

FCC Radio Test Report

FCC ID: 2ADEN-INTRALOT-GNN2

This report concerns (check one): Original Grant Class I Change Class II Change

Project No. : 1712054
Equipment : Genion II
Test Model : PN223
Series Model : PN323, PN224, PN324,
 PN223XXXXXXXXXXXXXX,
 PN323XXXXXXXXXXXXXX,
 PN224XXXXXXXXXXXXXX,
 PN324XXXXXXXXXXXXXX (where X may be any
 alphanumeric character, blank or "-".)
Applicant : INTRALOT S.A.
Address : 64, Kifissias Ave. & 3, Pireas Str. 15125 Athens,
 Greece

Date of Receipt : Jan. 03, 2018
Date of Test : Jan. 03, 2018 ~ Jan. 19, 2018
Issued Date : Jan. 22, 2018
Tested by : BTL Inc.

Testing Engineer : Kenji Lin
 (Kenji Lin)

Technical Manager : James Chiu
 (James Chiu)

Authorized Signatory : Andy Chiu
 (Andy Chiu)

B T L I N C .

No.18, Ln. 171, Sec. 2, Jiuzong Rd.,
 Neihu Dist., Taipei City, Taiwan (R.O.C.)
 TEL:+886-2-2657-3299 FAX: +886-2-2657-3331

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents

REPORT ISSUED HISTORY	5
1 CERTIFICATION	6
2 SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	10
3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
3.4 DESCRIPTION OF SUPPORT UNITS	11
4 CONDUCTED EMISSION	12
4.1 LIMITS	12
4.2 TEST PROCEDURES	12
4.3 TEST SETUP LAYOUT	13
4.4 DEVIATION FROM TEST STANDARD	13
4.5 EUT OPERATING CONDITIONS	13
4.6 EUT TEST CONDITIONS	13
4.7 TEST RESULTS	13
5 RADIATED EMISSION	14
5.1 LIMITS	14
5.2 TEST PROCEDURE	15
5.3 DEVIATION FROM TEST STANDARD	16
5.4 TEST SETUP	16
5.5 EUT OPERATING CONDITIONS	16
5.6 EUT TEST CONDITIONS	17
5.7 TEST RESULTS (BELOW 30MHZ) - FCC PART 15.209	17
5.8 TEST RESULTS - (30-1000MHZ) - FCC PART 15.209	17
5.9 TEST RESULTS- FCC PART 15.225	17
6 FREQUENCY STABILITY	18
6.1 LIMITS	18
6.2 TEST PROCEDURE	18
6.3 DEVIATION FROM TEST STANDARD	18
6.4 EUT OPERATING CONDITIONS	18
6.5 EUT TEST CONDITIONS	18
6.6 TEST RESULTS	18
7 MEASUREMENT INSTRUMENTS LIST	19
8 EUT TEST PHOTO	20
APPENDIX A - CONDUCTED EMISSION	23

Table of Contents

APPENDIX B - RADIATED EMISSION (9KHZ-30MHZ)	26
APPENDIX C - RADIATED EMISSION (30MHZ TO 1000MHZ)	31
APPENDIX D - RADIATED EMISSION (FCC PART 15.225)	34
APPENDIX E - FREQUENCY STABILITY MEASUREMENT	37

REPORT ISSUED HISTORY

Issue No.	Description	Issued Date
BTL-FCCP-1-1712054	Original Issue.	Jan. 22, 2018

1 CERTIFICATION

Equipment : Genion II
Brand Name : INTRALOT
Test Model : PN223
Series Model : PN323, PN224, PN324, PN223XXXXXXXXXXXXXX, PN323XXXXXXXXXXXXXX, PN224XXXXXXXXXXXXXX, PN324XXXXXXXXXXXXXX (where X may be any alphanumeric character, blank or “-”.)
Applicant : INTRALOT S.A.
Manufacturer : Advantech Co., Ltd.
Address : No.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei, Taiwan 11491, R.O.C.
Date of Test : Jan. 03, 2018 ~ Jan. 19, 2018
Test Sample : Production Unit
Standard(s) : FCC Part 15, Subpart C (15.225)
ANSI C63.10-2013

The above equipment has been tested and found in compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-1-1712054) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Test results included in this report is only for the RFID 13.56MHz part.

2 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Standard Section	Test Item	Result
15.207	Conducted emission	PASS
15.35 / 15.205 / 15.209 / 15.225	Radiated emission	PASS
15.225(e)	Frequency Stability	PASS
15.203	Antenna Requirement	PASS

NOTE:

(1) N/A denotes test is not applicable in this test report

2.1 TEST FACILITY

The test facilities used to collect the test data in this report:

Conducted emission Test:

C05: (VCCI RN: C-4742; FCC RN:674415; FCC DN:TW0659)

No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

Radiated emission Test:

CB15: (FCC RN:674415; FCC DN:TW0659)

No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

2.2 MEASUREMENT UNCERTAINTY

The measurement uncertainty is not specified by FCC rules and for reference only.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately **95%**.

The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2.

The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cisp} requirement.

A. Conducted emission test:

Test Site	Method	Measurement Frequency Range	U, (dB)
C05	CISPR	150 kHz ~ 30MHz	2.68

B. Radiated emission test:

Test Site	Method	Measurement Frequency Range	U, (dB)
CB15 (3m)	CISPR	9kHz ~ 150kHz	2.82
		150kHz ~ 30MHz	2.58

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
CB15 (3m)	CISPR	30MHz ~ 200MHz	V	4.20
		30MHz ~ 200MHz	H	3.64
		200MHz ~ 1,000MHz	V	4.56
		200MHz ~ 1,000MHz	H	3.90

