

RADIO TEST REPORT

Test Report No. 14752026H-A-R1

Customer	YAMAHA MOTOR CO., LTD.
Description of EUT	24GHz Radar Sensor Unit
Model Number of EUT	L75N57010
FCC ID	2ADBKFAZRSENSOR01
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	June 28, 2023
Remarks	-

Representative test engineer	Approved by
S. Hara	Ryata Yamanaka
Sayaka Hara Engineer	Ryota Yamanaka Engineer
	ACCREDITED CERTIFICATE 5107.02
☐ The testing in which "Non-accreditation" is displayed ☐ There is no testing item of "Non-accreditation".	is outside the accreditation scopes in UL Japan, Inc.

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 22.0

Test Report No. 14752026H-A-R1 Page 2 of 32

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 14752026H-A

This report is a revised version of 14752026H-A. 14752026H-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14752026H-A	June 21, 2023	-
(Original)			
1	14752026H-A-R1	June 28, 2023	Correction of the Receipt Date in Clasue 2.1;
			From May 11, 2023 to June 1, 2023
1	14752026H-A-R1	June 28, 2023	Correction of the Maximum Aperture Dimension of
			EUT in SECTION 5 (page 15);
			From 0.040 m to 0.041 m
1	14752026H-A-R1	June 28, 2023	Correction of the 2nd and 3rd Harmonic Limit
			(page 18, 20, and 21);
			From 77.5 to 87.9 for AV
			From 97.5 to 107.9 for QP/PK
1	14752026H-A-R1	June 28, 2023	Correction of the 3rd and 4th Harmonic frequency
			(page 18);
			From 72240.0, 96320.0 to 72270.0, 96360.0
1	14752026H-A-R1	June 28, 2023	Replace the test data due to the Correction of the
			3rd and 4th Harmonic frequency and test data
			(page 20 and 21)
1	14752026H-A-R1	June 28, 2023	Addition of the Plot for band-edge (page 19 and
			22)
1	14752026H-A-R1	June 28, 2023	Correction of the following notation of Worst Case
			Position;
			- Removed "Horizontal and Vertical" notation from
			Below 30 MHz.
			- correction of erroneous description for "Above
			40 GHz".
			from "Above 40 GHz" to "Above 50 GHz"

Test Report No. 14752026H-A-R1 Page 3 of 32

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard		
AC	Alternating Current	IEC	International Electrotechnical Commission		
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers		
AM	Amplitude Modulation	IF	Intermediate Frequency		
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference		
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada		
Ant, ANT	Antenna	ISO	International Organization for Standardization		
AP	Access Point	JAB	Japan Accreditation Board		
ASK	Amplitude Shift Keying	LAN	Local Area Network		
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System		
AV	Average	MCS	Modulation and Coding Scheme		
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement		
BR	Bluetooth Basic Rate	N/A	Not Applicable		
BT	Bluetooth	NIST	National Institute of Standards and Technology		
BT LE	Bluetooth Low Energy	NS	No signal detect.		
BW	BandWidth	NSA	Normalized Site Attenuation		
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program		
CCK	Complementary Code Keying	OBW	Occupied Band Width		
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing		
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter		
CW	Continuous Wave	PCB	Printed Circuit Board		
DBPSK	Differential BPSK	PER	Packet Error Rate		
DC	Direct Current	PHY	Physical Layer		
D-factor	Distance factor	PK	Peak		
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise		
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence		
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density		
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation		
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak		
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying		
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width		
EN	European Norm	RDS	Radio Data System		
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment		
EU	European Union	RF	Radio Frequency		
EUT	Equipment Under Test	RMS	Root Mean Square		
Fac.	Factor	RSS	Radio Standards Specifications		
FCC	Federal Communications Commission	Rx	Receiving		
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer		
FM	Frequency Modulation	SG	Signal Generator		
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio		
FSK	Frequency Shift Keying	TR	Test Receiver		
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting		
GNSS	Global Navigation Satellite System	VBW	Video BandWidth		
GPS	Global Positioning System	Vert.	Vertical		
Hori.	Horizontal	WLAN	Wireless LAN		

CONTENTS	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	5
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of EUT during testing	9
SECTION 5: Radiated emission (Fundamental and Spu	rious Emission)11
SECTION 6: 20 dB Bandwidth, 99 % Occupied Bandwidth	dth and Duty Cycle17
APPENDIX 1: Test data	
Radiated Emission (Electric Field Strength of Fundamen	tal and Unwanted Emission)
	18
-20 dB Bandwidth and 99 % Occupied Bandwidth	
Duty Cycle	25
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	28
Radiated Emission	
Worst Case Position	

Test Report No. 14752026H-A-R1 Page 5 of 32

SECTION 1: Customer Information

Company Name YAMAHA MOTOR CO., LTD.	
Address 2500 Shingai lwata Shizuoka Japan 438-8501	
Telephone Number	+81-538-32-6582
Contact Person	Hidenori Akatsuka

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	24GHz Radar Sensor Unit
Model Number	L75N57010
Serial Number	Refer to SECTION 4.2
Condition	Production model
Modification	No Modification by the test lab
Receipt Date	June 1, 2023
Test Date	June 1 to 9, 2023

2.2 Product Description

General Specification

Rating	DC 12 V
Operating temperature	-10 deg. C to +65 deg. C

Radio Specification

Radio Type	Transceiver
Frequency of Operation	24.09 GHz to 24.16 GHz
Bandwidth	70 MHz
Modulation	FMCW
Antenna Gain	15.86 dBi
Steerable Antenna	None
Usage location	Fixed use with helicopter

2.3 Variant model(s)

Tested model: L75N57010 has a variant model: L75N57011.

