

TEST REPORT

Product : Accent® 1000

Trade mark : Accent

: ACN1000-40 Model/Type reference

Serial Number : N/A

EED32O81494004 **Report Number**

FCC ID : 2AD9PA-A100040PRC

Date of Issue : Nov. 17, 2022

: 47 CFR Part 15 Subpart E **Test Standards**

Test result PASS

Prepared for:

Prentke Romich Company 1022 Heyl Rd. Wooster, Ohio 44691, United States of America

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

oproved k

Report Seal

rater. Li

Frazer Li

Reviewed by:

Date:

Tom Chen

Nov. 17, 2022

Aaron Ma

Check No.:9424220922

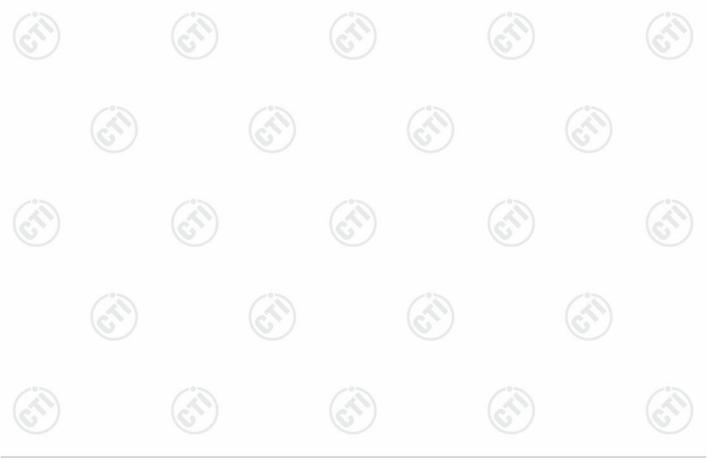
Page 2 of 57

2 Content

2 CONTENT	1 COVER PAGE		
4 TEST SUMMARY	2 CONTENT		
5.1 CLIENT INFORMATION	3 VERSION		····· (
5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT. 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 DEVIATION FROM STANDARDS 5.8 ABNORMALITIES FROM STANDARD CONDITIONS 5.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 5.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 6 EQUIPMENT LIST 7 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	4 TEST SUMMARY		
5.2 GENERAL DESCRIPTION OF EUT	5 GENERAL INFORMATION		
7 RADIO TECHNICAL REQUIREMENTS SPECIFICATION 7.1 ANTENNA REQUIREMENT 7.2 AC POWER LINE CONDUCTED EMISSIONS 7.3 MAXIMUM CONDUCTED OUTPUT POWER 7.4 6DB EMISSON BANDWIDTH 7.5 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH 7.6 MAXIMUM POWER SPECTRAL DENSITY 7.7 FREQUENCY STABILITY 7.8 RADIATED EMISSION 7.9 RADIATED EMISSION WHICH FALL IN THE RESTRICTED BANDS 8 APPENDIX A 5 PHOTOGRAPHS OF TEST SETUP 5	5.2 GENERAL DESCRIPTION OF EUT		
7.1 ANTENNA REQUIREMENT 1 7.2 AC POWER LINE CONDUCTED EMISSIONS 1 7.3 MAXIMUM CONDUCTED OUTPUT POWER 1 7.4 6DB EMISSON BANDWIDTH 1 7.5 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 7.6 MAXIMUM POWER SPECTRAL DENSITY 2 7.7 FREQUENCY STABILITY 2 7.8 RADIATED EMISSION 2 7.9 RADIATED EMISSION WHICH FALL IN THE RESTRICTED BANDS 3 8 APPENDIX A 5 PHOTOGRAPHS OF TEST SETUP 5	6 EQUIPMENT LIST		
7.2 AC POWER LINE CONDUCTED EMISSIONS 1 7.3 MAXIMUM CONDUCTED OUTPUT POWER 1 7.4 6DB EMISSON BANDWIDTH 1 7.5 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 7.6 MAXIMUM POWER SPECTRAL DENSITY 2 7.7 FREQUENCY STABILITY 2 7.8 RADIATED EMISSION 2 7.9 RADIATED EMISSION WHICH FALL IN THE RESTRICTED BANDS 3 8 APPENDIX A 5 PHOTOGRAPHS OF TEST SETUP 5	7 RADIO TECHNICAL REQUIREMENTS SPECIFICATIO	ON	 12
PHOTOGRAPHS OF TEST SETUP5	7.2 AC POWER LINE CONDUCTED EMISSIONS	NDWIDTH	
PHOTOGRAPHS OF TEST SETUP5	8 APPENDIX A		 5
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS5	PHOTOGRAPHS OF TEST SETUP		 5
	PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAIL	s	5

3 Version

Version No.	Date	Description		
00	Nov. 17, 2022	Original		
	(4)			


Report No. : EED32O81494004 Page 4 of 57

4 Test Summary

Test Item	Test Requirement	Result
restitem	rest Requirement	Resuit
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth	(0,)	PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
/ / 1/1	(23)	/ / % \

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

General Information

5.1 Client Information

Applicant:	Prentke Romich Company	15.
Address of Applicant:	1022 Heyl Rd. Wooster, Ohio 44691, United States of America	11
Manufacturer:	Prentke Romich Company	
Address of Manufacturer:	1022 Heyl Rd. Wooster, Ohio 44691, United States of America	
Factory :	Estone Technology LTD	
Address of Factory :	2F,Building No.1, Jia'an Industrial Park,No.2 Long Chang Road, Bao's Shenzhen 518101, China.	an,

5.2 General Description of EUT

Product Name:	Accent® 1000				
Model No.:	ACN1000-40				
Trade mark:	Accent	(1)			
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location				
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac(HT20/HT40/HT80): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM) IEEE 802.11ax(HE20/HE40/HE80): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)				
Operating Frequency	U-NII-1:5150-5250MHz U-NII-3:5745-5825MHz				
Antenna Type:	internal antenna	677			
Antenna Gain:	5G WiFi BAND1:				
	ANT1: -5.81dBi; ANT2: 1.96dBi 5G WiFi BAND4: ANT1: -1.08dBi; ANT2: 2.17dBi				
Power Supply:	Model: MANGO60S-18BB-PRC Adapter: Input: 100-240V~,50/60Hz,1.5A MAX Output: 18V,3.33A,60W MAX				
	Battery: Model: 3393A0 DC 7.6V,10600mAh,80.56Wh	(N			
Test voltage:	DC 7.6V				
Sample Received Date:	Sep. 23, 2022				
Sample tested Date:	Sep. 23, 2022 to Nov. 08, 2022				

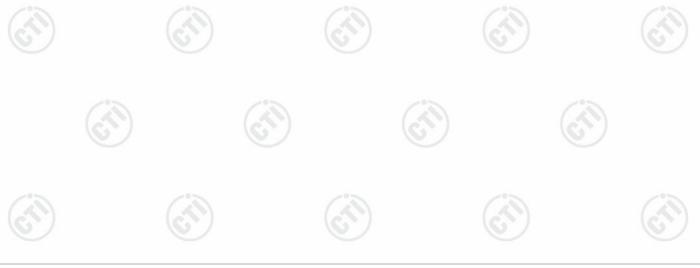
Page 6 of 57

Operation Frequency each of channel

802.11a/802.11n/802.11ac/802.11ax (20MHz) Frequency/Channel Operations:

	U-NII-1	U-NII-3		
Channel	Channel Frequency(MHz)		Frequency(MHz)	
36	36 5180		5745	
40	40 5200		5765	
44	44 5220		5785	
48 5240		161	5805	
		165	5825	

802.11n/802.11ac/802.11ax (40MHz) Frequency/Channel Operations:


-	· (: • · · · · · · =)		p	11.01	
100	U-NII-1		U-NII-3		
	Channel Frequency(MHz)		Channel	Frequency(MHz)	
	38 5190		151	5755	
	46	5230	159	5795	

802.11ac/802.11ax (80MHz) Frequency/Channel Operations:

	U-NII-1		U-NII-3
Channel Frequency(MHz)		Channel Frequency(MHz	
42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No. : EED32O81494004 Page 7 of 57

5.3 Test Configuration

	•				
EUT Test Software	e Settings:				
Software:	/°>	DRTU_install.exe	2 (2)	(3)	
EUT Power Grade:	(50)	Default		(25)	
Use test software to transmitting of the I		est frequency, the n	iddle frequency and the highe	st frequency keep	
Test Mode:					
			pical operation. All the test mo in this test report and defined		
Per-scan all kind	of data rate	in lowest channel,	and found the follow list whi	ich it	
was worst case.					
	Mode		Data	a rate	
	802.11a		6 M	1bps	
	802.11n(HT2	20)	MCS0		
N*)	802.11n(HT4	10)	MC	CS0	
8	02.11ac(VH	Γ20)	MC	CS0	
8	02.11ac(VH	Γ40)	MC	CS0	
802.11ac(VHT80)			MC	CS0	
802.11ax(HE20)			MCS0		
3	302.11ax(HE	40)	MCS0		
802.11ax(HE80)		MC	CS0		

5.4 Test Environment

Operating Environment:			
Radiated Spurious Emission	s:		
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
Conducted Emissions:			
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
RF Conducted:			
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
	NT (Normal Temperature)	22~25.0 °C	
Temperature:	LT (Low Temperature)	0 °C	341)
	HT (High Temperature)	40 °C	
	NV (Normal Voltage)	DC 7.60	
Working Voltage of the EUT:	LV (Low Voltage)	DC 6.84	393
	HV (High Voltage)	DC 8.36	(21)

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No.: EED32O81494004 Page 8 of 57

5.5 Description of Support Units

The EUT has been tested independently

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

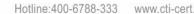
Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions


None.

5.9 Other Information Requested by the Customer

None.