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Genion II	
Brand Name	INTRALOT	
Test Model	PN223	
Series Model	PN323, PN224, PN324, PN223XXXXXXXXXXXXXX, PN323XXXXXXXXXXXXXX, PN224XXXXXXXXXXXXXX, PN324XXXXXXXXXXXXXX (where X may be any alphanumeric character, blank or "-".)	
Model Difference	The market distribution is different only.	
Product Description	Operation Frequency	13.56 MHz
	Antenna Designation	LOOP Antenna
Power Source	DC Voltage supplied from AC/DC adapter.	
Power Rating	I/P: AC 100-240V~, 0.8A, 50-60Hz O/P: DC 12.0V---2.08A MAX	
Products Covered	1* Mother board: Advantech /A101-1 1* Power Supply(adapter): FSP / FSP025-DHAN2 1* Smart IC card reader: SYSKING / DIC202-11U 1* RFID module: GIGA-TMS / MP30U-00 1* Touch panel: Acute Touch / AT4-17070-003 1* 2D scanner: Honeywell / 5180SF-1213A0R 1* 4G SD card: Transcend / TS4GSDHC10 1* 16G SD card: Apacer / AP-ISD016GCA-1HTM 1* 2.4GHz wifi: QCOM / LR802UKN3 1* 5GHz wifi: FANGTEC / F-5M02-50-2.0-4-CT	

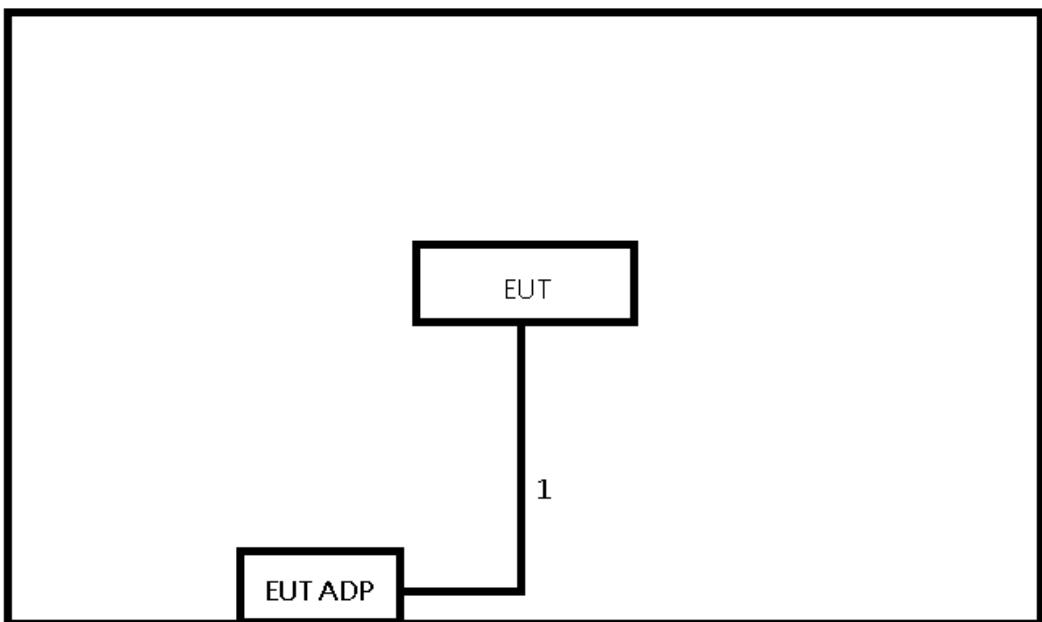
Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	13.56MHz Transmit


Conducted emission test	
Final Test Mode	Description
Mode 1	13.56MHz Transmit

Radiated emission test	
Final Test Mode	Description
Mode 1	13.56MHz Transmit

Frequency Stability test	
Final Test Mode	Description
Mode 1	13.56MHz Transmit

Antenna Requirement test	
Final Test Mode	Description
Mode 1	13.56MHz Transmit

3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.
-	-	-	-	-	-

Item	Shielded Type	Ferrite Core	Length	Note
1	YES	NO	1.5m	Power Cable

4 CONDUCTED EMISSION

4.1 LIMITS

FREQUENCY (MHz)	(dBuV)	
	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56.00	46.00
5.0 - 30.0	60.00	50.00

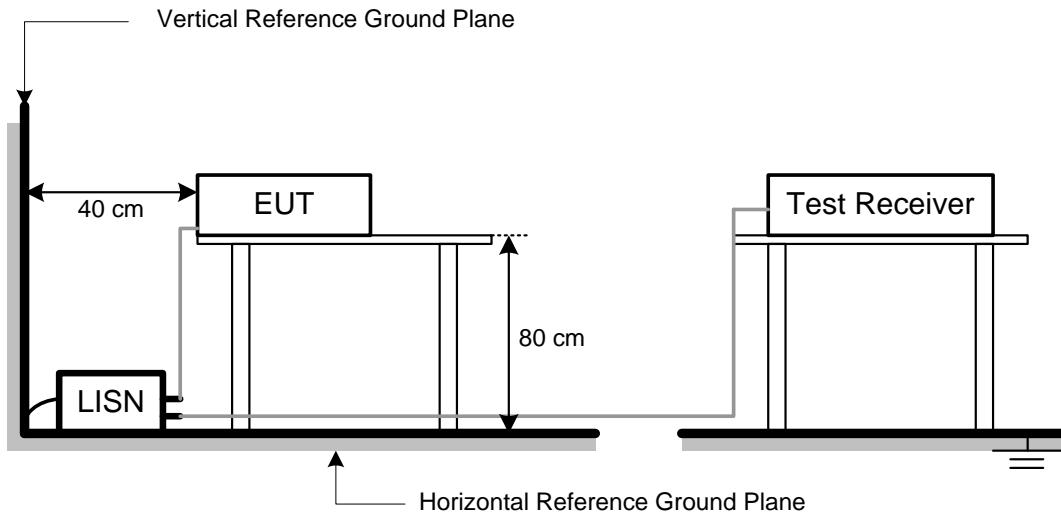
NOTE:

1. The tighter limit applies at the band edges.
2. The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
3. The test result calculated as following:

$$\text{Measurement Value} = \text{Reading Level} + \text{Correct Factor}$$

$$\text{Correct Factor} = \text{Insertion Loss} + \text{Cable Loss} + \text{Attenuator Factor(if use)}$$

$$\text{Margin Level} = \text{Measurement Value} - \text{Limit Value}$$


4.2 TEST PROCEDURES

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

NOTE:

- a. Reading in which marked as Peak, QP or AVG means measurements by using are Quasi-Peak or Average Mode with Detector BW=9 kHz (6 dB Bandwidth).
- b. All readings are Peak Mode value unless otherwise stated QP or AVG in column of Note. If the Peak or QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only Peak or QP Mode was measured, but AVG Mode didn't perform.

