerify Service Return Codes

PUKCL_OK - The computation passed without problem. The signature is the good one.
PUKCL_WRONG_SIGNATURE Warning The signature is wrong.

37.3.6.13.9 Parameter Placement
The parameters' placement is described in detail in the following figures.

888

@ MICROCHIP

Figure 37-11. Modulus P and Cns{pulModCnsBase, u2ModLength + 4 + u2MaxLength + 12}

High addresses

cns
u2nMaxLength + 12 bytes

4 bytes to zero

P modulus
u2ModLength bytes

pulModCnsBase —m

Low addresses

Figure 37-12. Points A {pulPointABase, (3*(u2ModLength + 4)) * (2(WA-2))} and Public Key Gen
{pulPointPublickeyGen, (3*(u2ModLength + 4)) * (2(WB-2))}

High addresses

Precalculus Table

4 bytes to zero

Point.Z
u2ModLength bytes

4 bytes to zero

Point.Y
u2ModLength bytes

4 bytes to zero

Point.x

puiPointABase u2ModLength bytes
Or —-

putPointPublickeyGen

Low addresses

. 889
ﬁ\ MICROCHIP

Figure 37-13. PointSignature {pulPointSignature, 2 * u2ScalarLength + 8}

High addresses

4 bytes to zero

s
u2ModLength bytes

4 bytes to zero

R
u2ModLength bytes

puiPointSignature —e

Low addresses

Figure 37-14. The a parameter and Workspace {pulAWorkBase, 9*u2ModLength + 48}

High addresses

Workspace

4 bytes to zero

Input A

u2ModLength bytes
pulAWorkBase g

Low addresses

37.3.7 Elliptic Curves Over GF(2") Services

This section provides a complete description of the currently available elliptic curve over
Polynomials in GF(2") services.

These services process Polynomials in GF(2") only.

The offered services cover the basic operations over elliptic curves such as:
+ Adding two points over a curve

+ Doubling a point over a curve

+ Multiplying a point by an integral constant

« Converting a point’s projective coordinates (resulting from a doubling or an addition) to the affine
coordinates, and oppositely converting a point's affine coordinates to the projective coordinates.

890

@ MICROCHIP

+ Testing the point presence on the curve.

Additionally, some higher level services covering the needs for signature generation and verification

are offered:

+ Generating an ECDSA signature (compliant with FIPS186-2)

+ Verifying an ECDSA signature (compliant with FIPS 186-2) The supported curves use the following
curve equation in GF(2"):

YZ+XY=X3+aX+b

37.3.7.1 Parameters Format
Related Links
37.3.5.1. Modular Reduction
37.3.3.4. Aligned Significant Length

37.3.7.1.1 Polynomials in GF(2")
Polynomials in GF(2") are binary polynomials reduced modulo the polynomial P[X]. This polynomial
is called the modulus and may be abbreviated to P in this document. The storage of these
polynomials in memory area is described in Aligned Significant Length (see Aligned Significant Length
from Related Links).

For notation simplicity the comparison signs “<” or “>" may be used for polynomials, this is to be
interpreted as a comparison between the degree of the polynomials.

In GF(2") fully reduced polynomials are of degree strictly lower than degree(P[X]). In many cases the
polynomials used in this library are only partially reduced and so have a degree higher or equal than
degree(P[X]), but this degree is maintained strictly lower than (degree(P[X]) + 15).

37.3.7.1.2 Coordinates System
In this implementation, several choices have been made related to the coordinate systems managed
by the elliptic curve primitives.

There are two systems currently managed by the library:
+ Affine Coordinates System where each curve point has two coordinates (X,Y)
« Projective Coordinates System where each point is represented with three coordinates (X,Y,Z)

Converting from the affine coordinates system to a projective coordinates system and is performed
by extending its representation having Z = 1:

Xy =Xy, z2=1)

Converting from a projective coordinate to an affine one is a service offered by the library. The
formula to perform this conversion is:

XY, 2)=> X = ZVYIZ?

37.3.7.1.3 Points Representation in Memory
Depending on the representation (Projective or Affine), points are represented in memory as shown
in the following figure.

891

@ MICROCHIP

Figure 37-15. Point Representation in Memory

Low Addresses

Low Addresses High Addresses

X Coordinate

—] Y Coordinate

Mapping used for
affine coordinates

Z Coordinate

High Addresses
Lsb Msb

Mapping used for projective
coordinates

Modulus 0

In this figure, the modulus is represented as a reference, and to show that coordinates are always to
be provided on the length of the modulus plus one 32-bit word.

Different types of representations are listed here:

Affine representation: Pt =

XAffine < P x x15]

Yaffine < px x1°

XProjective < Px X15

Projective representation: Pt = |Yprojective < P x x1°

ZProjective <PX X15

Notes:

1. The minimum value for u2ZModLength is 12 bytes. Therefore, the significant length of the
modulus must be at least three 32-bit words.

2. In some cases the point can be the infinite point. In this case it is represented with its Z
coordinates equal or congruent to zero.

37.3.7.1.4 Modulus and Modular Constant Parameters
In most of the services the following parameters must be provided:

+ P the Modulus (often pointed by {nu1ModBase,u2ModLength + 4}): This parameter contains the
Modulus Polynomial P[X] defining the Galois Field used in points coordinates computations. The
Modulus must be u2ModLength bytes long, while having a supplemental zeroed 32-bit word on
the MSB side.

Note: Most of the Elliptic Curve computations are reduced modulo P. In many functions the
reductions are made with the Fast Reduction.

* Cns the Modular Constant (often pointed by {nu1CnsBase,u2ModLength + 12}): This parameter
contains the Modular Constant associated to the Modulus.

Important: The Modular Constant must be calculated before using the GF(2")
Elliptic Curves functions by a call to the Setup for Modular Reductions with the
GF(2") option (see Modular Reduction from Related Links).

892

@ MICROCHIP

37.3.7.1.5 Curve Parameters in Memory
Some services need one or both of the Elliptic Curve Equation Parameters a and b. In this case these
values are organized in memory as follows:

« The a Parameter relative to the Elliptic Curve Equation (often pointed by
{nu1ABase,u2ModLength +4}). The a Parameter is written in a classical way in memory. It is
u2ModLength bytes long and has a supplemental zeroed 32-bit word on the MSB side.

+ The a and b Parameters relative to the Elliptic Curve Equation (often pointed by
{nu1ABBase,2*u2ModLength + 8}):

- The a Parameter is written in memory on u2ModLength bytes long, with a supplemental
zeroed 32-bit word on the MSB side.

- The b Parameter is written in memory after the a Parameter at an offset of (u2ZModLength
+ 4) bytes. It is written in memory on u2ModLength bytes long, with a supplemental zeroed
32-bit word on the MSB side.

37.3.7.2 Point Addition

37.3.7.2.1 Purpose
This service is used to perform a point addition, based on a given elliptic curve over GF(2").

Please note that this service is not intended to add the same point twice. In this particular case, use
the doubling service (see 37.3.7.3. Point Doubling).

37.3.7.2.2 How to Use the Service

37.3.7.2.3 Description
The operation performed is:

Ptc = Pty + Ptg
In this computation, the following parameters need to be provided:

+ Point Athe input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

+ Point B the input point is filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointBBase,3*u2ModLength + 12}). This point can be the Infinite Point.

+ Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 12})

« P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})

+ The a parameter relative to the elliptic curve equation (pointed by {nu1ABase,u2ModLength + 4})
+ The workspace not initialized (pointed by {nu1WorkSpace, 7*u2ModLength + 40}

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the same place
than the input point A. This Point can be the Infinite Point.
The services for this operation are:

+ Service GF2NEccAddFast: The fast mode is used, the fast modular reduction is used in the
computations.

Important: Before using this service, ensure that the constant Cns has been
calculated with the setup of the Modular Reductions service.

893

@ MICROCHIP

37.3.7.2.4 Parameters Definition

Table 37-94. GF2NEccAddFast Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service

Base of Modulus P
Base of Cns

nulModBase nul Crypto RAM u2ModLength + 4

nulCnsBase nul | Crypto RAM u2ModLength + 12
u2ModLength u2

nulPointABase nul 1/0

Length of modulo

Crypto RAM 3*u2ModLength + 12 Input point A (projective
coordinates)

nulPointBBase nul | Crypto RAM 3*u2ModLength + 12 Input point B (projective

coordinates)

Parameter a of the elliptic
curve

Crypto RAM 7*u2ModLength + 40 -

nu1ABBase nul | Crypto RAM u2ModLength + 4

nulWorkspace nul |

37.3.7.2.5 Code Example

PUKCL PARAM PUKCLParam;

PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

//Depending on the function the Random Number Generator

//must be initialized and started

//following the directives given for the RNG on the chip

PUKCL (u20ption) = 0;

PUKCL GF2NEccAdd (nulModBase) = <Base of the ram location of P>;
PUKCL GF2NEccAdd (nulCnsBase) = <Base of the ram location of Cns>;

Base of Modulus P
Base of Cns
Length of modulo
Resulting point C

(projective coordinates)
Input point B
Unchanged

Corrupted workspace

(
PUKCL_GF2NEccAdd (u2ModLength) = <Byte length of P>;
PUKCL GF2NEccAdd (nulPointABase) = <Base of the ram location of the A point>;
PUKCL GF2NEccAdd (nulPointBBase) = <Base of the ram location of the B point>;
PUKCL_GF2NEccAdd (nulABBase) = <Base of the ram location of the a Parameter>;
PUKCL GF2NEccAdd (nulWorkspace) = <Base of the ram location of the workspace>;

// VPUKCL Process () is a macro command, which populates the service name
// and then calls the library...
VPUKCL Process (GF2NEccAddFast, pvPUKCLParam) ;
if (PUKCL(u2Status) == PUKCL OK)
{

i“

else // Manage the error

37.3.7.2.6 Constraints

No overlapping between either input and output are allowed The following conditions must be

avoided to ensure the service works correctly:

* nulModBase,nu1CnsBase, nu1PointABase, nu1PointBBase, nu1ABBase, nu1Workspace are not

aligned on 32-bit boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12}, {nu1PointBBase, 3*u2ModLength + 12}, {nu1ABase,u2ModLength + 4},

{nu1Workspace, <WorkspaceLength>} are not in Crypto RAM
* u2ModLength is either: < 12, > 0xffc or not a 32-bit length

« All overlapping between {nu1ModBase, u2ZModLength + 4}, {nu1CnsBase, u2ModLength
+8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1PointBBase, 3*u2ModLength + 12},

{nu1ABase,u2ModLength + 4} and {nu1Workspace, 5*u2ModLength + 32}
37.3.7.2.7 Status Returned Values

Table 37-95. GF2NEccAddFast Service Return Codes

PUKCL_OK - The computation passed without errors.

@ MICROCHIP

894

37.3.7.3 Point Doubling

37.3.7.3.1 Purpose
This service is used to perform a Point Doubling, based on a given elliptic curve over GF(2").

37.3.7.3.2 How to Use the Service

37.3.7.3.3 Description
The operation performed is:

Ptc= 2% PtA
In this computation, the following parameters need to be provided:

+ Atheinput pointis filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

* Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength +8})
+ P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})
+ The workspace not initialized (pointed by {nu1WorkSpace, 4*u2ModLength +28}

+ The a and b Parameters relative to the Elliptic Curve Equation (pointed by
{nu1ABBase,2*u2ModLength+ 8})

+ The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the very
same place than the input point A. This point can be the Infinite Point.

The service name for this operation is GF2NEccDb1Fast. This service uses Fast mode and Fast
Modular Reduction for computation.

Important: Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reductions service.

37.3.7.3.4 Parameters Definition

Table 37-96. GF2NEccDblFast Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service

nulModBase nu1 Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P
nulCnsBase nuil | Crypto RAM u2ModLength +12 Base of Cns Base of Cns
u2ModLength u2 | - - Length of modulus P Length of modulus P
nu1ABBase u2 | Crypto RAM 2*u2ModLength +8 Parameters a and b of the Parameter a and b of the

elliptic curve elliptic curve
nulPointABase nul /O Crypto RAM 3*u2ModLength + 12 Input point A (projective Resulting point C

coordinates) (projective coordinates)
nulWorkspace nul | Crypto RAM 4*u2ModLength + 28 - Corrupted workspace

37.3.7.3.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption) = 0;

PUKCL _GF2NEccDbl (nulModBase) = <Base of the ram location of P>;

PUKCL GF2NEccDbl (u2ModLength) = <Byte length of P>;

PUKCL _GF2NEccDbl (nulCnsBase) = <Base of the ram location of Cns>;

PUKCL GF2NEccDbl (nulPointABase) = <Base of the ram location of the A point>;

PUKCL GF2NEccDbl (nulABBase) = <Base of the a and b parameters of the elliptic curve>;
(nulWorkspace) = <Base of the ram location of the workspace>;

PUKCL _GF2NEccDbl

895

@ MICROCHIP

// vPUKCL Process() 1is a macro command, which populates the service name
// and then calls the library...
VPUKCL Process (GF2NEccDblFast, §PUKCLParam) ;
if (PUKCL (u2Status) == PUKCL OK)
{

else // Manage the error

37.3.7.3.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure the service works correctly:

* nulModBase, nu1CnsBase, nu1PointABase, nu1ABBase, nu1Workspace are not aligned on 32-bit
boundaries

+ {nu1ModBase, u2ZModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12}, {nu1ABBase, 2*u2ModLength + 8}, {nu1Workspace, <WorkspacelLength>}
are not in Crypto RAM

* u2ModLength is either: < 12, > Oxffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},
{nu1PointABase, 3*u2ModLength + 12}, {nu1ABase, u2ModLength + 4} and {nu1Workspace,
4*u2ModLength + 28}

37.3.7.3.7 Status Returned Values

Table 37-97. GF2NEccDblFast Service Return Codes

PUKCL_OK - The computation passed without problem.

37.3.7.4 Scalar Point Multiply

37.3.7.4.1 Purpose
This service is used to multiply a point by an integral constant K on a given elliptic curve over GF(2").

37.3.7.4.2 How to Use the Service

37.3.7.4.3 Description
The operation performed is:

Ptc = Kx Pty
In this computation, the following parameters need to be provided:

+ Atheinput pointis filled in projective coordinates (X,Y,Z) (pointed by
{nu1PointABase,3*u2ModLength + 12}). This point can be the Infinite Point.

+ Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 8})
« P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
+ The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength + 44}

+ The a and b parameters relative to the elliptic curve (pointed by {nu1ABBase,2*u2ModLength +
8}
+ Kthe scalar number (pointed by {nu1ScalarNumber,u2ScalarLength + 4})

The resulting C point is represented in projective coordinates (X,Y,Z) and is stored at the very same
place than the input point A. This point can be the Infinite Point.

The service name for this operation is GF2NEccMulFast. This service uses Fast mode and Fast
Modular Reduction for computation.

896

@ MICROCHIP

Important: Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reductions service.

37.3.7.4.4 Parameters Definition

Table 37-98. GF2NEccMulFast Service Parameters

Data Length Before Executing the Service | After Executing the
Service

nulModBase nu Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P
nulCnsBase nul | Crypto RAM u2ModLength +12 Base of Cns Base of Cns
u2ModLength u2 | - - Length of modulus P Length of modulus P
nu1KBase nul | Crypto RAM u2KLength Scalar number used to Unchanged
multiply the point A
u2KLength u2 | - - Length of scalar K Length of scalar K
nulPointBase nul /O Crypto RAM 3*u2ModLength + 12 Input point A (projective Resulting point C
coordinates) (projective coordinates)
nulABase nul | Crypto RAM 2*u2ModLength + 8 Parameters a and b of the Unchanged
elliptic curve
nulWorkspace nul | Crypto RAM 8*u2ModLength + 44 - Corrupted workspace
37.3.7.4.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

PUKCL (u20ption) = 0;

PUKCL _GF2NEccMul (nulModBase) = <Base of the ram location of P>;

PUKCL _GF2NEccMul (u2ModLength) = <Byte length of P>;

PUKCL GF2NEccMul (nulCnsBase) = <Base of the ram location of Cns>;

PUKCL GF2NEccMul (nulPointBase) = <Base of the ram location of the A point>;
PUKCL _GF2NEccMul (nulABase) = <Base of the ram location of the parameters a and b of the
elliptic

curve>;

PUKCL _GF2NEccMul (nulKBase) = <Base of the ram location of the scalar number>;
PUKCL GF2NEccMul (nulWorkspace) = <Base of the ram location of the workspace>;
PUKCL _GF2NEccMul (u2KLength) = <Length of the ram location of the scalar number>;
// VPUKCL Process () is a macro command, which populates the service name

// and then calls the library...
vVPUKCL Process (GF2NEccMulFast, &PUKCLParam) ;
if (PUKCL (u2Status) == PUKCL_OK)

{

else // Manage the error

37.3.7.4.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure the service works correctly:

+ nulModBase, nu1CnsBase, nu1PointBase, nu1ABase, nu1KBase, nu1Workspace are not aligned
on 32-bit boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointBase,
3*u2ModLength+ 12}, {nu1ABase, 2*u2ModLength + 8}, {nu1KBase, u2KLength} or
{nu1Workspace, 8*u2ModLength + 44} are not in Crypto RAM

* u2ModLength is either: < 12, > 0xffc or not a 32-bit length

897

@ MICROCHIP

« All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},
{nu1PointBase, 3*u2ModLength + 12}, {nu1ABase, 2*u2ModLength + 8}, {nu1KBase, u2KLength}
and {nu1Workspace, 8*u2ModLength + 44}

37.3.7.4.7 Status Returned Values

Table 37-99. GF2NEccMulFast Service Return Codes

PUKCL_OK - The computation passed without problem.

37.3.7.5 Projective to Affine Coordinates Conversion

37.3.7.5.1 Purpose

This service is used to perform a point coordinates conversion from a projective representation to
an affine.

37.3.7.5.2 How to Use the Service

37.3.7.5.3 Description
The operation performed is:

Pt _ PtXProjective coordinate
X Affine coordinate —
(PtZ Projective coordinate)

Pty Affine coordinate =

Pty Projective coordinate
(PtZ Projective coordinate)z
In this computation, the following parameters need to be provided:

+ Atheinput pointis filled in projective coordinates (X,Y,Z) or affine coordinates for X and Y, and
setting Z to 1 (pointed by {nu1PointABase,3*u2ModLength + 12}). The Point A can be the point at
infinity. In this case, the u2Status returned is PUKCL_POINT_AT_INFINITY.

+ Cnsthe Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 8})
« P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
+ The workspace not initialized (pointed by {nu1WorkSpace, 4*u2ModLength + 48}

The result is the point A with its (X,Y) coordinates converted to affine, and the Z coordinate set to 1.

The service name for this operation is GF2NEcConvProjToAffine.

Important: Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reductions service.

37.3.7.5.4 Parameters Definition

Table 37-100. GF2NEcConvProjToAffine Service Parameters

Data Length Before Executing the After Executing the Service
Service

nulModBase nuil | Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P
nulCnsBase nul | Crypto RAM u2ModLength +12 Base of Cns Base of Cns
u2ModLength u2 | - - Length of modulus P Length of modulus P
nulPointABase nul | Crypto RAM 3*u2ModLength + 12 Input point A Resulting point A in affine
coordinates
nulWorkspace nuil | Crypto RAM 4*u2ModLength +48 - Workspace

898

@ MICROCHIP

37.3.7.5.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u20ption) = 0;

PUKCL GF2NEcConvProjToAffine (nulModBase) = <Base of the ram location of P>;

PUKCL _GF2NEcConvProjToAffine (u2ModLength) = <Byte length of P>;

PUKCL _GF2NEcConvProjToAffine (nulCnsBase) = <Base of the ram location of Cns>;

PUKCL GF2NEcConvProjToAffine (nulPointABase) = <Base of the ram location of the A point>;
PUKCL _GF2NEcConvProjToAffine (nulWorkspace) = <Base of the ram location of the workspace>;
// VPUKCL_ Process() is a macro command, which populates the service name

// and then calls the library...
vPUKCL Process (GF2NEcConvProjToAffine, &PUKCLParam) ;
if (PUKCL (u2Status) == PUKCL_OK)

{

else // Manage the error

37.3.7.5.6 Constraints

No overlapping between either input and output are allowed. The following conditions must be

avoided to ensure the service works correctly:

+ nulModBase, nu1CnsBase, nu1PointABase, nu1Workspace are not aligned on 32-bit boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},{nu1PointABase,
3*u2ModLength + 12}, {nu1Workspace, <WorkspaceLength>} are not in Crypto RAM

* u2ModLlength is either: < 12, > 0xffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ZModLength + 8},

{nu1PointABase, 3*u2ModLength + 12} and {nu1Workspace, 4*u2ModLength + 48}
37.3.7.5.7 Status Returned Values

Table 37-101. GF2NEcConvProjToAffine Service Return Codes

PUKCL_OK - The computation passed without problem.

