

FCC RADIO TEST REPORT

FCC ID:2ADD5-NUTALEG1

Product: Nutale GPS Tracker

Trade Name: Nutale

Model No.: Nutale-G1

Serial Model: Nutale-G1s

Report No.: NTEK- 2016NT09128888F

Issue Date: 28 Oct. 2016

Prepared for

Beijing Zizai Technology Co.,Ltd.

Room B101, No.17, Cangjingguan Road, Dongcheng District, Beijing, China

Prepared by

NTEK TESTING TECHNOLOGY CO., LTD.

1/F, Building E, Fenda Science Park, Sanwei Community,
Xixiang Street Bao'an District, Shenzhen 158126 P.R. China

Tel.: +86-755-6115 6588

Fax.: +86-755-6115 6599

Website: <http://www.ntek.org.cn>

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	3
2	SUMMARY OF TEST RESULTS.....	4
3	FACILITIES AND ACCREDITATIONS	5
3.1	FACILITIES.....	5
3.2	LABORATORY ACCREDITATIONS AND LISTINGS	5
3.3	MEASUREMENT UNCERTAINTY	5
4	GENERAL DESCRIPTION OF EUT	6
5	DESCRIPTION OF TEST MODES	8
6	SETUP OF EQUIPMENT UNDER TEST	9
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM.....	9
6.2	SUPPORT EQUIPMENT.....	10
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS.....	11
7	TEST REQUIREMENTS	13
7.1	CONDUCTED EMISSIONS TEST	13
7.2	FIELD STRENGTH OF SPURIOUS RADIATION	16
7.3	EFFECTIVE RADIATED POWER AND EFFECTIVE ISOTROPIC RADIATED POWER.....	20
7.4	CONDUCTED OUTPUT POWER	23
7.5	FREQUENCY STABILITY	26
7.6	PEAK-TO-AVERAGE RATIO	29
7.7	26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	34
7.8	CONDUCTED BAND EDGE	42
7.9	CONDUCTED SPURIOUS EMISSION AT ANTENNA TERMINAL	45

1 TEST RESULT CERTIFICATION

Applicant's name.....	Beijing Zizai Technology Co.,Ltd.
Address.....	Room B101,No.17,Cangjinguan Road, Dongcheng District,Beijing,China
Manufacture's Name	Beijing Zizai Technology Co.,Ltd.
Address	Room B101,No.17,Cangjinguan Road, Dongcheng District,Beijing,China
Product description	
Product name.....	Nutale GPS Tracker
Model and/or type reference	Nutale-G1
Serial Model	Nutale-G1s

Measurement Procedure Used:

APPLICABLE STANDARDS	
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
47 CFR Part 2, Part 22H, Part 24E ANSI/ TIA/ EIA-603-D-2010	Complied
FCC KDB 971168 D01 Power Meas. License Digital Systems v02v02	

This device described above has been tested by NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK Testing Technology Co., Ltd., this document may be altered or revised by NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test : 12 Sep. 2016 ~ 28 Oct. 2016

Testing Engineer : *Lebron Wang*
(Lebron Wang)

Technical Manager : *Jason Chen*
(Jason Chen)

Authorized Signatory : *Sam Chen*
(Sam Chen)

2 SUMMARY OF TEST RESULTS**FCC Part22, Subpart H/ FCC Part24, Subpart E**

FCC Rule	Test Item	Verdict	Remark
2.1046	Conducted Output Power	PASS	
24.232(d)	Peak-to-Average Ratio	PASS	
2.1049 22.917(b) 24.238(b)	Occupied Bandwidth	PASS	
2.1051 22.917(a) 24.238(a)	Band Edge	PASS	
22.913(a)(2)	Effective Radiated Power	PASS	
24.232(c)	Equivalent Isotropic Radiated Power	PASS	
2.1053 22.917(a) 24.238(a)	Field Strength of Spurious Radiation	PASS	
2.1055 22.355 24.235	Frequency Stability for Temperature & Voltage	PASS	
2.1051 22.917(a) 24.238(a)	Conducted Emission	PASS	

Remark:

1. "N/A" denotes test is not applicable in this Test Report.
2. All test items were verified and recorded according to the standards and without any deviation during the test.
3. No modifications are made to the EUT during all test items.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS, 2014.09.04
The certificate is valid until 2017.09.03
The Laboratory has been assessed and proved to be in compliance with
CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
The Certificate Registration Number is L5516.

Accredited by Industry Canada, August 29, 2012
The Certificate Registration Number is 9270A-1.

Name of Firm

: NTEK Testing Technology Co., Ltd

Site Location

: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95 %.

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification	
Equipment	Nutale GPS Tracker
Trade Name	Nutale
FCC ID	2ADD5-NUTALEG1
Model No.	Nutale-G1
Serial Model	Nutale-G1s
Model Difference	All the model are the same circuit and RF module, except the model No. and colour.
Operating Frequency	<input checked="" type="checkbox"/> GPRS850: TX824.2MHz~848.8MHz /RX869.2MHz~893.8MHz; <input checked="" type="checkbox"/> GPRS1900: TX1850.2MHz~1909.8MHz /RX1930.2MHz~1989.8MHz;
Modulation	<input checked="" type="checkbox"/> GMSK for GPRS;
Number of Channels	<input checked="" type="checkbox"/> 124 Channels for GPRS850; <input checked="" type="checkbox"/> 299 Channels for GPRS1900;
GPRS Class	<input checked="" type="checkbox"/> Multi-Class12 <input checked="" type="checkbox"/> Only 4 timeslots are used for GPRS
SIM CARD	The Nutale-G1 has only one SIM Card
Antenna Type	FPCB Antenna
Antenna Gain	1dBi
Power supply	<input checked="" type="checkbox"/> DC supply: DC 3.7V/1250mAh from Li-ion Battery or DC 5V from Aapter. <input checked="" type="checkbox"/> Adapter supply: MODEL:KA25-050 1000US INPUT: 100V-240V 50/60Hz 0.25A Max OUTPUT: DC 5V, 1000mA
HW Version	GPS-G1
SW Version	8100109

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual. The High Voltage 4.8V and Low Voltage 3.8V was declared by manufacturer, The EUT couldn't be operate normally with higher or lower voltage.

Revision History

5 DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester(CMU 200) to ensure max power transmission and proper modulation. Three channels (The low channel, the middle channel and the high channel) were chosen for testing on both GPRS850 and GPRS1900 frequency band.

Note: GPRS 850, GPRS 1900 modes have been tested during the test. the worst condition (GPRS850, GPRS1900 RMC 12.2k) be recorded in the test report if no other modes test data.

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v02r02 with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

1. 30 MHz to 10th harmonic for GPRS850
2. 30 MHz to 10th harmonic for GPRS 1900

All modes and data rates and positions were investigated.

1. EUT built-in battery-powered, fully-charged battery use of the test battery

Test modes are chosen to be reported as the worst case configuration below:

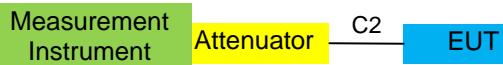
Test Modes		
Band	For Conducted Test Cases	For Radiated Test Cases
GSM 850	GSM Link	GSM Link
GSM 1900	GSM Link	GSM Link

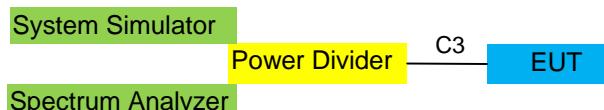
Test Frequency and Channels:

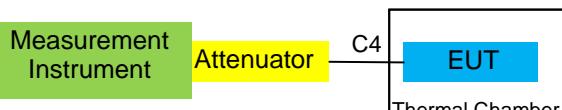
Frequency Band	☒ GSM 850		☒GSM 1900	
	Channel	Frequency (MHz)	Channel	Frequency (MHz)
CH_H	251	848.8	810	1909.8
CH_M	189	836.4	661	1880.0
CH_L	128	824.2	512	1850.2

6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM


For AC Conducted Emission Mode


For Radiated Test Cases


For Conducted Output Power

For Peak-to Average Ratio, Occupied Bandwidth, Conducted Band edge and Conducted Spurious Emission

For Frequency Stability

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
E-1	Nutale GPS Tracker	Nutale	Nutale-G1	2ADD5-NUTALEG1	EUT
E-2.	Adapter	N/A	KA25-050 1000US	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	DC Cable	NO	NO	1.0m
C-2	RF Cable	NO	NO	0.5m
C-3	RF Cable	NO	NO	0.5m
C-4	RF Cable	NO	NO	0.5m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in 『Length』 column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Spectrum Analyzer	Agilent	E4440A	MY46186938	2016.07.06	2017.07.05	1 year
2	Test Receiver	R&S	ESPI	101318	2016.06.07	2017.06.06	1 year
3	Bilog Antenna	TESEQ	CBL6111D	31216	2016.07.06	2017.07.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2016.06.07	2017.06.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2016.06.07	2017.06.06	1 year
6	Horn Antenna	EM	EM-AH-10180	2011071402	2016.07.06	2017.07.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2016.07.06	2017.07.05	1 year
8	Amplifier	EM	EM-30180	060538	2016.07.06	2017.07.05	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2016.06.08	2017.06.07	1 year
10	Power Meter	R&S	NRVS	100696	2016.07.06	2017.07.05	1 year
11	Power Sensor	R&S	URV5-Z4	0395.1619.05	2016.07.06	2017.07.05	1 year
12	Test Cable	N/A	R-01	N/A	2016.07.06	2017.07.05	1 year
13	Test Cable	N/A	R-02	N/A	2016.07.06	2017.07.05	1 year
14	Test Receiver	R&S	ESCI	101160	2016.06.06	2017.06.05	1 year
15	LISN	R&S	ENV216	101313	2015.08.24	2017.08.23	1 year
16	LISN	EMCO	3816/2	00042990	2015.08.24	2017.08.23	1 year
17	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2016.06.07	2017.06.06	1 year
18	Passive Voltage Probe	R&S	ESH2-Z3	100196	2016.06.07	2017.06.06	1 year
19	Absorbing clamp	R&S	MOS-21	100423	2016.06.08	2017.06.07	1 year
20	Test Cable	N/A	C01	N/A	2016.06.08	2017.06.07	1 year
21	Test Cable	N/A	C02	N/A	2016.06.08	2017.06.07	1 year
22	Test Cable	N/A	C03	N/A	2016.06.08	2017.06.07	1 year
23	Attenuation	MCE	24-10-34	BN9258	2016.06.08	2017.06.07	1 year
24	Spectrum Analyzer	agilent	e4440a	us44300399	2016.06.08	2017.06.07	1 year
25	test receiver	R&S	esCI	a0304218	2016.06.08	2017.06.07	1 year
26	Communication Tester	R&S	CMU200	A0304247	2016.06.08	2017.06.07	1 year
27	Thermal Chamber	Ten Billion	TTC-B3C	TBN-960502	2016.06.08	2017.06.07	1 year
28	MXA Signal Analyzer	Agilent	N9020A	MY49100060	2016.11.19	2016.11.18	1 year
29	ESG VETCTOR SIGNAL	Agilent	E4438C	MY45093347	2016.06.28	2017.06.27	1 year

	GENERAROR							
--	-----------	--	--	--	--	--	--	--

Note: Each piece of equipment is scheduled for calibration once a year.

