

X4F103 - Datasheet

Ultra Wideband (UWB) Impulse Radar Sensor

Rev. A - tbd-2023

Key Features

- Complete Ultra Wideband (UWB) impulse radar sensor module.
- Operates at 7.58 GHz.
- Advanced power management enabling low power duty cycle controlled operation.
- Industrial operating temperature range, -40°C to +85°C.
- Designed for ETSI and FCC modular compliance.
- Built-in antenna, no external circuitry required.
- SPI or I2C serial interface support.
- Wide supply voltage range, 1.8V - 3.3V.

Product Description

The X4F103 is an Ultra Wideband (UWB) short-range impulse radar sensor module, designed for unlicensed operation in worldwide markets. The X4F103 contains all required circuitry, such as antennas, clocks and decoupling capacitors and can be connected directly to existing systems through a standard I2C or SPI interface. The X4F103 sensor is extremely sensitive and can detect human presence based on respiration motion alone. The sensor accurately detects presence within the detection zone and has configurable range limits and sensitivity settings.

Applications

- Proximity detection for display control, appliances, etc. to extend product lifetime and improve human-machine interaction.
- Occupancy detection for light control applications such as luminaire control etc.

Table of Contents

1. Electrical Characteristics	3
1.1. Absolute Maximum Ratings	3
General Operating Conditions	3
1.3. TX Parameters	3
1.4. Current Consumption	3
1.5. Specification of Clock Sources	4
1.1.1. Internal Low Power Oscillator (LPOSC)	4
1.1.2. Crystal Oscillator (XOSC)	4
1.1.3. Digital I/O characteristics	4
2. Inter-Integrated Circuit (I2C)	6
2.1. I2C Specification	6
2.2. I2C Operation	6
3. Serial Peripheral Interface (SPI)	7
3.1. SPI Protocol	7
4. Implementation and Layout	8
4.1. Module Pinout	8
4.2. Typical Application Circuit	9
4.3. Mechanical Specifications	10
4.4. Recommended footprint	10
4.5. Layout	10
4.6. General Mechanical Integration Guidelines	11
5. Regulatory Compliance Notices	13
5.1. United States (FCC) Regulatory Notices	13
5.1.1. Implementation in Host Device	13
5.1.2. UWB Device Notice	13
5.1.3. Modification Statement	13
5.1.4. Interference Statement	13
5.1.5. RF Exposure	13
5.1.6. FCC Class B Digital Device Notice	13
5.1.7. Compliance of Host Devices	13
5.1.8. Labelling requirements for the Host Device	14
5.2. Canada (ISED) Regulatory Notices	14
5.2.1. Modification Statement	14
5.2.2. Interference Statement	14
5.2.3. RF Exposure	14
5.2.4. Labelling Requirements for the Host Device	14
5.2.5. CAN ICES-003(B)	15
6. Disclaimer	16

1. Electrical Characteristics

1.1. Absolute Maximum Ratings

Parameter		Min	Typ	Max	Unit
VDD	Supply voltage, all domains	-0.3		3.6	V
VDD _{IO}	Input voltage, digital I/O	-0.3		VDD + 0.3	V
JESD22-A103C	Storage temperature			150	°C
J-STD-020	Reflow soldering temperature			260	°C
JEDEC JS-002	ESD, CDM			500	V
JEDEC JS-001	ESD, HBM			1000	V

Table 1.1. Absolute maximum ratings

1.2. General Operating Conditions

Parameter		Min	Typ	Max	Unit
VDD	Supply voltage, all domains	1.8		3.3	V
T _A	Ambient operating temperature	-40		85	°C

Table 1.2. General operating conditions

1.3. TX Parameters

T_c = 25 °C, VDD = 1.8 V, unless otherwise noted.

Parameter		Min	Typ	Max	Unit
TX center frequency			7.58		GHz
TX bandwidth (-10 dB)	EIRP on X4F103		900		MHz
Power Spectral Density ¹	EIRP on X4F103		-43		dBm/MHz

¹X4 configuration and instrument setup as used during regulatory compliance testing. PL = 3, CPP = 14, duty cycle = 100%

Table 1.3.TX parameters

1.4. Current Consumption

T_c = 25°C, VDD = 1.8 V, unless otherwise noted.

