

# RM Costruzioni Elettroniche S.r.l.

# RF TEST REPORT

# **Report Type:**

FCC Part 97 RF report

#### Model:

BLA703 FCC

#### **REPORT NUMBER:**

2405B0268SHA-001

#### **ISSUE DATE:**

December 13, 2024

#### **DOCUMENT CONTROL NUMBER:**

TTRF Part 97\_V1 © 2018 Intertek





Intertek Testing Services (Shanghai FTZ) Co., Ltd.
Building No.86, 1198 Qinzhou Road (North)
Caohejing Development Zone
Shanghai 200233, China

Telephone: 86 21 6127 8200

www.intertek.com

Report no.: 2405B0268SHA-001

**Applicant:** RM Costruzioni Elettroniche S.r.l.

Via IV Novembre 42, 40046, Ponte della Venturina, Alto Reno Terme

(BOLOGNA), ITALY

**Manufacturer:** RM Costruzioni Elettroniche S.r.l.

Via IV Novembre 42, 40046, Ponte della Venturina, Alto Reno Terme

(BOLOGNA), ITALY

Manufacturing site: RM Costruzioni Elettroniche S.r.l.

Via IV Novembre 42, 40046, Ponte della Venturina, Alto Reno Terme

(BOLOGNA), ITALY

**Product Name:** HF 25-30 MHz Linear Amplifier

**Type/Model:** BLA703 FCC **FCC ID:** 2ACTR-BLA703

#### **SUMMARY:**

The equipment complies with the requirements according to the following standard(s) or Specification:

**47CFR Part 97 (2017):** FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 97 – AMATEUR RADIO SERVICE

**47CFR Part 2 (2021):** Frequency allocations and radio treaty matters; general rules and regulations.

| PREPARED BY:     | REVIEWED BY: |  |
|------------------|--------------|--|
| Tylan tany       | Wakeyou      |  |
| Project Engineer | Reviewer     |  |
| Dylan Tang       | Wakeyou Wang |  |

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.



# **Content**

| 1.2 TECHNICAL SPECIFICATION  1.3 DESCRIPTION OF TEST FACILITY  2 TEST SPECIFICATIONS  2.1 STANDARDS OR SPECIFICATION  2.2 MODE OF OPERATION DURING THE TEST  2.3 TEST SOFTWARE LIST  2.4 TEST PERIPHERALS LIST  2.5 TEST ENVIRONMENT CONDITION:  2.6 INSTRUMENT LIST  2.7 MEASUREMENT UNCERTAINTY  3 AMPLIFIER GAIN  3.1 LIMIT  3.2 MEASUREMENT PROCEDURE  3.3 TEST CONFIGURATION  3.4 TEST RESULTS  4 SPURIOUS EMISSIONS  4.1 LIMIT  4.2 MEASUREMENT PROCEDURE  4.3 TEST CONFIGURATION  4.4 TEST RESULTS  4.5 MEASUREMENT PLOTS  5 SPURIOUS EMISSIONS  5.1 LIMIT                                                                                        | RE  | ION HISTORY                               | . 4            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------|----------------|
| 1.1 DESCRIPTION OF EQUIPMENT UNDER TEST (EUT).  1.2 TECHNICAL SPECIFICATION.  1.3 DESCRIPTION OF TEST FACILITY.  2 TEST SPECIFICATIONS.  2.1 STANDARDS OR SPECIFICATION.  2.2 MODE OF OPERATION DURING THE TEST.  2.3 TEST SOFTWARE LIST.  2.4 TEST PERIPHERALS LIST.  2.5 TEST ENVIRONMENT CONDITION:  2.6 INSTRUMENT LIST.  2.7 MEASUREMENT UNCERTAINTY.  3 AMPLIFIER GAIN.  3.1 LIMIT.  3.2 MEASUREMENT PROCEDURE.  3.3 TEST CONFIGURATION.  3.4 TEST RESULTS.  4 SPURIOUS EMISSIONS.  4.1 LIMIT.  4.2 MEASUREMENT PROCEDURE.  4.3 TEST CONFIGURATION.  4.4 TEST RESULTS.  4.5 MEASUREMENT PROTECTION.  4.5 MEASUREMENT PLOTS.  5 SPURIOUS EMISSIONS. | MI  | UREMENT RESULT SUMMARY                    | . 5            |
| 1.2 TECHNICAL SPECIFICATION  1.3 DESCRIPTION OF TEST FACILITY  2 TEST SPECIFICATIONS  2.1 STANDARDS OR SPECIFICATION  2.2 MODE OF OPERATION DURING THE TEST  2.3 TEST SOFTWARE LIST  2.4 TEST PERIPHERALS LIST  2.5 TEST ENVIRONMENT CONDITION:  2.6 INSTRUMENT LIST  2.7 MEASUREMENT UNCERTAINTY  3 AMPLIFIER GAIN  3.1 LIMIT  3.2 MEASUREMENT PROCEDURE  3.3 TEST CONFIGURATION  3.4 TEST RESULTS  4 SPURIOUS EMISSIONS  4.1 LIMIT  4.2 MEASUREMENT PROCEDURE  4.3 TEST CONFIGURATION  4.4 TEST RESULTS  4.5 MEASUREMENT PLOTS  5 SPURIOUS EMISSIONS  5.1 LIMIT                                                                                        | 1 ( | ERAL INFORMATION                          | . 6            |
| 2.1 STANDARDS OR SPECIFICATION 2.2 MODE OF OPERATION DURING THE TEST 2.3 TEST SOFTWARE LIST. 2.4 TEST PERIPHERALS LIST 2.5 TEST ENVIRONMENT CONDITION: 2.6 INSTRUMENT LIST. 2.7 MEASUREMENT UNCERTAINTY  3 AMPLIFIER GAIN 3.1 LIMIT. 3.2 MEASUREMENT PROCEDURE. 3.3 TEST CONFIGURATION 3.4 TEST RESULTS.  4 SPURIOUS EMISSIONS. 4.1 LIMIT. 4.2 MEASUREMENT PROCEDURE. 4.3 TEST CONFIGURATION 4.4 TEST RESULTS. 4.5 MEASUREMENT PROCEDURE. 4.3 TEST CONFIGURATION 4.4 TEST RESULTS. 4.5 MEASUREMENT PLOTS.                                                                                                                                                |     | DESCRIPTION OF EQUIPMENT UNDER TEST (EUT) | . 6            |
| 2.2 MODE OF OPERATION DURING THE TEST 2.3 TEST SOFTWARE LIST 2.4 TEST PERIPHERALS LIST 2.5 TEST ENVIRONMENT CONDITION: 2.6 INSTRUMENT LIST 2.7 MEASUREMENT UNCERTAINTY  3 AMPLIFIER GAIN 3.1 LIMIT 3.2 MEASUREMENT PROCEDURE 3.3 TEST CONFIGURATION 3.4 TEST RESULTS  4 SPURIOUS EMISSIONS 4.1 LIMIT 4.2 MEASUREMENT PROCEDURE 4.3 TEST CONFIGURATION 4.4 TEST RESULTS 4.5 MEASUREMENT PROCEDURE 4.3 TEST CONFIGURATION 4.4 TEST RESULTS 4.5 MEASUREMENT PLOTS 5 SPURIOUS EMISSIONS 5.1 LIMIT                                                                                                                                                            | 2   | ST SPECIFICATIONS                         | . 8            |
| 3.1 LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | STANDARDS OR SPECIFICATION                | 8.8            |
| 3.2 MEASUREMENT PROCEDURE 3.3 TEST CONFIGURATION 3.4 TEST RESULTS  4 SPURIOUS EMISSIONS  4.1 LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3   | IPLIFIER GAIN                             | 11             |
| 4.1 LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | LIMIT                                     | 11<br>11       |
| 4.2 MEASUREMENT PROCEDURE  4.3 TEST CONFIGURATION  4.4 TEST RESULTS  4.5 MEASUREMENT PLOTS  5 SPURIOUS EMISSIONS  5.1 LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4   | JRIOUS EMISSIONS                          | 13             |
| 5.1 LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                           | 13<br>14<br>14 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5   | JRIOUS EMISSIONS                          | 18             |
| TEST CONFIGURATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | LIMIT                                     | 18<br>20       |





# **Revision History**

| Report No.       | Version | Description             | Issued Date       |
|------------------|---------|-------------------------|-------------------|
| 2405B0268SHA-001 | Rev. 01 | Initial issue of report | December 13, 2024 |
|                  |         |                         |                   |
|                  |         |                         |                   |



# **Measurement result summary**

| TEST ITEM                               | FCC REFERENCE             | RESULT |
|-----------------------------------------|---------------------------|--------|
| Amplifier gain                          | 97.317 (a)(2);2.1046      | Pass   |
| Amplification between 26 MHz and 28 MHz | 97.317 (a)(3)             | Pass   |
| Spurious emissions                      | 97.307 (d); 97.317 (a)(1) | Pass   |
| Field strength of spurious radiation    | 97.307 (d)(e);<br>2.1053  | Pass   |





# **1 GENERAL INFORMATION**

# 1.1 Description of Equipment Under Test (EUT)

| Product name:         | BLA703                                      |
|-----------------------|---------------------------------------------|
| Type/Model:           | BLA703 FCC                                  |
| Description of EUT:   | The EUT is a BLA703, it has only one model. |
| Rating:               | AC100/120V 550W max                         |
| EUT type:             | ☐ Table top ☐ Floor standing                |
| Software Version:     | 1.4                                         |
| Hardware Version:     | 1.1                                         |
| Sample received date: | May 9, 2024                                 |
| Date of test:         | May 9, 2024 ~ November 1, 2024              |

# 1.2 Technical Specification

| Frequency Range:    | 28MHz ~ 30MHz         |  |
|---------------------|-----------------------|--|
| RF O/P Power (Max.) | 550W                  |  |
| Type of Modulation: | SSB, CW, AM, FM, Data |  |
| Antenna Connector   | UHF                   |  |





# 1.3 Description of Test Facility

| Name:      | Intertek Testing Services (Shanghai FTZ) Co., Ltd.                     |
|------------|------------------------------------------------------------------------|
| Address:   | Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China |
| Telephone: | 86 21 61278200                                                         |
| Telefax:   | 86 21 54262353                                                         |

| The test facility is              | CNAS Accreditation Lab                                                   |
|-----------------------------------|--------------------------------------------------------------------------|
| recognized,                       | Registration No. CNAS L21189                                             |
| certified, or accredited by these | FCC Accredited Lab Designation Number: CN0175                            |
| organizations:                    | Designation Number. CN0173                                               |
|                                   | IC Registration Lab                                                      |
|                                   | CAB identifier.: CN0014                                                  |
|                                   | VCCI Registration Lab<br>Registration No.: R-4243, G-845, C-4723, T-2252 |
|                                   | NVLAP Accreditation Lab<br>NVLAP LAB CODE: 200849-0                      |
|                                   | A2LA Accreditation Lab<br>Certificate Number: 3309.02                    |



### **2 TEST SPECIFICATIONS**

### 2.1 Standards or specification

47CFR Part 97 (2017) 47CFR Part 2 (2021)

## 2.2 Mode of operation during the test

The channel was tested as representatives.

| Frequency Band (MHz) |                    |         | 28 ~ 30            |         |                    |         |                    |
|----------------------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| Channel              | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 1                    | 28.11              | 2       | 28.98              | 3       | 29.56              | -       | -                  |

#### 2.3 Test software list

| Test Items         | t Items Software Manufacturer |     | Version |
|--------------------|-------------------------------|-----|---------|
| Conducted emission | ESxS-K1                       | R&S | V2.1.0  |
| Radiated emission  | ES-K1                         | R&S | V1.71   |

# 2.4 Test peripherals list

| Item No. | Name           | Band and Model       | Description |
|----------|----------------|----------------------|-------------|
| 1        | Attenuator     | DA9-5600-0-4000-2047 | -           |
| 2        | SW transceiver | IC-7300/Icom         | DC 13.8V    |

### 2.5 Test environment condition:

| Test items         | Temperature | Humidity |  |
|--------------------|-------------|----------|--|
| Amplifier gain     | 2200        | F20/ DII |  |
| Spurious emissions | 23°C        | 52% RH   |  |





## 2.6 Instrument list

| 2.0                | iisti uiiieiit iist   |                   |                                |              |            |  |  |  |  |
|--------------------|-----------------------|-------------------|--------------------------------|--------------|------------|--|--|--|--|
| Conducted Emission |                       |                   |                                |              |            |  |  |  |  |
| Used               | Equipment             | Manufacturer      | Type                           | Internal no. | Due date   |  |  |  |  |
| ~                  | Test Receiver         | R&S               | ESR7                           | EC 6194      | 2025-02-27 |  |  |  |  |
| V                  | A.M.N.                | R&S               | ESH2-Z5                        | EC 3119      | 2024-11-19 |  |  |  |  |
|                    | A.M.N.                | R&S               | ENV4200                        | EC 3558      | 2025-06-05 |  |  |  |  |
| <b>&gt;</b>        | Attenuator            | Hua Xiang         | Ts5-10db-6g                    | EC 6194-1    | 2024-12-07 |  |  |  |  |
| ~                  | Shielded room         | Zhongyu           | -                              | EC 2838      | 2025-01-11 |  |  |  |  |
| <b>Radia</b>       | ted Emission          |                   |                                |              |            |  |  |  |  |
| Used               | Equipment             | Manufacturer      | Type                           | Internal no. | Due date   |  |  |  |  |
| •                  | Test Receiver         | R&S               | ESIB 26                        | EC 3045      | 2025-08-18 |  |  |  |  |
| <b>V</b>           | Bilog Antenna         | TESEQ             | CBL 6112B                      | EC 6411      | 2025-09-11 |  |  |  |  |
|                    | Pre-amplifier         | R&S               | AFS42-<br>00101800-25-S-<br>42 | EC 5262      | 2025-11-06 |  |  |  |  |
| <b>V</b>           | Pre-amplifier         | Tonscend          | tap01018050                    | EC 6432-1    | 2024-12-07 |  |  |  |  |
| >                  | Horn antenna          | Tonscend          | bha9120d                       | EC 6432-2    | 2025-02-15 |  |  |  |  |
|                    | Horn antenna          | ETS               | 3116c                          | EC 5955      | 2025-08-14 |  |  |  |  |
| <b>V</b>           | Semi-anechoic chamber | Albatross project | -                              | EC 3048      | 2026-07-11 |  |  |  |  |
| <mark>Addit</mark> | ional instrument      |                   |                                |              |            |  |  |  |  |
| Used               | Equipment             | Manufacturer      | Type                           | Internal no. | Due date   |  |  |  |  |
| >                  | Therom-Hygrograph     | Testo             | 175h1                          | EC 6640      | 2025-08-29 |  |  |  |  |
| >                  | Pressure meter        | YM3               | Shanghai<br>Mengde             | EC 3320      | 2025-08-16 |  |  |  |  |





# 2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

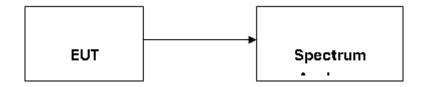
| Test item                                                   | Measurement uncertainty |
|-------------------------------------------------------------|-------------------------|
| Amplifier gain                                              | ± 0.74dB                |
| Spurious emissions                                          | ± 0.74dB                |
| Radiated Emissions in restricted frequency bands below 1GHz | ± 4.90dB                |





# 3 Amplifier Gain

Test result: Pass


### **3.1 Limit**

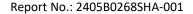
| Frequencies<br>(MHz) | Limit<br>(dB) |
|----------------------|---------------|
| 26.0 - 28.0          | 0             |
| 28.0 - 30.0          | 15            |

#### **3.2 Measurement Procedure**

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The bandwidth of the test receiver is set at 9 kHz.

# 3.3 Test Configuration






## **3.4 Test Results**

| Frequency f0<br>[MHz] | Input power<br>[dBm] | Output power [dBm] | Amplifier gain [dB] | Limit<br>[dB] | Result |
|-----------------------|----------------------|--------------------|---------------------|---------------|--------|
| 28.11                 | 44.30                | 57.20              | 12.90               | 15            | Pass   |
| 28.98                 | 44.41                | 57.38              | 12.97               | 15            | Pass   |
| 29.56                 | 44.65                | 57.43              | 12.78               | 15            | Pass   |

| Frequency f0<br>[MHz] | Input power<br>[dBm] | Output power [dBm] | Amplifier gain [dB] | Limit<br>[dB] | Result |
|-----------------------|----------------------|--------------------|---------------------|---------------|--------|
| 26.00                 | 44.3                 | 44.3               | 0                   | 0             | Pass   |
| 27.00                 | 44.3                 | 44.3               | 0                   | 0             | Pass   |
| 28.00                 | 44.3                 | 44.3               | 0                   | 0             | Pass   |
| 28.11                 | 44.3                 | 57.2               | 12.9                | 15            | Pass   |

No gain was measured between 26 MHz and 28 MHz.





### 4 Spurious emissions

Test result: Pass

#### 4.1 Limit

For transmitters installed after January 1, 2003, the mean power of any spurious emission from a station transmitter or external RF power amplifier transmitting on a frequency below 30 MHz must be at least 43 dB below the mean power of the fundamental emission. For transmitters installed on or before January 1, 2003, the mean power of any spurious emission from a station transmitter or external RF power amplifier transmitting on a frequency below 30 MHz must not exceed 50 mW and must be at least 40 dB below the mean power of the fundamental emission. For a transmitter of mean power less than 5 W installed on or before January 1, 2003, the attenuation must be at least 30 dB. A transmitter built before April 15, 1977, or first marketed before January 1, 1978, is exempt from this requirement

#### **4.2 Measurement Procedure**

#### Conducted emission:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground chamber room.
- b) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- c) The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 10kHz at frequency below 30MHz

#### Note:

1. All modes of operation were investigated and the worst-case emissions are reported



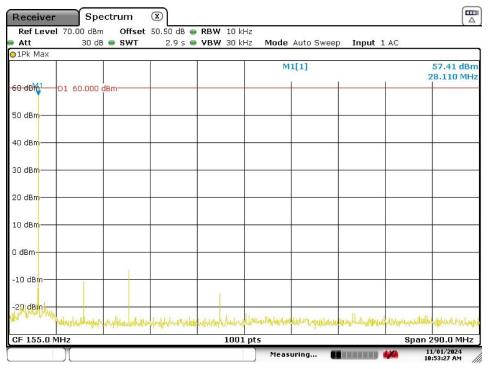
# **4.3 Test Configuration**



### **4.4 Test Results**

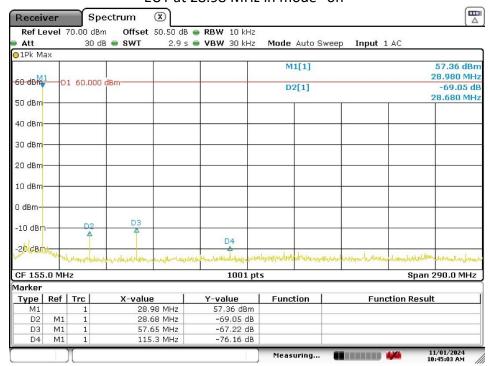
## Operating mode:

| Frequency<br>f0<br>[MHz] | Output<br>power<br>[dBm] | 2 * f0<br>[dBc] | 3 * f0<br>[dBc] | 4 * f0<br>[dBc] | 5 * f0<br>[dBc] | 6 * f0<br>[dBc] | 7 * f0<br>[dBc] | 8 * f0<br>[dBc] | 9 * f0<br>[dBc] | 10 * f0<br>[dBc] | Limit<br>[dBc] | Result |
|--------------------------|--------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|----------------|--------|
| 28.11                    | 57.41                    | 54.41           | >67             | >67             | >67             | >67             | >67             | >67             | >67             | >67              | 43             | Pass   |
| 28.98                    | 57.36                    | >67             | >67             | >67             | >67             | >67             | >67             | >67             | >67             | >67              | 43             | Pass   |
| 29.56                    | 57.42                    | >70             | >70             | >70             | >70             | >70             | >70             | >70             | >70             | >70              | 43             | Pass   |


# Standby mode:

In standby mode no spurious emissions were found above the noise floor of the measuring system.

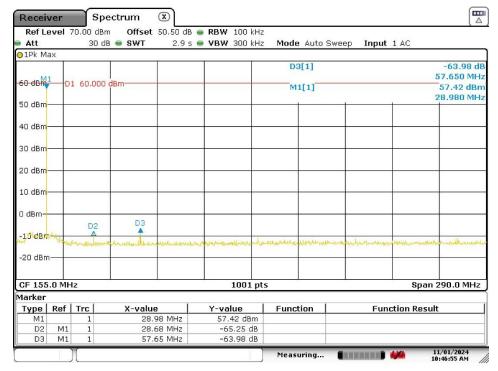



#### 4.5 Measurement Plots

EUT at 28.11 MHz in mode "on"

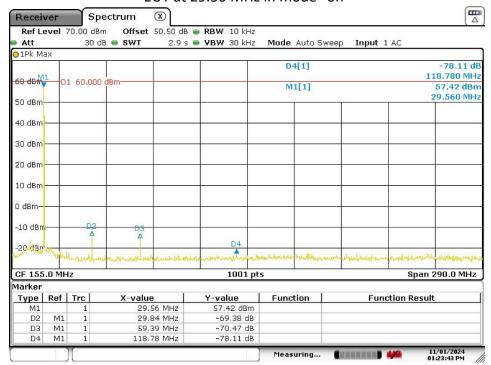


Date: 1.NOV.2024 10:53:27


EUT at 28.98 MHz in mode "on"



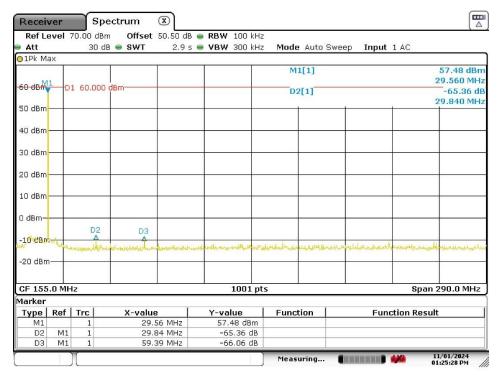
Date: 1.NOV.2024 10:45:02




#### **TEST REPORT**

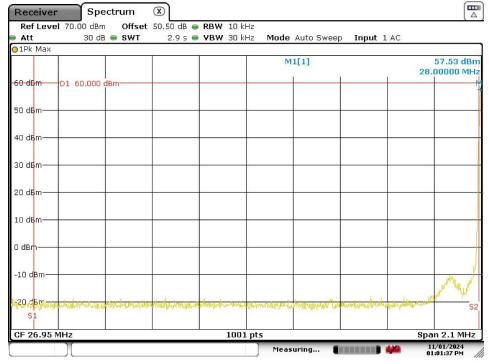


Date: 1.NOV.2024 10:46:55

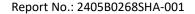

#### EUT at 29.56 MHz in mode "on"



Date: 1.Nov.2024 13:23:44




#### **TEST REPORT**




Date: 1.NOV.2024 13:25:29

#### Input swept from 25.9 MHz to 28.1 MHz



Date: 1.Nov.2024 13:01:38





### 5 Spurious emissions

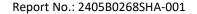
Test result: Pass

#### 5.1 Limit

The mean power of any spurious emission from a station transmitter or external RF power amplifier transmitting on a frequency between 30-225 MHz must be at least 60 dB below the mean power of the fundamental. For a transmitter having a mean power of 25 W or less, the mean power of any spurious emission supplied to the antenna transmission line must not exceed 25  $\mu$ W and must be at least 40 dB below the mean power of the fundamental emission, but need not be reduced below the power of 10  $\mu$ W. A transmitter built before April 15, 1977, or first marketed before January 1, 1978, is exempt from this requirement.

#### **5.2 Measurement Procedure**

#### For Radiated emission below 30MHz:


- d) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- e) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- f) Both X and Y axes of the antenna are set to make the measurement.
- g) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- h) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

#### NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

#### For Radiated emission above 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz  $^{\sim}$  1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360

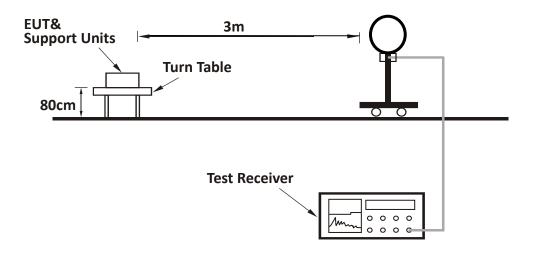




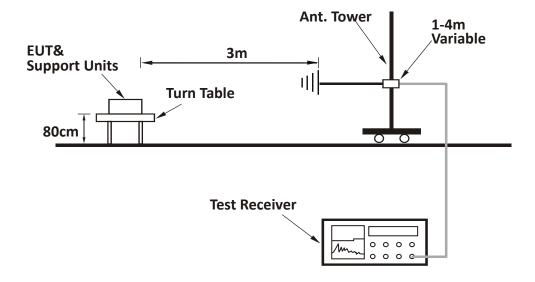
#### **TEST REPORT**

degrees to find the maximum reading.

- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

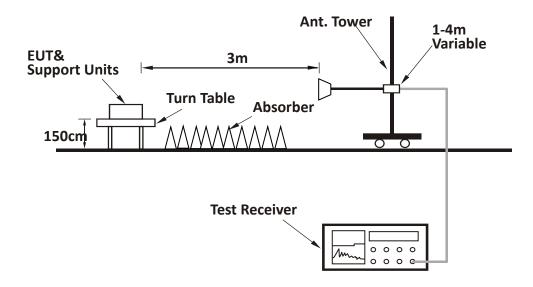

#### Note:

- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported




# **Test Configuration**

#### For Radiated emission below 30MHz:




#### For Radiated emission 30MHz to 1GHz:





#### For Radiated emission above 1GHz:





#### **Test Results of Radiated Emissions**

All modes of operation were investigated and the worst-case emissions are reported.

| Frequency<br>(MHz) | Antenna | Frequency<br>(MHz) | Reading<br>(dBuV/m) | Correct<br>Factor<br>(dB/m) | Corrected<br>Reading<br>(dBuV/m) | ERP<br>(dBm) | Spurious<br>Limit<br>(dBm) | Margin<br>(dB) | Detector |
|--------------------|---------|--------------------|---------------------|-----------------------------|----------------------------------|--------------|----------------------------|----------------|----------|
|                    | Н       | 56.22              | 33.99               | 14.13                       | 48.12                            | -49.23       | -16.00                     | 33.23          | PK       |
|                    | Н       | 84.33              | 25.01               | 9.70                        | 34.71                            | -62.64       | -16.00                     | 46.64          | PK       |
|                    | Н       | 112.44             | 36.05               | 11.40                       | 47.45                            | -49.9        | -16.00                     | 33.90          | PK       |
|                    | Н       | 140.55             | 32.30               | 14.16                       | 46.46                            | -50.89       | -16.00                     | 34.89          | PK       |
|                    | Н       | 168.66             | 37.77               | 14.19                       | 51.96                            | -45.39       | -16.00                     | 29.39          | PK       |
|                    | Н       | 196.77             | 22.98               | 11.85                       | 34.83                            | -62.52       | -16.00                     | 46.52          | PK       |
|                    | Н       | 224.88             | 37.93               | 12.53                       | 50.46                            | -46.89       | -16.00                     | 30.89          | PK       |
|                    | Н       | 252.99             | 41.62               | 13.69                       | 55.31                            | -42.04       | -16.00                     | 26.04          | PK       |
| 20.11              | Н       | 281.10             | 37.78               | 14.71                       | 52.49                            | -44.86       | -16.00                     | 28.86          | PK       |
| 28.11              | V       | 56.22              | 44.70               | 14.13                       | 58.83                            | -38.52       | -16.00                     | 22.52          | PK       |
|                    | V       | 84.33              | 36.51               | 9.70                        | 46.21                            | -51.14       | -16.00                     | 35.14          | PK       |
|                    | V       | 112.44             | 30.85               | 11.40                       | 42.25                            | -55.10       | -16.00                     | 39.10          | PK       |
|                    | V       | 140.55             | 35.86               | 14.16                       | 50.02                            | -47.33       | -16.00                     | 31.33          | PK       |
|                    | V       | 168.66             | 32.96               | 14.19                       | 47.15                            | -50.20       | -16.00                     | 34.20          | PK       |
|                    | V       | 196.77             | 24.31               | 11.85                       | 36.16                            | -61.19       | -16.00                     | 45.19          | PK       |
|                    | V       | 224.88             | 30.80               | 12.53                       | 43.33                            | -54.02       | -16.00                     | 38.02          | PK       |
|                    | V       | 252.99             | 30.28               | 13.69                       | 43.97                            | -53.38       | -16.00                     | 37.38          | PK       |
|                    | V       | 281.10             | 33.28               | 14.71                       | 47.99                            | -49.36       | -16.00                     | 33.36          | PK       |

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (- Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Reading + Correct Factor
- 3. Margin = Limit ERP
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV,

Limit = 40.00dBuV/m.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m;

Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.