Measurement Uncertainty (95% confidence levels, k=2) 5.10

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3		4.8dB (1GHz-18GHz)
(3)	$(C_{\mathcal{L}_{\mathcal{L}}})$	3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32O81494004 Page 9 of 57

6 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Communication test set	R&S	CMW500	107929	07-06-2022	07-05-2023
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023
Spectrum Analyzer	R&S	FSV40	101200	07-29-2022	07-28-2023
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI- 42	07-06-2022	07-05-2023
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	- (6	<u> </u>

Conducted disturbance Test									
Equipment	Manufacturer	Model No.	odel No. Serial Number		Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023				
Temperature/ Humidity Indicator	Defu	TH128	/						
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023				
Barometer	changchun	DYM3	1188						

	3M Semi-anechoic Chamber (2)- Radiated disturbance Test										
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date						
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025						
Receiver	R&S	ESCI7	100938-003	10/14/2021 09/28/2022	10/13/2022 09/27/2023						
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023						
Multi device Controller	maturo	NCD/070/10711112									
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024						
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024						

Page	11	J ~	f 57	7
raue	- 1 (JU	1 07	

Microwave Preamplifier Agil	ent 8449	9B 3008A02425	06/20/2022	06/19/2023
--------------------------------	----------	---------------	------------	------------

Page 11 of 57

1.631									
		3M full-anechoi	c Chamber						
Equipment			Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
RSE Automatic test software	JS Tonscend	JS36-RSE	10166						
Receiver Keysight		N9038A	MY57290136	03-01-2022	02-28-2023				
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023				
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023				
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024				
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024				
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024				
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023				
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023				
Preamplifier JS Tonscer		980380	EMC051845SE	12-24-2021	12-23-2022				
Communication test set R&S		CMW500	102898 12-24-2021		12-23-2022				
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023				
Fully Anechoic Chamber	TDK	FAC-3	(C)	01-09-2021	01-08-2024				
Cable line	Times	SFT205-NMSM-2.50M	394812-0001						
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		-				
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u></u>					
Cable line	Times	SFT205-NMSM-2.50M	393495-0001						
Cable line	Times	EMC104-NMNM-1000	SN160710	- (3					
Cable line	Times	SFT205-NMSM-3.00M	394813-0001						
Cable line	Times	SFT205-NMNM-1.50M	381964-0001						
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	(A)	100				
Cable line	Times	HF160-KMKM-3.00M	393493-0001						

Report No. : EED32O81494004 Page 12 of 57

7 Radio Technical Requirements Specification

7.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is internal antenna. The best case gain of the antenna is 5G WiFi BAND1:

ANT1: -5.81dBi; ANT2: 1.96dBi , 5G WiFi BAND4: ANT1: -1.08dBi; ANT2: 2.17dBi

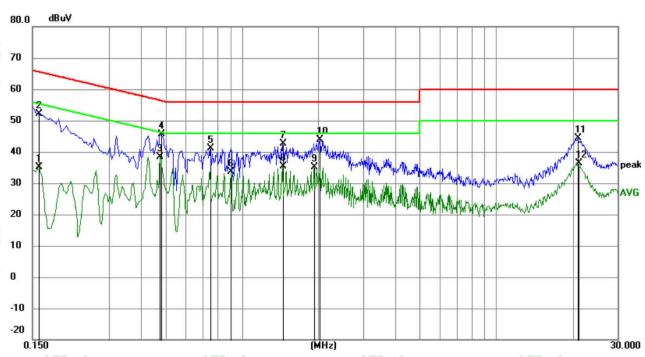
Report No. : EED32O81494004 Page 13 of 57

7.2 AC Power Line Conducted Emissions

Test Requirement	: 47 CFR Part 15C Section 15	47 CFR Part 15C Section 15.207								
Test Method:	ANSI C63.10: 2013									
Test Frequency R	ange: 150kHz to 30MHz									
Receiver setup:	RBW=9 kHz, VBW=30 kHz,	Sweep time=auto	(6,							
Limit:	[Limit ((dBuV)							
	Frequency range (MHz)	Quasi-peak	Average							
	0.15-0.5	66 to 56*	56 to 46*							
	0.5-5	56	46							
	5-30	60	50							
	* Decreases with the logarith	m of the frequency.								
Test Procedure:	Shielding Room EUT AC Mains LISN1 1) The mains terminal distu	Ground Reference Plane								
Test Procedure:	impedance. The power connected to a second L plane in the same way multiple socket outlet stri single LISN provided the 3) The tabletop EUT was p ground reference plane. placed on the horizontal placed on the horizontal of the EUT shall be 0.4 m vertical ground reference reference plane. The LIS unit under test and be mounted on top of the ground regrease.	d to AC power source Network) which provide cables of all other ISN 2, which was bond as the LISN 1 for the pwas used to connect rating of the LISN was laced upon a non-met And for floor-standing a ground reference plane with a vertical ground reference plane was bonded in a ground reference plane. It was placed 0.8 m and the EUT. It was at least 0.8 m from the weission, the relations and the sound reference plane.	e through a LISN 1 (Line es a 50Ω/50μH + 5Ω linear units of the EUT were ed to the ground reference e unit being measured. A multiple power cables to a not exceeded. allic table 0.8m above the arrangement, the EUT was eference plane. The rear of und reference plane. The to the horizontal ground a from the boundary of the eference plane for LISNs This distance was between All other units of the EUT om the LISN 2. Eive positions of equipment							

Page 14 of 57	
---------------	--

	ANSI C63.10: 2013 on conducted measurement.
Test Mode:	All modes were tested, only the worst case was recorded in the report.
Test Results:	Pass



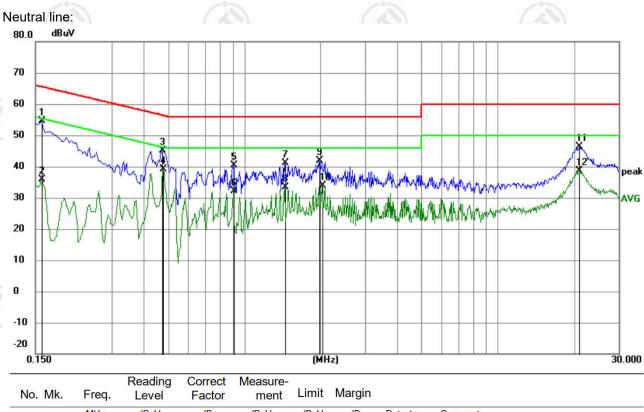
Measurement Data

Live line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1582	25.15	9.87	35.02	55.56	-20.54	AVG	
2	0.1590	42.16	9.87	52.03	65.52	-13.49	QP	
3 *	0.4761	28.42	9.95	38.37	46.41	-8.04	AVG	
4	0.4812	35.74	9.95	45.69	56.32	-10.63	QP	
5	0.7470	31.27	9.87	41.14	56.00	-14.86	QP	
6	0.9039	23.85	9.85	33.70	46.00	-12.30	AVG	-
7	1.4409	32.87	9.81	42.68	56.00	-13.32	QP	
8	1.4409	25.48	9.81	35.29	46.00	-10.71	AVG	
9	1.9182	25.32	9.79	35.11	46.00	-10.89	AVG	
10	2.0225	34.20	9.79	43.99	56.00	-12.01	QP	
11	20.9243	34.36	9.98	44.34	60.00	-15.66	QP	
12	21.0355	26.48	9.98	36.46	50.00	-13.54	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	44.64	9.87	54.51	65.52	-11.01	QP	
2		0.1590	25.96	9.87	35.83	55.52	-19.69	AVG	
3		0.4740	35.27	9.96	45.23	56.44	-11.21	QP	
4	*	0.4785	29.08	9.95	39.03	46.37	-7.34	AVG	
5		0.9060	30.63	9.85	40.48	56.00	-15.52	QP	_
6		0.9060	22.28	9.85	32.13	46.00	-13.87	AVG	
7		1.4415	31.36	9.81	41.17	56.00	-14.83	QP	
8		1.4415	23.66	9.81	33.47	46.00	-12.53	AVG	
9		1.9770	32.13	9.79	41.92	56.00	-14.08	QP	
10		2.0310	23.98	9.79	33.77	46.00	-12.23	AVG	
11		21.0300	36.35	9.98	46.33	60.00	-13.67	QP	
12		21.0300	28.70	9.98	38.68	50.00	-11.32	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C S	47 CFR Part 15C Section 15.407 (a)							
Test Method:	KDB789033 D02 G	General UNII Tes	t Procedures New Rule	s v02r01 Section					
Test Setup:	6		(6.)	(6.)					
	Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test - System Instrument						
Test Procedure:	General UNII Test 2. The RF output of attenuator. The parameasurement. 3. Set to the maxim continuously.	Procedures New f EUT was conne th loss was comp num power setting	nent Procedure of KDB76 Rules v02r01 Section E cted to the power meter rensated to the results for g and enable the EUT tr	, 3, a by RF cable and or each ansmit					
Limit:	0								
	Frequency band (MHz)	Limit							
	5150-5250	≤1W(30dBm) fo	or master device						
	(25)	· · · · · · · · · · · · · · · · · · ·	m) for client device						
	5250-5350	- 10	m) for client device or 1	1dBm+10logB*					
	5470-5725	≤250mW(24dB	m) for client device or 1	1dBm+10logB*					
	5725-5850	≤1W(30dBm)	-05	-07					
	Remark:	The maximum of measured over	e 26dB emission bandw conducted output power any interval of continuo ntation calibrated in term age.	must be us transmission					
Test Mode:	Transmitting mode	with modulation		1					
Test Results:	Refer to Appendix	5G WIFI							

7.4 6dB Emisson Bandwidth

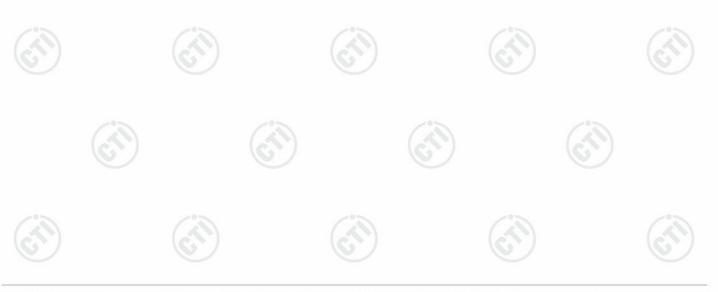
Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	Control Congular Power poof(s) Power poof (s) Power poof (s) Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WIFI

7.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Test Setup:	
	Control Control Control Control Control Power Power Pool Attenuator Instrument RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.
Limit:	No restriction limits
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WIFI

7.6 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C S	Section 15.407 (a))				
Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New Rules v	02r01 Section F			
Test Setup:	(6	(52)					
	Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test - System Instrument				
			10.0				
	Remark: Offset=Ca						
Test Procedure: Limit:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweep	RBW = 510 kHz/1 MS. s to continue unti	receiver span to view the MHz, VBW ≥ 3*RBW, Sv I the trace stabilizes. Idetermine the maximum a	weep time =			
-	Frequency band (MHz)	Limit					
	5150-5250	≤17dBm in 1Ml	dz for master device				
	(6)	≤11dBm in 1Mh	Hz for client device	(6)			
	5250-5350	≤11dBm in 1Ml	Hz for client device				
	5470-5725	≤11dBm in 1Ml	Hz for client device				
	5725-5850	≤30dBm in 500	kHz				
	Remark:						
Test Mode:	Transmitting mode with modulation						
		5G WIFI					



