

FCC PART 18

TEST REPORT

For

GAVITA HOLLAND B.V.

Oosteinderweg 127, 1432 AH Aalsmeer, The Netherlands

FCC ID: 2ADC61860141421

Report Type: Original Report	Product Type: Digital Ballast
Test Engineer: <u>Jone Lv</u>	
Report Number: <u>RB150616050-00</u>	
Report Date: <u>2015-06-25</u>	
Reviewed By: Harry Wu EMC Leader	
Test Laboratory: Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S).....	3
TEST METHODOLOGY	3
TEST FACILITY	3
OPERATING CONDITION/TEST CONFIGURATION.....	4
JUSTIFICATION	4
EUT EXERCISE SOFTWARE	4
SPECIAL ACCESSORIES.....	4
EQUIPMENT MODIFICATIONS	4
SUPPORT EQUIPMENT LIST AND DETAILS	4
EXTERNAL CABLE.....	4
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULT.....	6
FCC §18.307 - AC LINE CONDUCTED EMISSIONS.....	7
MEASUREMENT UNCERTAINTY	7
APPLICABLE STANDARD	7
EUT SETUP.....	8
EMI TEST RECEIVER SETUP.....	8
TEST PROCEDURE	8
TEST EQUIPMENT LIST AND DETAILS.....	9
CORRECTED AMPLITUDE & MARGIN CALCULATION	9
TEST RESULTS SUMMARY	9
TEST DATA	9
FCC §18.305 – FIELD STRENGTH.....	16
MEASUREMENT UNCERTAINTY	16
APPLICABLE STANDARD	16
EUT SETUP.....	16
EMI TEST RECEIVER SETUP AND SPECTRUM ANALYZER SETUP.....	17
TEST PROCEDURE	17
CORRECTED AMPLITUDE CALCULATION.....	17
TEST EQUIPMENT LIST AND DETAILS.....	17
TEST DATA	18

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *GAVITA HOLLAND B.V.*’s product, model number: *Gavita Pro 1000e DE US 120-240 (FCC ID: 2ADC61860141421)* or the “EUT” in this report is a *Digital Ballast*, which was measured approximately: 24 cm (L) x 15 cm (W) x 5.8 cm (H), the rated with input voltage: AC 120V/60Hz. The highest operating frequency is 0.2MHz.

**All measurement and test data in this report was gathered from production sample serial number: 150616050 (Assigned by BACL, Dongguan). The EUT supplied by the applicant was received on 2015-06-16.*

Objective

This report is prepared on behalf of *GAVITA HOLLAND B.V.* in accordance with Part 2-Subpart J, and Part 18-Subparts A, B and C of the Federal Communications Commission’s rules and regulations.

The objective of the manufacturer is to determine compliance with FCC Part 18 limits.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with MP-5, FCC Methods of Measurements of Radio Noise Emissions from ISM Equipment, February 1986. All measurements were performed at Bay Area Compliance Laboratory Corporation. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communications Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 06, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

OPERATING CONDITION/TEST CONFIGURATION

Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

The power for EUT is 600W, 750W, 825W, 1000W, 1150W, we selected 600W, 825W, 1150W for testing, please refer test results.

EUT Exercise Software

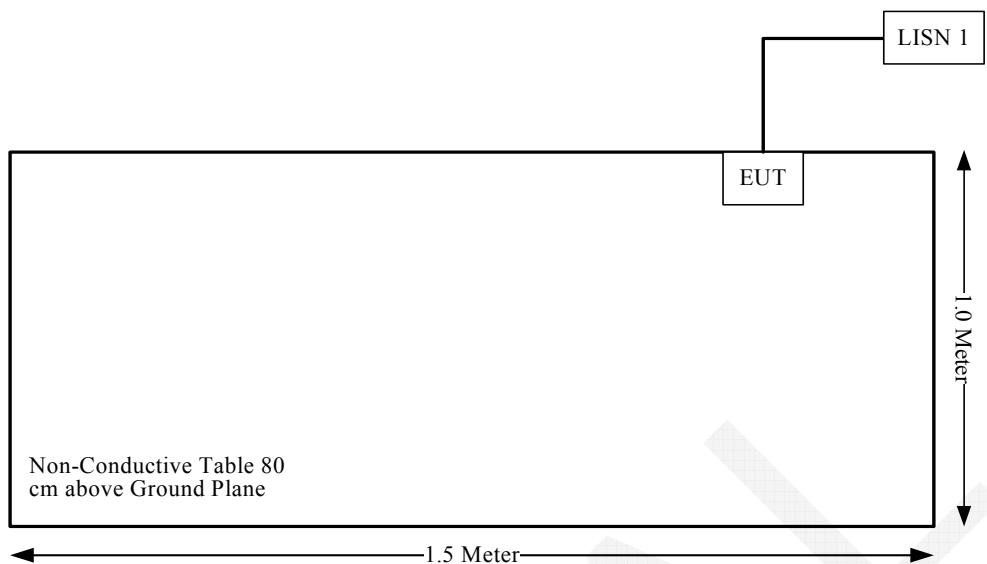
No exercise software was used.

Special Accessories

No special accessory was used.

Equipment Modifications

No modification was made to the EUT tested.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
N/A	N/A	N/A	N/A

External Cable

Cable Description	Length (m)	From Port	To
N/A	N/A	N/A	N/A

Block Diagram of Test Setup

SUMMARY OF TEST RESULT

FCC Rules	Description of Test	Results
§18.307	AC Line Conducted Emissions	Compliance
§18.305	Field Strength	Compliance

FINAL

FCC §18.307 - AC LINE CONDUCTED EMISSIONS

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are Receiver, cable loss, and LISN.