Parameter		Min	Typ	Max	Unit
VDD = 1.8V					
Power-down current	Enable pin low ¹		20		µA
Idle	CPU Idle, reduced system clock, LPOSC		300		µA
Active	CPU active, full clock rate, LPOSC		1.7		mA
Active	CPU active, full clock rate, XOSC		1.8		mA
Active, radar ready	All LDOs and PLLs on		50		mA
Radar Acquisition	During sweep ^{2 3}		70		mA
VDD = 3.3V					
Power-down current	Enable pin low ¹		35		µA
Idle	CPU Idle, reduced system clock, LPOSC		500		µA
Active	CPU active, full clock rate, LPOSC		1.9		mA

Parameter		Min	Typ	Max	Unit
Active	CPU active, full clock rate, XOSC		2.1		mA
Active, radar ready	All LDOs and PLLs on		50		mA
Radar Acquisition	During sweep ^{2 3}		70		mA

¹100kohm pull-up on Enable signal.

² Actual acquisition current is dependent on sweep length and FPS. Refer to product specific information for details.

³ Settings used: TxPower = 3, Iterations = 128, PulsesPerStep = 7, DACRange = {963, 1087}, DACStep = 1, PRFDivisor = 16.

Table 1.4. Current consumption

1.5. Specification of Clock Sources

1.5.1. Internal Low Power Oscillator (LPOSOC)

Parameter		Min	Typ	Max	Unit
F_{tol}	Absolute frequency accuracy		5		%
F_{LPOSOC}	Output frequency		27		MHz

Table 1.5. Low power oscillator (LPOSOC) specification

1.5.2. Crystal Oscillator (XOSC)

Parameter		Min	Typ	Max	Unit
$F_{fundamental}$	Crystal frequency		27		MHz
F_{tol}	Frequency accuracy		±40		ppm

Table 1.6. Crystal oscillator specification

1.5.3. Digital I/O characteristics

Tc = 25°C, unless otherwise noted.

Parameter		Min	Typ	Max	Unit
DVDD_IO = 1.8V					
V_{IL}	Logic '0' input voltage			0.6	V
V_{IH}	Logic '1' input voltage		1.2		V
V_{OL}	Logic '0' output voltage			0.5	V
V_{OH}	Logic '1' output voltage		1.3		V
R_{PU}	Internal pull-up resistor			111	kohm
I_{OL}	GPIO current at V_{OL} max			4	mA
I_{OH}	GPIO current at V_{OH} min			4	mA
DVDD_IO = 2.5V					
V_{IL}	Logic '0' input voltage			0.7	V
V_{IH}	Logic '1' input voltage		1.7		V
V_{OL}	Logic '0' output voltage			0.7	V
V_{OH}	Logic '1' output voltage		1.7		V
R_{PU}	Internal pull-up resistor			73	kohm
I_{OL}	GPIO current at V_{OL} max			9	mA
I_{OH}	GPIO current at V_{OH} min			9	mA
DVDD_IO = 3.3V					

Parameter		Min	Typ	Max	Unit
V_{IL}	Logic '0' voltage input voltage			0.8	V
V_{IH}	Logic '1' voltage input voltage	2			V
V_{OL}	Logic '0' voltage output voltage			0.4	V
V_{OH}	Logic '1' voltage output voltage	2.4			V
R_{PU}	Internal pull-up resistor		54		kohm
I_{OL}	GPIO current at V_{OL} max		7		mA
I_{OH}	GPIO current at V_{OH} min		13		mA

Table 1.7. Digital I/O characteristics

2. Inter-Integrated Circuit (I2C)

This section specifies the I2C interface and the I2C bootloader which enables communication between the X4 and an external host for transfer of radar and configuration data. The X4 I2C interface supports a maximum clock frequency of 400 kHz and the default device 7-bit slave address is 0x5A.

2.1. I2C Specification

Parameter	Min	Max	Unit
Maximum I2C clock frequency		400	kHz
7-bit I2C slave address	0x5A		

Table 2.1. I2C Specification

2.2. I2C Operation

After boot (power-on-reset, or pin reset), the X4 will by default enable the I2C bootloader. This bootloader can be used to upload program data to the internal memory of the X4. Typically, this program will be a sensor profile provided by Novelda which configures the sensor and enables signal processing. When the host has completed the transfer of the program to the X4's internal memory, it must initiate a soft reset to start executing the uploaded program. The profile may implement its own I2C commands in addition to the ones supported by the boot loader.

Note that the memory in the X4 is not retained through a power cycle or when the Enable pin is pulled low. After such events, the host must upload the program data through the bootloader again.

Novelda will provide all the software that handles the firmware loading protocol and the communication with the X4. Only the low level I2C read and write transactions, using the local host's appropriate serial peripheral unit, must be implemented by the user.

