

RF Exposure evaluation

According to 447498 D01 General RF Exposure Guidance v05
The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6
GHz at test separation distances ≤ 50 mm are determined by:
[(max. power of channel, including tune-up tolerance, mW)/(min.
test separation distance, mm)] $\cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and
 ≤ 7.5 for 10-g extremity SAR, where

$f(\text{GHz})$ is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before
calculation

The result is rounded to one decimal place for comparison

For 2.4G wireless, the worse case below:

$$\text{eirp} = \text{pt} \times \text{gt} = (\text{Exd})^2/30$$

where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m, --- $10^{(\text{dBuV/m})/20}/10^6$

d = measurement distance in meters (m)---3m

$$\text{So } \text{pt} = (\text{Exd})^2/30 \times \text{gt}$$

Field strength = 94.7dBuV/m @3m

Ant gain 0dBi; so Ant numeric gain=1

$$\text{So } \text{pt} = \{[10^{(94.7/20)}/10^6 \times 3]^2 / (30 \times 1)\} \times 1000 \text{mW} = 0.885 \text{mW}$$

$$\text{So } (0.885 \text{mW} / 5 \text{mm}) \times \sqrt{2.440 \text{GHz}} = 0.28$$

For the BT4.0, the worse result is below:

[2480 MHz -2.223dBm (0.599mW) output power]

$$(0.599 \text{mW} / 5 \text{mm}) \cdot [\sqrt{2.480} (\text{GHz})] = 0.189$$

2.4G wireless and BT 4.0 can transmit at the same time, so,
The worst result is below:

$$0.28 + 0.189 = 0.469 < 3.0 \text{ for 1-g SAR}$$

Then SAR evaluation is not required