

FCC Test Report

Report No.: RF150814C22-1

FCC ID: 2AD9M-001A

Test Model: LEM-TYPER

Received Date: Aug. 14, 2015

Test Date: Nov. 28, 2016 ~ Dec. 11, 2016

Issued Date: Jan. 26, 2017

Applicant: LEOMO, Inc

Address: 1-10-8 Nishiazabu Minato-ku, Tokyo Japan 106-0031

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C)

Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, Taiwan, R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report No.: RF150814C22-1 Page No. 1 / 44 Report Format Version: 6.1.1

Table of Contents

Re	Release Control Record						
1	Cer	tificate of Conformity	. 5				
2	Sun	nmary of Test Results	. 6				
		Measurement Uncertainty					
		Modification Record					
3		neral Information					
	3.2						
	2.2						
	3.3						
	34						
4							
•							
	4.1						
		4.1.5 Test Set Up					
		4.1.6 EUT Operating Conditions					
	4.2						
	4.3						
		4.3.1 Limits of Hopping Frequency Used Measurement					
		·					
	11						
	7.7						
		4.4.3 Test Instruments					
		4.4.4 Test Procedures					
	4.5						
3.1 General Description of EUT. 3.2 Description of Test Modes. 3.2.1 Test Mode Applicability and Tested Channel Detail. 3.3 Description of Support Units 3.3.1 Configuration of System under Test. 3.4 General Description of Applied Standards. 4 Test Types and Results. 4.1 Radiated Emission and Bandedge Measurement. 4.1.1 Limits of Radiated Emission and Bandedge Measurement. 4.1.1 Limits of Radiated Emission and Bandedge Measurement. 4.1.2 Test Instruments. 4.1.3 Test Procedures. 4.1.4 Deviation from Test Standard. 4.1.5 Test Set Up. 4.1.6 EUT Operating Conditions. 4.1.7 Test Results. 4.2 Conducted Emission Measurement. 4.2.1 Limits of Conducted Emission Measurement. 4.2.2 Test Instruments. 4.2.3 Test Procedures. 4.2.4 Deviation from Test Standard. 4.2.5 Test Setup. 4.2.6 EUT Operating Condition. 4.2.7 Test Results. 4.3 Number of Hopping Frequency Used Measurement. 4.3.1 Test Procedure. 4.3.2 Test Setup. 4.3.3 Test Instruments. 4.3.4 Test Procedure. 4.3.5 Deviation from Test Standard. 4.3.6 Test Results. 4.3 Test Procedure. 4.3.1 Test Results. 4.3 Test Procedure. 4.3.2 Test Setup. 4.3.3 Test Instruments. 4.3.4 Test Procedure. 4.3.5 Deviation from Test Standard. 4.3.6 Test Results. 4.4 Deviation from Test Standard. 4.4.7 Test Results. 4.5 Deviation from Test Standard. 4.6 Test Results. 4.7 Test Results. 4.8 Deviation from Test Standard. 4.9 Deviation from Test Standard. 4.1 Limits of Channel Bandwidth Measurement. 4.2 Test Setup. 4.3 Test Instruments. 4.4 Test Procedure. 4.5 Deviation from Test Standard. 4.6 Test Results. 4.7 Test Results. 4.8 Test Procedure. 4.9 Deviation from Test Standard. 4.9 Test Procedure. 4.9							
4.1.7 Test Results 4.2 Conducted Emission Measurement 4.2.1 Limits of Conducted Emission Measurement 4.2.2 Test Instruments 4.2.3 Test Procedures 4.2.4 Deviation from Test Standard 4.2.5 Test Setup 4.2.6 EUT Operating Condition 4.2.7 Test Results 4.3 Number of Hopping Frequency Used 4.3.1 Limits of Hopping Frequency Used Measurement 4.3.2 Test Setup 4.3.3 Test Instruments 4.3.4 Test Procedure 4.3.5 Deviation fromTest Standard 4.3.6 Test Results 4.4 Dwell Time on Each Channel 4.4.1 Limits of Dwell Time on Each Channel Measurement 4.4.2 Test Setup 4.4.3 Test Instruments 4.4.4 Test Procedures 4.4.5 Deviation from Test Standard 4.5 Test Results 4.6 Test Results 4.7 Test Results 4.8 Test Instruments 4.9 Test Instruments 4.9 Test Instruments 4.9 Test Procedures 4.9 Test Results							
		4.5.6 EUT Operating Condition					
		4.5.7 Test Results	34				
	4.6						
		4.6.1 Limits of Hopping Channel Separation Measurement	35				

4.6.2 Test Setup	35
4.6.3 Test Instruments	
4.6.4 Test Procedure	35
4.6.5 Deviation from Test Standard	
4.6.6 Test Results	
4.7 Maximum Output Power	37
4.7.1 Limits of Maximum Output Power Measurement	37
4.7.2 Test Setup	37
4.7.3 Test Instruments	37
4.7.4 Test Procedure	
4.7.5 Deviation fromTest Standard	
4.7.6 EUT Operating Condition	
4.7.7 Test Results	
4.8 Conducted Out of Band Emission Measurement	
4.8.1 Limits Of Conducted Out Of Band Emission Measurement	39
4.8.2 Test Instruments	
4.8.3 Test Procedure	
4.8.4 Deviation from Test Standard	
4.8.5 EUT Operating Condition	
4.8.6 Test Results	39
5 Pictures of Test Arrangements	43
Appendix – Information on the Testing Laboratories	44

Release Control Record

Issue No.	Description	Date Issued
RF150814C22-1	Original Release	Jan. 26, 2017

Report No.: RF150814C22-1 Page No. 4 / 44 Report Format Version: 6.1.1

1 Certificate of Conformity

Product: Lemonade Type R Wearable Device

Brand: LEOMO, Inc

Test Model: LEM-TYPER

Sample Status: Identical Prototype

Applicant: LEOMO, Inc.