7.7 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407	(g)							
Test Method:	ANSI C63.10: 2013	(3)							
Test Setup:	(55)	(5,5)	(87)						
	Control Compodes Power Supply Power Fooer Temperature Cabnet Table	RF test System Instrument							
	Remark: Offset=Cable loss+ attenuation factor.								
Test Procedure:	1.The EUT was placed inside the by nominal AC/DC voltage. 2. Turn the EUT on and couple its 3. Turn the EUT off and set the chapecified. d. Allow sufficient time (of the chamber to stabilize. 4. Repeat step 2 and 3 with the tetemperature. 5. The test chamber was allowed of 30 minutes. The supply voltage 115% and the frequency record.	output to a spectrum namber to the highest approximately 30 min mperature chamber s to stabilize at +20 deg was then adjusted or	analyzer. temperature) for the temperature et to the lowest gree C for a minimum the EUT from 85% to						
Limit:	frequency over a temperature vinormal supply voltage, and for a	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.							
Test Mode:	Transmitting mode with modulation	n							
Test Results:	Refer to Appendix 5G WIFI		(6)						

Report No. : EED32O81494004 Page 22 of 57

7.8 Radiated Emission

Test Requirement:	47 CFR Part 15C Secti	ion 1	5.209 and 1	5.407 (b)			
Test Method:	ANSI C63.10 2013			-01			-57
Test Site:	Measurement Distance	e: 3m	n (Semi-Anec	choic Cha	nbe	r)	(41)
Receiver Setup:	Frequency	Detector	RBV	٧	VBW	Remark	
	0.009MHz-0.090MH	łz	Peak	10kH	Ηz	30kHz	Peak
	0.009MHz-0.090MH	lz	Average	10kH	Ηz	30kHz	Average
	0.090MHz-0.110MH	lz	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak
	0.110MHz-0.490MH	lz	Peak	10kH	Ηz	30kHz	Peak
	0.110MHz-0.490MH	łz	Average	10kH	Ηz	30kHz	Average
	0.490MHz -30MHz	<u>-</u>	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak
	Above 1GHz		Peak	1MH	łz	3MHz	Peak
	Above 1G112		Peak	1MF	lz	10kHz	Average
Limit:	Frequency		ld strength	Limit (dBuV/m)	F	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	24	.00/F(kHz)	-		- (0)	300
	0.490MHz-1.705MHz	240	000/F(kHz)	-		-	30
	1.705MHz-30MHz		30	-		-	30
	30MHz-88MHz	10	100	40.0	Qu	asi-peak	3
	88MHz-216MHz	7	150	43.5	Qu	asi-peak	3
	216MHz-960MHz		200	46.0	Qu	asi-peak	3
	960MHz-1GHz		500	54.0	Qu	asi-peak	3
	Above 1GHz		500	54.0	Α	verage	3
	*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters ope of the 5.15-5.35 GHz b (3) For transmitters or outside of the 5.47-5 dBm/MHz. (4) For transmitters ope (i) All emissions shall be above or below the base of the band edge, and from the band edge edge edge.	5.35 eratii eand ppera 7.725 eratii pe lin nd e and y to rom dBn li yying 0kHz	GHz band ng in the 5.25 shall not excepting in the 5.72 nited to a level of 15 5 MHz above n/MHz at the companies of the shown a CISPR z, 110-490kl	shall not 5-5.35 GH seed an e. 5.47-5.72 shall no 25-5.85 G rel of -27 sing linearlom 25 Ml se or belo band edg in the quasi-peadz and a	z bair.p. z bair	and: All em of -27 dE GHz band: aceed an oand: n/MHz at 7 10 dBm/M above or bat 5 MHz and band e we table detector ender	e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 5 MHz or more MHz at 25 MHz below the band above or below dge increasing are based on except for the MHz. Radiated

an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

(i) EIRP = ((E*d)^2) / 30

where:

• E is the field strength in V/m;

• d is the measurement distance in meters;

• EIRP is the equivalent isotropically radiated power in watts.

(ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$

(iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

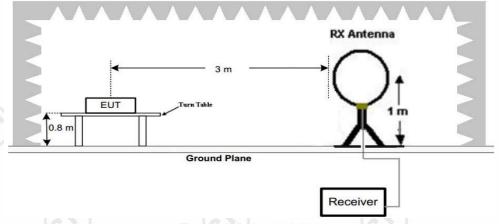
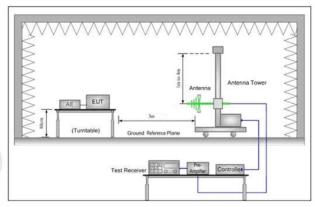



Figure 1. Below 30MHz

AE EUT

AE ATENNA TOWER

Ground Reference Plane

Test Receiver

Test Receiver

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

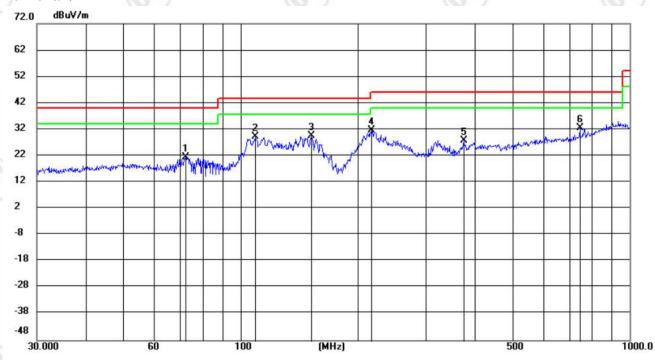
Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Report No. : EED32O81494004 Page 24 of 57

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the
and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case
 antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both
maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving
determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the sour of emissions at each frequency of significant emissions, with polarizat oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern the emission and staying aimed at the emission source for receiving maximum signal. The final measurement antenna elevation shall be to

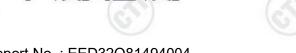


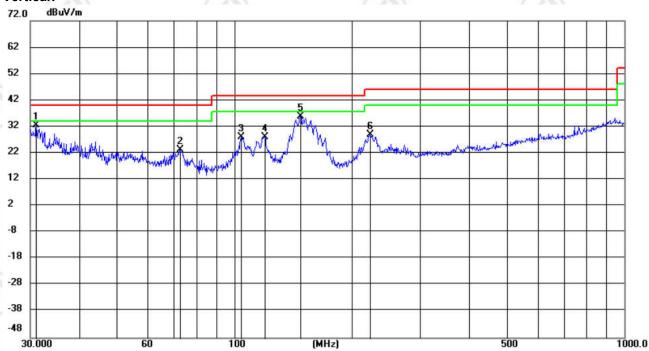
Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.

Horizontal:

1 72.3375 9.82 11.74 21.56 40.00 -18.44 QP 200 2 109.0286 15.60 13.53 29.13 43.50 -14.37 QP 200 3 152.1297 18.19 11.36 29.55 43.50 -13.95 QP 200 4 216.7828 17.98 13.54 31.52 46.00 -14.48 QP 200 5 374.6225 9.94 17.92 27.86 46.00 -18.14 QP 100	Readi Lev	-	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
2 109.0286 15.60 13.53 29.13 43.50 -14.37 QP 200 3 152.1297 18.19 11.36 29.55 43.50 -13.95 QP 200 4 216.7828 17.98 13.54 31.52 46.00 -14.48 QP 200 5 374.6225 9.94 17.92 27.86 46.00 -18.14 QP 100	dBu\	uV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
3 152.1297 18.19 11.36 29.55 43.50 -13.95 QP 200 4 216.7828 17.98 13.54 31.52 46.00 -14.48 QP 200 5 374.6225 9.94 17.92 27.86 46.00 -18.14 QP 100	9.82	82	11.74	21.56	40.00	-18.44	QP	200	350	
4 216.7828 17.98 13.54 31.52 46.00 -14.48 QP 200 5 374.6225 9.94 17.92 27.86 46.00 -18.14 QP 100	15.6	.60	13.53	29.13	43.50	-14.37	QP	200	356	
5 374.6225 9.94 17.92 27.86 46.00 -18.14 QP 100	18.1	.19	11.36	29.55	43.50	-13.95	QP	200	331	
	17.9	.98	13.54	31.52	46.00	-14.48	QP	200	321	
6 * 744 8660 8 51 24 10 32 61 46 00 -13 39 OP 100	9.94	94	17.92	27.86	46.00	-18.14	QP	100	159	
0 144.0000 0.01 24.10 02.01 40.00 10.00 Q1 100	8.5	51	24.10	32.61	46.00	-13.39	QP	100	89	





Page 26 of 57 Report No.: EED32O81494004

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	31.0706	19.92	12.72	32.64	40.00	-7.36	QP	100	356	
2		72.5916	11.55	11.71	23.26	40.00	-16.74	QP	100	356	
3		104.1701	14.60	13.60	28.20	43.50	-15.30	QP	100	261	
4		119.8556	15.45	12.67	28.12	43.50	-15.38	QP	100	291	
5		147.9214	24.39	11.38	35.77	43.50	-7.73	QP	100	10	
6		222.1698	15.07	13.76	28.83	46.00	-17.17	QP	100	281	

Report No.: EED32O81494004 Page 27 of 57

Transmitter Emission above 1GHz

Remark: During the test, the Radiates Emission above 1G was performed in all modes, only the worst case ant1 and ant2 transmit simultaneously was recorded in the report.