The difference of these models is only the installation position on the helicopter.

Test Report No. 14752026H-A-R1 Page 6 of 32

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C				
	The latest version on the first day of the testing period				
Title	CC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators				
	Section 15.245 Operation within the bands 902 - 928MHz, 2435 - 2465MHz,				
	5785 - 5815MHz, 10500 - 10550MHz, and 24075 - 24175MHz.				
	Remarks: The full port test filled all available ports was performed				
	at the FCC part 15B. (Verification)				

^{*}Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and results

No.	Item	Test Procedure	Specification	Worst margin	Results	Remarks
1	Conducted Emission	ANSI C63.10-2013	Section 15.207(a)	-	N/A	*1)
2	Electric Field Strength	6. Standard test methods ANSI C63.10-2013 6. Standard test methods	Section 15.245(b)	3.3 dB 24075.0 MHz	Complied	Radiated
	Emission			Vertical		
3	Electric Field Strength of Spurious Emission	ANSI C63.10-2013 6. Standard test methods 9. Procedures for testing millimeter-wave systems	Section 15.205 Section 15.209 Section 15.245(b)	1.3 dB 86.9 MHz Vertical	Complied	Radiated
4	-20 dB Bandwidth	ANSI C63.4:2009 13. Measurement of intentional radiators	Section 15.215(c)	-	Complied	Radiated

^{*}Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF part regardless of input voltage.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied	RSS-Gen 4.6.1	RSS-Gen 4.6.1	N/A	-	Radiated
Band Width					

Other than above, no addition, exclusion nor deviation has been made from the standard.

Test Report No. 14752026H-A-R1 Page 7 of 32

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range		Uncertainty (+/-)
3 m	9 kHz to 30 MHz		3.3 dB
10 m			3.1 dB
3 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	5.0 dB
	200 MHz to 1000 MHz	Horizontal	5.1 dB
		Vertical	6.2 dB
10 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	4.8 dB
	200 MHz to 1000 MHz	Horizontal	4.9 dB
		Vertical	5.0 dB
3 m	1 GHz to 6 GHz	Test Receiver	5.0 dB
		Spectrum analyzer	4.9 dB
	6 GHz to 18 GHz	Test Receiver	5.3 dB
		Spectrum analyzer	5.2 dB
1 m	10 GHz to 26.5 GHz	Spectrum analyzer	5.5 dB
	26.5 GHz to 40 GHz	Spectrum analyzer	5.4 dB
0.5 m	26.5 GHz to 40 GHz	Spectrum analyzer	5.4 dB
10 m	1 GHz to 18 GHz	Test Receiver	5.3 dB
>= 0.5 m	40 GHz to 50 GHz		4.2 dB
>= 0.5 m	50 GHz to 75 GHz		5.9 dB
>= 0.5 m	75 GHz to 110 GHz		5.5 dB

Antenna Terminal test

Test Item	Uncertainty (+/-)
Antenna terminal conducted emission / Power density	2.7 dB

Test Report No. 14752026H-A-R1 Page 8 of 32

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

Test Report No. 14752026H-A-R1 Page 9 of 32

SECTION 4: Operation of EUT during testing

4.1 Operating Modes

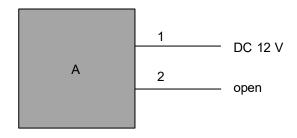
Mode	Test Item
Transmitting mode - 24.09 GHz - 24.125 GHz - 24.16 GHz	Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)
Normal Operation mode	Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission), -20 dB Bandwidth and 99 % Occupied Bandwidth, Duty Cycle

^{*}Power of the EUT was set by the software as follows;

Power Setting: 6

Software: S-Takaya,ST234-001,230531-01

(Date: 2023.05.31, Storage location: EUT memory)


Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Justification: The system was configured in typical fashion (as a user would normally use it) for testing.

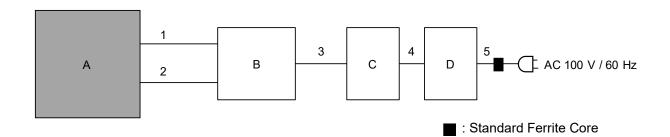
4.2 Configuration and peripherals

Radiated Emission (Below 1 GHz) test

^{*} Test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	24GHz Radar Sensor	L75N57010	L3101U22300	YAMAHA MOTOR	EUT
	Unit			CO., LTD.	


List of cables used

No.	Name	Length (m)	Shield		Remark
			Cable	Connector	
1	DC Cable	2.0	Unshielded	Unshielded	-
2	Signal Cable	1.0	Unshielded	Unshielded	-

^{*}This setting of software is the worst case.