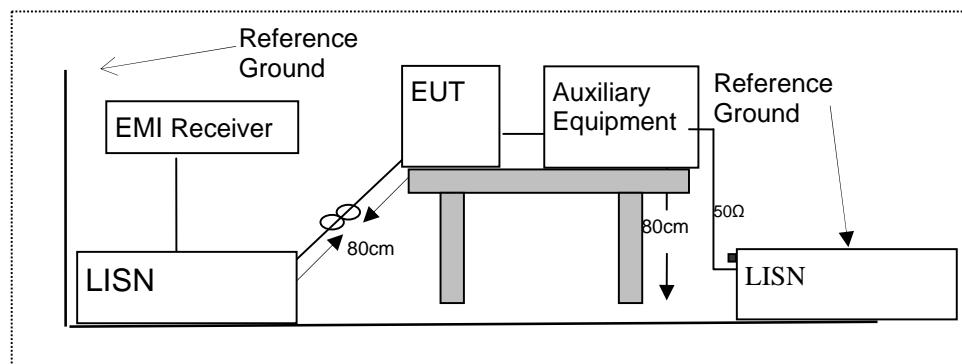
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC KDB 971168 D01 v02r02 Section 6.0

7.1.2 Conformance Limit


Frequency(MHz)	Conducted Emission Limit	
	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency
 2. The lower limit shall apply at the transition frequencies
 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

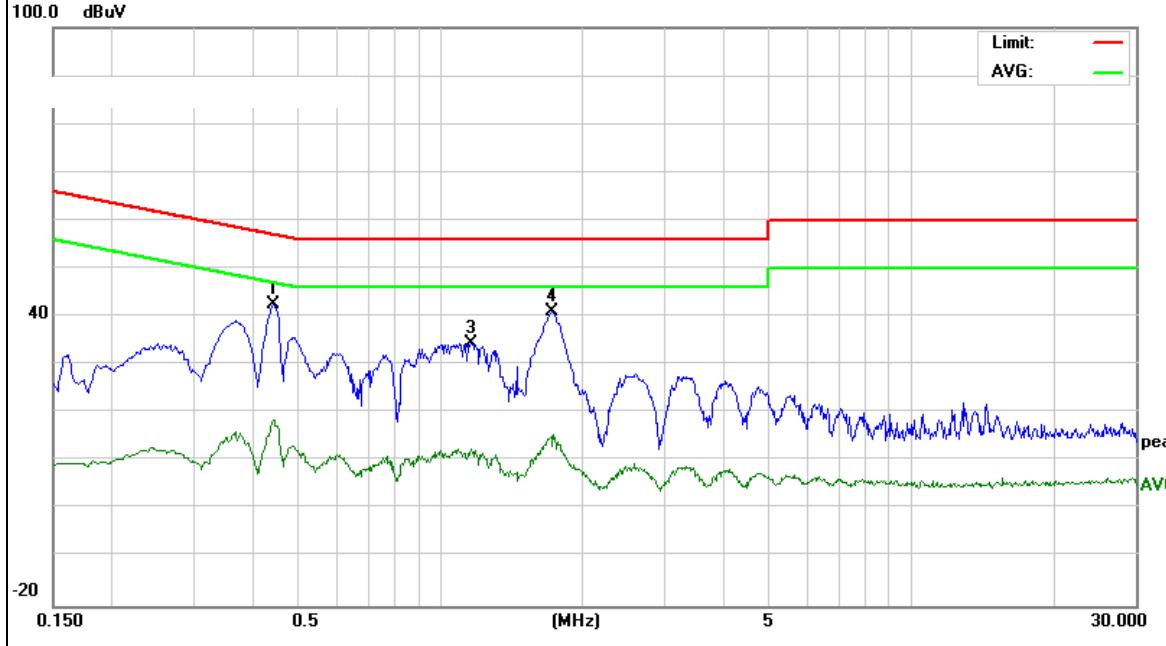
The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
2. The EUT was placed on a table which is 0.8m above ground plane.
3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
6. LISN at least 80 cm from nearest part of EUT chassis.
7. The frequency range from 150KHz to 30MHz was searched.
8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

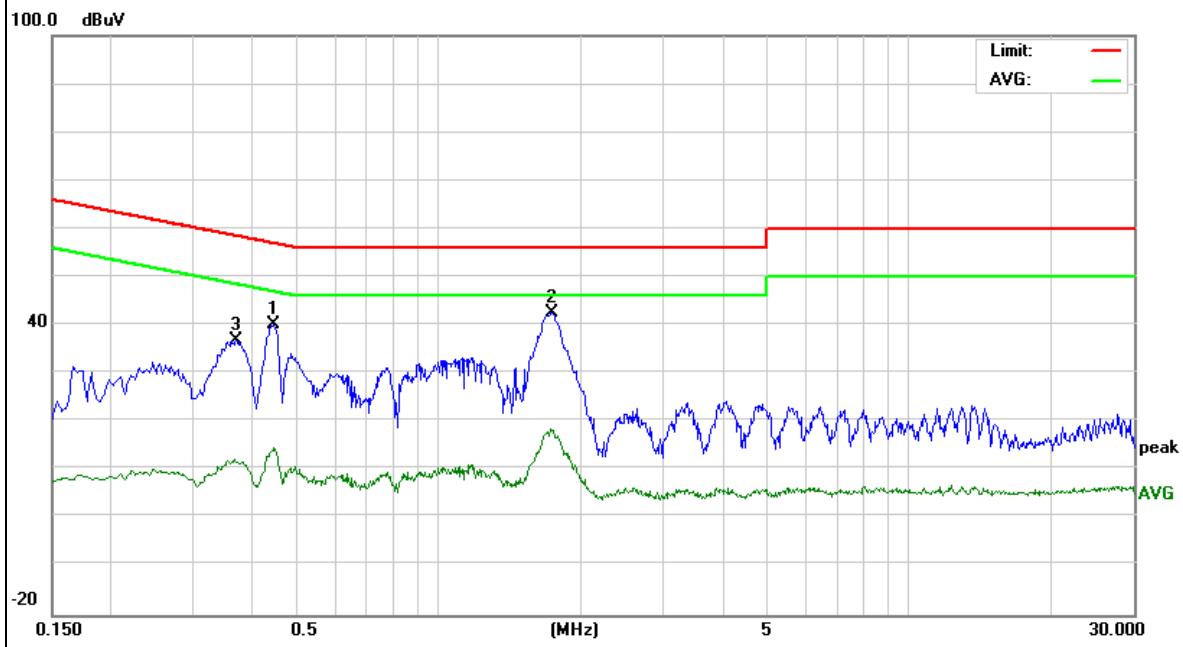

7.1.6 Test Results

EUT:	Nutale GPS Tracker	Model Name :	Nutale-G1
Temperature:	26 °C	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 3.7V	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dB μ V)	(dB)	(dB μ V)	(dB μ V)	(dB)	
0.4420	32.54	9.95	42.49	57.02	-14.53	QP
0.4420	8.54	9.95	18.49	47.02	-28.53	AVG
1.1620	24.65	9.85	34.50	56.00	-21.50	QP
1.7300	31.36	9.79	41.15	56.00	-14.85	QP
1.7380	5.80	9.79	15.59	46.00	-30.41	AVG

Remark:

1. All readings are Quasi-Peak and Average values.
2. Factor = Insertion Loss + Cable Loss.



EUT:	Nutale GPS Tracker	Model Name :	Nutale-G1
Temperature:	26 °C	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 3.7V	Test Mode:	Mode 1

Frequency (MHz)	Reading Level (dB μ V)	Correct Factor (dB)	Measure-ment (dB μ V)	Limits (dB μ V)	Margin (dB)	Remark
0.4460	30.34	9.94	40.28	56.95	-16.67	QP
1.7420	32.80	9.79	42.59	56.00	-13.41	QP
0.3700	26.89	10.07	36.96	58.50	-21.54	QP
0.4460	4.66	9.94	14.60	46.95	-32.35	AVG
1.7340	8.77	9.79	18.56	46.00	-27.44	AVG

Remark:

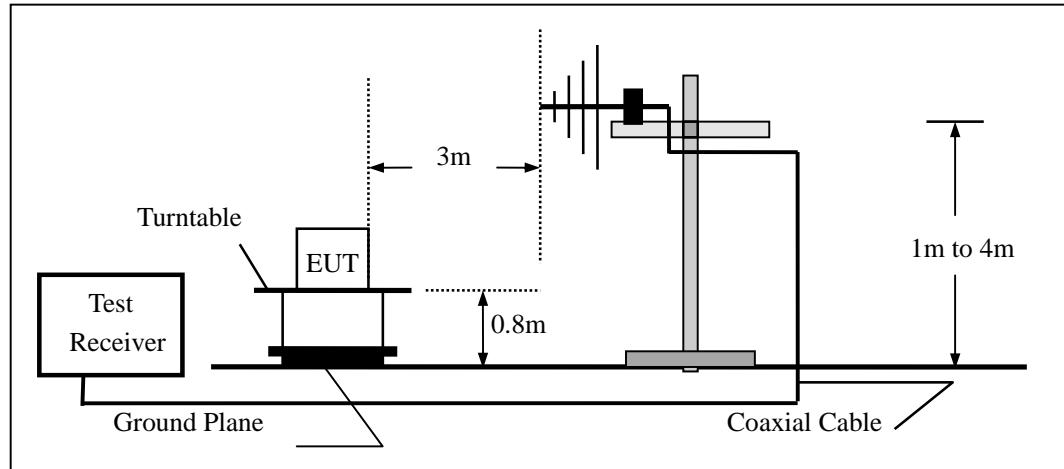
1. All readings are Quasi-Peak and Average values.
2. Factor = Insertion Loss + Cable Loss.

7.2 FIELD STRENGTH OF SPURIOUS RADIATION

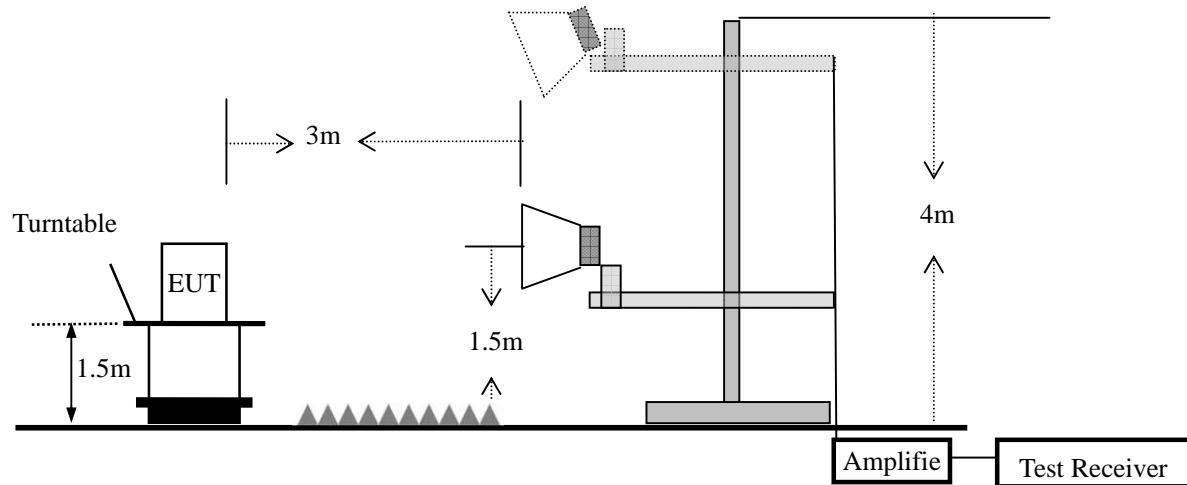
7.2.1 Applicable Standard

According to FCC KDB 971168 D01 v02r02 Section 5.8 and ANSI/ TIA-603-D-2010 Section 2.2.12

7.2.2 Conformance Limit


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions from 30MHz to 1000MHz

(b) For radiated emissions above 1000MHz

7.2.5 Test Procedure

The measurements procedures specified in TIA-603-D-2010 were used for testing. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set 1MHz as outlined in Part 24.238. The measurements were performed on all modes(GPRS850, GPRS1900, HSDPA band V) at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for each band.Only shown the worst data.

The procedure of radiated spurious emissions is as follows:

- a) Pre-calibration With pre-calibration method, the Radiated Spurious Emissions(RSE) is calculated as, $RSE = Rx(dBuV) + CL(dB) + SA(dB) + Gain(dBi) - 107(dBuV \text{ to } dBm)$ The SA is calibrated using following setup.
- b) EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the test item for emission measurements. The height of receiving antenna is 0.8m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the test item and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1MHz bandwidth.

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS 1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz), GPRS850 band (824.2MHz, 836.6MHz, 848.8MHz), UMTS band II(1852.4MHz, 1880MHz, 1907.6MHz), UMTS band V(826.4MHz, 835.0MHz, 846.6MHz) . It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of any band into any of the other blocks.