3. Serial Peripheral Interface (SPI)

This section specifies the Serial Peripheral Interface (SPI) between the X4F103 and an external host for transfer of radar and configuration data.

The SPI interface has been tested at clock frequencies up to of 32 MHz.

3.1. SPI Protocol

All SPI communication between external host and the X4F103 take place as units called commands. A command starts with an 8-bit instruction and may be followed by a payload.

During single bit SPI commands data is transferred from the host to the X4F103 on the COPI pin and from the X4F103 to the host on the CIPO pin.

The SPI can be driven by a host in either of the two following clocking modes:

- **Mode 0** with Clock Polarity (CPOL) = 0 and, Clock Phase (CPHA) = 0.
- **Mode 3** with CPOL = 1 and, CPHA = 1.

In both of these modes the X4F103 samples the input on the rising edge of SPICLK and changes the output following a falling edge. The difference is in the polarity of the clock between transfers:

- SPICLK will stay at logic low state with CPOL = 0, CPHA = 0.
- SPICLK will stay at logic high state with CPOL = 1, CPHA = 1.

All transfers begin with the most significant bit and ends with the least significant bit.

When Chip Select (CS) is inactive (high) the CIPO pin must be in high impedance mode to allow multiple peripherals to operate against a single controller. The SPI module therefore disables the output enable signal on the CIPO pin when CS is high.

Novelda will provide all the software that handles the firmware loading protocol and the communication with the X4. Only the low level SPI read and write transactions, using the local host's appropriate serial peripheral unit, must be implemented by the user.

4. Implementation and Layout

The X4F103 is mechanically and electrically connected to a carrier PCB through 16 solder balls. The balls are non-collapsible to ensure proper clearance for the components on the bottom side of the module.

Figure 4.1 shows the front- and back side of the sensor module.

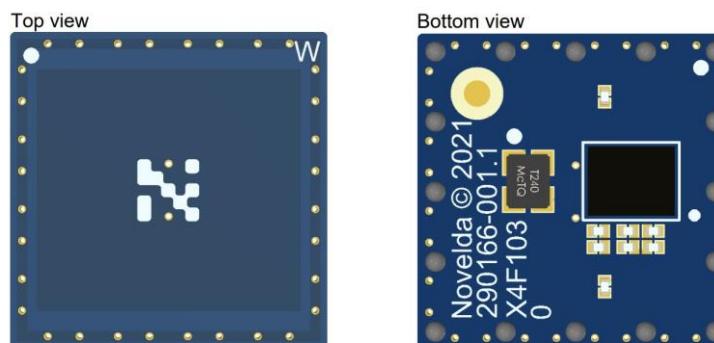


Figure 4.1. X4F103

4.1. Module Pinout

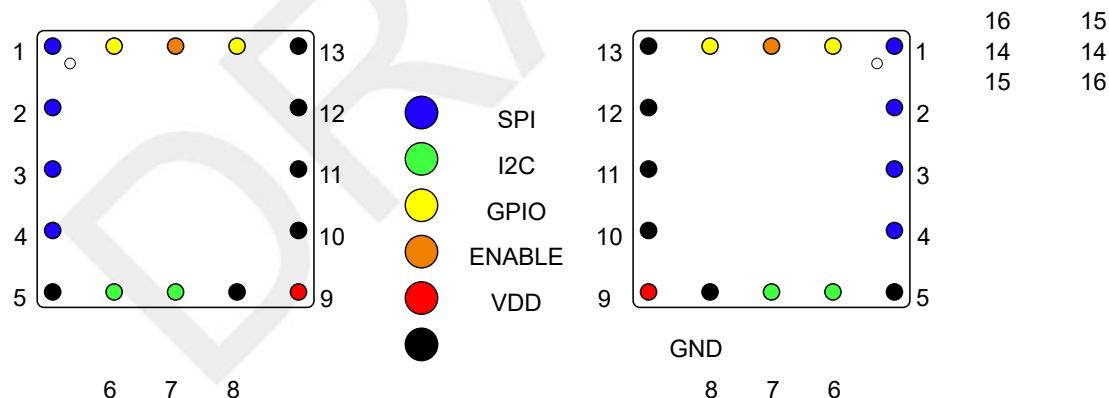


Figure 4.2. Pinout - top view (left) - bottom view (right)