PUKCL_POINT_AT_INFINITY Warning The input point has its Z equal to zero, so it is a representation of the infinite point.

37.3.7.6 Affine to Projective Coordinates Conversion
37.3.7.6.1 Purpose

This service is used to perform a point coordinates conversion from an affine point representation

to projective.
37.3.7.6.2 How to Use the Service

37.3.7.6.3 Description
The operation performed is:

affine(Xa, Ya) > projective(Xp, Yp, Zp)
In this computation, the following parameters need to be provided:

+ Atheinput pointis filled in affine coordinates for X and Y, and setting Z to 1 (pointed by

{nu1PointABase,3*u2ModLength + 4}).
* Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 8})
+ P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})

@ MICROCHIP

899

+ The workspace not initialized (pointed by {nu1WorkSpace, 2*u2ModLength +16} The result is the
point A with its (X)Y,Z) projective coordinates.

The service name for this operation is GF2NEcConvAffineToProjective.

Important: Before using this service, ensure that the constant Cns has been
calculated with the setup of the Fast Modular Reductions service.

37.3.7.6.4 Parameters Definition

Table 37-102. GFZNEcConvAfﬁneToProjective Service Parameters

Data Length Before Executing the After Executing the Service
Service

nuiModBase nu1 Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P
nulCnsBase nuil | Crypto RAM u2ModLength + 8 Base of Cns Base of Cns
u2ModLength u2 | - - Length of modulus P Length of modulus P
nu1PointABase nul | Crypto RAM 3*u2ModLength + 12 Input point A Resulting point A in affine

coordinates

nulWorkspace nuil | Crypto RAM 2*u2ModLength + 16 - Workspace

37.3.7.6.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u20ption) = 0;

PUKCL GF2NEcConvAffineToProjective (nulModBase) = <Base of the ram location of P>;
PUKCL :GF2NEcConvAffineToProjective(uZMOdLength) = <Byte length of P>;

PUKCL GF2NEcConvAffineToProjective (nulCnsBase) = <Base of the ram location of Cns>;
PUKCL GF2NEcConvAffineToProjective (nulPointABase) = <Base of the ram location of the A
point>;

PUKCL GF2NEcConvAffineToProjective (nulWorkspace) = <Base of the ram location of the
workspace>;

// VPUKCL Process() is a macro command, which populates the service name
// and then calls the library...
VPUKCL Process (GF2NEcConvAffineToProjective, &PUKCLParam) ;
if (PUKCL (u2Status) == PUKCL OK)
{

}

else // Manage the error

37.3.7.6.6 Constraints

No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

* nulModBase, nu1CnsBase, nu1PointABase, nu1Workspace are not aligned on 32-bit boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength + 12}, {nu1Workspace, <WorkspacelLength>} are not in Crypto RAM

* u2ModLength is either: < 12, > Oxffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},
{nu1PointABase, 3*u2ModLength + 12}, and {nu1Workspace, 2*u2ModLength + 16}

@ MICROCHIP

900

37.3.7.6.7 Status Returned Values

Table 37-103. GF2NEcConvAffineToProjective Service Return Codes

PUKCL_OK - The computation passed without problem.

37.3.7.7 Randomize Coordinate

37.3.7.7.1 Purpose
This service is used to convert the Projective representation of a point to another Projective
representation.

37.3.7.7.2 How to Use the Service

37.3.7.7.3 Description
The operation performed is:

Projective(Xy, Y1, Z1) - Projective(X3, Y2, Z5)

n this computation, the following parameters need to be provided:

The input point is filled in projective coordinates (X,Y,Z) (pointed by

{nu1PointBase,3*u2ModLength + 12}). This Point must not be the point at infinity.
Cns the Fast Modular Constant filled (pointed by {nu1CnsBase,u2ModLength + 8})

P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})

The workspace not initialized (pointed by {nu1WorkSpace, 3*u2ModLength + 28}

The random number (pointed by {nu1RandomBase, u2ZModLength + 4}) The result is the
point nu1PointBase with its (X,Y,Z) coordinates randomized. The service for this operation is

GF2NEcRandomiseCoordinate.

Important:
Before using this service:

« Ensure that the constant Cns has been calculated with the Setup of the fast

Modular Reductions service.

+ Be sure to follow the directives given for the RNG on the chip you use
(particularly initialization, seeding) and compulsorily start the RNG.

37.3.7.7.4 Parameters Definition

Table 37-104. GF2NEcRandomiseCoordinate Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the After Executing the
Service Service

nulRandomBase nu1 Crypto RAM u2ModLength + 4 Random

Crypto RAM 3*u2ModLength + 28 -

nulModBase nul | Crypto RAM u2ModLength + 4 Base of modulus P
nulCnsBase nul | Crypto RAM u2ModLength + 8 Base of Cns
u2ModLength u2 | - - Length of modulus P
nu1PointBase nul | Crypto RAM 3*u2ModLength + 12 Input point

|

|

nulWorkspace nul

37.3.7.7.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started

@ MICROCHIP

Base of modulus P
Base of Cns

Length of modulus P
Resulting point
Corrupted
Workspace

901

// ! following the directives given for the RNG on the chip

PUKCL (u20ption) = 0;

// Depending on the option specified, not all fields must be filled

PUKCL _GF2NEcRandomiseCoordinate (nulModBase) = <Base of the ram location of P>;

PUKCL GF2NEcRandomiseCoordinate (u2ModLength) = <Byte length of P>;

PUKCL _GF2NEcRandomiseCoordinate (nulCnsBase) = <Base of the ram location of Cns>;
PUKCL_GF2NEcRandomiseCoordinate (nulRandomBase) = <Base of the ram location where the the rng
is stored>;

PUKCL GF2NEcRandomiseCoordinate (nulPointBase) = <Base of the ram location of the point>;
PUKCL _GF2NEcRandomiseCoordinate (nulWorkspace) =
<Base of the ram location of the workspace>;

// vPUKCL Process() 1s a macro command, which populates the service name
// and then calls the library...
VPUKCL_ Process (GF2NEcRandomiseCoordinate, §PUKCLParam) ;
if (PUKCL (u2Status) == PUKCL OK)
{

}

else // Manage the error

37.3.7.7.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

* nulModBase, nu1CnsBase, nu1PointABase, nu1RandomBase, nu1Workspace are not aligned on
32-bit boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ZModLength + 8}, {nu1PointABase,
3*u2ModLength + 12}, {nu1RandomBase, u2ModLength + 4}, {nu1Workspace,
<WorkspacelLength>} are not in Crypto RAM

* u2ModLength is either: < 12, > 0xffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ZModLength + 4}, {nu1CnsBase, u2ModLength
+ 8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1RandomBase, u2ZModLength + 4} and
{nu1Workspace, 3*u2ModLength + 28}

37.3.7.7.7 Status Returned Values

Table 37-105. GF2NEcRandomiseCoordinate Service Return Codes

PUKCL_OK - The computation passed without problem.

37.3.7.8 Point is on Elliptic Curve

37.3.7.8.1 Purpose
This service is used to test whether the point is on the curve.

37.3.7.8.2 How to Use the Service

37.3.7.8.3 Description
The operation performed is:

Status = IsPointOnCurve(X, Y, Z2);
In this computation, the following parameters need to be provided:

« The input points filled in projective coordinates (X, Y, Z) (pointed by {nu1PointBase,
3*U2ModLength + 4}). This point can be point at infinity.

+ AParam and BParam are the Elliptic Curve Equation parameters (pointed by {nu1AParam,
u2ModLength+ 4} and {nu1BParam, u2ModLength + 4}).

+ Cns the Fast Modular Constant filled (pointed by {nu1CnsBase, u2ZModLength + 8})

902

@ MICROCHIP

+ P the modulus filled (pointed by {nu1ModBase, u2ZModLength + 8})
+ The workspace not initialized (pointed by {nu1WorkSpace, 4*u2ModLength + 28})

The service name for this operation is GF2NEcPointIsOnCurve.

Important: Before using this service, the constant Cns must have been
calculated with the Fast Modular Reduction service.

37.3.7.8.4 Parameters Definition

Table 37-106. GF2NEcPointlsOnCurve Service Parameters

Data Length Before Executing the Service | After Executing the Service

nulModBase nu Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P
nulCnsBase nul | Crypto RAM u2ModLength + 8 Base of Cns Base of Cns
u2ModLength u2 | - - Length of modulus P Length of modulus P
nulPointBase nul | Crypto RAM 3*u2ModLength + 12 Input point Unchanged
nulAParam nul | Crypto RAM u2ModLength + 4 The parameter a Unchanged
nul1BParam nul | Crypto RAM u2ModLength + 4 The parameter b Unchanged
nulWorkspace nul | Crypto RAM 4*u2ModLength + 28 N/A Workspace
37.3.7.8.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u20ption) = 0;
// Depending on the option specified, not all fields must be filled
PUKCL GF2NEcPointIsOnCurve (nulModBase) = <Base of the ram location of P>;
PUKCL _GF2NEcPointIsOnCurve (u2ModLength) = <Byte length of P>;
PUKCL GF2NEcPointIsOnCurve (nulCnsBase) = <Base of the ram location of Cns>;
PUKCL :GF2NEcPointIsOnCurve(nulPointABase) = <Base of the A point>;
PUKCL GF2NEcPointIsOnCurve (nulAParam) = <Base of the ram location of the parameter a>;
PUKCL GF2NEcPointIsOnCurve (nulBParam) = <Base of the ram location of the parameter b>;
PUKCL GF2NEcPointIsOnCurve (nulPointBase) = <Base of the ram location of the point>;
(

PUKCL :GF2NEcPointIsOnCurve nulWorkspace) <Base of the ram location of the workspace>;

// VPUKCL Process () is a macro command, which populates the service name
// and then calls the library...
VPUKC L Process (GF2NEcPointIsOnCurve,
pvPUKCLParam) ;
if (PUKCL (u2Status) == PUKCL OK)
{

else // Manage the error

37.3.7.8.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure that the service works correctly:

* nulModBase, nu1CnsBase, nu1PointABase, nu1AParam, nu1BParam and nu1Workspace are not
aligned on 32-bit boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8}, {nu1PointABase,
3*u2ModLength + 12}, {nu1AParam, u2ModLength + 4}, {nu1BParam, u2ModLength + 4},
{nu1Workspace, 4*u2ModLength + 28} are not in Crypto RAM

903

@ MICROCHIP

u2ModLength is either: < 12, > Oxffc or not a 32-bit length

All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +
8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1AParam, u2ModLength + 4}, {nu1BParam,
u2ModLength + 4} and {nu1Workspace, 4*u2ModLength + 28}

37.3.7.8.7 Status Returned Values

Table 37-107. GF2NEcPointlsOnCurve Service Return Codes

PUKCL_OK - The point is on the curve.

PUKCL_POINT_IS_NOT_ON_CURVE Warning The point is not on the curve.

PUKCL_POINT_AT_INFINITY Warning The input point has its Z equal to zero, so it's a representation of the infinite
point.

37.3.7.9 Generating an ECDSA Signature (Compliant with FIPS 186-2)
37.3.7.9.1 Purpose

This service is used to generate an ECDSA signature following the FIPS 186-2. It performs the second

step of the Signature Generation. A hash value (HashVal) must be provided as input, it has to be
previously computed from the message to be signed using a secure hash algorithm.

A scalar number must be provided, as described in the FIPS 186-2.

The result (R,S) is computed by this service. If S equals zero, the status is set to
PUKCL_WRONG_SELECT_NUMBER.

37.3.7.9.2 How to Use the Service

37.3.7.9.3 Description
The operation performed is:

(R, S) = EcDsaSign(Pt,, HashVal, k, CurveParameters, PrivateKey)

This service processes the following checks:

If the Scalar Number k is out of the range [1, PointOrder -1], the calculus is stopped and the
status is set to PUKCL_WRONG_SELECT_NUMBER.

If R equals zero, the calculus is stopped and the status is set to PUKCL_WRONG_SELECT_NUMBER.
If S equals zero, the calculus is stopped and the status is set to PUKCL_WRONG_SELECT_NUMBER.

In this computation, the following parameters need to be provided:

A the input point is filled in “mixed” coordinates (X,Y) with the affine values and Z = 1 (pointed by
{nu1PointABase,3*u2ModLength + 12})

Cns the working space for the Fast Modular Constant not initialized (pointed by
{nu1CnsBase,u2ScalarLength + 8})

P the modulus filled (pointed by {nu1ModBase,u2ModLength + 4})
The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength + 44}

The a and b parameters relative to the elliptic curve equation (pointed by {nu1ABBase,
2*u2ModLength + 8})

The order of the Point A on the elliptic curve (pointed by {nu10OrderPointBase, u2ScalarLength +
4})

k the input Scalar Number beforehand generated and filled (pointed
by{nu1ScalarNumber,u2ScalarLength + 4})

HashVal the hash value beforehand generated and filled (pointed by {nu1HashBase,
u2ScalarLength +4})

@ MICROCHIP

904

* The Private Key (pointed by {nu1PrivateKey, u2ScalarLength +4})
* Generally u2ScalarLength is equal to (u2ZModLength) or (u2ZModLength + 4)

Important:

For the ECDSA signature generation be sure to follow the directives given for the
RNG on the chip you use (particularly initialization, seeding) and compulsorily
start the RNG.

The scalar number k must be selected at random. This random must be
generated before the call of the ECDSA signature. For this random generation

be sure to follow the directives given for the RNG on the chip you use (particularly
initialization, seeding) and compulsorily start the RNG.

The operation performed is:

+ Compute the ECDSA (R,S) as described in FIPS 186-2, but leaving the user the role of computing
the input Hash Value, thus leaving the freedom of using any other algorithm than SHA-1.

+ Compute a R value using the input A point and the scalar number.

+ Compute a S value using R, the scalar number, the private key and the provided hash value. Note
that the resulting signature (R,S) is stored at the place of the input A point.

« Ifallis correct and S is different from zero, the status is set to PUKCL_OK. If all is correct and S
equals zero,the status is set to PUKCL_WRONG_SELECT_NUMBER. If an error occurs, the status is
set to the corresponding error value (see Status Returned Values below).

The service name for this operation is GF2NEcDsaGenerateFast. The fast mode is used, the fast
modular reduction is used in the computations.

« The signature (R,S), when resulting from a computation is given back at address of the A point:
- The R value result with u2ModLength + 4 bytes (padded with zeros).
- The Svalue result with u2ModLength + 4 bytes (padded with zeros)
- The u2NLength + 4 following bytes (space for the third coordinate of A) are filled with zeros.

Low addresses

Low addresses High addresses

R value of the resulting signature (u25calarLength Byles) 0

4 S value of the resulting signature (u2ScalarLength Bytes) 0

Memory space used
to represent a point
Memory used for storing
an ECDS4A Signature

Filled with zero

High addreszes

Lzb Msb

=]

Modulus

0 uZModLength + 3

905

@ MICROCHIP

37.3.7.9.4 Parameters Definition

Table 37-108. GF2NEcDsaGenerateFast Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the Service | After Executing
the Service

Base of modulus P

nulModBase nul Crypto RAM u2ModLength + 4 Base of modulus P
nulCnsBase nul | Crypto RAM u2ScalarLength + 12 Base of Cns
u2ModLength u2 | - - Length of modulus P

Scalar Number used to
multiply the point A

Order of the Point A in the

nulScalarNumber nul | Crypto RAM u2ScalarLength + 4

nu1OrderPointBase nul | Crypto RAM u2ScalarLength + 4

elliptic curve
nu1PrivateKey nul 1/0 Crypto RAM u2ScalarLength + 4 Base of the Private Key
nu1HashBase(nutl | Crypto RAM u2ScalarLength +4 Base of the hash value

resulting from the previous
SHA

Length of scalar (same length
as the length of order)

u2ScalarLength u2 | - -

nu1PointABase nul 1/0 Crypto RAM 3*u2ModLength + 12 Input point A (three
coordinates (XY) affine and Z
=1)

nulABase nul | Crypto RAM 2*u2ModLength + 8 Parameter a of the elliptic
curve

nu1Workspace nul | Crypto RAM 8*u2ModLength + 44 -

Note:

Base of Cns

Length of modulus

o]
Unchanged

Unchanged
Unchanged
Unchanged
Length of scalar

Resulting
signature (R,S,0)

Unchanged

Corrupted
workspace

1. Whatever the chosen SHA, the resulting hash value may have a length inferior or equal to the
modulo length and be padded with zeros until its total length is u2ZModLength + 4.

37.3.7.9.5 Code Example

PUKCL PARAM PUKCLParam;
PPUKCL PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip
PUKCL (u20ption) = 0;

// Depending on the option specified, not all fields must be filled

PUKCL GF2NEcDsaGenerate (nulModBase) = <Base of the ram location of P>;

PUKCL GF2NEcDsaGenerate (u2ModLength) = <Byte length of P>;

PUKCL _GF2NEcDsaGenerate (nulCnsBase) = <Base of the ram location of Cns>;
PUKCL GF2NEcDsaGenerate (nulPointABase) = <Base of the A point>;

PUKCL GF2NEcDsaGenerate (nulPrivateKey) = <Base of the Private Key>;

PUKCL _GF2NEcDsaGenerate (nulScalarNumber) = <Base of the ScalarNumber>;

PUKCL GF2NEcDsaGenerate (nulOrderPointBase) = <Base of the order of A point>;
PUKCL GF2NEcDsaGenerate (nulABase) = <Base of the a parameter of the curve>;
_GF2NEcDsaGenerate (nulWorkspace) = <Base of the workspace>;

PUKCL GF2NEcDsaGenerate (nulHashBase) = <Base of the SHA resulting hash>;

// vPUKCL Process () is a macro command,
// and then calls the library...
VPUKCL Process (GF2NEcDsaGenerateFast,
if (PUKCL (u2Status) == PUKCL_OK)

{

which populates the service name

pvPUKCLParam) ;

i..

else // Manage the error

@ MICROCHIP

PUKCL

906

37.3.7.9.6 Constraints

No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure the service works correctly:

* nulModBase, nu1CnsBase, nu1PointABase, nu1PrivateKey, nu1ScalarNumber,
nu1OrderPointBase,nu1ABase, nu1Workspace or nu1HashBase are not alighed on 32-bit
boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ZModLength + 8}, {nu1PointABase,
3*u2ModLength+ 12},{nu1PrivateKey, u2ScalarLength + 4},{nu1ScalarNumber, u2ScalarLength +
4},{nu10rderPointBase, u2ScalarLength + 4}, {nu1ABase, u2ZModLength + 4}, {nu1Workspace,
<WorkspacelLength>} or {nu1HashBase, u2ScalarLength + 4} are not in Crypto RAM

* u2ModLlength is either: < 12, > 0xffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength +8},
{nu1PointABase, 3*u2ModLength + 12}, {nu1PrivateKey, u2ScalarLength + 4}, {nu1ScalarNumber,
u2ScalarLength + 4}, {nu10rderPointBase, u2ScalarLength + 4}, {nu1ABase, u2ModLength + 4},
{nu1Workspace, <WorkspacelLength>} and {nu1HashBase, u2ScalarLength + 4}

37.3.7.9.7 Status Returned Values

Table 37-109. GF2NEcDsaGenerate Fast Service Return Codes

PUKCL_OK - The computation passed without problem.
PUKCL_WRONG_SELECTNUMBER Warning The given value for nu1ScalarNumber is not good to perform this signature
generation.

37.3.7.10 Verifying an ECDSA Signature (Compliant with FIPS 186-2)

37.3.7.10.1 Purpose

This service is used to verify an ECDSA signature following the FIPS 186-2. It performs the second
step of the Signature Verification.

A hash value (HashVal) must be provided as input, it has to be previously computed from the
message to be signed using a secure hash algorithm.

As second significant input, the Signature is provided to be checked. This service checks the
signature and fills the status accordingly.