MIMO

		1 0 0		1		2 0			
Mode	Mode:		02.11 n(HT20)) Transmitting		Channe	el:	5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1405.9406	1.45	40.00	41.45	68.20	26.75	PASS	Horizontal	PK
2	2187.5688	4.07	39.03	43.10	68.20	25.10	PASS	Horizontal	PK
3	3768.9769	8.16	37.12	45.28	68.20	22.92	PASS	Horizontal	PK
4	7808.7654	-11.33	53.27	41.94	68.20	26.26	PASS	Horizontal	PK
5	10260.1130	-6.56	52.19	45.63	68.20	22.57	PASS	Horizontal	PK
6	13657.9579	-1.69	51.33	49.64	68.20	18.56	PASS	Horizontal	PK
7	1316.2816	1.20	40.19	41.39	68.20	26.81	PASS	Vertical	PK
8	1998.3498	4.61	38.03	42.64	68.20	25.56	PASS	Vertical	PK
9	3289.8790	7.35	37.99	45.34	68.20	22.86	PASS	Vertical	PK
10	8367.1184	-10.78	52.49	41.71	68.20	26.49	PASS	Vertical	PK
11	11778.7639	-6.11	53.71	47.60	68.20	20.60	PASS	Vertical	PK
12	13697.0599	-1.74	50.61	48.87	68.20	19.33	PASS	Vertical	PK

M	Mode:			02.11 n(HT20)) Transmitting		Channe	el:	5200MHz	
N	10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
4	1	1243.6744	0.96	39.70	40.66	68.20	27.54	PASS	Horizontal	PK
	2	2045.1045	4.81	38.96	43.77	68.20	24.43	PASS	Horizontal	PK
	3	3055.0055	6.69	39.24	45.93	68.20	22.27	PASS	Horizontal	PK
	4	8503.4002	-10.59	52.56	41.97	68.20	26.23	PASS	Horizontal	PK
	5	11278.4889	-6.39	53.22	46.83	68.20	21.37	PASS	Horizontal	PK
	6	14349.7175	0.10	50.25	50.35	68.20	17.85	PASS	Horizontal	PK
	7	1548.4048	2.00	39.56	41.56	68.20	26.64	PASS	Vertical	PK
	8	2689.7690	5.51	39.20	44.71	68.20	23.49	PASS	Vertical	PK
	9	3945.5446	9.15	37.50	46.65	68.20	21.55	PASS	Vertical	PK
1	10	9746.0373	-7.39	54.22	46.83	68.20	21.37	PASS	Vertical	PK
1	11	11292.2896	-6.50	53.47	46.97	68.20	21.23	PASS	Vertical	PK
1	12	13714.3107	-1.84	51.54	49.70	68.20	18.50	PASS	Vertical	PK

Page	20	Λf	57
	<i>–</i> ()	() I	.) /

/lode	:	8	802.11 n(HT20) Transmitting			Channe	el:	5240MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1404.2904	1.45	39.57	41.02	68.20	27.18	PASS	Horizontal	PK
2	2535.2035	5.17	38.78	43.95	68.20	24.25	PASS	Horizontal	PK
3	3417.4917	7.58	37.56	45.14	68.20	23.06	PASS	Horizontal	PK
4	8969.7485	-8.67	52.01	43.34	68.20	24.86	PASS	Horizontal	PK
5	11800.6150	-6.20	53.42	47.22	68.20	20.98	PASS	Horizontal	PK
6	13724.0862	-1.91	51.14	49.23	68.20	18.97	PASS	Horizontal	PK
7	1423.5424	1.47	39.64	41.11	68.20	27.09	PASS	Vertical	PK
8	2378.4378	4.30	38.88	43.18	68.20	25.02	PASS	Vertical	PK
9	3348.1848	7.48	37.53	45.01	68.20	23.19	PASS	Vertical	PK
10	8464.2982	-10.61	53.39	42.78	68.20	25.42	PASS	Vertical	PK
11	9974.8987	-6.97	53.32	46.35	68.20	21.85	PASS	Vertical	PK
12	13126.6313	-3.07	51.31	48.24	68.20	19.96	PASS	Vertical	PK
	1 2 3 4 5 6 7 8 9	MHz] 1 1404.2904 2 2535.2035 3 3417.4917 4 8969.7485 5 11800.6150 6 13724.0862 7 1423.5424 8 2378.4378 9 3348.1848 10 8464.2982 11 9974.8987	Freq. [MHz] 1 1404.2904 1.45 2 2535.2035 5.17 3 3417.4917 7.58 4 8969.7485 -8.67 5 11800.6150 -6.20 6 13724.0862 -1.91 7 1423.5424 1.47 8 2378.4378 4.30 9 3348.1848 7.48 10 8464.2982 -10.61 11 9974.8987 -6.97	Freq. [dB] Reading [dBμV] 1 1404.2904 1.45 39.57 2 2535.2035 5.17 38.78 3 3417.4917 7.58 37.56 4 8969.7485 -8.67 52.01 5 11800.6150 -6.20 53.42 6 13724.0862 -1.91 51.14 7 1423.5424 1.47 39.64 8 2378.4378 4.30 38.88 9 3348.1848 7.48 37.53 10 8464.2982 -10.61 53.39 11 9974.8987 -6.97 53.32	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] 1 1404.2904 1.45 39.57 41.02 2 2535.2035 5.17 38.78 43.95 3 3417.4917 7.58 37.56 45.14 4 8969.7485 -8.67 52.01 43.34 5 11800.6150 -6.20 53.42 47.22 6 13724.0862 -1.91 51.14 49.23 7 1423.5424 1.47 39.64 41.11 8 2378.4378 4.30 38.88 43.18 9 3348.1848 7.48 37.53 45.01 10 8464.2982 -10.61 53.39 42.78 11 9974.8987 -6.97 53.32 46.35	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] 1 1404.2904 1.45 39.57 41.02 68.20 2 2535.2035 5.17 38.78 43.95 68.20 3 3417.4917 7.58 37.56 45.14 68.20 4 8969.7485 -8.67 52.01 43.34 68.20 5 11800.6150 -6.20 53.42 47.22 68.20 6 13724.0862 -1.91 51.14 49.23 68.20 7 1423.5424 1.47 39.64 41.11 68.20 8 2378.4378 4.30 38.88 43.18 68.20 9 3348.1848 7.48 37.53 45.01 68.20 10 8464.2982 -10.61 53.39 42.78 68.20 11 9974.8987 -6.97 53.32 46.35 68.20	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] 1 1404.2904 1.45 39.57 41.02 68.20 27.18 2 2535.2035 5.17 38.78 43.95 68.20 24.25 3 3417.4917 7.58 37.56 45.14 68.20 23.06 4 8969.7485 -8.67 52.01 43.34 68.20 24.86 5 11800.6150 -6.20 53.42 47.22 68.20 20.98 6 13724.0862 -1.91 51.14 49.23 68.20 18.97 7 1423.5424 1.47 39.64 41.11 68.20 27.09 8 2378.4378 4.30 38.88 43.18 68.20 25.02 9 3348.1848 7.48 37.53 45.01 68.20 23.19 10 8464.2982 -10.61 53.39 42.78 68.20 25.42 11	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result 1 1404.2904 1.45 39.57 41.02 68.20 27.18 PASS 2 2535.2035 5.17 38.78 43.95 68.20 24.25 PASS 3 3417.4917 7.58 37.56 45.14 68.20 23.06 PASS 4 8969.7485 -8.67 52.01 43.34 68.20 24.86 PASS 5 11800.6150 -6.20 53.42 47.22 68.20 20.98 PASS 6 13724.0862 -1.91 51.14 49.23 68.20 18.97 PASS 7 1423.5424 1.47 39.64 41.11 68.20 27.09 PASS 8 2378.4378 4.30 38.88 43.18 68.20 25.02 PASS 9 3348.1848 7.48 37.53 45.01 68.20 25.42 PAS	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result Polarity 1 1404.2904 1.45 39.57 41.02 68.20 27.18 PASS Horizontal 2 2535.2035 5.17 38.78 43.95 68.20 24.25 PASS Horizontal 3 3417.4917 7.58 37.56 45.14 68.20 23.06 PASS Horizontal 4 8969.7485 -8.67 52.01 43.34 68.20 24.86 PASS Horizontal 5 11800.6150 -6.20 53.42 47.22 68.20 20.98 PASS Horizontal 6 13724.0862 -1.91 51.14 49.23 68.20 18.97 PASS Horizontal 7 1423.5424 1.47 39.64 41.11 68.20 27.09 PASS Vertical 8 2378.4378 4.30 38.88 43.18 68.20 25.02 </td

Mode	:	80)2.11 n(HT20)) Transmitting		Channe	el:	5745MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Mardin IdBI Resi		Polarity	Remark
1	1281.0781	1.53	41.07	42.60	68.20	25.60	PASS	Horizontal	PK
2	2165.5666	4.80	38.63	43.43	68.20	24.77	PASS	Horizontal	PK
3	3281.6282	8.23	37.97	46.20	68.20	22.00	PASS	Horizontal	PK
4	8445.1630	-10.63	52.85	42.22	68.20	25.98	25.98 PASS		PK
5	10265.3510	-6.52	52.70	46.18	68.20	22.02	PASS	Horizontal	PK
6	13901.1267	-0.84	49.84	49.00	68.20	19.20	PASS	Horizontal	PK
7	1305.2805	1.65	39.84	41.49	68.20	26.71	PASS	Vertical	PK
8	2810.7811	6.53	39.18	45.71	68.20	22.49	PASS	Vertical	PK
9	4110.5611	10.50	36.02	46.52	68.20	21.68	PASS	Vertical	PK
10	8396.8598	-10.67	53.56	42.89	68.20	25.31	PASS	Vertical	PK
11	9695.6797	-7.56	54.23	46.67	68.20	21.53	PASS	Vertical	PK
12	13710.9807	-1.82	51.54	49.72	68.20	18.48 PASS		Vertical	PK

D	\sim		r
Pane	29	ΟŤ	5/

п	7								-01	
	Mode	:	8	302.11 n(HT20)) Transmitting		Channe	el:	5785MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
e	1	1562.1562	2.40	39.26	41.66	68.20	26.54	PASS	Horizontal	PK
9	2	2557.7558	5.59	39.50	45.09	68.20	23.11	PASS	Horizontal	PK
	3	3816.8317	9.43	37.55	46.98	68.20	21.22	PASS	Horizontal	PK
	4	7585.6724	-10.64	53.56	42.92	68.20	25.28	PASS	Horizontal	PK
	5	11255.1837	-6.19	52.43	46.24	68.20	21.96	PASS	Horizontal	PK
	6	14368.0579	0.30	50.10	50.40	68.20	17.80	PASS	Horizontal	PK
	7	1424.0924	1.84	40.70	42.54	68.20	25.66	PASS	Vertical	PK
	8	1995.0495	5.06	39.59	44.65	68.20	23.55	PASS	Vertical	PK
	9	4150.1650	10.69	36.41	47.10	68.20	21.10	PASS	Vertical	PK
	10	9219.5480	-7.69	53.57	45.88	68.20	22.32	PASS	Vertical	PK
4	11	12405.2604	-4.02	52.36	48.34	68.20	19.86	PASS	Vertical	PK
9	12	2 14293.6862 -0.47 50.43		50.43	49.96	68.20	18.24	PASS	Vertical	PK

