

FCC ID TEST REPORT

for

PMR 446 with Bluetooth

Model: X2 Slim

FCC ID: 2ACTIX2SLIM

Prepared for: Vigor Sports, Inc.

16310 Arthur Street Cerritos, CA 90703, USA

Prepared by: Shenzhen TCT Testing Technology Co.,Ltd

1F, Building 1, Yibaolai Industrial Park, Qiaotou Village, Fuyong Town,

Baoan District, Shenzhen, Guangdong, China

TEL: +86-0755-27673339 FAX: +86-0755-27673332

Report Number: TCT140430015F2-2 Date of Test: July 04-July 17, 2014

Date of Report: July 17, 2014

The results detailed in this test report relate only to the specific sample(s) tested. It is the Application's responsibility to ensure that all production units are manufactured with equivalent EMC characteristics. This report is not to be reproduced except in full, without written approval from TCT Testing Technology.

Table of Contents

1.0 General Details	3
1.1 Test Lab Details	3
1.2 Applicant Details	3
1.3 Description of EUT	4
1.4 Statement	4
1.5 Test Engineer	4
2.0 Test equipments and Associated Equipment used during the test	5
2.1 Test Equipments	5
2.2 AE used during the test	5
3.0 Technical Details	6
3.1 Summary of test results	6
3.2 Test Standards	6
4.0 EUT Modification	6
5.0 Measurement Uncertainty (95% confidence levels, k=2)	6
6.0 Power Line Conducted Emission Test	7
7.0 RF Exposure Information	7
8.0 RF Output Power	8
9.0 Modulation Characteristics	10
10.0 Occupied Bandwidth & Emission Mask	13
11.0 Spurious Emissions at Antenna Terminals	16
12.0 Spurious Radiated Emissions	19
13.0 Frequency Stability	21

1.0 General Details

1.1 Test Lab Details

Name:	Shenzhen Tongce Testing Lab
Address:	1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China
Telephone:	13410377511
Fax:	

The test facility is recognized, certified, or accredited by the following organizations:

FCC Registration Number: 572331

Shenzhen TCT Testing Technology Co., Ltd., Shenzhen EMC Laboratory: Shenzhen Tongce Testing Lab The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

Registration Number: 572331

Industry Canada (IC)

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

Registration Number IC: 10668A-1

1.2 Applicant Details

Applicant:	Vigor Sports, Inc.
Address:	16310 Arthur Street Cerritos, CA 90703, USA
Telephone:	562 407 2184
Fax:	562 802 3151

Manufacturer:	AIRTECH I & C., Ltd.
Address:	21, Namdong-daero 370beon-gil, Namdong-gu, Incheon 405-846, Korea
Telephone:	
Fax:	

1.3 Description of EUT

Product:	PMR 446 with Bluetooth			
Model No.:	X2 Slim			
Additional Model No.:	N.A.			
Brand Name	N.A.			
Power supply:	DC 3.7V via Battery or DC 5V via Adapter			
	Adapter Information:			
	Model: FY0500500			
	Input: AC 100-240V, 50-60Hz			
	Output: DC 5V, 0.5A			
Modulation Type:	FM for GMRS and FRS, GFSK for Bluetooth			
Max Tx deviation	25KHz for GMRS and FRS, 2MHz for Bluetooth			
Emission type:	F3E			
Operation Frequency:	Bluetooth : 2 402 MHz ~ 2 480 MHz			
	GMRS : 462.55 MHz ~ 462.725 MHz			
	FRS: 462.5625 MHz ~ 462.7125 MHz; 467.5625MHz ~ 467.7125MHz			
Number of Channel:	Bluetooth: 40			
	GMRS: 8			
	FRS: 14			
Antenna Designation:	Bluetooth: An internal antenna and the maximum antenna gain is -1.95dBi.			
	GMRS(FRS): An helical antenna and the maximum antenna gain is -3.22dBi.			