Test Report No. 14752026H-A-R1 Page 10 of 32

Other tests except for Radiated Emission (Below 1 GHz) test

^{*} Test data was taken under worse case conditions.

Description of EUT and Support equipment

		<u> </u>			
No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	24GHz Radar Sensor	L75N57010	L3101U22300	YAMAHA MOTOR	EUT
	Unit			CO., LTD.	
В	Jig Borad	JUPITER RELAY	#01	S-takaya	-
		BOARD			
С	Laptop PC	CF-N8HWCDPS	9LKSA04645	Panasonic	-
D	AC Adapter	CF-AA6372B	6372BM610214975E	Panasonic	_

List of cables used

No.	Name	Length (m)	Shield	Shield		
		" " "	Cable	Connector		
1	DC Cable	1.6	Unshielded	Unshielded	-	
2	Signal Cable	1.6	Unshielded	Unshielded	-	
3	USB Cable	2.0	Shielded	Shielded	-	
4	DC Cable	1.6	Unshielded	Unshielded	-	
5	AC Cable	0.8	Unshielded	Unshielded	-	

Test Report No. 14752026H-A-R1 Page 11 of 32

<u>SECTION 5: Radiated emission (Electric Filed Strength of Fundamental and Spurious Emission)</u>

Test Procedure and conditions

[For below 30 MHz]

EUT was placed on a carpet for insulation above a reference ground plane. EUT was set up typical spacing for the other equipment.

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., 135 deg and 180 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

[For below 1 GHz]

EUT was placed on a carpet for insulation above a reference ground plane. EUT was set up typical spacing for the other equipment.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz, up to 40 GHz]

EUT was placed on a carpet for insulation above a reference ground plane. EUT was set up typical spacing for the other equipment.

For 1 GHz to 10 GHz

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

For 10 GHz to 40 GHz

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

The height of the measuring antenna varied between 1 m and 4 m (frequency range 9 kHz to 30 MHz: loop antenna was fixed height at 1.0 m) and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear voltage average mode).

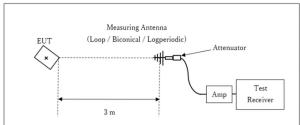
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Report No. 14752026H-A-R1 Page 12 of 32

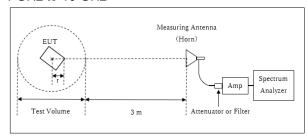
Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

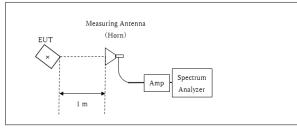

Frequency	9 kHz to 150 kHz	150 kHz to 30 MHz	30 MHz to 1 GHz	1 GHz to 40 GH	lz
Instrument used	Test Receiver	Test Receiver	Test Receiver	Spectrum Analy	/zer
Detector	QP, Average *1)	QP, Average *1)	QP	Peak	Average
IF Bandwidth	BW 200 Hz	BW 9 kHz	BW 120 kHz	RBW: 1 MHz VBW: 3 MHz	RBW: 1 MHz VBW: 10 Hz Voltage avg.

^{*1)} Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

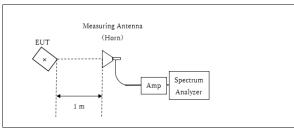
Test Report No. 14752026H-A-R1 Page 13 of 32


[Test Setup]

Below 1 GHz


× : Center of turn table

1 GHz to 10 GHz


- r : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz to 26.5 GHz

×: Center of turn table

26.5 GHz to 40 GHz

×: Center of turn table

Test Distance: 3 m

Distance Factor: $20 \times \log (3.95 \text{ m}^*/3.00 \text{ m}) = 2.39 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 3.95 m

SVSWR Volume: 2 m

(SVSWR Volume has been calibrated based on CISPR 16-1-4.)

r = 0.05 m

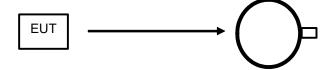
Distance Factor: $20 \times (1.00 \text{ m}^* / 3.00 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1.0 m

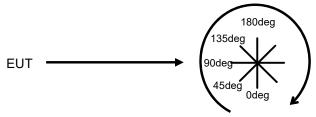
Distance Factor: $20 \times (0.50 \text{ m}^* / 3.00 \text{ m}) = -15.5 \text{ dB}$

*Test Distance: 0.5 m

Test Report No. 14752026H-A-R1 Page 14 of 32


Figure 1: Direction of the Loop Antenna

Side View (Vertical)


.....

Top View (Horizontal)

Antenna was not rotated.

Top View (Vertical)

Front side: 0 deg.

Forward direction: clockwise

Test Report No. 14752026H-A-R1 Page 15 of 32

[About fundamental measurement]

The carrier levels were confirmed at maximum direction of transmission. The maximum direction was searched under carefully since beam-widths are narrow.