The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the ARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below: $Power = PMea + ARpl$

7.2.6 Test Results

EUT:	Nutale GPS Tracker		Model No.:	Nutale-G1	
Temperature:	20 °C		Relative Humidity:	48%	
Test Mode:	GPRS850/GPRS1900		Test By:	Lebron Wang	

■ Radiated Spurious Emission

GPRS850								
Frequency (MHz)	Power (dBm)	Cable Loss (dB)	Antenna Factor (dB)	Preamp Factor (dB)	PMea (dBm)	Limit (dBm)	Over Limit (dBm)	Polarity
Test Results for Channel 128/824.2 MHz								
1697.6	-27.95	2.8	27.5	22.2	-19.85	-13	-6.85	Vertical
1697.6	-36.48	2.8	27.5	22.2	-28.38	-13	-15.38	Horizontal
2546.4	-28.67	2.91	27.8	19.02	-16.98	-13	-3.98	Vertical
2546.4	-35.47	2.91	27.8	19.02	-23.78	-13	-10.78	Horizontal
3395.2	-29.38	4.02	29.87	20.97	-16.46	-13	-3.46	Vertical
3395.2	-36.95	4.02	29.87	20.97	-24.03	-13	-11.03	Horizontal
Test Results for Channel 190/836.6 MHz								
1673.2	-26.59	2.8	27.48	22.28	-18.59	-13	-5.59	Vertical
1673.2	-28.75	2.8	27.48	22.28	-20.75	-13	-7.75	Horizontal
2509.8	-29.14	2.91	27.7	19.41	-17.94	-13	-4.94	Vertical
2509.8	-27.49	2.91	27.7	19.41	-16.29	-13	-3.29	Horizontal
3346.4	-28.83	4.02	29.82	21.24	-16.23	-13	-3.23	Vertical
3346.4	-33.51	4.02	29.82	21.24	-20.91	-13	-7.91	Horizontal
Test Results for Channel 251/848.8 MHz								
1648.4	-26.57	2.8	27.42	22.42	-18.77	-13	-5.77	Vertical
1648.4	-33.18	2.8	27.42	22.42	-25.38	-13	-12.38	Horizontal
2472.6	-28.46	2.91	27.68	19.59	-17.46	-13	-4.46	Vertical
2472.6	-33.596	2.91	27.68	19.59	-22.596	-13	-9.596	Horizontal
3296.8	-29.15	4.02	29.80	21.52	-16.85	-13	-3.85	Vertical
3296.8	-33.39	4.02	29.80	21.52	-21.09	-13	-8.09	Horizontal

GPRS1900								
Frequency (MHz)	Power (dBm)	Cable Loss (dB)	Antenna Factor (dB)	Preamp Factor (dB)	PMea (dBm)	Limit (dBm)	Over Limit (dBm)	Polarity
Test Results for Channel 512/1850.2MHz								
3700.4	-31.34	4.04	33.51	24.13	-17.92	-13	-4.92	Vertical
3700.4	-33.87	4.04	33.51	24.13	-20.45	-13	-7.45	Horizontal
5550.6	-34.75	5.24	35.84	23.96	-17.63	-13	-4.63	Vertical
5550.6	-36.36	5.24	35.84	23.96	-19.24	-13	-6.24	Horizontal
7400.8	-35.79	7.05	36.32	27.89	-16.53	-13	-3.53	Vertical
7400.8	-36.12	7.05	36.32	24.11	-16.86	-13	-3.86	Horizontal
Test Results for Channel 661/1880.0MHz								
3760	-32.65	4.04	33.56	23.84	-18.89	-13	-5.89	Vertical
3760	-35.98	4.04	33.56	23.84	-22.22	-13	-9.22	Horizontal
5640	-35.64	5.24	35.91	23.59	-18.08	-13	-5.08	Vertical
5640	-44.12	5.24	35.91	23.59	-26.56	-13	-13.56	Horizontal
7520	-38.83	7.05	36.40	23.85	-19.23	-13	-6.23	Vertical
7520	-37.49	7.05	36.40	23.85	-17.89	-13	-4.89	Horizontal
Test Results for Channel 810/1909.8MHz								
3819.6	-34.12	4.04	34.00	24.17	-20.25	-13	-7.25	Vertical
3819.6	-35.39	4.04	34.00	24.17	-21.52	-13	-8.52	Horizontal
5729.4	-39.83	5.24	36.04	25.86	-22.17	-13	-9.17	Vertical
5729.4	-37.53	5.24	36.04	29.09	-19.87	-13	-6.87	Horizontal
7639.2	-39.83	7.05	36.45	23.75	-20.08	-13	-7.08	Vertical
7639.2	-36.77	7.05	36.45	23.75	-17.02	-13	-4.02	Horizontal

7.3 EFFECTIVE RADIATED POWER AND EFFECTIVE ISOTROPIC RADIATED POWER

7.3.1 Applicable Standard

According to FCC KDB 971168 D01 v02r02 Section 5.2.1/ Section 5.2.2.2 and ANSI/ TIA-603-D-2010 Section 2.2.17

7.3.2 Conformance Limit

The substitution method, in ANSI / TIA / EIA-603-D-2010, was used for ERP/EIRP measurement, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas. License Digital Systems v02r02. The ERP of mobile transmitters must not exceed 7 Watts (Cellular Band) and the EIRP of mobile transmitters are limited to 2 Watts (PCS Band).

This is the test for the maximum radiated power from the EUT. Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "Maximum ERP. The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

Mode	Nominal Peak Power
GSM 850	<=38.45 dBm (7W)
PCS 1900	<=33 dBm (2W)

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Procedure

The measurements procedures specified in TIA-603D-2004 were applied.

- 1 In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (P_{in}) is applied to the input of the dipole, and the power received (P_r) at the chamber's probe antenna is recorded.
- 2 The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as $AR_{pl} = P_{in} + 2.15 - P_r$. The AR_{pl} is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: $Power = P_{Mea} + AR_{pl}$
- 3 The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.
- 4 From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.
- 5 The EUT is then put into continuously transmitting mode at its maximum power level.
- 6 Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step 1 is added to this result.
- 7 This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dB) and known input power (P_{in}).

8. ERP can be calculated from EIRP by subtracting the gain of the dipole, $ERP = EIRP - 2.15\text{dBi..}$
9. Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

Substitution antenna and Receiving Antenna:

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Character	Note
1	Bilog Antenna	TESEQ	CBL6111D	31216	30MHz~2GHz	Receiving Antenna
2	Horn Antenna	EM	EM-AH-10180	2011071402	1GHz~18GHz	Receiving Antenna
3	Bilog Antenna	TESEQ	CBL6111D	31216	30MHz~2GHz	Substitution antenna
4	Horn Antenna	EM	EM-AH-10180	2011071402	1GHz~18GHz	Substitution antenna

7.3.5 Test Results

EUT:	Nutale GPS Tracker	Model No.:	Nutale-G1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	GPRS850/GPRS1900	Test By:	Lebron Wang

■ Effective Radiated Power

Radiated Power (ERP) for GPRS850								
Frequency (MHz)	Polarization	PMea (dBm)	Pcl (dB)	PAg (dB)	Ga Antenna Gain (dB)	Correction (dB)	ERP (dBm)	ERP (W)
824.2	H	-15.46	2.11	-52.73	0.87	2.15	32.14	1.6368
836.6	H	-15.41	2.13	-52.73	0.93	2.15	32.11	1.6255
848.8	H	-15.50	2.13	-52.73	0.97	2.15	31.98	1.5776
824.2	V	-15.47	2.11	-52.73	0.87	2.15	32.13	1.6331
836.6	V	-15.41	2.13	-52.73	0.93	2.15	32.11	1.6255
848.8	V	-15.55	2.13	-52.73	0.97	2.15	31.93	1.5596

Note:

The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

Peak EIRP(dBm)= PMea-Pcl-PAg-Ga

■ Effective Isotropic Radiated Power

Radiated Power (E.I.R.P) for GPRS 1900 MHZ							
Frequency (MHz)	Polarization	PMea (dBm)	Pcl (dB)	PAg (dB)	Ga Antenna Gain (dB)	EIRP (dBm)	EIRP (W)
1850.2	H	-20.37	3.76	-48.53	-4.72	29.12	0.8166
1880.0	H	-22.58	3.91	-50.53	-4.59	28.63	0.7295
1909.8	H	-22.04	3.93	-50.53	-4.38	28.94	0.7834
1850.2	V	-20.45	3.76	-48.53	-4.72	29.04	0.8017
1880.0	V	-22.99	3.91	-50.53	-4.59	28.22	0.6637
1909.8	V	-22.42	3.93	-50.53	-4.38	28.56	0.7178

Note:

The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

Peak EIRP(dBm)= PMea-Pcl-PAg-Ga.

7.4 CONDUCTED OUTPUT POWER

7.4.1 Applicable Standard

According to FCC Part 2.1046 and FCC Part 22.913(a)(2) and FCC Part 24.232(c) and FCC KDB 971168 D01 v02r02 Section 5.2

7.4.2 Conformance Limit

Extend coverage on a secondary basis into cellular unserved areas, as those areas are defined in §22.949, the ERP of base transmitters and cellular repeaters of such systems must not exceed 1000 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts(38.5dBm).

Nutale GPS Tracker and portable stations are limited to 2 watts (33dBm)EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications..

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

Connect the EUT to Universal Radio Communication Tester CMU200 or CMU500 via the antenna connector. A call is set up by the SS according to the generic call set up procedure on a channel with ARFCN in the ARFCN range, power control level set to Max power. The frequency band is set as selected frequency, The RF output of the transmitter was connected to base station simulator.

Set EUT at maximum average power by base station simulator.

Set RBW = 1-5% of the OBW, not to exceed 1 MHz.

Set VBW $\geq 3 \times$ RBW.

Number of points in sweep $\geq 2 \times$ span / RBW. (This gives bin-to-bin spacing \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

Sweep time = auto.

Detector = RMS (power averaging).

Set sweep trigger to "free run".

Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the on and off periods of the transmitter.

Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

Add $10 \log (1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add $10 \log (1/0.25) = 6$ dB if the duty cycle is a constant 25%.

Measure lowest, middle, and highest channels for each bandwidth and different modulation.

Measure and record the results in the test report.

7.4.6 Test Results

EUT:	Nutale GPS Tracker	Model No.:	Nutale-G1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	GPRS850/GPRS1900	Test By:	Lebron Wang

Output Power for GPRS850

Mode	Frequency(MHz)	Maximum Burst-Average Output Power
GPRS850(1 Slot)	824.2	32.21
	836.6	32.07
	848.8	31.89
GPRS850(2 Slot)	824.2	32.07
	836.6	31.95
	848.8	31.79
GPRS850(3 Slot)	824.2	30.95
	836.6	30.75
	848.8	30.53
GPRS850(4 Slot)	824.2	30.07
	836.6	29.85
	848.8	29.62

Output Power for GPRS1900

Mode	Frequency(MHz)	Maximum Burst-Average Output Power
GPRS1900(1 Slot)	1850.2	29.08
	1880	28.65
	1909.8	28.66
GPRS1900(2 Slot)	1850.2	28.91
	1880	28.52
	1909.8	28.53
GPRS1900(3 Slot)	1850.2	28.83
	1880	28.42
	1909.8	28.41
GPRS1900(4 Slot)	1850.2	28.59
	1880	28.22
	1909.8	28.33

7.5 FREQUENCY STABILITY

7.5.1 Applicable Standard

According to FCC Part 2.1055 and FCC Part 22.355 and FCC Part 24.235 and FCC KDB 971168 D01 Section 9.0

7.5.2 Conformance Limit

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ ($\pm 2.5\text{ppm}$) of the center frequency.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

Connect the EUT to Universal Radio Communication Tester CMU200 or CMU500 via the antenna connector. A call is set up by the SS according to the generic call set up procedure on a channel with ARFCN in the ARFCN range, power control level set to Max power. MS TXPWR_MAX_CCH is set to the maximum value supported by the Power Class of the Nutale GPS Tracker under test.

EUT was placed at temperature chamber and connected to an external power supply.

Temperature and voltage condition shall be tested to confirm frequency stability.

For Temperature Variation

1. The testing follows FCC KDB 971168 D01 v02r02 Section 9.0.
2. The EUT was set up in the thermal chamber and connected with the system simulator.
3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
4. With power OFF, the temperature was raised in 10°C steps up to 50°C . The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

For Voltage Variation

1. The testing follows FCC KDB 971168 D01 v02r02 Section 9.0.
2. The EUT was placed in a temperature chamber at $25\pm 5^\circ\text{C}$ and connected with the system simulator.
3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
4. The variation in frequency was measured for the worst case.