1.4 Statement

1.5 Test Engineer

The sample tested by

Printed name: Jack Kang

2.0 Test equipments and Associated Equipment used during the test.

2.1 Test Equipments

Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	ROHDE&SCHWARZ	ESPI 3	100379	July 2, 2014	July 1, 2015
Spectrum Analyzer	ROHDE&SCHWARZ	FSEM	848597/001	July 2, 2014	July 1, 2015
Pre-amplifier	Teseq	LNA6900		July 3, 2014	July 2, 2015
Pre-amplifier	Agilent	8447D	83153007374	July 3, 2014	July 2, 2015
Pre-amplifier	Agilent	8449B	3008A01738	July 3, 2014	July 2, 2015
Loop antenna	A.R.A.	PLA-1030/B	1029	July 3, 2014	July 2, 2015
Ultra Broadband ANT	ROHDE&SCHWARZ	HL562	100157	July 3, 2014	July 2, 2015
Horn Antenna	ETS LINDGREN	3117		July 3, 2014	July 2, 2015
Horn Antenna	ETS LINDGREN	3160		July 3, 2014	July 2, 2015
EMI Test Receiver	R&S	ESCS30	100139	July 2, 2014	July 1, 2015
LISN	AFJ	LS16C	16010222119	July 2, 2014	July 1, 2015
Signal Generator	HP	83650B	3614A00276	July 2, 2014	July 1, 2015
RF Communications Test Set	НР	8920A	3438A05338	July 2, 2014	July 1, 2015
Function Generator	Agilent	33220A	MY43004878	July 2, 2014	July 1, 2015
Spectrum Analyzer	Agilent	E4446A	US44300386	July 3, 2014	July 2, 2015
DC Power Supply	BK Precision	1621A	D185052265	July 2, 2014	July 1, 2015
MXA	Agilent	N9010A	MY/SG/US534 0	May 12, 2014	May 11, 2015

2.2 AE used during the test

Equipment type	Manufacturer	Model
N/A		

3.0 Technical Details

3.1 Summary of test results

The EUT has been tested according to the following specifications

Requirement	CFR 47 Section	Result
Modulation Characteristics	§ 2.1047, §95.637	PASS
Field Strength of Spurious Radiation	§ 2.1053, §95.635	PASS
RF Output Power	§ 2.1046, §95.639	PASS
Occupied Bandwidth & Emission Mask	§ 2.1049, §95.633, §95.635	PASS
Spurious Emissions at Antenna Terminals	§ 2.1051, §95.635	PASS
Frequency stability	§ 2.1055, § 95.621, §95.626	PASS
RF Exposure	§ 2.1093	PASS

3.2 Test Standards

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 95A: General Mobile Radio Service (GMRS)

Part 95B: Family Radio Service (FRS)

Applicable Standards: TIA 603-C,

4.0 EUT Modification

No modification by Shenzhen TCT Testing Technology Co., Ltd

5.0 Measurement Uncertainty (95% confidence levels, k=2)

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase centre variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR16-4-2:2003, The Treatment of Uncertainty in EMC Measurements, the values ranging from +2.0 dB for Conducted Emissions tests and +4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at TCT Lab.

Note: 1) The EUT is a portable device, and measurements were conducted in all three axis (X, Y, Z), and the worst case (X axis) was submitted only.

6.0 Power Line Conducted Emission Test

Not applicable

7.0 RF Exposure Information

7.1 Applicable Standards FCC §2.1093

7.2 Result

This is a portable device which requires SAR testing; refer to the separate SAR report No.: 14702R-HP-US-P03V01 for detailed results

8.0 RF Output Power

8.1 Applicable Standard

According to FCC §2.1046, and §95.639,

No GMRS transmitter, under any condition of modulation, shall exceed:

- 50 Watt (47dBm) Carrier power (average TP during one unmodulated RF cycle) when transmitting emission type A1D, F1D, G1D, A3E, F3E or G3E.
- 50 Watt (47dBm) peak envelope TP when transmitting emission type H1D, J1D, R1D, H3E, J3E or R3E.
- (d) No FRS unit, under any condition of modulation, shall exceed 0.500 Watt (27dBm) effective radiated power (ERP).

8.2 Test specification:

Environmental conditions: Temperature 23° C Humidity: 51% Atmospheric pressure: 103kPa

8.3 Test Equipment List and Details

8.4 Test Procedure

TIA-603-C clause 2.2.17.2

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation

8.5 Test Result PASS

Conducted Output Power:

Channel	Frequency (MHz)	Conducted Output Power	Limit (Watt)	
		FRS		
	T	T KS		
1	462.5625	0.22		
2	462.5875	0.21		
3	462.6125	0.23		
4	462.6375	0.22	0.5	
5	462.6625	0.22		
6	462.6875	0.24		
7	462.7125	0.22		