The carrier levels were measured in the far field. The distance of the far field was calculated from follow equation.

$$r = \frac{2D^2}{\lambda}$$

where

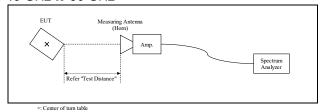
r is the distance from the radiating element of the EUT to the edge of the far field, in m D is the largest dimension of both the radiating element and the test antenna (horn), in m (The antenna aperture size of test antenna was used for this caluculation.) Lambda is the wavelength of the emission under investigation [300 / f (MHz) * 10^3], in millimeter

Frequency	Wavelength	Maximum Aperture Dimension			Far Field
		EUT	Test Antenna	Maximum	Boundary
	Lambda		(MHA-16)	D	r
[GHz]	[mm]	[m]	[m]	[m]	[m]
24.160	12.4	0.041	0.058	0.058	0.542

[Above 40 GHz]

The test was performed based on "Procedures for testing millimeter-wave systems" of ANSI C63.10-2013.

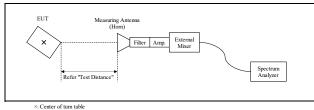
EUT was placed on a carpet for insulation above a reference ground plane. EUT was set up typical spacing for the other equipment.


Set spectrum analyzer RBW, VBW, span, etc., to the proper values. Note these values. Enable two traces—one set to "clear write," and the other set to "max hold." Begin hand-held measurements with the test antenna (horn) at a distance of 1 m from the EUT in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 m from the EUT. Observation of the two active traces on the spectrum analyzer will allow refined horn positioning at the point(s) of maximum field intensity. Repeat with the horn in a vertically polarized position. If the emission cannot be detected at 1 m, reduce the RBW to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.

Detector	Peak	Average
IF Bandwidth	RBW: 1 MHz	RBW: 1 MHz
	VBW: 3 MHz	VBW: 10 Hz
		Voltage avg.

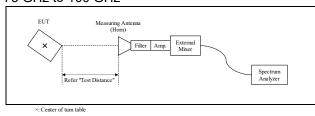
Test Report No. 14752026H-A-R1 Page 16 of 32

[Test setup]


40 GHz to 50 GHz

Distance Factor: $20 \times \log (1.00 \text{ m}^* / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1.00 m


50 GHz to 75 GHz

Distance Factor: $20 \times \log (0.75 \text{ m}^* / 3.0 \text{ m}) = -12.0 \text{ dB}$ *Test Distance: 0.75 m

×: Center of turn table

75 GHz to 100 GHz

Distance Factor: $20 \times \log (0.50 \text{ m}^* / 3.0 \text{ m}) = -15.5 \text{ dB}$ *Test Distance: 0.50 m

The test was made on EUT at the normal use position.

*The result is rounded off to the second decimal place, so some differences might be observed.

Measurement range : 9 kHz to 100 GHz Test data : APPENDIX 1

Test result : Pass

Test Report No. 14752026H-A-R1 Page 17 of 32

SECTION 6: 20 dB Bandwidth, 99 % Occupied Bandwidth and Duty Cycle

Test Procedure

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	100 MHz	1 MHz 1 % to 5 % of OBW	3 MHz Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth	100 MHz, Enough width to display emission skirts	1 MHz 1 % to 5 % of OBW	3 MHz Three times of RBW	Auto	Peak *1)	Max Hold	Spectrum Analyzer
Duty Cycle	Zero	8 MHz	50 MHz	20.2 msec	Peak	Single	Spectrum Analyzer

Test data : APPENDIX Test result : Pass

Test Report No. 14752026H-A-R1 Page 18 of 32

APPENDIX 1: Test data

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place	Ise EMC Lab.					
Semi Anechoic	No.1	No.3	No.3	No.3	No.4	No.4
Chamber						
Date	June 1, 2023	June 4, 2023	June 5, 2023	June 6, 2023	June 7, 2023	June 9, 2023
Temperature /	22 deg. C /	22 deg. C /	20 deg. C /	21 deg. C /	22 deg. C /	21 deg. C /
Humidity	72 % RH	52 % RH	50 % RH	47 % RH	58 % RH	59 % RH
Engineer	Sayaka Hara	Junki Nagatomi	Sayaka Hara	Sayaka Hara	Sayaka Hara	Sayaka Hara
Frequency	(18 GHz to	(Above	(26.5 GHz to	(10 GHz to	(Below	(1 GHz to
	26.5 GHz)	50 GHz)	50 GHz)	18 GHz)	1 GHz)	10 GHz)
Mode	Tx 24.09 MHz	•		•	•	

[Fundamental and Band-edge]

		Reading	Reading	Ant.			Result	Result	Limit	Limit	Margin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	(QP / PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	24000.0	46.7	39.2	38.8	-0.2	35.1	50.3	42.8	73.9	53.9	23.6	11.2	Floor noise
Hori.	24075.0	55.0	46.9	38.8	-0.2	35.1	58.6	50.5	73.9	53.9	15.3	3.4	
Hori.	24089.8	109.2	109.2	38.8	-0.2	35.1	112.7	112.7	147.9	127.9	35.2	15.2	
Vert.	24000.0	46.7	39.3	38.8	-0.2	35.1	50.3	42.9	73.9	53.9	23.6	11.0	Floor noise
Vert.	24075.0	54.7	47.0	38.8	-0.2	35.1	58.3	50.6	73.9	53.9	15.6	3.3	
Vert.	24089.8	109.1	109.1	38.8	-0.2	35.1	112.7	112.7	147.9	127.9	35.3	15.3	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Mixer (above 50 GHz) + Distance factor (above 1 GHz)) - Gain(Amplifier)