7.5.6 Test Results

EUT:	Nutale GPS Tracker	Model No.:	Nutale-G1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode1/Mode2	Test By:	Lebron Wang
Results: PASS			

Frequency Error Against Voltage for GPRS850 band		
Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
3.5	32	0.038
3.7	24	0.029
4.2	16	0.019

Frequency Error Against Temperature for GPRS850 band		
Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	31	0.037
-20	28	0.033
-10	34	0.041
0	22	0.026
10	17	0.020
20	12	0.014
30	25	0.030
40	13	0.016
50	34	0.041

Note:

1. Normal Voltage = 3.7V; Battery End Point (BEP) = 3.2V; Maximum Voltage = 4.2V
2. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

Frequency Error Against Voltage for GPRS1900 band		
Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
3.5	36	0.019
3.7	22	0.012
4.2	19	0.010

Frequency Error Against Temperature for GPRS1900 band		
Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	22	0.012
-20	25	0.013
-10	33	0.018
0	19	0.010
10	21	0.011
20	24	0.013

30	34	0.018
40	18	0.010
50	12	0.006

Note:

1. Normal Voltage = 3.7V; Battery End Point (BEP) = 3.2V; Maximum Voltage =4.2V
2. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

7.6 PEAK-TO-AVERAGE RATIO

7.6.1 Applicable Standard

According to FCC 22.913 and FCC 24.232(d) and FCC KDB 971168 D01 Section 5.7.1

7.6.2 Conformance Limit

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The EUT was connected to Spectrum Analyzer and Base Station via power divider.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set the number of counts to a value that stabilizes the measured CCDF curve.

Set the measurement interval to 1 ms.

Record the maximum PAPR level associated with a probability of 0.1%.

a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;

b) Set resolution/measurement bandwidth \geq signal's occupied bandwidth;

c) Set the number of counts to a value that stabilizes the measured CCDF curve;

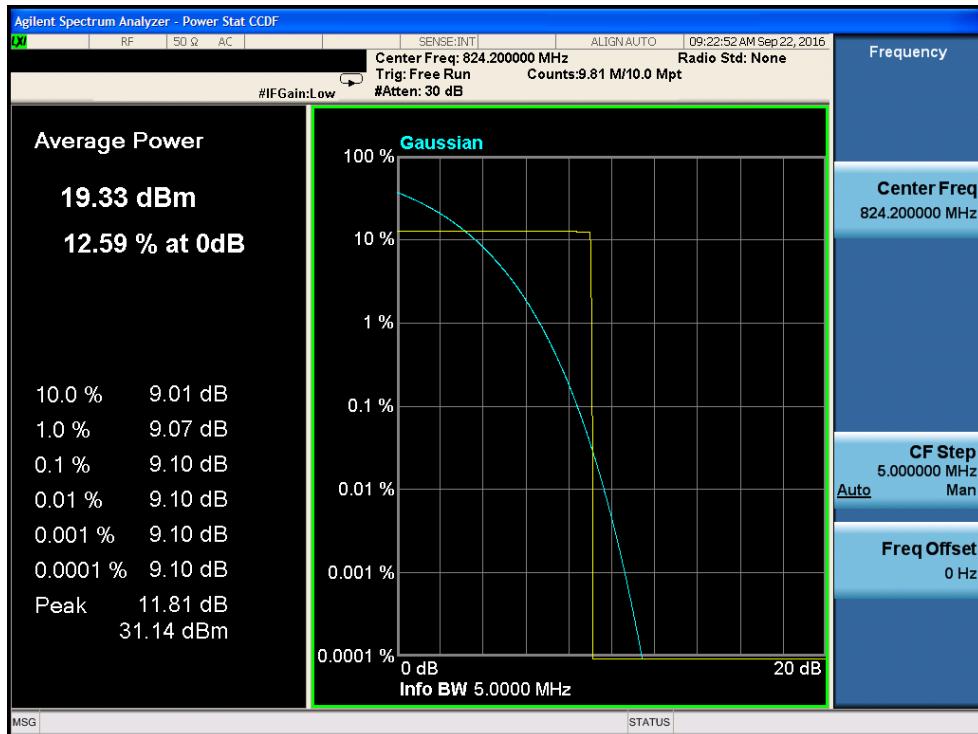
d) Set the measurement interval as follows:

1) for continuous transmissions, set to 1 ms,

2) for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.

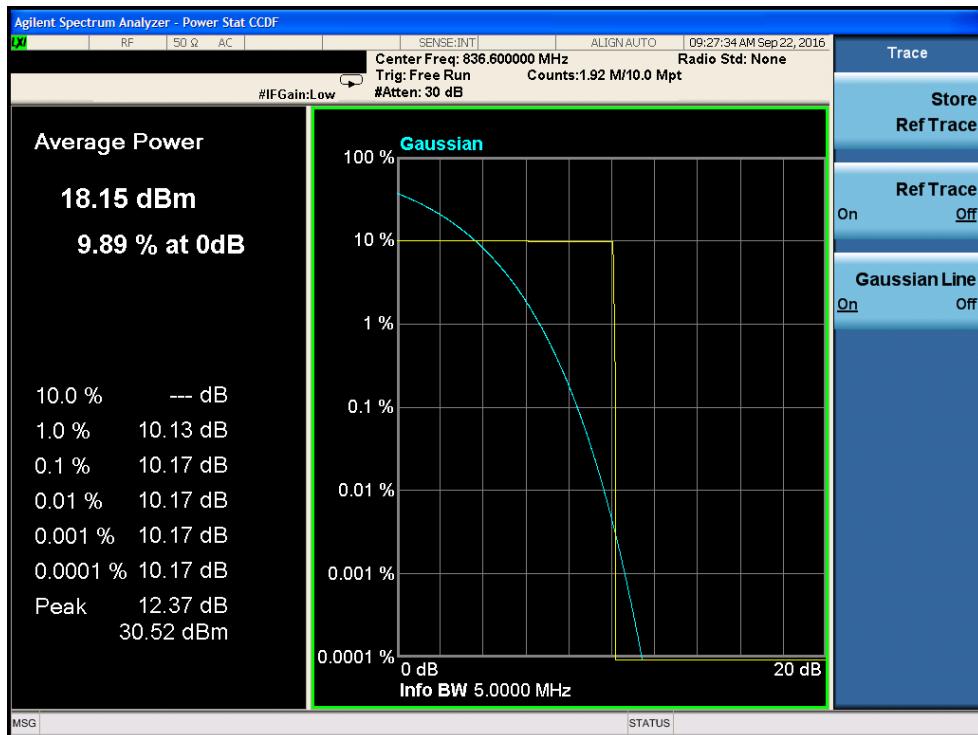
e) Record the maximum PAPR level associated with a probability of 0.1%.

7.6.6 Test Results

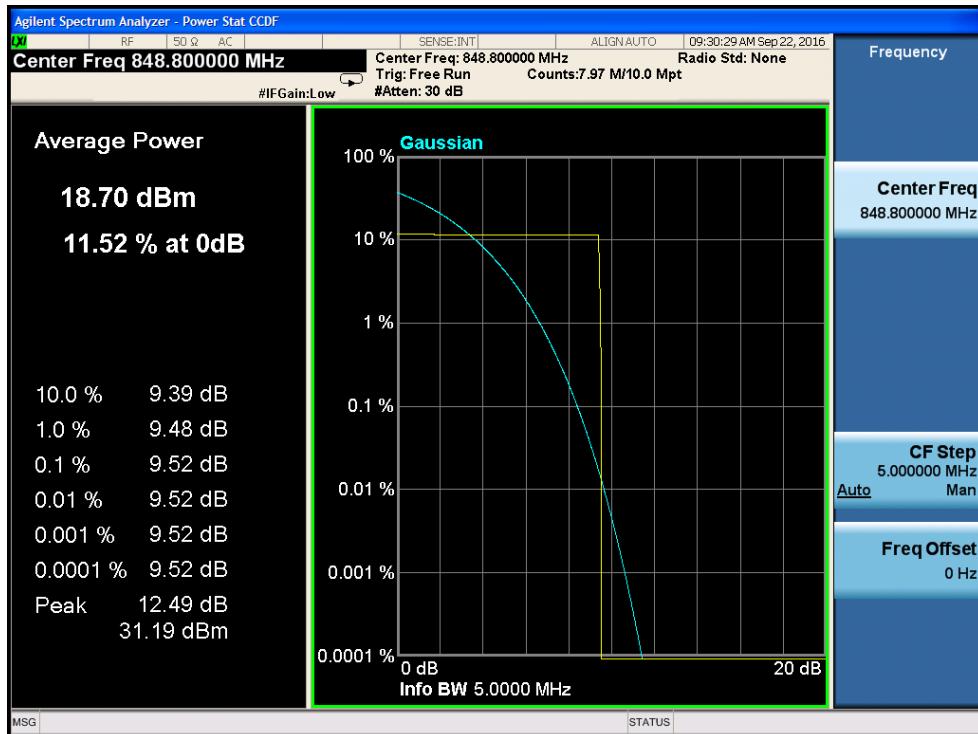

EUT:	Nutale GPS Tracker	Model No.:	Nutale-G1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode1/Mode2	Test By:	Lebron Wang
Results: PASS			

Cellular Band						
Modes	GPRS850			GPRS1900		
Channel	128 (Low)	190 (Mid)	251 (High)	512 (Low)	661 (Mid)	810 (High)
Frequency(MHz)	824.2	836.6	848.8	1850.2	1880	1909.8
Peak-to-Average Ratio (dB)	9.10	10.17	9.52	9.54	9.32	9.44

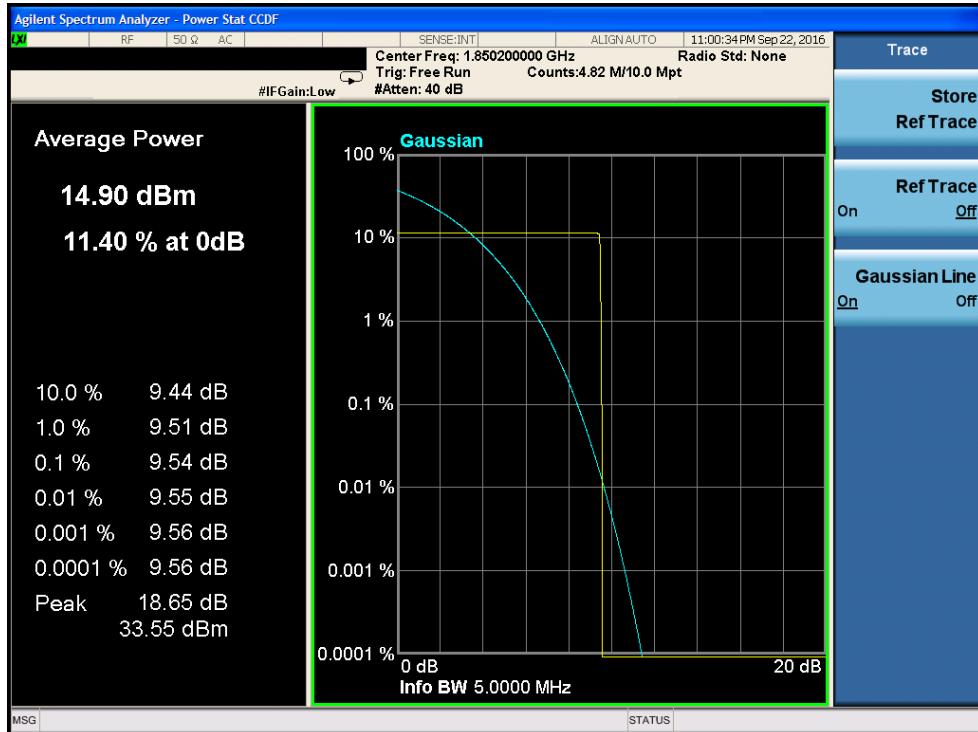
All the modulation modes and Channels have been tested, the data of the worst mode (GSM) are recorded in the following pages.