4.3 TEST SETUP LAYOUT

4.4 DEVIATION FROM TEST STANDARD

No deviation

4.5 EUT OPERATING CONDITIONS

The EUT used during radiated and/or conducted emission measurement was designed to exercise in a manner similar to a typical use.

4.6 EUT TEST CONDITIONS

Temperature: 25°C

Relative Humidity: 55%

Test Voltage: AC 120V/60Hz

4.7 TEST RESULTS

Please refer to the Appendix A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of 『Note』. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a “*” marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.

5 RADIATED EMISSION

5.1 LIMITS

FCC Part 15.209				
Frequency (MHz)	Field Strength Limitation		Field Strength Limitation at 3m Measurement Dist	
	(uV/m)	Dist	(uV/m)	(dBuV/m)
0.009 – 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80
0.490 – 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40
1.705 – 30.00	30	30m	100* 30	20log 30 + 40
30.0 – 88.0	100	3m	100	20log 100
88.0 – 216.0	150	3m	150	20log 150
216.0 – 960.0	200	3m	200	20log 200
Above 960.0	500	3m	500	20log 500

FCC Part 15.225(a)/(b)/(c)				
Frequency (MHz)	Field Strength Limitation		Field Strength Limitation at 3m Measurement Dist	
	(uV/m)	Dist	(uV/m)	(dBuV/m)
13.553 – 13.567	15,848	30 m	15,848*100	124
13.567 – 13.710	334	30 m	334*100	90.5
13.110 – 13.410	106	30 m	106*100	80.5
13.710 – 14.010				

NOTE:

- (1) The tighter limit shall apply at the boundary between two frequency range.
- (2) Limitation expressed in dBuV/m is calculated by 20log Emission Level (uV/m).
- (3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of $L_{d1} = L_{d2} * (d_2/d_1)^2$.

Example:

F.S Limit at 30m distance is 30uV/m , then F.S Limitation at 3m distance is adjusted as $L_{d1} = L_1 = 30uV/m * (10)^2 = 100 * 30 uV/m$

- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor
 Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use)
 Margin Level = Measurement Value – Limit Value

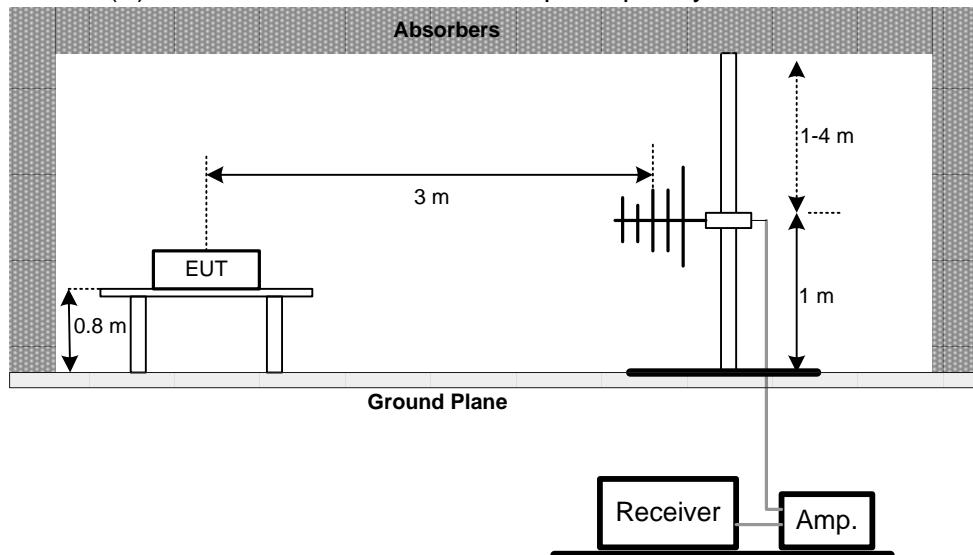
5.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- d. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

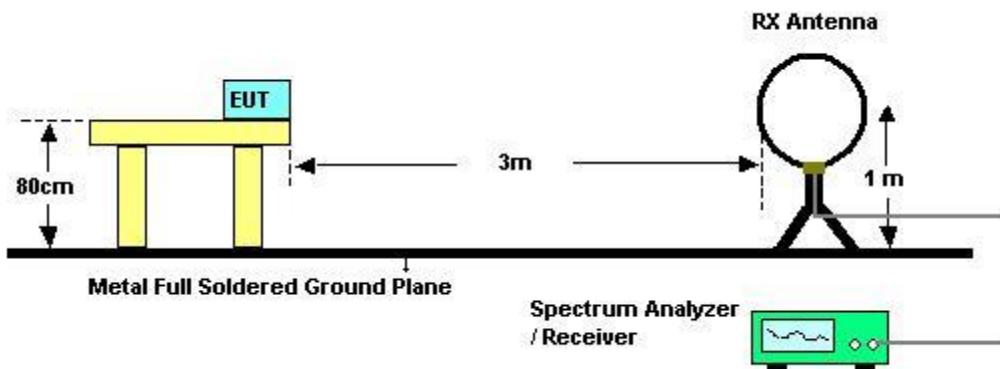
NOTE: (FCC PART 15.209)

- a. Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode with Detector BW=120 kHz.
- b. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.

NOTE: (FCC PART 15.225)


- a. Spectrum Setting:
9 KHz – 150 KHz, RBW= 200Hz, VBW=200Hz, Sweep time = 200 ms.
150 K Hz – 30 MHz, RBW= 10 KHz, VBW=10 KHz, Sweep time = 200 ms.
30 MHz – 1000 MHz, RBW= 100KHz, VBW=100KHz, Sweep time = 200 ms.
- b. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- c. The Log-Bicon Antenna will use to test frequency range from 30MHz to 1000MHz and the Loop Antenna will use to test frequency below 30MHz.

5.3 DEVIATION FROM TEST STANDARD


No deviation

5.4 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(B) For radiated emissions below 30MHz

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 4.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 EUT TEST CONDITIONS

Temperature: 23°C

Relative Humidity: 70%

Test Voltage: AC 120V/60Hz

5.7 TEST RESULTS (BELOW 30MHZ) - FCC PART 15.209

Please refer to the Appendix B.