Test Date: Nov. 28, 2016 ~ Dec. 11, 2016

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : ______, Date: ______, Jan. 26, 2017

Rona Chen / Specialist

Approved by: , **Date:** Jan. 26, 2017

David Huang / Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Result	Remarks					
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -7.12 dB at 0.62311 MHz.					
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.					
15.247(a)(1) (iii)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.					
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	Pass	Meet the requirement of limit.					
15.247(b)	Maximum Peak Output Power	Pass	Meet the requirement of limit.					
15.205 & 209	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -2.04 dB at 30.97 MHz.					
15.247(d)	Band Edge Measurement	Pass	Meet the requirement of limit.					
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.					
15.203	Antenna Requirement	Pass	No antenna connector is used.					

Note: If The Frequency Hopping System operating in 2400-2483.5 MHz band and the output power less than 125 mW. The hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of hopping channel whichever is greater.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.93 dB
Radiated Effissions up to 1 GHz	200 MHz ~1000 MHz	2.95 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	2.26 dB
Nadiated Emissions above 1 GHZ	18 GHz ~ 40 GHz	1.94 dB

2.2 Modification Record

There were no modifications required for compliance.

Report No.: RF150814C22-1 Page No. 6 / 44 Report Format Version: 6.1.1

3 General Information

3.1 General Description of EUT

Product	Lemonade Type R Wearable Device
Brand	LEOMO, Inc
Test Model	LEM-TYPER
Status of EUT	Identical Prototype
Power Supply Rating	5.0 Vdc (adapter or host equipment) 3.7 Vdc (Li-ion battery)
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Transfer Rate	1/2/3 Mbps
Operating Frequency	2402 ~ 2480 MHz
Number of Channel	79
Output Power	7.568 mW
Antenna Type	Monopole antenna with 1.36 dBi gain
Antenna Connector	N/A
Accessory Device	Refer to Note as below
Data Cable Supplied	Refer to Note as below

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
AC Adapter	LEOMO, Inc	LEM-A2021U	I/P: 100-240 Vac, 50-60Hz, 0.7 A O/P: 5 Vdc, 4.8 A
Smart Watch Embedded Battery	LEOMO, Inc	300824P	3.7 Vdc, 30 mAh
L Battery	LEOMO, Inc	LEM-FOXH855	3.7 Vdc, 635 mAh
S Battery	LEOMO, Inc	LEM-FOXS755	3.7 Vdc, 385 mAh
Dock Charger	LEOMO, Inc	LEM-DR2000	3.7 Vdc, 2090 mAh
USB Cable	LEOMO, Inc	LEM-USB1	1 m non-shielded cable w/o core
LCD Panel	LEOMO, Inc	LEM-DL1	3"
Bike Mount	LEOMO, Inc	LEM-BM1	
Wrist Band	LEOMO, Inc	LEM-WB1	
Dock	LEOMO, Inc	LEM-DC1	I/P: 5 Vdc , 1.5 A O/P: 5 Vdc, 600 mA 4.2 Vdc, 600 mA
Adjustment Spacer	LEOMO, Inc	LEM-AS1	
Motion Sensor	LEOMO, Inc	LEM-MS1	
Motion Sensor Embedded Battery	LEOMO, Inc	AHB521630PS-02	3.7 Vdc, 240 mAh
Sensor Charger	LEOMO, Inc	LEM-SCH1	I/P: 5 Vdc , 1.5 A O/P: 5 Vdc, 210 mA

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applic	able To	5	
Mode	RE≥1G	RE<1G	PLC	APCM	Description
А	1	V	V	V	EUT + LCD Panel + L Battery + Bike Mount + Dock + Dock Charger
В	V	V	-	-	EUT + LCD Panel + L Battery + Wrist Band

Where

RE≥1G: Radiated Emission above 1 GHz

RE<1G: Radiated Emission below 1 GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Note:

- 1. For Radiated emission test, pre-tested GFSK, π /4-DQPSK, 8DPSK modulation type and found 8DPSK was the worse, therefore chosen for the final test and presented in the test report.
- 2. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **X-plane** for Mode A and **Z-plane** for Mode B.
- 3. "-" means no effect.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
А	0 to 78	0, 39, 78	FHSS	8DPSK	DH5
В	0 to 78	78	FHSS	8DPSK	DH5

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
A, B	0 to 78	78	FHSS	8DPSK	DH5

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
A	0 to 78	78	FHSS	8DPSK	DH5

Report No.: RF150814C22-1 Page No. 9 / 44 Report Format Version: 6.1.1

Antenna Port Conducted Measurement:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
	0 to 78	0, 39, 78	FHSS	GFSK	DH5
Α	0 to 78	0, 39, 78	FHSS	π /4-DQPSK	DH5
	0 to 78	0, 39, 78	FHSS	8DPSK	DH5

Test Condition:

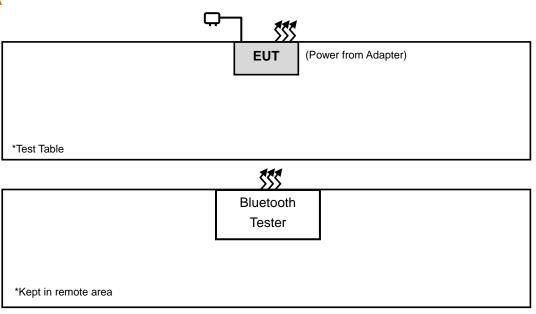
Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Gavin Wu
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Gavin Wu
PLC	25 deg. C, 65 % RH	120 Vac, 60 Hz	Toby Tian
APCM 25 deg. C, 65 % RH		3.7 Vdc	Taylor Liu

Report No.: RF150814C22-1 Page No. 10 / 44 Report Format Version: 6.1.1

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

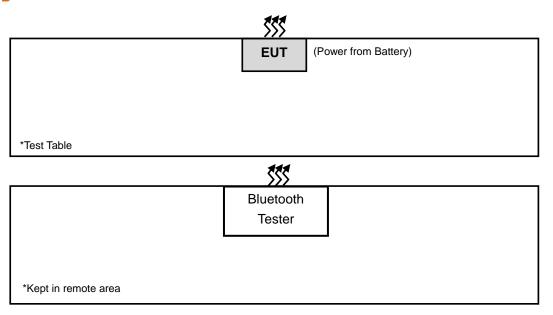
No.	Product	Brand	Model No.	Serial No.	FCC ID
1.	Bluetooth Tester	R&S	CBT	100980	N/A


No.	Signal Cable Description Of The Above Support Units
1.	N/A

Note

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Items 1 acted as communication partners to transfer data.

3.3.1 Configuration of System under Test


Mode A

Report No.: RF150814C22-1 Page No. 11 / 44 Report Format Version: 6.1.1

Mode B

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) FCC Public Notice DA 00-705

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

Note: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Report No.: RF150814C22-1 Page No. 13 / 44 Report Format Version: 6.1.1

4.1.2 Test Instruments

Description & Manaufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent	N9038A	MY51210203	Jan. 21, 2016	Jan. 20, 2017
Spectrum Analyzer Agilent	N9010A	MY52220314	Dec. 16, 2016	Dec. 15, 2017
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Jan. 07, 2016	Jan. 06, 2017
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Jan. 04, 2016	Jan. 03, 2017
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Jan. 08, 2016	Jan. 07, 2017
Loop Antenna	EM-6879	269	Aug. 11, 2016	Aug. 10, 2017
Bluetooth Tester	CBT	100980	Apr. 27, 2015	Apr. 26, 2017
Test Receiver Agilent	N9038A	MY51210203	Jan. 21, 2016	Jan. 20, 2017
Preamplifier EMCI	EMC 012645	980115	Oct. 21, 2016	Oct. 20, 2017
Preamplifier EMCI	EMC 184045	980116	Oct. 21, 2016	Oct. 20, 2017
Preamplifier EMCI	EMC 330H	980112	Oct. 21, 2016	Oct. 20, 2017
Power Meter Anritsu	ML2495A	1232002	Sep. 08, 2016	Sep. 07, 2017
Power Sensor Anritsu	MA2411B	1207325	Sep. 08, 2016	Sep. 07, 2017
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4 2950114	Oct. 21, 2016	Oct. 20, 2017
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 21, 2016	Oct. 20, 2017
RF Coaxial Cable Worken	8D-FB	Cable-Ch10-01	Oct. 21, 2016	Oct. 20, 2017
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 10.
- 3. The horn antenna and preamplifier (model: EMC 184045) are used only for the measurement of emission frequency above 1 GHz if tested.
- 4. The FCC Site Registration No. is 690701.
- 5. The IC Site Registration No. is IC7450F-10.

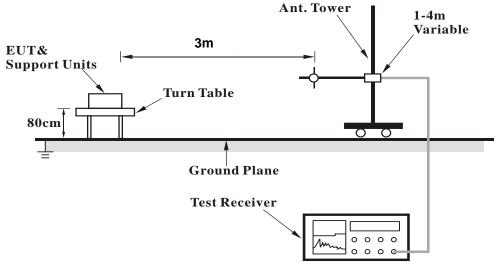
4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

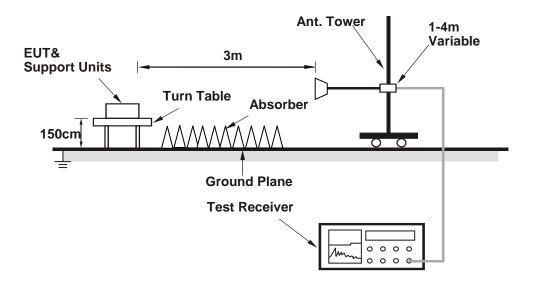
Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz & 360 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1/T for RMS Average (Duty cycle < 98 %) for Peak detection at frequency above 1 GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4	Deviation	from	Test	Standard
-------	-----------	------	------	----------


No deviation.