Mode	:	80)2.11 n(HT20)) Transmitting		Channe	el:	5825MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Margin IdRI Res		Result	Polarity	Remark
1	1420.7921	1.84	40.04	41.88	68.20	26.32	PASS	Horizontal	PK
2	2680.4180	6.04	38.93	44.97	68.20	23.23	PASS	Horizontal	PK
3	3903.7404	9.73	36.47	46.20	68.20	22.00	PASS	Horizontal	PK
4	7725.9817	-11.23	53.74	42.51	68.20	25.69	25.69 PASS		PK
5	11182.3455	-5.84	53.52	47.68	68.20	20.52	PASS	Horizontal	PK
6	15495.8997	0.42	49.89	50.31	68.20	17.89	PASS	Horizontal	PK
7	1629.2629	2.96	38.60	41.56	68.20	26.64	PASS	Vertical	PK
8	2420.7921	4.98	40.02	45.00	68.20	23.20	PASS	Vertical	PK
9	3805.2805	9.39	37.14	46.53	68.20	21.67	PASS	Vertical	PK
10	8382.2922	-10.72	53.87	43.15	68.20	25.05	PASS	Vertical	PK
11	11766.5844	-6.06	53.25	47.19	68.20	21.01	PASS	Vertical	PK
12	14415.5944	0.41	49.92	50.33	68.20	17.87	PASS	Vertical	PK

Page 30 of 57

	1200			[27]					-7	
М	lode	:		802.11 n(HT40)) Transmitting		Channe	el:	5190MHz	
N	10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
d	1	1430.6931	1.48	40.03	41.51	68.20	26.69	PASS	Horizontal	PK
3	2	2130.9131	4.70	39.08	43.78	68.20	24.42	PASS	Horizontal	PK
;	3	3085.8086	6.78	39.01	45.79	68.20	22.41	PASS	Horizontal	PK
-	4	8780.5640	-9.29	52.52	43.23	68.20	24.97	PASS	Horizontal	PK
	5	10457.3479	-6.40	52.77	46.37	68.20	21.83	PASS	Horizontal	PK
	6	13691.3096	-1.73	51.55	49.82	68.20	18.38	PASS	Horizontal	PK
	7	1403.7404	1.45	40.50	41.95	68.20	26.25	PASS	Vertical	PK
	8	2179.8680	4.16	40.43	44.59	68.20	23.61	PASS	Vertical	PK
	9	4187.0187	10.05	36.25	46.30	68.20	21.90	PASS	Vertical	PK
1	10	6938.1719	-11.87	54.76	42.89	68.20	25.31	PASS	Vertical	PK
1	11	9967.4234	-6.97	55.11	48.14	68.20	20.06	PASS	Vertical	PK
1	12	14365.8183	0.27	50.19	50.46	68.20	17.74	PASS	Vertical	PK

Page	21	∽f	57
Faue	וכי	OI	:)/

			7	7 383						
Node	•	3	302.11 n(HT40)) Transmitting		Channe	el:	5230MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1402.0902	1.44	39.99	41.43	68.20	26.77	PASS	Horizontal	PK	
2	2534.6535	5.17	38.91	44.08	68.20	24.12	PASS	Horizontal	PK	
3	3433.9934	7.59	38.31	45.90	68.20	22.30	PASS	Horizontal	PK	
4	8845.5423	-9.18	52.46	6 43.28 68.20		24.92	PASS	Horizontal	PK	
5	10919.0960	-6.31	52.18	45.87	68.20	22.33	PASS	Horizontal	PK	
6	14360.6430	0.21	49.89	50.10	68.20	18.10	PASS	Horizontal	PK	
7	1368.5369	1.35	40.52	41.87	68.20	26.33	PASS	Vertical	PK	
8	2711.7712	5.59	39.06	44.65	68.20	23.55	PASS	Vertical	PK	
9	3949.9450	9.17	37.70	46.87	68.20	21.33	PASS	Vertical	PK	
10	9187.1094	-7.84	52.72	44.88	68.20	23.32	PASS	Vertical	PK	
11	11203.7352	-5.75	52.88	47.13	68.20	21.07	PASS	Vertical	PK	
12	14351.4426	0.12	49.66	49.78	68.20	18.42	PASS	Vertical	PK	
	1 2 3 4 5 6 7 8 9 10 111	[MHz] 1 1402.0902 2 2534.6535 3 3433.9934 4 8845.5423 5 10919.0960 6 14360.6430 7 1368.5369 8 2711.7712 9 3949.9450 10 9187.1094 11 11203.7352	Freq. [MHz] 1 1402.0902 1.44 2 2534.6535 5.17 3 3433.9934 7.59 4 8845.5423 -9.18 5 10919.0960 -6.31 6 14360.6430 0.21 7 1368.5369 1.35 8 2711.7712 5.59 9 3949.9450 9.17 10 9187.1094 -7.84 11 11203.7352 -5.75	NO Freq. [MHz] Factor [dB] Reading [dBμV] 1 1402.0902 1.44 39.99 2 2534.6535 5.17 38.91 3 3433.9934 7.59 38.31 4 8845.5423 -9.18 52.46 5 10919.0960 -6.31 52.18 6 14360.6430 0.21 49.89 7 1368.5369 1.35 40.52 8 2711.7712 5.59 39.06 9 3949.9450 9.17 37.70 10 9187.1094 -7.84 52.72 11 11203.7352 -5.75 52.88	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] 1 1402.0902 1.44 39.99 41.43 2 2534.6535 5.17 38.91 44.08 3 3433.9934 7.59 38.31 45.90 4 8845.5423 -9.18 52.46 43.28 5 10919.0960 -6.31 52.18 45.87 6 14360.6430 0.21 49.89 50.10 7 1368.5369 1.35 40.52 41.87 8 2711.7712 5.59 39.06 44.65 9 3949.9450 9.17 37.70 46.87 10 9187.1094 -7.84 52.72 44.88 11 11203.7352 -5.75 52.88 47.13	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] 1 1402.0902 1.44 39.99 41.43 68.20 2 2534.6535 5.17 38.91 44.08 68.20 3 3433.9934 7.59 38.31 45.90 68.20 4 8845.5423 -9.18 52.46 43.28 68.20 5 10919.0960 -6.31 52.18 45.87 68.20 6 14360.6430 0.21 49.89 50.10 68.20 7 1368.5369 1.35 40.52 41.87 68.20 8 2711.7712 5.59 39.06 44.65 68.20 9 3949.9450 9.17 37.70 46.87 68.20 10 9187.1094 -7.84 52.72 44.88 68.20 11 11203.7352 -5.75 52.88 47.13 68.20	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] 1 1402.0902 1.44 39.99 41.43 68.20 26.77 2 2534.6535 5.17 38.91 44.08 68.20 24.12 3 3433.9934 7.59 38.31 45.90 68.20 22.30 4 8845.5423 -9.18 52.46 43.28 68.20 24.92 5 10919.0960 -6.31 52.18 45.87 68.20 22.33 6 14360.6430 0.21 49.89 50.10 68.20 18.10 7 1368.5369 1.35 40.52 41.87 68.20 26.33 8 2711.7712 5.59 39.06 44.65 68.20 23.55 9 3949.9450 9.17 37.70 46.87 68.20 21.33 10 9187.1094 -7.84 52.72 44.88 68.20 23.32 11 </td <td>NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result 1 1402.0902 1.44 39.99 41.43 68.20 26.77 PASS 2 2534.6535 5.17 38.91 44.08 68.20 24.12 PASS 3 3433.9934 7.59 38.31 45.90 68.20 22.30 PASS 4 8845.5423 -9.18 52.46 43.28 68.20 24.92 PASS 5 10919.0960 -6.31 52.18 45.87 68.20 22.33 PASS 6 14360.6430 0.21 49.89 50.10 68.20 18.10 PASS 7 1368.5369 1.35 40.52 41.87 68.20 26.33 PASS 8 2711.7712 5.59 39.06 44.65 68.20 21.33 PASS 9 3949.9450 9.17 37.70 46.87 68.20 21.33 PASS</td> <td> Freq. [dB] Reading [dBμV/m] Limit [dBμV/m] Margin [dB] Result Polarity </td>	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result 1 1402.0902 1.44 39.99 41.43 68.20 26.77 PASS 2 2534.6535 5.17 38.91 44.08 68.20 24.12 PASS 3 3433.9934 7.59 38.31 45.90 68.20 22.30 PASS 4 8845.5423 -9.18 52.46 43.28 68.20 24.92 PASS 5 10919.0960 -6.31 52.18 45.87 68.20 22.33 PASS 6 14360.6430 0.21 49.89 50.10 68.20 18.10 PASS 7 1368.5369 1.35 40.52 41.87 68.20 26.33 PASS 8 2711.7712 5.59 39.06 44.65 68.20 21.33 PASS 9 3949.9450 9.17 37.70 46.87 68.20 21.33 PASS	Freq. [dB] Reading [dBμV/m] Limit [dBμV/m] Margin [dB] Result Polarity	

Mode	:		802.11 n(HT40)) Transmitting		Channe	el:	5755MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1370.7371	1.77	39.88	41.65	68.20	26.55	PASS	Horizontal	PK
2	2073.1573	5.48	38.99	44.47	68.20	23.73	PASS	Horizontal	PK
3	3807.4807	9.39	37.18	46.57	68.20	21.63	PASS	Horizontal	PK
4	9160.5107	-8.09	52.84	44.75	68.20	23.45	PASS	Horizontal	PK
5	11170.8447	-5.92	51.76	45.84	68.20	22.36	PASS	Horizontal	PK
6	14332.7889	-0.09	50.08	49.99	68.20	18.21	PASS	Horizontal	PK
7	1546.2046	2.28	39.55	41.83	68.20	26.37	PASS	Vertical	PK
8	2332.2332	4.69	39.39	44.08	68.20	24.12	PASS	Vertical	PK
9	3342.6843	8.25	37.87	46.12	68.20	22.08	PASS	Vertical	PK
10	8418.3279	-10.65	53.77	43.12	68.20	25.08	PASS	Vertical	PK
11	11183.8789	9 -5.83 52.79 46.96		68.20	21.24	PASS	Vertical	PK	
12	13729.3820	-1.94	51.09	49.15	68.20	19.05	PASS	Vertical	PK