Peak-to-average power ratio plot on channel 128

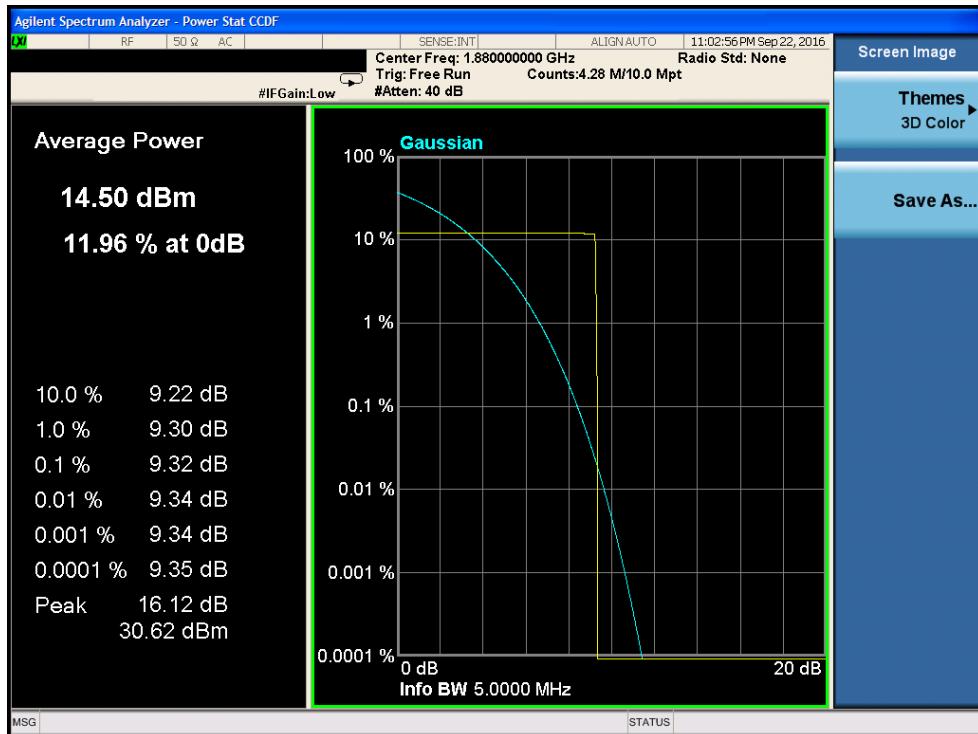
GPRS850


Peak-to-average power ratio plot on channel 190

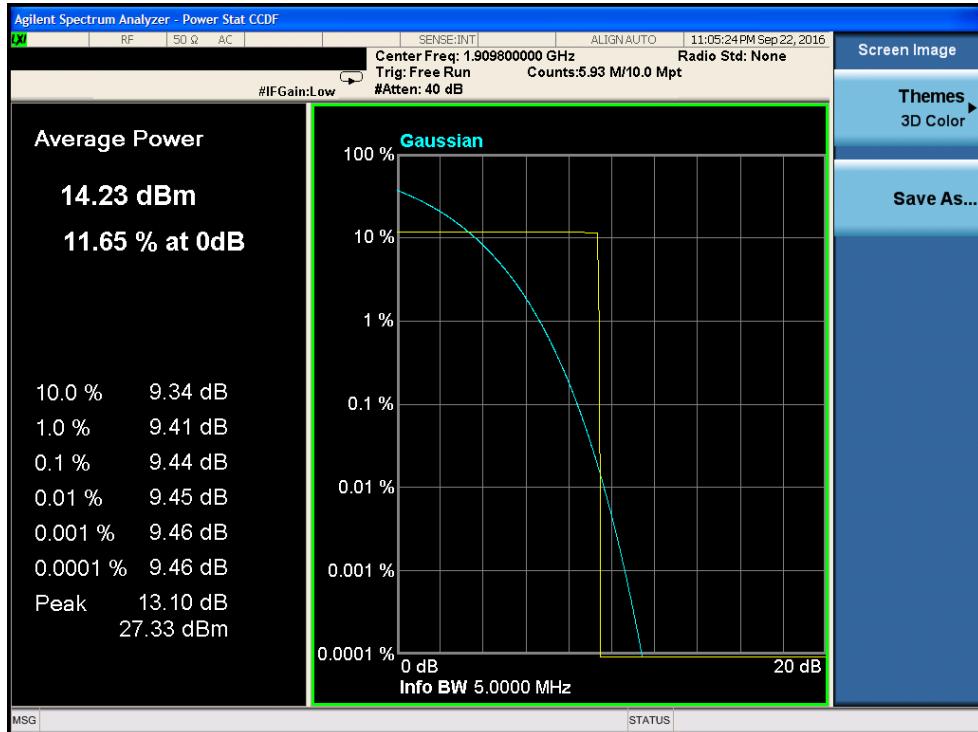
GPRS850


Peak-to-average power ratio plot on channel 251

GPRS850


Peak-to-average power ratio plot on channel 512

GPRS1900


Peak-to-average power ratio plot on channel 661

GPRS1900

Peak-to-average power ratio plot on channel 810

GPRS1900

7.7 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

7.7.1 Applicable Standard

According to FCC Part 2.1049 and FCC Part 22H and FCC Part 24E and FCC KDB 971168 D01 Section 4.0

7.7.2 Conformance Limit

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 971168 v02r02 Section 4.0.

The EUT was connected to Spectrum Analyzer and Base Station via power divider.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.

The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

Set the detection mode to peak, and the trace mode to max hold.

Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace.

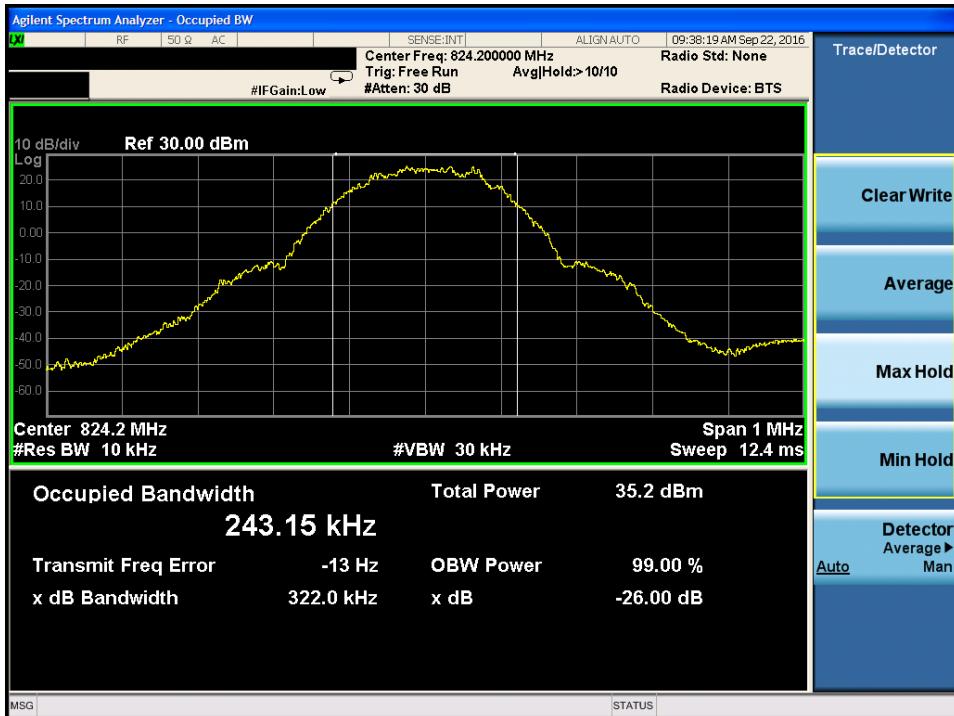
(this is the reference value)

Determine the “-26 dB down amplitude” as equal to (Reference Value – X).

Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the “-X dB down amplitude” determined in step 6. If a marker is below this “-X dB down amplitude” value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.

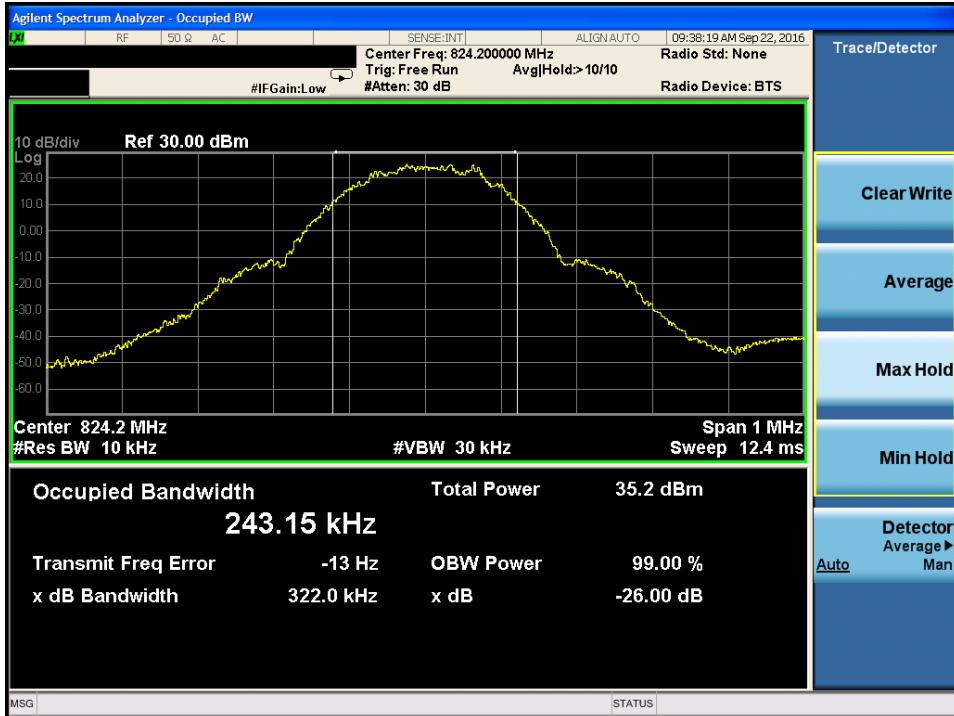
Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

7.7.6 Test Results

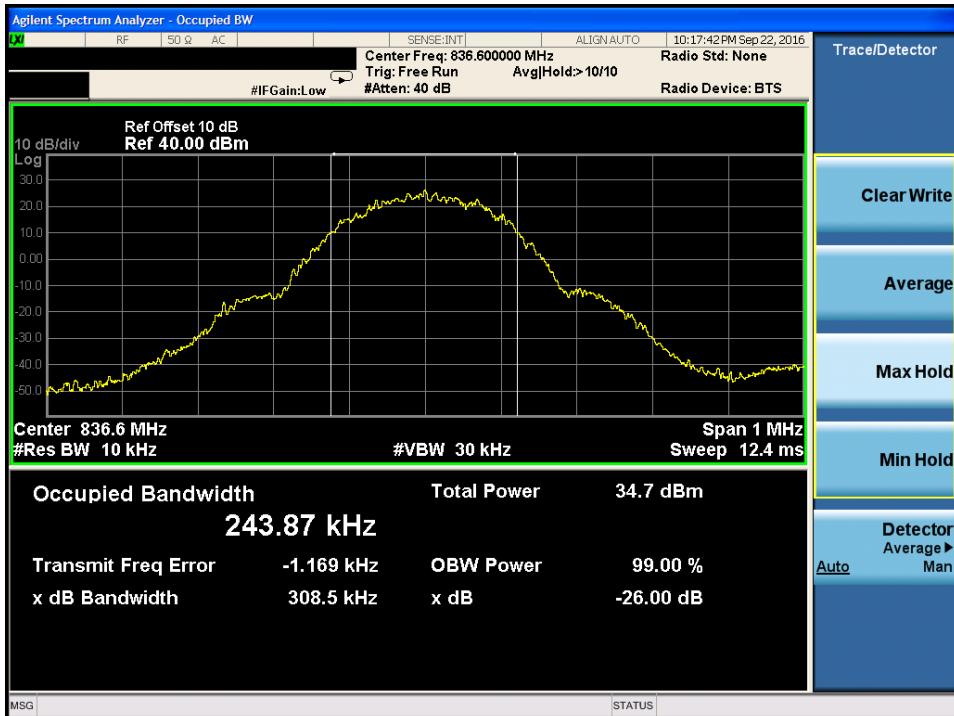

EUT:	Nutale GPS Tracker	Model No.:	Nutale-G1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode1/Mode2	Test By:	Lebron Wang
Results: PASS			

Operation Mode	Channel Number	Channel Frequency (MHz)	26dB Bandwidth (kHz)	99% Occupied Bandwidth (kHz)	Limit (kHz)	Verdict
GPRS850	128	824.2	322.000	243.15	N/A	PASS
	189	836.4	308.500	243.87	N/A	PASS
	251	848.8	313.900	247.33	N/A	PASS
GPRS1900	512	1850.2	315.700	246.44	N/A	PASS
	661	1880.0	315.000	247.13	N/A	PASS
	810	1909.8	320.400	247.18	N/A	PASS