Report No.: RF150814C22-1 Page No. 15 / 44 Report Format Version: 6.1.1



4.1.5 Test Set Up

<Frequency Range below 1 GHz>

<Frequency Range above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1 GHz DATA:

8DPSK

Mode A

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz		Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Gavin Wu	

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2355.99	56.76	63.39	74	-17.24	26.81	4.05	37.49	109	17	Peak
2389.83	33.07	39.6	54	-20.93	26.91	4.08	37.52	109	17	Average
2402	88.55	95.07			26.91	4.09	37.52	109	17	Average
2402	103.63	110.15			26.91	4.09	37.52	109	17	Peak
4804	32.96	48.3	54	-21.04	30.97	6.79	53.1	109	261	Average
4804	43.91	59.25	74	-30.09	30.97	6.79	53.1	109	261	Peak
		A	ntenna P	olarity &	Test Dista	ance: Vert	tical at 3 i	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2376.87	56.82	63.39	74	-17.18	26.86	4.07	37.5	100	60	Peak
2385.51	33.03	39.54	54	-20.97	26.91	4.08	37.5	100	60	Average
2402	82.11	88.63			26.91	4.09	37.52	100	60	Average
2402	94.9	101.42			26.91	4.09	37.52	100	60	Peak
4804	32.08	47.42	54	-21.92	30.97	6.79	53.1	122	311	Average

30.97

6.79

53.1

122

311

Peak

4804 Remarks:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

-29.86

74

2. 2402 MHz: Fundamental frequency.

59.48

44.14

Report No.: RF150814C22-1 Page No. 17 / 44 Report Format Version: 6.1.1

EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Gavin Wu	

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2380.56	57.56	64.12	74	-16.44	26.86	4.08	37.5	108	15	Peak
2389.92	33.05	39.58	54	-20.95	26.91	4.08	37.52	108	15	Average
2441	88.45	94.66			27.06	4.12	37.39	108	15	Average
2441	103.35	109.56			27.06	4.12	37.39	108	15	Peak
2489.16	33.59	39.55	54	-20.41	27.2	4.16	37.32	108	15	Average
2499.92	58.28	64.17	74	-15.72	27.2	4.16	37.25	108	15	Peak
4882	32.99	48.13	54	-21.01	31.06	6.85	53.05	106	258	Average
4882	43.98	59.12	74	-30.02	31.06	6.85	53.05	106	258	Peak
		Δ	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 i	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2354.37	57.83	64.46	74	-16.17	26.81	4.05	37.49	100	28	Peak
2387.76	33.03	39.54	54	-20.97	26.91	4.08	37.5	100	28	Average
2441	82.38	88.59			27.06	4.12	37.39	100	28	Average
2441	94.98	101.19			27.06	4.12	37.39	100	28	Peak
2497.68	57.72	63.61	74	-16.28	27.2	4.16	37.25	100	28	Peak
2499.52	33.58	39.47	54	-20.42	27.2	4.16	37.25	100	28	Average
4882	32.7	47.84	54	-21.3	31.06	6.85	53.05	129	338	Average
4882	43.92	59.06	74	-30.08	31.06	6.85	53.05	129	338	Peak

Remarks:

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2441 MHz: Fundamental frequency.

EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Gavin Wu	

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	88.76	94.78			27.15	4.15	37.32	105	16	Average
2480	103.67	109.69			27.15	4.15	37.32	105	16	Peak
2483.52	35.28	41.3	54	-18.72	27.15	4.15	37.32	105	16	Average
2486.28	58.74	64.76	74	-15.26	27.15	4.15	37.32	105	16	Peak
4960	33.33	48.3	54	-20.67	31.16	6.91	53.04	108	247	Average
4960	44.42	59.39	74	-29.58	31.16	6.91	53.04	108	247	Peak
		Α	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 i	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	82.65	88.67			27.15	4.15	37.32	100	27	Average
2480	94.99	101.01			27.15	4.15	37.32	100	27	Peak
2483.52	33.85	39.87	54	-20.15	27.15	4.15	37.32	100	27	Average
2483.56	57.67	63.69	74	-16.33	27.15	4.15	37.32	100	27	Peak
4960	32.79	47.76	54	-21.21	31.16	6.91	53.04	115	305	Average
4960	44.84	59.81	74	-29.16	31.16	6.91	53.04	115	305	Peak

Remarks:

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2480 MHz: Fundamental frequency.

Report No.: RF150814C22-1 Page No. 19 / 44 Report Format Version: 6.1.1

Mode B

EUT Test Condition		Measurement Detail			
Channel	Channel 78	Frequency Range	1 GHz ~ 25 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Gavin Wu		

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	86.98	93			27.15	4.15	37.32	105	4	Average
2480	102.18	108.2			27.15	4.15	37.32	105	4	Peak
2483.52	35.16	41.18	54	-18.84	27.15	4.15	37.32	105	4	Average
2494.6	58.24	64.13	74	-15.76	27.2	4.16	37.25	105	4	Peak
4960	34.54	49.51	54	-19.46	31.16	6.91	53.04	101	265	Average
4960	45.05	60.02	74	-28.95	31.16	6.91	53.04	101	265	Peak
		Α	ntenna P	olarity &	Test Dista	ance: Vert	tical at 3 i	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	77.82	83.84			27.15	4.15	37.32	100	197	Average
2480	91.05	97.07			27.15	4.15	37.32	100	197	Peak
2483.72	33.67	39.69	54	-20.33	27.15	4.15	37.32	100	197	Average
2499.04	58.54	64.43	74	-15.46	27.2	4.16	37.25	100	197	Peak
4960	33.22	48.19	54	-20.78	31.16	6.91	53.04	121	33	Average
4960	45.16	60.13	74	-28.84	31.16	6.91	53.04	121	33	Peak

Remarks:

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2480 MHz: Fundamental frequency.