37.3.7.10.2 How to Use the Service

37.3.7.10.3 Description
The operation performed is:

Verify = EcDsaVerifySignature(Pt,, HashVal, Signature, CurveParameters, PublicKey)

The points used for this operation are represented in different coordinate systems. In this
computation, the following parameters need to be provided:

« Atheinput pointis filled with the affine values (X,Y) and Z = 1 (pointed
by{nu1PointABase,3*u2ModLength + 12})

+ Cns the working space for the Fast Modular Constant not initialized (pointed by
{nu1CnsBase,u2ScalarLength + 8})

+ P the modulus filled (pointed by {nu1ModBase,u2ModLength +4})

« The workspace not initialized (pointed by {nu1WorkSpace, 8*u2ModLength +44} The a and b
parameters relative to the elliptic curve (pointed by {nu1ABase,2*u2ModLength + 8})

+ The order of the Point A on the elliptic curve (pointed by {nu1OrderPointBase,u2ScalarLength
+4})

907

@ MICROCHIP

+ HashVal the hash value beforehand generated and filled (pointed by
{nu1HashBase,u2ScalarLength +4})

+ The Public Key point is filled in “mixed” coordinates (X,Y) with the affine values and Z = 1 (pointed
by {nu1PointPublicKkeyGen, 3*u2ModLength + 12})

+ Theinput signature (R,S), even if it is not a Point, is represented in memory like a point in affine
coordinates (X)Y) (pointed by {nu1PointSignature, 2*u2ScalarLength + 8})

Important: For the ECDSA signature verification be sure to follow the
directives given for the RNG on the chip you use (particularly initialization,
seeding) and compulsorily start the RNG.

+ The operation consists in obtaining a V value with all these input parameter and check
that V equals the provided R. If all is correct and the signature is the good one, the
status is set to PUKCL_OK. If all is correct and the signature is wrong, the status is set to
PUKCL_WRONG_SIGNATURE. If an error occurs, the status is set to the corresponding error value
(see Status Returned Values below).

The service name for this operation is GF2NEcDsaVerifyFast. This service uses Fast mode and
Fast Modular Reduction for computation.

37.3.7.10.4 Parameters Definition

Table 37-110. GF2NEcDsaVerifyFast Service Parameters

Parameter Type| Direction| Location Data Length Before Executing the After Executing
Service the Service

nulModBase nul Crypto RAM u2ModLength + 4 Base of modulus P Base of modulus P
nuiCnsBase nul | Crypto RAM u2ScalarLength + 8 Base of Cns Base of Cns
u2ModLength u2 | - - Length of modulus P Length of modulus
p
nu1OrderPointBase nutl | Crypto RAM u2ScalarLength +4 Order of the Point A in the Unchanged
elliptic curve

nu1PointSignature nul | Crypto RAM 2*u2ScalarLength + 8 Signature(r, s) Corrupted
nulHashBase(" nul | Crypto RAM u2ScalarLength +4 Base of the hash Corrupted

value resulting from the
previous SHA

u2ScalarLength u2 | - - Length of scalar Length of scalar

nu1PointABase nul 1/0 Crypto RAM 3*u2ModLength + 12 Generator point Corrupted

nu1PointPublickeyGen nul I/0 Crypto RAM 3*u2ModLength + 12 Public point Corrupted

nulABase nutl | Crypto RAM 2*u2ModLength + 8 Parameter a and b of the Unchanged

elliptic curve

nulWorkspace nutl | Crypto RAM 8*u2ModLength + 44 - Corrupted
workspace

Note:

1. Whatever the chosen SHA, the resulting hash value may have a length inferior or equal to the
modulo length and be padded with zeros until its total length is u2ModLength + 4.

37.3.7.10.5 Code Example

PUKCL_PARAM PUKCLParam;
PPUKCL_PARAM pvPUKCLParam = &PUKCLParam;

// ! The Random Number Generator must be initialized and started
// ! following the directives given for the RNG on the chip

PUKCL (u20ption) = 0;

@ MICROCHIP

908

// Depending on the option specified, not all fields must be filled PUKCL
_GF2NEcDsaVerify(nulModBase) = <Base of the ram location of P>;

PUKCL GF2NEcDsaVerify (u2ModLength) = <Byte length of P>;

PUKCL GF2NEcDsaVerify (nulCnsBase) = <Base of the ram location of Cns>;
PUKCL _GF2NEcDsaVerify(nulPointABase) = <Base of the A point>;

PUKCL GF2NEcDsaVerify (nulPrivateKey) = <Base of the Private Key>;

PUKCL GF2NEcDsaVerify (nulScalarNumber) = <Base of the ScalarNumber>;

PUKCL GF2NEcDsaVerify(nulOrderPointBase) = <Base of the order of A point>;
PUKCL _GF2NEcDsaVerify(nulABase) = <Base of the a parameter of the curve>; PUKCL
_GF2NEcDsaVerify (nulWorkspace) = <Base of the workspace>;

PUKCL GF2NEcDsaVerify(nulHashBase) = <Base of the SHA resulting hash>;

// VPUKCL Process () is a macro command, which populates the service name
// and then calls the library...
VPUKCL Process (GF2NEcDsaVerifyFast, &PUKCLParam);
if (PUKCL (u2Status) == PUKCL_OK)
{

}

else
if (PUKCL (u2Status) == PUKCL WRONG SIGNATURE)
{

else // Manage the error

37.3.7.10.6 Constraints
No overlapping between either input and output are allowed. The following conditions must be
avoided to ensure the service works correctly:

* nulModBase, nu1CnsBase, nu1PointABase, nu1PointPublickeyGen, nu1PointSignature,
nu1OrderPointBase,nu1ABBase, nu1Workspace or nu1HashBase are not aligned on 32-bit
boundaries

+ {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength + 8},

{nu1PointABase, 3*u2ModLength + 12}, {nu1PointPublicKkeyGen, 3*u2ModLength + 12},
{nu1PointSignature,2*u2ScalarLength + 8}, {nu10rderPointBase, u2ScalarLength + 4},
{nu1ABBase, 2*u2ModLength + 8}, {nu1Workspace, <WorkspaceLength>} or {nu1HashBase,
u2ScalarLength + 4} are not in Crypto RAM

* u2ModLlength is either: < 12, > 0xffc or not a 32-bit length

+ All overlapping between {nu1ModBase, u2ModLength + 4}, {nu1CnsBase, u2ModLength
+8}, {nu1PointABase, 3*u2ModLength + 12}, {nu1PointPublickeyGen, 3*u2ModLength +
12}, {nu1PointSignature, 2*u2ScalarLength + 8}, {nu10rderPointBase, u2ScalarLength + 4},
{nu1ABBase, 2*u2ModLength + 8}, {nu1Workspace, <WorkspaceLength>} and {nu1HashBase,
u2ScalarLength + 4}

37.3.7.10.7 Status Returned Values

Table 37-111. GF2NEcDsaVerifyFast Service Return Codes

PUKCL_OK - The computation passed without errors. The signature is correct.
PUKCL_WRONG_SIGNATURE Warning The signature is incorrect.

37.3.8 PUKCL Requirements and Performance

37.3.8.1 Services Stack Usage
This library is using the main core to execute its computations, and therefore is also sharing some
resources with the application.

It may be important for the application to know RAM usage by the library functions and to be aware
that the library does not use any global variables.

909

@ MICROCHIP

The following table provides the minimum number of bytes used by the library that have to be
available on the stacks to ensure that the functionality can be executed correctly. In some cases,
the library may use less bytes than the specified number for some options. This table contains
estimated values.

Table 37-112. Services Stack Usage

PUKCL Service STACK Usage (Bytes)

SelfTest 112
ClearFlags 0

Swap 8

Fill 8

CondCopy 24
FastCopy 16
Smult 16
Smult (with reduction) 88
Comp 8

Fmult 24
Fmult (with reduction) 96
Square 16
Square (with reduction) 88
Div 144
GCD 136
RedMod (Setup) 160
RedMod (using fast reduction) 80
RedMod (randomize) 80
RedMod (Normalize) 80
RedMod (Using Division) 184
ExpMod 200
PrimeGen 416
CRT 304
ZpEccAddFast 104
ZpEccAddSubFast 92
ZpEcConvProjToAffine 280
ZpEcConvAffineToProjective 64
ZpEccDblFast 96
ZpEccMulFast 168
ZpEccQuickDualMulFast 216
ZpEcDsaGenerateFast 392
ZpEcDsaVerifyFast 456
ZpEcDsaQuickVerify 368
ZpEcRandomiseCoordinate 56
GF2NEccAddFast 128
GF2NEcConvProjToAffine 264
GF2NEcConvAffineToProjective 56
GF2NEccDblFast 136
GF2NEccMulFast 208
GF2NEcDsaGenerateFast 376
GF2NEcDsaVerifyFast 440

910

@ MICROCHIP

........... continued

GF2NEcRandomiseCoordinate

37.3.8.2 Parameter Size Limits for Different Services
The following table lists parameter size limits for different services.

56

For the services ModExp, PrimeGen, and CRT, additional details are available in the service

description.

Table 37-113. Parameter Size Limits

API

SelfTest

ClearFlags

Swap

Fill

Fast Copy/Clear
Conditional Copy/Clear

Smult

Compare
FMult

Square
Euclidean Division

Mod. inv. / GCD
ModRed

Fast ModExp Exp in Crypto
RAM

Fast ModExp
Exp not in Crypto RAM

Prime Gen.

CRT

ECC Addition gnd
Subtraction GF(p)

ECC Doubling GF(p)
ECC Multiplication GF(p)

ECC Quick Dual
Multiplication GF(p)

@ MICROCHIP

4 bytes to 2044 bytes
4 bytes to 4088 bytes
4 bytes to 2044 bytes
4 bytes to 2044 bytes
4 bytes to 2040 bytes

4 bytes to 2044 bytes

Input: 4 bytes to 1020 bytes Output: 4bytes to

2040 bytes
Input: 4 bytes to 1020 bytes

Output: 4 bytes to 2040 bytes

Divider: 8 to 1016 bytes
Num.: 8 to 2032 bytes

8 to 1012 bytes

Modulus: 12 to 1016 bytes
Input: 24 to 2032 bytes

12 to 576 bytes

(96 to 4608 bits)

12 to 672 bytes
(96 to 5376 bits)

Prime Number: 12 to 448 bytes

(96 to 3584 bits)

Modulus = Two Primes:

Size of one prime from 24 to 448 bytes Modulus =

from 48 to 896 bytes
(384 to 7168 bits)

Modulus: 12 to 308 bytes

Modulus: 12 to 400 bytes
Modulus: 12 to 264 bytes

Modulus: 12 to 152 bytes

Per block to be swapped
Supposing Length(R) = Length(X)
Supposing Length(R) = Length(X)

Supposing Length(R) = Length(X) + 4
Bytes, No Z Parameter, No Reduction

Supposing Length(X) = Length(Y)

Supposing Length(Y) = Length(X), No Z
Parameter, No Reduction

Supposing No Z Parameter, No Reduction

Supposing Length(Num) =
2*Length(Divider)

Supposing RBase = XBase

Supposing Length(Exponent) =
Length(Modulus), Window Size = 1

With the Exponent in Crypto RAM

Supposing Length(Exponent) =
Length(Modulus), Window Size = 1

With the Exponent not in Crypto RAM
Supposing Window Size = 1

Supposing Length(Exponent) =
Length(Modulus), Window Size = 1

Supposing Length(Scalar) =
Length(Modulus)

911

........... continued

ECDSA Generate GF(p) Modulus: 12 to 220 bytes Supposing Length(Scalar) =

(up to 521 bits for common curves) Length(Modulus)

ECDSA Verify GF(p) Modulus: 12 to 188 bytes Supposing Length(Scalar) =
(up to 521 bits for common curves) Length(Modulus)
ECC Addition GF(2n) Modulus: 12 to 248 bytes —
ECC Doubling GF(2n) Modulus: 12 to 364 bytes —
ECC Multiplication GF(2n) Modulus: 12 to 250 bytes Supposing Length(Scalar) =
Length(Modulus)
ECDSA Generate GF(2n) Modulus: 12 to 208 bytes Supposing Length(Scalar) =
(up to 571 bits for common curves) Length(Modulus)
ECDSA Verify GF(2n) Modulus: 12 to 180 bytes Supposing Length(Scalar) =

(up to 571 bits for common curves) Length(Modulus)

ECDSA Quick Verify GF(2n) Modulus: 12 to 140 bytes Supposing Length(Scalar) =

(up to 571 bits for common curves) Length(Modulus)

37.3.8.3 Service Timing

The values in the following tables are estimated performances for CPU clock of 64 MHz. The CPU
and PUKCC are operated at the same frequency. Due to possible change in the parameters values,
the measurements show approximated values.

Other test conditions:

+ PUKCL library data in Crypto RAM
+ Test code and test data in SRAM
* |Cache and DCache are disabled

37.3.8.3.1 Service Timing for RSA
RSA uses the ExpMod service for encryption and decryption. Following tables show service timing,
where ‘W' indicates window size.

Table 37-114. RSA1024
RSA 1024 decryption / signature generation. No CRT, Regular implementation, W=4 3.05 MCycles 47.799 ms
RSA 1024 decryption / signature generation. 1.09 MCycles 17.109 ms
With CRT, Regular implementation, W=4

RSA 1024 encryption / signature verification. 0.07 MCycles 1.141 ms
No CRT, Fast implementation, W=1 Exponent=3

RSA 1024 encryption / signature verification. 0.07 MCycles 1.129 ms
No CRT, Fast implementation, W=1 Exponent=0x10001

Table 37-115. RSA2048
RSA 2048 decryption / signature generation. 21.6 MCycles 338.249 ms
No CRT, Regular implementation, W=4
RSA 2048 decryption / signature generation. With CRT, Regular implementation, W=4 6.36 MCycles 99.408 ms
RSA 2048 encryption / signature verification. 0.24 MCycles 3.843ms
No CRT, Fast implementation, W=1 Exponent=3

912

@ MICROCHIP

........... continued
RSA 2048 encryption / signature verification. 0.24 MCycles 3.827 ms
No CRT, Fast implementation, W=1 Exponent=0x10001

Table 37-116. RSA4096
RSA 4096 Decryption / signature generation. No CRT, Regular implementation, W=1 209 MCycles 3.2742s
RSA 4096 Decryption / signature generation. With CRT, Regular implementation, W=3 46.1 MCycles 720.95 ms
RSA 4096 encryption / signature verification. 0.91 MCycles 14.346 ms
No CRT, Fast implementation, W=1 Exponent=3
RSA 4096 encryption / signature verification. 0.91 MCycles 14.337 ms
No CRT, Fast implementation, W=1 Exponent=0x10001

37.3.8.3.2 Service Timing for Prime Generation
Prime generation uses the PrimeGen service.

Table 37-117. Prime Generation

Regular Generation of two primes, Prime_Length=512 bits, W=4, Rabin Miller Mean =47.4 MCycles Mean =0.4s
Iterations Number = 3, (average of 200 samples)

Regular Generation of two primes, Prime_Length=512 bits, W=4, Rabin Miller Std Dev = 30.3 Mcycles Std Dev = 0.47s
Iterations Number = 3, (Standard Deviation for 200 samples)

Regular Generation of two primes, Prime_Length=1024 bits, W=4, Rabin Miller Mean =419.71 MCycles Mean = 6.558s
Iterations Number = 3, (average of 200 samples)

Regular Generation of two primes, Prime_Length=1024 bits, W=4, Rabin Miller ~ Std Dev = 294 Mcycles Std Dev = 4.59s
Iterations Number = 3, (Standard Deviation for 200 samples)

Regular Generation of two primes, Prime_Length=2048 bits, W=4, Rabin Miller Mean = 4.78 GCycles Mean = 74.68s
Iterations Number = 3, (average of 200 samples)

Regular Generation of two primes, Prime_Length=2048 bits, W=4, Rabin Miller ~ Std Dev = 3.05 GCycles Std Dev = 47.65s
Iterations Number = 3, (Standard Deviation for 200 samples)

37.3.8.3.3 Service Timing for ECDSA on Prime Field

In the following table, ECDSA signature generation uses the ZpEcDsaGenerateFast service and
signature verification uses ZpEcDsaQuickVerify

Table 37-118. ECDSA GF(p)

ECDSA GF(p) 256 Generate Fast 2.67 MCycles 41.864 ms
ECDSA GF(p) 256 Verify Quick W=(4,4) 1.84 MCycles 28.888 ms
Scalar in PUKCC RAM

ECDSA GF(p) 384 Generate Fast 6.18 MCycles 96.712 ms
ECDSA GF(p) 384 Verify Quick W=(4,4) 4.15 MCycles 64.868 ms
Scalar in PUKCC RAM

ECDSA GF(p) 521 Generate Fast 13.36 MCycles 208.869 ms
ECDSA GF(p) 521 Verify Quick W=(4,4) 8.81 MCycles 137.711 ms

Scalar in PUKCC RAM

37.3.8.3.4 Service Timing for ECDSA on Binary Field

In the following table, ECDSA signature generation uses the GF2NEcDsaGenerateFast service and
signature verification uses GF2NEcDsaVerifyFast

913

@ MICROCHIP

Table 37-119. ECDSA GF(2")

ECDSA GF
ECDSA GF
ECDSA GF
ECDSA GF
ECDSA GF
ECDSA GF

2") B283 Generate Fast
2") B283 Verify
2") B409 Generate Fast
2") B409 Verify
2"y B571 Generate Fast
2") B571 Verify

—~ o~~~ o~ o~

@ MICROCHIP

3.21 MCycles
6.40 MCycles
6.94 Mcycles
13.73 Mcycles
15.08 Mcycles
30.07 MCycles

50.301 ms

100.150 ms
108.554 ms
214.571 ms
235.704 ms
469.972 ms

914

38. Analog-to-Digital Converter (ADC)

38.1 Overview

The PIC32CX-BZ2 12-bit High Speed Successive Approximation Register (SAR) Analog-to-Digital
Converter (ADC) includes the following features:

* 12-bit resolution
* One ADC module, up to 2 Msps conversion rate
+ Single-ended and/or differential input
+ Supported in Sleep mode
+ Two digital comparators
+ Two digital filters supporting two modes:
- Oversampling mode
- Averaging mode
+ Designed for motor control, power conversion and general purpose applications

The PIC32CX-BZ2 has one shared ADC module. This ADC module incorporates a multiplexer on the
input to facilitate a group of inputs and provides a flexible automated scanning option through the
input scan logic.

For the ADC module, the analog inputs are connected to the Sample and Hold (S&H) capacitor. The
ADC module performs the conversion of the input analog signal based on the configurations set in
the registers. When the conversion is complete, the final result is stored in the result buffer for the
specific analog input and is passed to the digital filter and digital comparator if configured to use
data from this particular sample.

Equation 38-1. ADC Throughput Rate

Tap
FTP = ——F—FFF——
Tsamp + Tconv

Where,
* Tap = The frequency of the individual ADC module.
A block diagram of the ADC module is illustrated in the following figure.

915

@ MICROCHIP

Figure 38-1. ADC Block Diagram

&
""" ' @

00 01 10 11
AVoD AVss ADCSEL [1:0]

Tk
CONCLKDIV [5:0]
/ (ADCCONS3)

|
|
|
|
|
|
|
|
|
| VREFSEL[2:0]
| (ADCCON3)
| T N
|
: = |
| | | |
o . :
|
(ADCCON3) | | : | Tap ADCDIV [6:0]
(ADINSEL[5:0]) | | | : (ADCCON2 [6:0])
I | |
| \—HZI AN1 | :
|
ref (AN8) [—+d : : : :
IVtest_vdd1v2 (AN9) g_:_./ ANG : |
| |
IVddcore_ana (AN10) |
: \:—m AN7 | :
IVpmu_test (AN11) [}—4 I | I
: : tI I ADC7 | :
| | |
ANNO L ————— ——————— =
|
(ADIMOD1) ! \/
T -~ T~ 1
: ADCDATAOQ I
| |
|
| ADCDATA11 |
|
o ____
I_—y Digital Filter Data
(%]
>
Interrupt/Event 2
nterr| ven’
Digital Comparator erup E
Triggers, U,
Scan Control Logic a
Trigger
T Status and Control Interrupt
Registers

38.2 ADC Operation

The High Speed Successive Approximation Register (SAR) ADC is designed to support power
conversion and motor control applications and consists of one shared ADC module. The shared

ADC module has multiple analog inputs connected to its S&H circuit through a multiplexer. Multiple
analog inputs share this ADC; therefore, it is termed the shared ADC module. The shared ADC
module is used to measure analog signals of lower frequencies and signals that are static in nature
(in other words, do not change significantly with time). However, this ADC module is capable of up to
2 Msps sample rate.

The analog inputs connected to the shared ADC module are Class 2 and Class 3 inputs. The
number of inputs designated for each class depends on the specific device. For the PIC32CX-BZ2, the
following arrangement is provided.

@ MICROCHIP

916

« Class 2 =ANO to AN5
* C(Class 3 =AN6 to AN7

The property of each class of analog input is described in the following table.

Table 38-1. Analog Input Class

ADC Module Analog Input CIass Trigger Action

Shared ADC module Class 2 Individual trigger source or Starts sampling sequence or begins
scan trigger scan sequence
Shared ADC module with input ~ Class 3 Scan trigger Starts scan sequence

scan

Class 2 and Class 3 analog input properties:

+ Class 2 inputs are used on the shared ADC module, either individually triggered or as part of
a scan list. When used individually, they are triggered by their unique trigger selected by the
ADCTRGX register.