Report No.: EED32O81494004 Page 32 of 57

						(4.)			
Мо	de:	8	802.11 n(HT40)) Transmitting		Channe	el:	5795MHz	
NC	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1469.1969	1.89	39.87	41.76	68.20	26.44	PASS	Horizontal	PK
2	2124.3124	5.32	38.65	43.97	68.20	24.23	PASS	Horizontal	PK
3	3227.7228	7.96	38.37	46.33	68.20	21.87	PASS	Horizontal	PK
4	9201.1467	-7.72	52.39	44.67	68.20	23.53	PASS	Horizontal	PK
5	11937.5625	-5.21	53.69	48.48	68.20	19.72	PASS	Horizontal	PK
6	14317.4545	-0.25	50.84	50.59	68.20	17.61	PASS	Horizontal	PK
7	1929.0429	4.82	37.50	42.32	68.20	25.88	PASS	Vertical	PK
8	2707.9208	6.15	39.92	46.07	68.20	22.13	PASS	Vertical	PK
9	3806.9307	9.39	37.47	46.86	68.20	21.34	PASS	Vertical	PK
10	9219.5480	-7.69	53.37	45.68	68.20	22.52	PASS	Vertical	PK
11	12447.4298	-4.13	53.03	48.90	68.20	19.30	PASS	Vertical	PK
12	16543.2362	0.81	52.33	53.14	68.20	15.06	PASS	Vertical	PK

Mode	:	80	2.11 ac(VHT	80) Transmitti	ng	Channe	el:	5210MHz	
NO	Freq. [MHz]	Factor [dB]			Margin [dB] Result		Polarity	Remark	
1	1281.6282	1.09	40.59	41.68	68.20	26.52	PASS	Horizontal	PK
2	2215.6216	3.95	39.92	43.87	68.20	24.33	PASS	Horizontal	PK
3	3056.6557	6.70	39.21	45.91	68.20	22.29	PASS	Horizontal	PK
4	8985.2743	-8.53	52.36	43.83	68.20	24.37	PASS	Horizontal	PK
5	12456.7228	-4.16	52.62	48.46	68.20	19.74	PASS	Horizontal	PK
6	16282.9641	0.91	51.05	51.96	68.20	16.24	PASS	Horizontal	PK
7	1374.5875	1.37	39.86	41.23	68.20	26.97	PASS	Vertical	PK
8	2099.5600	5.05	38.91	43.96	68.20	24.24	PASS	Vertical	PK
9	3162.2662	6.91	38.69	45.60	68.20	22.60	PASS	Vertical	PK
10	9200.9100	-7.72	52.90	45.18	68.20	23.02	PASS	Vertical	PK
11	9987.5494	-6.96	54.66	47.70	68.20	20.50	PASS	Vertical	PK
12	14388.8194	0.52	50.44	50.96	68.20	17.24 PASS		Vertical	PK

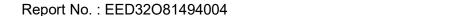
Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



Report No. : EED32O81494004 Page 33 of 57

7.9 Radiated Emission which fall in the restricted bands

Test Requirement:	47 CFR Part 15C Sect	ion 1	5.209 and 1	5.407 (b)				
Test Method:	ANSI C63.10 2013	10		12				
Test Site:	Measurement Distance	e: 3m	n (Semi-Aned	choic Char	nbe	r)	(67)	
Receiver Setup:	Frequency	-	Detector	RBV	٧	VBW	Remark	
	0.009MHz-0.090MH	Ιz	Peak	10kF	Ιz	30kHz	Peak	
	0.009MHz-0.090MH	Ηz	Average	10kH	Ιz	30kHz	Average	
	0.090MHz-0.110MH	Ηz	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak	
	0.110MHz-0.490MH	Ηz	Peak	10kH	Ηz	30kHz	Peak	
	0.110MHz-0.490MH	Ηz	Average	10kF	Ιz	30kHz	Average	
	0.490MHz -30MHz	<u>z</u>	Quasi-pea	k 10kH	Ιz	30kHz	Quasi-peak	
	30MHz-1GHz		Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak	
	Above 1GHz		Peak	1MH	lz	3MHz	Peak	
	Above TOTIZ		Peak	1MH	lz	10kHz	Average	
Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	F	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	24	00/F(kHz)	-		-	300	
	0.490MHz-1.705MHz	24000/F(kHz)		-		-	30	
	1.705MHz-30MHz		30	- /0	-		30	
	30MHz-88MHz	100		40.0	Qu	asi-peak	3	
	88MHz-216MHz		150	43.5	Qu	asi-peak	3	
	216MHz-960MHz		200	46.0	Qu	asi-peak	3	
	960MHz-1GHz		500	54.0	Qu	asi-peak	3	
	Above 1GHz		500	54.0	Α	verage	3	
	*(1) For transmitters operating in the 5.15-5.25 GHz band: All eduction of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emission of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MH (3) For transmitters operating in the 5.47-5.725 GHz band: All eduction of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz above or below the band edge increasing linearly to 10 dBm/MHz at above or below the band edge, and from 25 MHz above or below edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above the band edge, and from 5 MHz above or below the band edge in linearly to a level of 27 dBm/MHz at the band edge. Remark: The emission limits shown in the above table are below the band edge.							
	measurements emplo frequency bands 9-9							

emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

(i) EIRP = ((E*d)^2) / 30 where:

• E is the field strength in V/m;

· d is the measurement distance in meters;

• EIRP is the equivalent isotropically radiated power in watts.

(ii) Working in dB units, the above equation is equivalent to: EIRP[dBm] = $E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$

(iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

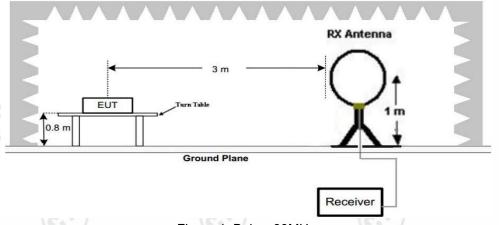
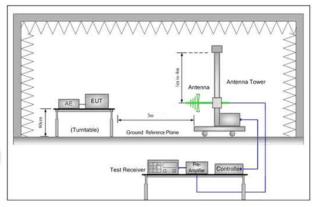



Figure 1. Below 30MHz

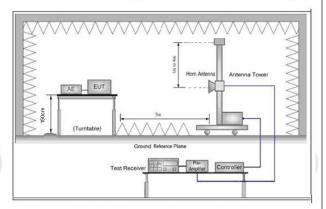


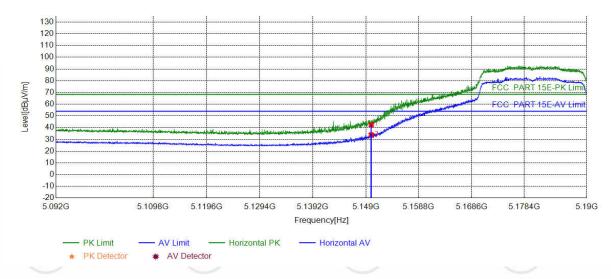
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- j. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

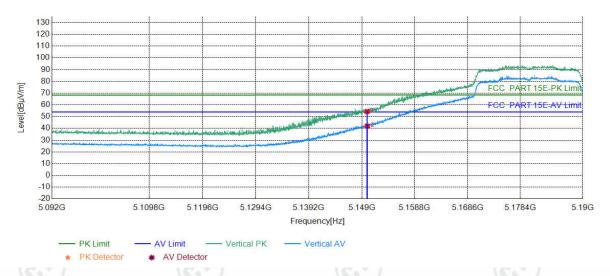
Report No.: EED32O81494004 Page 35 of 57



Test Data:

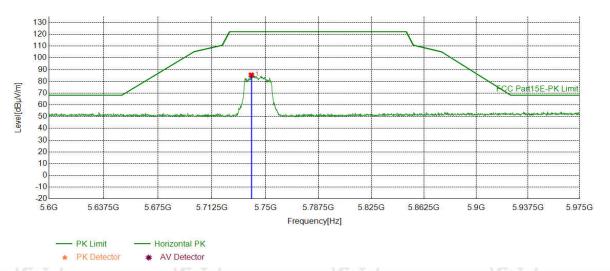
Mode:	802.11 n(HT20) Transmitting	Channel:	5180
Remark:	MIMO		

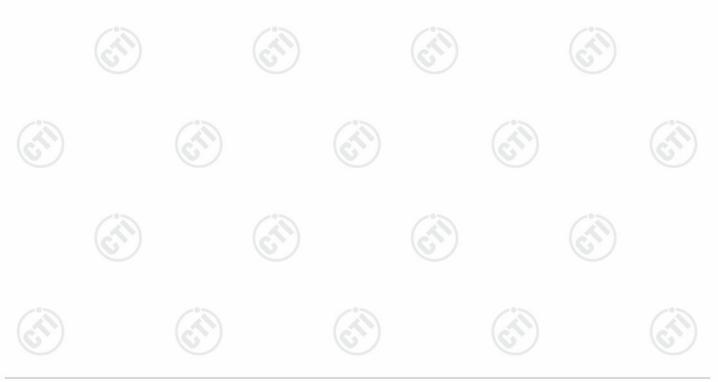
Test Graph


	Suspected List									
100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150.0000	-15.08	57.49	42.41	68.44	26.03	PASS	Horizontal	PK
	2	5150.0000	-15.08	48.94	33.86	54.00	20.14	PASS	Horizontal	AV

Dogo	27	~f	
Page	IJΙ	OΙ	\mathbf{o}_{I}

Mode:	802.11 n(HT20) Transmitting	Channel:	5180
Remark:	MIMO	-0-	


	Susp	ected List								
7.0	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Š	1	5150.0000	-15.08	69.52	54.44	68.44	14.00	PASS	Vertical	PK
	2	5150.0000	-15.08	57.02	41.94	54.00	12.06	PASS	Vertical	AV



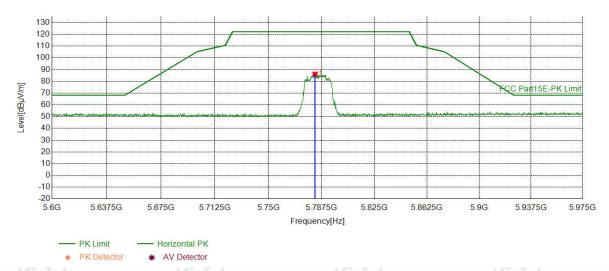
	\sim	•	
שממם	-72	\sim t	h /
Page	.)()	OI.	.)/