Distance factor: 18 GHz to 26.5 GHz 20log (1.00 m / 3.00 m) = -9.5 dB

[Spurious emissions other than above]

Above 1 GHz

		Reading	Reading	Ant.			Result	Result	Limit	Limit	Margin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	(QP / PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	22584.3	49.6	43.6	38.3	-0.6	34.7	52.6	46.5	73.9	53.9	21.3	7.4	
Hori.	48180.0	62.2	56.3	41.7	-1.4	32.8	69.7	63.8	107.9	87.9	38.2	24.1	
Hori.	72270.0	38.7	25.6	43.1	6.0	21.1	66.7	53.5	107.9	87.9	41.2	34.4	Floor noise
Hori.	96360.0	51.3	37.8	45.7	-4.2	34.8	58.0	44.4	73.9	53.9	15.9	9.5	Floor noise
Vert.	22584.3	49.8	43.2	38.3	-0.6	34.7	52.7	46.2	73.9	53.9	21.2	7.7	
Vert.	48180.0	60.7	53.4	41.7	-1.4	32.8	68.2	60.9	107.9	87.9	39.7	27.0	
Vert.	72270.0	38.7	25.5	43.1	6.0	21.1	66.7	53.5	107.9	87.9	41.2	34.4	Floor noise
Vert.	96360.0	51.3	37.7	45.7	-4.2	34.8	57.9	44.4	73.9	53.9	16.0	9.5	Floor noise

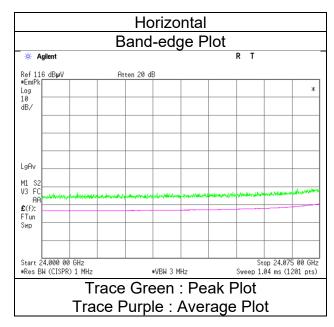
Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Mixer (above 50 GHz) + Distance factor (above 1 GHz)) - Gain(Amplifier)

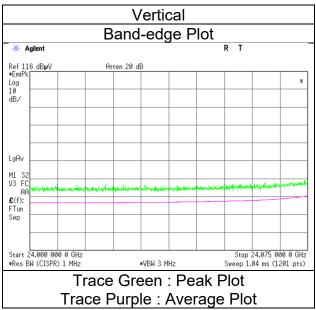
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.


Test Report No. 14752026H-A-R1 Page 19 of 32


Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission) (Reference Plot for band-edge)

Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date June 1, 2023
Temperature / Humidity 22 deg. C / 72 % RH
Engineer Sayaka Hara
Mode Tx 24.09 MHz

^{*} Final result was shown in tabular data.

Test Report No. 14752026H-A-R1 Page 20 of 32

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place	Ise EMC Lab.					
Semi Anechoic	No.1	No.3	No.3	No.3	No.4	No.4
Chamber						
Date	June 1, 2023	June 4, 2023	June 5, 2023	June 6, 2023	June 7, 2023	June 9, 2023
Temperature /	22 deg. C /	22 deg. C /	20 deg. C /	21 deg. C /	22 deg. C /	21 deg. C /
Humidity	72% RH	52% RH	50 % RH	47 % RH	58 % RH	59 % RH
Engineer	Sayaka Hara	Junki	Sayaka Hara	Sayaka Hara	Sayaka Hara	Sayaka Hara
		Nagatomi				
Frequency	(18 GHz to	(Above	(26.5 GHz to	(10 GHz to	(Below	(1 GHz to
	26.5 GHz)	50 GHz)	50 GHz)	18 GHz)	1 GHz)	10 GHz)
Mode	Tx 24.125 MHz	7	•	•	•	

[Fundamental and Band-edge]

		Reading	Reading	Ant.			Result	Result	Limit	Limit	Margin	Margin	
Polarity	Frequency	(QP/PK)	(AV)	Factor	Loss	Gain	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	24124.8	109.0	109.0	38.8	-0.2	35.1	112.6	112.6	147.9	127.9	35.3	15.3	
Vert.	24124.8	109.0	109.0	38.8	-0.2	35.1	112.6	112.6	147.9	127.9	35.3	15.3	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Mixer (above 50 GHz) + Distance factor (above 1 GHz)) - Gain(Amplifier)

Distance factor: 18 GHz to 26.5 GHz 20log (1.00 m / 3.00 m) = -9.5 dB

[Spurious emissions other than above]