« The analog inputs on the shared ADC have a natural order of priority (for example, AN6 has a
higher priority than AN7).

+ Class 3 inputs are used exclusively for scanning and share a common trigger source (scan
trigger).
+ Class 3 analog inputs share both the ADC module and the trigger source; therefore, the only

method possible to convert them is to scan them sequentially for each incoming scan trigger
event, where scanning occurs in the natural order of priority.

+ The arrival of a trigger in the shared ADC module only starts the sampling. When the trigger
arrives, the ADC module goes into sampling mode for the sampling time decided by the
SAMCI[9:0] bits (ADCCONZ2[25:16]). At the end of sampling, the ADC starts conversion. Upon
completion of conversion, the ADC module is used to convert the next in line Class 2 or Class 3
inputs according to the natural order of priority. When a shared analog input (Class 2 or Class 3)
has completed all conversion and no trigger is pending, the ADC module is disconnected from all
analog inputs

Figure 38-2. Sample and Conversion Sequence for Shared ADC Modules

ADC module (S&H) is disconnected from the analog input

Trigger causes S&H circuit to begin sampling for
the specified number of ADC clocks, and then
switches to the Hold state.

Disconnected l

I i R

Disconnected

Convert

Once sampling is complete, the At the end of conversion, data
conversion begins is written to buffer and interrupt
is generated (if enabled)

917

@ MICROCHIP

38.2.1 Class 2 Triggering

When a single Class 2 input is triggered, it is sampled and converted by the shared S&H using the
sequence illustrated in Sample and Conversion Sequence for the Shared ADC Modules figure; see
Sample and Conversion Sequence for Shared ADC Modules figure in the ADC Operation from Related
Links. When multiple Class 2 inputs are triggered, it is important to understand the consequences
of trigger timing. If a conversion is underway and another Class 2 trigger occurs, then the sample-
hold-conversion for the new trigger is stalled until the in-process, sample-hold cycle is complete, as
shown in the following figure.

Figure 38-3. Multiple Independent Class 2 Trigger Conversion Sequence

ADC module (S&H) is ADC module (S&H) is
disconnected from the disconnected from the
analog input analog input

Trigger for AN1 ANT is holding

and Sampling for
AN2 is delayed

Trigger for AN2

Disconnected J/

Disconnected

Convert AN1 Convert AN2

Once sampling is complete, the
conversion begins

When multiple inputs to the shared S&H are triggered simultaneously, the processing order is
determined by their natural priority (the lowest numbered input has the highest priority). As an
example, if AN1, AN2 and AN3 are triggered simultaneously, AN1 is sampled and converted first,
followed by AN2 and finally, AN3. When using the independent Class 2 triggering on the shared S&H,
the SAMC[9:0] bits (ADCCONZ2[25:16]) determine the sample time for all inputs while the appropriate
TRGSRC([4:0] bits in the ADCTRGx Register (see ADCTRG1 register from Related Links) determine the
trigger source for each input.

Related Links
38.11.15. ADCTRG1
38.2. ADC Operation

38.2.2 Input Scan

Input scanning is a feature that allows an automated scanning sequence of multiple Class 2 or Class
3 inputs. All Class 2 and Class 3 inputs are scanned using the single shared S&H. The selection of
analog inputs for scanning is done with the CSSx bits of the ADCCSS1 registers. Class 2 inputs are
triggered using STRIG selection in the ADCTRGXx register, and Class 3 inputs are triggered using the
STRGSRC([4:0] of the ADCCON1[20:16] register. When a trigger occurs for Class 2 or Class 3 inputs,
the sampling and conversion occur in the natural input order is used; lower number inputs are
sampled before higher number inputs.

918

@ MICROCHIP

38.3

Figure 38-4. Input Scan Conversion Sequence for Three Class 2 Inputs

ADC module (S&H) is disconnected from the analog input

Trigger causes S&H circuit
to begin sampling first input
in the scan list for the

specified number of ADC Once the first conversion is
clocks, and then switches complete, sampling begins
to Hold state. for next input in scan list

Disconnected Distonnected
Sample AN1 | HoldAN1 Sample AN2 Hold AN2 Sample AN3 Hold AN3

Convert AN1 Convert AN2 Convert AN3

Once sampling is complete, the

. X When each conversion is complete, the result is written to the ADC
conversion begins

result buffer and an interrupt is generated

When using the shared analog inputs in scan mode, the SAMC[9:0] bits in the ADC Control Register 2
(ADCCONZ2[25:16]) determine the sample time for all inputs, while the Scan Trigger Source Selection
bits (STRGSRC[4:0]) in the ADC Control Register 1 (ADCCON1[20:16]) determine the trigger source.

To ensure predictable results, a scan must not be retriggered until a sampling of all inputs is
complete. Ensure system design to preclude retriggering a scan while a scan is in progress.

Individual Class 2 triggers that occur during a scan preempts the scan sequence if they are a higher
priority than the sample currently being processed. In the following figure, a scan of AN5, AN6

and AN7 is underway when an independent trigger of Class 2 input AN2 takes place. The scan is
interrupted for the sampling and conversion of AN2.

Figure 38-5. Scan Conversion Pre-empted by Class 2 Input Trigger

ADC core (S&H) is disconnected from the analog input

)) Sampling and conversion of AN2 pre-empts the scan

Scan trigger starts scan Independent trigger of process. AN2 is sampled and converted between ANG

process of inputs AN5, ANG Class 2 input AN2 and AN7 but the arrival of the AN2 trigger does not

and AN7 occurs here abort the ongoing sample/conversion of ANG.
g 8
3 3
£ £
S Q
a [a]
‘\ Sample AN5 Hold AN5 Sample AN6 Hold AN6 Sample AN2 | Hold AN2 Sample AN7 | Hold AN7

Convert AN5 Convert AN6 Convert AN2 Convert AN7

ADC Module Configuration

Operation of the ADC module is directed through bit settings in the specific registers. The following
instructions summarize the actions and the settings. The options and details for each configuration
step are provided in the subsequent sections.

To configure the ADC module, perform the following steps:

@ MICROCHIP

919

1. Configure the analog port pins as described in 38.3.1. Configuring the Analog Port Pins.

2. Select the analog inputs to the ADC multiplexers as described in 38.3.2. Selecting the ADC
Multiplexer Analog Inputs.

3. Select the format of the ADC result as described in 38.3.3. Selecting the Format of the ADC
Result.

4. Select the conversion trigger source as described in 38.3.4. Selecting the Conversion Trigger
Source.

5. Select the voltage reference source as described in 38.3.5. Selecting the Voltage Reference
Source.

Select the scanned inputs as described in 38.3.6. Selecting the Scanned Inputs.

Select the analog-to-digital conversion clock source and prescaler as described in
38.3.7. Selecting the Analog-to-Digital Conversion Clock Source and Prescaler.

8. Specify any additional acquisition time (if required) as described in 38.9. ADC Sampling
Requirements.

9. Turn onthe ADC module as described in 38.3.8. Turning ON the ADC.

10. Poll (or wait for the interrupt) for the voltage reference to be ready as described in
38.3.5. Selecting the Voltage Reference Source.

11. Enable the analog and bias circuit for the required ADC modules, and, after the ADC module
wakes up, enable the digital circuit as described in 38.6.3. Low-Power Mode.

12. Configure the ADC interrupts (if required) as described in 38.5. Interrupts.

38.3.1 Configuring the Analog Port Pins

The ANSELX registers for the 1/0 ports associated with the analog inputs are used to configure the
corresponding pin as an analog or a digital pin. A pin is configured as an analog input when the
corresponding ANSELx bit =‘1". When the ANSELX bit = ‘0", the pin is set to digital control. The ANSELx
registers are set when the device comes out of Reset, causing the ADC input pins to be configured as
analog inputs by default.

The TRISx registers control the digital function of the port pins. The port pins that are required as
analog inputs must have their corresponding bit set in the specific TRISx register, configuring the pin
as an input. If the I/0 pin associated with an ADC input is configured as an output by clearing the
TRISx bit, the port's digital output level (Vou or Vo) is converted. After a device Reset, all of the TRISx
bits are set. For more information on port pin configuration, see I/O Ports and Peripheral Pin Select
(PPS) from Related Links.

Note: When reading a PORT register that shares pins with the ADC, any pin configured as an analog
input reads as ‘0’ when the PORT latch is read. Analog levels on any pin that is defined as a digital
input but not configured as an analog input, may cause the input buffer to consume the current that
exceeds the device specification.

Related Links
6. 1/0 Ports and Peripheral Pin Select (PPS)

38.3.2 Selecting the ADC Multiplexer Analog Inputs

The ADC module has two inputs, referred to as the positive and negative inputs. Input selection
options vary as described in the following sections.

38.3.2.1 Selection of Positive Inputs

For the shared ADC module, the positive input is shared among all Class 2 and Class 3 inputs. Input
connection of the analog input ANXx to the shared ADC is automatic for either the Class 2 input
trigger or during a scan of Class 2 and or Class 3 inputs. Selecting inputs for scanning is described in
Selecting the Scanned Inputs from Related Links.

920

@ MICROCHIP

Related Links
38.3.6. Selecting the Scanned Inputs

38.3.2.2 Selection of Negative Inputs

Negative input selection is determined by the setting of the DIFFx bit of the ADCIMCON/1 register.
The DIFFx bit allows the inputs to be rail-to-rail and either single-ended or differential. The SIGNx
and DIFFx bits in the ADCIMCON1 register scale the internal ADC analog inputs and reference
voltages and configure the digital result to align with the expected full-scale output range.

For the shared ADC module, the analog inputs have individual settings for the DIFFx bit. Therefore,
the user has the ability to select certain inputs as single-ended and others as differential while
being connected to the same shared ADC module. While sampling, the signal changes on-the-fly as
single-ended or differential according to its corresponding DIFFx bit setting.

Table 38-2. Negative Input Selection

ADCIMCON1 Input Configuration Input Voltage Output
DIFFx SIGNx
1 1

Differential 2's Minimum input VINP - VINN = -Vger -2048
complement

Maximum input VinP - VINN = Vger +2047
1 0 Differential unipolar Minimum input VINP - VINN = -Vger 0

Maximum input VNP - VINN = VRer +4095
0 1 Single-ended 2's Minimum input VNP = VRer -2048

complement . ;

Maximum input VINP - VINN = Ve +2047
0 0 Single-ended unipolar Minimum input VNP = VRer 0

Maximum input VinP - VINN = VRer +4095

Legend:

+ V|\P = Positive S&H input
* V|NyN = Negative S&H input
* VRer = VRerH - VRerL

Note: For proper operation and to prevent device damage, input voltage levels must not exceed the
limits listed in the Electrical Specifications.

38.3.3 Selecting the Format of the ADC Result

The data in the ADC Result register can be read in any of the four supported data formats. The user
can select from unsigned integer, signed integer, unsigned fractional or signed fractional. Integer
data is right-justified and fractional data is left-justified.

+ The integer or fractional data format selection is specified globally for all analog inputs using the
Fractional Data Output Format bit, FRACT (ADCCON1[23]).

+ The signed or unsigned data format selection can be independently specified for each individual
analog input using the SIGNx bits in the ADCIMCONX registers

The following table provides how a result is formatted.

Table 38-3. ADC Result Format

FRACT SIGNx 32-bit Output Data Format

Unsigned integer 0000 0000 0000 0000

0000 dddd dddd dddd

921

@ MICROCHIP

veeeeeeeeecCONtinued

FRACT SIGNx 32-bit Output Data Format

&gnedlnteger ssss ssss ssss ssss

ssss sddd dddd dddd

1 0 Fractional dddd dddd dddd 0000
0000 0000 0000 0000

1 1 Signed fractional sddd dddd dddd dddd
0000 0000 0000 0000

The following code is an example for ADC Class 2 configuration and fractional format.

int main(int argc, char** argv) {
int result[3];

/* Configure ADCCON1 */
ADCCON1lbits.FRACT = 1; // use Fractional output format ADCCONlbits.SELRES = 3; // ADC
resolution is 12 bits ADCCONlbits.STRGSRC = 0; // No scan trigger.

/* Configure ADCCON2 */
ADCCON2bits.SAMC = 5; // ADC sampling time = 5 * TAD7
ADCCON2bits.ADCDIV = 1; // ADC clock freq is half of control clock = TAD7

/* Initialize warm up time register */ ADCANCON = 0;
ADCANCONbits.WKUPCLKCNT = 5; // Wakeup exponent = 32 * TADx

/* Clock setting */ ADCCON3 = 0;

ADCCON3bits.ADCSEL = 0; // Select input clock source
ADCCON3bits.CONCLKDIV = 1; // Control clock frequency is half of input clock
ADCCON3bits.VREFSEL = 0; // Select AVDD and AVSS as reference source

/* No selection for dedicated ADC modules, no presync trigger, not sync sampling */
ADCTRGMODEbits = 0;

/* Select ADC input mode */

ADCIMCON1bits.SIGN7 = 0; // unsigned data format ADCIMCONlbits.DIFF7 = 0; // Single ended
mode ADCIMCONlbits.SIGN8 = 0; // unsigned data format ADCIMCONlbits.DIFF8 = 0; // Single
ended mode ADCIMCONlbits.SIGNY9 = 0; // unsigned data format ADCIMCONlbits.DIFF9 = 0; //
Single ended mode

/* Configure ADCGIRQENx */
ADCGIRQEN1 = 0; // No interrupts are used
ADCGIRQEN2 = 0;

/* Configure ADCCSSx */
ADCCSS1 = 0; // No scanning is used
ADCCSS2 = 0;

/* Configure ADCCMPCONx */

ADCCMPCON1 = 0 // No digital comparators are used. Setting the ADCCMPCONx
ADCCMPCON2 = 0; // register to '0' ensures that the comparator is disabled.
ADCCMPCON3 = 0; // Other registers are “don't care”

ADCCMPCON4 = 0;

ADCCMPCON5 = 0; ADCCMPCON6 = 0;

/* Configure ADCFLTRx */

ADCFLTR1 = 0; // No oversampling filters are used. ADCFLTR2 = 0;
ADCFLTR3 = 0; ADCFLTR4 = 0; ADCFLTR5 = 0; ADCFLTR6 = 0;

/* Set up the trigger sources */

ADCTRGSNSbits.LVL7 = 0 // Edge trigger ADCTRGSNSbits.LVL8 = 0; // Edge trigger
ADCTRGSNSbits.LVL9 = 0; // Edge trigger

ADC1TRG2bits.TRGSRC7 1; // Set AN7 to trigger from software
ADC2TRG3bits.TRGSRC8 = 1; // Set AN8 to trigger from software
ADC2TRG3bits.TRGSRCY9 = 1; // Set AN9 to trigger from software

/* Early interrupt */

ADCEIEN1 = 0; // No early interrupt
ADCEIEN2 = 0;

/* Turn the ADC on */ ADCCONlbits.ON = 1;

/* Wait for voltage reference to be stable */

922

@ MICROCHIP

while (!ADCCON2bits.BGVRRDY) ;

while (ADCCON2bits.REFFLT) ;

// Wait until the reference voltage is ready
// Wait if there is a fault with the reference voltage

/* Enable clock to analog circuit */

ADCANCONbits.ANEN7 = 1;

// Enable the clock to analog bias

/* Wait for ADC to be ready */

while (!ADCANCONbits.WKRDY7) ;

/* Enable the ADC module */ ADCCON3bits.DIGEN7 =

while (1) {
/* Trigger a conversion */

/* Wait the conversions to
while (ADCDSTATlbits.ARDY7
/* fetch the result */
result[0] = ADCDATA7;

while (ADCDSTATlbits.ARDYS8
/* fetch the result */
result[1l] = ADCDATAS;

while (ADCDSTATlbits.ARDY9
/* fetch the result */
result[2] = ADCDATAY9;

*

Process results here

Note 1:
If the loop time happens
completion of set sample
sample time has elapsed.

Note 2:

~

eturn (1);

Eaadiln BiacdiiE N S S S N

// Wait until ADC7 is ready

1; // Enable ADC7

ADCCON3bits.GSWTRG = 1;

complete */
== 0);

Loop time determines the sampling time since all inputs are Class 2.

is small and the next trigger happens before the
time, the conversion will happen only after the

Results are in fractional format

38.3.4 Selecting the Conversion Trigger Source

Class 2 inputs to the ADC module can be triggered for conversion either individually or as part of a
scan sequence. Class 3 inputs can only be triggered as part of a scan sequence. Individual or scan
triggers can originate from an on-board timer or output compare peripheral event, from external
digital circuits connected to INTO, from external analog circuits connected to an analog comparator
or through software by setting a trigger bit in an SFR.

Note: When conversion triggers for multiple Class 2 analog inputs occur simultaneously, they are
prioritized according to a natural order priority scheme based on the analog input used. AN6 has the
highest priority, AN7 has the next highest priority and so on.

38.3.4.1 Trigger Selection Class 2 Inputs
For each one of the Class 2 inputs, the user application can independently specify a conversion
trigger source. The individual trigger source for an analog input ‘X’ is specified by the TRGSRC[4:0]
bits located in registers ADCTRG1 through ADCTRG3. For example, these trigger sources may

include:

* General Purpose (GP) Timers: When a period match occurs for the 32-bit timer, Timer3/2 or
Timer5/4, or the 16-bit Timer1, Timer3 or Timer5, a special ADC trigger event signal is generated
by the timer. This feature does not exist for other timers. For more information, see Timer/
Counter (TC) from Related Links.

+ Output Compare: The Output Compare peripherals, OC1, OC3 and OC5, can be used to generate
an ADC trigger, then the output transitions from a low to high state. For more information, see
Timer/Counter (TC) from Related Links.

@ MICROCHIP

923

« Comparators: The analog Comparators can be used to generate an ADC trigger when the output
transitions from a low state to a high state. For more information, see Digital Comparator from
Related Links.

« External INTO Pin Trigger: In this mode, the ADC module starts a conversion on an active
transition on the INTO pin. The INTO pin may be programmed for either a rising edge input or a
falling edge input to trigger the conversion process.

+ Global Software Trigger: The ADC module can be configured for manually triggering a
conversion for all inputs that have selected this trigger option. The user can manually trigger
a conversion by setting the Global Software Trigger bit, GSWTRG (ADCCON3[6]).

Related Links
38.4.1. Digital Comparator
40. Timer/Counter (TC)

38.3.4.2 Conversion Trigger Sources and Control
The following are the possible sources for each trigger signal:

+ External trigger selection through the TRGSRCx[4:0] bits in the ADCTRGXx registers. This capability
is supported only for Class 2 analog inputs. Typically, the user specifies a particular trigger
source to initiate a conversion for specific input. All of the analog inputs may select the same
trigger source if desired. In such an event, the result resembles a “scanned conversion”, which
has its order of completion enforced by the priority of the inputs associated with the same
trigger source. The first trigger selection is 00000 (no trigger), which amounts to temporarily
disabling that particular trigger and, consequently, temporarily disabling that analog input
from being converted. The next two selections for trigger source (GSWTRG and GLSWTRG)
are software-generated trigger sources. The second software-generated trigger selection is the
Global Software Trigger (GSWTRG). This trigger links to the GSWTRG bit in the ADCCONS3 register,
which may be used to enable the user application to initiate a single conversion. GSWTRG is a
self-clearing bit; therefore, it clears itself on the next ADC clock cycle after being set by the user
application. The third software-generated trigger selection is the Global Level Software Trigger
(GLSWTRG), which is linked to the GLSWTRG bit in the ADCCONS3 register. This trigger may be
used by the user application to initiate a burst of consecutive samples as the GLSWTRG bit is not
self-clearing. The fourth trigger selection is a special selection, the Scan Trigger selection, which
allows the Class 2 analog inputs to be included as members of a global scan of all inputs.

« Scanned trigger selection via the STRGSRC[4:0] bits in the ADCCON1 register and select bits in
the ADCCSS1 registers. This mode is typically used to initiate the conversion of a group of analog
inputs. This capability works for 2 and 3 analog inputs but is typically used for Class 3 inputs
because they do not have individual associated TRGSRC bits. One of the trigger selections is the
GSWTRG bit in the ADCCONS3 register, which may be used to enable the user software to initiate a
conversion.

« User initiated trigger via the ADINSEL[5:0] bits and the RQCNVRT bit in the ADCCONS3 register.
This mode enables the user application to create an individual conversion trigger request for a
specified analog input. Using this mode enables the user application to trigger the conversion of
an input without changing the trigger source configuration of the ADC. This is useful in handling
error situations where another software module wants ADC information without disrupting the
normal operation of the ADC. This is also the preferred method to generate the initial trigger to
start a digital filter sequence.