Connector Pad	Signal Name	Function
1	CIPO	SPI - Controller In Peripheral Out
2	COPI	SPI - Controller Out Peripheral In
3	SCLK	SPI Clock
4	CS	Chip Select
5	GND	Ground
6	SDA	I2C Data
7	SCL	I2C Clock
8	GND	Ground
9	VDD	Power supply
10	GND	Ground
11	GND	Ground
12	GND	Ground
13	GND	Ground
14	GPIO4	GPIO (typically used as IRQ signal from X4)
Connector Pad	Signal Name	Function
15	ENABLE	Enable pin, active high
16	GPIO3	GPIO (function depending on SW profile)

Table 4.1. Pinout

4.2.Typical Application Circuit

The following figures show the X4F103 in typical application circuits using I2C and SPI as the communication interface.

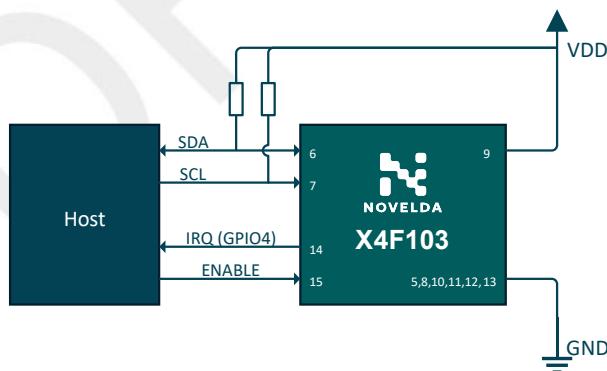


Figure 4.3. Application Circuit - I2C

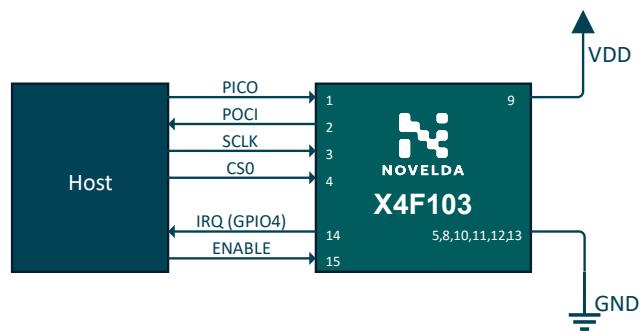


Figure 4.4. Application Circuit - SPI

- Unused GPIO should be left not connected. Do NOT tie unused GPIO to ground. This would prevent the I2C interface from working as expected.
- When the ENABLE signal is set low, the module goes into an ultra low power shutdown state. When the ENABLE signal is set high, the device goes out of the shutdown state and goes through a full reset sequence.
- The ENABLE signal can be connected to VDD to avoid using an additional pin on the host controller to assert and deassert this signal. However, it is highly recommended to control the ENABLE pin from the host, as this makes it possible to reset the module in a controlled manner.
- The IRQ signal (GPIO4) is typically used to indicate to the host that there is data available on X4, or that the radar has detected presence. This will depend on the firmware running on the X4 and the overall software profile in use. The signal is not strictly required, as the host can poll X4 to read out status periodically. However, in order to save overall system power, using the interrupt mechanism is recommended.