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cisp} of Table 1, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than U_{cisp} of Table 1, then:

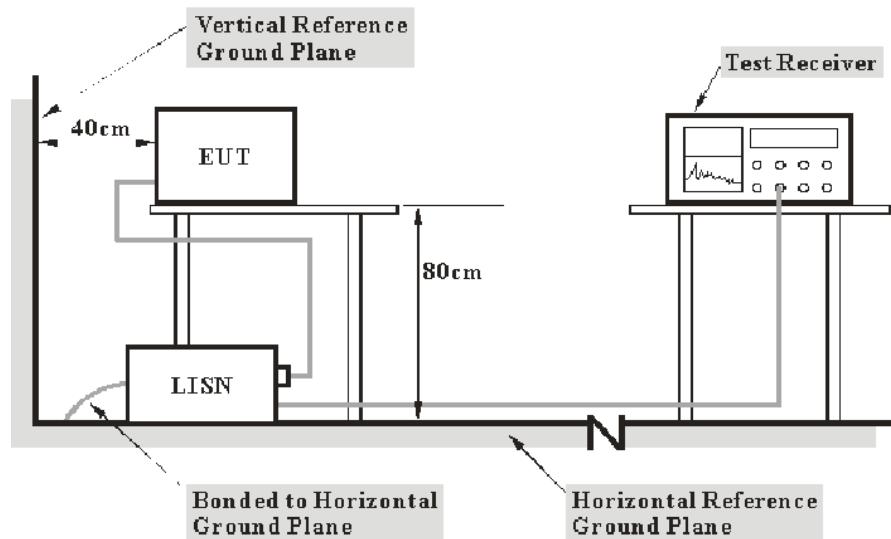
- compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cisp}})$, exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cisp}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2: 2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Dongguan) is 3.46 dB (150 kHz to 30 MHz).

Table 1 – Values of U_{cisp}

Measurement	U_{cisp}
Conducted disturbance at mains port using AMN (150 kHz to 30 MHz)	3.4 dB

Applicable Standard


Conduction limits. For the following equipment, when designed to be connected to the public utility (AC) power line the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies shall not exceed the limits in the following tables. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal using a 50 μH /50 ohms line impedance stabilization network (LISN).

All Induction cooking ranges and ultrasonic equipment

Frequency of emission (MHz)	Conducted limit (dB μV)	
	Quasi-peak	Average
0.009–0.05	110	-
0.05–0.15	90–80	-
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

* Decreases with the logarithm of the frequency *The tighter limits shall apply at the boundary between two frequency ranges

EUT Setup

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with MP-5: 1986 measurement procedure. Specification used was with the FCC Part 18 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The EUT was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 9 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
9 kHz – 150 kHz	200 Hz
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the EUT was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-Peak detection and Average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCS 30	830245/006	2014-10-20	2015-10-20
R&S	L.I.S.N	ESH2-Z5	892107/021	2015-06-09	2016-06-09
R&S	Two-line V-network	ENV 216	3560.6550.12	2014-12-11	2015-12-11
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_c + VDF$$

Herein,

V_C : corrected voltage amplitude

V_R : reading voltage amplitude

A_c : attenuation caused by cable loss

VDF: voltage division factor of AMN or ISN

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

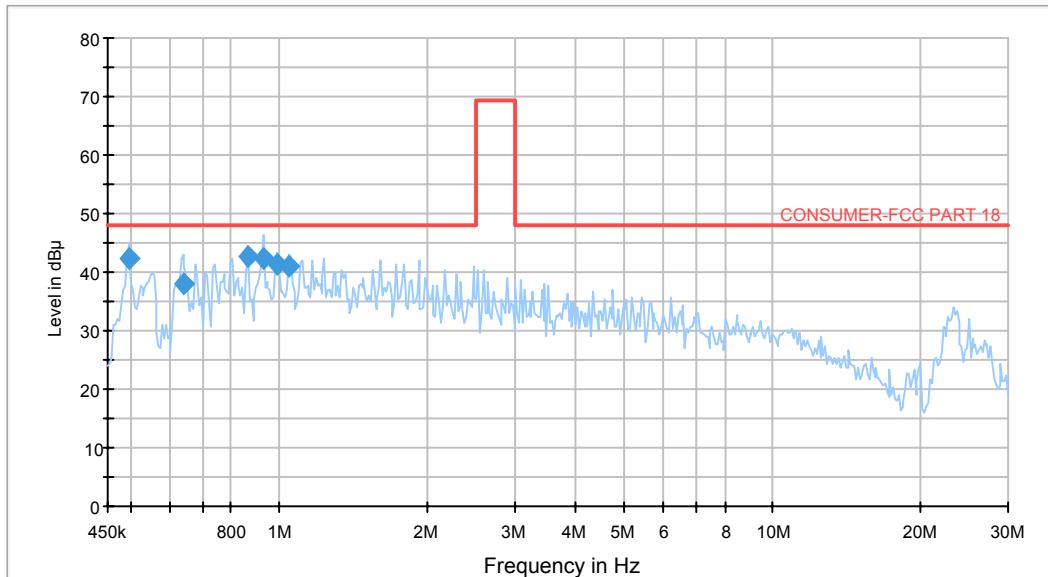
$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Results Summary

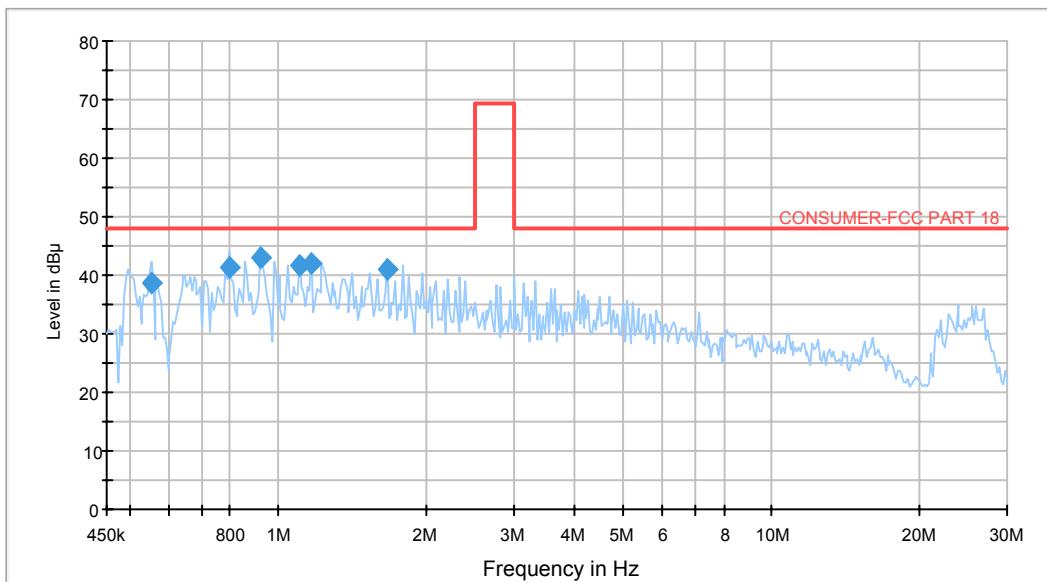
According to the recorded data in following table, the EUT complied with the FCC Part 18.307(a), the worst margin reading as below:

4.60 dB at 0.921850 MHz in the **Line** conducted mode for 825W

Test Data

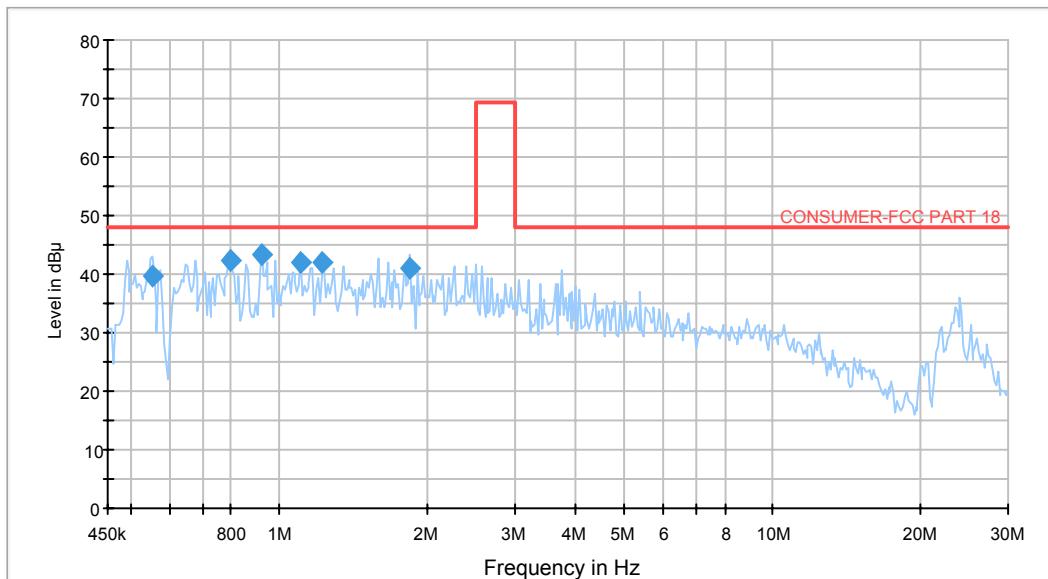

Environmental Conditions

Temperature:	27.1°C
Relative Humidity:	61 %
ATM Pressure:	99.9 kPa

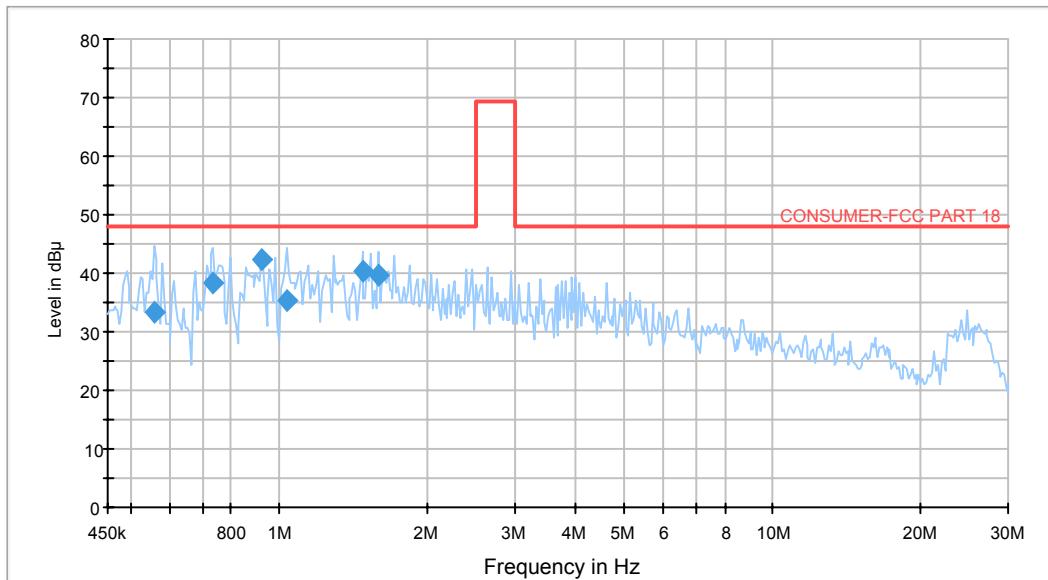

Testing was performed by Jone Lv on 2015-06-24.