Report No.: RF150814C22-1 Page No. 20 / 44 Report Format Version: 6.1.1

9 kHz ~ 30 MHz DATA:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30 MHz ~ 1 GHz WORST-CASE DATA:

Mode A

EUT Test Condition		Measurement Detail			
Channel	Channel 78	Frequency Range	30 MHz ~ 1 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Quasi-peak (QP)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Gavin Wu		

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
91.11	32.92	55.53	43.5	-10.58	8.38	0.97	31.96	128	267	Peak
150.28	30.62	48.4	43.5	-12.88	12.71	1.12	31.61	123	57	Peak
197.81	28.91	49.88	43.5	-14.59	9.5	1.28	31.75	127	133	Peak
293.84	23.94	41.29	46	-22.06	12.77	1.62	31.74	106	354	Peak
395.69	24.93	39.88	46	-21.07	15.24	1.9	32.09	102	99	Peak
620.73	23.48	33.5	46	-22.52	19.86	2.29	32.17	134	151	Peak
		A	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
30.97	37.96	56.35	40	-2.04	12.14	0.59	31.12	106	261	Peak
84.32	32.55	55.11	40	-7.45	8.2	0.93	31.69	123	190	Peak
149.31	29.71	47.51	43.5	-13.79	12.68	1.13	31.61	133	72	Peak
289.96	20.12	37.53	46	-25.88	12.65	1.61	31.67	101	16	Peak
454.86	22.59	36.16	46	-23.41	16.43	1.99	31.99	118	19	Peak
582.9	23.37	34.06	46	-22.63	19.21	2.23	32.13	140	187	Peak

Remarks:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

Report No.: RF150814C22-1 Page No. 21 / 44 Report Format Version: 6.1.1

Mode B

EUT Test Condition		Measurement Detail			
Channel	Channel 78	Frequency Range	30 MHz ~ 1 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Quasi-peak (QP)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Gavin Wu		

		Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
43.58	17.87	34.72	40	-22.13	13.59	0.67	31.11	120	68	Peak	
143.49	15.59	33.59	43.5	-27.91	12.47	1.16	31.63	139	178	Peak	
314.21	16.67	33.64	46	-29.33	13.29	1.67	31.93	137	260	Peak	
375.32	19.33	34.68	46	-26.67	14.75	1.84	31.94	112	166	Peak	
549.92	22.72	34.03	46	-23.28	18.46	2.18	31.95	137	319	Peak	
713.85	26.16	34.39	46	-19.84	21.01	2.47	31.71	117	327	Peak	
		Α	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 i	n			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
50.37	17.7	35.34	40	-22.3	12.97	0.7	31.31	101	314	Peak	
150.28	15.9	33.68	43.5	-27.6	12.71	1.12	31.61	128	147	Peak	
292.87	15.75	33.11	46	-30.25	12.74	1.62	31.72	139	143	Peak	
383.08	18.23	33.41	46	-27.77	14.94	1.86	31.98	108	312	Peak	
524.7	22.65	34.26	46	-23.35	17.88	2.14	31.63	134	317	Peak	
611.03	24.81	34.88	46	-21.19	19.74	2.28	32.09	126	13	Peak	

Remarks:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

Report No.: RF150814C22-1 Page No. 22 / 44 Report Format Version: 6.1.1

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MH=)	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 21, 2016	Nov. 20, 2017
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond1-01	Dec. 26, 2015	Dec. 25, 2016
LISN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Feb. 26, 2016	Feb. 25, 2017
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Jul. 28, 2016	Jul. 27, 2017
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

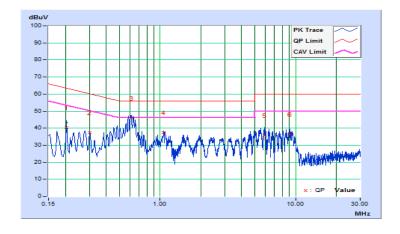
For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Set the EUT under transmission condition continuously at specific channel frequency.

Report No.: RF150814C22-1 Page No. 24 / 44 Report Format Version: 6.1.1

4.2.7 Test Results

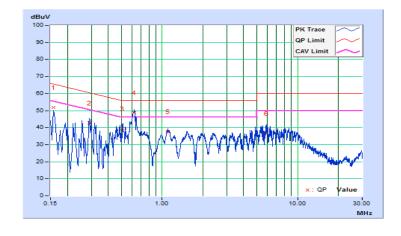

CONDUCTED WORST-CASE DATA: 8DPSK

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2016/12/11

	Phase Of Power : Line (L)									
	Frequency	Correction	Readin	g Value	Emissio	n Level	Lir	nit	Mai	rgin
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.20474	10.03	30.48	12.59	40.51	22.62	63.42	53.42	-22.91	-30.80
2	0.30249	10.08	27.37	14.87	37.45	24.95	60.17	50.17	-22.72	-25.22
3	0.61138	10.15	35.76	21.15	45.91	31.30	56.00	46.00	-10.09	-14.70
4	1.06182	10.20	27.20	14.47	37.40	24.67	56.00	46.00	-18.60	-21.33
5	5.93326	10.51	25.24	10.87	35.75	21.38	60.00	50.00	-24.25	-28.62
6	9.03743	10.68	25.69	12.16	36.37	22.84	60.00	50.00	-23.63	-27.16