4.3. Mechanical Specifications

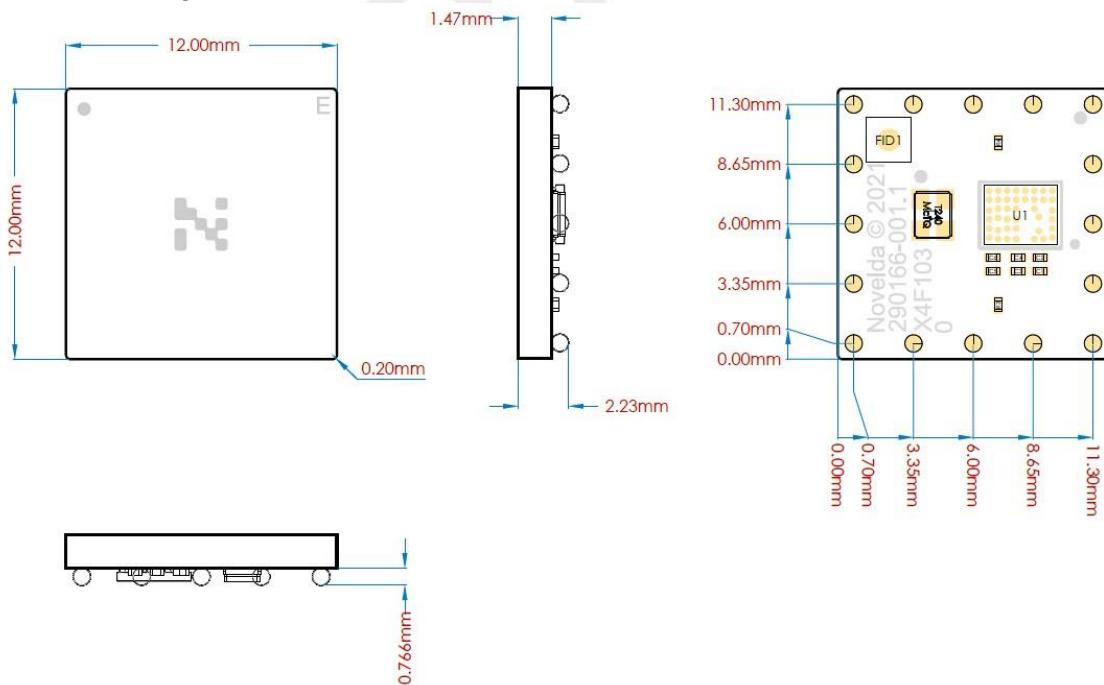


Figure 4.5. Physical Dimensions

4.4. Recommended footprint

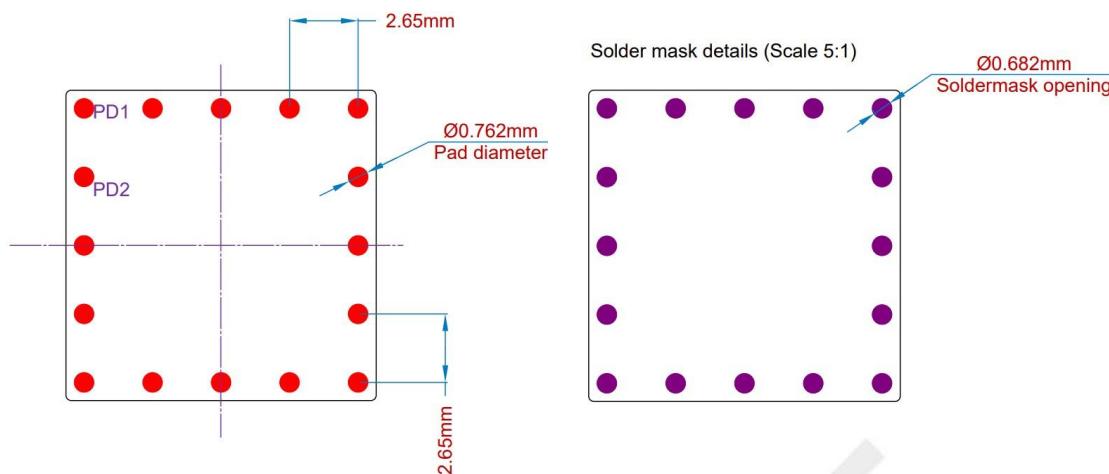


Figure 4.6. Recommended Footprint

Solderpads are recommended to be "solder mask defined", i.e. the soldermask opening is smaller than the pad size.

4.5. Layout

For regulatory compliance the layout must follow this requirement:

- A solid continuous ground plane, connected to all the sensor's ground pins, is required on the uppermost PCB layer underneath the sensor. The ground plane must be at least 12 mm x 12 mm to include all the ground pins.
- The ground plane must be of electrically conductive material such as copper or better. The thickness of this plane must be equal or greater than 0.25 mm.
- No signal routing on the top layer underneath the sensor is allowed. All signals must be fanned out away from the module.

Additional guidelines:

- Signal routing on other PCB layers underneath the sensor and the ground plane is allowed.
- The sensor can be placed directly on PCBs with solid ground planes, including aluminium PCBs.

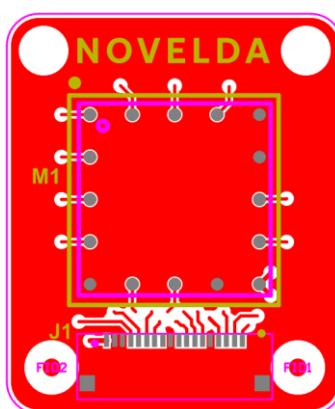


Figure 4.7. Layout Example

The dark blue square is the outline of the sensor module and the grey circles inside the square are the solder pads for the sensor module. All signals are routed outwards and away from the module. There is a solid continuous ground plane, connected to all the module ground pads, underneath the module.