5.8 TEST RESULTS - (30-1000MHZ) - FCC PART 15.209

Please refer to the Appendix C.

5.9 TEST RESULTS- FCC PART 15.225

Please refer to the Appendix D.

6 FREQUENCY STABILITY

6.1 LIMITS

FCC Part 15.225(e)

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of - 20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

For battery operated equipment, the equipment tests shall be performed using a new battery.

6.2 TEST PROCEDURE

- a. The equipment under test was connected to an external AC power supply and the RF output was connected to a frequency counter via feed through attenuators. The EUT was placed inside the temperature chamber.

After the temperature stabilized for approximately 20 minutes, the frequency of the output signal was recorded from the counter.

- b. At room temperature (25±5°C), an external variable AC power supply was connected to the EUT. The frequency of the transmitter was measured for 115%, 100% and 85% of the nominal operating input voltage.

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 4.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.5 EUT TEST CONDITIONS

Temperature: 22°C

Relative Humidity: 66%

Test Voltage: AC 120V/60Hz

6.6 TEST RESULTS

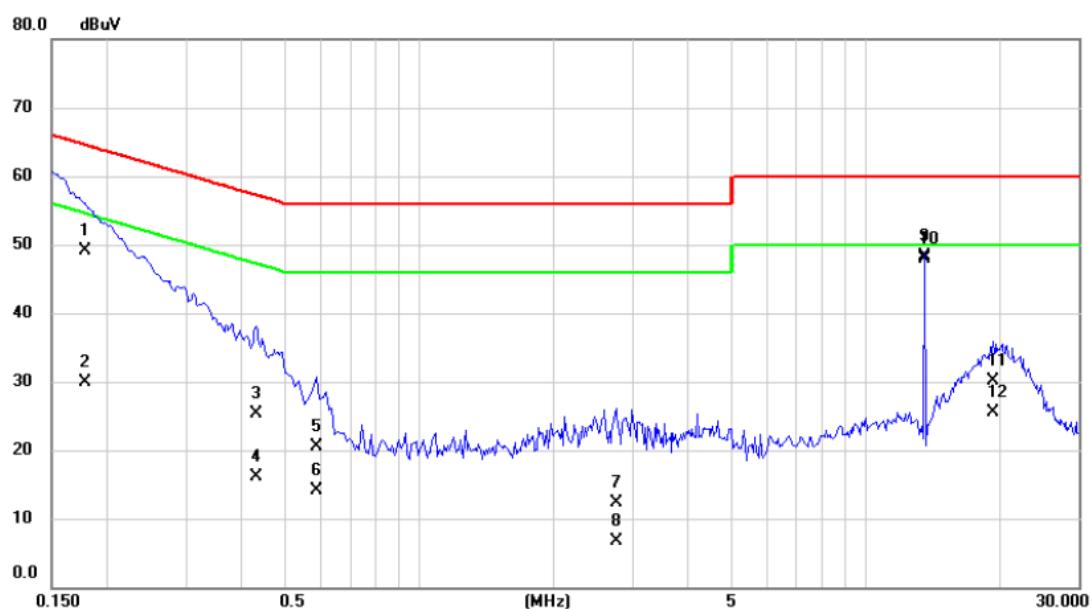
Please refer to the Appendix E.

7 MEASUREMENT INSTRUMENTS LIST

Conducted Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	Jan. 25, 2018
2	Test Cable	TIMES	CFD300-NL	C02	Jun. 14, 2018
3	EMI Test Receiver	R&S	ESR7	101433	Dec. 08, 2018
4	Measurement Software	EZ	EZ_EMC (Version NB-03A)	N/A	N/A

Radiated Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Preamplifier	EMCI	012645B	980267	Feb. 28, 2018
2	Preamplifier	EMCI	EMC02325	980217	Dec. 28, 2018
3	Preamplifier	EMCI	EMC2654045	980030	Feb. 14, 2018
4	Test Cable	EMCI	EMC104-SM-SM-8000	8m	Jan. 03, 2019
5	Test Cable	EMCI	EMC104-SM-SM-800	150207	Jan. 03, 2019
6	Test Cable	EMCI	EEMC104-SM-SM-3000	151205	Jan. 03, 2019
7	MXE EMI Receiver	Agilent	N9038A	MY55420127	Jan. 08, 2019
8	Signal Analyzer	Agilent	N9010A	MY52220990	Feb. 22, 2018
9	Loop Ant	EMCO	6502	42960	Nov. 23, 2018
10	Loop Ant	EMCI	LPA600	274	May 04, 2018
11	Horn Ant	Schwarzbeck	BBHA 9170	187	Dec. 06, 2018
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-548	Jan. 16, 2018
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0623	Jan. 16, 2018

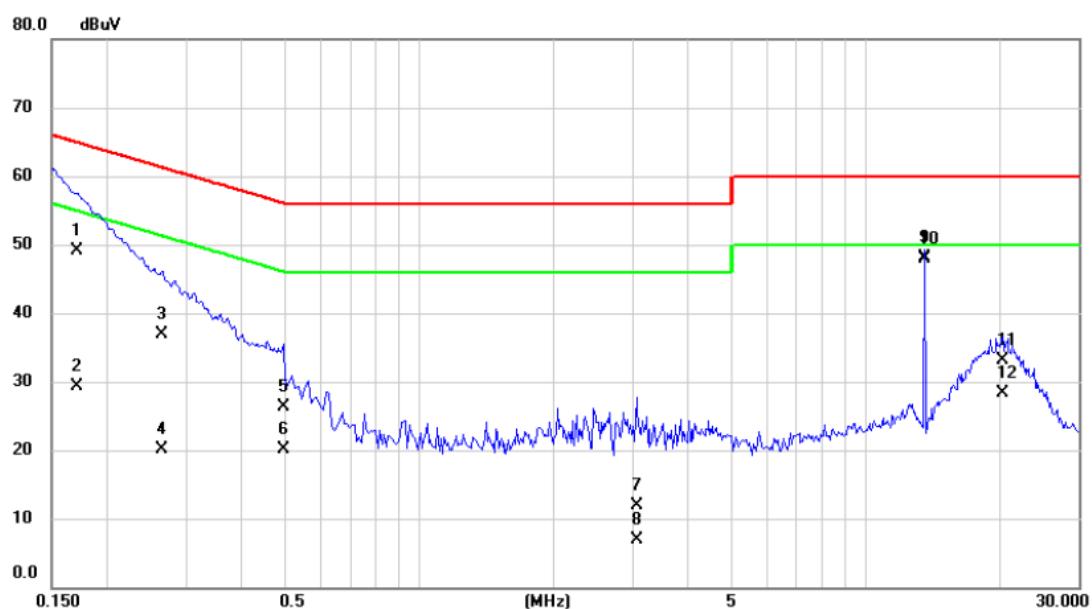
Frequency Stability Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	R&S/FSP30	100854	May 25, 2018


Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

APPENDIX A - CONDUCTED EMISSION

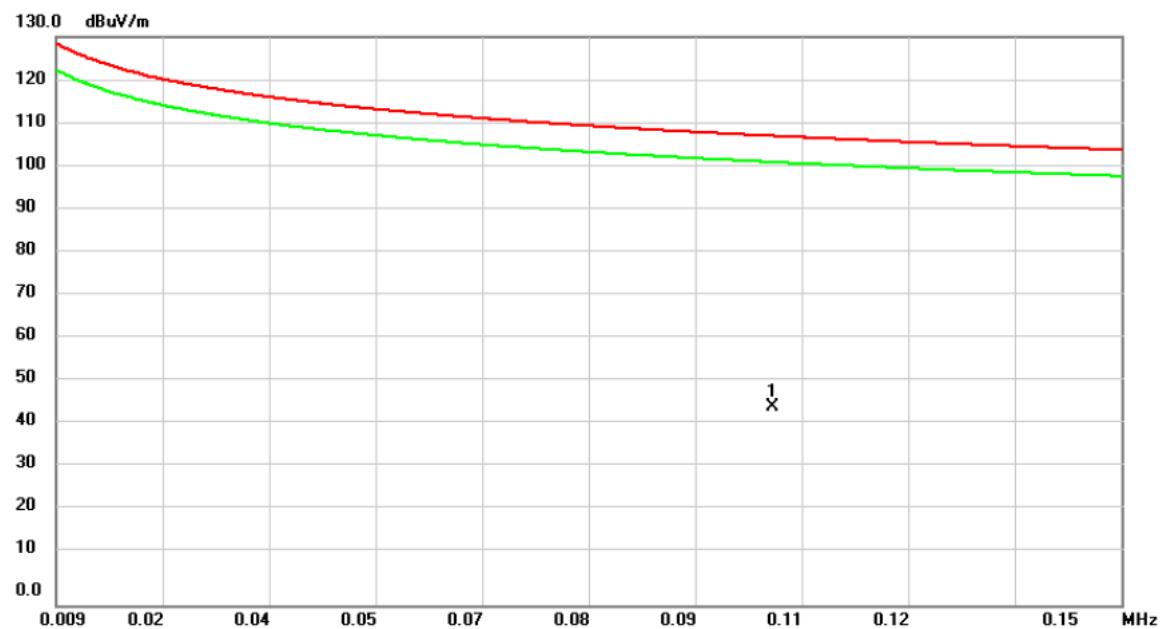
Test Mode : 13.56MHz Transmit


Line

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV	dB			
1		0.1780	39.40	9.72	49.12	64.58	-15.46	QP	
2		0.1780	20.10	9.72	29.82	54.58	-24.76	AVG	
3		0.4300	15.50	9.74	25.24	57.25	-32.01	QP	
4		0.4300	6.30	9.74	16.04	47.25	-31.21	AVG	
5		0.5900	10.70	9.74	20.44	56.00	-35.56	QP	
6		0.5900	4.40	9.74	14.14	46.00	-31.86	AVG	
7		2.7590	2.50	9.79	12.29	56.00	-43.71	QP	
8		2.7590	-3.10	9.79	6.69	46.00	-39.31	AVG	
9		13.5500	38.31	9.98	48.29	60.00	-11.71	QP	
10	*	13.5500	37.93	9.98	47.91	50.00	-2.09	AVG	
11		19.3000	20.20	9.98	30.18	60.00	-29.82	QP	
12		19.3000	15.50	9.98	25.48	50.00	-24.52	AVG	