Test Mode: Running (600W)

Line:

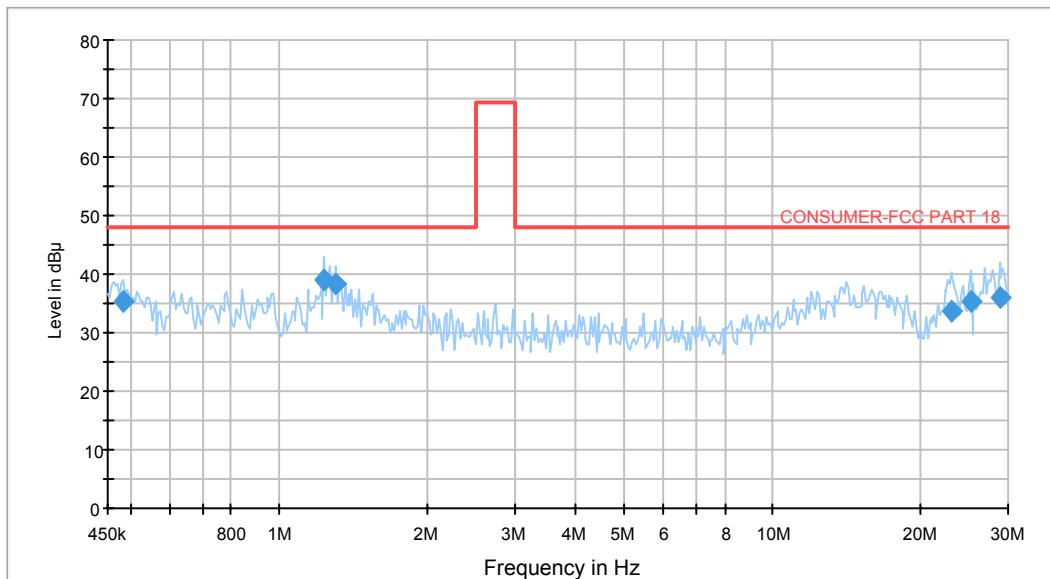

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.495152	42.4	9.000	L1	10.1	5.6	48.0	Compliance
0.638963	37.9	9.000	L1	10.4	10.1	48.0	Compliance
0.864920	42.6	9.000	L1	10.4	5.4	48.0	Compliance
0.929225	42.3	9.000	L1	10.4	5.7	48.0	Compliance
0.990388	41.3	9.000	L1	10.4	6.7	48.0	Compliance
1.047198	40.9	9.000	L1	10.4	7.1	48.0	Compliance

Neutral:

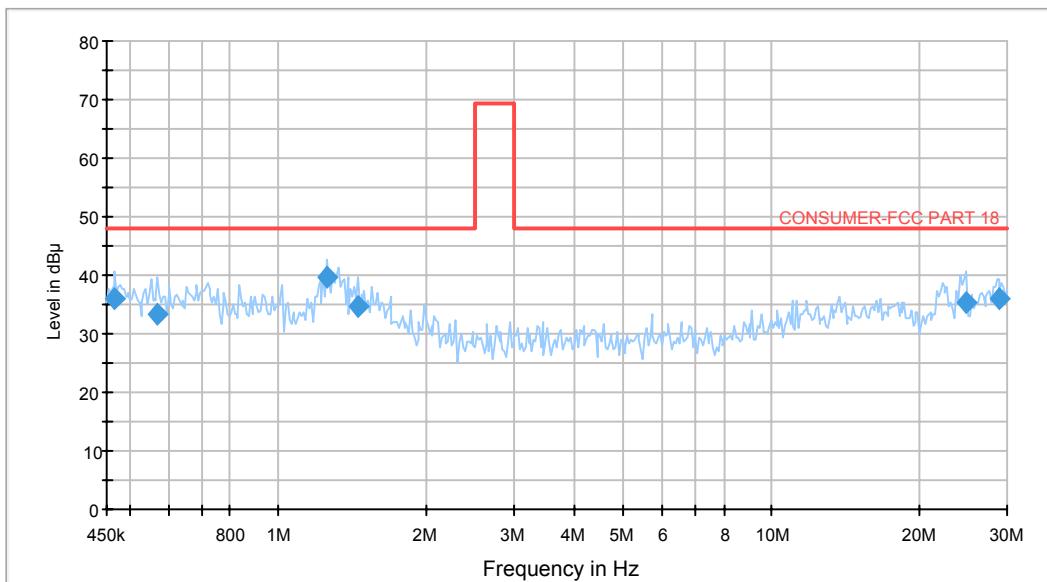

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.553588	38.6	9.000	N	10.1	9.4	48.0	Compliance
0.798676	41.4	9.000	N	10.4	6.6	48.0	Compliance
0.921850	42.9	9.000	N	10.4	5.1	48.0	Compliance
1.107268	41.6	9.000	N	10.4	6.4	48.0	Compliance
1.170783	42.0	9.000	N	10.4	6.0	48.0	Compliance
1.662416	41.1	9.000	N	10.4	6.9	48.0	Compliance

Test Mode: Running (825W)

Line:


Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.553588	39.6	9.000	L1	10.1	8.4	48.0	Compliance
0.798676	42.5	9.000	L1	10.4	5.5	48.0	Compliance
0.921850	43.4	9.000	L1	10.4	4.6	48.0	Compliance
1.107268	42.0	9.000	L1	10.4	6.0	48.0	Compliance
1.228116	41.9	9.000	L1	10.4	6.1	48.0	Compliance
1.843855	41.1	9.000	L1	10.4	6.9	48.0	Compliance

Neutral:


Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.558016	33.3	9.000	N	10.1	14.7	48.0	Compliance
0.737506	38.3	9.000	N	10.4	9.7	48.0	Compliance
0.921850	42.2	9.000	N	10.4	5.8	48.0	Compliance
1.038887	35.2	9.000	N	10.4	12.8	48.0	Compliance
1.475135	40.2	9.000	N	10.4	7.8	48.0	Compliance
1.597486	39.7	9.000	N	10.4	8.3	48.0	Compliance

Test Mode: Running (1150W)

Line:

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.483456	35.5	9.000	L1	10.1	12.5	48.0	Compliance
1.237941	38.9	9.000	L1	10.4	9.1	48.0	Compliance
1.308952	38.5	9.000	L1	10.4	9.5	48.0	Compliance
23.052359	33.6	9.000	L1	10.8	14.4	48.0	Compliance
25.164090	35.3	9.000	L1	10.8	12.7	48.0	Compliance
28.814446	36.0	9.000	L1	11.0	12.0	48.0	Compliance

Neutral:

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.468290	35.8	9.000	N	10.1	12.2	48.0	Compliance
0.571516	33.5	9.000	N	10.2	14.5	48.0	Compliance
1.257828	39.7	9.000	N	10.4	8.3	48.0	Compliance
1.451813	34.5	9.000	N	10.4	13.5	48.0	Compliance
24.766245	35.4	9.000	N	10.9	12.6	48.0	Compliance
28.814446	36.0	9.000	N	11.1	12.0	48.0	Compliance

FCC §18.305 – FIELD STRENGTH

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

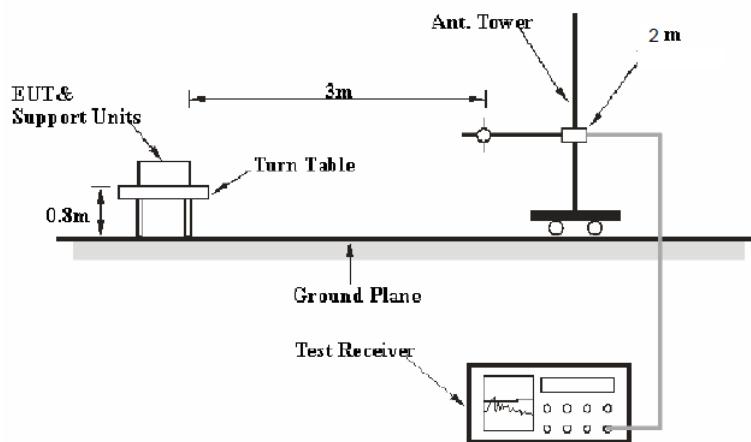
If U_{lab} is less than or equal to U_{cisp} of Table 1, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than U_{cisp} of Table 1, then:

- compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cisp}})$, exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cisp}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2: 2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Dongguan) is:30M~200MHz: 5.0 dB; 200M~1GHz: 6.2 dB; 1G~6GHz: 4.45 dB, 6G~18GHz: 5.23 dB


Table 1 – Values of U_{cisp}

Measurement	U_{cisp}
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB

Applicable Standard

FCC §18.305(b)

EUT Setup

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the FCC MP - 5.

The EUT was connected to 120 VAC/60 Hz power source.

EMI Test Receiver Setup and Spectrum Analyzer Setup

The system was investigated from 9 kHz to 1000 MHz.

During the radiated emission test, the EMI test receiver and Spectrum Analyzer were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
9 kHz – 150 kHz	200 Hz	1 kHz	200 Hz	QP
150 kHz – 30 MHz	9 kHz	30 kHz	9 kHz	QP
30MHz – 1000 MHz	100 kHz	300 kHz	120kHz	QP

Test Procedure

During the conducted emission test, the EUT was connected to the AC floor outlet.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak detection mode.

Corrected Amplitude Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Reading} + \text{Antenna Factor} + \text{Cable Loss}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2015-05-09	2016-05-09
Sunol Sciences	Antenna	JB3	A060611-3	2014-11-06	2017-11-05
HP	Amplifier	8447E	2434A02181	2014-09-01	2015-09-01
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A
The Electro-Mechanics Company	Passive Loop Antenna	6512	9706-1206	2014-11-30	2017-11-29

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data**Environmental Conditions**

Temperature:	24.9°C
Relative Humidity:	54 %
ATM Pressure:	99.9 kPa

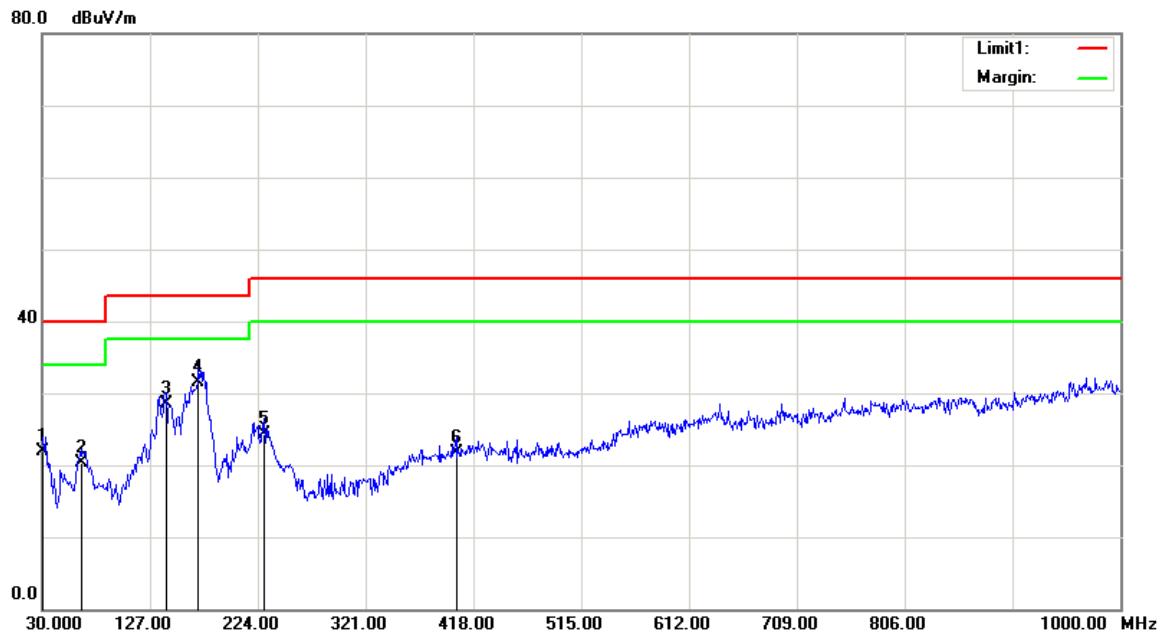
Testing was performed by Jone Lv on 2015-06-24.