4.6. General Mechanical Integration Guidelines

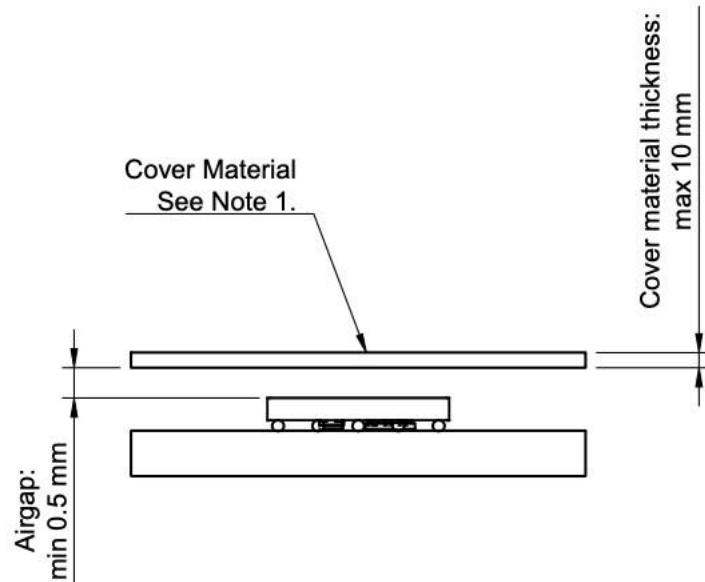


Figure 4.8. Material In Front of Sensor

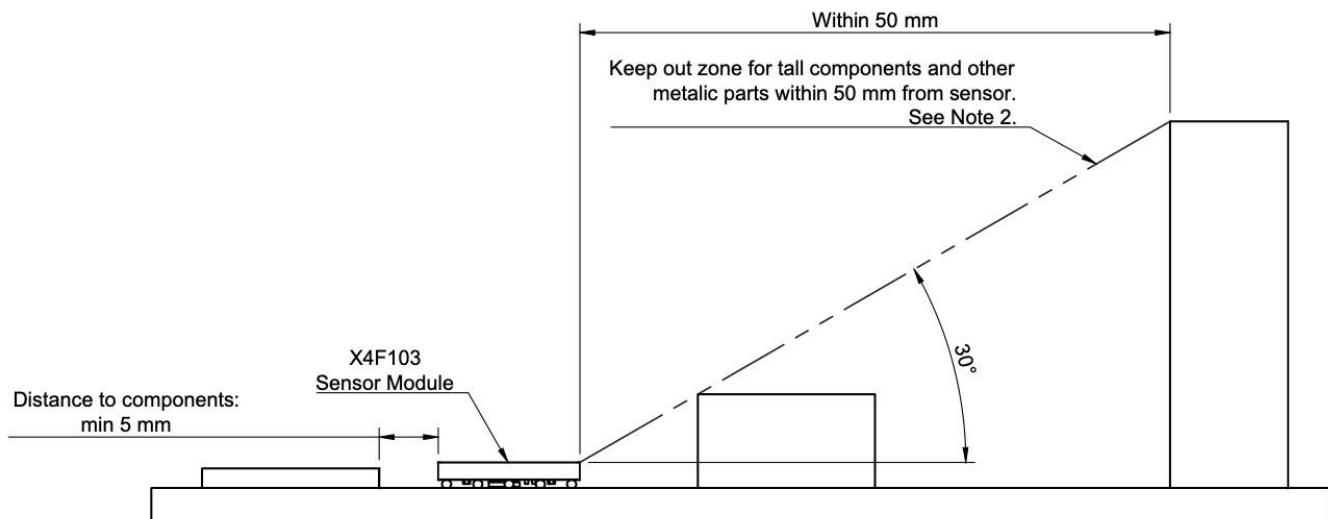


Figure 4.9. Objects Next to Sensor

Notes:

1. Non-Metallic and non-conductive materials only. Typically plastic or glass.
2. Placement closer to the sensor might affect performance. Ask Novelda for advice.
3. PCB layout guidelines can be found further up in this document.

5. Regulatory Compliance Notices

This section outlines the various regulatory notices applicable for operation in certain regions.

5.1. United States (FCC) Regulatory Notices

5.1.1. Modification Statement

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

5.1.2. Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference, and
2. This device must accept any interference, including interference that may cause undesired operation of the device.