Above 1 GHz

		Reading	Reading	Ant.			Result	Result	Limit	Limit	Margin	Margin	
Polarity	Frequency	(QP/PK)	(AV)	Factor	Loss	Gain	(QP / PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	22617.1	49.8	43.7	38.3	-0.6	34.7	52.8	46.7	73.9	53.9	21.1	7.2	
Hori.	48250.0	62.2	56.0	41.7	-1.4	32.8	69.8	63.6	107.9	87.9	38.1	24.4	
Hori.	72375.0	38.1	25.5	43.1	6.2	21.2	66.1	53.5	107.9	87.9	41.8	34.4	Floor noise
Hori.	96500.0	50.0	37.4	45.7	-4.2	34.9	56.5	43.9	73.9	53.9	17.4	10.0	Floor noise
Vert.	22617.1	49.6	43.8	38.3	-0.6	34.7	52.6	46.8	73.9	53.9	21.3	7.1	
Vert.	48250.0	61.2	54.1	41.7	-1.4	32.8	68.7	61.7	107.9	87.9	39.2	26.3	
Vert.	72375.0	38.0	25.4	43.1	6.2	21.2	66.0	53.5	107.9	87.9	41.9	34.4	Floor noise
Vert.	96500.0	50.0	37.4	45.7	-4.2	34.9	56.5	43.9	73.9	53.9	17.4	10.0	Floor noise

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Mixer (above 50 GHz) + Distance factor (above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz to 10 GHz 10 GHz 20log (3.95 m / 3.00 m) = 2.39 dB 10 GHz to 18 GHz 20log (1.00 m / 3.00 m) = -9.5 dB 18 GHz to 26.5 GHz 20log (1.00 m / 3.00 m) = -9.5 dB 20log (0.50 m / 3.00 m) = -15.5 dB 20log (0.50 m / 3.00 m) = -9.5 dB 20log (0.75 m / 3.00 m) = -9.5 dB 20log (0.75 m / 3.00 m) = -12.0 dB 20log (0.75 m / 3.00 m) = -15.5 dB 20log (0.50 m / 3.00 m) = -15.5 dB 20log (0.50 m / 3.00 m) = -15.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Test Report No. 14752026H-A-R1 Page 21 of 32

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place	Ise EMC Lab.					
Semi Anechoic	No.1	No.3	No.3	No.3	No.4	No.4
Chamber						
Date	June 1, 2023	June 4, 2023	June 5, 2023	June 6, 2023	June 7, 2023	June 9, 2023
Temperature /	22 deg. C /	22 deg. C /	20 deg. C /	21 deg. C /	22 deg. C /	21 deg. C /
Humidity	72% RH	52% RH	50 % RH	47 % RH	58 % RH	59 % RH
Engineer	Sayaka Hara	Junki Nagatomi	Sayaka Hara	Sayaka Hara	Sayaka Hara	Sayaka Hara
Frequency	(18 GHz to 26.5 GHz)	(Above 50 GHz)	(26.5 GHz to 50 GHz)	(10 GHz to 18 GHz)	(Below 1 GHz)	(1 GHz to 10 GHz)
Mode	Tx 24.16 MHz	•	•		•	

[Fundamental and Band-edge]

		Reading	Reading	Ant.			Result	Result	Limit	Limit	Margin	Margin	
Polarity	Frequency	(QP/PK)	(AV)	Factor	Loss	Gain	(QP / PK)	(AV)	(QP/PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	24159.8	109.1	109.1	38.8	-0.2	35.1	112.7	112.7	147.9	127.9	35.2	15.2	
Hori.	24175.0	53.8	46.5	38.8	-0.2	35.1	57.5	50.2	73.9	53.9	16.5	3.8	
Hori.	24250.0	46.6	38.6	38.9	-0.1	35.1	50.2	42.3	73.9	53.9	23.7	11.6	Floor noise
Vert.	24159.8	108.9	108.9	38.8	-0.2	35.1	112.5	112.5	147.9	127.9	35.4	15.4	
Vert.	24175.0	54.0	46.3	38.8	-0.2	35.1	57.7	49.9	73.9	53.9	16.3	4.0	
Vert.	24250.0	46.6	38.7	38.9	-0.1	35.1	50.3	42.3	73.9	53.9	23.6	11.6	Floor noise

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Mixer (above 50 GHz) + Distance factor (above 1 GHz)) - Gain(Amplifier)

Distance factor: 18 GHz to 26.5 GHz 20log (1.00 m / 3.00 m) = -9.5 dB

[Spurious emissions other than above]

Above 1 GHz

		Reading	Reading	Ant.			Result	Result	Limit	Limit	Margin	Margin	
Polarity	Frequency	(QP/PK)	(AV)	Factor	Loss	Gain	(QP / PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	22649.9	49.8	43.8	38.4	-0.6	34.7	52.8	46.9	73.9	53.9	21.1	7.0	
Hori.	48320.0	62.0	55.1	41.7	-1.4	32.8	69.6	62.7	107.9	87.9	38.3	25.2	
Hori.	72480.0	38.3	25.5	43.1	6.3	21.3	66.4	53.6	107.9	87.9	41.5	34.3	Floor noise
Hori.	96640.0	50.1	37.4	45.6	-4.3	35.1	56.4	43.8	73.9	53.9	17.5	10.1	Floor noise
Vert.	22649.9	49.7	43.9	38.4	-0.6	34.7	52.7	46.9	73.9	53.9	21.2	7.0	
Vert.	48320.0	61.4	54.5	41.7	-1.4	32.8	69.0	62.1	107.9	87.9	38.9	25.8	
Vert.	72480.0	38.2	25.5	43.1	6.3	21.3	66.3	53.6	107.9	87.9	41.6	34.3	Floor noise
Vert.	96640.0	50.1	37.4	45.6	-4.3	35.1	56.4	43.8	73.9	53.9	17.5	10.1	Floor noise