+ User-controlled sampling of Class 2 and Class 3 inputs via the ADINSEL[5:0] bits and the SAMP
bit in the ADCCONS3 register. Setting the SAMP bit causes the Class 2 and Class 3 inputs to be
in Sampling mode while ignoring the selection of the SAMC[9:0] bits. This mode is also useful in
software conversion of ADC with software-selectable sample time.

« External module (such as PTG) may specify an analog input for conversion via the setting of the
ECRIEN bit in the ADCCON2 register. This method operates independently of the normal TRGSRC

@ MICROCHIP

924

and STRGSRC methods. External modules may still use individual trigger signals and initiate
conversions via the normal TRGSRC and STRGSRC methods.

38.3.4.3 User-Requested Individual Conversion Trigger (Software ADC Conversion) (Only for Class 2
and Class 3 Inputs)

The user can explicitly request a single conversion (by software) of any selected analog input at any
time during program execution without changing the trigger source configuration of the ADC.

The steps to be followed for conversion are as follows:

1. The analog input ID to be converted is specified by the ADC Input Select bits, ADINSEL[5:0]
(ADCCONS3J5:0]).

The sampling of analog input is started by setting the SAMP bit (ADCCON3[9]).
After the required sampling time (time delay), the SAMP bit is cleared.
The conversion of sampled signal is started by setting the RQCNVRT bit (ADCCON3[8]).

Once the conversion is complete, the ARDYx bit of the ADCDSTATX register is set. The data can be
read from the ADCDATAX register.

ok N

The following figure illustrates the conversion process in graphical form.

Figure 38-6. Individual Conversion Trigger Process

ADINSEL<5:0> Select AN6 Select AN7
(AD1CONB3<5:0>)

SAMP bit is first cleared before the
RQCNVRT bit is set

SAMP (AD1CON3<9>) /

Disconnected
Disconnected

Sample AN6 Hold AN6 Sample AN7 Hold AN7

I

Automatically cleared in next clock Ta

RQCNVRT (AD1CON3<8>) _'/ _‘

Convert AN6 Convert AN7

Converted data stored in buffer Converted data stored in buffer

38.3.5 Selecting the Voltage Reference Source

The user application can select the voltage reference for the ADC module, which can be internal

or external. The Voltage Reference Input Selection bits, VREFSEL[2:0] (ADCCON3[15:13]), select the
voltage reference for analog-to-digital conversions. The upper voltage reference (Vgern) and the
lower voltage reference (Vregr) Mmay be the internal AVpp and AVsg voltage rails or the band gap
reference generator or the external Vggryt+ and Vgge- input pins. When the voltage reference and
band gap reference are ready, the BGVRRDY (ADCCONZ2[31]) bit is set. If a Fault occurs in the voltage

925

@ MICROCHIP

reference (such as a brown-out), the REFFLT bit (ADCCONZ2[30]) is set. The BGVRRDY and REFFLT bits
can also generate interrupts if the BGVRIEN bit (ADCCONZ2[15]) and REFFLTIEN bit (ADCCONZ2[14]) are
set, respectively.

The voltages applied to the external reference pins must comply with certain specifications. See
Electrical Characteristics from Related Links.

The Analog Input Charge Pump Enable bit, AICPMPEN (ADCCON1[12]), must be set when the
difference between the selected reference voltages (VrerH - Vrer) is less than 0.65 * (AVpp - AVsg).
Setting this bit does not increase the magnitude of the reference voltage; however, setting this
bit reduces the series source resistance to the sampling capacitors. This maximizes the SNR for
analog-to-digital conversions using small reference voltage rails.

Related Links
43. Electrical Characteristics

38.3.6 Selecting the Scanned Inputs

All available analog inputs can be configured for scanning. Class 2 and Class 3 inputs are sampled
using the shared ADC module. A single conversion trigger source is selected for all of the inputs
selected for scanning using the STRGSRC[4:0] bits (ADCCON1[20:16]). On each conversion trigger,
the ADC module starts converting (in the natural priority) all inputs specified in the user-specified
scan list (ADCCSS1 or ADCCSS2). For Class 2 and Class 3 inputs, the trigger initiates a sequential
sample/conversion process in the natural priority order.

An analog input belongs to the scan if it is:
+ AClass 3 input. For Class 3 inputs, scan is the only mechanism for conversion.

+ AClass 2 input that has the scan trigger selected as the trigger source by selecting the STRIG
option in the TRGSRCx[4:0] bits located in the ADCTRG1 through ADCTRGS registers.

The trigger options available for scan are identical to those available for independent triggering of
Class 2 inputs. Any Class 2 inputs that are part of the scan must have the STRIG option selected as
their trigger source in the TRGSRCx[4:0] bits.

Note: The end-of-scan (EOS) is generated only if the last shared input conversion has completed.
Until this condition is met, the scan sequence is still in effect. Therefore, the EOS Interrupt can be
used for any scan sequence with any combination of input types.

The following code is an example for ADC scanning multiple inputs.

int main(int argc, char** argv) {
int result[3];

/* Configure ADCCON1 */

ADCCON1 = 0; // No ADCCON1 features are enabled including: Stop-in-Idle, turbo,
// CVD mode, Fractional mode and scan trigger source. ADCCONlbits.SELRES = 3; // ADC7
resolution is 12 bits

ADCCON1lbits.STRGSRC = 1; // Select scan trigger.

/* Configure ADCCON2 */

ADCCON2bits.SAMC = 5; // ADC7 sampling time = 5 * TAD7

ADCCON2bits.ADCDIV = 1; // ADC7 clock freq is half of control clock = TAD7

/* Initialize warm up time register */ ADCANCON = O;

ADCANCONbits.WKUPCLKCNT = 5; // Wakeup exponent = 32 * TADx

/* Clock setting */

ADCCON3bits.ADCSEL = 0; // Select input clock source
ADCCON3bits.CONCLKDIV = 1; // Control clock frequency is half of input clock
ADCCON3bits.VREFSEL = 0; // Select AVDD and AVSS as reference source
ADCOTIMEbits.ADCDIV = 1; // ADCO clock frequency is half of control clock = TADO
ADCOTIMEbits.SAMC = 5; // ADCO sampling time = 5 * TADO
ADCOTIMEbits.SELRES = 3; // ADCO resolution is 12 bits

/* Select analog input for ADC modules, no presync trigger, not sync sampling */

926

@ MICROCHIP

ADCTRGMODEbits.SHOALT = 0; // ADCO = ANO

/* Select ADC input mode */

ADCIMCON1bits.SIGNO = 0; // unsigned data format ADCIMCONlbits.DIFFO0 = 0; //
Single ended mode ADCIMCONlbits.SIGN8 = 0; // unsigned data format ADCIMCONlbits.DIFF8
= 0; // Single ended mode ADCIMCONlbits.SIGN40 = 0; // unsigned data format
ADCIMCONlbits.DIFF40 = 0; // Single ended mode

/* Configure ADCGIRQENx */

ADCGIRQEN1 = 0; // No interrupts are used. ADCGIRQEN2 = 0;

/* Configure ADCCSSx */

ADCCSS1 = 0; // Clear all bits

ADCCSS2 = 0;

ADCCSS1bits.CSS0O = 1; // BANO (Class 1) set for scan ADCCSSlbits.CSS8 = 1; //
AN8 (Class 2) set for scan ADCCSS2bits.CSS40 = 1; // BN40 (Class 3) set for scan

/* Configure ADCCMPCONx */

ADCCMPCON1 = O0; // No digital comparators are used. Setting the ADCCMPCONx
ADCCMPCON2 = 0; // register to '0' ensures that the comparator is disabled.
ADCCMPCON3 = 0; // Other registers are ‘don't care’.

ADCCMPCON4 = 0;

ADCCMPCON5 = 0; ADCCMPCON6 = 0;

/* Configure ADCFLTRx */

ADCFLTR1 = O; // No oversampling filters are used. ADCFLTR2 = 0;
ADCFLTR3 = 0; ADCFLTR4 = 0; ADCFLTR5 = 0; ADCFLTR6 = 0;

/* Set up the trigger sources */

ADCTRG1lbits.TRGSRCO = 3; // Set ANO (Class 1) to trigger from scan source
ADCTRG3bits.TRGSRC8 = 3; // Set AN8 (Class 2) to trigger from scan source
// AN40 (Class 3) always uses scan trigger source

/* Early interrupt */

ADCEIEN1 = 0; // No early interrupt
ADCEIEN2 = 0;

/* Turn the ADC on */ ADCCONlbits.ON = 1;

/* Wait for voltage reference to be stable */
while (!ADCCON2bits.BGVRRDY); // Wait until the reference voltage is ready

while (ADCCON2bits.REFFLT) ; // Wait if there is a fault with the reference voltage
/* Enable clock to analog circuit */

ADCANCONbits.ANENO = 1; // Enable the clock to analog bias ADCO
ADCANCONbits.ANEN7 = 1; // Enable, ADC7

/* Wait for ADC to be ready */

while (! ADCANCONbits.WKRDYO) ; // Wait until ADCO is ready while (!
ADCANCONbits.WKRDY7) ; // Wait until ADC7 is ready

/* Enable the ADC module */

ADCCON3bits.DIGENO = 1; // Enable ADCO

ADCCON3bits.DIGEN7 = 1; // Enable ADC7

while (1) {
/* Trigger a conversion */ ADCCON3bits.GSWTRG = 1;

/* Wait the conversions to complete */
while (ADCDSTATlbits.ARDYO == 0);

/* fetch the result */

result [0] = ADCDATAOQ;

while (ADCDSTATlbits.ARDY8 ==) 2
/* fetch the result */
result[1l] = ADCDATAS;

while (ADCDSTAT2bits.ARDY40 ==) 2
/* fetch the result */
result[2] = ADCDATA40;

/*
* Process results here
*

*

=/

}

927

@ MICROCHIP

return (1);

}

38.3.7 Selecting the Analog-to-Digital Conversion Clock Source and Prescaler
The ADC module can use the internal Fast RC (FRC) oscillator output, system clock (SYSCLK),

reference clock (REFCLK3) or peripheral bus clock (PBCLK) as the conversion clock source (Tq). See
ADCCONS3 register from Related Links.

When the ADCSEL[1:0] bits (ADCCONZ2[31:30]) =‘01’, the internal FRC oscillator is used as the ADC
clock source. When using the internal FRC oscillator, the ADC module can continue to function in
Sleep and Idle modes.

Note: Itis recommended that applications that require precise timing of ADC acquisitions use
SYSCLK as the clock source for the ADC.

For correct analog-to-digital conversions, the conversion clock limits must not be exceeded. Clock
frequencies from 1 MHz to 28 MHz are supported by the ADC module.

The maximum rate that analog-to-digital conversions may be completed by the ADC module
(effective conversion throughput) is 2 Msps. However, the maximum rate that a single input can be
converted is dependent on the sampling time requirements. In addition, the sampling time depends
on the output impedance of the analog signal source. For more information on sampling time, see
ADC Sampling Requirements from Related Links.

The input clock source for the ADC is selected using the ADCSEL[1:0] bits (ADCCON3[31:30]). The
input clock is further divided by the control clock divider CONCLKDIV[5:0] bits (ADCCON3[29:24]).
The output clock is called the “ADC control clock” with a time period of Tq.

The ADC control clock is divided by the ADCDIV[6:0] bits (ADCXTIME[22:16]). This acts as the clock
source for the respective dedicated ADC modules with a time period of Tapx.

The ADC control clock is divided before it is used for the shared ADC by the ADCDIV[6:0] bits
(ADCCONZ2[6:0]). The time period for this clock is denoted as Tap7.

Figure 38-7. Clock Derivation for Shared ADC Modules

Clock for ADC7
CONCLKDIV<5:0> ADCDIV<6:0>

(ADCCON3<29:24>) ADC Control clock (Ta) (ADCCON2<6:0>) > (Tao?)

XN

ADCSEL<1:0> (ADCCON3<31:30>)

Equation 38-2. Sample Time for the Shared ADC Module
tSAMC = ADCCON2 < 2516 > TAD

tCOTlUErSiOn = 2+ ADCCON2 < 22:21 > TAD
Related Links

38.11.4. ADCCON3
38.9. ADC Sampling Requirements

38.3.8 Turning ON the ADC
Turning ON the ADC module involves the following procedure.

928

@ MICROCHIP

When the ADC module enable bit, ON (ADCCON1[15]), is set to ‘1’, the module is in Active mode and
is fully powered and functional. When the ON bit is ‘0’, the ADC module is disabled. Once disabled,
the digital and analog portions of the ADC are turned off for maximum current savings. In addition
to setting the ON bit, the analog and digital circuits of ADC must be turned ON. See Low-power Mode
from Related Links.

Note: Writing to the ADC control bits that control the ADC clock, input assignments, scanning,
voltage reference selection, S&H circuit operating modes and interrupt configuration is not
recommended while the ADC module is enabled.

Related Links
38.6.3. Low-Power Mode

38.3.9 ADC Status Bits
The ADC module includes the WKRDYx/WKRDY7 status bit in the ADCANCON register, which

indicates the current state of ADC Analog and bias circuit. The user application must not perform
any ADC operations until this bit is set.

38.4 Additional ADC Functions

This section describes some additional features of the ADC module, which includes:
+ Digital comparator

« Oversampling filter

38.4.1 Digital Comparator

The ADC module features digital comparators that can be used to monitor selected analog

input conversion results and generate interrupts when a conversion result is within the user-
specified limits. Conversion triggers are still required to initiate conversions. The comparison
occurs automatically once the conversion is complete. This feature is enabled by setting the Digital
Comparator Module Enable bit, ENDCMP (ADCCMPCONX[7]).

The user application makes use of an interrupt that is generated when the analog-to-digital
conversion result is higher or lower than the specified high and low limit values in the ADCCMPx
register. The high and low limit values are specified in the DCMPHI[15:0] bits (ADCCMPx[31:16]) and
the DCMPLO[15:0] bits (ADCCMPx[15:0]).

The CMPEX bits ('x' = 0 through 31) in the ADCCMPENX registers are used to specify which analog
inputs are monitored by the digital comparator (for the first 8 analog inputs, ANx, where X’ =

0 through 31). The ADCCMPCONX register specifies the comparison conditions that generates an
interrupt, as follows:

* When IEBTWN = 1, an interrupt is generated when DCMPLO < ADCDATA < DCMPHI
« When IEHIHI = 1, an interrupt is generated when DCMPHI < ADCDATA

* When IEHILO = 1, an interrupt is generated when ADCDATA < DCMPHI

* When IELOHI = 1, an interrupt is generated when DCMPLO < ADCDATA

* When IELOLO = 1, an interrupt is generated when ADCDATA < DCMPLO

The comparator event generation is illustrated in the following figure. When the ADC module
generates a conversion result, the conversion result is provided to the comparator. The comparator
uses the DIFFx and SIGNXx bits of the ADCIMCONX register (depending on the analog input used)

to determine the data format used and to appropriately select whether the comparison must be
signed or unsigned. The global ADC setting, which is specified by the FRACT bit (ADCCON1[23]), is
also used to set the fractional or integer format. The digital comparator compares the ADC result
with the high and low limit values (depending on the selected comparison criteria) in the ADCCMPx
register.

929

@ MICROCHIP

Depending on the comparator results, a digital comparator interrupt event may be generated.

If a comparator event occurs, the Digital Comparator Interrupt Event Detected status bit,
DCMPED (ADCCMPCONX[5]), is set, and the Analog Input Identification (ID) bits, AINID[4:0]
(ADCCMPCONXx[12:8]), are automatically updated so that the user application knows which analog
input generated the interrupt event.

Note: The user software must format the values contained in the ADCCMPx registers to match
converted data format as either signed or unsigned, and fractional or integer.

Figure 38-8. Digital Comparator

ENDCMP

Y

ADCDATAx IELOLO
_> <
DCMPLO

ADCDATAX

DCMPLO
IELOHI

ADCDATAx IEBTWN

> ”
’ DCMPLO > >

ADCDATAX—»

ADCDATAX IEHILO
! < -
DCMPHI

Interrupt Generation Logic For Digital Comparator

ADCDATAX

DCMPHI
IEHIHI

— >

ADCDATAX
L >
DCMPHI

The following code is an example for ADC digital comparator.

int main(int argc, char** argv) {
int result = 0, eventFlag = 0;

/* Configure ADCCON1 */

ADCCON1 = 0; // No ADCCON1 features are enabled including: Stop-in-Idle,

// turbo, CVD mode, Fractional mode and scan trigger source. ADCCONlbits.SELRES = 3; //
ADC resolution is 12 bits

ADCCON1lbits.STRGSRC = 0; // No scan trigger.

/* Configure ADCCON2 */

ADCCON2bits.SAMC = 5; // ADC7 sampling time = 5 * TAD7

ADCCON2bits.ADCDIV = 1; // ADC7 clock freq = TAD7

/* Initialize warm up time register */ ADCANCON = 0;

@ MICROCHIP

930

/* No selection for dedicated ADC modules, no presync trigger, not sync sampling */
ADCTRGMODEbits = 0;

/* Select ADC input mode */

ADCIMCON1bits.SIGN8 = 0; // unsigned data format
ADCIMCONlbits.DIFF8 = 0; // Single ended mode

/* Configure ADCGIRQENx */

ADCGIRQEN1 = 0; // No interrupts are used
ADCGIRQEN2 = 0;

/* Configure ADCCSSx */
ADCCSS1 = 0; // No scanning is used
ADCCSS2 = 0;

/* Configure ADCCMPCONx */

ADCCMP1 = 0; // Clear the register ADCCMPlbits.DCMPHI = 0xC00; // High
limit is a 3072 result. ADCCMPlbits.DCMPLO = 0x500; // Low limit is a 1280 result.
ADCCMPCON1lbits.IEBTWN = 1; // Create an event when the measured result is

// >= low limits and < high limit. ADCCMPEN1 = 0; // Clear all enable bits
ADCCMPEN1bits.CMPE8 = 1; // set the bit corresponding to ANS8

ADCCMPCON1bits.ENDCMP = 1; // enable comparator

ADCCMPCON2 = 0; ADCCMPCON3 = 0; ADCCMPCON4 = 0; ADCCMPCON5 = 0; ADCCMPCON6 = O0;

/* Configure ADCFLTRx */

ADCFLTR1 = 0; // No oversampling filters are used. ADCFLTR2 = 0;
ADCFLTR3 = 0; ADCFLTR4 = 0; ADCFLTRS5 = 0; ADCFLTR6 = O0;

/* Set up the trigger sources */

ADCTRG3bits.TRGSRC8 = 3; // Set AN8 (Class 2) to trigger from scan source
/* Early interrupt */

ADCEIEN1 = 0; // No early interrupt

ADCEIEN2 = 0;

/* Turn the ADC on */ ADCCONlbits.ON = 1;

/* Wait for voltage reference to be stable */

while (!ADCCON2bits.BGVRRDY) ; // Wait until the reference voltage is ready
while (ADCCON2bits.REFFLT) ; // Wait if there is a fault with the reference voltage

/* Enable clock to analog circuit */
ADCANCONbits.ANEN7 = 1; // Enable the clock to analog bias

/* Wait for ADC to be ready */
while (! ADCANCONbits.WKRDY7) ; // Wait until ADC7 is ready

/* Enable the ADC module */
ADCCON3bits.DIGEN7 = 1; // Enable ADC7

while (1) {
/* Trigger a conversion */ ADCCON3bits.GSWTRG = 1;

while (ADCDSTATlbits.ARDY8 == 0);
/* fetch the result */
result = ADCDATAS;

/* Note: It is not necessary to fetch the result for the digital

* comparator to work. In this example we are triggering from

* software so we are using the ARDY8 to gate our loop. Reading the
* data clears the ARDY bit.

/)

/* See if we have a comparator event*/
if (ADCCMPCONlbits.DCMPED == 1) {
eventFlag = 1;

/*

* Process results here

/)

}
}

931

@ MICROCHIP

return (1);

}

38.4.2 Oversampling Digital Filter

The ADC module supports two oversampling digital filters. The oversampling digital filter consists
of an accumulator and a decimator (down-sampler), which function together as a low-pass filter. By
sampling an analog input at a higher-than-required sample rate, then processing the data through
the oversampling digital filter, the effective resolution of the ADC module can be increased at the
expense of decreased conversion throughput.

To obtain ‘X’ bits of extra resolution, the number of samples required (over and above the Nyquist
rate) = (2%

+ 4xoversampling yields one extra bit of resolution (total 13 bits resolution)

+ 16x oversampling yields two extra bits of resolution (total 14 bits resolution)

+ 64x oversampling provides three extra bits of resolution (total 15 bits resolution)

+ 256x oversampling provides four extra bits of resolution (total 16 bits resolution)

The digital filter also has an averaging mode, where it accumulates the samples and divides it by the
number of samples.