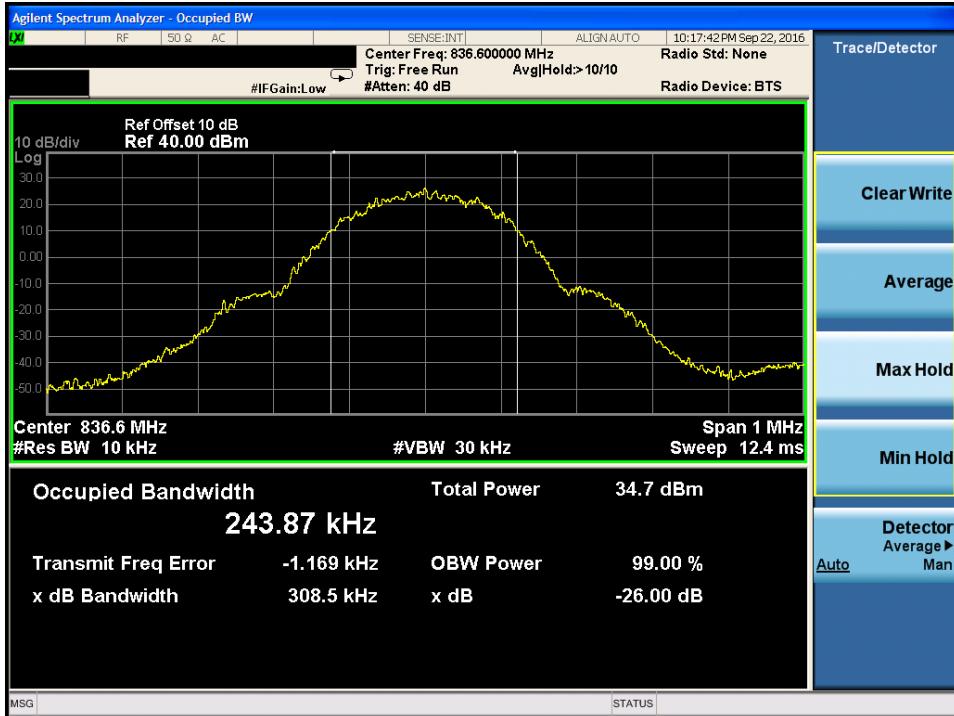
All the modulation modes and Channels have been tested, the data of the worst mode (GSM) are recorded in the following pages.