FCC ID: 2ACTIX2SLIM Report Number: TCT140430015F2-2 Page 8 of 22

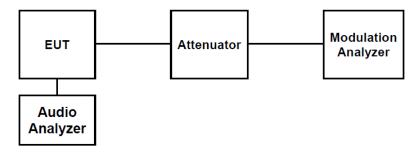
GMRS						
8	462.5750	1.45				
9	462.6250	1.46				
10	462.6750	1.42				
11	462.5500	1.41				
12	462.6000	1.43				
13	462.6500	1.45	2			
14	462.7000	1.42				
15	462.7250	1.43				
	FRS					
16	467.5625	0.45				
17	467.5875	0.43				
18	467.6125	0.42				
19	467.6375	0.43	0.5			
20	467.6625	0.42	0.3			
21	467.6875	0.42				
22	467.7125	0.43				

Therefore all applicable requirements were tested to the two channels, the 9th for GMRS and the 16th for FRS. The field strength of spurious emission was measured in three orthogonal EUT positions(x-axis, y-axis and z-axis). Worst case is z-axis.

ERP:

No	Freq (MHz)	S.G level + Amp. (dBm)	Antenna Factor	Cable loss(dB	Antenna Polarity	Result (dBm)	Part 95A/B Limit (dBm)	Margin (dB)	Remark
				GM	RS CH-9				
	462.6250	32.14	-1.32	0.6	Н	30.22	47	-16.78	PK
	462.6250	31.06	-1.32	0.6	V	29.14	47	-17.86	PK
	FRS CH-16								
	467.5625	28.44	-1.21	0.6	Н	26.63	27	-0.37	PK
	467.5625	27.61	-1.21	0.6	V	25.80	27	-1.20	PK

9.0 Modulation Characteristics


9.1 Applicable Standard

FCC §2.1047(d) and §95.637.

- (a) A GMRS transmitter that transmits emission types F1D, G1D, or G3E must not exceed a peak frequency deviation of plus or minus 5 kHz. A GMRS transmitter that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 5 kHz. A FRS unit that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 2.5 kHz, and the audio frequency response must not exceed 3.125 kHz.
- (b) Each GMRS transmitter, except a mobile station transmitter with a power output of 2.5 W or less, must automatically prevent a greater than normal audio level from causing over modulation. The transmitter also must include audio frequency low pass filtering, unless it complies with the applicable paragraphs of §95.631 (without filtering.) The filter must be between the modulation limiter and the modulated stage of the transmitter. At any frequency (f in kHz) between 3 and 20 kHz, the filter must have an attenuation of at least 60 log10(f/3) dB greater than the attenuation at 1 kHz. Above 20 kHz, it must have an attenuation of at least 50 dB greater than the attenuation at 1 kHz.

9.2 Test Procedure

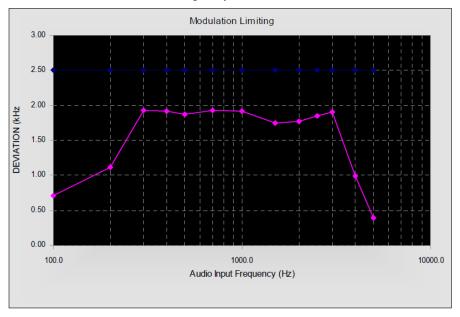
1. Set up the test equipment in the following configuration:

- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Modulation Analyzer.
- 3. Connect the microphone of EUT to the Audio Analyzer.

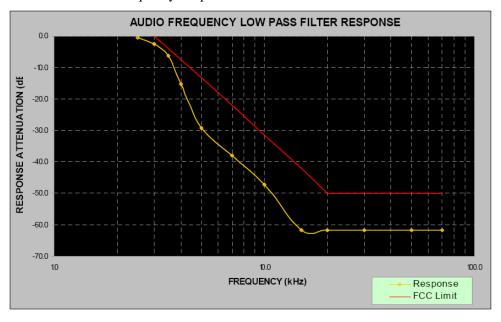
Frequency Deviation

- 1. Standard test modulation is a 1000 Hz input signal at a level that produces 60 % of full rated system deviation.
- 2. Change a input level from -25 dB to 25 dB as 5 dB scale and record the frequency deviation.
- 3. Generate audio signal 300 Hz and 3 kHz.
- 4. Repeat Step 2 respectively.