5.1.3. RF Exposure compliance

This device is considered a portable device. A portable device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that the RF source's radiating structure(s) is/are within 20 centimetres of the body of the user.

As per the FCC rules **Part 2, Subpart J – Equipment Authorization Procedures, article 2.1093. Radiofrequency radiation exposure evaluation: portable devices**, we thus carried out a complete evaluation of compliance with the RF exposure limits as defined in **Part 1, Subpart I - Procedures Implementing the National Environmental Policy Act of 1969, article 1.1310 Radiofrequency radiation exposure limits**.

The evaluation determined that, according to **article 1.1307**, the device is actually exempted from SAR testing and establishes that there is no minimum distance as to which the device must be used from the human body.

5.1.4. FCC Class B Digital Device

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

5.1.5. Labelling requirements for Host Devices

The host device shall be properly labelled to identify the modules with the host device. The certification label of the module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labelled to display the FCC ID of the module, preceded by the words “Contains transmitter module”, or the word “Contains”, or similar wording expressing the same meaning, as follows:

Contains FCC ID: 2AD9Q-X4F103

5.1.6. Compliance of Host Devices

Approval for the X4F103 module has been granted as “Limited Modular” not associated with a specific host. To leverage the FCC grant for a host device, additional testing is required to ensure the host device is in compliance with FCC Part 15, Articles 15.209, 15.519 and 15.521.

In particular, the host device will need to be tested for:

- Radiated emission
- Radiated emission in GPS band
- Transmitter On/Off requirement
- 10dB bandwidth
- Peak level of emission

Note that for operational conditions different from a stand-alone modular transmitter in host, e.g. simultaneously transmitting modules in the host, additional testing is mandatory. This testing will depend on the type of devices co-located with the X4F103 module.

The modular transmitter is only FCC authorized for the specific rule parts (i.e., FCC transmitter rules) listed on the FCC Grant. The host device manufacturer is responsible for compliance with any other FCC rules not covered by the modular transmitter grant of certification.

The X4F103 module relies on proper solder contact of all solder balls as well as correct PCB layout to achieve RF shielding for the circuitry on the module. As such, the layout requirements in Section 4.5 of this document must be followed exactly.

If testing is satisfactory, integrators will be able to include the “Contains FCC ID: 2AD9Q-X4F103” into their Product marking without no further filing with the FCC.

As indicated above in **5.1.3. RF Exposure compliance**, compliance of the X4F103 module with the RF exposure limits has been evaluated in portable stand-alone conditions.

The module is exempted from SAR testing and there is no minimum distance as to which the device must be used from the human body.

Nevertheless, for host devices, whether or not there are more radio transceivers within the host, or if use conditions changed to mobile or remain portable, the host product manufacturer is responsible for separate evaluation of the host according to FCC rules article 2.1091 or article 2.1093.

It is the responsibility of the manufacturer of the host device, to include in their user manual the appropriate notice related to RF exposure, compliance, and conditions of use.

In case that integration of this module on a host is not properly done, this is, by not following these instructions, and/or the use conditions of the host device are not the same as recognized in the FCC Grant then:

1. Host device manufacturers must test their own device according to the same rules as this module, 15.209, 15.519 and 15.521 as mentioned above, and whichever ones additionally applicable (aside from testing other radio interfaces, or other testing simultaneous transmission, or other potentially necessary testing).

2. Host manufacturers must follow some of the alternative options described below to associate their host to the module such as filing a Class 2 Permissive Change (C2PC) to the module, filing a Change FCC ID and then a C2PC, or pursuing full certification for their device including the UWB interface.

These below is the full legal basis for your reference.

Section **1.0 INTRODUCTION** from the document **Modular transmitter integration guide. Guidance for host product manufacturers**, related to the publication 996369 on the FCC's Knowledge Database establishes:

"Leveraging the certification of a modular transmitter has the advantage of reducing subsequent FCC filing requirements, but there are limitations on host product manufacturers in making modifications or changes to the modular transmitter and the types of antennas that can be used in final products. Host product manufacturers are responsible to follow the integration guidance and to perform a limited set of transmitter module verification testing, to ensure the end product is in compliance with the FCC rules. Also host product manufacturers are responsible for all additional equipment authorization and testing for technical requirements not covered by the module grant (e.g., unintentional radiator Part 15 Subpart B requirements, or transmitters used in the host that are not certified modules)."

Section **2.0 GENERAL GUIDANCE** from the same document lists and describes several items, which must be addressed by the host manufacturer.