1) 9 kHz-30 MHz

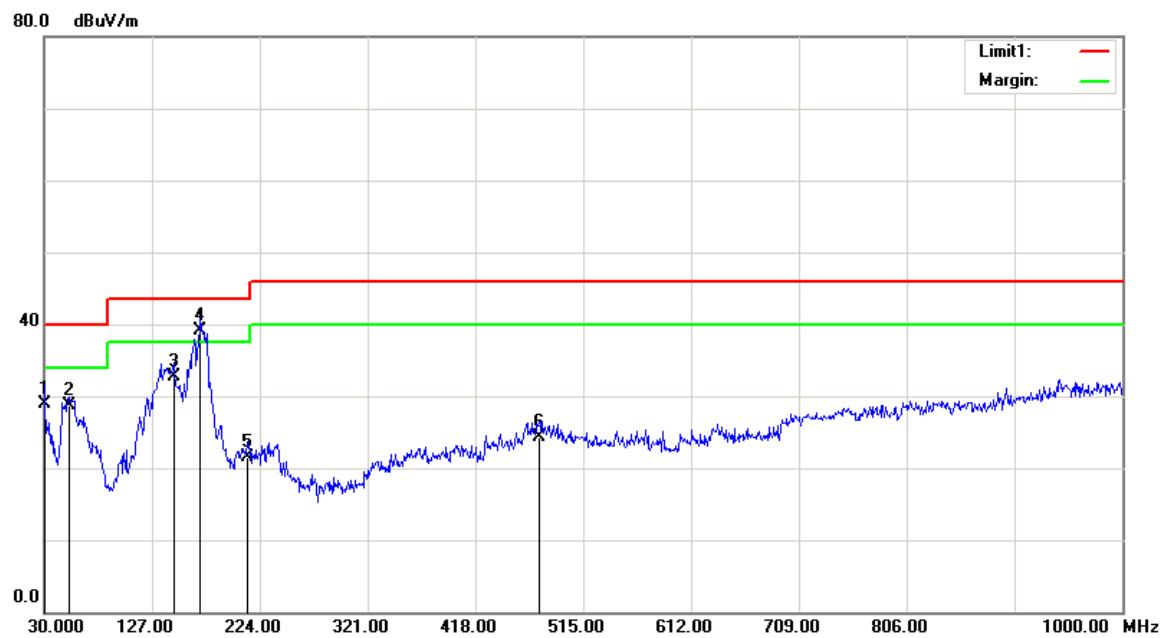
Test Mode: Running (600W)

Polarization	Frequency (MHz)	Corrected (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
Horizontal	0.6802	50.05	69.8	106.5	36.7
	1.5219	43.5	51.38	106.5	55.12
	3.0785	38.6	35.99	106.5	70.51
	4.1669	36.4	44.4	106.5	62.1
	5.2833	35.35	51.27	106.5	55.23
	0.009	88.1	38.56	106.5	67.94
Vertical	0.6497	50.05	71.72	106.5	34.78
	1.7682	40.8	53.34	106.5	53.16
	3.1084	38.6	34.81	106.5	71.69
	7.4541	33.6	59.94	106.5	46.56
	16.3178	32	54.58	106.5	51.92
	0.6802	50.05	69.8	106.5	36.7

Test Mode: Running (825W)


Polarization	Frequency (MHz)	Corrected (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
Horizontal	0.009	88.1	38.23	106.5	68.27
	0.6773	50.05	70.59	106.5	35.91
	1.7052	43.5	49.63	106.5	56.87
	2.9831	38.6	34.45	106.5	72.05
	4.1742	36.4	44.46	106.5	62.04
	5.3658	35.35	53.67	106.5	52.83
Vertical	0.009	88.1	38.54	106.5	67.96
	0.6256	50.05	69.42	106.5	37.08
	1.7035	40.8	52.04	106.5	54.46
	3.0691	38.6	34.68	106.5	71.82
	7.5447	33.6	58.37	106.5	48.13
	0.009	88.1	38.23	106.5	68.27

Test Mode: Running (1150W)