99% Occupied Bandwidth plot on channel 128

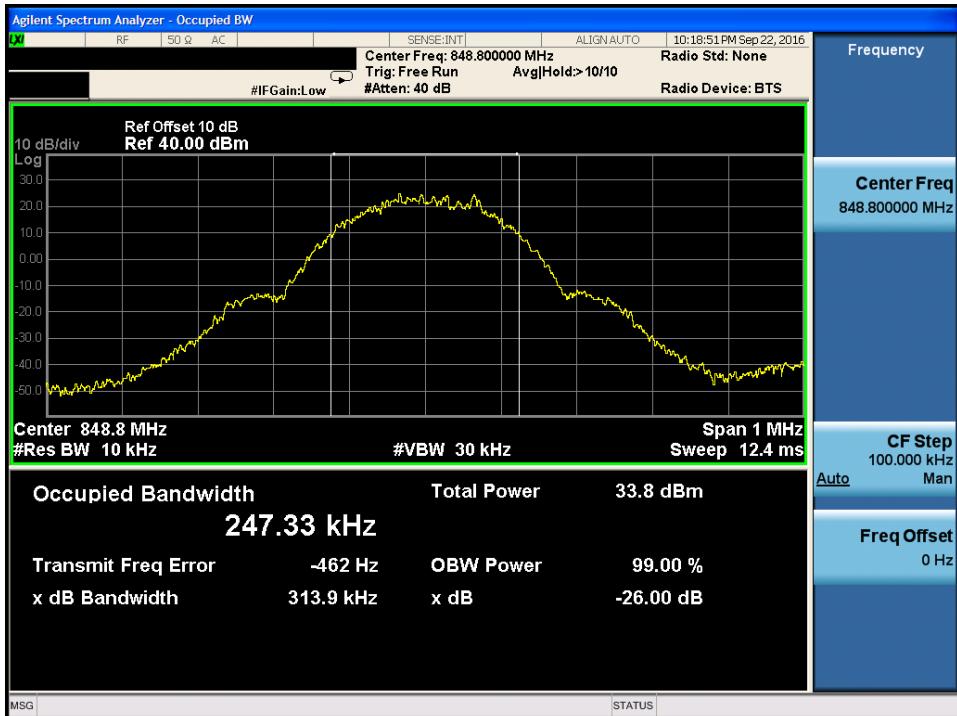
GPRS 850


26dB Bandwidth plot on channel 128

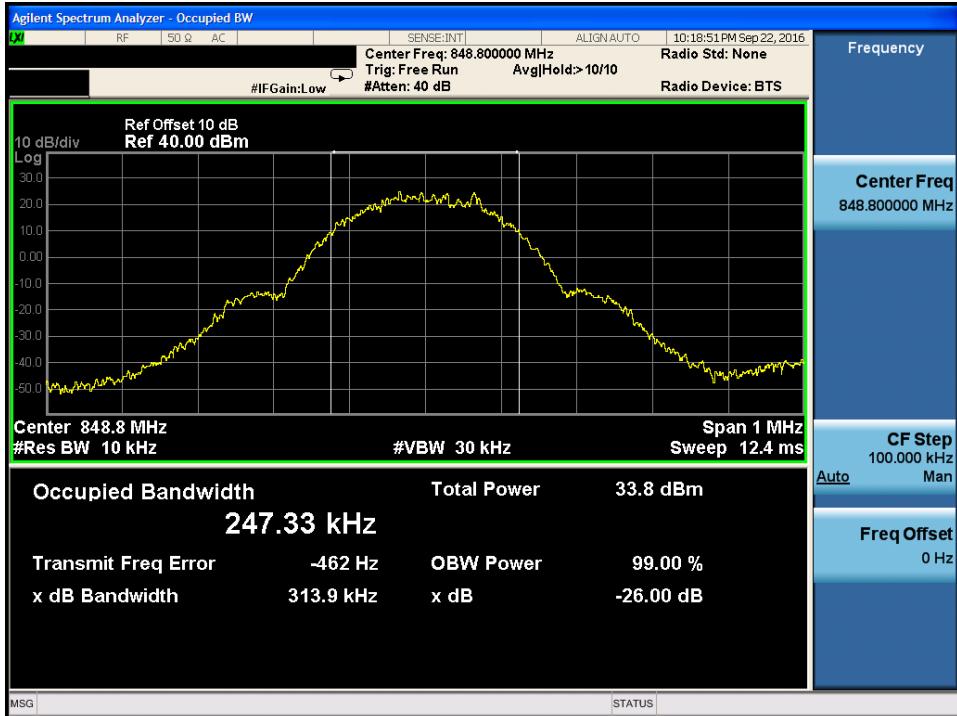
GPRS 850


99% Occupied Bandwidth plot on channel 190

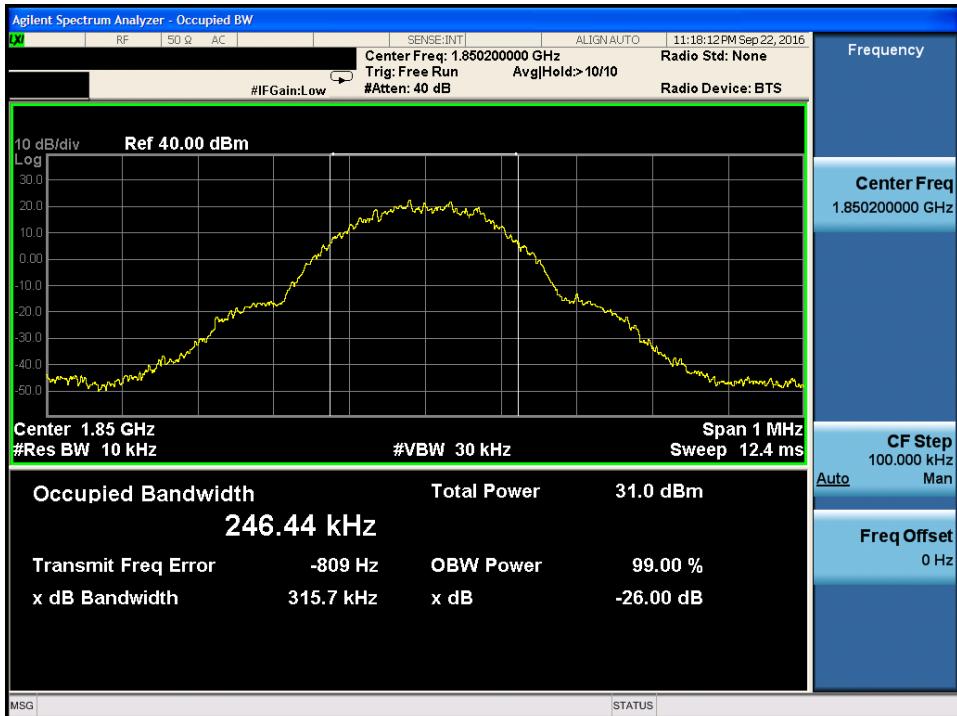
GPRS 850


26dB Bandwidth plot on channel 190

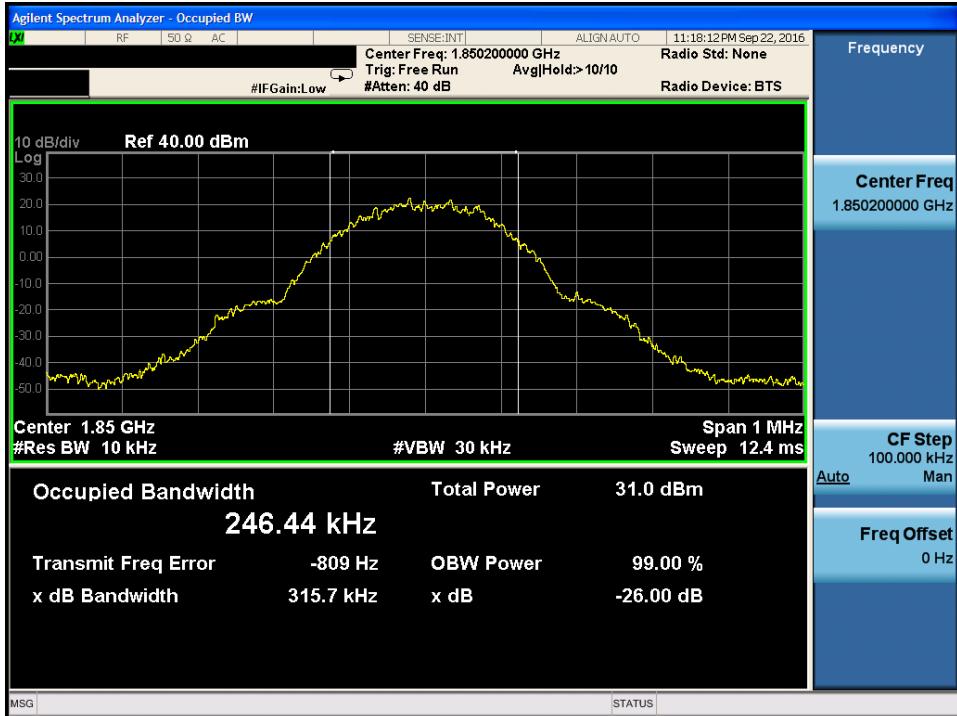
GPRS 850


99% Occupied Bandwidth plot on channel 251

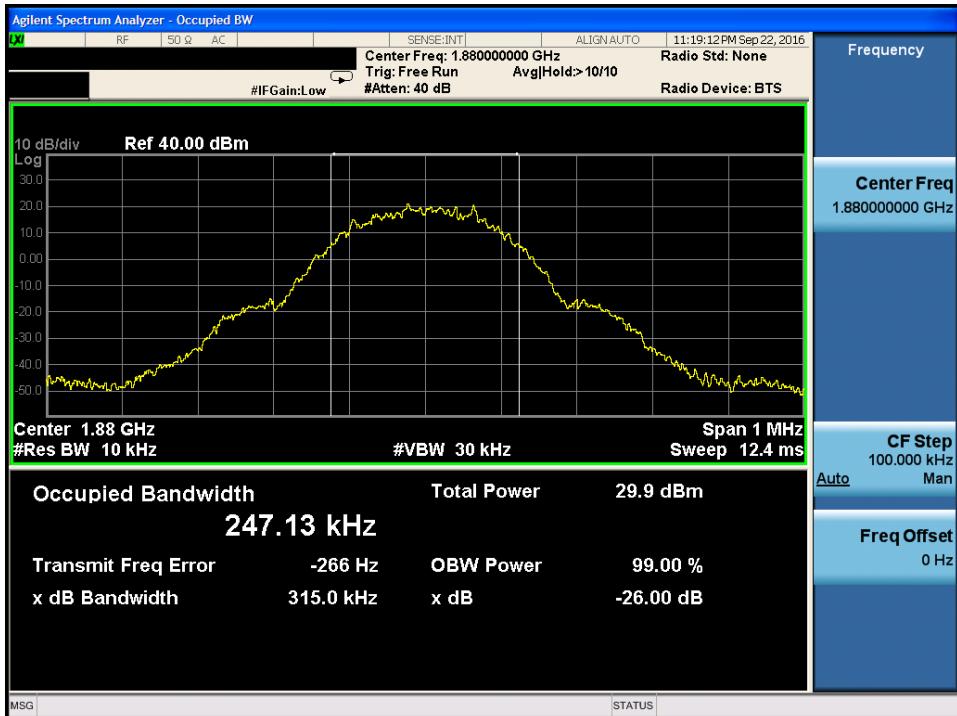
GPRS 850


26dB Bandwidth plot on channel 251

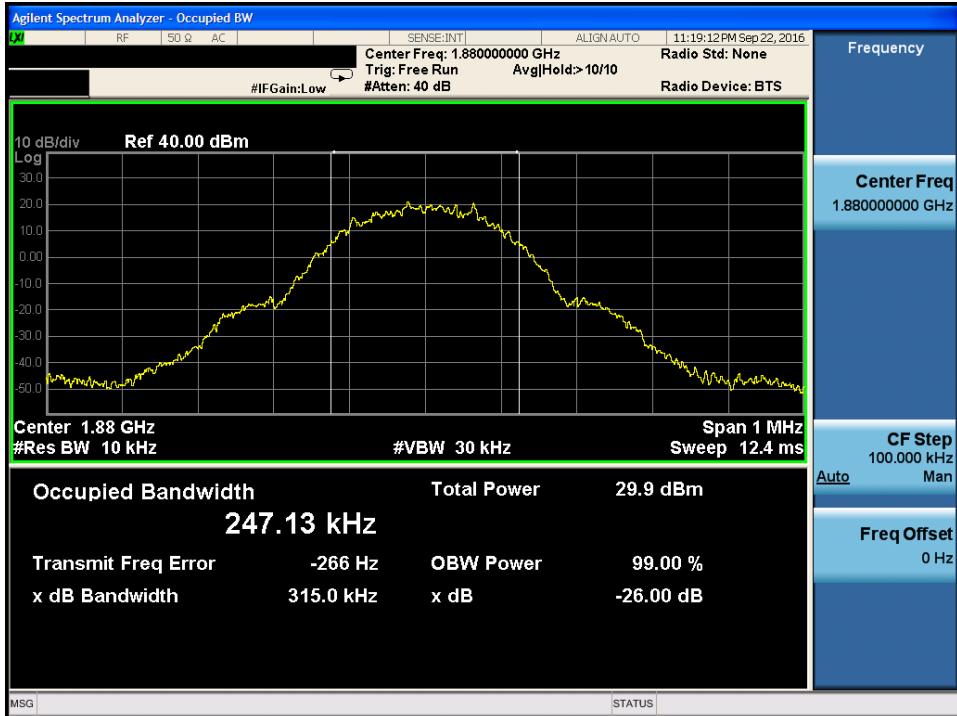
GPRS 850


99% Occupied Bandwidth plot on channel 512

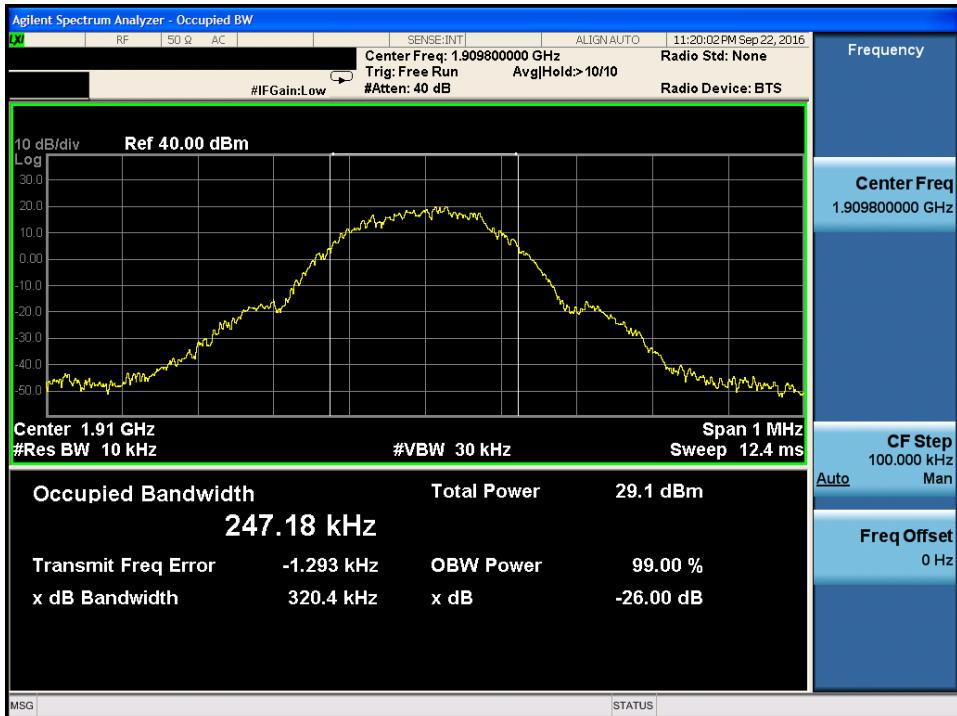
GPRS 1900


26dB Bandwidth plot on channel 512

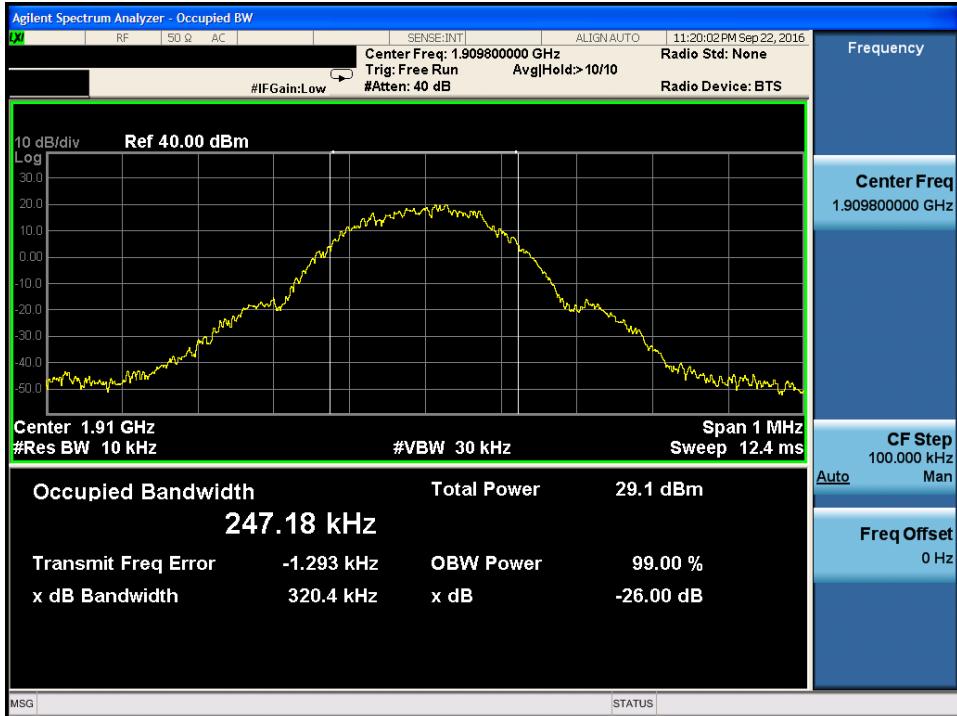
GPRS 1900


99% Occupied Bandwidth plot on channel 661

GPRS 1900


26dB Bandwidth plot on channel 661

GPRS 1900


99% Occupied Bandwidth plot on channel 810

GPRS 1900

26dB Bandwidth plot on channel 810

GPRS 1900

7.8 CONDUCTED BAND EDGE

7.8.1 Applicable Standard

According to FCC Part 2.1051 and FCC Part 22.917(a) and 24.238(a) and FCC KDB 971168 D01 Section6.0

7.8.2 Conformance Limit

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB.

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows FCC KDB 971168 v02r02 Section 6.0.

The EUT was connected to Spectrum Analyzer and Base Station via power divider.

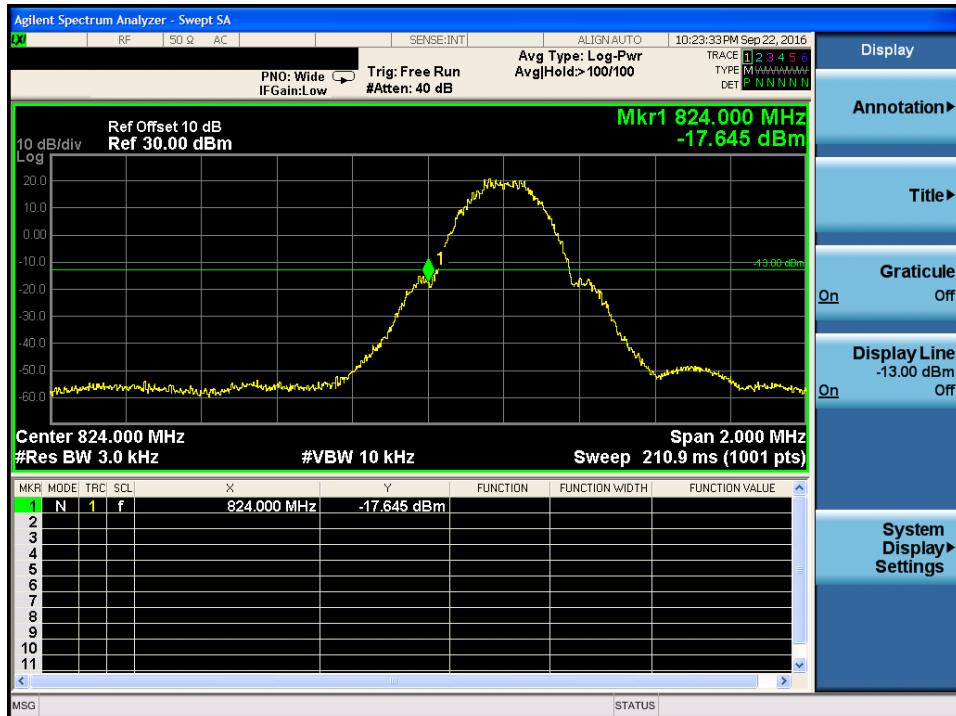
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

The band edges of low and high channels for the highest RF powers were measured.