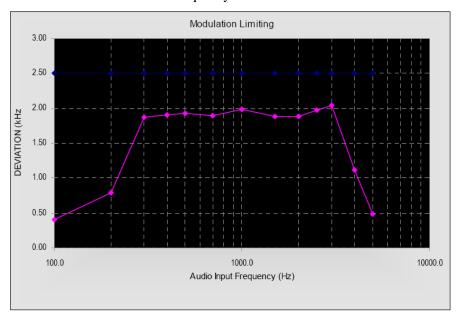
Audio Frequency Response

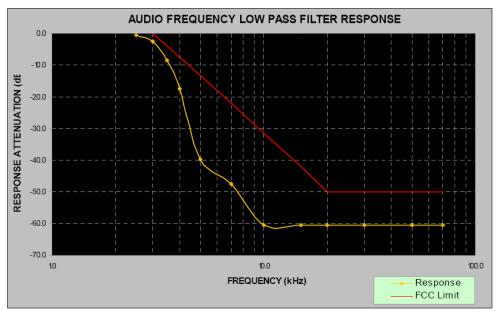

- 1. Standard test modulation is a 1000 Hz input signal at a level that produces 20 % of full rated system deviation.
- 2. Generate audio signal from 100 Hz to 5 kHz and record the frequency deviation.
- 3. Calculate and record the audio frequency response at the present frequency as : audio frequency response = 20 log (DEVFreq./DEVRef.)

TIA-603-C section 2.2.3, 2.2.6


9.3 Test Result

Please refer to the plots.


GMRSFrequency Deviation


Frequency Response of Audio Low Pass Filter

FRS Frequency Deviation

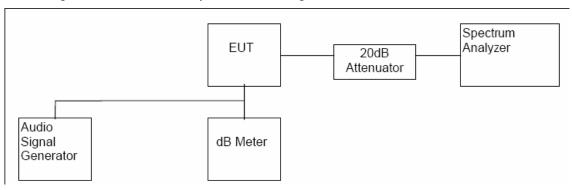
Frequency Response of Audio Low Pass Filter

10.0 Occupied Bandwidth & Emission Mask

10.1 Applicable Standards

FCC §2.1049 and §95.633 (a) (c).

(a) The authorized bandwidth (maximum permissible bandwidth of a transmission) for emission type H1D, J1D, R1D, H3E, J3E or R3E is 4 kHz. The authorized bandwidth for emission type A1D or A3E is 8 kHz. The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz.


The authorized bandwidth for emission type F3E or F2D transmitted by a FRS unit is 12.5 kHz.

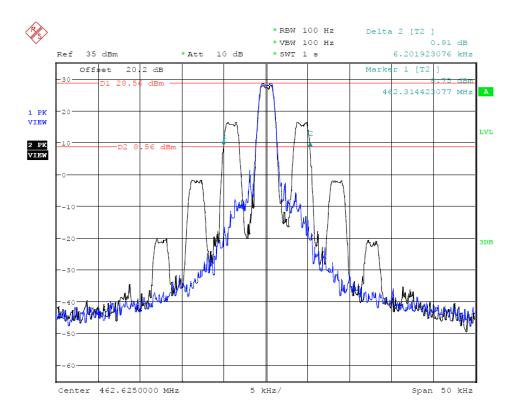
Transmitter	Emission type	Applicable paragraphs (b)
GMRS	A1D, A3E, F1D, G1D, F3E, G3E with filtering	(1), (3), (7).
	A1D, A3E, F1D, G1D, F3E, G3E without filtering	(5), (6), (7).
	H1D, J1D, R1D, H3E, J3E, R3E	(2), (4), (7).
FRS	F3E with filtering	(1), (3), (7).

- (1) At least 25 dB (decibels) on any frequency removed from the centre of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.
- (3) At least 35 dB on any frequency removed from the centre of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.
- (7) At least 43 + 10 log10 (T) dB on any frequency removed from the centre of the authorized bandwidth by more than 250%.

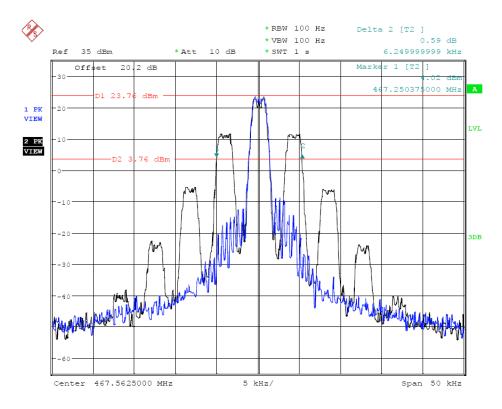
10.2 Test Procedure

(1). Configure EUT and assistant system as following:

- (2). The EUT was modulated by 2.5 KHz Sine wave audio signal, The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing).
- (3). Set SPA Center Frequency = fundamental frequency, RBW=VBW= 300 Hz, Span = 20 KHz.
- (4). Measure the -20 dB bandwidth of modulated signal.