Note:
1. Only Class 2 analog inputs can engage the digital filter. Therefore, the CHNLID[2:0] bits are 3 bits
wide (0 to 7).

2. During the burst conversion process (repeated trigger until all required data for oversampling is
obtained), in the case of filtering Class 2 input using the shared ADC module, higher priority ADC
inputs may still process conversions; lower priority ADC conversion requests are held waiting
until the filter burst sequence is completed.

3. If higher priority requests occur during the digital filter sequence, they delay the completion
of the filtering process. This delay may affect the accuracy of the result because the multiple
samples cannot be contiguous. The user must arrange the initiation trigger for the oversampling
filters to occur while there are no expected interruptions from higher priority ADC conversion
requests.

The user application must configure the following bits to perform an oversampling conversion:

+ Select the amount of oversampling through the Oversampling Filter Oversampling Ratio
(OVRSAM[2:0]) bits in the ADC Filter register (ADCFLTRx[28:26]).

+ Set the filter mode to either Oversampling mode or Averaging mode using the DFMODE
bit(ADCFLTRx[29]).

« If thefilter is set to Averaging mode and the data format is set to fractional (FRACT bit), set or
clear the DATAT6EN bit (ADCFLTRx[30]) to set the output resolution.

+ Set the sample time for subsequent samples:
- If using Class 2 inputs, select the sample time using the SAMC[9:0] bits (ADC- CON2[25:16]).

+ Select the specific analog input to be oversampled by configuring the Analog Input ID Selection
bits, CHNLID[4:0] (ADCFLTRx[20:16]).

+ If needed, include the oversampling filter interrupt event in the global ADC interrupt by setting
the Accumulator Filter Global Interrupt Enable bit, AFGIEN (ADCFLTRx[25]).

+ Enable the oversampling filter by setting the Oversampling Filter Accumulator Enable bit, AFEN
(ADCFLTRX[31]).

When the digital filter module is configured, the filter’s control logic waits for an external trigger
to initiate the process. The trigger signal for the analog input to be oversampled causes the
accumulator to be cleared and initiates the first conversion. The trigger also forces the trigger
sensitivity into level mode and forces the trigger itself to 1 as long as the filter needs to acquire

932

@ MICROCHIP

the user-specified number of samples via the OVRSAM[2:0] bits (ADCFLTRx[28:26]). The time

delay between each acquired sample is decided by the set sample time in the SAMC[9:0] bits

in the ADCCONZ2 register for Class 2 and the time for conversion. When the required number

set by OVRSAM[2:0] are received and processed, the data stored in the FLTRDATA[15:0] bit
(ADCFLTRx[15:0]) and the AFRDY bit (ADCFLTRx[24]) is set and the interrupt is generated (if enabled).

The following figure illustrates 4x oversampling using a Class 2 input. Triggering a Class 2 input
initiates sampling for the length of time defined by the SAMC(C[9:0] bits. Retriggers generated by the
oversampling logic use the SAMC[9:0] bits to set the sample time.

Class 2 inputs use the shared S&H; therefore, oversampling blocks lower priority Class 2 and Class 3
triggers. Higher priority Class 2 triggers completely disrupt the oversampling process; therefore, they
must be avoided completely. The same priority rule applies to two Class 2 inputs that use two digital
filters. In such a case, the higher priority input also uses the shared ADC module in Burst mode

and prevents the lower priority input from using the shared ADC. Only after all required samples

are obtained by the higher priority input can the lower priority input use the shared ADC to acquire
samples for its own digital filtering.

Figure 38-9. 4x Oversampling of a Class 2 Input

Prior to trigger, S&H is
disconnected

Sample time decided by the SAMC<9:0> bits Retriggers are generated automatically, until the number of samples
(ADCCON2<25:16>) set by OVRSAM<2:0> (ADCFLTRx<28:26>) are captured.

Sample AN8 Hold AN8 Sample AN8 Hold AN8 Sample AN8 Hold AN8 Sample AN8| Hold AN8

Disconnected

Initial trigger clears the
accumulator and starts Convert AN8 Convert AN8 Convert AN8 Convert AN8
the sampling process

Converted results are added to the accumulator

Last conversion results in a 14-bit sum, the sum is right-shifted by one
producing a 13-bit result in FLTRDATA<15:0> (ADCFLTRx<15:0>)

The following code is an example for ADC digital oversampling filter.

int main(int argc, char** argv) {
int result;

/* Configure ADCCON1 */
ADCCON1 = 0; // No ADCCON1 features are enabled including: Stop-in-Idle, turbo,
// CVD mode, Fractional mode and scan trigger source.

/* Configure ADCCON2 */
ADCCON2 = 0; // Since, we are using only the Class 1 inputs, no setting is
// required for ADCDIV

/* Initialize warm up time register */ ADCANCON = 0;

ADCANCONbits.WKUPCLKCNT = 5; // Wake-up exponent 32 * TADx

/* Clock setting */ ADCCON3 = 0;

ADCCON3bits.ADCSEL = 0; // Select input clock source
ADCCON3bits.CONCLKDIV = 1; // Control clock frequency is half of input clock
ADCCON3bits.VREFSEL = 0; // Select AVDD and AVSS as reference source

933

@ MICROCHIP

ADCOTIMEbits.ADCDIV
ADCOTIMEbits.SAMC =
ADCOTIMEbits.SELRES

ig // ADCO clock frequency is half of control clock = TADO
g // ADCO sampling time = 5 * TADO
3 // ADCO resolution is 12 bits

ol

/* Select analog input for ADC modules, no presync trigger, not sync sampling */

ADCTRGMODEbits.SHOALT = 0; // ADCO = ANO

/* Select ADC input mode */

ADCIMCON1bits.SIGNO = 0; // unsigned data format
ADCIMCONlbits.DIFFO = 0; // Single ended mode

/* Configure ADCGIRQENx */
ADCGIRQEN1 = 0; // No interrupts are used
ADCGIRQEN2 = 0;

/* Configure ADCCSSx */

ADCCSS1 = 0; // No scanning is used

ADCCSS2 = 0;

/* Configure ADCCMPCONx */

ADCCMPCON1 = 0; // No digital comparators are used. Setting the ADCCMPCONx
ADCCMPCON2 = 0; // register to '0' ensures that the comparator is disabled.
ADCCMPCON3 = 0; // Other registers are ‘don't care’.

ADCCMPCON4 = 0; ADCCMPCON5 = 0; ADCCMPCON6 = 0;

/* Configure ADCFLTRx */

ADCFLTR1 = 0; // Clear all bits ADCFLTR1bits.CHNLID = 0; // Use ANO as
the source ADCFLTRlbits.OVRSAM = 3; // 16x oversampling ADCFLTRlbits.DFMODE = 0; //
Oversampling mode ADCFLTR1bits.AFEN = 1; // Enable filter 1

ADCFLTR2 = 0; // Clear all bits

ADCFLTR3 = 0; ADCFLTR4 = 0; ADCFLTR5 = 0; ADCFLTR6 = 0;

/* Set up the trigger sources */ ADCTGSNSbits.LVLO = 0; // Edge trigger
ADCTRG1lbits.TRGSRCO = 1; // Set ANO to trigger from software.

/* Turn the ADC on */ ADCCONlbits.ON = 1;

/* Wait for voltage reference to be stable */
while (!ADCCON2bits.BGVRRDY); // Wait until the reference voltage is ready
while (ADCCON2bits.REFFLT) ; // Wait if there is a fault with the reference voltage

/* Enable clock to analog circuit */
ADCANCONbits.ANENO = 1; // Enable the clock to analog bias and digital control

/* Wait for ADC to be ready */
while (!ADCANCONbits.WKRDY0); // Wait until ADCO is ready

/* Enable the ADC module */ ADCCON3bits.DIGENO = 1; // Enable ADCO

while (1) {
/* Trigger a conversion */ ADCCON3bits.GSWTRG = 1;

/* Wait for the oversampling process to complete */
while (ADCFLTRlbits.AFRDY == 0);

/* fetch the result */

result = ADCFLTRlbits.FLTRDATA;

/*

* Process result Here

*

* Note 1: Loop time determines the sampling time for the first sample.
* remaining samples sample time is determined by set sampling + conversion time.
*

* Note 2: The first 5 samples may have reduced accuracy.

*

*/

}

return (1);

}

934

@ MICROCHIP

Figure 38-10. ADC Filter Comparisons Example

ADC Edge Trigger Period
TRGSRCx<4:0> bits (ADCTRGx<31:0>)

=1

N
& A A A
g v . L.
: §
5 - 5 o L3
§ 2 o g NI
= = 2 g I
< N o X = 4
=2 S g 2 2 8
: o 7 S SRS 8 EI
¢ 2 s 2 s 2 o ©
: g 8 £ & s % £ 8 v _
g A oA Y o © & < _ _AFRDYbit (ADCFLTRx<24>=1
5 T T T T T T T i ,~° 12-bit ADC Resuit (interrupt))
& >
2 A A A

ADC Edge Trigger Period

TRGSRCx<4:0> bits (ADCTRGx<31:0%) i

v A N A A N

r Y N\

a
g & g g

- ? & : © ? ¥ Q

o o o] o @ S @

S < = < s % S P

| - N N‘ N o, N <
° 2 o 2 o g o o S)
» § @ 2 e 3 S 8 &] ¢& S 8 8 8 8 5 % % 8 §
& g 2 ¢ 25 g 2 2 2 gz oz ¢ o g2 ¢ ¢ 3
N [$) [$)
X & 8 8 8 a & 8 8 8 ¢ g 8 8 8 8 § 8 8 8 8
4 A < 3 A < <
g
o
[%]
2 — . ~ ~ ") o
< \ _AFRDY bit (ADCFLTRx<24>) = 1 "__AFRDY bit (ADCFLTRx<24>) = 1'>__AFRDY bit (ADCFLTRx<24>) = 1"x_ AFRDY bit (ADCFLTRx<24>) = 1
3 SAMC + Conv Period 13-bit ADC Resuit (Interrupt) 73-bit ADC Result (interrupt) 13-bit ADC Resuit (Interrupt) 13-bit ADC Result (interrupt)
w
[=]
o When the DFMODE bit (ADCFLTRx<29> = 0
z Mininum Trigger Period 2 {(OVRSAM<2:0> bits (ADCFLTRx<28:26>)) [SAMC<7:0> bits (ADCXTIME<7:0>)) TAD + ((SELRES<1:0> bits (ADCXTIME<25:24>) + 1) TAD)}}
[=]

Example:

* OVRSAM<2:0> bits (ADCFLTRx<28:26 >) = 4x Samples

= SAMC<7:0> bits (ADCXTIME<7:0) = 3 TAD

= SELRES<1:0> bits (ADCXTIME<25:24>) = 12 bits

Edge_Conv_Trig_x
Minimum Trigger Period 2 (4* (3 TAD + 13 TAD)) = 64 TAD

38.5 Interrupts

The ADC module supports interrupts triggered from a variety of sources that can be processed

individually or globally. An early interrupt feature is also available to compensate for interrupt
servicing latency.

After an enabled interrupt is generated, the CPU jumps to the vector assigned to that interrupt. The
CPU begins executing code at the vector address. The user software at this vector address must
perform the required operations, such as processing the data results, clearing the interrupt flag,
then exiting. See Nested Vector Interrupt Controller (NVIC) from Related Links for more information on
interrupts and the vector address table details.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

38.5.1 Interrupt Sources
The ADC is capable of generating interrupts from the events listed in the following table.

Table 38-4. ADC Interrupt Sources

Interrupt Event Interrupt Enable Bit | Interrupt Status Bit

ANx Data Ready Event Interrupt is generated upon a completion of a AGIENX of ARDYx of ADCDSTAT1
conversion from an analog input source (ANX). ADCGIRQEN1 register
Each of the ARDYx bits is capable of generating
a unique interrupt when set using the ADCBASE
register.

. 935
@ MICROCHIP

........... continued

Interrupt Event Interrupt Enable Bit | Interrupt Status Bit

Digital Comparator Event When an conversion's comparison criteria are DCMPGIEN of DCMPED of
met by a configured and enabled digital ADCCMPCONX ADCCMPCONX register
comparator. Each of the digital comparators is register
capable of generating a unique interrupt when
its DCMPED bit is set.

Oversampling Filter Data When an oversampling filter has completed the AFGIEN of ADCFLTRx AFRDY of ADCFLTRx

Ready Event accumulation/decimation process and has stored register register
the result.
Both Band Gap Voltage Interrupt is generated when both band gap BGVRIEN of ADCCON2 BGVRRDY of ADCCON2
and ADC Reference voltage and ADC reference voltage are ready. register register
Voltage Ready Event
Band Gap Fault/ Interrupt is generated when Band Gap Fault/ REFFLTIEN of REFFLT of ADCCON2
Reference Voltage Fault/ Reference Voltage Fault/AVpp Brown-out occurs. ADCCONZ2 register register
AVpp Brown-out Fault
Event
ADC Module Wake-up Interrupt is generated when ADC wakes up after WKIENO of WKRDYO
Event being enabled. ADCANCON register ~ of ADCANCON
register
Update Ready Event Interrupt is generated when ADC SFRs are ready UPDIEN of ADCCON3 UPDRDY of ADCCON3
to be (and can be safely) updated with new register register
values.

38.5.2 ADC Base Register (ADCBASE) Usage

After conversion of ADC is complete, if the interrupt is vectored to a function that is common to all
analog inputs, it takes some significant time to find the ADC input by evaluating the ARDYx bits in
the ADCDSTATX. To avoid this time spent, the ADCBASE register is provided, which contains the base
address of the user’'s ADC ISR jump table. When read, the ADCBASE register provides a sum of the
contents of the ADCBASE register plus an encoding of the ARDYx bits set in the ADCDSTATX registers.
This use of the ADCBASE register supports the creation of an interrupt vector address that can be
used to improve the performance of an ISR.

The ARDYx bits are binary priority encoded with ARDY1 being the highest priority and ARDY8 being
the lowest priority. The encoded priority result is, then, shifted left the amount specified by the
number of bit positions specified by the IRQVS[2:0] bits in the ADCCON1 register, then added to the
contents of the ADCBASE register. If there are no ARDYx bits set, then reading the ADCBASE register
equals the value written into the ADCBASE register.

The ADCBASE register is typically loaded with the base address of a jump table that contains the
address of the appropriate ISR. The kth interrupt request is enabled via the AGIENX bit (1-8) in one of
ADCGIRQENX SFRs (X' =1 or 2).

The following codes are examples for the ADCBASE register usage.

Case 1:

ADCBASE = 0x1234; // Set the address
ADCCON1lbits.IRQVS = 2; // left shift by 2
ADCGIRQEN1bits.AGIENO = 1; // enable interrupt when ANO completion is done.

When the ADC conversion for ANO is complete, bit 0 of ADCDSTAT1 = ARDYO is set.
Read value of ADCBASE = 0x1234 + (0 << 2) = 0x1234.
Therefore, the ISR must be placed at address 0x1234 for ANO.

936

@ MICROCHIP

Case 2:

ADCBASE = 0x1234; // Set the address
ADCCON1lbits.IRQVS = 2; // left shift by 2
ADCGIRQEN1bits.AGIENO = 2; // enable interrupt when AN2 completion is done.

When the ADC conversion for AN2 is complete, bit 2 of ADCDSTAT1 = ARDY2 is set.
Read value of ADCBASE = 0x1234 + (2 << 2) = 0x123C.
Therefore, the ISR must be placed at address 0x123¢ for AN2.

Note: The contents of the ADCBASE register are not altered. Summation is performed when the
ADCBASE register is read and the summation result is the returned read value from the ADCBASE
SFR.

38.5.3 Interrupt Enabling, Priority and Vectoring
Each of the ADC events previously mentioned generates an interrupt when its associate Interrupt
Enable bit, IE, is set. Each of the ADC events previously listed also has an associated interrupt vector.
See Nested Vector Interrupt Controller (NVIC) from Related Links for more information on the vector
location and control/status bits associated with each individual interrupt.

Related Links
10.2. Nested Vector Interrupt Controller (NVIC)

38.5.4 Individual and Global Interrupts

The use of the individual interrupts previously listed can significantly optimize the servicing of
multiple ADC events by keeping each ISR focused on efficiently handling a specific event. In addition,
different ISRs can be easily segregated according to the tasks performed, thereby making user
software easier to implement and maintain. There may be cases where it is desirable to have a
single ISR service multiple interrupt events. To facilitate this, each ADC event can be logically “ORed”
to create a single global ADC interrupt. When an ADC event is enabled for a global interrupt, it
vectors to a single interrupt routine. It is the responsibility of this single global ISR to determine the
source of the interrupt through polling and process it accordingly.

Use of the Global Interrupt requires configuration of its own unique IE, IF, IP and IS bits as well as
configuration of its interrupt vector as described in Interrupt Enabling, Priority and Vectoring. See
Interrupt Enabling, Priority and Vectoring from Related Links.

Interrupts for the ADC can be configured as individual or global, or utilized as both where some are
processed individually and others in the global ISR.

Related Links
38.5.3. Interrupt Enabling, Priority and Vectoring

38.6 Power-Saving Modes of Operation

The Power-Saving, Sleep and Idle modes are useful for reducing the conversion noise by minimizing
the digital activity of the CPU, buses and other peripherals.

38.6.1 Sleep Mode

When the device enters Sleep mode, the system clock (SYCCLK) is halted. If an ADC module selects
SYSCLK as its clock source or selects REFCLK3 as its clock source (REFCLK3 is generated from
SYSCLK), the ADC enters the Sleep mode.

When the SYSCLK is the source (directly or indirectly) and Sleep mode occurs during a conversion,
the conversion is aborted. The converter cannot resume a partially completed conversion on exiting
from Sleep mode. The ADC register contents are not affected by the device entering or leaving Sleep
mode. The ADC module can operate during Sleep mode if the ADC clock source is derived from a
source other than SYSCLK that is active during Sleep mode. The FRC clock source is a logical choice

937

@ MICROCHIP

for operation during Sleep; however, the REFCLK3 clock source can also be used, provided it has an
input clock that is operational during Sleep mode.

ADC operation during Sleep mode reduces the digital switching noise from the conversion. When
the conversion is completed, the ARDYx status bit for that analog input is set and the result is loaded
into the corresponding ADC Result register (ADCDATAX).

If any of the ADC interrupts are enabled, the device is woken up from Sleep mode when the ADC
interrupt occurs. The program execution resumes at the ADC ISR if the ADC interrupt is greater
than the current CPU priority. Otherwise, execution continues from the instruction after the WAIT
instruction that placed the device in Sleep mode.

To minimize the effects of digital noise on the ADC module operation, the user must select a
conversion trigger source that ensures that the analog-to-digital conversion take places in Sleep
mode. For example, the external interrupt pin (INTO) conversion trigger option (TRGSRC[4:0] =
00100) can be used for performing sampling and conversion while the device is in Sleep mode.

Note: For the ADC module to operate in Sleep mode, the ADC clock source must be set to

Internal FRC (ADCSEL[1:0] bits (ADCCONZ2[31:30]) = 01). Alternately, the REFCLK3 source can be used;
however, the clock source used for REFCLK3 must operate during Sleep mode. Any changes to the
ADC clock configuration require that the ADC be disabled.

38.6.2 Operation During Idle Mode

For the ADC, the stop in the Idle Mode bit, SIDL (ADCCON1[13]), specifies whether the ADC module
stops on Idle or continues on Idle. If SIDL = 0, the ADC module continues normal operation when
the device enters the Idle mode. If any of the ADC interrupts are enabled, the device wakes up from
the Idle mode when the ADC interrupt occurs. The program execution resumes at the ADC ISR if
the ADC interrupt is greater than the current CPU priority. Otherwise, execution continues from the
instruction after the WAIT instruction that placed the device in the Idle mode.

If SIDL = 1, the ADC module stops in the Idle mode. If the device enters the Idle mode during
a conversion, the conversion is aborted. The converter cannot resume a partially completed
conversion on exiting from the Idle mode.

38.6.3 Low-Power Mode
The ADC module can be placed in a low-power state by disabling the digital circuit for individual ADC
modules that are not running. This is possible by clearing the DIGENXx bits and the DIGEN7 bit in the
ADCCONS3 register. (See ADCCONS3 register from Related Links.)

An even lower power state is possible by disabling the analog and bias circuit for individual ADC
modules that are not running. This is possible by clearing the ANENX bits and the ANEN7 bit in

the ADCANCON register. (See ADCANCON register from Related Links.) Disabling the digital circuit to
achieve Low-Power mode provides a significantly faster module restart compared to disabling and
re-enabling the analog and bias circuit of the ADC module. This is because disabling and re-enabling
the analog and bias circuit using the ANENXx bits and the ANEN7 bit requires a wake-up time (typical
minimum wake-up time of 20 ps) for the ADC module before it can be used. Refer to the Electrical
Specifications in the specific device data sheet for more information on the stabilization time.