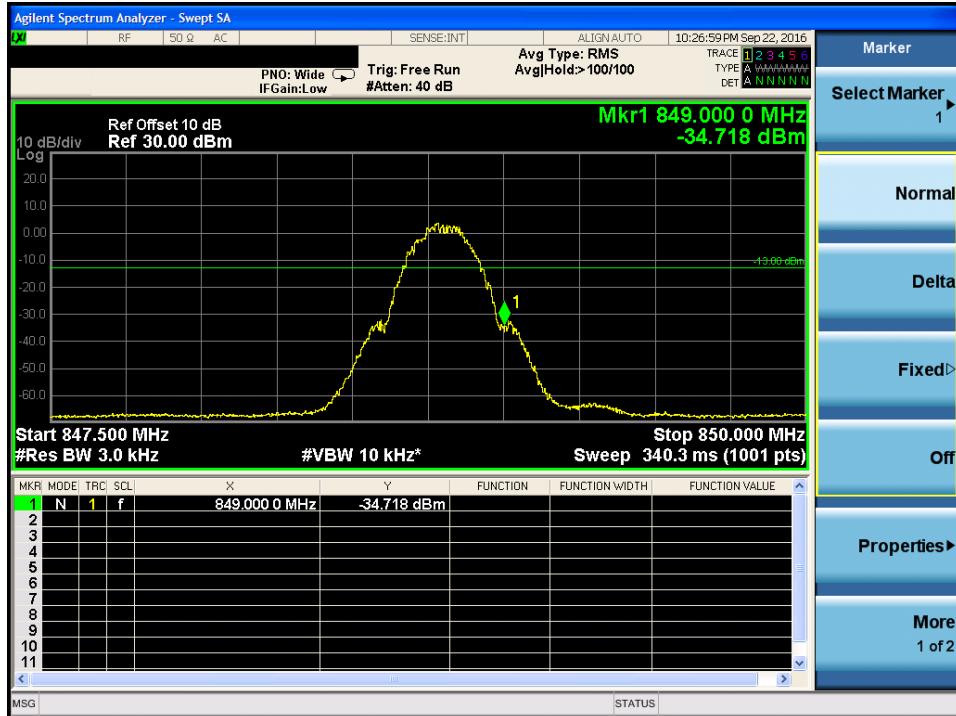
The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)

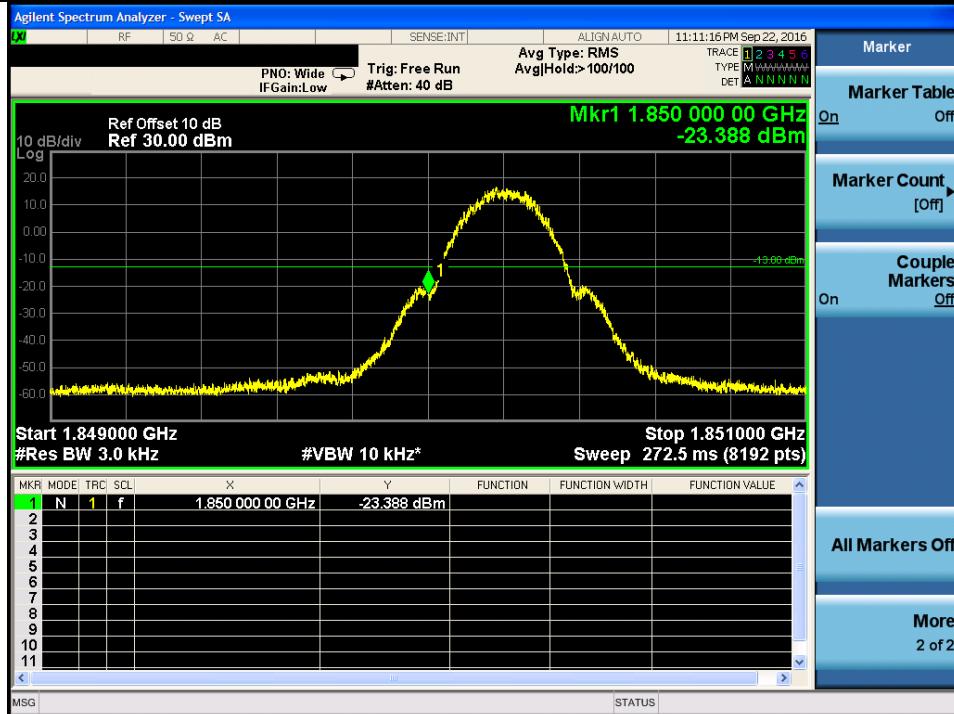

$$\begin{aligned} &= P(W) - [43 + 10\log(P)] \text{ (dB)} \\ &= [30 + 10\log(P)] \text{ (dBm)} - [43 + 10\log(P)] \text{ (dB)} \\ &= -13 \text{ dBm.} \end{aligned}$$

7.8.6 Test Results

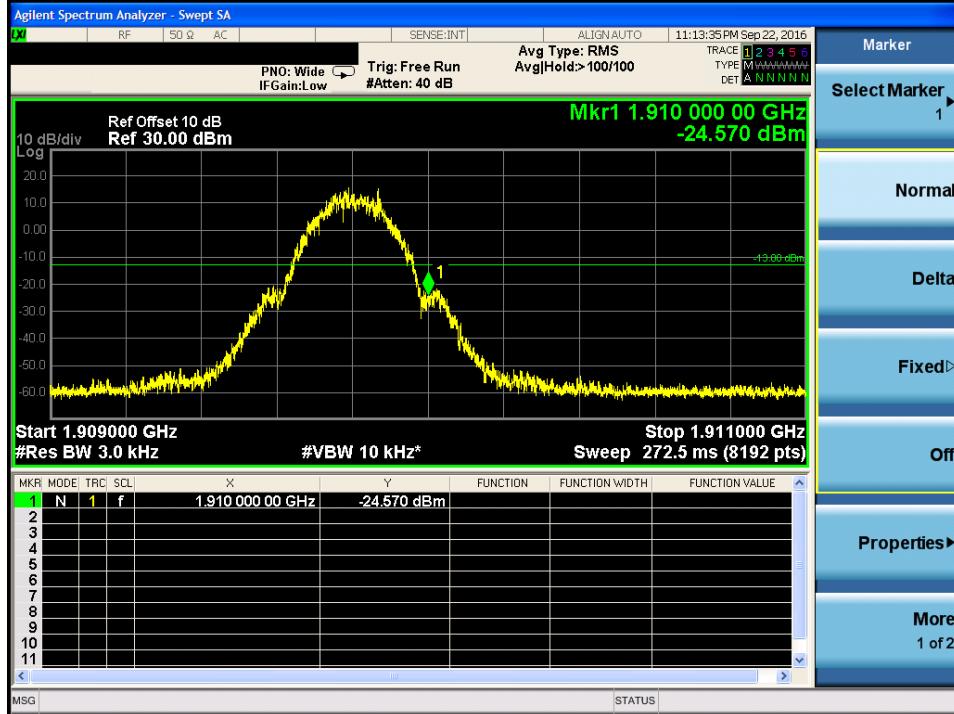
EUT:	Nutale GPS Tracker	Model No.:	Nutale-G1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode1/Mode2	Test By:	Lebron Wang
Results: PASS			


Conducted Band Edge plot on channel 128

GPRS 850


Conducted Band Edge plot on channel 251

GPRS 850


Conducted Band Edge plot on channel 512

GPRS 1900

Conducted Band Edge plot on channel 810

GPRS 1900

7.9 CONDUCTED SPURIOUS EMISSION AT ANTENNA TERMINAL

7.9.1 Applicable Standard

According to FCC Part 2.1051 and FCC Part 22.917(a) and Part 24.238(a) and FCC KDB 971168 D01 Section6.0

7.9.2 Conformance Limit

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log(P)$ dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

The testing follows FCC KDB 971168 v02r02 Section 6.0.

The EUT was connected to Spectrum Analyzer and Base Station via power divider.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

The middle channel for the highest RF power within the transmitting frequency was measured.

The conducted spurious emission for the whole frequency range was taken.

The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)

$$\begin{aligned} &= P(W) - [43 + 10\log(P)] \text{ (dB)} \\ &= [30 + 10\log(P)] \text{ (dBm)} - [43 + 10\log(P)] \text{ (dB)} \\ &= -13 \text{ dBm.} \end{aligned}$$

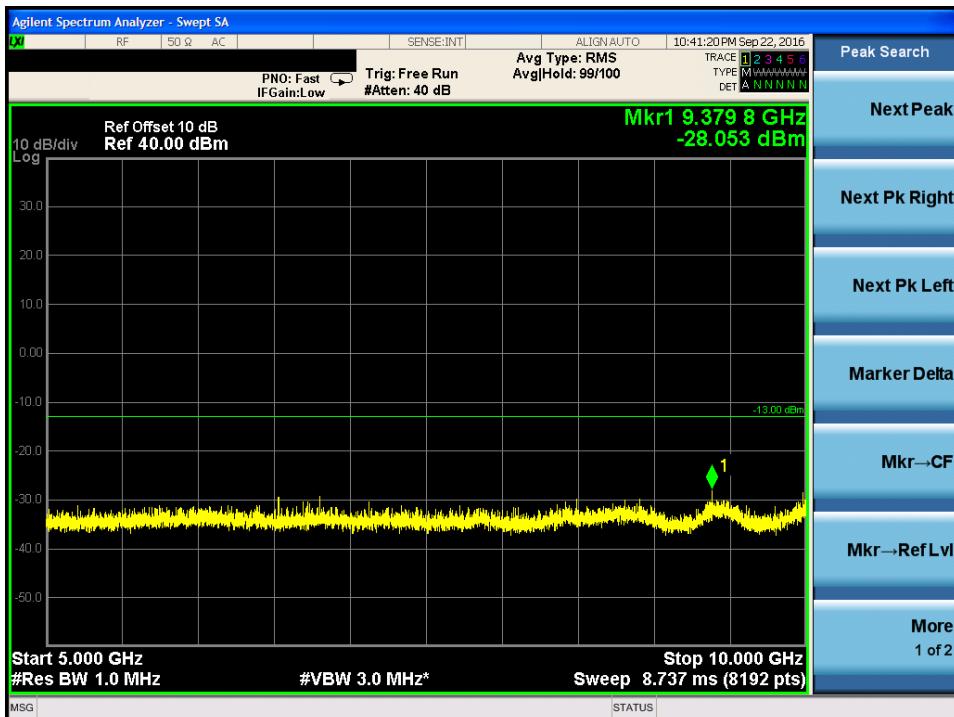

7.9.6 Test Results

EUT:	Nutale GPS Tracker	Model No.:	Nutale-G1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode1/Mode2	Test By:	Lebron Wang
Results: PASS			

Conducted Emission Transmitting Mode CH 128 30MHz – 5GHz

Conducted Emission Transmitting Mode CH 128 5GHz – 10GHz

Conducted Emission Transmitting Mode CH 190 30MHz – 5GHz

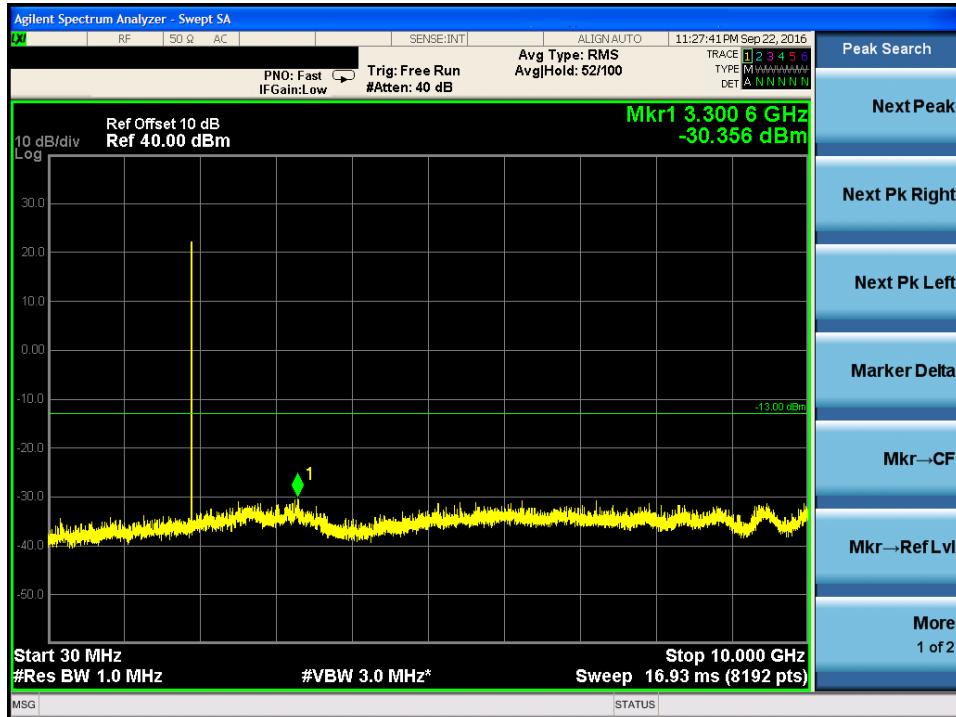

Conducted Emission Transmitting Mode CH 190 5GHz – 10GHz

Conducted Emission Transmitting Mode CH 251 30MHz – 5GHz

Conducted Emission Transmitting Mode CH 251 5GHz – 10GHz

Conducted Emission Transmitting Mode CH 512 30MHz – 10GHz

Conducted Emission Transmitting Mode CH 512 10GHz – 20GHz


Conducted Emission Transmitting Mode CH 661 30MHz – 10GHz

Conducted Emission Transmitting Mode CH 661 10GHz – 20GHz

Conducted Emission Transmitting Mode CH 810 30MHz – 10GHz

Conducted Emission Transmitting Mode CH 810 10GHz – 20GHz

END OF REPORT