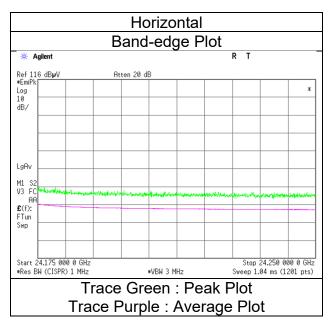
Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Mixer (above 50 GHz) + Distance factor (above 1 GHz)) - Gain(Amplifier)

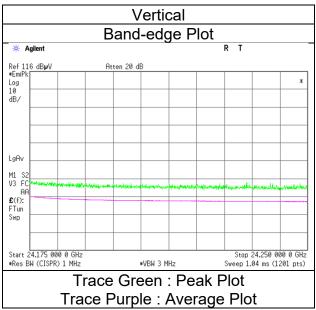
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.


Test Report No. 14752026H-A-R1 Page 22 of 32


Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission) (Reference Plot for band-edge)

Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date June 1, 2023
Temperature / Humidity 22 deg. C / 72 % RH
Engineer Sayaka Hara
Mode Tx 24.16 MHz

^{*} Final result was shown in tabular data.

Test Report No. 14752026H-A-R1 Page 23 of 32

Radiated Emission (Electric Field Strength of Spurious Emission)

Test place	Ise EMC Lab.					
Semi Anechoic	No.1	No.3	No.3	No.3	No.4	No.4
Chamber						
Date	June 1, 2023	June 4, 2023	June 5, 2023	June 6, 2023	June 7, 2023	June 9, 2023
Temperature /	22 deg. C /	22 deg. C /	20 deg. C /	21 deg. C /	22 deg. C /	21 deg. C /
Humidity	72% RH	52% RH	50 % RH	47 % RH	58 % RH	59 % RH
Engineer	Sayaka Hara	Junki	Sayaka Hara	Sayaka Hara	Sayaka Hara	Sayaka Hara
		Nagatomi				
Frequency	(18 GHz to	(Above	(26.5 GHz to	(10 GHz to	(Below	(1 GHz to
	26.5 GHz)	50 GHz)	50 GHz)	18 GHz)	1 GHz)	10 GHz)
Mode	Tx normal oper	ration			•	

Below 1 GHz

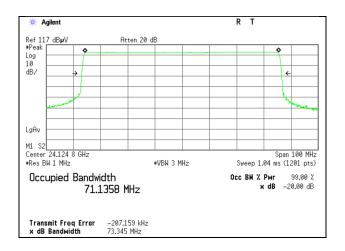
			Reading	Reading	Ant.			Result	Result	Limit	Limit	Margin	Margin	
	Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	Remark
ı	[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
	Hori.	85.9	30.5	-	7.8	7.8	32.1	14.0	-	40.0	-	26.0	-	
	Hori.	133.6	32.4	-	14.1	8.2	32.0	22.6	-	43.5	-	20.9	-	
	Hori.	224.0	42.9	-	11.2	9.0	32.0	31.0	-	46.0	-	15.0	-	
	Hori.	244.0	37.1	-	11.8	9.2	32.0	26.0	-	46.0	-	20.0	-	
	Hori.	330.8	37.6	-	14.7	9.8	32.0	30.1	-	46.0	-	16.0	-	
	Hori.	441.2	25.3	-	16.4	10.4	32.1	20.0	•	46.0	-	26.0	,	
	Vert.	48.7	42.4	-	11.7	7.3	32.1	29.3		40.0	-	10.7	-	
	Vert.	62.7	51.1	-	7.3	7.5	32.1	33.8	-	40.0	-	6.3	-	
	Vert.	86.9	55.0	-	8.1	7.8	32.1	38.7	-	40.0	-	1.3	-	
	Vert.	133.4	43.1	-	14.1	8.2	32.0	33.3	-	43.5	-	10.2	-	
	Vert.	208.7	48.2	-	11.3	8.9	32.0	36.3	-	43.5	-	7.2	-	
	Vert.	235.4	47.2	-	11.5	9.1	32.0	35.8	-	46.0	-	10.2	_	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Mixer (above 50 GHz) + Distance factor (above 1 GHz)) - Gain(Amplifier)

Above 1 GHz

No signal detected

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).


^{*}QP detector was used up to 1GHz.