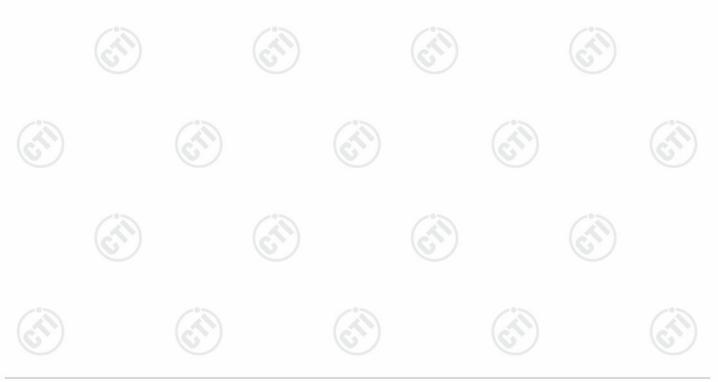
Mode:	802.11 n(HT20) Transmitting	Channel:	5745
Remark:	МІМО	-0-	


Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5740.1326	13.84	71.56	85.40	122.20	36.80	PASS	Horizontal	PK

Page 39 of 57

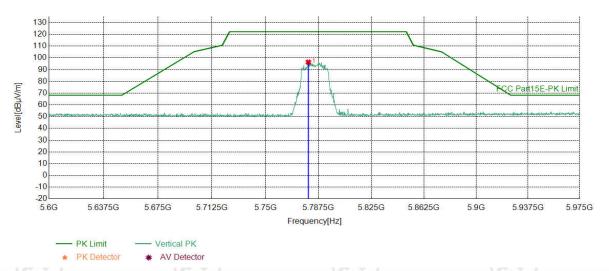
Mode:	802.11 n(HT20) Transmitting	Channel:	5745
Remark:	MIMO	-0-	


Sus	pected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5745.7604	13.85	81.19	95.04	122.20	27.16	PASS	Vertical	PK



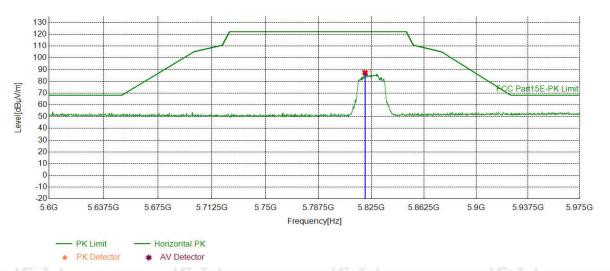
Page 40 of 57

Mode:	802.11 n(HT20) Transmitting	Channel:	5785
Remark:	MIMO	-0-	


	Suspe	ected List								
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5782.9040	13.91	72.24	86.15	122.20	36.05	PASS	Horizontal	PK

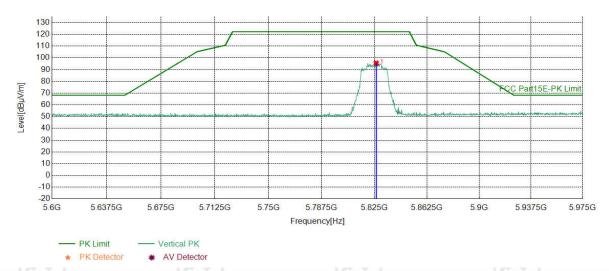
Dogg	. 11	۰ŧ	5 7
Page	; 41	OI -	٦ <i>١</i>

Mode:	802.11 n(HT20) Transmitting	Channel:	5785
Remark:	MIMO	-0-	


	Suspe	ected List								
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5780.2776	13.91	82.44	96.35	122.20	25.85	PASS	Vertical	PK

D	40		r
Page	42	α	n /

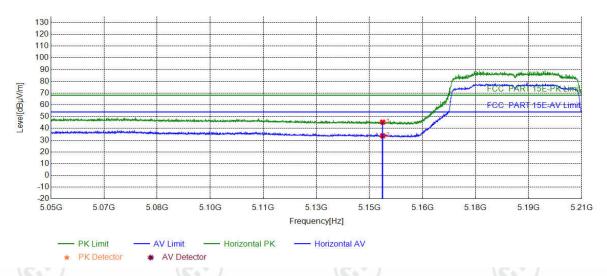
Mode:	802.11 n(HT20) Transmitting	Channel:	5825
Remark:	MIMO	-0-	

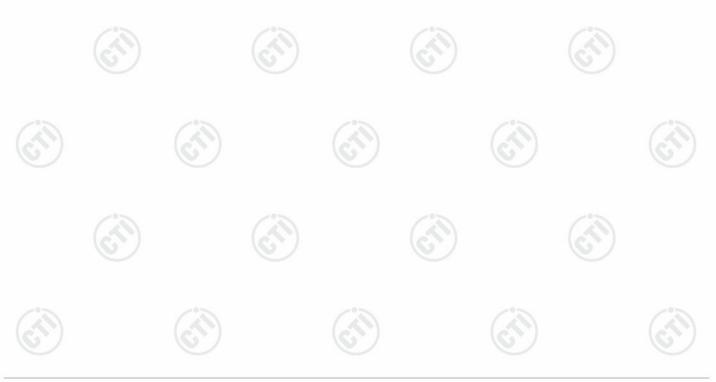

Sus	pected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5820.4227	14.02	73.42	87.44	122.20	34.76	PASS	Horizontal	PK

Page 43 of 57

Mode:	802.11 n(HT20) Transmitting	Channel:	5825
Remark:	МІМО	-0-	

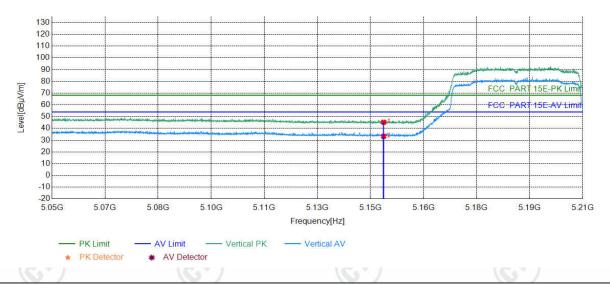
	Susp	ected List								
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5826.2381	14.04	81.47	95.51	122.20	26.69	PASS	Vertical	PK





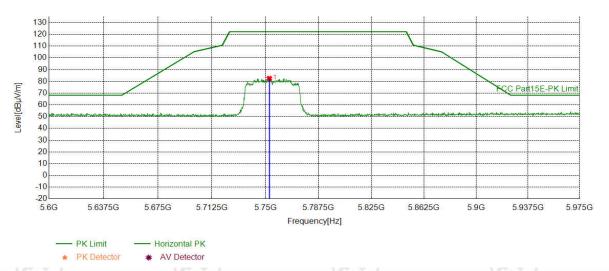
Page 44 of 57

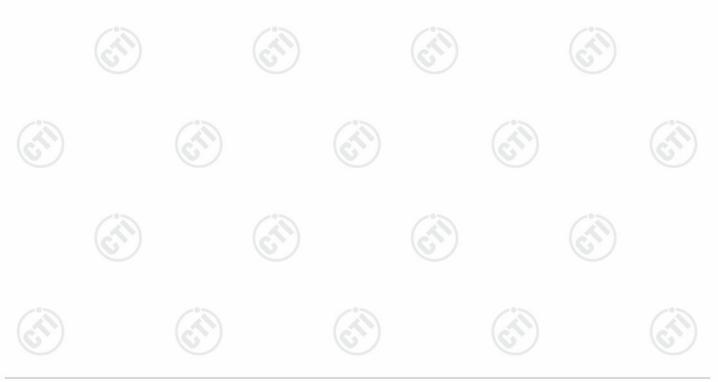
Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:	MIMO		


	Suspected List									
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	12.36	32.96	45.32	68.20	22.88	PASS	Horizontal	PK
	2	5150.0000	12.36	21.37	33.73	54.00	20.27	PASS	Horizontal	AV

Dage	1 E	۰ŧ	F 7
Page	40	OI	OΙ

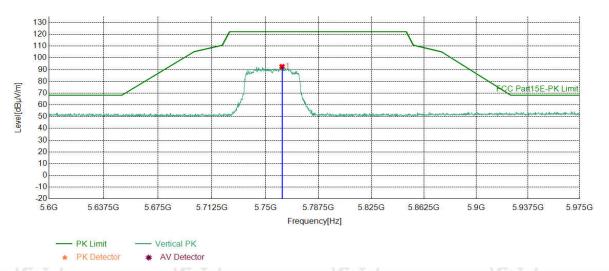
Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:	MIMO	-0-	

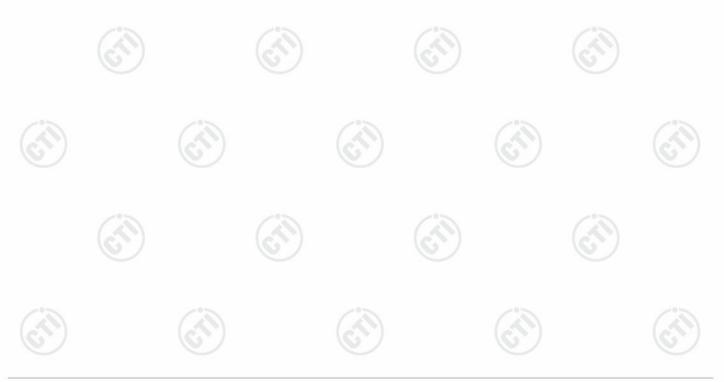

	Susp	ected List								
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	12.36	32.89	45.25	68.20	22.95	PASS	Vertical	PK
	2	5150.0000	12.36	20.89	33.25	54.00	20.75	PASS	Vertical	AV



Page 46 of 57

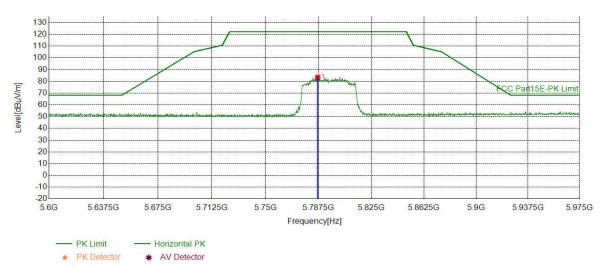
Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:	MIMO	-0-	