Test Mode : 13.56MHz Transmit

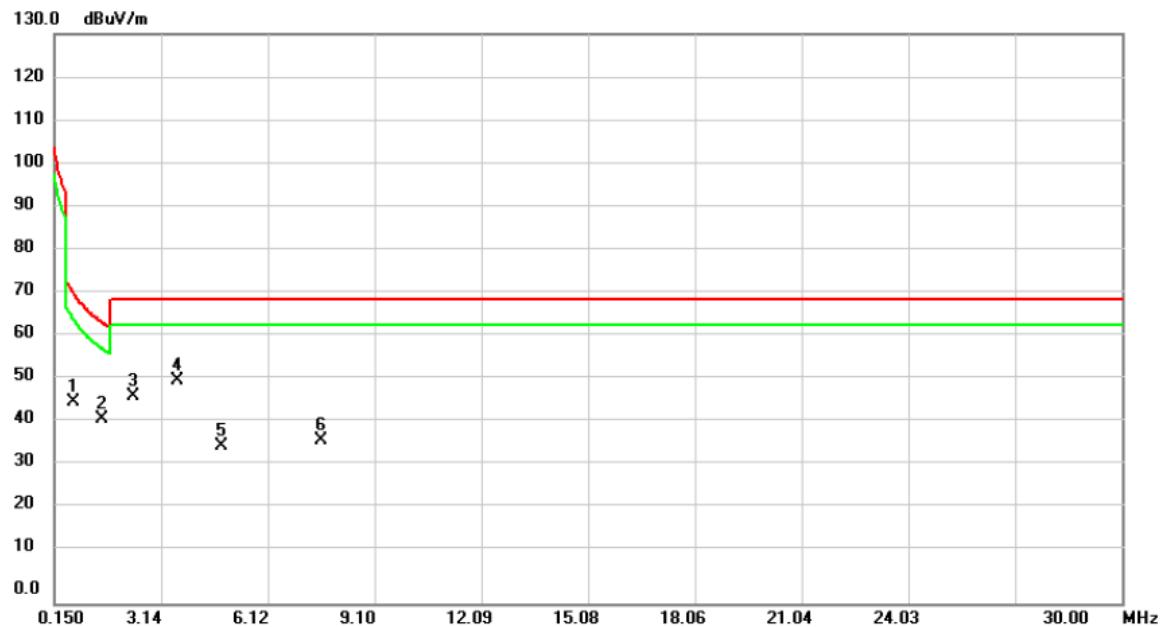
Neutral



No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV	dB			
1		0.1710	39.40	9.65	49.05	64.91	-15.86	QP	
2		0.1710	19.70	9.65	29.35	54.91	-25.56	AVG	
3		0.2655	27.20	9.67	36.87	61.26	-24.39	QP	
4		0.2655	10.40	9.67	20.07	51.26	-31.19	AVG	
5		0.4971	16.70	9.68	26.38	56.05	-29.67	QP	
6		0.4971	10.40	9.68	20.08	46.05	-25.97	AVG	
7		3.0650	2.20	9.74	11.94	56.00	-44.06	QP	
8		3.0650	-2.90	9.74	6.84	46.00	-39.16	AVG	
9		13.5500	38.20	9.98	48.18	60.00	-11.82	QP	
10	*	13.5500	37.98	9.98	47.96	50.00	-2.04	AVG	
11		20.2000	23.10	10.02	33.12	60.00	-26.88	QP	
12		20.2000	18.30	10.02	28.32	50.00	-21.68	AVG	

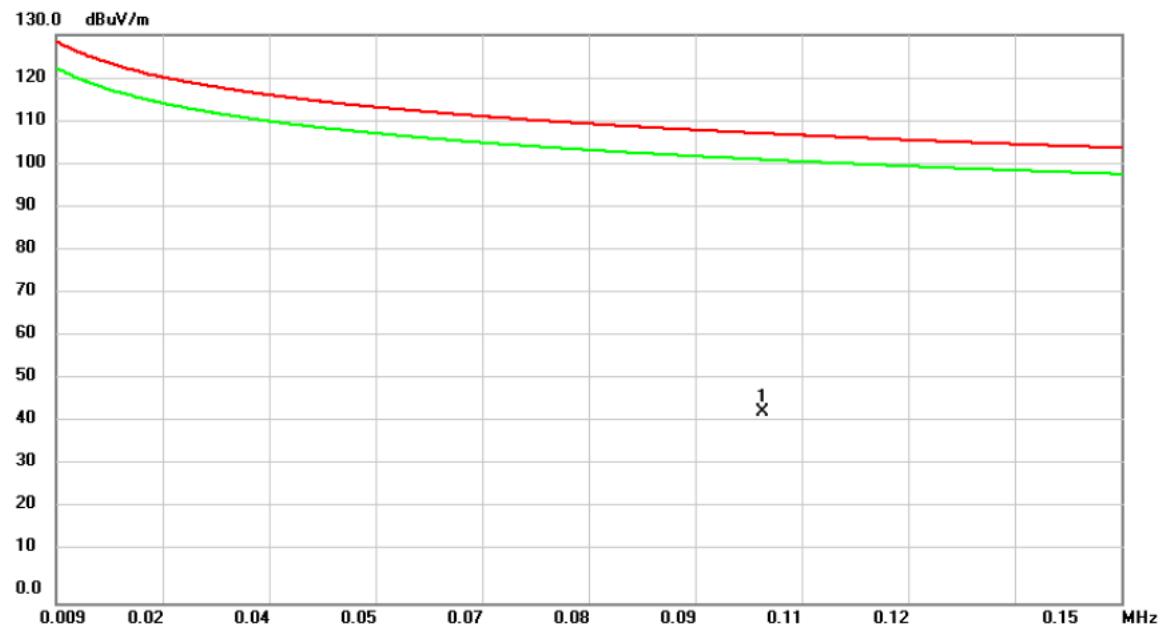
APPENDIX B - RADIATED EMISSION (9KHZ-30MHZ)

Test Mode: 13.56MHz Transmit


Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	0.1038	-12.39	57.88	45.49	107.28	-61.79	peak	

Test Mode: 13.56MHz Transmit


Vertical

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dB			
1		0.6873	2.59	43.27	45.86	70.86	-25.00	peak	
2		1.4932	1.74	40.22	41.96	64.12	-22.16	peak	
3		2.3590	8.56	38.75	47.31	69.54	-22.23	peak	
4	*	3.5827	12.61	38.24	50.85	69.54	-18.69	peak	
5		4.8066	-2.29	38.12	35.83	69.54	-33.71	peak	
6		7.6124	-0.98	38.04	37.06	69.54	-32.48	peak	

