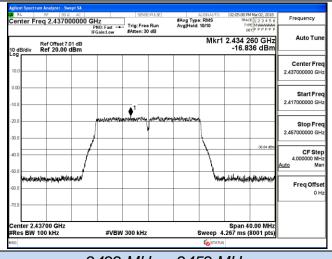
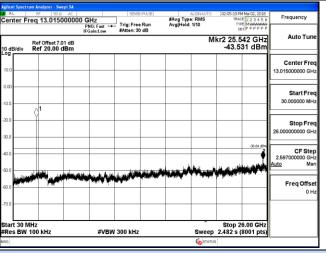
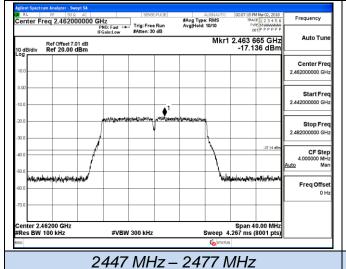


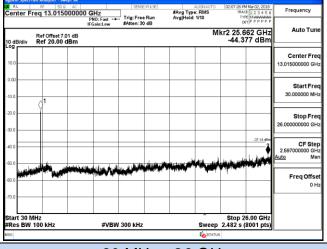
IEEE 802.11g



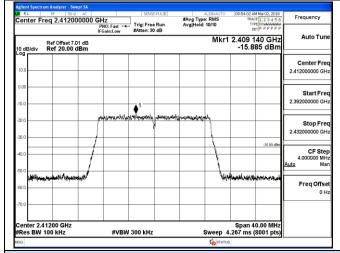


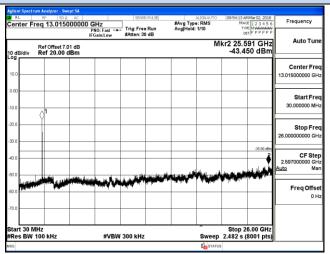
2397 MHz - 2427 MHz


30 MHz - 26 GHz

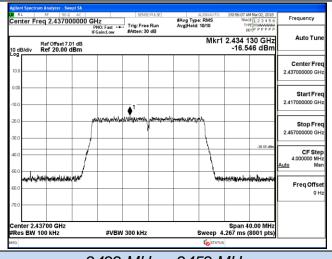


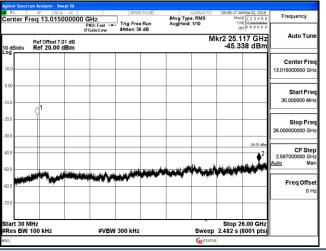
2422 MHz - 2452 MHz

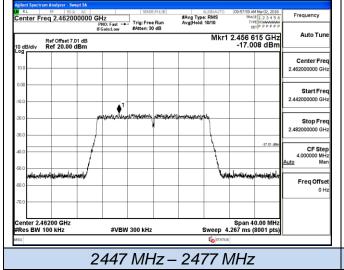

30 MHz – 26 GHz

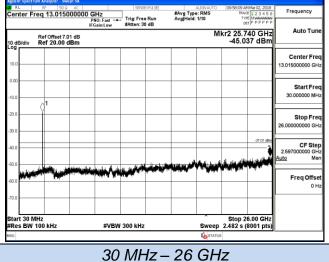


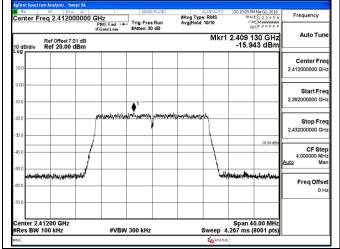
IEEE 802.11n HT20

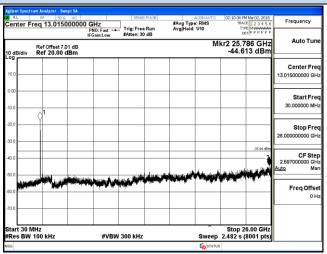

Chain 0



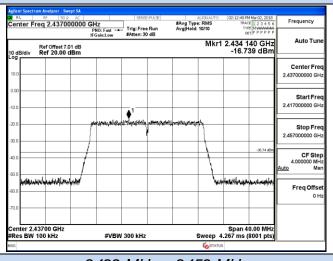

2397 MHz - 2427 MHz

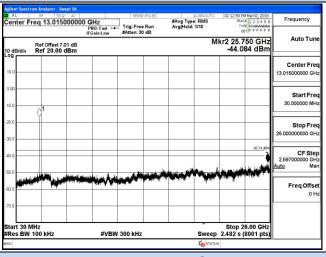

30 MHz - 26 GHz


2422 MHz - 2452 MHz

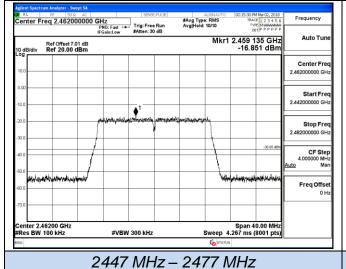


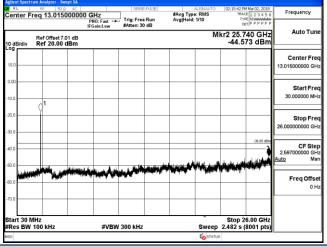
IEEE 802.11n HT20



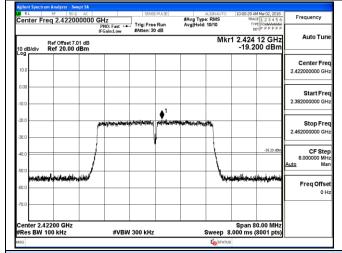


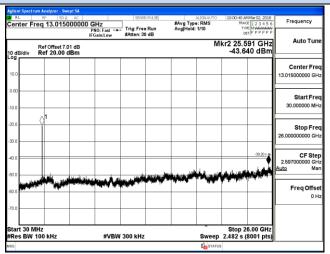
2397 MHz - 2427 MHz


30 MHz - 26 GHz

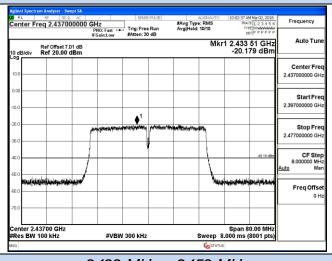


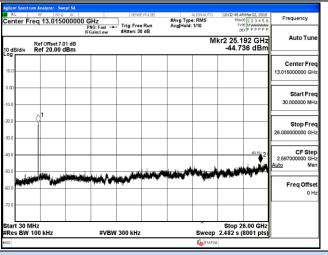
2422 MHz - 2452 MHz


30 MHz – 26 GHz

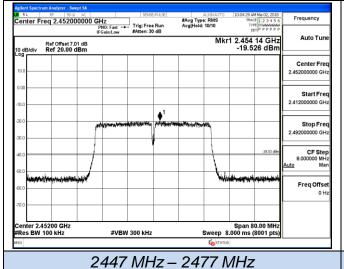


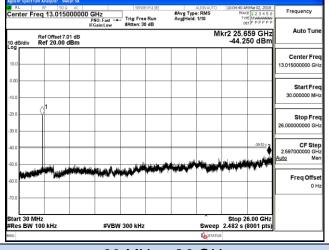
IEEE 802.11n HT40


Chain 0

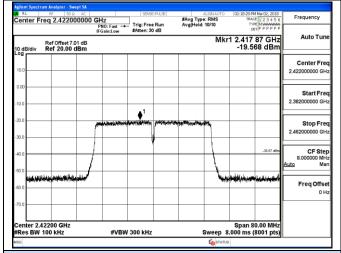


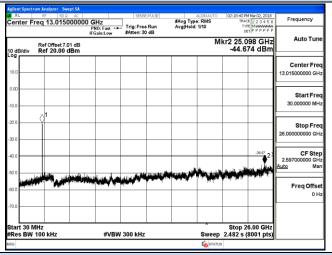
2397 MHz - 2427 MHz


30 MHz - 26 GHz

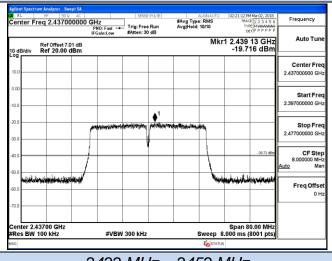


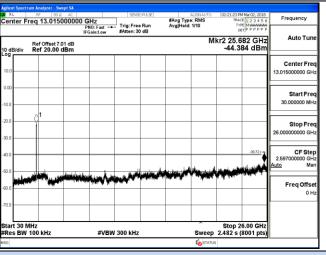
2422 MHz - 2452 MHz


30 MHz - 26 GHz

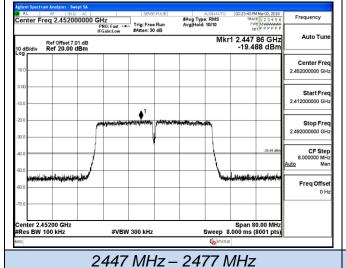


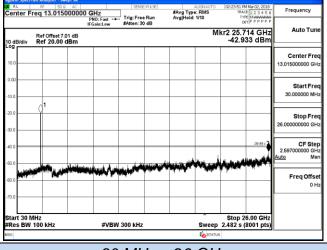
IEEE 802.11n HT40

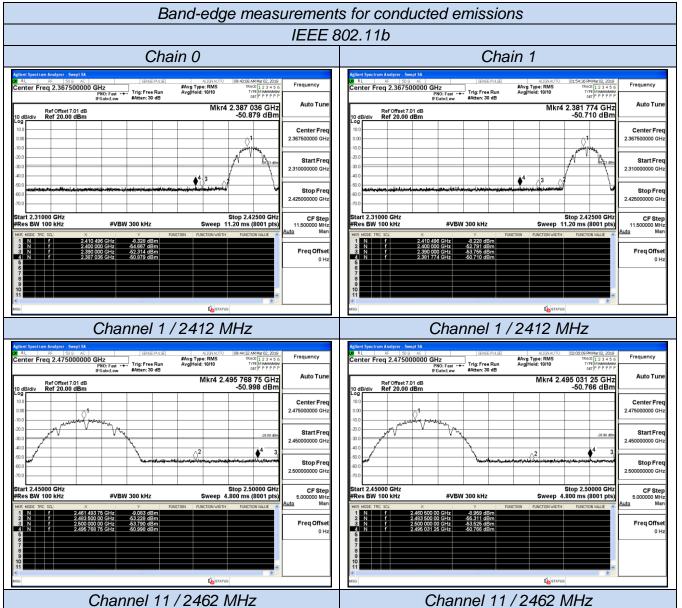

Chain 1

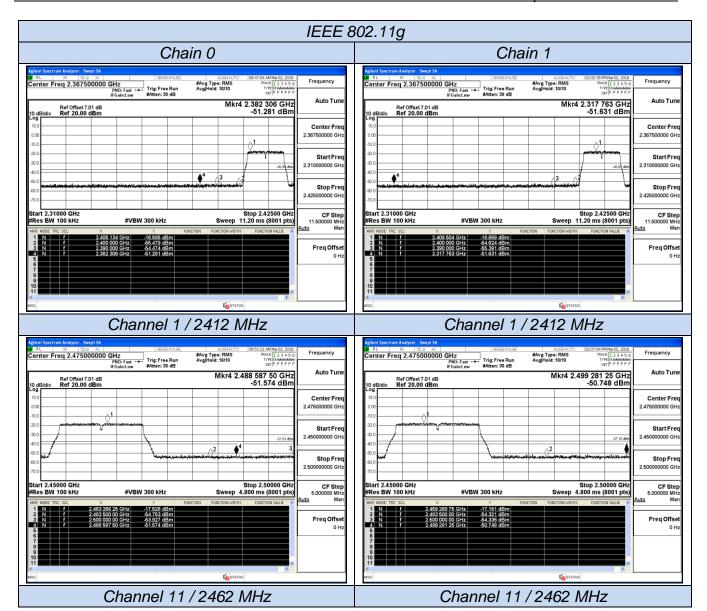


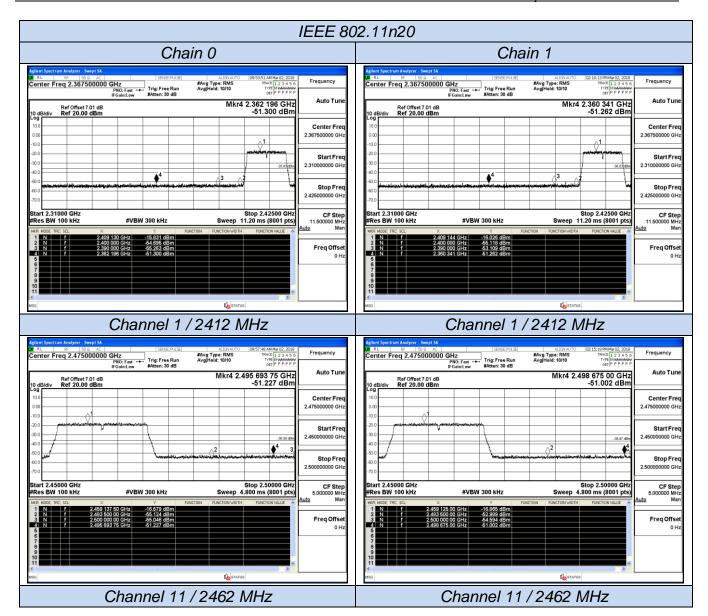
2397 MHz - 2427 MHz

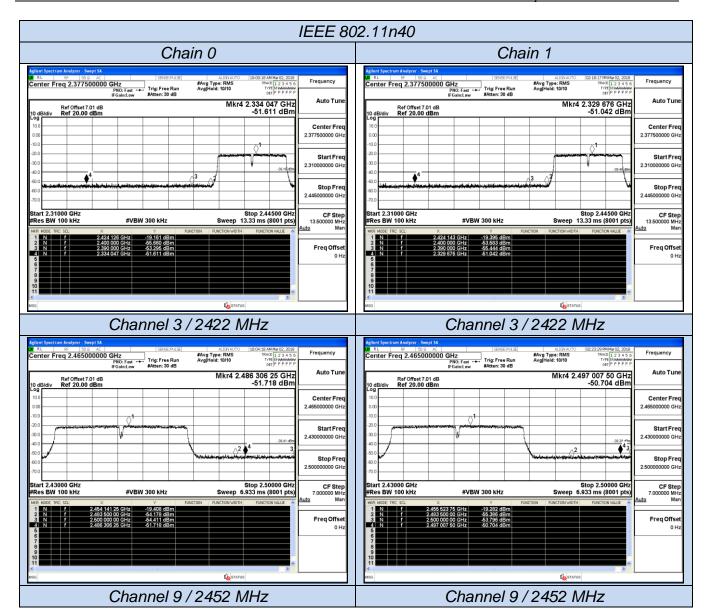

30 MHz - 26 GHz



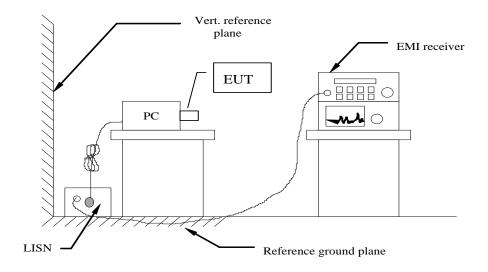

2422 MHz - 2452 MHz


30 MHz - 26 GHz





5.6.7. Test Results of Band Edges Test

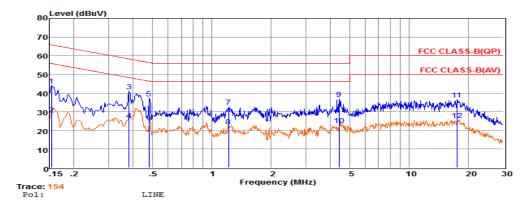

5.7. Power line conducted emissions

5.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

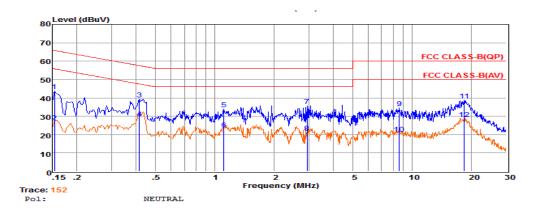
Frequency Range	Limits (dBμV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

5.7.2 Block Diagram of Test Setup


5.7.3 Test Results

PASS.

The test data please refer to following page.

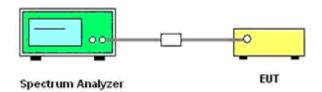

Temperature	24.5℃	Humidity	56.2%
Test Engineer	Wilson Hong		

Test worst result for 802.11b (High Channel) @Chain 0

	Freq	Reading	LISNFac	CabLos	Aux2Fac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.15	24.32	9.58	0.02	10.00	43.92	65.78	-21.86	QP
2	0.15	9.08	9.58	0.02	10.00	28.68	55.77	-27.09	Average
3	0.38	21.47	9.62	0.04	10.00	41.13	58.25	-17.12	QP
4	0.38	6.05	9.62	0.04	10.00	25.71	48.25	-22.54	Average
5	0.48	17.51	9.62	0.04	10.00	37.17	56.32	-19.15	QP
6	0.48	4.60	9.62	0.04	10.00	24.26	46.32	-22.06	Average
7	1.22	13.16	9.63	0.05	10.00	32.84	56.00	-23.16	QP
8	1.22	2.67	9.63	0.05	10.00	22.35	46.00	-23.65	Average
9	4.41	17.13	9.65	0.06	10.00	36.84	56.00	-19.16	QP
10	4.41	3.16	9.65	0.06	10.00	22.87	46.00	-23.13	Average
11	17.47	16.70	9.74	0.11	10.00	36.55	60.00	-23.45	QP
12	17.48	5.67	9.74	0.11	10.00	25.52	50.00	-24.48	Average

Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac.
2. The emission levels that are 20dB below the official limit are not reported.

	Freq	Reading	LISNFac	CabLos	Aux2Fac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.15	24.03	9.69	0.02	10.00	43.74	65.78	-22.04	QP
2	0.15	7.20	9.69	0.02	10.00	26.91	55.77	-28.86	Average
3	0.41	19.73	9.61	0.04	10.00	39.38	57.55	-18.17	QP
4	0.41	9.12	9.61	0.04	10.00	28.77	47.55	-18.78	Average
5	1.11	14.29	9.63	0.05	10.00	33.97	56.00	-22.03	QP
6	1.11	3.29	9.63	0.05	10.00	22.97	46.00	-23.03	Average
7	2.93	15.99	9.64	0.06	10.00	35.69	56.00	-20.31	QP
8	2.93	1.38	9.64	0.06	10.00	21.08	46.00	-24.92	Average
9	8.59	14.76	9.71	0.08	10.00	34.55	60.00	-25.45	QP
10	8.59	0.66	9.71	0.08	10.00	20.45	50.00	-29.55	Average
11	18.33	18.72	9.82	0.11	10.00	38.65	60.00	-21.35	QP
12	18.33	8.56	9.82	0.11	10.00	28.49	50.00	-21.51	Average


Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac.
2. The emission levels that are 20dB below the official limit are not reported.

***Note: Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11b (High Channel) @ Chain 0 for 120V/60Hz.

5.8.1 Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.8.2 Test Setup Layout

5.8.3. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.8.4. Test Procedures

According to KDB 558074 D01 V03 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for Peak detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- 8. Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).

- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship: $E = EIRP 20\log D + 104.8$

Where:

E = electric field strength in dBμV/m, EIRP = equivalent isotropic radiated power in dBm D = specified measurement distance in meters.

- 11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.
- 12. Compare the resultant electric field strength level to the applicable regulatory limit.
- 13. Perform radiated spurious emission test duress until all measured frequencies were complete.

5.8.5 Test Results

For Antenna Chain 0

			IEEE 802.	11b			
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
2310.000	-44.40	5.0	0.000	55.80	Peak	74.00	PASS
2310.000	-55.10	5.0	0.000	45.10	AV	54.00	PASS
2390.000	-44.09	5.0	0.000	56.11	Peak	74.00	PASS
2390.000	-54.81	5.0	0.000	45.39	AV	54.00	PASS
2483.500	-45.11	5.0	0.000	55.09	Peak	74.00	PASS
2483.500	-54.64	5.0	0.000	45.56	AV	54.00	PASS
2500.000	-44.05	5.0	0.000	56.15	Peak	74.00	PASS
2500.000	-54.46	5.0	0.000	45.74	AV	54.00	PASS

	IEEE 802.11g											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	Verdict					
2310.000	-44.04	5.0	0.000	56.16	Peak	74.00	PASS					
2310.000	-55.03	5.0	0.000	45.17	AV	54.00	PASS					
2390.000	-44.97	5.0	0.000	55.23	Peak	74.00	PASS					
2390.000	-54.65	5.0	0.000	45.55	AV	54.00	PASS					
2483.500	-43.46	5.0	0.000	56.74	Peak	74.00	PASS					
2483.500	-54.51	5.0	0.000	45.69	AV	54.00	PASS					
2500.000	-44.90	5.0	0.000	55.30	Peak	74.00	PASS					
2500.000	-54.39	5.0	0.000	45.81	AV	54.00	PASS					

	IEEE 802.11 n HT20											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict					
2310.000	-44.17	5.0	0.000	56.03	Peak	74.00	PASS					
2310.000	-55.13	5.0	0.000	45.07	AV	54.00	PASS					
2390.000	-44.26	5.0	0.000	55.94	Peak	74.00	PASS					
2390.000	-54.60	5.0	0.000	45.60	AV	54.00	PASS					
2483.500	-44.41	5.0	0.000	55.79	Peak	74.00	PASS					
2483.500	-54.51	5.0	0.000	45.69	AV	54.00	PASS					
2500.000	-43.70	5.0	0.000	56.50	Peak	74.00	PASS					
2500.000	-54.36	5.0	0.000	45.84	AV	54.00	PASS					

	IEEE 802.11 n HT40											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict					
2310.000	-44.65	5.0	0.000	55.55	Peak	74.00	PASS					
2310.000	-55.07	5.0	0.000	45.13	AV	54.00	PASS					
2390.000	-44.42	5.0	0.000	55.78	Peak	74.00	PASS					
2390.000	-54.68	5.0	0.000	45.52	AV	54.00	PASS					
2483.500	-43.69	5.0	0.000	56.51	Peak	74.00	PASS					
2483.500	-54.48	5.0	0.000	45.72	AV	54.00	PASS					
2500.000	-42.03	5.0	0.000	58.17	Peak	74.00	PASS					
2500.000	-54.35	5.0	0.000	45.85	AV	54.00	PASS					

For Antenna Chain 1

			IEEE 80	02.11b			
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
2310.000	-43.72	5.0	0.000	56.48	Peak	74.00	PASS
2310.000	-55.16	5.0	0.000	45.04	AV	54.00	PASS
2390.000	-44.02	5.0	0.000	56.18	Peak	74.00	PASS
2390.000	-54.87	5.0	0.000	45.33	AV	54.00	PASS
2483.500	-43.27	5.0	0.000	56.93	Peak	74.00	PASS
2483.500	-54.70	5.0	0.000	45.50	AV	54.00	PASS
2500.000	-44.18	5.0	0.000	56.02	Peak	74.00	PASS
2500.000	-54.51	5.0	0.000	45.69	AV	54.00	PASS

	IEEE 802.11g											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict					
2310.000	-44.52	5.0	0.000	55.68	Peak	74.00	PASS					
2310.000	-55.16	5.0	0.000	45.04	AV	54.00	PASS					
2390.000	-44.34	5.0	0.000	55.86	Peak	74.00	PASS					
2390.000	-54.79	5.0	0.000	45.41	AV	54.00	PASS					
2483.500	-45.09	5.0	0.000	55.11	Peak	74.00	PASS					
2483.500	-54.60	5.0	0.000	45.60	AV	54.00	PASS					
2500.000	-44.67	5.0	0.000	55.53	Peak	74.00	PASS					
2500.000	-54.47	5.0	0.000	45.73	AV	54.00	PASS					

	IEEE 802.11 n HT20											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict					
2310.000	-43.56	5.0	0.000	56.64	Peak	74.00	PASS					
2310.000	-55.16	5.0	0.000	45.04	AV	54.00	PASS					
2390.000	-44.22	5.0	0.000	55.98	Peak	74.00	PASS					
2390.000	-54.70	5.0	0.000	45.50	AV	54.00	PASS					
2483.500	-44.70	5.0	0.000	55.50	Peak	74.00	PASS					
2483.500	-54.58	5.0	0.000	45.62	AV	54.00	PASS					
2500.000	-44.32	5.0	0.000	55.88	Peak	74.00	PASS					
2500.000	-54.48	5.0	0.000	45.72	AV	54.00	PASS					

	IEEE 802.11 n HT40											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict					
2310.000	-43.49	5.0	0.000	56.71	Peak	74.00	PASS					
2310.000	-55.15	5.0	0.000	45.05	AV	54.00	PASS					
2390.000	-44.46	5.0	0.000	55.74	Peak	74.00	PASS					
2390.000	-54.71	5.0	0.000	45.49	AV	54.00	PASS					
2483.500	-43.77	5.0	0.000	56.43	Peak	74.00	PASS					
2483.500	-54.63	5.0	0.000	45.57	AV	54.00	PASS					
2500.000	-44.26	5.0	0.000	55.94	Peak	74.00	PASS					
2500.000	-54.47	5.0	0.000	45.73	AV	54.00	PASS					

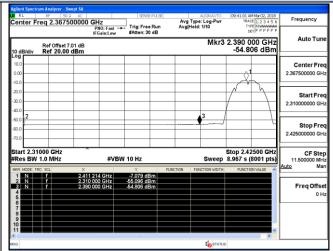
For Combined Antenna Chain 0 and Antenna Chain 1

IEEE 802.11n HT20

Frequency (MHz)	Conducted Power (dBm)			Directional	Ground Reflection	Covert Radiated		Limit	
	Chain 0	Chain 1	Sum	Gain (dB)	Factor (dB)	E Level At 3m (dBuV/m)	Detector	(dBuV/m)	Verdict
2310.000	-44.17	-43.56	-40.84	8.010*	0.000	62.37	Peak	74.00	PASS
2310.000	-55.13	-55.16	-52.13	8.010*	0.000	51.08	AV	54.00	PASS
2390.000*	-44.26	-44.22	-41.23	8.010*	0.000	61.98	Peak	74.00	PASS
2390.000	-54.60	-54.70	-51.64	8.010*	0.000	51.57	AV	54.00	PASS
2483.500*	-44.41	-44.70	-41.54	8.010*	0.000	61.67	Peak	74.00	PASS
2483.500	-54.51	-54.58	-51.53	8.010*	0.000	51.68	AV	54.00	PASS
2500.000	-43.70	-44.32	-40.99	8.010*	0.000	62.22	Peak	74.00	PASS
2500.000	-54.36	-54.48	-51.41	8.010*	0.000	51.80	AV	54.00	PASS

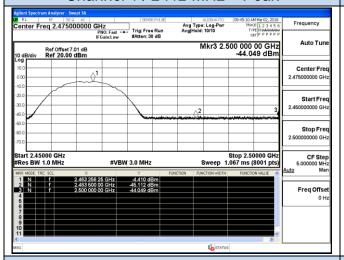
IEEE 802.11n HT40

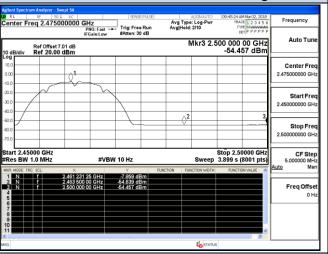

Frequency (MHz)	Conducted Power (dBm)			Directional	Ground Reflection	Covert Radiated		Over	
	Chain 0	Chain 1	Sum	Gain (dB)	Factor (dB)	E Level At 3m (dBuV/m)	Detector	limit dB	Verdict
2310.000	-44.65	-43.49	-41.02	8.010*	0.000	62.19	Peak	-23.118	PASS
2310.000	-55.07	-55.15	-52.10	8.010*	0.000	51.11	AV	-14.035	PASS
2390.000*	-44.42	-44.46	-41.43	8.010*	0.000	61.78	Peak	-13.505	PASS
2390.000	-54.68	-54.71	-51.68	8.010*	0.000	51.53	AV	-9.180	PASS
2483.500	-43.69	-43.77	-40.72	8.010*	0.000	62.49	Peak	-7.296	PASS
2483.500	-54.48	-54.63	-51.54	8.010*	0.000	51.67	AV	-5.457	PASS
2500.000*	-42.03	-44.26	-39.99	8.010*	0.000	63.22	Peak	-19.938	PASS
2500.000	-54.35	-54.47	-51.40	8.010*	0.000	51.81	AV	-11.133	PASS


Remark:

- 1. Measured Band-edge measurements for radiated emissions at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
 - "---"means that the fundamental frequency not for 15.209 limits requirement.
- 4. No need measure Average values if Peak values meets Average limits;
- 5. * means maximum values of frequency band 2310 2390 MHz, 2483.5 2500 MHz;
- 6. For MIMO with CCD technology device, The Directional Gain= Gain of individual transmit antennas (dBi) + Array gain;
 - Array gain = 10 log (N_{ant}), where N_{ant} is the number of transmit antennas.
- 7. Covert Radiated E Level At 3m = Conducted average power + Directional Gain + 104.77-20*log(2);
- 8. Please refer to following plots;

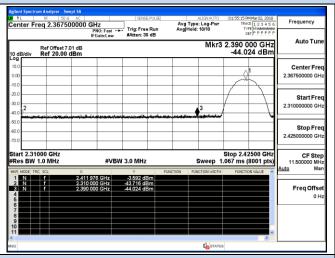
IEEE 802.11b

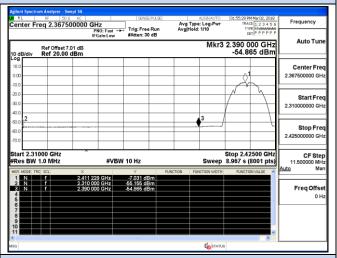

Chain 0



Channel 1 / 2412 MHz - Peak

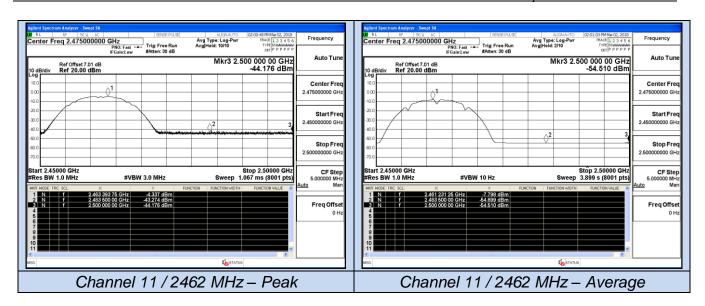
Channel 1 / 2412 MHz – Average



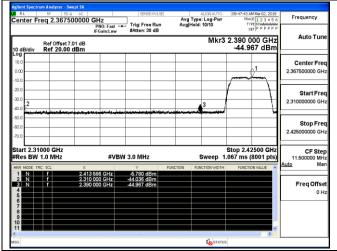


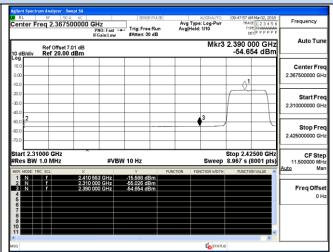
Channel 11 / 2462 MHz - Peak

Channel 11 / 2462 MHz - Average


Chain 1

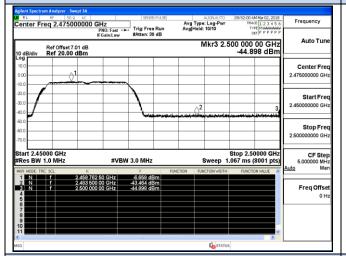
Channel 1 / 2412 MHz - Peak

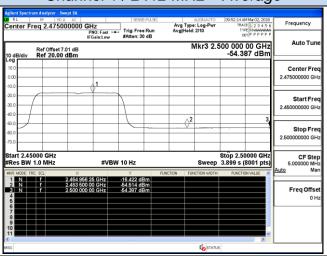

Channel 1 / 2412 MHz – Average



FCC ID: 2AD2H-N2231M

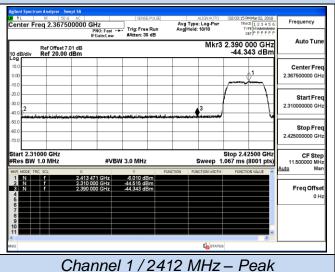
IEEE 802.11g

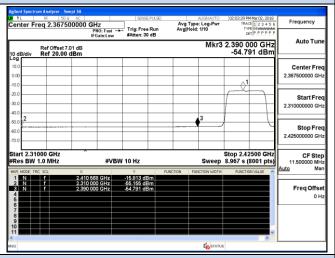

Chain 0



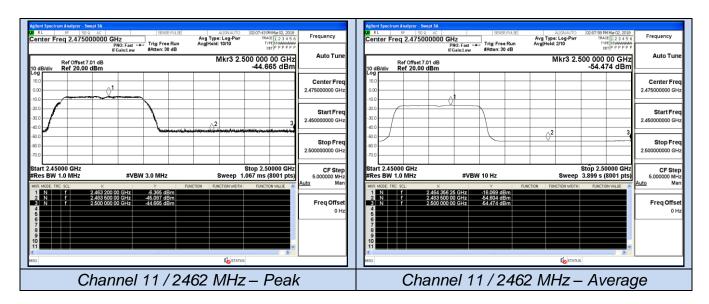
Channel 1 / 2412 MHz - Peak

Channel 1 / 2412 MHz - Average

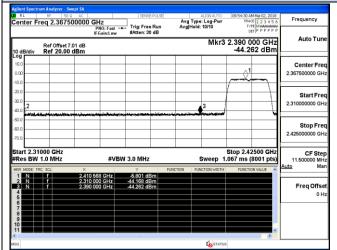


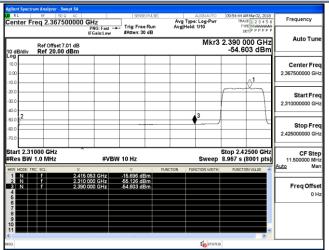


Channel 11 / 2462 MHz - Peak

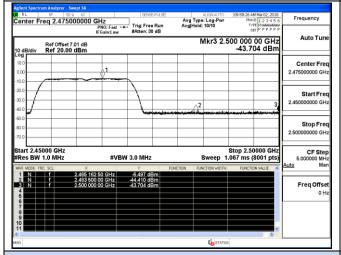

Channel 11 / 2462 MHz - Average

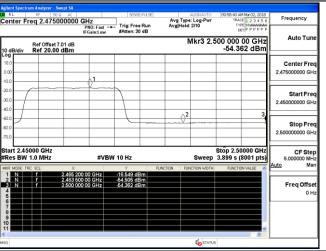
Chain 1




Channel 1 / 2412 MHz – Average

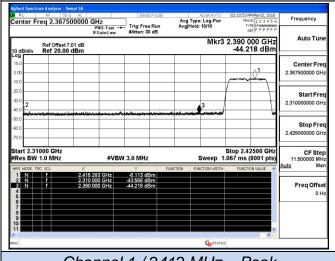
IEEE 802.11n HT20

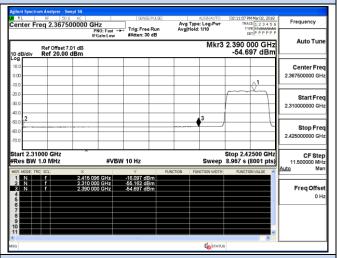

Chain 0



Channel 1 / 2412 MHz – Peak

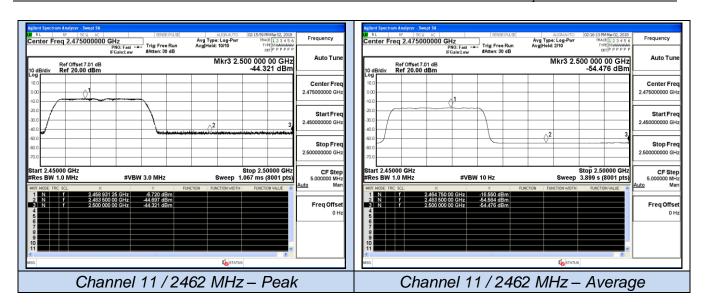
– Peak Channel 1 / 2412 MHz – Average

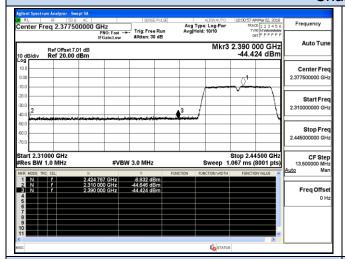


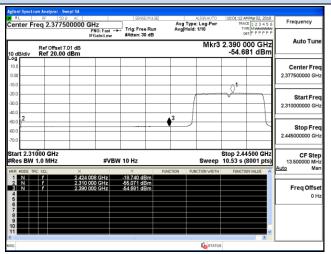


Channel 11 / 2462 MHz - Peak

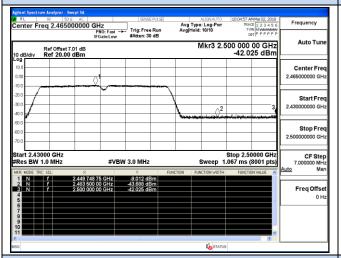
Channel 11 / 2462 MHz – Average

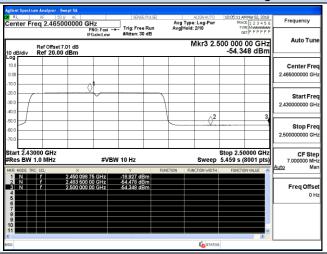

Chain 1


Channel 1 / 2412 MHz - Peak


Channel 1 / 2412 MHz – Average

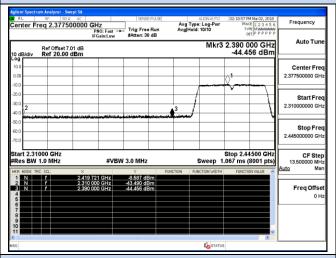
IEEE 802.11n HT40

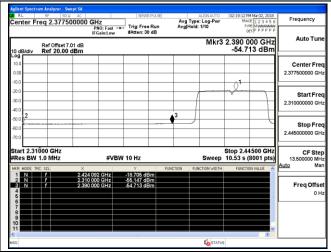

Chain 0



Channel 1 / 2412 MHz - Peak

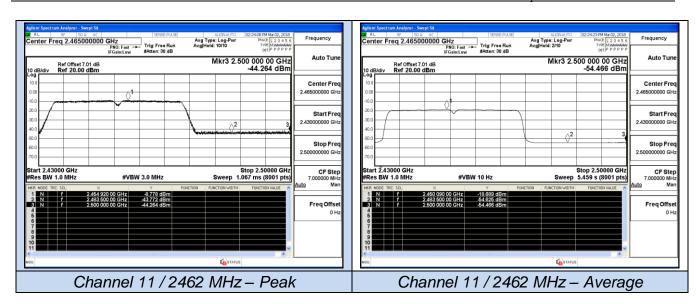
Channel 1 / 2412 MHz – Average





Channel 11 / 2462 MHz - Peak

Channel 11 / 2462 MHz – Average


Chain 1

Channel 1 / 2412 MHz - Peak

Channel 1 / 2412 MHz – Average

5.9. Antenna Requirements

5.9.1. Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

5.9.2. Antenna Connected Construction

5.9.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.9.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 5.0dBi, and the antenna is an external antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.9.2.3. Results: Compliance.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Conducted power refers ANSI C63.10:2013 Output power test procedure for DTS devices.

Radiated power refers to ANSI C63.10:2013 Radiated emissions tests.

Measurement parameters

Measurement parameter					
Detector:	Peak				
Sweep Time:	Auto				
Resolution bandwidth:	1MHz				
Video bandwidth:	3MHz				
Trace-Mode:	Max hold				

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal WLAN devices, the IEEE 802.11b mode is used.

Limits

FCC	ISED					
Antenna Gain						
6 dBi						

Antenna Chain 0

T _{nom}	V_{nom}	Lowest Channel 2412 MHz	Middle Channel 2437 MHz	Highest Channel 2462 MHz	
Measu	power [dBm] ired with nodulation	21.33	20.22	20.44	
Radiated power [dBm] Measured with DSSS modulation		25.71	25.12	24.97	
Gain [dBi] Calculated		4.38	4.90	4.53	
Measurement uncertainty			± 1.6 dB (cond.) / ± 3.8 dB (rad.)		

Antenna Chain 1

T _{nom}	V_{nom}	Lowest Channel 2412 MHz	Middle Channel 2437 MHz	Highest Channel 2462 MHz	
Conducted power [dBm] Measured with DSSS modulation		20.32	20.25	20.67	
Radiated power [dBm] Measured with DSSS modulation		24.71	25.17	25.27	
Gain [dBi] Calculated		4.39	4.92	4.60	
Measurement uncertainty			± 1.6 dB (cond.) / ± 3.8 dB (rad.)		

6. LIST OF MEASURING EQUIPMENTS

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.			
1	Power Meter	R&S	NRVS	100444	2017-06-17	2018-06-16			
2	Power Sensor	R&S	NRV-Z81	100458	2017-06-17	2018-06-16			
3	Power Sensor	R&S	NRV-Z32	10057	2017-06-17	2018-06-16			
	ESA-E SERIES								
4	SPECTRUM	Agilent	E4407B	MY41440754	2017-11-17	2018-11-16			
ANALYZER									
5	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2017-06-17	2018-06-16			
6	SPECTRUM	R&S	FSP	100503	2017-06-17	2018-06-16			
	ANALYZER	Νάδ	1 01	100303		2010-00-10			
7	3m Semi Anechoic	SIDT	SAC-3M	03CH03-HY	2017-06-17	2018-06-16			
	Chamber	FRANKONIA	0/ (O 0)VI	0001100111	2017 00 17	2010-00-10			
8	Positioning Controller	MF	MF-7082	/	2017-06-17	2018-06-16			
9	EMI Test Software	AUDIX	E3	N/A	2017-06-17	2018-06-16			
10	EMI Test Receiver	R&S	ESR 7	101181	2017-06-17	2018-06-16			
11	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16			
12	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2017-06-23	2018-06-22			
13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2017-05-02	2018-05-01			
14	Horn Antenna	EMCO	3115	6741	2017-06-23	2018-06-22			
15	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2017-09-21	2018-09-20			
16	Broadband Preamplifier	SCHWARZBECK	BBV 9719	9719-025	2017-09-21	2018-09-20			
17	RF Cable-R03m	Jye Bao	RG142	CB021	2017-06-17	2018-06-16			
18	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2017-06-17	2018-06-16			
19	TEST RECEIVER	R&S	ESCI	101142	2017-06-17	2018-06-16			
20	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2017-06-17	2018-06-16			
21	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-00 32	2017-06-17	2018-06-16			
22	Artificial Mains	R&S	ENV216	101288	2017-06-17	2018-06-16			
23	RF Control Unit	JS Tonscend Corporation	JS0806-2	178060073	2017-10-28	2018-10-27			
24	JS1120-3 BT/WIFI	JS Tonscend	IS1120.2	/	N/A	N/A			
24 Test Software Corporation JS1120-3 / N/A N/A									
Note: /	Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO.,LTD.								

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT-----