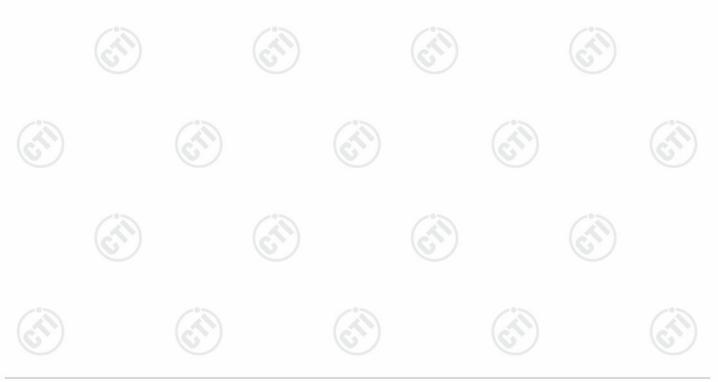

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5752.7014	13.86	68.63	82.49	122.20	39.71	PASS	Horizontal	PK



D	47		Γ
Page	;4/	OI	ગ /

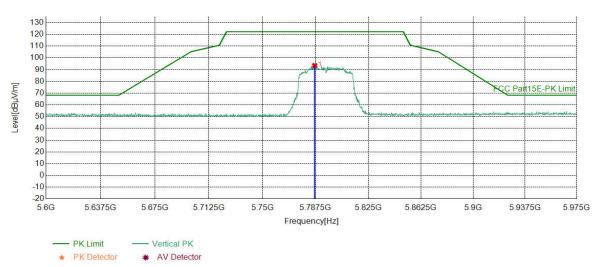
Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:	MIMO	-0-	


Susp	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5761.7059	13.87	78.67	92.54	122.20	29.66	PASS	Vertical	PK



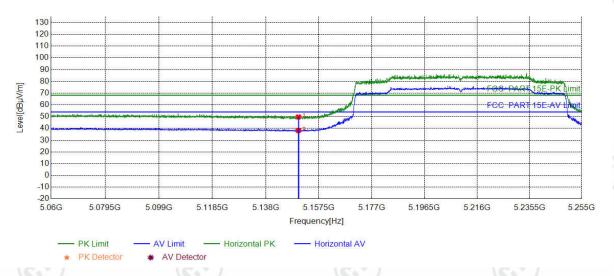
Page	40		r
Pane	4 ×	OI	ວ/

Mode:	802.11 n(HT40) Transmitting	Channel:	5795
Remark:	MIMO	-0-	


	Suspe	ected List								
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
P	1	5786.8434	13.92	69.55	83.47	122.20	38.73	PASS	Horizontal	PK

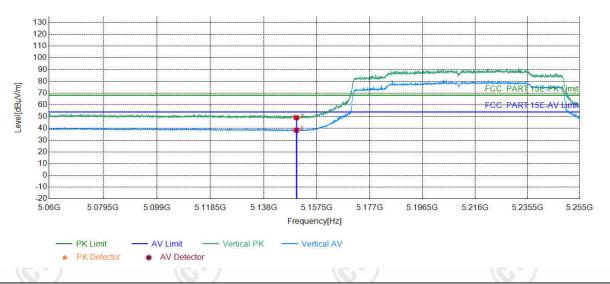
_			
Pag	e 49	∂ ot	57

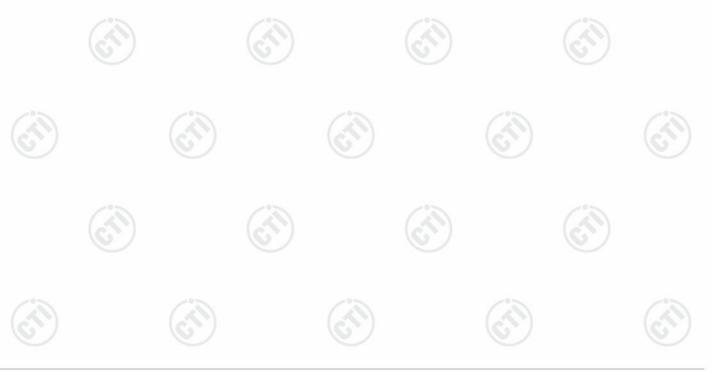
Mode:	802.11 n(HT40) Transmitting	Channel:	5795
Remark:	MIMO	-0-	


Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5786.8434	13.92	79.55	93.47	122.20	28.73	PASS	Vertical	PK

_		-	
Page	: 50	Ωt	57

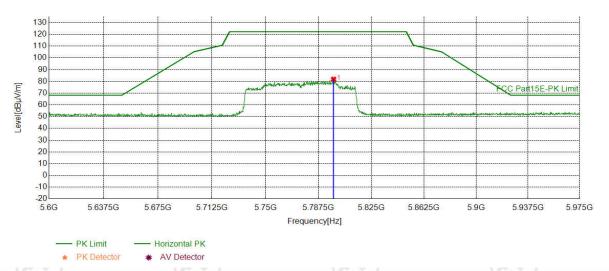
Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210
Remark:	MIMO		

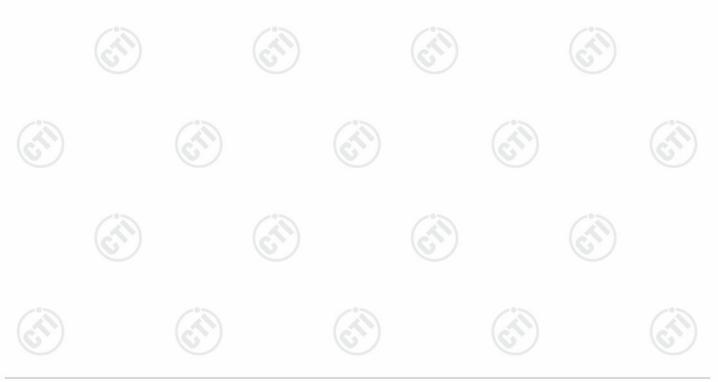

	Suspe	cted List								
0.7	ОО	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	12.36	37.36	49.72	68.20	18.48	PASS	Horizontal	PK
	2	5150.0000	12.36	25.83	38.19	54.00	15.81	PASS	Horizontal	AV



Dogg	. = 1	of E7	
Page	; O I	of 57	

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210
Remark:	MIMO	-0-	


	Suspe	cted List								
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	12.36	36.77	49.13	68.20	19.07	PASS	Vertical	PK
	2	5150.0000	12.36	26.14	38.50	54.00	15.50	PASS	Vertical	AV



_		_	
Page	52	∩f	57
1 auc	-	OI.	U I

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5775
Remark:	MIMO	-0-	

Susp	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5798.0991	13.94	67.90	81.84	122.20	40.36	PASS	Horizontal	PK

Page 53 of 57

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5775
Remark:	МІМО	_0_	

Test Graph

	Suspe	cted List								
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5798.8494	13.94	76.36	90.30	122.20	31.90	PASS	Vertical	PK
	11		100 J				7.700	- //		

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

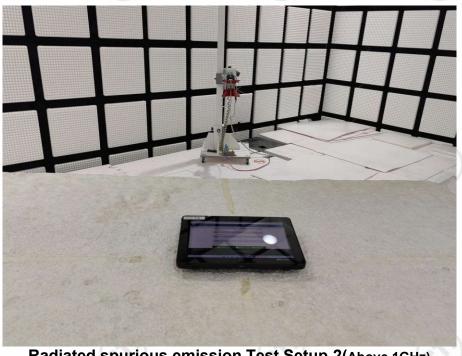
Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Refer to Appendix: 5G WIFI of EED32O81494004

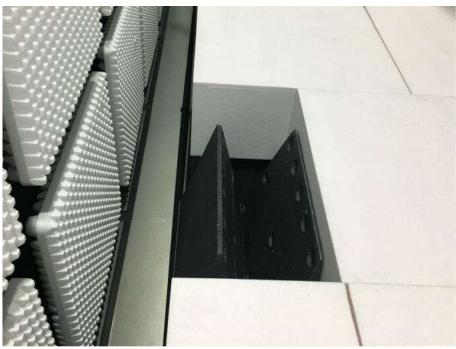


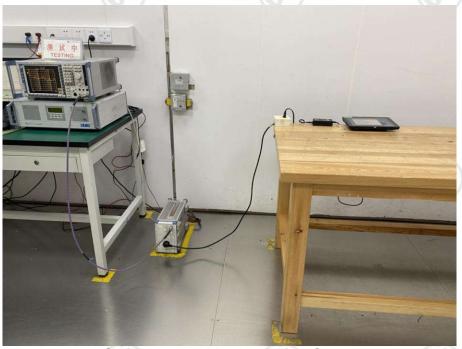


PHOTOGRAPHS OF TEST SETUP

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

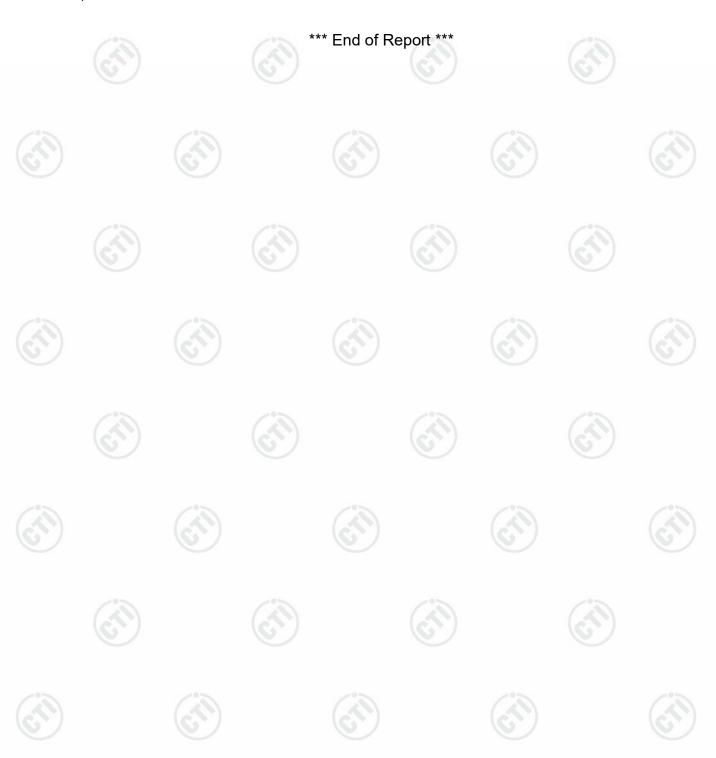




Report No.: EED32O81494004 Page 56 of 57

Radiated spurious emission Test Setup-3(Above 1GHz) There are absorbing materials under the ground.

Conducted Emissions Test Setup



PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32O81494001 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

