

EMC TEST REPORT

Report No.: 16020572-FCC-E1

Supersede Report No.: N/A

Applicant	Nanjing Hanlong Technology Co., Ltd.	
Product Name	IP PHONE	
Main Model No.	UC601P	
Serial Model	UC601,UC902,UC902P	
Test Standard	FCC Part 15 Subpart B Class B:2015, ANSI C63.4: 2014	
Test Date	May 31 to June 01, 2016	
Issue Date	June 03, 2016	
Test Result	<input checked="" type="checkbox"/> Pass	<input type="checkbox"/> Fail
Equipment complied with the specification		<input checked="" type="checkbox"/>
Equipment did not comply with the specification		<input type="checkbox"/>
Louise Tu	Miro Bao	
Louise Tu Test Engineer	Miro Bao Checked By	
This test report may be reproduced in full only Test result presented in this test report is applicable to the tested sample only		

Issued by:

SIEMIC (Nanjing-China) Laboratories

2-1 Longcang Avenue Yuhua Economic and
Technology Development Park, Nanjing, China

Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email: China@siemic.com.cn

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report No.	16020572-FCC-E1
Page	3 of 36

This page has been left blank intentionally.

CONTENTS

1. REPORT REVISION HISTORY.....	5
2. CUSTOMER INFORMATION	5
3. TEST SITE INFORMATION.....	5
4. EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5. TEST SUMMARY	7
6. MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	8
6.1 AC POWER LINE CONDUCTED EMISSIONS.....	8
6.2 RADIATED EMISSIONS.....	14
ANNEX A. TEST INSTRUMENT.....	18
ANNEX B. EUT AND TEST SETUP PHOTOGRAPHS	19
ANNEX C. TEST SETUP AND SUPPORTING EQUIPMENT.....	32
ANNEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST.....	35
ANNEX E. DECLARATION OF SIMILARITY	36

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16020572-FCC-E1	NONE	Original	June 03, 2016

2. Customer information

Applicant Name	Nanjing Hanlong Technology Co., Ltd.
Applicant Add	5th Floor, 1st Building, Huashen Tech Park, 10 Huashen Temple, Yuhuatai Dis, Nanjing China
Manufacturer	Nanjing Hanlong Technology Co., Ltd.
Manufacturer Add	5th Floor, 1st Building, Huashen Tech Park, 10 Huashen Temple, Yuhuatai Dis, Nanjing China

3. Test site information

Lab performing tests	SIEMIC (Nanjing-China) Laboratories
Lab Add	2-1 Longcang Avenue Yuhua Economic and Technology Development Park, Nanjing, China
FCC Test Site No.	986914
IC Test Site No.	4842B-1
Test Software	Labview of SIEMIC version 1.0

4. Equipment under Test (EUT) Information

Description of EUT: IP PHONE

Main Model: UC601P

Serial Model: UC601,UC902,UC902P

Date EUT received: May 20,2016

Test Date(s): May 31 to June 01, 2016

Port: Internet Port、PC Port、DC Port

Input Power: 5Vdc、1.2A

Trade Name : Htek

FCC ID: 2ACUGUC6090SERIAL

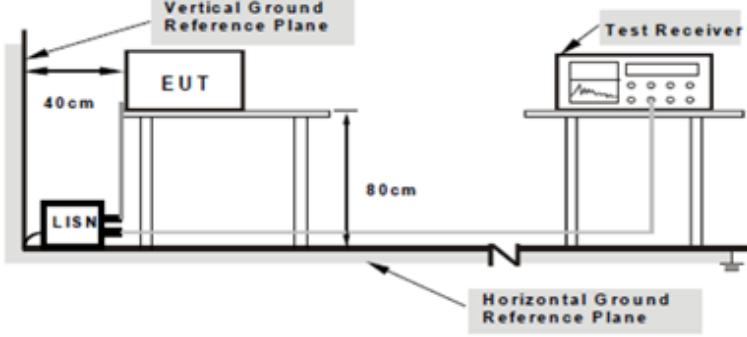
5. Test Summary

The product was tested in accordance with the following specifications.
 All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.107; ANSI C63.4: 2014	AC Power Line Conducted Emissions	Compliance
§15.109; ANSI C63.4: 2014	Radiated Emissions	Compliance

Measurement Uncertainty

Emissions		
Test Item	Description	Uncertainty
Radiated Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	3.952dB


Communication mode: Notebook ping IP Phone

6. Measurements, Examination And Derived Results

6.1 AC Power Line Conducted Emissions

Temperature	24°C
Relative Humidity	50%
Atmospheric Pressure	1013mbar
Test date :	June 01, 2016
Tested By :	Louise Tu

Requirement(s):

Spec	Requirement	Applicable																											
47CFR §15.107	<p>For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu]H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.</p> <p>Class B digital devices</p> <table border="1"> <thead> <tr> <th>Frequency ranges (MHz)</th> <th colspan="2">Limit (dBμV)</th> </tr> <tr> <th></th> <th>QP</th> <th>Average</th> </tr> </thead> <tbody> <tr> <td>0.15 ~ 0.5</td> <td>66 to 56</td> <td>56 to 46</td> </tr> <tr> <td>0.5 ~ 5</td> <td>56</td> <td>46</td> </tr> <tr> <td>5 ~ 30</td> <td>60</td> <td>50</td> </tr> </tbody> </table> <p>Class A digital devices</p> <table border="1"> <thead> <tr> <th>Frequency ranges (MHz)</th> <th colspan="2">Limit (dBμV)</th> </tr> <tr> <th></th> <th>QP</th> <th>Average</th> </tr> </thead> <tbody> <tr> <td>0.15 ~ 0.5</td> <td>79</td> <td>66</td> </tr> <tr> <td>0.5 ~ 30</td> <td>73</td> <td>60</td> </tr> </tbody> </table>	Frequency ranges (MHz)	Limit (dB μ V)			QP	Average	0.15 ~ 0.5	66 to 56	56 to 46	0.5 ~ 5	56	46	5 ~ 30	60	50	Frequency ranges (MHz)	Limit (dB μ V)			QP	Average	0.15 ~ 0.5	79	66	0.5 ~ 30	73	60	<input checked="" type="checkbox"/>
Frequency ranges (MHz)	Limit (dB μ V)																												
	QP	Average																											
0.15 ~ 0.5	66 to 56	56 to 46																											
0.5 ~ 5	56	46																											
5 ~ 30	60	50																											
Frequency ranges (MHz)	Limit (dB μ V)																												
	QP	Average																											
0.15 ~ 0.5	79	66																											
0.5 ~ 30	73	60																											
Test Setup	<p>Note:</p> <ol style="list-style-type: none"> 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units. 																												
Procedure	<ol style="list-style-type: none"> 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. 2. The power supply for the EUT was fed through a 50[mu]/50mH EUT LISN, connected to filtered mains. 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable. 4. All other supporting equipment were powered separately from another main supply. 5. The EUT was switched on and allowed to warm up to its normal operating condition. 6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver. 7. High peaks, relative to the limit line, were then selected. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10kHz. 8. Steps 6-7 were repeated for the LIVE line (for AC mains) or DC line (for DC power). 																												
Remark																													

Test Report No.	16020572-FCC-E1
Page	9 of 36

Result	<input checked="" type="checkbox"/> Pass	<input type="checkbox"/> Fail
Test Data	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> N/A
Test Plot	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> N/A

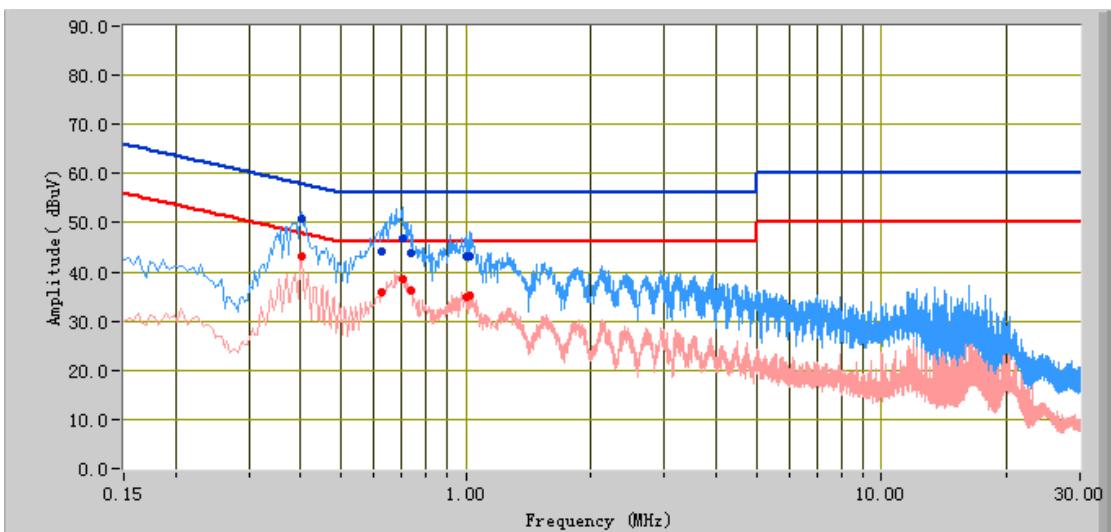
Data sample

Frequency (MHz)	Quasi-Peak (dB μ V)	Limit (dB μ V)	Margin (dB)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Factors (dB)
XXX	56.21	66.00	-9.79	39.20	56.00	-16.80	12.22

Frequency (MHz) = Emission frequency in MHz

Quasi-Peak/Average (dB μ V)=Receiver Reading(dB μ V)+ Factor(dB)

Limit(dB μ V)=Limit stated in standard

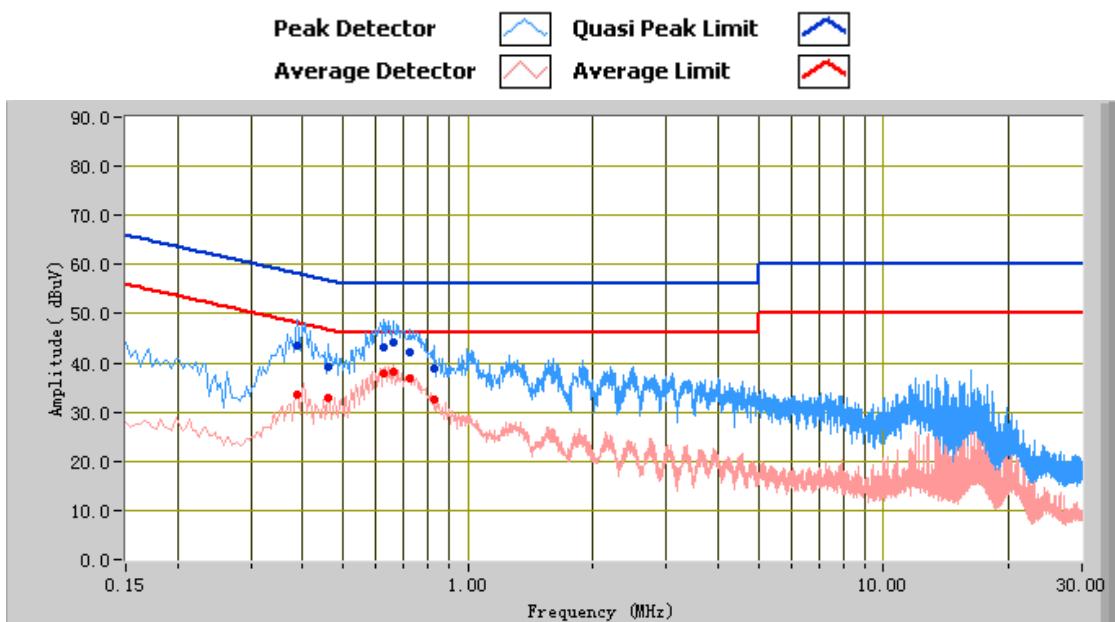

Factor (dB)= cable loss+ Insertion loss of LISN+ Insertion loss of transient limiter (The transient limiter included 10dB attenuation)

Calculation Formula:

Margin (dB)=Quasi Peak / Average (dB μ V) – limit (dB μ V)

Test Mode : Communication mode

Peak Detector Quasi Peak Limit
 Average Detector Average Limit

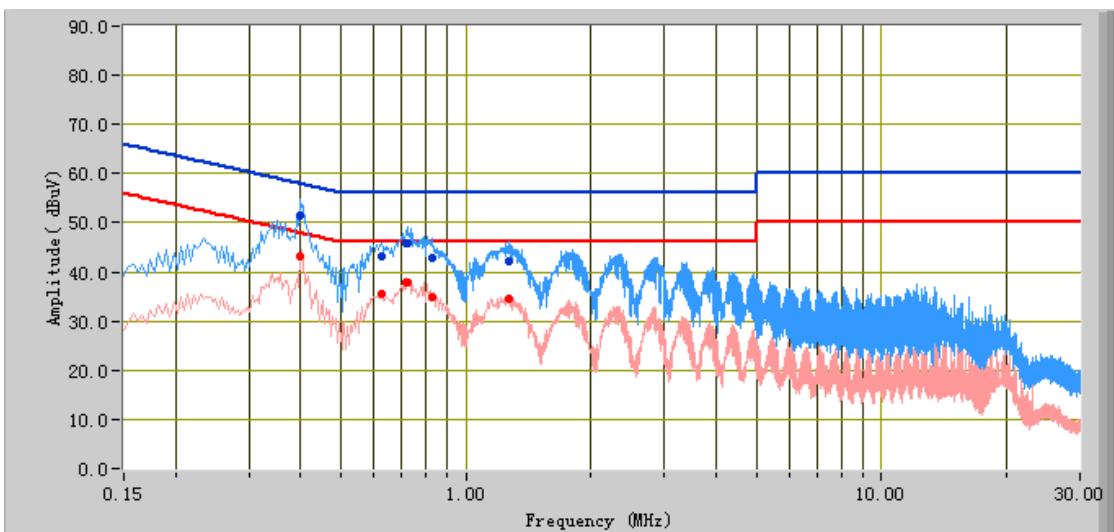


Test Data

Phase Line Plot at 120Vac, 60Hz

Frequency (MHz)	Quasi Peak (dB μ V)	Limit (dB μ V)	Margin (dB)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Factors (dB)
0.70	46.90	56.00	-9.10	38.42	46.00	-7.58	10.92
0.40	50.96	57.81	-6.85	43.14	47.81	-4.67	11.23
0.73	43.97	56.00	-12.03	36.11	46.00	-9.89	10.90
0.63	44.33	56.00	-11.67	35.83	46.00	-10.17	10.99
1.02	43.22	56.00	-12.78	35.06	46.00	-10.94	10.68
1.01	43.19	56.00	-12.81	34.92	46.00	-11.08	10.68

Test Mode : Communication mode

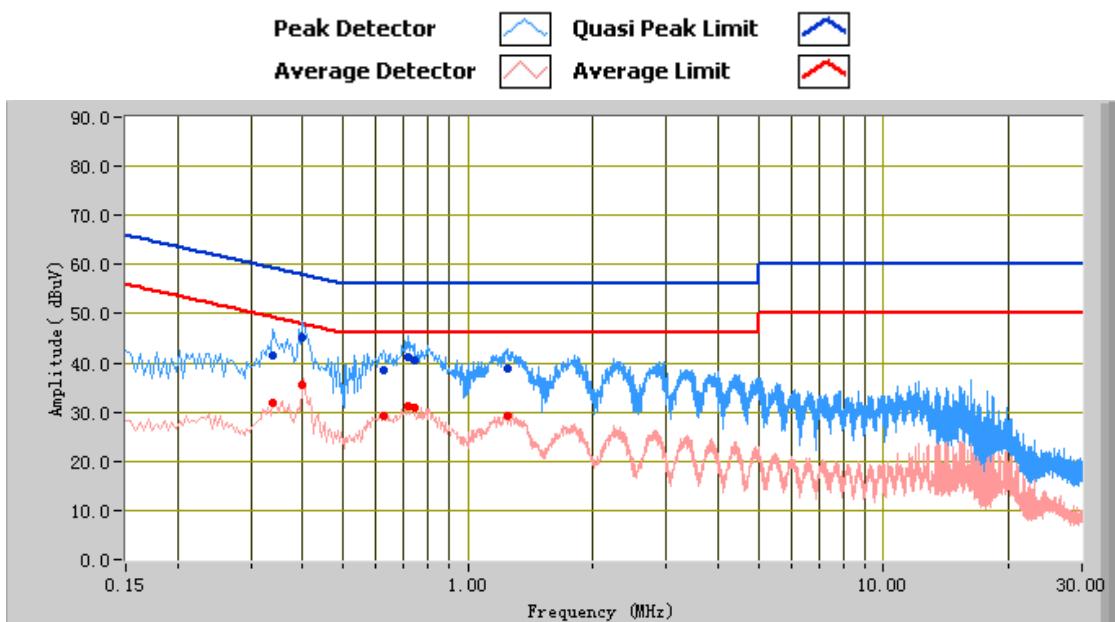

Test Data

Phase Neutral Plot at 120Vac, 60Hz

Frequency (MHz)	Quasi Peak (dB μ V)	Limit (dB μ V)	Margin (dB)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Factors (dB)
0.63	43.10	56.00	-12.90	37.82	46.00	-8.18	10.97
0.66	44.16	56.00	-11.84	38.23	46.00	-7.77	10.95
0.73	42.33	56.00	-13.67	36.73	46.00	-9.27	10.90
0.39	43.41	58.15	-14.74	33.46	48.15	-14.69	11.24
0.83	38.82	56.00	-17.18	32.55	46.00	-13.45	10.83
0.46	39.20	56.66	-17.46	32.91	46.66	-13.75	11.12

Test Mode : Communication mode

Peak Detector Quasi Peak Limit
 Average Detector Average Limit



Test Data

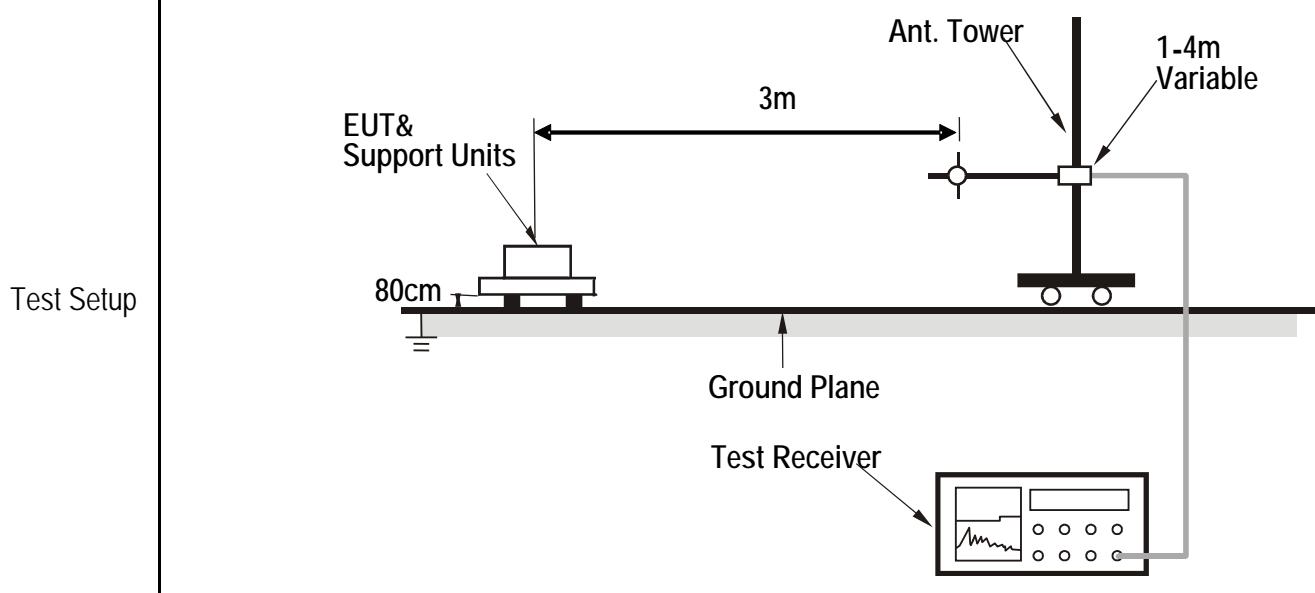
Phase Line Plot at 240Vac, 50Hz

Frequency (MHz)	Quasi Peak (dB μ V)	Limit (dB μ V)	Margin (dB)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Factors (dB)
0.40	51.43	57.90	-6.47	43.18	47.90	-4.71	11.24
0.73	45.73	56.00	-10.27	37.96	46.00	-8.04	10.90
0.71	45.68	56.00	-10.32	37.81	46.00	-8.19	10.91
0.83	42.90	56.00	-13.10	34.88	46.00	-11.12	10.82
1.27	42.30	56.00	-13.70	34.41	46.00	-11.59	10.73
0.63	43.28	56.00	-12.72	35.46	46.00	-10.54	10.99

Test Mode : Communication mode

Test Data

Phase Neutral Plot at 240Vac, 50Hz


Frequency (MHz)	Quasi Peak (dB μ V)	Limit (dB μ V)	Margin (dB)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Factors (dB)
0.40	45.17	57.90	-12.72	35.50	47.90	-12.40	11.22
0.71	41.17	56.00	-14.83	31.25	46.00	-14.75	10.91
0.74	40.51	56.00	-15.49	30.81	46.00	-15.19	10.89
0.34	41.64	59.25	-17.62	31.86	49.25	-17.39	11.32
1.24	38.85	56.00	-17.15	29.12	46.00	-16.88	10.75
0.63	38.54	56.00	-17.46	29.32	46.00	-16.68	10.97

6.2 Radiated Emissions

Temperature	24°C
Relative Humidity	50%
Atmospheric Pressure	1013mbar
Test date :	May 31, 2016
Tested By :	Louise Tu

Requirement(s):

Spec	Requirement	Applicable																								
47CFR §15.107(d)	<p>Except higher limit as specified elsewhere in other section, the emissions from the low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges</p> <table border="1"> <thead> <tr> <th colspan="2">Class B digital devices</th> </tr> <tr> <th>Frequency range (MHz)</th> <th>Field Strength (μV/m)</th> </tr> </thead> <tbody> <tr> <td>30 – 88</td> <td>100</td> </tr> <tr> <td>88 – 216</td> <td>150</td> </tr> <tr> <td>216 – 960</td> <td>200</td> </tr> <tr> <td>Above 960</td> <td>500</td> </tr> </tbody> </table> <table border="1"> <thead> <tr> <th colspan="2">Class A digital devices</th> </tr> <tr> <th>Frequency range (MHz)</th> <th>Field Strength (μV/m)</th> </tr> </thead> <tbody> <tr> <td>30 – 88</td> <td>90</td> </tr> <tr> <td>88 – 216</td> <td>150</td> </tr> <tr> <td>216 – 960</td> <td>210</td> </tr> <tr> <td>Above 960</td> <td>300</td> </tr> </tbody> </table>	Class B digital devices		Frequency range (MHz)	Field Strength (μ V/m)	30 – 88	100	88 – 216	150	216 – 960	200	Above 960	500	Class A digital devices		Frequency range (MHz)	Field Strength (μ V/m)	30 – 88	90	88 – 216	150	216 – 960	210	Above 960	300	<input checked="" type="checkbox"/>
Class B digital devices																										
Frequency range (MHz)	Field Strength (μ V/m)																									
30 – 88	100																									
88 – 216	150																									
216 – 960	200																									
Above 960	500																									
Class A digital devices																										
Frequency range (MHz)	Field Strength (μ V/m)																									
30 – 88	90																									
88 – 216	150																									
216 – 960	210																									
Above 960	300																									

Procedure	<ol style="list-style-type: none"> The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterisation. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: <ol style="list-style-type: none"> Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen. The EUT was then rotated to the direction that gave the maximum emission. Finally, the antenna height was adjusted to the height that gave the maximum emission. For emission frequencies measured below and above 1GHz, set the spectrum analyzer on a 100kHz and 1MHz resolution bandwidth respectively for each frequency measured.
-----------	---

	4. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.
Remark	
Result	<input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail
Test Data	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> N/A
Test Plot	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> N/A

Data sample

Frequency (MHz)	Quasi Peak (dB μ V/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dB μ V/m)	Margin (dB)
XXX	32.23	181.00	H	350.00	-38.23	40.00	-7.77

Frequency (MHz) = Emission frequency in MHz

Quasi-Peak (dB μ V/m) = Receiver Reading(dB μ V/m) + Factor(dB)

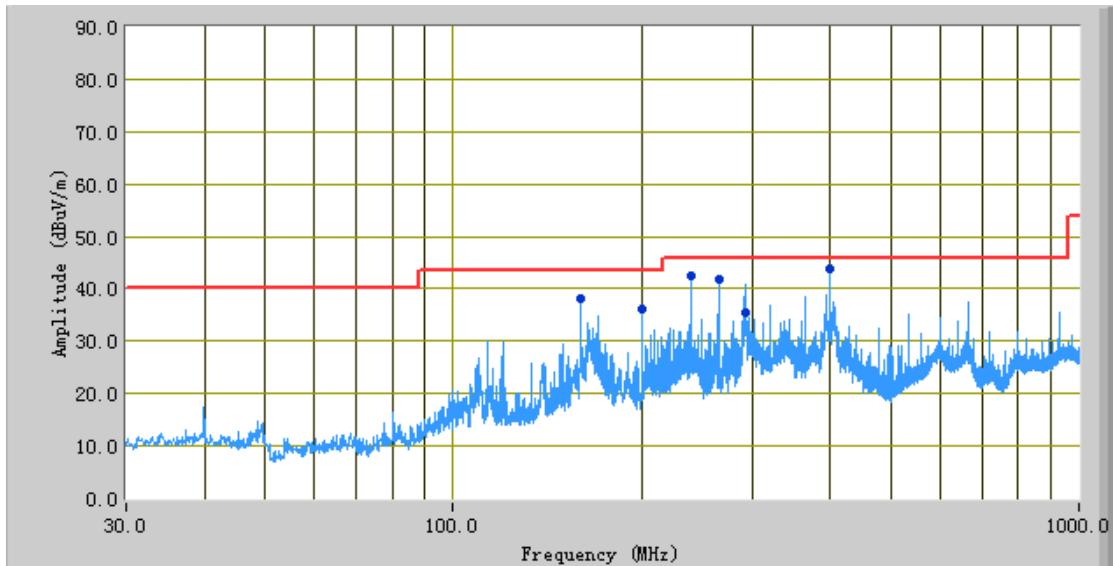
Azimuth=Position of turn table

Polarity=Polarity of Receiver antenna

Height(cm)= Height of Receiver antenna

Factor (dB)=Antenna factor + cable loss- antenna gain

Limit (dB μ V/m)=Limit stated in standard


Calculation Formula:

Margin (dB)=Quasi Peak (dB μ V/m) – limit (dB μ V/m)

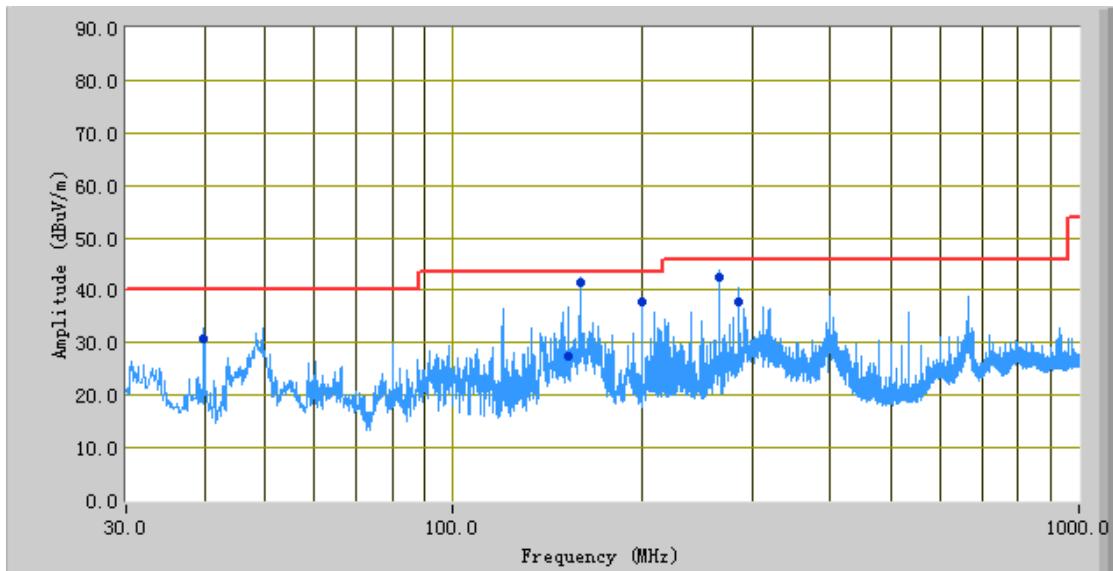
Test Mode:	Communication mode
------------	--------------------

(Below 1GHz)

Peak Detector
 Quasi Peak Limit

Test Data

Horizontal Polarity Plot @3m


Frequency (MHz)	Quasi Peak (dB μ V/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dB μ V/m)	Margin (dB)
400.00	44.23	360.00	H	100.00	-27.84	46.00	-1.77
240.03	42.49	210.00	H	129.00	-28.50	46.00	-3.51
266.65	41.71	258.00	H	148.00	-28.78	46.00	-4.29
160.00	38.17	128.00	H	169.00	-31.47	43.50	-5.33
292.89	35.50	249.00	H	100.00	-29.06	46.00	-10.50
200.00	36.13	295.00	H	171.00	-31.54	43.50	-7.37

Note: The highest frequency of the internal sources of the EUT is less than 108MHz, so the measurement shall only be made up to 1GHz.

Test Mode:	Communication mode
------------	--------------------

(Below 1GHz)

Peak Detector
 Quasi Peak Limit

Test Data

Vertical Polarity Plot @3m

Frequency (MHz)	Quasi Peak (dB μ V/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dB μ V/m)	Margin (dB)
160.02	41.45	289.00	V	100.00	-31.37	43.50	-2.05
266.67	42.35	284.00	V	127.00	-29.78	46.00	-3.65
200.01	37.85	352.00	V	117.00	-32.04	43.50	-5.65
286.39	37.33	303.00	V	333.00	-29.69	46.00	-8.67
153.08	27.30	104.00	V	156.00	-31.26	43.50	-16.20
40.00	30.66	309.00	V	108.00	-29.24	40.00	-9.34

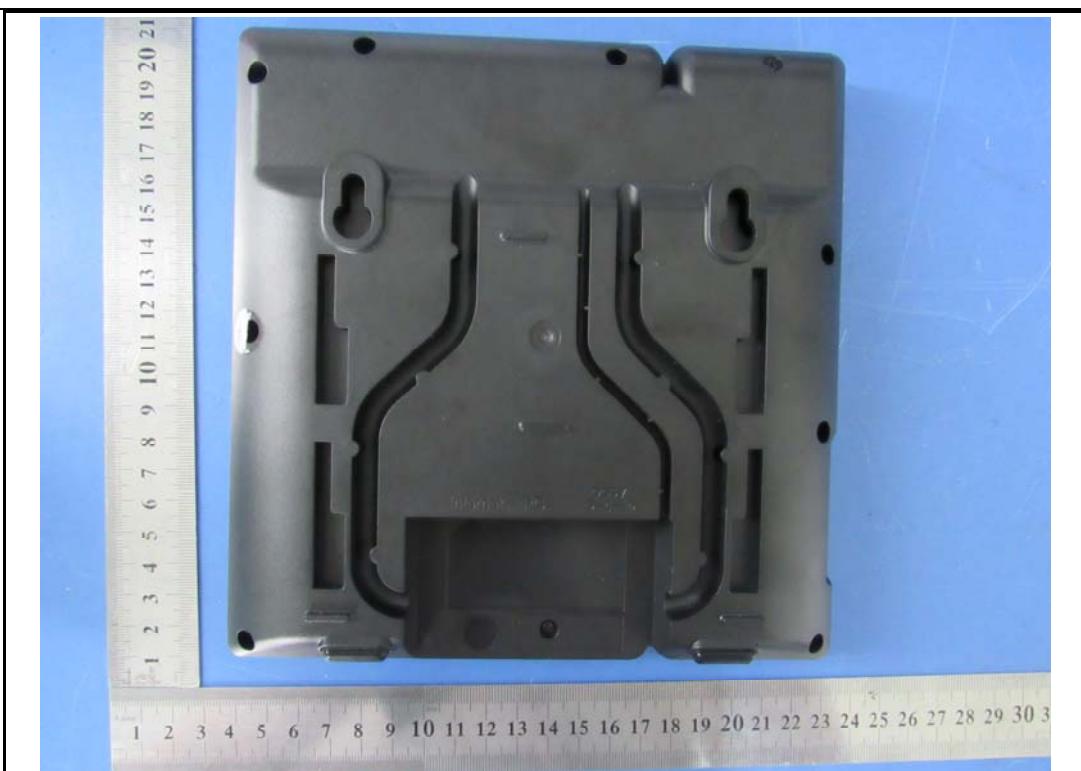
Note: The highest frequency of the internal sources of the EUT is less than 108MHz, so the measurement shall only be made up to 1GHz.

Annex A. TEST INSTRUMENT

Instrument	Manufacture	Model	Serial #	Cal Date	Cal Due	In use
Conducted Emissions						
R&S Receiver	ROHDE&SCHWARZ	ESPI3	101216	03/31/2016	03/31/2017	<input checked="" type="checkbox"/>
Transient Limiter	Com-Power	LIT-153	531021	10/30/2015	10/30/2016	<input checked="" type="checkbox"/>
R&S LISN(9kHz~30MHz)	ROHDE&SCHWARZ	ESH3-Z5	838979/005	03/31/2016	03/31/2017	<input checked="" type="checkbox"/>
ISN	TESEQ	ISN T800	27093	03/31/2016	03/31/2017	N/A
SIEMIC Labview Conducted Emissions software	SIEMIC	V1.0	N/A	N/A	N/A	N/A
Radiated Emissions						
R&S Receiver	ROHDE&SCHWARZ	ESPI3	101216	03/31/2016	03/31/2017	<input checked="" type="checkbox"/>
Spectrum Analyzer	Agilent Technologies	N9010A	MY47191130	03/31/2016	03/31/2017	N/A
EMCO Horn Antenna (1 ~18GHz)	EMCO	3115	N/A	11/15/2015	11/14/2016	N/A
Broadband Horn Antenna	A-INFOMW	JXTXLB-10180	J2031081120092	10/31/2015	10/31/2016	N/A
Microwave Pre-Amp (18~40GHz)	N/A	PA-840	181250	05/29/2015	05/28/2016	N/A
HP Pre-amplifier	hp HEWLETT PACKARD	8447F	1937A01160	10/30/2015	10/30/2016	<input checked="" type="checkbox"/>
Sunol Sciences, Inc. antenna	Sunol Sciences	JB6	A121411	10/31/2015	10/31/2016	<input checked="" type="checkbox"/>
SIEMIC Labview Radiated Emissions software	SIEMIC	V1.0	N/A	N/A	N/A	<input checked="" type="checkbox"/>

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph EUT External Photo


Main Model

The Whole Package - Front View

EUT - Front View

EUT - Rear View

EUT - Top View

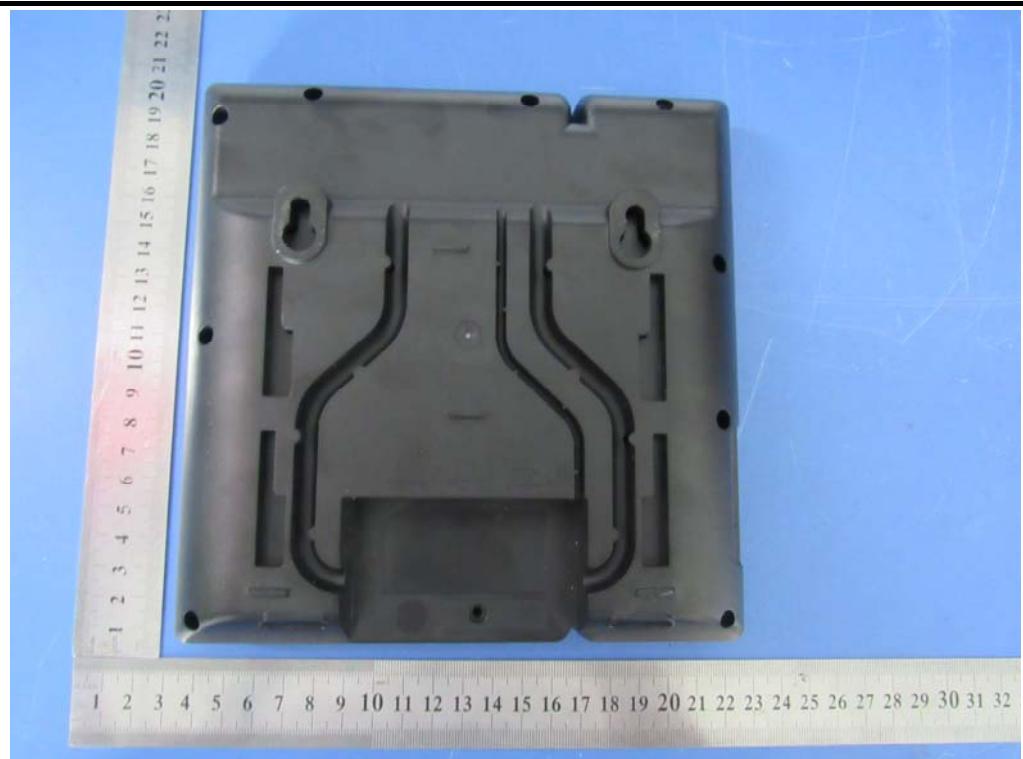
Test Report No.	16020572-FCC-E1
Page	21 of 36

EUT - Bottom View

EUT - Left View

Test Report No.	16020572-FCC-E1
Page	22 of 36

EUT – Right View


Serial Model

The Whole Package - Front View

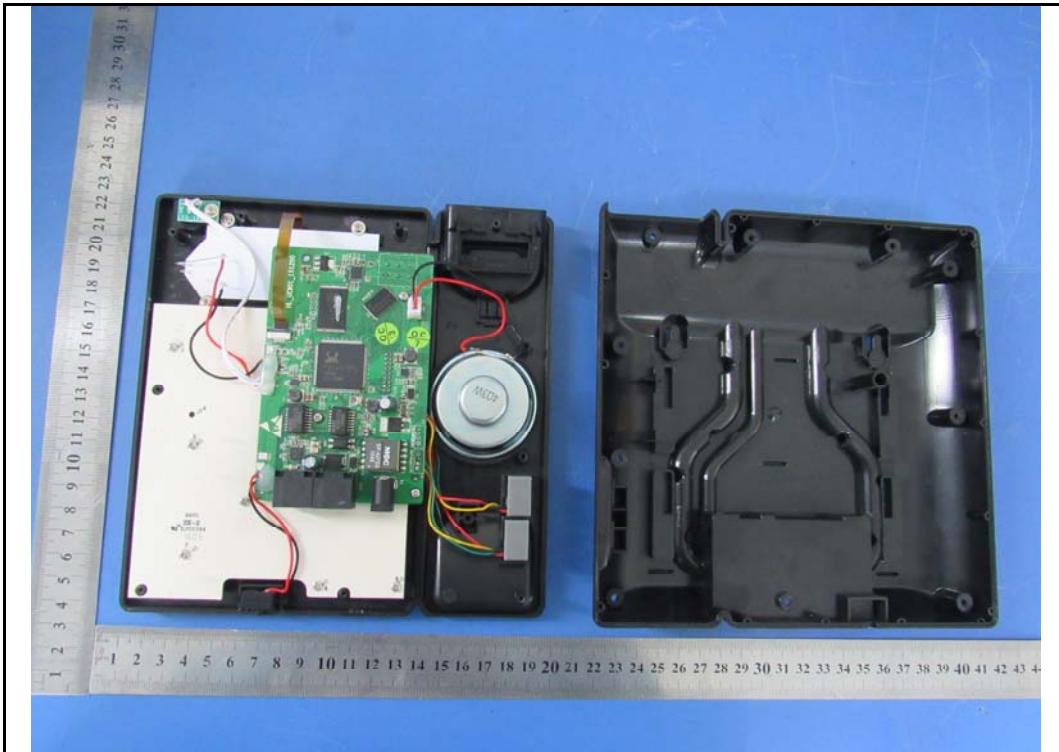
EUT - Front View

EUT - Rear View

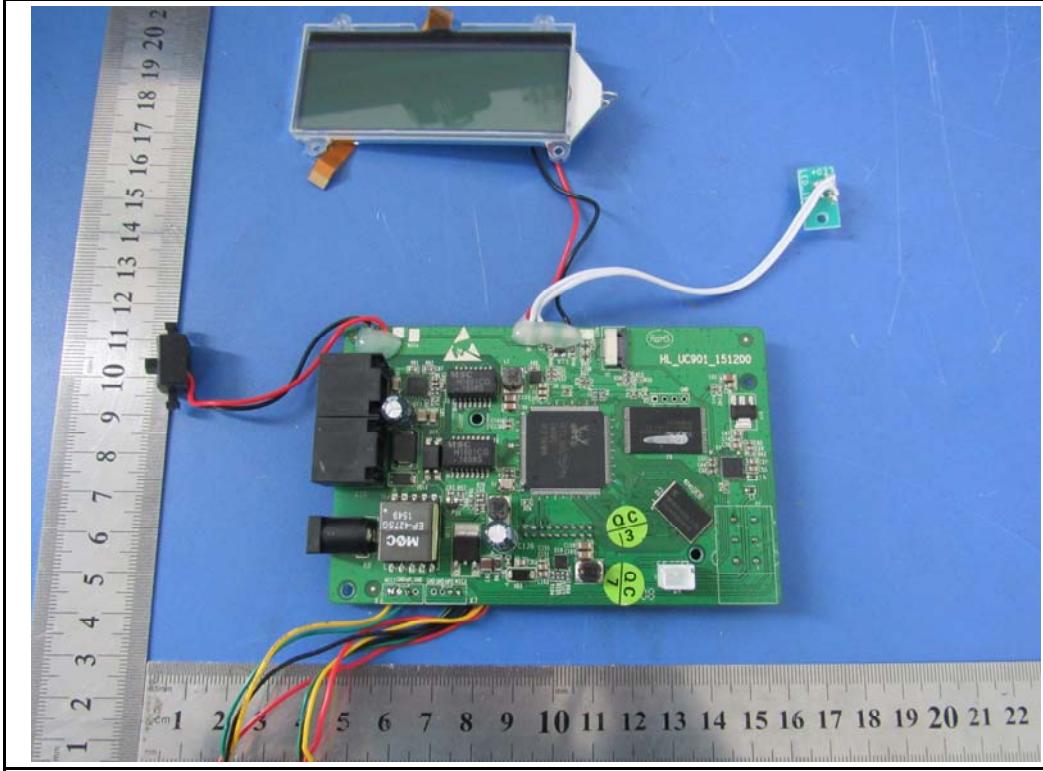
EUT - Top View

Test Report No.	16020572-FCC-E1
Page	25 of 36

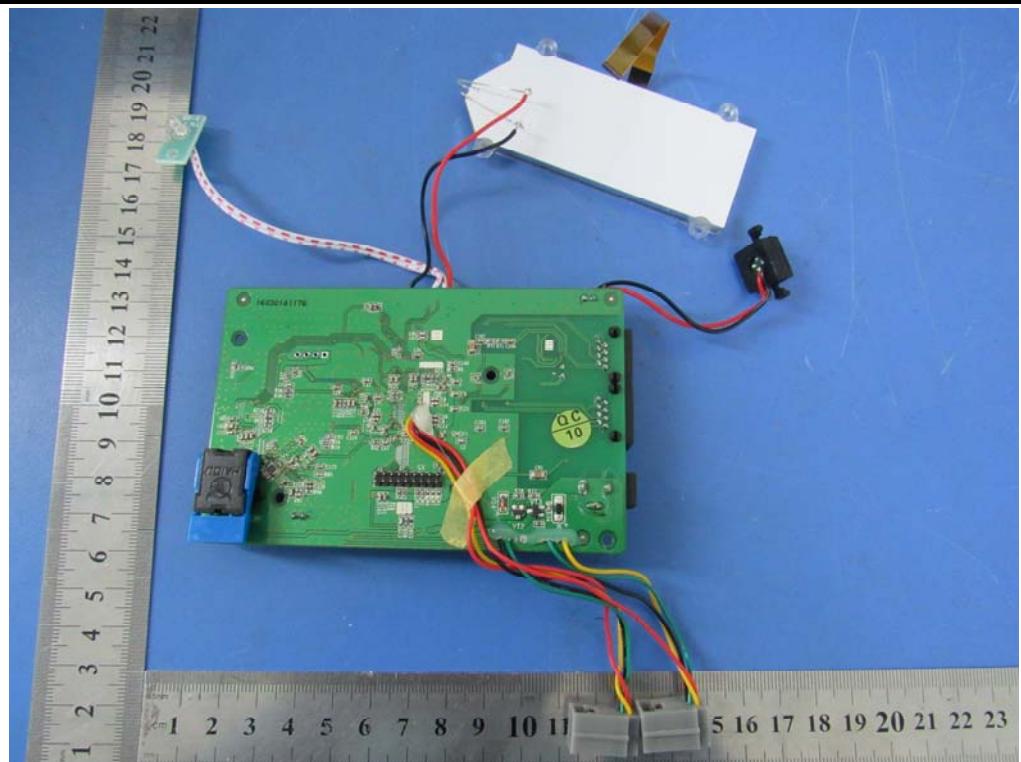
EUT - Bottom View

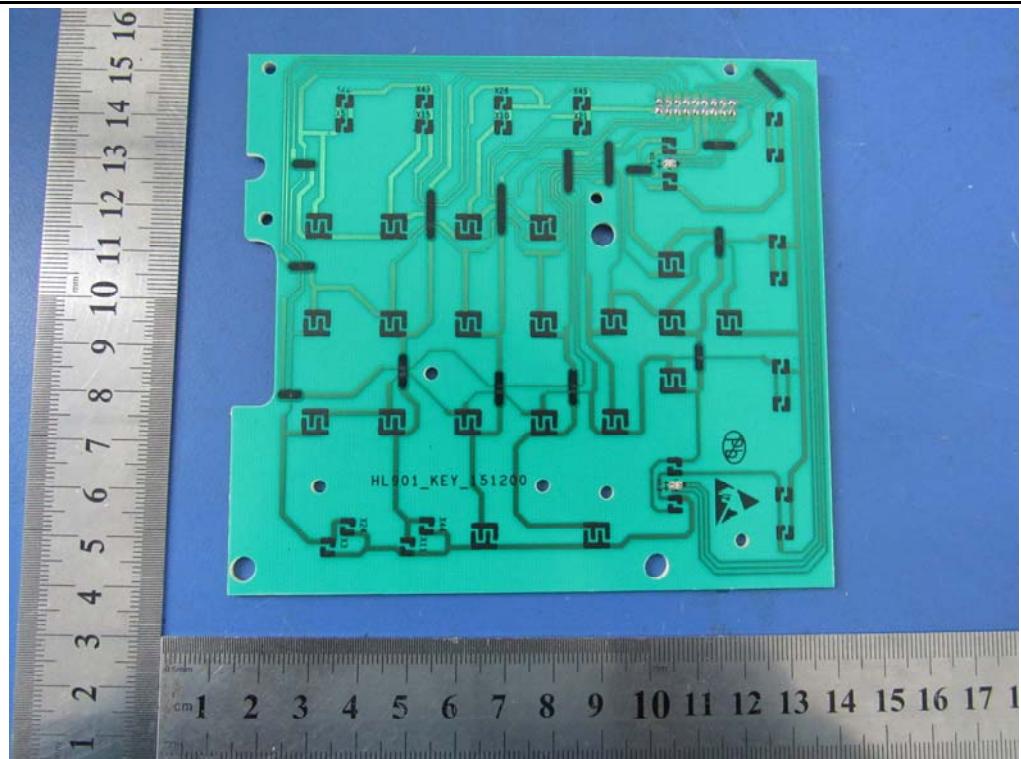

EUT - Left View

Test Report No.	16020572-FCC-E1
Page	26 of 36

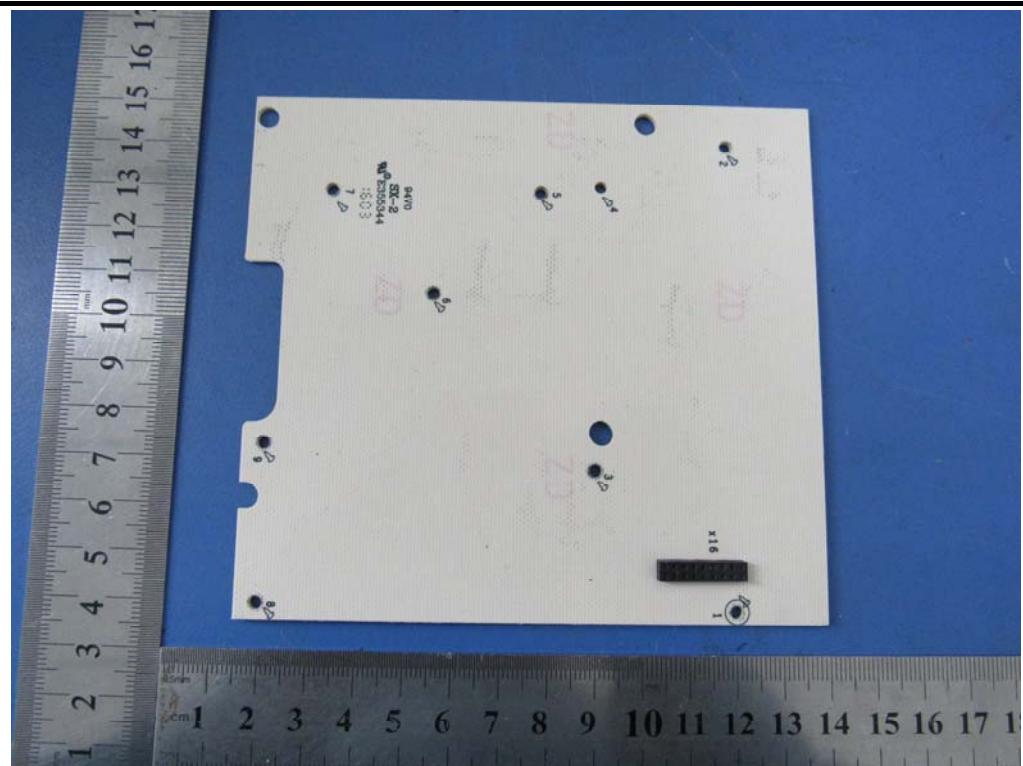


EUT – Right View


Annex B.ii. Photograph EUT Internal Photo


EUT – Uncover Front View

EUT PCB1 - Front View

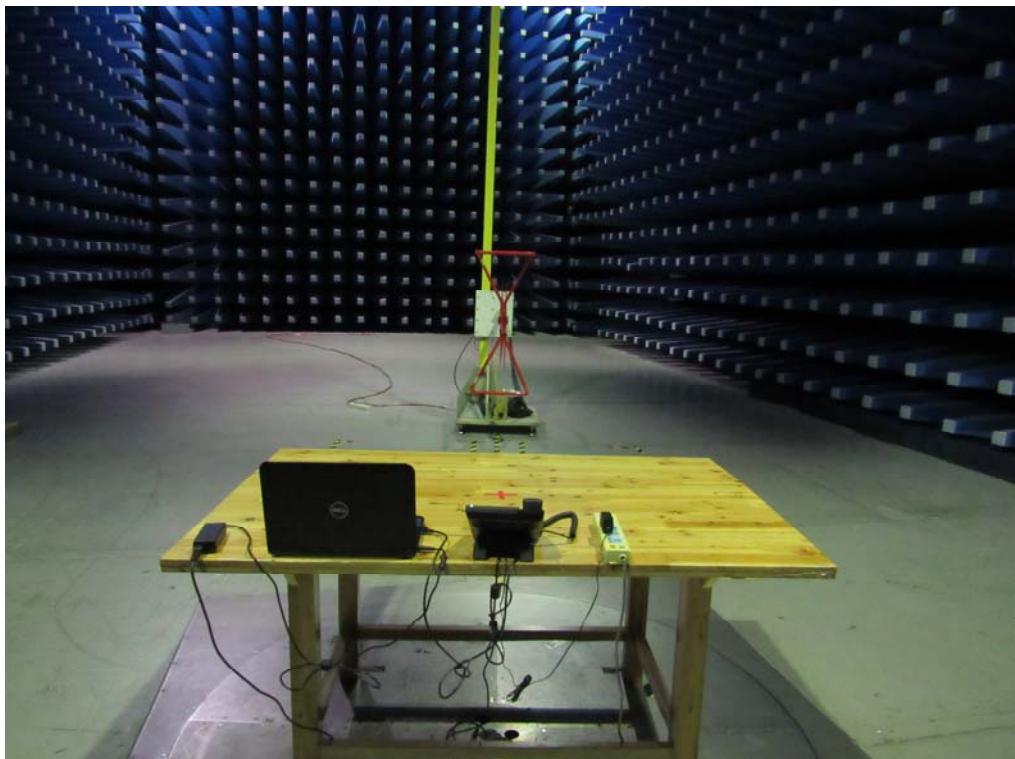


EUT PCB1 - Rear View

EUT PCB2 - Front View

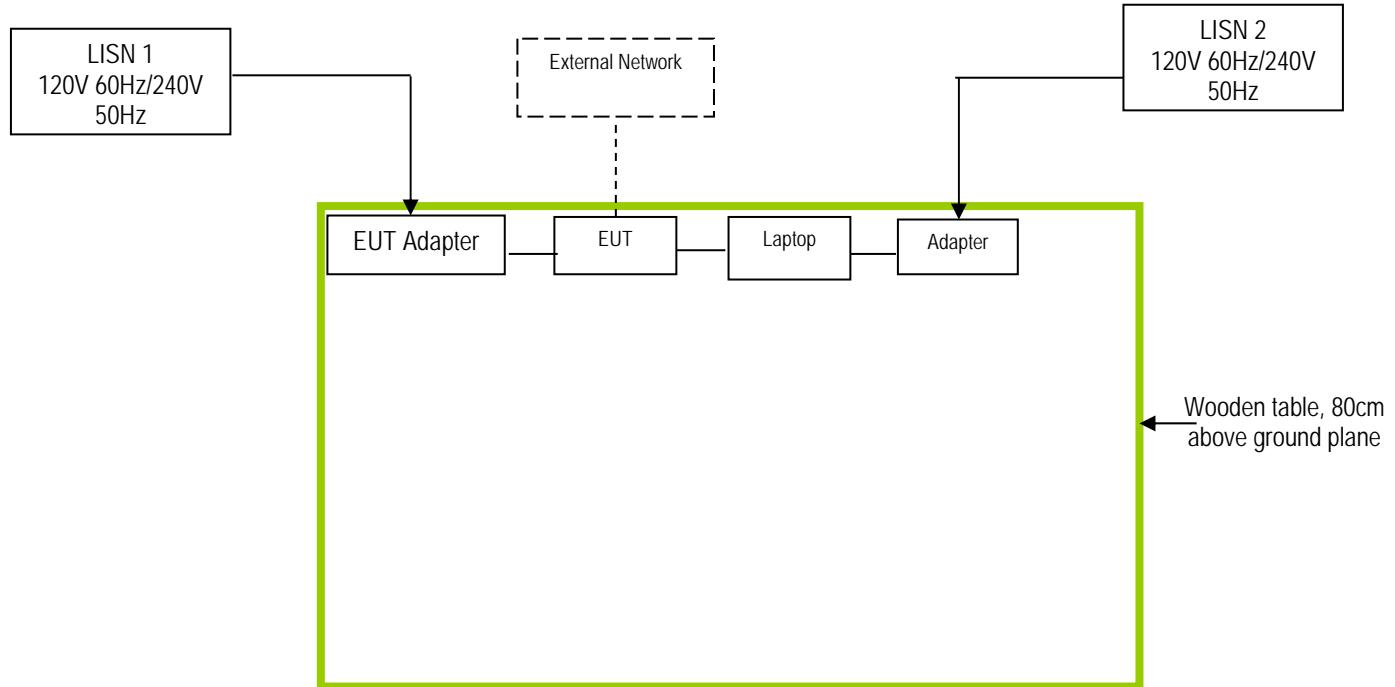
Test Report No.	16020572-FCC-E1
Page	29 of 36

EUT PCB2 - Rear View

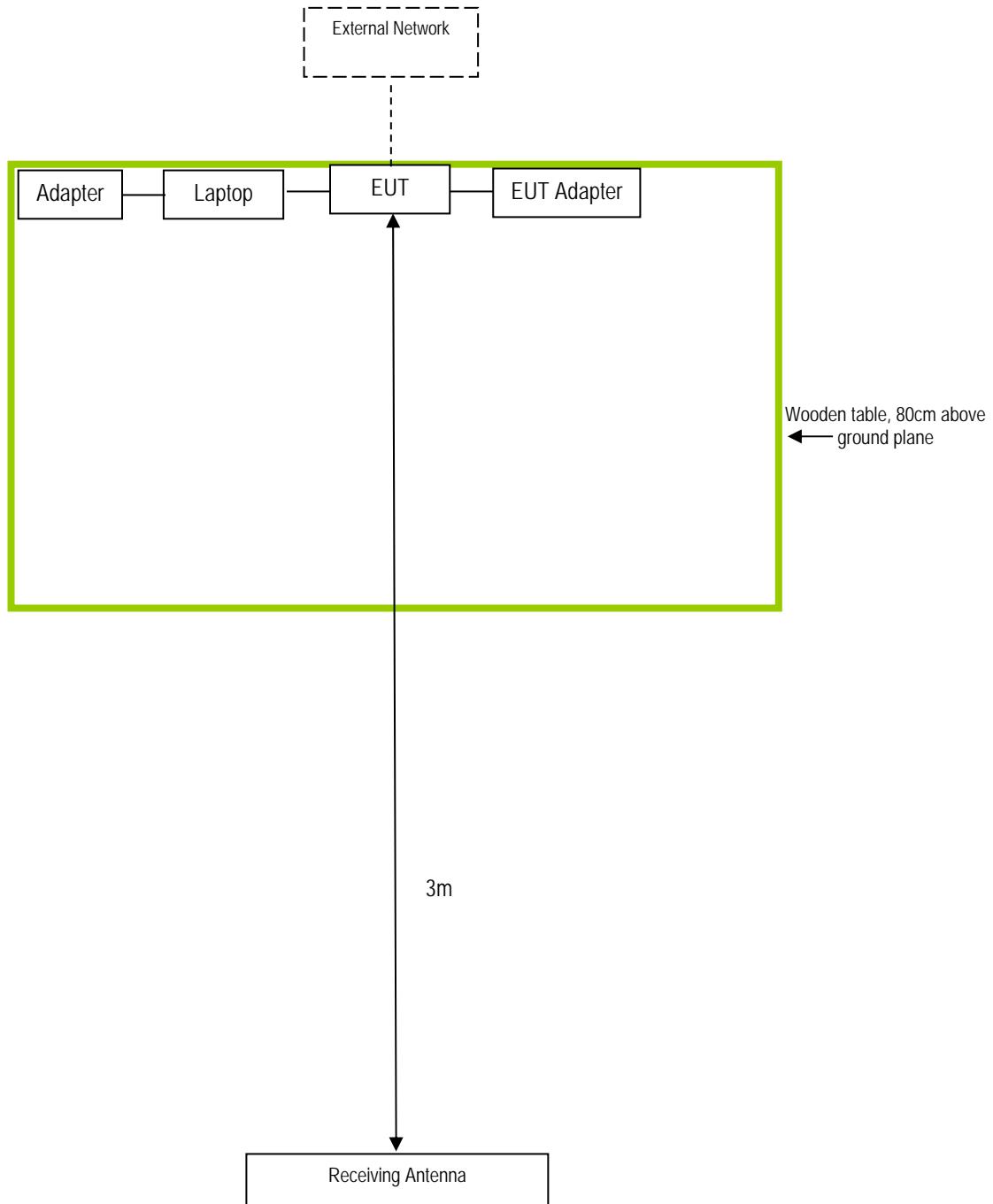

Annex B.iii. Photograph Test Setup Photo

Conducted Emissions Setup Front View

Conducted Emissions Setup Side View



Radiated Emissions Setup Below 1GHz Front View


Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.i. TEST SET UP BLOCK

Block Configuration Diagram for Conducted Emissions

Block Configuration Diagram for Radiated Emissions

Annex C. ii. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Manufacturer	Equipment Description	Model	Calibration Due Date
Dell Inc	Laptop	Inspiron 14	N/A

Test Report No.	16020572-FCC-E1
Page	35 of 36

Annex D. User Manual / Block Diagram / Schematics / Partlist

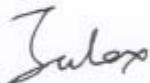
Please see Attachment

Annex E. DECLARATION OF SIMILARITY

Nanjing Hanlong Technology Co., Ltd.

Statement

Model number: UC601P, UC601, UC902P, UC902


We hereby state that these models are identical in interior structure, electrical circuits and components, and just model names , key sorting and power supply of POE are different.

Your assistance on this matter is highly appreciated.

Sincerely,

Signature:

Name : Julex

Company Name: Nanjing Hanlong Technology Co.,Ltd.

Address: 5th Floor, 1st Building, Huashen Tech Park, 10 Huashen Temple,
Yuhuatai Dis, Nanjing China

Telephone: 025-84658050

E-mail: Julex@hanlongtek.com