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

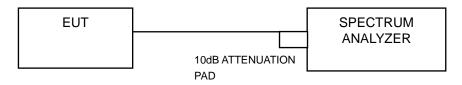


Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2016/12/11

	Phase Of Power : Neutral (N)									
	Frequency	Correction	Readin	g Value	Emission Level		Limit		Margin	
No		Factor	(dB	uV)	(dBuV)		(dBuV)		(dB)	
	(MHz)	(dB)	Q.P. AV.		Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15782	10.03	41.71	27.71	51.74	37.74	65.58	55.58	-13.84	-17.84
2	0.29076	10.08	32.56	22.02	42.64	32.10	60.50	50.50	-17.86	-18.40
3	0.51043	10.14	29.24	21.36	39.38	31.50	56.00	46.00	-16.62	-14.50
4	0.62311	10.16	38.72	27.16	48.88	37.32	56.00	46.00	-7.12	-8.68
5	1.10404	10.22	27.43	18.80	37.65	29.02	56.00	46.00	-18.35	-16.98
6	5.88206	10.55	26.26	18.89	36.81	29.44	60.00	50.00	-23.19	-20.56

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

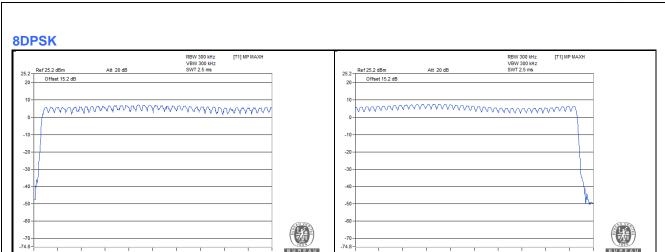
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.


Report No.: RF150814C22-1 Page No. 27 / 44 Report Format Version: 6.1.1

BUREAU

I Stop 2.4835 GHz

4.25 MHz/

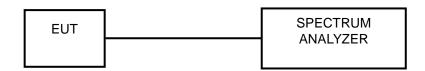
Start 2.441 GHz

BUREAU

Stop 2.441 GHz

4.1 MHz/

Start 2.4 GHz



4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 Deviation from Test Standard

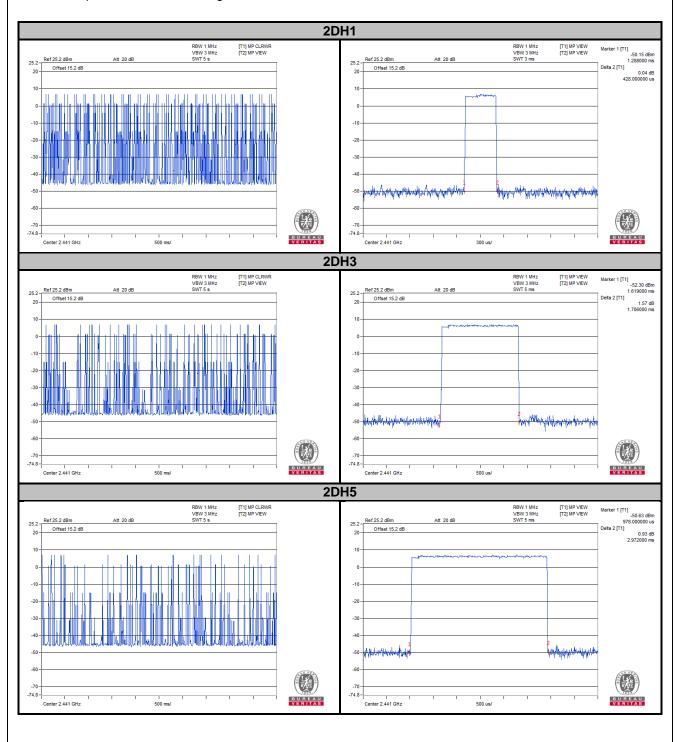
No deviation.

4.4.6 Test Results

GFSK

Mode	Number of transmission in a 31.6 (79 Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (sec)
DH1	50 (times / 5 sec) * 6.32 = 316 times	0.437	138.1	0.4
DH3	26 (times / 5 sec) * 6.32 = 164.32 times	1.706	280.3	0.4
DH5	16 (times / 5 sec) * 6.32 = 101.12 times	2.94	297.3	0.4

Note: Test plots of the transmitting time slot are shown as below.



Π/4-DQPSK

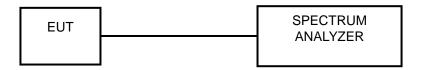
Mode	Number of transmission in a 31.6 (79 Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (sec)
2DH1	50 (times / 5 sec) * 6.32 = 316 times	0.428	135.2	0.4
2DH3	27 (times / 5 sec) * 6.32 = 170.64 times	1.706	291.1	0.4
2DH5	17 (times / 5 sec) * 6.32 = 107.44 times	2.972	319.3	0.4

Note: Test plots of the transmitting time slot are shown as below.

8DPSK

Mode	Number of transmission in a 31.6 (79 Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (sec)
3DH1	50 (times / 5 sec) * 6.32 = 316 times	0.419	132.4	0.4
3DH3	26 (times / 5 sec) * 6.32 = 164.32 times	1.682	276.4	0.4
3DH5	16 (times / 5 sec) * 6.32 = 101.12 times	2.964	299.7	0.4

Note: Test plots of the transmitting time slot are shown as below.



4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5 MHz, if the 20 dB bandwidth of hopping channel is greater than 25 kHz, two-thirds 20 dB bandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

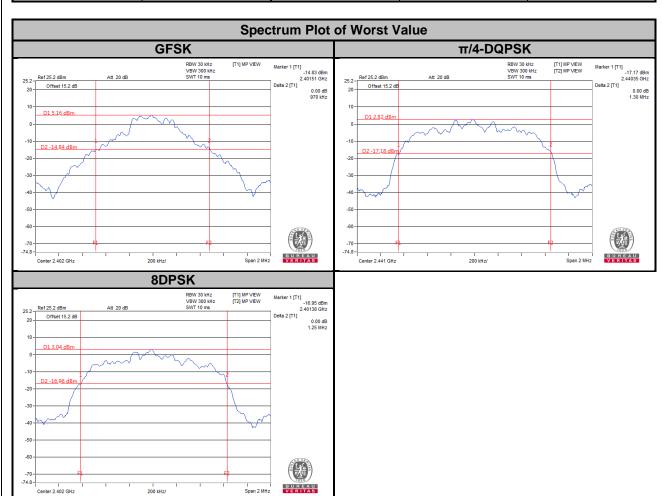
4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

Report No.: RF150814C22-1 Page No. 33 / 44 Report Format Version: 6.1.1

4.5.7 Test Results

Channel	Frequency	20 dB Bandwidth (MHz)					
Chainlei	(MHz)	GFSK	π/4-DQPSK	8DPSK			
0	2402	0.97	1.29	1.25			
39	2441	0.94	1.30	1.25			
78	2480	0.97	1.30	1.25			



4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25 kHz or two-third of 20 dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

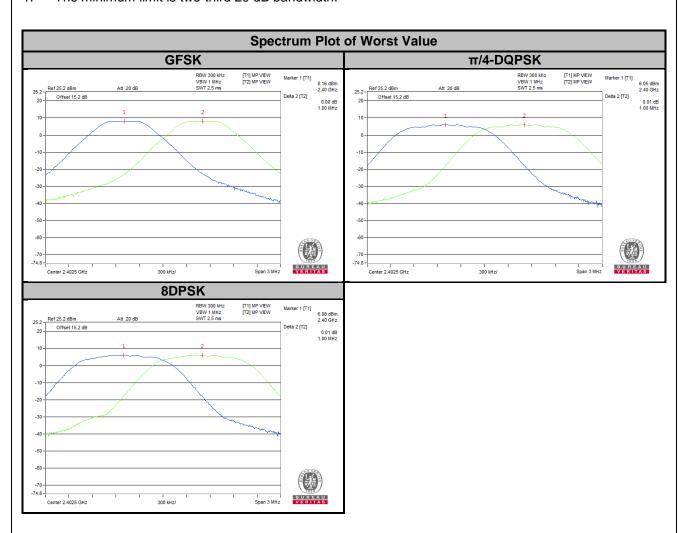
4.6.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.6.5 Deviation from Test Standard

No deviation.

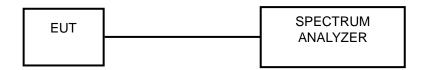


4.6.6 Test Results

Channel	Freq.	/N/I I_\			20 dB Bandwidth (MHz)			Minimum Limit (MHz)			Pass / Fail
		GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	
0	2402	1.00	1.00	1.00	0.97	1.29	1.25	0.65	0.86	0.84	Pass
39	2441	1.00	1.00	1.00	0.94	1.30	1.25	0.63	0.87	0.84	Pass
78	2480	1.00	1.00	1.00	0.97	1.30	1.25	0.65	0.87	0.84	Pass

Note:

1. The minimum limit is two-third 20 dB bandwidth.



4.7 Maximum Output Power

4.7.1 Limits of Maximum Output Power Measurement

The Maximum Output Power Measurement is 125 mW.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

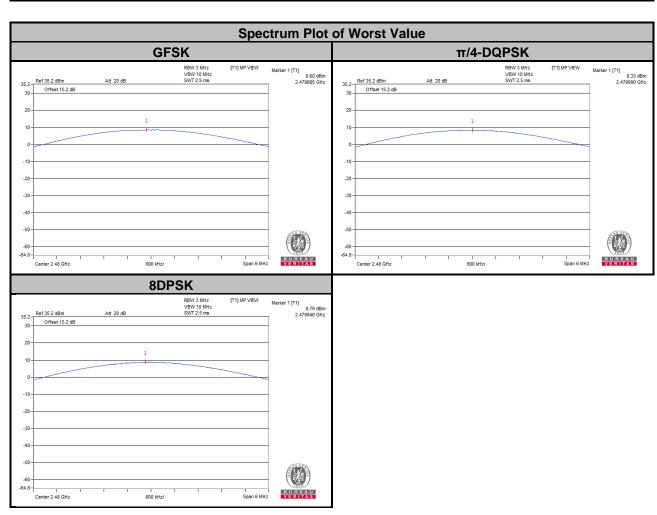
4.7.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3 MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.7.5 Deviation from Test Standard

No deviation.

4.7.6 EUT Operating Condition


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

Report No.: RF150814C22-1 Page No. 37 / 44 Report Format Version: 6.1.1

4.7.7 Test Results

Channel	Freq. (MHz)	C	Output Powe (mW)	er	C	Output Powe (dBm)	r	Power Limit	Pass / Fail
	(IVITIZ)	GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	(mW)	Ган
0	2402	6.73	6.339	7.031	8.28	8.02	8.47	125	Pass
39	2441	6.281	5.943	6.577	7.98	7.74	8.18	125	Pass
78	2480	7.244	6.808	7.568	8.60	8.33	8.79	125	Pass

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits Of Conducted Out Of Band Emission Measurement

Below –20 dB of the highest emission level of operating band (in 100 kHz RBW).

4.8.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

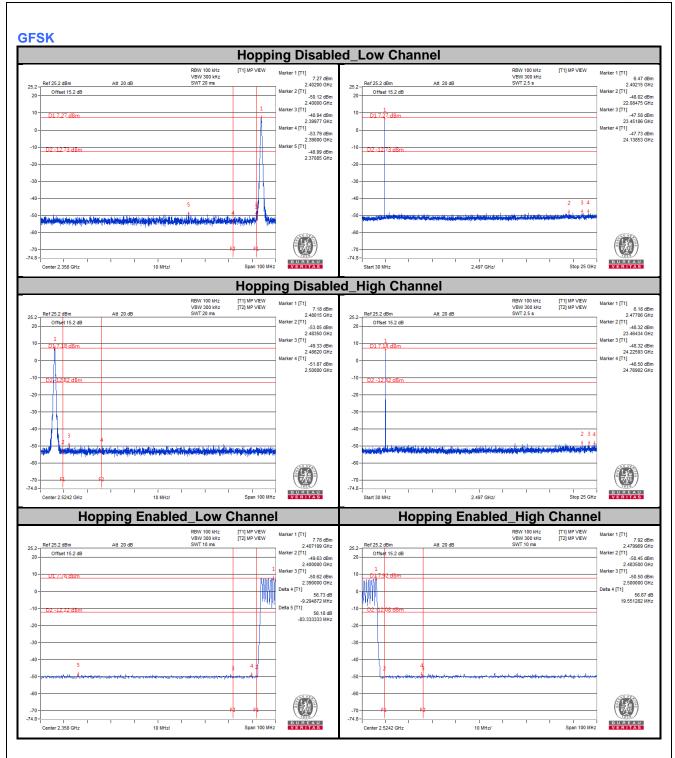
4.8.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

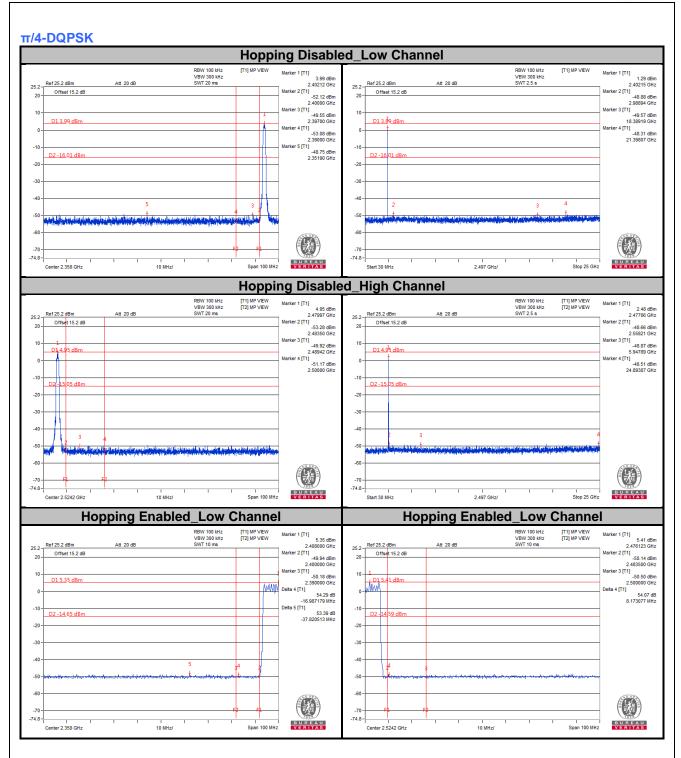
4.8.4 Deviation from Test Standard

No deviation.

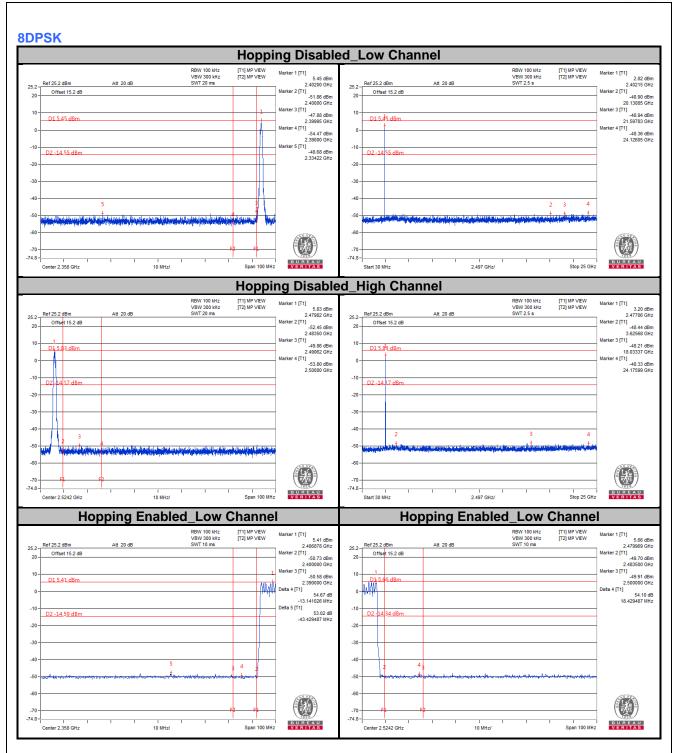
4.8.5 EUT Operating Condition


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 Test Results


The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20 dB offset below D1. It shows compliance with the requirement.

Report No.: RF150814C22-1 Page No. 39 / 44 Report Format Version: 6.1.1



5 Pictures of Test Arrangements Places refer to the attached file (Test Setup Places)
Please refer to the attached file (Test Setup Photo).

Report No.: RF150814C22-1 Page No. 43 / 44 Report Format Version: 6.1.1

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF150814C22-1 Page No. 44 / 44 Report Format Version: 6.1.1