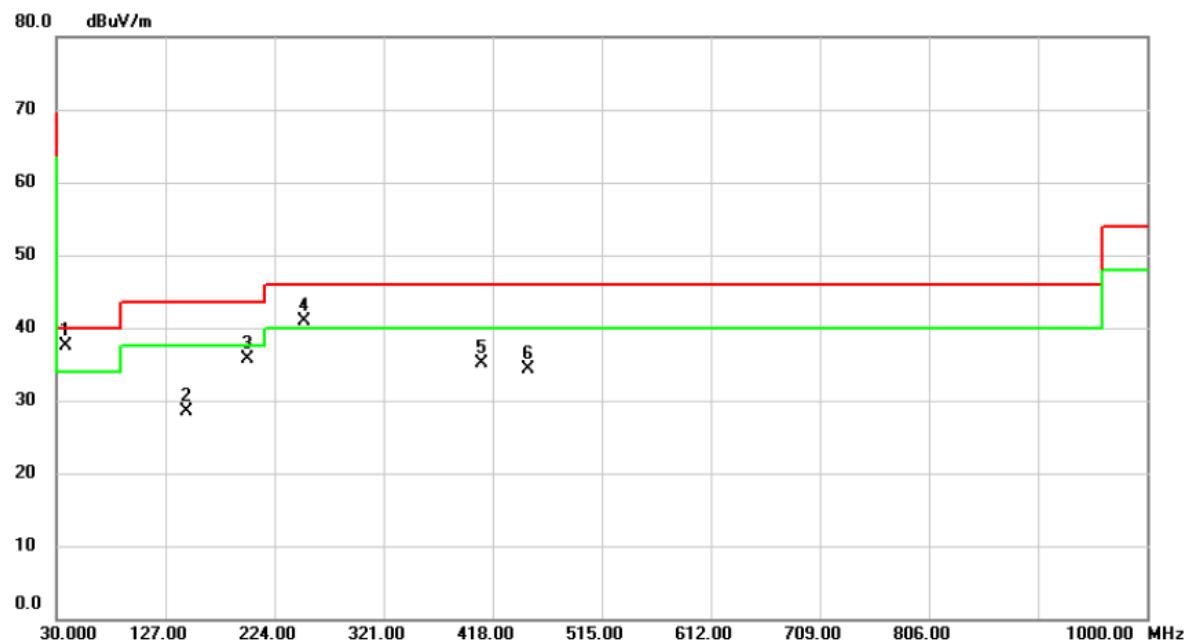
Test Mode: 13.56MHz Transmit

Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	0.1026	-14.37	57.95	43.58	107.38	-63.80	peak	

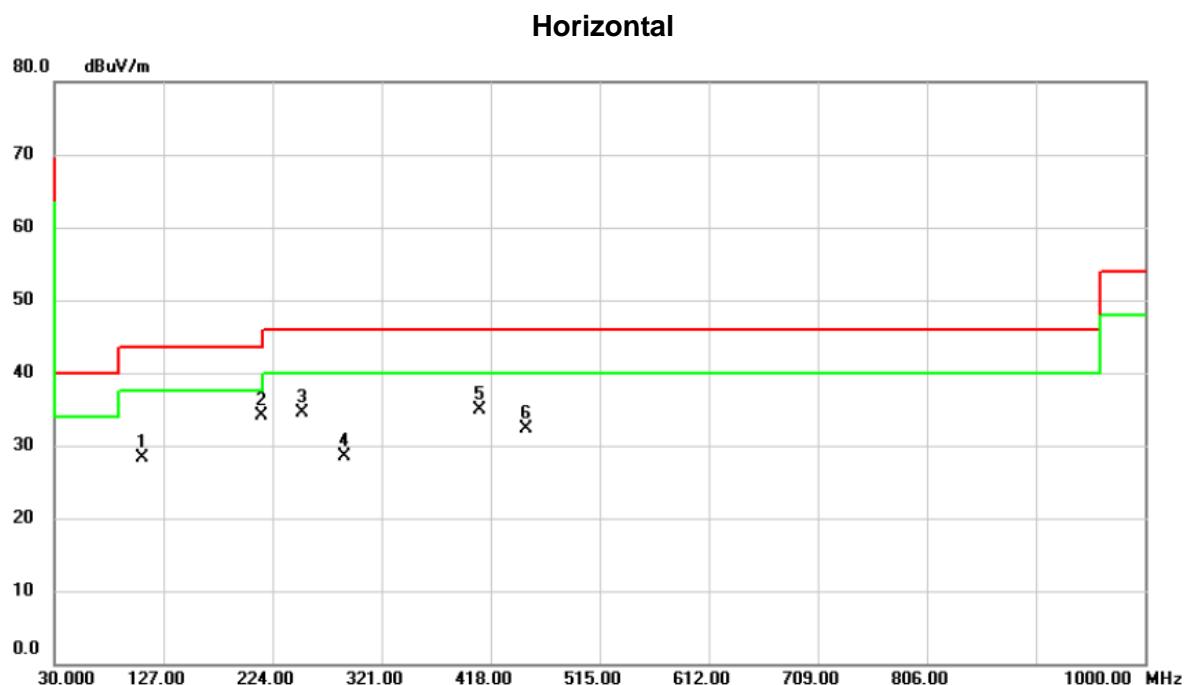
Test Mode: 13.56MHz Transmit

Horizontal



No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1		0.5978	2.86	44.42	47.28	72.07	-24.79	peak	
2	*	1.3740	1.02	40.50	41.52	64.84	-23.32	peak	
3		1.7022	-1.88	39.71	37.83	62.98	-25.15	peak	
4		2.3590	-0.06	38.75	38.69	69.54	-30.85	peak	
5		3.5827	3.32	38.24	41.56	69.54	-27.98	peak	
6		8.8961	-0.88	37.73	36.85	69.54	-32.69	peak	

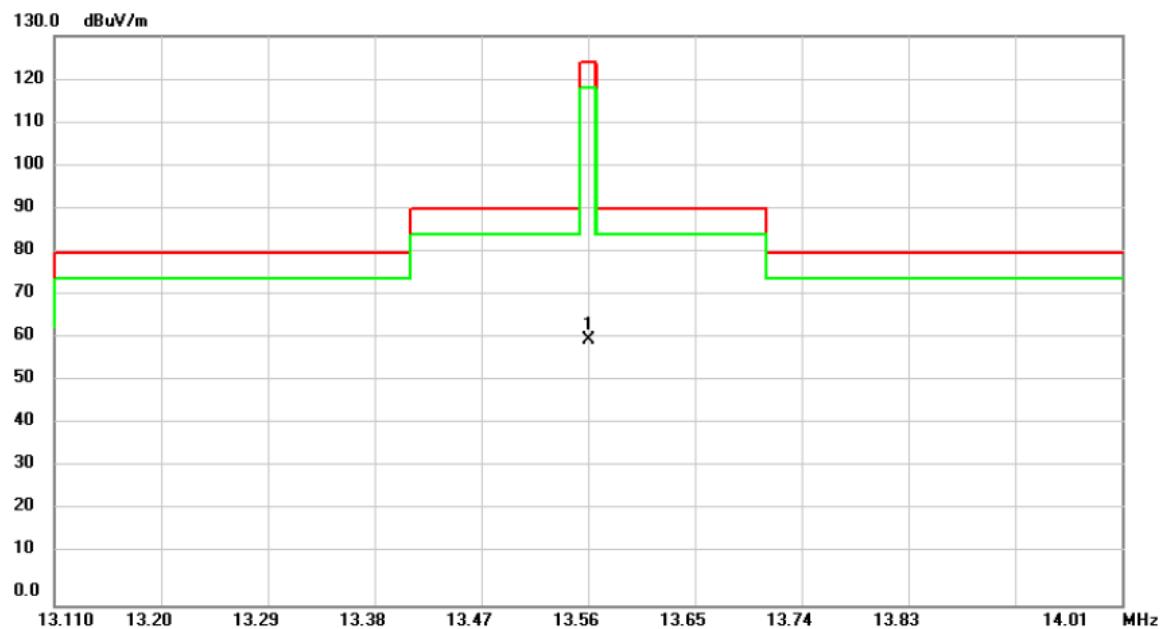
APPENDIX C - RADIATED EMISSION (30MHZ TO 1000MHZ)