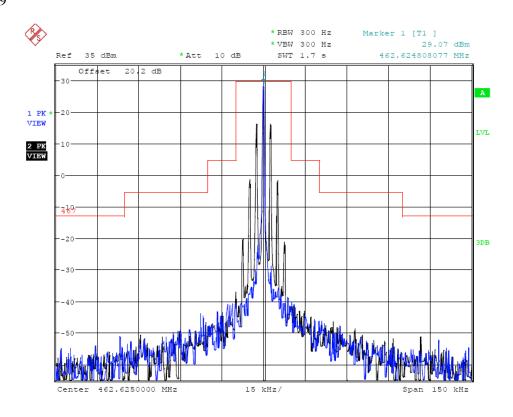

10.3 Test Results

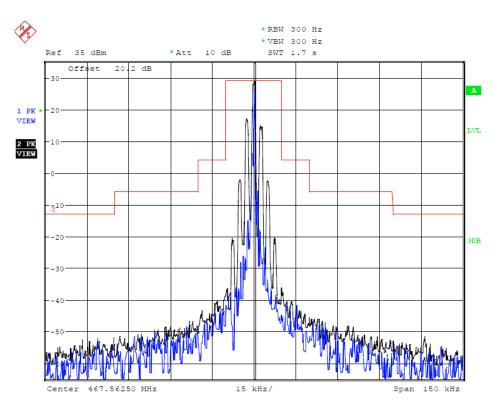
Please refer to the following plots.



Occupied Bandwidth

GMRS:CH9


FRS:CH16



Emission Mask

GMRS:CH9

FRS:CH16

11.0 Spurious Emissions at Antenna Terminals

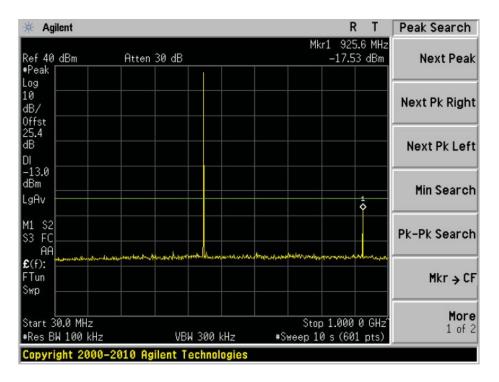
11.1 Applicable Standards

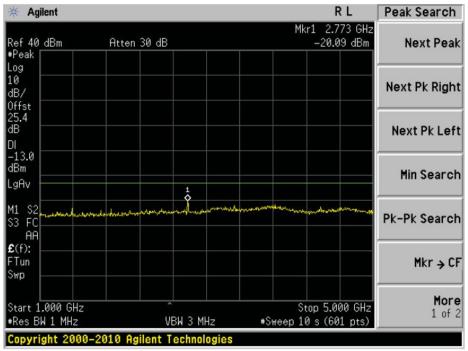
FCC §2.1051 and §95.635.

Transmitter	Emission type	Applicable paragraphs (b)
GMRS	A1D, A3E, F1D, G1D, F3E, G3E with filtering	(1), (3), (7).
	A1D, A3E, F1D, G1D, F3E, G3E without filtering	(5), (6), (7).
	H1D, J1D, R1D, H3E, J3E, R3E	(2), (4), (7).
FRS	F3E with filtering	(1), (3), (7).

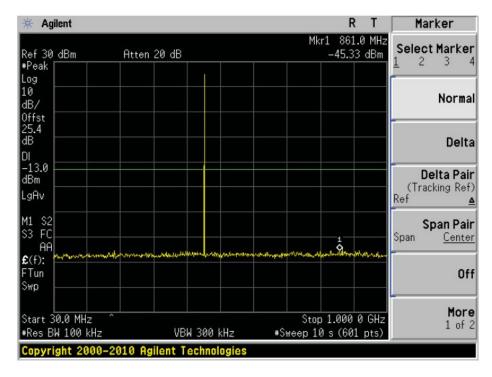
- (1) At least 25 dB (decibels) on any frequency removed from the centre of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.
- (3) At least 35 dB on any frequency removed from the centre of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.
- (7) At least $43 + 10 \log 10(T)$ dB on any frequency removed from the centre of the authorized bandwidth by more than 250%.