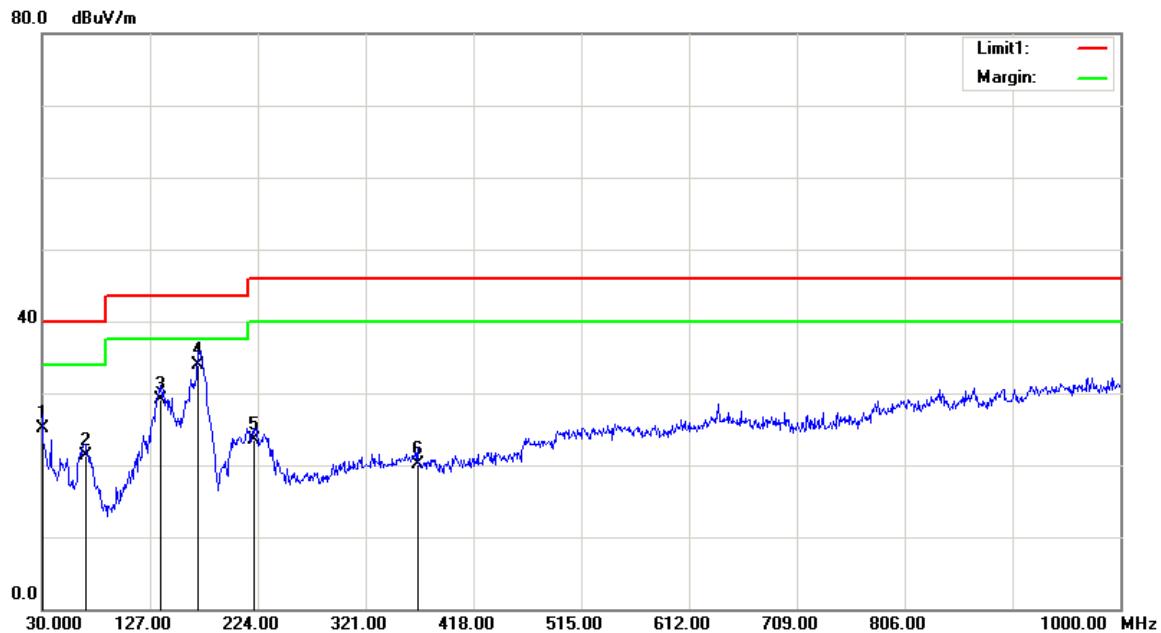

Polarization	Frequency (MHz)	Corrected (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
Horizontal	0.009	88.1	37.47	106.5	69.03
	0.6687	50.05	72.52	106.5	33.98
	1.6884	43.5	50.82	106.5	55.68
	2.9481	38.6	36.44	106.5	70.06
	4.0577	36.4	44.75	106.5	61.75
	5.2873	35.35	50.99	106.5	55.51
Vertical	0.009	88.1	36.72	106.5	69.78
	0.6388	50.05	72.61	106.5	33.89
	1.7784	40.8	50.67	106.5	55.83
	3.0081	38.6	35.51	106.5	70.99
	7.4467	33.6	58.94	106.5	47.56
	0.009	88.1	37.47	106.5	69.03

2) 30 MHz - 1000 MHz

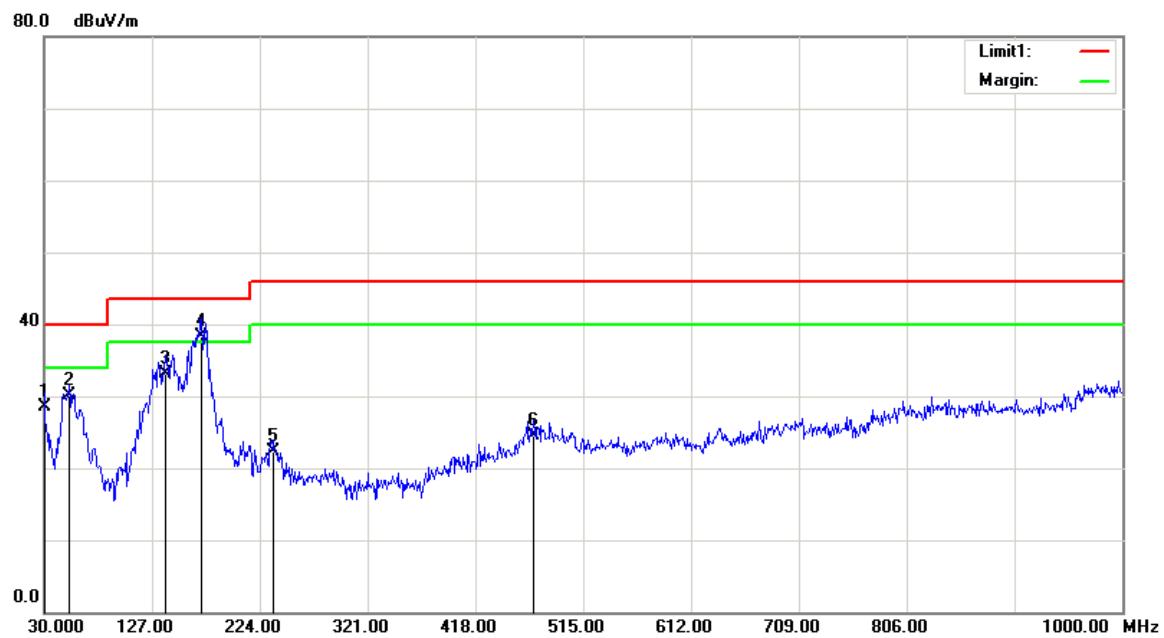
Test Mode: Running (600W)

Horizontal

Frequency (MHz)	Receiver Reading (dB μ V)	Detector (PK/QP/Ave)	Correction Factor (dB/m)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
30.0000	21.02	QP	0.88	21.90	40.00	18.10
64.9200	32.98	QP	-12.58	20.40	40.00	19.60
141.5500	35.70	QP	-7.10	28.60	43.50	14.90
170.6500	39.56	QP	-8.06	31.50	43.50	12.00
229.8200	32.76	QP	-8.46	24.30	46.00	21.70
402.4800	25.40	QP	-3.60	21.80	46.00	24.20