When the analog and bias circuit for an ADC module is enabled, the wake-up must be polled (or
through an interrupt) using the wake-up ready bits, WKRDY6:WKRDYO and WKRDY7, which must be
equal to1".

Related Links

38.11.4. ADCCON3

38.11.24. ADCANCON

43. Electrical Characteristics

938

@ MICROCHIP

38.7

38.8

38.9

Effects of Reset

Following any Reset event, all the ADC control and status registers are reset to their default values
with control bits in a non-active state. This disables the ADC module and sets the analog input pins
to Analog Input mode. Any conversion that was in progress terminates, and the result cannot be
written to the result buffer. The values in the ADCDATAX registers are initialized to ‘0x00000000’
during a device Reset. The bias circuits are also turned OFF, so the ADC resuming operations wait
for the bias circuits to stabilize by polling (or requesting to be interrupted by) the BGVRRDY bit

(ADCCONB2 register).

Transfer Function

A typical transfer function of the 12-bit ADC is illustrated in the following figure. The difference of the
input voltages (Vinw - Vinw) is compared with the reference (Vrern - VrerL)-

+ The first code transition (A) occurs when the input voltage is (Vrgry - Vrer/8192) or 0.5 LSb.
« The 0000 0000 0001 code is centered at (VreeH - Vrer /4096) or 1.0 LSb (B).

+ The 1000 0000 0000 code is centered at (2048 * (VrerH - Vrer)/4096) (Q).
* Aninput voltage less than (1 * (Vgrery - Vrer)/8192) converts as 0000 0000 0000 (D).
* Aninput greater than (8192 * (Vrern - VRer1)/8192) convertsas 1111 1111 1111 (E).

Figure 38-11. Analog-to-Digital Transfer Function

Output Code

1111
1111

1000
1000
1000
1000
0111
0111
0111

1111 1111
1111 1110

(= 4095) 4
(= 4094) J

0000
0000
0000
0000
1111
1111
1111

0011
0010
0001
0000
1111
1110
1101

2051) 4
2050) 4
2049) 4
2048) 4
2047) 4
2046) 4
2045) 4

(A)

0000 0000 0001 (= 1)
0000 0000 0000 (= 0)

VREFL

VREFL +

ADC Sampling Requirements

The analog input model of the 12-bit ADC is illustrated in the following figure. The total acquisition
time for the analog-to-digital conversion is a function of the internal circuit settling time and the
holding capacitor charge time.

VREFH — VREFL
4096

VREFL +

2048 * (VREFH — VREFL)
4096

VREFH
(VINH — VINL)

For the ADC module to meet its specified accuracy, the charge holding capacitor (CyoLp) must be
allowed to fully charge to the voltage level on the analog input pin. The analog output source
impedance (Rs), the interconnect impedance (Ri¢) and the internal sampling switch (Rss) impedance
combine to directly affect the time required to charge the Cyop. The combined impedance of

the analog sources must, therefore, be small enough to fully charge (to within one-fourth LSB of

@ MICROCHIP

939

the desired voltage) the holding capacitor within the selected sample time. The internal holding
capacitor is in the discharged state prior to each sample operation.

At least 1 Tpp time period must be allowed between conversions for the acquisition time. Refer to
the Electrical Characteristics from the Related Links.

Figure 38-12. 12-bit ADC Analog Input Model

VDD RIC=200Q Sampling RSS=44Q

. VT = 0.6V \' _ Switch
' Rs + ANx) RSS!

' A ; ég AYAVAV :_ o\ :
. Ceen | | e CHoLD
! ! PIN _| ILEAKAGE _L = DAC capacitance
:_ o T VT=06V(y)+ 500 nA T =5pF
= 1 Vss

Note: The Cpy value depends on the device package and is not tested. The effect of the Cpjy is
negligible if Rs 5 k.

Legend:

+ Cpn = Input capacitance

* Rss = Sampling switch resistance

* Rg = Source resistance

* ILeakace = Leakage current at the pin due to various junctions

+ Vy=Threshold voltage

* Rjc = Interconnect resistance

* ChoLp = Sample/hold capacitance

Related Links
43. Electrical Characteristics

38.10 Connection Considerations

Because the analog inputs employ Electrostatic Discharge (ESD) protection, they have diodes to Vpp
and Vsg; therefore, the analog input must be between Vpp and Vs, If the input voltage exceeds this

range by greater than 0.3V (either direction), one of the diodes becomes forward biased, and it may
damage the device if the input current specification is exceeded.

An external RC filter is sometimes added for antialiasing of the input signal. The R (resistive)
component must be selected to ensure that the acquisition time is met. Any external components
connected (through high-impedance) to an analog input pin (capacitor, Zener diode and so on) must
have very little leakage current at the pin.

940

@ MICROCHIP

38.11 Register Description
Notes: The following conventions are used in the following registers:
+ R =Readable bit

+ W = Writable bit

+ U= Unimplemented bit, read as ‘0’
+ 1= Bitis set0= Bit is cleared

« X =Bitis unknown

* -n=Value at POR

+ HS =Hardware Set

+ HC = Hardware Cleared

Note: CLR/SET/INV registers for each register are located at offset <register offset> + 0x04, 0x08,
0x0C, respectively.

941

@ MICROCHIP

38.11.1 Register Summary

Cofset | Name loitposl 7 |6 | 5 | 4 | 3 | 2 | 1 | o

0x00
Ox13FF
0x1400
0x1404
0x140F
0x1410
0x1414
0x141F
0x1420
0x1424
0x143F
0x1440
0x1444
0x147F
0x1480

0x1484

0x149F
0x14A0

0x14A4

0x14BF
0x14C0

0x14C4

0x14DF

0x14EQ

@ MICROCHIP

The PIC32CX-BZ2 12-bit High Speed SAR ADC module has the following Special Function Registers

(SFRs):

Reserved

ADCCON1

Reserved

ADCCON2

Reserved

ADCCON3

Reserved

ADCIMCON?1

Reserved

ADCGIRQENT1

Reserved

ADCCSS1

Reserved

ADCDSTAT1

Reserved

ADCCMPEN1

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

IRQVS[2:0]
ON FRZ SIDL
FRACT SELRES[1:0]
BGVRIEN REFFLTIEN EOSIEN
BGVRRDY REFFLT EOSRDY
GLSWTRG ~ GSWTRG
VREFSEL[2:0]
CHN_EN_SHR
ADCSEL[1:0]
DIFF3 SIGN3 DIFF2
DIFF7 SIGN7 DIFF6
DIFF11 SIGN11 DIFF10
AGIEN7 AGIENG AGIENS
Css7 CSS6 CSS5
ARDY7 ARDY6 ARDY5

STRGLVL

ADCDIV[6:0]
ENXCNVRT

SAMCI[7:0]

FSYDMA

STRGSRC[4:0]

ADINSEL[5:0]

TRGSUSP UPDIEN

UPDRDY

CONCLKDIV[5:0]

SIGN2 DIFF1
SIGN6 DIFF5
SIGN10 DIFF9
AGIEN4 AGIEN3
AGIEN11

CSs4 CSS3
CSS11

ARDY4 ARDY3
ARDY11

CMPEX[7:0]

SIGN1
SIGN5
SIGN9

AGIEN2
AGIEN10

€SS2
CSS10

ARDY2
ARDY10

DMABL[2:0]
FSYUPB SCANEN
SAMCI[9:8]
SAMP RQCNVRT
DIFFO SIGNO
DIFF4 SIGN4
DIFF8 SIGNS
AGIEN1 AGIENO
AGIEN9 AGIENS
€ss1 €SS0
€SS9 CSS8
ARDY1 ARDYO
ARDY9 ARDY8

942

........... continued

Coser | wame Jmero| 7 | 6 | s | 4 | 3 | 2 | 1 | o

Ox14E4

Reserved
Ox14EF
0x14F0 ADCCMP1
0x14F4

Reserved
Ox14FF
0x1500 ADCCMPEN2
0x1504

Reserved
0x150F
0x1510 ADCCMP2
0x1514

Reserved
0x159F
0x15A0 ADCFLTR1
0x15A4

Reserved
0x15AF
0x15B0 ADCFLTR2
0x15B4

Reserved
0x15FF
0x1600 ADCTRG1
0x1604

Reserved
0x160F
0x1610 ADCTRG2
0x1614

Reserved
0x167F
0x1680 ADCCMPCON1
0x1684

Reserved
0x168F

@ MICROCHIP

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

7:0

15:8
23:16
31:24

DCMPLO[7:0]
DCMPLO[15:8]
DCMPHI[7:0]
DCMPHI[15:8]

CMPEX[7:0]

DCMPLO[7:0]
DCMPLO[15:8]
DCMPHI[7:0]
DCMPHI[15:8]

FLTRDATA[7:0]
FLTRDATA[15:8]
CHNLID[4:0]
AFEN DATA16EN OVRSAM[2:0]

DFMODE AFGIEN

FLTRDATA[7:0]
FLTRDATA[15:8]

CHNLID[4:0]

AFEN DATAT6EN OVRSAM[2:0]

DFMODE AFGIEN

TRGSRCO[
TRGSRC1[
TRGSRC2[

[

4:
4:
4:
TRGSRC3[4:

TRGSRC4[4
TRGSRC5[4
TRGSRC6[4:
TRGSRC7[4

ENDCMP DCMPGIEN DCMPED IEBTWN IEHIHI IEHILO

AINIDI[5:0]

IELOHI

AFRDY

AFRDY

IELOLO

943

........... continued

I S T B R O N S NI

ENDCMP DCMPGIEN DCMPED IEBTWN IEHIHI IEHILO |IELOHI IELOLO
15:8 AINID[4:0]
0x1690 ADCCMPCON2
23:16
31:24
0x1694
Reserved
Ox16FF
7:0 ADCBASE[7:0]
15:8 ADCBASE[15:8]
0x1700 ADCBASE
23:16
31:24
0x1704
Reserved
0x170F
7:0 RAFO
15:8 DMACNTEN RAFOIEN
0x1710 ADCDMASTAT
23:16 WROVRERR RBFO
31:24 DMAEN RBFOIEN
0x1714
Reserved
0x171F
7:0 ADCCNTB[7:0]
15:8 ADCCNTB[15:8]
0x1720 ADCCNTB
23:16 ADCCNTB[23:16]
31:24 ADCCNTB[31:24]
0x1724
Reserved
0x172F
7:0 ADDMAB[7:0]
15:8 ADDMABI[15:8]
0x1730 ADCDMAB
23:16 ADDMABI[23:16]
31:24 ADDMABI[31:24]
0x1734
Reserved
0x173F
7:0 LVL7 LVL6 LVL5 LvL4 LVL3 LVL2 LVL1 LVLO
15:8
0x1740 ADCTRGSNS
23:16
31:24
0x1744
Reserved
O0x17FF
7:0 ANEN7 ANENO
15:8 WKRDY7 WKRDYO
0x1800 ADCANCON
23:16 WKIEN7 WKIENO
31:24 WKUPCLKCNT[3:0]
0x1804
Reserved
OX1AFF
7:0 AN[7:0]
15:8 AN[15:8]
0x1B00 ADCSYSCFGO 2316 AN[19:16]
31:24
0x1B04
Reserved
O0x1DFF
7:0 DATA[7:0]
0x1EQ0 ADCDATAX 15:8 DATA[15:8]
23:16 DATA[23:16]
31:24 DATA[31:24]

944

@ MICROCHIP

38.11.2 ADCCON1 - ADC Control Register 1

Nam

Offset:

e:

Reset:

Property:

ADCCON1
0x1400
0x00601000

This register controls the basic operation of the ADC module, including behavior in Sleep and Idle
modes, and data formatting. This register also specifies the vector shift amounts for the Interrupt
Controller. Additional ADCCON1 functions include the RAM buffer length in DMA mode.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| FRACT | SELRES[1:0] | STRGSRC[4:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 1 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| ON | FRz [siDL | | | FSYDMA | FSYUPB | SCANEN |
Access R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
IRQVS[2:0] STRGLVL DMABL[2:0]
Access R/W RIW R/W RIW R/W R/W RIW
Reset 0 0 0 0 0 0 0

Bit 23 - FRACT Fractional Data Output Format bit

0
1

Integer
Fractional

Bits 22:21 - SELRES[1:0] Shared ADC (ADC2) Resolution bits
Note: Changing the resolution of the ADC does not shift the result in the corresponding ADCDATAX
register. The result occupies 12 bits, with the corresponding lower unused bits set to ‘0". For
example, a resolution of 6 bits results in ADCDATAX[5:0] being set to ‘0’ and ADCDATAXx[11:6] holding

the result.

Value Description

11
10
01
00

12 bits (default)
10 bits

8 bits

6 bits

Bits 20:16 - STRGSRC[4:0] ScanTrigger Source Select bits

10001 - 11111 Reserved
10000 EVSYS_47
01111 EVSYS_46
01110 EVSYS_45
01101 EVSYS_44
01100 EVSYS_43

@ MICROCHIP

945

Value Description

01011 EVSYS_42

01010 EVSYS_41

01001 EVSYS_40

01000 EVSYS_39

00111 EVSYS_38

00110 EVSYS_37

00101 EVSYS_36

00100 INTO External interrupt

00011 Reserved

00010 Global level software trigger (GLSWTRG)
00001 Global software edge trigger (GSWTRG)
00000 No Trigger

Bit 15 - ON ADC Module Enable bit
Note: The ON bit must be set only after the ADC module is configured.

Value Description
0 ADC module is disabled
1 ADC module is enabled

Bit 14 - FRZ Freeze in Debug Mode

Value Description
0 Do not freeze in Debug mode
1 Freeze in Debug mode

Bit 13 - SIDL Stop in Idle Mode bit

Value Description
0 Continue module operation in Idle mode
1 Discontinue module operation when device enters Idle mode

Bit 10 - FSYDMA Fast Synchronous DMA System Clock bit

Value Description
0 Fast synchronous DMA system clock is disabled
1 Fast synchronous DMA system clock is enabled

Bit 9 - FSYUPB Fast Synchronous UPB Clock bit
Value Description
0 Fast synchronous UPB clock is disabled
1 Fast synchronous UPB clock is enabled

Bit 8 - SCANEN SCAN Enable bit

Bits 6:4 - IRQVS[2:0] Interrupt Vector Shift bits
To determine the interrupt vector address, this bit specifies the amount of left-shift done to the
ARDYx status bits in the ADCDSTAT1 and ADCDSTAT2 registers prior to adding with the ADCBASE
register.
Interrupt Vector Address = Read Value of ADCBASE, and Read Value of ADCBASE = Value written
to ADCBASE + x << IRQVS[2:0], where ‘X' is the smallest active input ID from the ADCDSTAT1 or
ADCDSTAT2 registers (which has highest priority).

Value Description

111 Shift x left 7 bit position
110 Shift x left 6 bit position
101 Shift x left 5 bit position
100 Shift x left 4 bit position
011 Shift x left 3 bit position
010 Shift x left 2 bit position

@ MICROCHIP

946

Value Description
001 Shift x left 1 bit position

000 Shift x left 0 bit position

Bit 3 - STRGLVL ScanTrigger High Level/Positive Edge Sensitivity bit

Value Description
0

Scan trigger is positive edge sensitive. Once STRIG mode is selected (TRGSRCx[4:0] in the ADCTRGX register),
only a single scan trigger is generated, which completes the scan of all selected analog inputs.
1

Scan trigger is high level sensitive. Once STRIG mode is selected (TRGSRCx[4:0] in the ADCTRGX register), the
scan trigger continues for all selected analog inputs, until the STRIG option is removed.

Bits 2:0 - DMABL[2:0] DMA to System RAM Buffer Length Size

Defines the number of locations in system memory allocated per analog input for DMA interface
use. As each output data is 16-bit wide, one location consists of 2 bytes. Therefore, the actual size
reserved in the system RAM follows the formula: RAM Buffer Length in bytes = 2 pmagL+1)-

@ MICROCHIP

947

38.11.3 ADCCON2 - ADC Control Register 2

Name: ADCCONZ2
Offset: 0x1410
Reset: 0x00000000
Property: -

This register controls the reference selection for the ADC module, the sample time for the shared
ADC module, interrupt enable for reference, early interrupt selection and clock division selection for

the shared ADC.
Bit 31 30 29 28 27 26 25 24
| BGVRRDY | REFFLT [EOSRDY | | | | SAMC[9:8] |
Access R/HS/HC ~ R/HS/HC ~ R/HS/HC R/W R/W
Reset 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| SAMC[7:0] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
BGVRIEN | REFFLTIEN | EOSIEN ENXCNVRT
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
ADCDIV[6:0]
Access R/W RIW R/W R/W R/W R/W RIW
Reset 0 0 0 0 0 0 0

Bit 31 - BGVRRDY Band Gap Voltage/ADC Reference Voltage Status bit
Data processing is valid only after BGVRRDY is set by hardware, so the application code must check
that the BGVRRDY bit is set to ensure data validity. This bit set to ‘0’ when ON (ADCCON1[15]) = 0.
0 Either or both band gap voltage and ADC reference voltages (Vrer) are not ready
1 Both band gap voltage and ADC reference voltages (Vggr) are ready

Bit 30 - REFFLT Band Gap/Vrer/Avpp BOR Fault Status bit
This bit is cleared when the ON bit (ADCCON1[15]) = 0 and the BGVRRDY bit = 1.
0 Band gap and Vger voltage are working properly
1

Fault in band gap or the Vggr voltage while the ON bit (ADCCON1[15]) was set. Most likely a band gap or Vger
fault is caused by a BOR of the analog Vppsupply.

Bit 29 - EOSRDY End of Scan Interrupt Status bit
This bit is cleared when ADCCON2[31:24] are read in software.

Value Description

0 Scanning has not completed
1

All analog inputs are considered for scanning through the scan trigger (all analog inputs specified in the
ADCCSS1 and ADCCSS2 registers) have completed scanning

Bits 25:16 - SAMC[9:0] SampleTime for the Shared ADC (ADC2) bits
Where Tp7 = Period of the ADC conversion clock for the Shared ADC (ADC2) controlled by the
ADCDIV[6:0] bits.

@ MICROCHIP

948

Value Description

111111111 1025 Tapy
1

000000000 3 Tapy
1

000000000 2 Tap7
0

Bit 15 - BGVRIEN Band Gap/Vggr Voltage Ready Interrupt Enable bit

Value Description
0 No interrupt is generated when the BGVRRDY bit is set
1 Interrupt is generated when the BGVRDDY bit is set

Bit 14 - REFFLTIEN Band Gap/Vggr Voltage Fault Interrupt Enable bit

Value Description
0 No interrupt is generated when the REFFLT bit is set
1 Interrupt is generated when the REFFLT bit is set

Bit 13 - EOSIEN End of Scan Interrupt Enable bit

Value Description
0 No interrupt is generated when the EOSRDY bit is set
1 Interrupt is generated when the EOSRDY bit is set

Bit 11 - ENXCNVRT Enable External Conversion Request Interface
Setting this bit enables another module (such as the PTG) to specify and request conversion of an
ADC input.
Note: The external module (such as the PTG) is responsible for asserting only the proper trigger
signals. This ADC module has no method to block specific trigger requests from the external
module.

Bits 6:0 - ADCDIV[6:0] Division Ratio for the Shared SAR ADC Core Clock bits

The ADCDIV[6:0] bits divide the ADC control clock (Tq) to generate the clock for the shared SAR ADC.
Value Description
1111111 254*TQ=TAD2

0000011 6*Tq=Tap2
0000010 4% Tq=Tap2
0000001 2*Tq=Tap2
0000000 Reserved

@ MICROCHIP

949

38.11.4 ADCCONS3 - ADC Control Register 3

Name: ADCCON3
Offset: 0x1420
Reset: 0x00000000
Property: -

This register enables ADC clock selection, enables/disables the digital feature for the shared ADC
module and controls the manual (software) sampling and conversion.