Following that list the following is stated,

"If the integration instructions do not contain clear directions for limited modules or for RF exposure compliance, the host product manufacturer must contact the module manufacturer responsible for the FCC certification.

If any of the preceding items are not resolved, a host product manufacturer has various options depending on the situation: (1) request that the module manufacturer file a Class II permissive change to address the issue; (2) the host product manufacturer can file a Change in FCC ID (new application) and then file a Class II permissive change; or (3) the host product manufacturer can file for their own approval (new FCC ID) either as a modular transmitter or for the entire host product. The latter approach is further described in KDB Publication 996369 D02."

As established in another document, **Guidance for modular transmitter instruction manuals and TCB certification application reviews**, of the aforementioned KDB publication:

"If a modular transmitter is approved as a "limited module," then the module manufacturer is responsible for approving the host environment that the limited module is used with [...]. The manufacturer of a limited module must describe, both in the filing and in the installation instructions, the alternative means that the limited module manufacturer uses to verify that the host meets the necessary requirements to satisfy the module limiting conditions."

In the same document, the following is also stated:

"This limited module procedure is also applicable for RF exposure evaluation when it is necessary to demonstrate compliance in a specific host."

5.1.7. UWB Device

This device complies with the FCC rules **Part 15, Subpart F - Ultra-Wideband Operation**.

Please keep in mind:

Article 15.519. Technical requirements for hand held UWB systems states the following:

"UWB devices operating under the provisions of this section must be hand held, i.e., they are relatively small devices that are primarily hand held while being operated and do not employ a fixed infrastructure."

Article 15.521 Technical requirements applicable to all UWB devices states the following:

"UWB devices may not be employed for the operation of toys. Operation onboard an aircraft, a ship or a satellite is prohibited."

DRAFT

5.2. Canada (ISED) Regulatory Notices

5.2.1. Modification Statement

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Les changements ou modifications non expressément approuvés par la partie responsable de la conformité pourraient annuler l'autorisation de l'utilisateur d'utiliser l'équipement.

5.2.2. Interference Statement

This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s). Operation is subject to the following two conditions:

1. This device may not cause interference; and
2. This device must accept any interference, including interference that may cause undesired operation.

L'émetteur/récepteur exempt de licence contenu dans le présent appareil est conforme aux CNR d'Innovation, Sciences et Développement économique Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

1. L'appareil ne doit pas produire de brouillage;
2. L'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

5.2.3. RF Exposure

This device complies with the ISED RF exposure limits and has been evaluated in compliance with portable exposure condition.

There is no limitation as to which distance can be used from the human body.

Cet appareil est conforme aux limites d'exposition RF d'ISDE et a été évalué conformément aux conditions d'exposition portable.

Il n'y a aucune limitation quant à la distance qui peut être utilisée par rapport au corps humain.

5.2.4. Labelling Requirements for the Host Device

The host device shall be properly labelled to identify the modules within the host device. The certification label of the module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labelled to display the IC of the module, preceded by the words "Contains transmitter module", or the word "Contains", or similar wording expressing the same meaning, as follows:

Contains IC:22782-X4F103

L'équipement hôte doit être correctement étiqueté pour identifier les modules dans l'équipement. L'étiquette de certification du module doit être clairement visible en tout temps lorsqu'il est installé dans l'hôte, l'équipement hôte doit être étiqueté pour afficher l'IC du module, précédé des mots "Contient le module émetteur", ou le mot "Contient", ou un libellé similaire exprimant la même signification, comme suit:

Contient IC:22782-X4F103

5.2.5. CAN ICES-003(B)

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de Classe B est conforme à la norme NMB-003 du Canada.

6. Disclaimer

The information provided in this document represents Novelda's knowledge and beliefs as of the time of writing. Novelda AS reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time, and to discontinue any product or service without prior notice. Customers are encouraged to obtain the latest information before placing orders, and should verify that the information is up-to-date and complete. Information is supplied upon the condition that the persons receiving same will make their own determination as to its suitability for their purposes prior to use. In no event will Novelda be responsible for damages of any nature whatsoever resulting from the use of or reliance upon information.

All products are sold subject to Novelda's terms and conditions of sale supplied at the time of order acknowledgement. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose, that the products to which the information refers may be used without infringing the intellectual property rights of others, or of any other nature are made hereunder with respect to the information or the product to which the information refers. In no case shall the information be considered a part of our terms and conditions of sale.

DRAFT

Document History

Rev.	Release date	Change description
A	tbd-2023	First release.

DRAFT