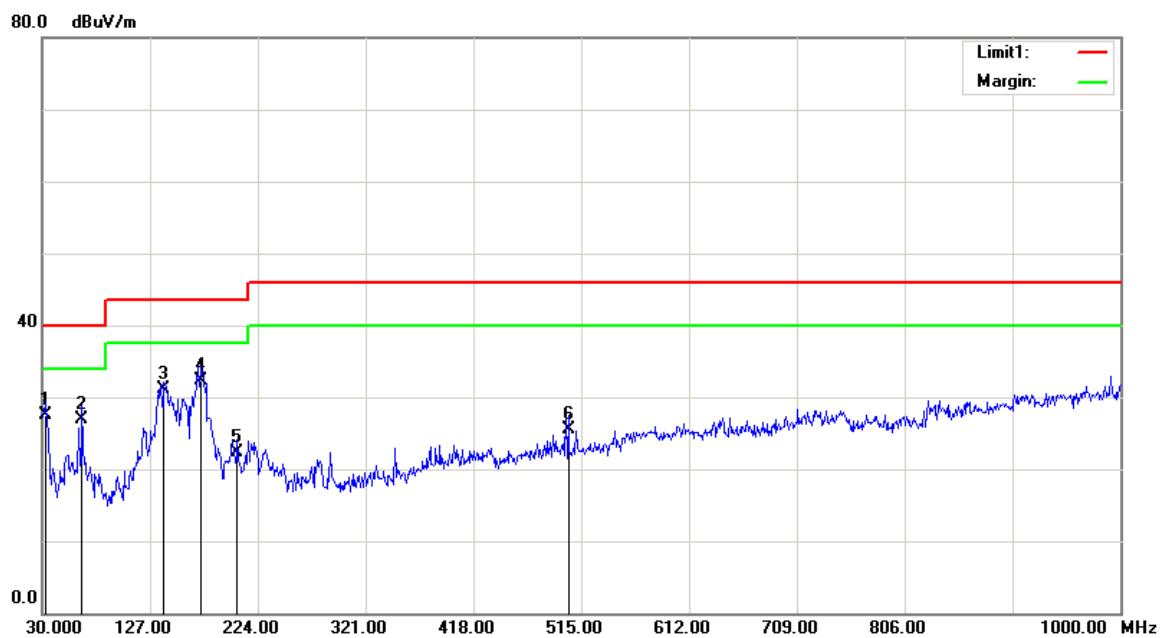

Vertical

Frequency (MHz)	Receiver Reading (dB μ V)	Detector (PK/QP/Ave)	Correction Factor (dB/m)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
30.0000	28.12	QP	0.88	29.00	40.00	11.00
52.3100	41.49	QP	-12.69	28.80	40.00	11.20
146.4000	40.03	QP	-7.33	32.70	43.50	10.80
170.6500	47.16	QP	-8.06	39.10	43.50	4.40*
212.3600	30.73	QP	-9.23	21.50	43.50	22.00
475.2300	26.05	QP	-1.75	24.30	46.00	21.70

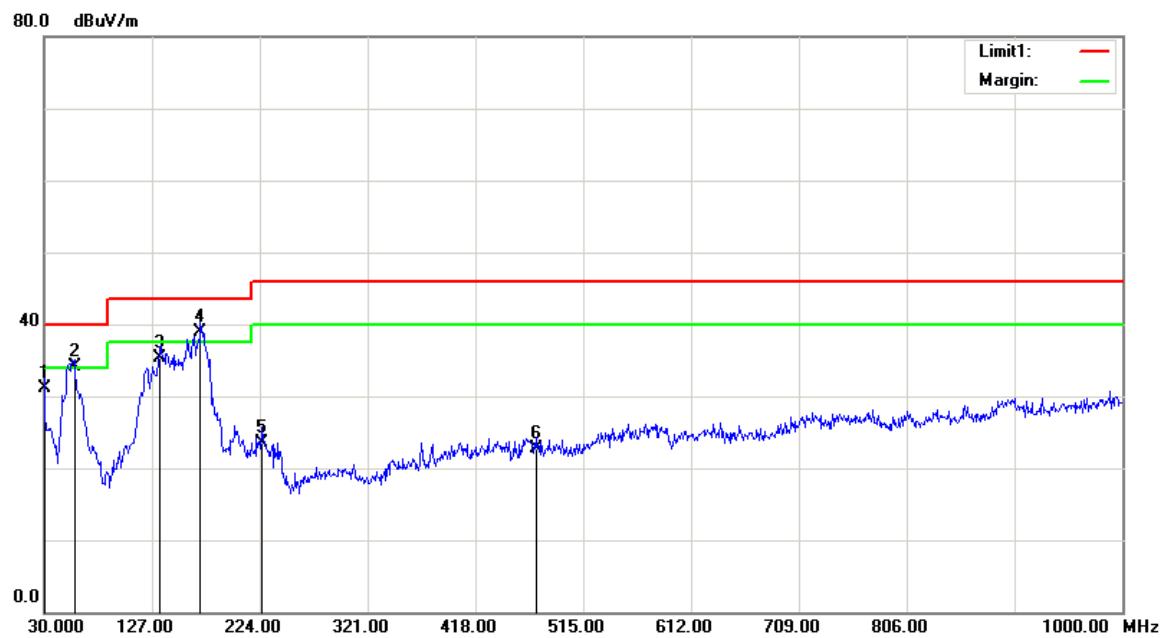

*Within measurement uncertainty!

Test Mode: Running (825W)

Horizontal


Frequency (MHz)	Receiver Reading (dB μ V)	Detector (PK/QP/Ave)	Correction Factor (dB/m)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
30.000	24.22	QP	0.88	25.10	40.00	14.90
68.800	33.57	QP	-12.27	21.30	40.00	18.70
136.700	35.80	QP	-6.60	29.20	43.50	14.30
170.650	41.96	QP	-8.06	33.90	43.50	9.60
221.090	32.30	QP	-8.80	23.50	46.00	22.50
367.560	24.82	QP	-4.62	20.20	46.00	25.80

Vertical


Frequency (MHz)	Receiver Reading (dB μ V)	Detector (PK/QP/Ave)	Correction Factor (dB/m)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
30.0000	27.72	QP	0.88	28.60	40.00	11.40
52.3100	42.89	QP	-12.69	30.20	40.00	9.80
138.6400	39.97	QP	-6.87	33.10	43.50	10.40
171.6200	46.59	QP	-8.19	38.40	43.50	5.10
235.6400	30.58	QP	-8.28	22.30	46.00	23.70
470.3800	26.41	QP	-1.81	24.60	46.00	21.40

Test Mode: Running (1150W)

Horizontal

Frequency (MHz)	Receiver Reading (dB μ V)	Detector (PK/QP/Ave)	Correction Factor (dB/m)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
32.9100	28.85	QP	-1.35	27.50	40.00	12.50
65.8900	39.46	QP	-12.56	26.90	40.00	13.10
139.6100	38.16	QP	-6.96	31.20	43.50	12.30
172.5900	40.68	QP	-8.28	32.40	43.50	11.10
205.5700	30.90	QP	-8.60	22.30	43.50	21.20
503.3600	27.28	QP	-1.68	25.60	46.00	20.40

Vertical

Frequency (MHz)	Receiver Reading (dB μ V)	Detector (PK/QP/Ave)	Correction Factor (dB/m)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
30.0000	30.32	QP	0.88	31.20	40.00	8.80
57.1600	47.18	QP	-13.08	34.10	40.00	5.90
133.7900	41.70	QP	-6.30	35.40	43.50	8.10
170.6500	46.96	QP	-8.06	38.90	43.50	4.60*
225.9400	32.21	QP	-8.61	23.60	46.00	22.40
472.3200	24.48	QP	-1.78	22.70	46.00	23.30

*Within measurement uncertainty!

*****END OF REPORT*****