Bit 31 30 29 28 27 26 25 24
| ADCSEL[1:0] | CONCLKDIV[5:0] |
Access RIW R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
[CHN_EN_SHR] [| |
Access R/W
Reset 0
Bit 15 14 13 12 11 10 9 8
VREFSEL[2:0] TRGSUSP | UPDIEN UPDRDY SAMP | RQCNVRT
Access R/W R/W RIW R/W RIW R/HS/HC RIW R/HS/HC
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
GLSWTRG | GSWTRG ADINSEL[5:0]
Access RIW R/W, HC R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:30 - ADCSEL[1:0] Analog-to-Digital Clock Source (T¢ k) bits

00 Peripheral Bus Clock
01 FRC Clock

10 REFO3 Clock Output

11 System Clock (SYS_CLK)

Bits 29:24 - CONCLKDIV[5:0] Analog-to-Digital Control Clock (Tq) Divider bits

111111 64*TCLK=TQ
000011 4*TCLK=TQ
000010 3*TCLK=TQ
000001 Z*TCLKzTQ
000000 TCLK=TQ

Bit 23 - CHN_EN_SHR Shared ADC Digital Enable bit

1 ADC is digital enabled
0 ADC is digital disabled

@ MICROCHIP

950

Bits 15:13 - VREFSEL[2:0] Voltage Reference (Vggr) Input Selection bits

Table 38-5.
000 AVpp AVso
001-111

RESERVED FOR FUTURE USE
Bit 12 - TRGSUSP Trigger Suspend bit

Value Description
1 Triggers are blocked from starting a new analog-to-digital conversion, but the ADC module is not disabled
0 Triggers are not blocked

Bit 11 - UPDIEN Update Ready Interrupt Enable bit

Value Description

Interrupt is generated when the UPDRDY bit is set by hardware

1
0 No interrupt is generated

Bit 10 - UPDRDY ADC Update Ready Status bit

Note: This bit is only active while the TRGSUSP bit is set and there are no more running conversions
of any ADC modules.

Value Description
1 ADC SFRs can be updated
0 ADC SFRs cannot be updated

Bit 9 - SAMP Class 2 and Class 3 Analog Input Sampling Enable bit(1.2:34)

Value Description
1 The ADC S&H amplifier is sampling
0 The ADC S&H amplifier is holding
Bit 8 - RQCNVRT Individual ADC Input Conversion Request bit
This bit and its associated ADINSEL[5:0] bits enable the user to individually request an analog-to-
digital conversion of an analog input through software.
Note: This bit is automatically cleared in the next ADC clock cycle.

Value Description
1 Trigger the conversion of the selected ADC input as specified by the ADINSEL[5:0] bits
0 Do not trigger the conversion

Bit 7 - GLSWTRG Global Level Software Trigger bit

Value Description
1

Trigger conversion for ADC inputs that have selected the GLSWTRG bit as the trigger signal, either through
the associated TRGSRC[4:0] bits in the ADCTRGX registers or through the STRGSRC[4:0]bits in the ADCCON1
register

Do not trigger an analog-to-digital conversion

Bit 6 - GSWTRG Global Software Trigger bit

This bit is automatically cleared in the next ADC clock cycle.
Value Description

0

Trigger conversion for ADC inputs that have selected the GSWTRG bit as the trigger signal, either through
the associated TRGSRC[4:0] bits in the ADCTRGX registers or through the STRGSRC[4:0]bits in the ADCCON1
register

Do not trigger an analog-to-digital conversion
Bits 5:0 - ADINSEL[5:0] Analog Input Select bits
These bits select the analog input to be converted when the RQCNVRT bit is set.

@ MICROCHIP

951

Note:

1. The SAMP bit has the highest priority and setting this bit keeps the S&H circuit in Sample
mode until the bit is cleared. Also, usage of the SAMP bit causes settings of SAMC[9:0] bits
(ADCCONZ2[25:16]) to be ignored.

The SAMP bit only connects Class 2 and Class 3 analog inputs to the shared ADC.

3. The SAMP bit is not a self-clearing bit and it is the responsibility of application software to first
clear this bit and, only after setting the RQCNVRT bit, to start the analog-to-digital conversion.

4, Normally, when the SAMP and RQCNVRT bits are used by software routines, all TRGSRCx[4:0]
bits and STRGSRC[4:0] bits must be set to ‘00000’ to disable all external hardware triggers and
prevent them from interfering with the software-controlled sampling command signal SAMP and
with the software-controlled trigger RQCNVRT.

Value Description

111111 Reserved

001011 PMU Test Output

001010 VddCore (Internal)

001001 CP_Test_1.2V (Internal)
001000 BandGap Reference (Internal)
000111 AN7 is being monitored
000001 AN1 is being monitored
000000 ANO is being monitored

952

@ MICROCHIP

38.11.5 ADCIMCONL1 - ADC Input Mode Control Register 1

Name: ADCIMCON/1
Offset: 0x1440
Reset: 0x00000000

This register enables the user to select between single-ended and differential operation as well as
select between signed and unsigned data format.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
| DIFF11 | SIGN11 | DIFFI0 | SIGN10 | DIFF9 | SIGN9 | DIFF8 [SIGN8 |
Access R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| DIFF7 | SIGN7 | DIFF6 | SIGN6 | DIFF5 | SIGN5 | DIFF4 [SIGN4 |
Access R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
DIFF3 SIGN3 DIFF2 SIGN2 DIFF1 SIGNT DIFFO SIGNO
Access R/W R/W RIW R/W RIW R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 - DIFF11 AN11 Mode bit

Value Description
1 AN11 is using Differential mode
0 AN11 is using Single-ended mode

Bit 22 - SIGN11 AN11 Signed Data Mode bit

Value Description
1 AN11 is using Signed Data mode
0 AN11 is using Unsigned Data mode

Bit 21 - DIFF10 AN10 Mode bit

Value Description
1 AN10 is using Differential mode
0 AN10 is using Single-ended mode

Bit 20 - SIGN10 AN10 Signed Data Mode bit

Value Description
1 AN10 is using Signed Data mode
0 AN10 is using Unsigned Data mode

Bit 19 - DIFF9 AN9 Mode bit

Value Description
1 AN9 is using Differential mode
0 AN9 is using Single-ended mode

Bit 18 - SIGN9 ANO Signed Data Mode bit

@ MICROCHIP

953

<
L
c
)

Description
AN9 is using Signed Data mode
AN9 is using Unsigned Data mode

o

Bit 17 - DIFF8 AN8 Mode bit

Value Description
1 AN8 is using Differential mode
0 AN8 is using Single-ended mode

Bit 16 - SIGN8 ANS8 Signed Data Mode bit
Description

ANS is using Signed Data mode
ANS is using Unsigned Data mode

<
L
c
o

o

Bit 15 - DIFF7 AN7 Mode bit

Description

AN7 is using Differential mode
AN7 is using Single-ended mode

<
L
c
)

o

Bit 14 - SIGN7 AN7 Signed Data Mode bit

Value Description
1 AN7 is using Signed Data mode
0 AN7 is using Unsigned Data mode

Bit 13 - DIFF6 AN6 Mode bit

Description

ANBG is using Differential mode
ANBG is using Single-ended mode

<
L
c
o

o

Bit 12 - SIGN6 ANG6 Signed Data Mode bit
Description

ANEG is using Signed Data mode
ANEG is using Unsigned Data mode

<
L
c
)

o

Bit 11 - DIFF5 ANS5 Mode bit

Value Description
1 ANS5 is using Differential mode
0 ANS5 is using Single-ended mode

Bit 10 - SIGN5 ANS5 Signed Data Mode bit
Description

ANS is using Signed Data mode
ANS is using Unsigned Data mode

<
L
c
o

o

Bit 9 - DIFF4 AN4 Mode bit

Description

AN4 is using Differential mode
AN4 is using Single-ended mode

<
L
c
)

o

Bit 8 - SIGN4 AN4 Signed Data Mode bit

Value Description
1 AN4 is using Signed Data mode
0 AN4 is using Unsigned Data mode

Bit 7 - DIFF3 AN3 Mode bit
Description
AN3 is using Differential mode

<
L
c
o

Jy

@ MICROCHIP

954

Value Description
0 AN3 is using Single-ended mode

Bit 6 - SIGN3 AN3 Signed Data Mode bit

Value Description
1 AN3 is using Signed Data mode
0 AN3 is using Unsigned Data mode

Bit 5 - DIFF2 AN2 Mode bit

Value Description
1 AN2 is using Differential mode
0 AN2 is using Single-ended mode

Bit 4 - SIGN2 AN2 Signed Data Mode bit

Value Description
1 AN2 is using Signed Data mode
0 AN2 is using Unsigned Data mode

Bit 3 - DIFF1 AN1 Mode bit

Value Description
1 AN1 is using Differential mode
0 AN1 is using Single-ended mode

Bit 2 - SIGN1 AN1 Signed Data Mode bit
Value Description
1 AN1 is using Signed Data mode
0 AN1 is using Unsigned Data mode

Bit 1 - DIFFO ANO Mode bit

Value Description
1 ANO is using Differential mode
0 ANO is using Single-ended mode

Bit 0 - SIGNO ANO Signed Data Mode bit

Value Description
1 ANO is using Signed Data mode
0 ANO is using Unsigned Data mode

955

@ MICROCHIP

38.11.6 ADCGIRQEN1 - ADC Global Interrupt Enable Register 1

Name: ADCGIRQEN?1
Offset: 0x1480
Reset: 0x00000000
Property: -

This register specifies which of the individual input conversion interrupts can generate the global
ADC interrupt.

Bit 31 30 29 28 27 26 25 24
Access
Reset
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | AGIEN11 | AGIEN10 | AGIEN9 [AGIEN8 |
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
AGIEN7 AGIEN6 AGIEN5 AGIEN4 AGIEN3 AGIEN2 AGIEN1 AGIENO
Access R/W R/W RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits0,1,2,3,4,5,6,7,8,9,10, 11 - AGIEN ADC Global Interrupt Enable bits

1 Interrupts are enabled for the selected analog input. The interrupt is generated after the converted data is
ready (indicated by the ARDYx bit ('x’ = 8-1) of the ADCDSTAT1 register)
0 Interrupts are disabled

956

@ MICROCHIP

38.11.7 ADCCSS1 — ADC Common Scan Select Register 1

Name: ADCCSS1
Offset: 0x14A0
Reset: 0x00000000
Property: -

This register specifies the analog inputs to be scanned by the common scan trigger.

Bit 31 30 29 28 27 26 25 24
| | | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | css11 | cssto | css9 [csss |
Access R/W R/W R/W R/W
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
CSSs7 CSS6 CSS5 CSs4 CSS3 CSS2 CSS1 CSSO
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 0,1, 2,3,4,5,6,7,8,9, 10, 11 - CSS Analog Common Scan Select bits
Notes:
1. In addition to setting the appropriate bits in this register, Class 2 analog inputs must select the
STRIG input as the trigger source if they are to be scanned through the CSSx bits. Refer to the bit
descriptions in the ADCTRGx registers for selecting the STRIG option.

2. IfacClass 2 inputisincluded in the scan by setting the CSSx bit to ‘1" and by setting the
TRGSRCx[4:0] bits to STRIG mode (0b11), the user application must ensure that no other triggers

are generated for that input using the RQCNVRT bit in the ADCCON3 register or the hardware
input or any digital filter. Otherwise, the scan behavior is unpredictable.

Value Description

1 Select ANXx for input scan
0 Skip ANx for input scan

957

@ MICROCHIP

38.11.8 ADCDSTAT1 — ADC Data Ready Status Register 1

Name: ADCDSTAT1
Offset: 0x14C0
Reset: 0x00000000
Property: -

This register contains the interrupt status of the individual analog input conversions. Each bit
represents the data-ready status for its associated conversion result.

Bit 31 30 29 28 27 26 25 24
| | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | ARDY11 | ARDY10 | ARDY9 [ARDY8 |
Access RIHS/HC ~ R/HS/HC ~ R/HS/HC R/HS/HC
Reset 0 0 0 0
Bit 7 6 5 4 3 2 1 0
ARDY7 | ARDY6 | ARDY5 | ARDY4 | ARDY3 | ARDY2 | ARDYl | ARDYO
Access R/HS/HC ~ R/HS/HC ~ R/HS/HC ~ R/HS/HC ~ R/HS/HC R/HS/HC ~ R/HS/HC R/HS/HC
Reset 0 0 0 0 0 0 0 0

Bits 0,1, 2,3,4,5,6,7, 8,9, 10, 11 - ARDY Conversion Data Ready for Corresponding Analog Input Ready
bits

1 This bit is set when converted data is ready in the data register

0 This bit is cleared when the associated data register is read

958

@ MICROCHIP

38.11.9 ADCCMPEN1 - ADC Digital Comparator 1 Enable Register

Name: ADCCMPEN1
Offset: 0x14E0
Reset: 0x00000000
Property: -

These registers select which analog input conversion results is processed by the digital comparator.

Bit 31 30 29 28 27 26 25 24
| | | | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
CMPEX[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - CMPEX[7:0] ADC Digital Comparator ‘X’ Enable bits
Note: CMPEx = where "x" stands for bit value from 0 to 7.

These bits enable conversion results corresponding to the analog input to be processed by the
digital comparator. CMPEO enables ANO, CMPE1 enables AN1 and so on.
Notes:

1. CMPEx = ANx, where ‘X' = 0-31 (Digital Comparator inputs are limited to ANO through AN31).

2. Changing the bits in this register while the Digital Comparator is enabled (ENDCMP = 1) can
result in unpredictable behavior.

959

@ MICROCHIP

38.11.10 ADCCMPEN2 — ADC Digital Comparator 2 Enable Register

Name: ADCCMPEN2
Offset: 0x1500
Reset: 0x00000000
Property: -

These registers select which analog input conversion results is processed by the digital comparator.

Bit 31 30 29 28 27 26 25 24
| | | | | | | | |
Access
Reset
Bit 23 22 21 20 19 18 17 16
| | | | | | | | |
Access
Reset
Bit 15 14 13 12 11 10 9 8
| | | | | | |
Access
Reset
Bit 7 6 5 4 3 2 1 0
CMPEX[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - CMPEX[7:0] ADC Digital Comparator ‘X’ Enable bits
Note: CMPEx = where ‘X’ stands for bit value from 0 to 7.

These bits enable conversion results corresponding to the analog input to be processed by the
digital comparator. CMPEO enables ANO, CMPE1 enables AN1 and so on.
Notes:

1. CMPEx = ANx, where ‘X' = 0-31 (Digital Comparator inputs are limited to ANO through AN31).

2. Changing the bits in this register while the Digital Comparator is enabled (ENDCMP = 1) can
result in unpredictable behavior.

960

@ MICROCHIP

38.11.11 ADCCMP1 - ADC Digital Comparator 1 Limit Value Register

Name: ADCCMP1

Offset: 0x14F0

Reset: 0x00000000

Property: -

These registers contain the high and low digital comparison values for use by the digital comparator.

Notes:

1. Changing theses bits while the Digital Comparator is enabled (ENDCMP = 1) can result in
unpredictable behavior.

2. The format of the limit values must match the format of the ADC converted value in terms of
sign and fractional settings.

3. For Digital Comparator 0 used in CVD mode, the DCMPHI[15:0] and DCMPLO[15:0] bits must
always be specified in signed format as the CVD output data is differential and is always signed.

Bit 31 30 29 28 27 26 25 24
| DCMPHI[15:8] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
DCMPHI[7:0]
Access R/W R/W R/W R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| DCMPLO[15:8] |
Access R/W R/W RIW R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| DCMPLO[7:0] |
Access R/W R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 31:16 - DCMPHI[15:0] Digital Comparator ‘x’ High Limit Value bits(1:23)
These bits store the high limit value, which is used by digital comparator for comparisons with ADC
converted data.

Bits 15:0 - DCMPLO[15:0] Digital Comparator ‘x’ Low Limit Value bits('.2:3)
These bits store the low limit value, which is used by digital comparator for comparisons with ADC
converted data.

961

@ MICROCHIP

38.11.12 ADCCMP2 - ADC Digital Comparator 2 Limit Value Register

Name: ADCCMP2

Offset: 0x1510

Reset: 0x00000000

Property: -

These registers contain the high and low digital comparison values for use by the digital comparator.

Notes:

1. Changing theses bits while the Digital Comparator is enabled (ENDCMP = 1) can resultin
unpredictable behavior.

2. The format of the limit values must match the format of the ADC converted value in terms of
sign and fractional settings.

3. For Digital Comparator 0 used in CVD mode, the DCMPHI[15:0] and DCMPLO[15:0] bits must
always be specified in signed format as the CVD output data is differential and is always signed.

Bit 31 30 29 28 27 26 25 24
| DCMPHI[15:8] |
Access R/W R/W R/W R/W R/W RIW R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
DCMPHI[7:0]
Access R/W R/W R/W R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
| DCMPLO[15:8] |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| DCMPLO[7:0] |
Access R/W R/W R/W R/W R/W RIW R/W RIW
Reset 0 0 0 0 0 0 0 0

Bits 31:16 - DCMPHI[15:0] Digital Comparator ‘x’ High Limit Value bits(*:2-3)
These bits store the high limit value, which is used by digital comparator for comparisons with ADC
converted data.

Bits 15:0 - DCMPLO[15:0] Digital Comparator ‘x’ Low Limit Value bits(1:23)
These bits store the low limit value, which is used by digital comparator for comparisons with ADC
converted data.

962

@ MICROCHIP

38.11.13 ADCFLTR1 — ADC Digital Filter 1 Register

Name:
Offset:
Reset:
Property:

ADCFLTR1
0x15A0
0x00000000

These registers provide control and status bits for the oversampling filter accumulator, and also
includes the 16-bit filter output data.

Bit 31 30 29 28 27 26 25 24
| AFEN | DATA16EN | DFMODE | OVRSAM[2:0] | AFGIEN | AFRDY |
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 23 22 21 20 19 18 17 16
| | | | CHNLID[4:0] |
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
FLTRDATA[15:8]
Access R/HS/HC ~ R/HS/HC ~— R/HS/HC ~ R/HS/HC — R/HS/HC — R/HS/HC — R/HS/HC — R/HS/HC
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
FLTRDATA[7:0]
Access R/HS/HC ~ R/HS/HC — R/HS/HC ~ R/HS/HC — R/HS/HC ~— R/HS/HC — R/HS/HC — R/HS/HC
Reset 0 0 0 0 0 0 0 0

Bit 31 - AFEN Digital Filter X’ Enable bit

Value

1
0

Description

Digital filter is enabled

Digital filter is disabled and the AFRDY status bit is cleared

Bit 30 - DATA16EN Filter Significant Data Length bit
Note: This bit is significant only if DFMODE = 1 (Averaging Mode) and FRACT (ADCCON1[23]) = 1
(Fractional Output Mode).

Value

1
0

Description
All 16 bits of the filter output data are significant

Only the first 12 bits are significant, followed by four zeros

Bit 29 - DFMODE ADC Filter Mode bit

1
0

Filter ’x’ works in Averaging mode

Filter ‘x’ works in Oversampling Filter mode (default)

Bits 28:26 - OVRSAM[2:0] Oversampling Filter Ratio bits

Value

111
110
101
100
011

Description

If DFMODE is ‘0’

128 samples (shift sum 3 bits to right, output data is in 15.1 format)
32 samples (shift sum 2 bits to right, output data is in 14.1 format)

8 samples (shift sum 1 bit to right, output data is in 13.1 format)
2 samples (shift sum 0 bits to right, output data is in 12.1 format)

256 samples (shift sum 4 bits to right, output data is 16 bits)

@ MICROCHIP

963

Value Description

010 64 samples (shift sum 3 bits to right, output data is 15 bits)

001 16 samples (shift sum 2 bits to right, output data is 14 bits)

000 4 samples (shift sum 1 bit to right, output data is 13 bits)
If DFMODE is ‘1’

111 256 samples (256 samples to be averaged)

110 128 samples (128 samples to be averaged)

101 64 samples (64 samples to be averaged)

100 32 samples (32 samples to be averaged)

011 16 samples (16 samples to be averaged)

010 8 samples (8 samples to be averaged)

001 4 samples (4 samples to be averaged)

000 2 samples (2 samples to be averaged)

Bit 25 - AFGIEN Digital Filter 'x’ Interrupt Enable bit

1 Digital filter interrupt is enabled and is generated by the AFRDY status bit
0 Digital filter is disabled

Bit 24 - AFRDY Digital Filter ‘X’ Data Ready Status bit
Note: This bit is cleared by reading the FLTRDATA[15:0] bits or by disabling the Digital Filter module
(by setting AFEN to ‘0’).

Value Description
1 Data is ready in the FLTRDATA[15:0] bits
0 Data is not ready

Bits 20:16 - CHNLID[4:0] Digital Filter Analog Input Selection bits
Note: Only the first 12 analog inputs, Class 2 (ANO -AN11), can use a digital filter.

These bits specify the analog input to be used as the oversampling filter data source.

Value Description
11111 Reserved
01100 Reserved
01011 AN11
00010 AN2
00001 AN1

00000 ANO

Bits 15:0 - FLTRDATA[15:0] Digital Filter ‘X’ Data Output Value bits
The filter output data is as per the fractional format set in the FRACT bit (ADCCON1[23]). The FRACT
bit must not be changed while the filter is enabled. Changing the state of the FRACT bit after the
operation of the filter ended must not update the value of the FLTRDATA[15:0] bits to reflect the new
format.

@ MICROCHIP

964