Test Mode: 13.56MHz Transmit

Vertical

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1	*	37.7600	46.13	-8.63	37.50	40.00	-2.50	peak	
2		145.4300	37.50	-9.05	28.45	43.50	-15.05	peak	
3		199.7500	46.31	-10.64	35.67	43.50	-7.83	peak	
4	!	250.1900	49.89	-9.07	40.82	46.00	-5.18	peak	
5		408.3000	39.77	-4.71	35.06	46.00	-10.94	peak	
6		450.0100	37.89	-3.56	34.33	46.00	-11.67	peak	

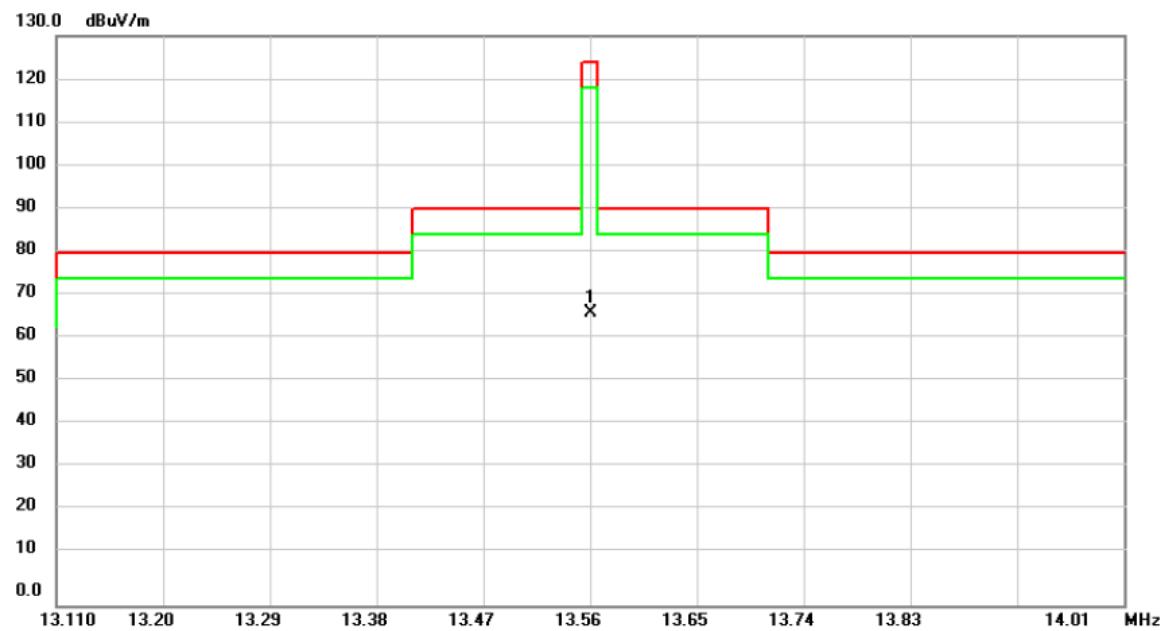
Test Mode: 13.56MHz Transmit



No.	Mk.	Freq. MHz	Reading Level	Correct Factor	Measure- ment	Limit	Over	Comment
			dBuV	dB	dBuV/m	dBuV/m	dB	
1		108.5700	39.35	-11.00	28.35	43.50	-15.15	peak
2	*	214.3000	44.93	-10.89	34.04	43.50	-9.46	peak
3		250.1900	43.60	-9.07	34.53	46.00	-11.47	peak
4		288.0200	36.31	-7.77	28.54	46.00	-17.46	peak
5		408.3000	39.68	-4.71	34.97	46.00	-11.03	peak
6		450.0100	35.86	-3.56	32.30	46.00	-13.70	peak

APPENDIX D - RADIATED EMISSION (FCC PART 15.225)

Test Mode: 13.56MHz Transmit


Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB	Detector	Comment
1	*	13.5610	49.33	11.19	60.52	124.00	-63.48	peak

Test Mode: 13.56MHz Transmit

Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	13.5610	28.98	37.70	66.68	124.00	-57.32	peak	

APPENDIX E - FREQUENCY STABILITY MEASUREMENT

Test Mode:	13.56MHz Transmit
------------	-------------------

Frequency Stability Versus Environmental Temperature						
	Temperature (°C)	Voltage (AC)	Frequency (MHz)	Frequency Error (kHz)	Limit (kHz)	Result
	20	120V	13.56020	-	-	-
0 min	50	120V	13.56020	0.000	+/- 1.356	PASS
	-20	120V	13.55980	-0.400	+/- 1.356	PASS
2 min	50	120V	13.56020	0.000	+/- 1.356	PASS
	-20	120V	13.55980	-0.400	+/- 1.356	PASS
5 min	50	120V	13.56020	0.000	+/- 1.356	PASS
	-20	120V	13.55980	-0.400	+/- 1.356	PASS
10 min	50	120V	13.56040	0.200	+/- 1.356	PASS
	-20	120V	13.55960	-0.600	+/- 1.356	PASS

Frequency Stability Versus Input Voltage						
Temperature (°C)	Voltage (AC)		Frequency (MHz)	Frequency Error (kHz)	Limit (kHz)	Result
20	V-nom	120	13.56020	-	-	-
20	V-min	102	13.56000	-0.2	+/- 1.356	PASS
20	V-max	138	13.56040	0.2	+/- 1.356	PASS