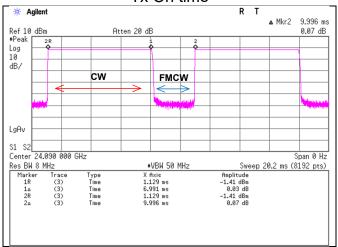
Test Report No. 14752026H-A-R1 Page 24 of 32

-20 dB Bandwidth and 99 % Occupied Bandwidth

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	June 1, 2023
Temperature / Humidity	22 deg. C / 72% RH
Engineer	Sayaka Hara
Mode	Tx Normal Operation

Frequency	-20dB	99% Occupied
	Bandwidth	Bandwidth
[MHz]	[MHz]	[MHz]
24124.81	73.345	71.1358

Test Report No. 14752026H-A-R1 Page 25 of 32


Duty Cycle (Reference)

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.3
Date	June 5, 2023
Temperature / Humidity	20 deg. C / 50 % RH
Engineer	Sayaka Hara
Mode	Tx Normal Operation

	Tx Or	1cycle		
	CW	FMCW	time	
	[ms]	[ms]	[ms]	
Measured	6.991	3.005	9.996	
Declared *	6.900	3.100	10.000	

^{*}See the application document.

Tx On time

Test Report No. 14752026H-A-R1 Page 26 of 32

APPENDIX 2: Test instruments

Test equipment (1/2)

Test	est equipment (1/2)							
Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-01	141998	AC1_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	06/28/2022	24
RE	MAEC-01- SVSWR	141994	AC1_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 10m	DA-06881	04/20/2023	24
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/23/2022	24
RE	MAEC-03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/12/2023	24
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2022	24
RE	MAEC-04- SVSWR	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/14/2023	24
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	02/01/2023	12
RE	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+ BBA9106	VHA 91031302	08/26/2022	12
RE	MCC-113	141217	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM141/ 421-010/ sucoform141-PE/ RFM-E121(SW)	-/04178	06/11/2022	12
RE	MCC-135	142032	Microwave Cable	Huber+Suhner	SUCOFLEX102	37511/2	09/28/2022	12
RE	MCC-136	142033	Microwave Cable	Huber+Suhner	SUCOFLEX102	37512/2	09/28/2022	12
RE	MCC-177	141226	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S304	03/03/2023	12
RE	MCC-217	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	08/02/2022	12
RE	MCC-219	159670	Coaxial Cable	UL Japan	-	-	11/18/2022	12
RE	MCC-220	151897	Microwave Cable	Huber+Suhner	SF101EA/11PC24/ 11PC24/2.5M	SN MY1726/1EA	04/11/2023	12
RE	MCC-265	234602	Microwave Cable	Huber+Suhner	SF126E/11PC35 /11PC35/ 1000M,5000M	537063/126E / 537074/126E	03/16/2023	-
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	11/18/2022	12
RE	MCC-55	141326	Microwave Cable	Suhner	SUCOFLEX101	2874(1m) / 2877(5m)	03/07/2023	12
RE	MDT-03	142527	DETECTOR	Keysight Technologies Inc	8473C	1822A 05145	-	-
RE	MHA-06	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	254	10/20/2022	12
RE	MHA-16	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9170	BBHA9170306	07/05/2022	12
RE	MHA-20	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	258	11/14/2022	12
RE	MHA-31	142041	Horn Antenna	Oshima Prototype Engineering Co.	A16-187	1	09/01/2022	12
RE	MHA-33	180634	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-15-S1	17343-01	06/09/2022	12
RE	MHA-35	180544	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-10-S1	17343-01	06/27/2022	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	10/03/2022	12
RE	MJM-25	142226	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	MJM-29	142230	Measure, Tape, Steel	KOMELON	KMC-36	-	-	
RE	MLA-23	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-192	09/21/2022	12
RE	MLPA-02	142152	Loop Antenna	Rohde & Schwarz	HFH2-Z2	836553/009	10/11/2022	12
RE	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/17/2023	12
RE	MMM-09	141533	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201195	01/18/2023	12

Test Report No. 14752026H-A-R1 Page 27 of 32

Test equipment (2/2)

	Local ID	_ `	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MMM-10	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	01/18/2023	12
RE	MMX-01	142047	Preselected Millimeter Mixer	Keysight Technologies Inc	11974V-E01	3001A00412	11/25/2022	12
RE	MMX-02	142048	Harmonic Mixer	Keysight Technologies Inc	11970W	2521 A01909	10/06/2022	12
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/13/2023	12
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/13/2023	12
RE	MOS-27	141566	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	A08Q26	01/13/2023	12
RE	MPA-01	141576	Pre Amplifier	Keysight Technologies Inc	8449B	3008A01671	02/14/2023	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2023	12
RE	MPA-12	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	10/05/2022	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/07/2023	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	04/05/2023	12
RE	MPA-22	141588	Pre Amplifier	L3 Narda-MITEQ	AMF-6F-2600400- 33-8P / AMF-4F-2600400- 33-8P	1871355 /1871328	01/24/2023	12
RE	MPA-23	142055	Power Amplifier	SAGE Millimeter, Inc.	SBP-5037532015- 1515-N1	11599-01	03/22/2023	12
RE	MPA-25	159919	Power Amplifier	SAGE Millimeter, Inc.	SBP-4035033018- 2F2F-S1	12559-01	06/10/2022	12
RE	MPA-31	180607	Power Amplifier	SAGE Millimeter, Inc.	SBP-7531142515- 1010-E1	17343-01	10/07/2022	12
RE	MSA-14	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/16/2023	12
RE	MSA-22	141978	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180899	03/06/2023	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	07/25/2022	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission