Report on the FCC and IC Testing of the Dentsply Sirona / Sirona Dental Systems GmbH

Model: D3692a

In accordance with FCC 47 CFR Part 15 C and ISED RSS-210 and ISED RSS-Gen (partly)

Prepared for: Dentsply Sirona / Sirona Dental

Systems GmbH Fabrikstraße 31 64625 Bensheim

Germany

FCC ID: 2AD7W-6617620 IC: 12730A-6617620

COMMERCIAL-IN-CONFIDENCE

Date: 2025-08-13

Document Number: TR-713368744-03 | Revision 2

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Alex Fink	2025-08-13	Sign-ID 1065500
Authorised Signatory	Alexander Grill	2025-08-13	Grill SIGN-ID 1065507

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules. **Engineering Statement:**

This measurement shown in this report were made in accordance with the procedures described on test pages. All reporded testing was carried out on a sample equipment to demonstrate limited compilance with with FCC 47 CFR Part 15 C and ISED RSS-210 and RSS-GEN (partly).

The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE	SIGNATURE
Testing	Alex Fink		2025-08-13	SIGN-ID 1065500
		Laboratory recognition Registration No. BNetzA-CAB-16/21	,	ada test site registration

Executive Statement:

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15 C:2023 and ISED RSS-210, Issue 11:2024 and ISED RSS-Gen, Issue 5 + Amd. 2:2021 (partly)

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2025 TÜV SÜD Product Service.

Trade Register Munich HRB 85742 VAT ID No. DE129484267 Information pursuant to Section 2(1) DL-InfoV (Germany) at www.tuysud.com/imprint Managing Directors: Wolfgang Hübl (Sprecher / CEO) Karl Meier Patrick van Welij Phone: +49 (0) 9421 56 82-0 Fax: +49 (0) 9421 56 82-199 www.tuvsud.com TÜV SÜD Product Service GmbH

Äußere Frühlingstraße 45 94315 Straubing Germany

Content

1 Re	port Summary	2
1.1	Modification Report	2
1.2	Introduction	2
1.3	Brief Summary of Results	
1.4	Product Information	
1.5	Test Configuration	
1.6	Modes of Operation	6
1.7	EUT Modifications Record	6
1.8	Test Location	
2 Te	st Details	7
2.1	Radiated Emissions	7
2.2		
3 Me	easurement Uncertainty	20
Annex:	Photographs of Test Setup and External Photos of EUT	3 pages

1 Report Summary

1.1 Modification Report

Alternations and additions of this report will be issued to the holders of each copy in the form of a complete document.

Revision	Description of changes	Date of Issue
0	First Issue	2025-05-15
1	Changed Model from "6617620 D3692a" to "D3692a".	2025-08-08
	Added antenna information.	
2	Additional Family Approval information added.	2025-08-13

Table 1: Report of Modifications

1.2 Introduction

Applicant Dentsply Sirona / Sirona Dental Systems GmbH

Fabrikstraße 31 64625 Bensheim

Germany

Manufacturer Dentsply Sirona / Sirona Dental Systems GmbH

Model Number(s)

Additional Family Approval

Model Numbers(s)

Serial Number(s)

Hardware Version(s)

Software Version(s)

Number of Samples Tested

D3692b

0606156

--
--
1

Test Specification(s) / FCC 47 CFR Part 15 C : 2023 and Issue / Date ISED RSS-210, Issue 11, : 2024

ISED RSS-Gen, Issue 5 + Amd. 2: 2021

Test Plan/Issue/Date --Order Number ---

Date

Date of Receipt of EUT 2025-04-01
Start of Test 2025-04-01
Finish of Test 2025-04-11
Name of Engineer(s) Alex Fink

Related Document(s) ANSI C63.10:2013

Note(s): Only Conducted Disturbance at Mains Terminal and

Radiated Disturbance test were performed

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15 C and ISED RSS-210 and RSS-Gen is shown below.

Section	Specification	Test Description	Result
	Clause	·	
	15.203	Antenna requirement	Not performed
	15.215(c)	Bandwidth of Signal	Not performed
2.2	15.207	Conducted Disturbance at Mains Terminal	Pass
2.1	15.209, 15.225	Radiated Disturbance	Pass
	15.225(e)	Frequency Tolerance	Not performed

Table 2: Results according to FCC 47 CFR Part 15 C

Section	Specification Clause	Test Description	Result
2.1	7.3	Radiated Emissions	Pass
2.2	7.3	AC Power Line Conducted Emissions	Pass
	B.6 b.	Frequency Tolerance	Not performed

Table 3: Results according to ISED RSS-210

Section	Specification	Test Description	Result
	Clause		
	6.7	Bandwidth of Signal	Not performed
2.2	8.8	AC Power Line Conducted Emissions	Pass
2.1	8.9, 8.10	Radiated Emissions	Pass
	6.11	Frequency Tolerance	Not performed

Table 4: Results according to ISED RSS-Gen

1100000000110

1.4 Product Information

1.4.1 Technical Description

CEREC Primemill is an electrical equipment for laboratory use. It is power supplied with a maximum voltage of 240 VAC and is used in a commercial environment to produces computer-aided dental restorations, e.g. from natural appearing ceramic material or zirconia as well as surgical guides for placing implants.

CEREC Primemill is intended for use in dental practices (outside the patient area), dental laboratories and areas with a controlled electromagnetic environment, and is served within these areas by trained personnel.

RFID is used for milling, grinding tools and cooling tank for identification.

Frequency Band 13.110 – 14.010 MHz

Number of frequency channels: 1

Supply Voltage: 120 V
Supply Frequency: 60 Hz
Highest clock frequency 13.56 MHz

(radio part):

Highest clock frequency

(non-radio part):

above 108 MHz

1.4.2 List of Antennas

As declared by applicant:

Type designation	Antenna type	Polarization	Average gain
6710102	Single layer PCB loop antenna	Circular	7.5 dBi
LCM4 RFID-Cer2-4	6-layer PCB loop antenna	Circular	-1.2 dBi

1.4.3 EUT Ports / Cables identification

Port	Max Cable	Usage	Туре	Screened	Comment
	Length Specified				
Line Name	Length	Line Usage	Line Type	Screened	Comments
AC power port		3 m	AC power	No	
Suction Unit / D-Sub	> 3 m	3 m	Signal / control port	Yes	
LAN	> 30 m	3 m	Signal / control port	Yes	
USB B	> 3 m	3 m	Signal / control port	Yes	
USB 1	> 3 m		Signal / control port	Yes	
USB 2	> 3 m	3 m	Signal / control port	Yes	

Note: USB 1 and USB 2 are identical. Therefore, only USB 2 was tested representative for both lines. **Table 5**

1.4.4 Family Approval Model Numbers

Information provided by applicant:

The Radio HF and LF Part is identical in all machine variants, see table below:

	6617620 D3692	D3692a	D3692b	D3692c
Material spectrum	full	full	full	Only Hybrid/Composite
Indication spectrum	full	full	full	Only crowns, inlays, onlays, veneeers
Milling	yes	yes	yes	no
Grinding	yes	yes	yes	yes
DS Core Cloud Connection	Optional or Mandatory	Optional or Mandatory	Mandatory	Mandatory
No. of spindle motors	4	4	2	2
Housing colors	Black/White	Black/White	Black/White	Grey/White
Light Strip at front	yes	yes	yes	no
Cutting Tools with RFID	yes	yes	yes	no
Grinding Tools with white RFID	yes	yes	yes	no
Grinding Tools with violet RFID	yes	yes	yes	yes

Testing was performed exclusively on model D3692a as the worst-case configuration, since models D3692b and D3692c are reduced-component variants.

1.5 Test Configuration

The EUT was configured in stand alone mode.

1.6 Modes of Operation

Tests were performed with the EUT continuously polling and with the EUT continuously reading both tags. Antennas from both readers are transmitting simultaneously.

1.7 EUT Modifications Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer	Not Applicable	Not Applicable

Table 6

1.8 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing test laboratory:

Test Name	Name of Engineer(s)
Radiated Disturbance	Alex Fink
Conducted Emissions on Mains Terminals	Alex Fink

Office Address:

Äußere Frühlingstraße 45 94315 Straubing Germany

2 Test Details

2.1 Radiated Emissions

2.1.1 Specification Reference

FCC 47 CFR Part 15 C, Clauses 15.205, 15.209 and 15.225 ISED RSS-210, Clause 7.7 and B.6 ISED RSS-Gen, Clauses 8.9 and 8.10

2.1.2 Equipment under Test and Modification State

D3692a, SN: 606156 - Modification State 0

2.1.3 Date of Test

2025-04-01

2.1.4 Environmental Conditions

Ambient Temperature 21 °C Relative Humidity 43 %

2.1.5 Specification Limits

Frequency Range	Test distance	Field	strength	Field strength		
(MHz)	(m)	(μA/m)	(dBµA/m)	(μV/m)	(dBµV/m)	
0.009 - 0.49	300	6.37 / f	20*lg(6.37 / f)	2400 / f	20*lg(2400 / f)	
0.49 – 1.705	30	63.7 / f	20*lg(63.7 / f)	24000 / f	20*lg(24000 / f)	
1.705 – 13.110	30	0.08	-21.94	30	29.54	
13.110 – 13.410	30	0.283	-11.0	106	40.5	
13.410 – 13.553	30	0.891	-1.0	334	50.5	
13.553 – 13.567	30	42.26	32.5	15848	84	
13.567 – 13.710	30	0.891	-1.0	334	50.5	
13.710 – 14.010	30	0.283	-11.0	106	40.5	
14.010 - 30	30	0.08	-21.94	30	29.54	
30 – 88	3			100	40	
88 – 216	3			150	43.5	
126 – 960	3	-		200	46	
above 960	3			500	54	

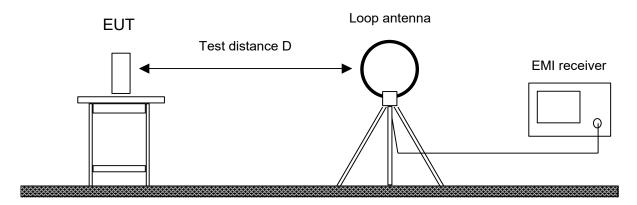
Table 7 Radiated emission limits

At frequencies at or above 30 MHz, measurements may be performed at distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 m, unless it can be further demonstrated that measurements at a distance of 30 m or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements.

At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempts should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade).

2.1.6 Test Method

The test was performed according to ANSI C63.10, sections 11.11 and 11.12

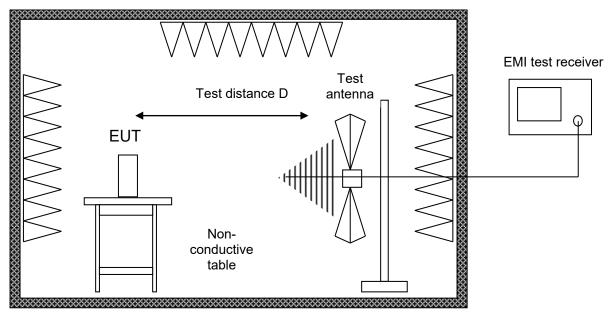

Prescans are performed in six positions of the EUT to get the full spectrum of emission caused by the EUT with the measuring antenna raised and lowered from 1 m to 4 m with vertical and horizontal polarisation to find the combination of table position, antenna height and antenna polarisation for the maximum emission levels.

Data reduction is applied to these results to select those levels having less margin than 10 dB or exceeding the limit using subranges and limited number of maximums.

Further maximisation for adjusting the maximum position is following.

Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

2.1.6.1 Frequency range 9 kHz - 30 MHz


The EUT was placed on a non-conductive table, 0.8 m above the ground.

Radiated emissions in the frequency 9 kHz - 30 MHz is measured within a semi-anechoic room with an active loop antenna with the measurement detector set to peak. In addition in the frequency range 9 kHz to 490 kHz also an average detector was used. The measurement bandwidth of the receiver was set to 300 Hz in the frequency range 9 kHz to 150 kHz and 10 kHz in the frequency range 150 kHz to 30 MHz. Prescans were performed in six positions of the EUT.

For final measurements the detector was set to CISPR quasi-peak and in addition to CISPR average in the frequency range 9 kHz to 490 kHz with a resolution bandwidth 200 Hz in the frequency range 9 kHz to 150 kHz and 9 kHz in the frequency range 150 kHz to 30 MHz. Final tests were performed immediately after a final frequency and zoom (for drifting disturbances) and maximum adjustment.

2.1.6.2 Frequency range 30 MHz - 1 GHz

Alternate test site (semi anechoic room)

The EUT was placed on a non-conductive table, 0.8 m above the ground plane Radiated emissions in the frequency range 30 MHz – 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4. for alternative test sites. A linear polarised logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used.

For prescan tests the test receiver is set to peak-detector with a bandwidth of 120 kHz. With the measurement bandwidth of the test receiver set to 120 kHz CISPR quasi-peak detector is selected for final measurements following immediately after a final frequency zoom (for drifting disturbances) and maximum adjustment.

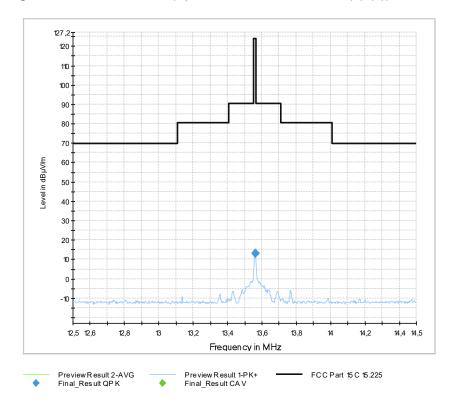
2.1.7 Test Results

Frequency range	Limit applied	Test distance
9 kHz – 30 MHz	15.209; 15.225	3 m
30 MHz – 1 GHz	15.209	3 m

Table 8

Antennas from both readers are transmitting simultaneously, see section 1.6. Modes of operation.

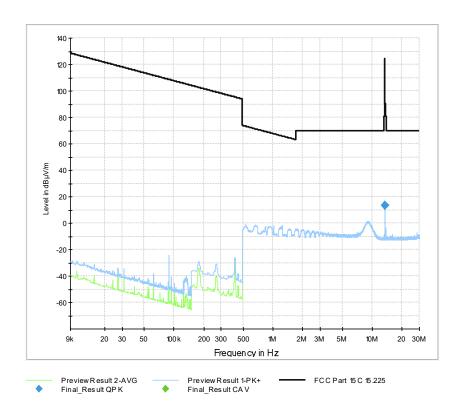
Sample calculation:


Final Value (dBµV/m) = Reading Value (dBµV) + (Cable attenuation (dB) + Antenna Transducer (dB(1/m)))

Additional correction of limit in the frequency range 9 – 490 kHz (300 m to 3 m): -80.0 dB Additional correction of limit in the frequency range 490 kHz – 30 MHz (30 m to 3 m): -40.0 dB Additional correction of limit in the frequency ranges above 1 GHz (3 m to 1 m): -9.54 dB

2.1.7.1 Test Results for Polling Mode

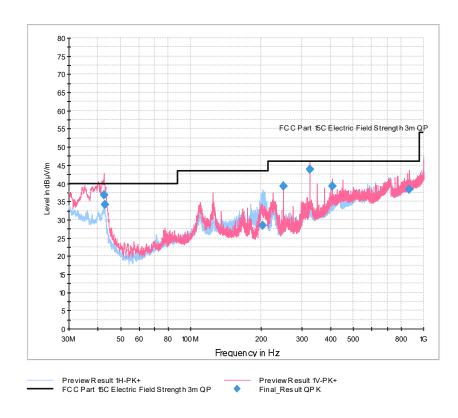
Frequency range 12.5 MHz – 14.5 MHz (Spectrum Mask acc. 15.225(a)-(c)):



Final Results:

Frequency MHz	QuasiPeak dBµV/m	Limit dBµV/m	Margin dB	Meas. Time ms	Bandwidth kHz	Height cm	Pol	Azimuth deg	Corr. dB/m	
13.561000	13.23	124.00	110.77	1000.0	9.000	100.0	Н	101.0	-20.8	ı

Frequency range 9 kHz – 30 MHz:



Final Results:

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
MHz	dBμV/m	dBμV/m	dB	ms	kHz	cm		deg	dB/m
13.561000	13.23	124.00	110.77	1000.0	9.000	100.0	Н	101.0	-20.8

Frequency range 30 MHz – 1 GHz:

Final Results:

Frequency	Qua-	Limit	Mar-	Meas.	Band-	Height	Pol	Azi-	Corr.
	siPeak		gin	Time	width			muth	
MHz	dBμV/m	dBμV/m	dB	ms	kHz	cm		deg	dB/m
42.600000	36.72	40.00	3.28	1000.0	120.000	140.0	V	135.0	17.8
42.840000	34.24	40.00	5.76	1000.0	120.000	114.0	V	144.0	17.7
203.340000	28.41	43.50	15.09	1000.0	120.000	100.0	Н	168.0	15.7
250.020000	39.16	46.02	6.86	1000.0	120.000	169.0	V	170.0	17.4
325.020000	43.86	46.02	2.16	1000.0	120.000	129.0	V	48.0	20.0
406.440000	39.33	46.02	6.69	1000.0	120.000	103.0	V	26.0	22.4
867.840000	38.30	46.02	7.72	1000.0	120.000	145.0	V	5.0	29.9

2.1.8 Test Location and Test Equipment

The test was carried out in semi anechoic room, Cabin No. 11

Instrument	Manufacturer	Type No	TE No Calibration Period (months)		Calibration Due
Loop antenna	Rohde & Schwarz	FMZB 1519 C	72526	36	2028-01-31
ULTRALOG Antenna	Rohde & Schwarz	HL562E	61486	36	2026-04-30
Fixed attenuator	Rohde & Schwarz	HL562E-ATT 6dB	61491	36	2026-04-30
EMI test receiver	Rohde & Schwarz	ESW44	39897	12	2026-03-31
Semi anechoic room	Frankonia	Cabin No. 11	42961	24	2026-09-17
EMC measurement software	Rohde & Schwarz	EMC32 Emission K11 - V11.50	42986		

Table 9

2.2 Conducted Emissions on Mains Terminals

2.2.1 Specification Reference

FCC 47 CFR Part 15 C, Clause 15.207 ICES-003, Clause 6.1

2.2.2 Equipment under Test and Modification State

D3692a, SN: 606156 - Modification State 0

2.2.3 Date of Test

2025-04-01 and 2025-04-11

2.2.4 Environmental Conditions

Ambient Temperature 22 °C Relative Humidity 29 %

2.2.5 Specification Limits

	Required Specification Limits (Class A)								
Line Under Test	ine Under Test Frequency Range (MHz) Quasi-peak (dBμV) Average (dBμV)								
AC Power Port	0.15 to 0.5		66						
AC FOWER PORT	0.5 to 30	73	60						

Table 10 Class A emission limits

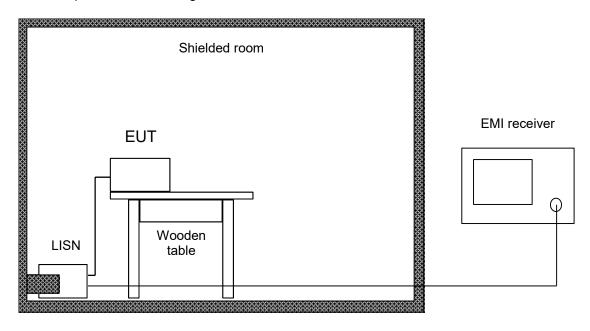

	Required Specification Limits (Class B)									
Line Under Test	Frequency Range (MHz)	Quasi-peak (dВµV)	Average (dBμV)							
	0.15 to 0.5	66 to 56*	56 to 46*							
AC Power Port	0.5 to 5	56	46							
	5 to 30	60	50							
Supplementary information: *Decreases with the logarithm of the frequency.										

Table 11 Class B emission limits

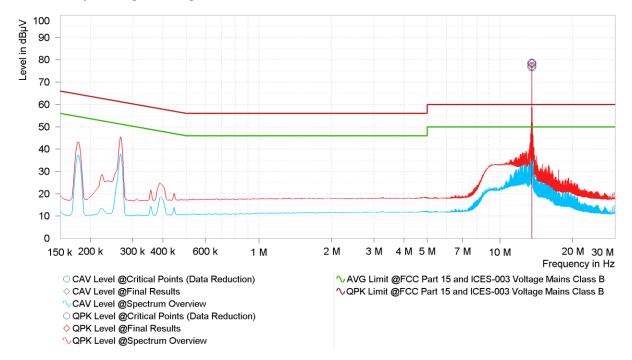
2.2.6 Test Method

The test was performed according to ANSI C63.4, sections 5.2 and 7.

The EUT was placed on a non-conductive table 0.8 m above a reference ground plane and 0.4 m away from a vertical coupling plane.

All power was connected to the EUT through an Line Impedance Stabilization Network (LISN). Conducted disturbance voltage measurements on mains lines were made at the output of the LISN. The LISN was placed 0.8 m from the boundary of the EUT and bounded to the reference ground plane. To simplify testing with quasi-peak and linear average (cispr-average) detector the following procedure is used:

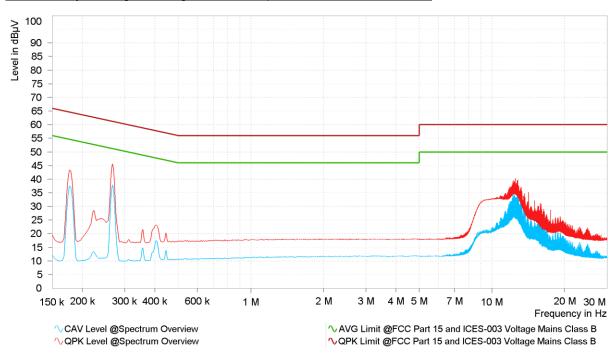
First the whole spectrum of emission caused by the equipment under test (EUT) is recorded with the detectors set to peak and average using CISPR bandwidth of 10 kHz. After that all emission levels having less margin than 10 dB to or exceeding the average limit are retested with the detectors set to quasi-peak and average. If the average limit is kept with quasi-peak levels measurement with average detector is optional. In cases of emission levels between quasi-peak and average limit an additional measurement with average detector has to be performed.


2.2.7 Test Results

Sample calculation:

Final Value (dB μ V) = Reading Value (dB μ V) + (Cable attenuation (dB)

+ LISN Transducer (dB))


Continuously reading RFID tag

F	≀g	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]	Meas. Time [s]
	1	13.560	78.46	60.00	-18.46	76.95	50.00	-26.95	10.27	L1	9.000	15.000

Continuously reading RFID tag - antenna replaced with 50 Ohm resistor

R	lg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]	Meas. Time [s]
	-									-		

2.2.8 Test Location and Test Equipment

The test was carried out in a shielded room. cabin no. 9.

Instrument	Manufacturer	Type No	TE No	Calibra- tion Pe- riod (months)	Calibration Due
V-Network	Rohde & Schwarz	ENV216	39908	12	2025-05-31
EMI test receiver	Rohde & Schwarz	EPL1000	67137	12	2025-05-31

Table 12

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

		Expanded
Test Name	kp	Uncertainty
Conducted Voltage Emission		
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB
100 kHz to 200 MHz (50Ω/5μH AMN)	2	± 3.6 dB
Discontinuous Conducted Emission		
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB
Conducted Current Emission		
9 kHz to 200 MHz	2	± 3.5 dB
Magnetic Fieldstrength		
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB
Radiated Emission		
30 MHz to 300 MHz	2	± 4.9 dB
300 MHz to 1 GHz	2	± 5.0 dB
1 GHz to 6 GHz	2	± 4.6 dB
Test distance 10 m		
30 MHz to 300 MHz	2	± 4.9 dB
300 MHz to 1 GHz	2	± 4.9 dB

The expanded uncertainty reported according to to CISPR16-4-2: 2011 + A1 + A2 + Cor1 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%

Table 13 Measurement uncertainty based on CISPR 16-4-2

Radio Interference Emission Testing		
Test Name	kp	Expanded Uncertainty
Occupied Bandwdith	2	± 5 %
Conducted Power		
9 kHz ≤ f < 30 MHz	2	± 1.0 dB
30 MHz ≤ f < 1 GHz	2	± 1.5 dB
1 GHz ≤ f ≤ 40 GHz	2	± 2.5 dB
1 MS/s power sensor (TS8997)	2	± 1.5 dB
Occupied Bandwidth	2	± 5 %
Power Spectral Density	2	± 3.0 dB
Radiated Power		
25 MHz – 6 GHz	1.96	±4.4 dB
1 GHz – 18 GHz	1.96	±4.7 dB
18 GHz – 40 GHz	1.96	±4.9 dB
40 GHz – 325 GHz	1.96	±6.1 dB
Conducted Spurious Emissions	2	± 3.0 dB
Radiated Spurious Emissions	2	± 6.0 dB
Voltage		
DC	2	± 1.0 %
AC	2	± 2.0 %
Time (automatic)	2	± 5 %
Frequency	2	± 10 ⁻⁷
The expanded uncertainty reported according to to ETSI uncertainty multiplied by a coverage factor of kp = 2, prov		

Table 14 Measurement uncertainty based on ETSI TR 100 028

The measurement uncertainty in the laboratory is less than or equal to the maximum measurement uncertainty according to CISPR16-4-2: 2011 + A1 + A2 + Cor1 (U_{CISPR}) and as specified in the test report below. This normative regulation means that the measured value is also the value to be assessed in relation to the limit value.

Test Name	Expanded Uncertainty
Occupied Bandwidth	±5 %
Conducted Power	
9 kHz ≤ f < 30 MHz	±1.0 dB
30 MHz ≤ f < 1 GHz	±1.5 dB
1 GHz ≤ f ≤ 40 GHz	±2.5 dB
1 MS/s power sensor (2.4 / 5 GHz band)	±1.5 dB
Power Spectral Density	±3.0 dB
Radiated Power	
25 MHz – 26.5 GHz	±6.0 dB
26.5 GHz – 66 GHz	±8.0 dB
40 GHz – 325 GHz	±10.0 dB
Conducted Spurious Emissions	±3.0 dB
Radiated Field Strength 9 kHz – 40 GHz	±6.0 dB
Voltage	
DC	± 1.0 %
AC	± 2.0 %
Time (automatic)	± 5 %
Frequency	± 10 ⁻⁷

Table 15 Decision Rule: Maximum allowed measurement uncertainty