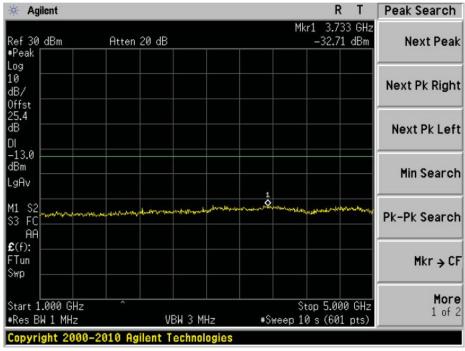
11.2 Test Procedure


TIA 603-C Clause 2.2.13


The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation.

11.3 Test Result: PASS


Page 16 of 22


GMRS CH9

FRS CH16

12.0 Spurious Radiated Emissions

12.1 Spurious Radiated Emissions

FCC §2.1051 and §95.635.

Transmitter	Emission type	Applicable paragraphs (b)
GMRS	A1D, A3E, F1D, G1D, F3E, G3E with filtering	(1), (3), (7).
	A1D, A3E, F1D, G1D, F3E, G3E without filtering	(5), (6), (7).
	H1D, J1D, R1D, H3E, J3E, R3E	(2), (4), (7).
FRS	F3E with filtering	(1), (3), (7).

- (1) At least 25 dB (decibels) on any frequency removed from the centre of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.
- (3) At least 35 dB on any frequency removed from the centre of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.
- (7) At least $43 + 10 \log 10(T)$ dB on any frequency removed from the centre of the authorized bandwidth by more than 250%.

12.2 Test Procedure

TIA/EIA 603-C Clause 2.2.12

The transmitter was placed on a turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

The EUT Removed and replaced with a substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \log (TXpwr in Watts/0.001) - the absolute level Spurious attenuation limit in <math>dB = 43 + 10 \log 10$ (power out in Watts)

12.5 Test result:

Test Mode: GMRS mode continue transmitting Channel 9, Frequency= 462.6250MHz, with earphone					
Frequency (MHz)	Reading(dB µ V)				Conclusion
	Antenna	Result	Limit(Note 2)	Margin	
	polarization	(dBm)	(dBm)	(dB)	
153.650	Н	-29.23		-16.23	
925.250	Н	-22.24		-9.24	PASS
1387.875	Н	-26.84	-13	-13.84	PASS
153.650	V	-18.83	-13	-5.83	
925.250	V	-17.05		-4.05	
1387.875	V	-21.51		-8.51	

Note 1: According explorer test, this configuration have worst emission.

Note 2:Limit= 30.04dBm- (43+10log(Transmit Power)) = -13dBm

Test Mode: FRS mode continue transmitting Channel 16, Frequency= 467.5625MHz, with earphone					
Frequency (MHz)	Reading(dB μ V)				Conclusion
	Antenna	Result	Limit(Note 2)	Margin	
	polarization	(dBm)	(dBm)	(dB)	
126.57	Н	-29.75		-16.75	
935.125	Н	-21.35		-8.35	PASS
1402.6875	Н	-28.84	12	-15.84	PASS
126.57	V	-28.57	-13	-15.57	
935.125	V	-15.14		-2.14	
1402.6875	V	-22.53		-9.53	

Note 1: According explorer test, this configuration have worst emission.

Note 2:Limit= 30.04dBm- (43+10log(Transmit Power)) = -13dBm

13.0 Frequency Stability

13.1 Applicable Standard

FCC §2.1055, §95.621 (b), §95.627 (b)

§ 95.621 (b) Each GMRS transmitter for mobile station, small base station and control station operation must be maintained within a frequency tolerance of 0.0005%. Each GMRS transmitter for base station (except small base), mobile relay station or fixed station operation must be maintained within a frequency tolerance of 0.00025%.

§ 95.626 (b) Each FRS unit must be maintained within a frequency tolerance of 0.00025%.

13.2 Test Procedure

Frequency Stability vs. Temperature:

The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed through attenuators. EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the frequency counter.

Frequency Stability vs. Voltage:

An external variable DC power supply was connected to the EUT, The voltage was set to 115%, 100%, and 85% of the nominal operating input voltage, and the frequency output was recorded from the frequency counter.

13.2 Test conclusion PASS

13.3 Test result See next page

GMRS, CH 9

R	Reference Frequency 462.625	0 MHz, Limit : 0.0005% or 5 P	PPM	
Environment Conditions		Frequency Measure with Time Elapsed		
Temperature	Power supplied	Measured Frequency	Error	
(OC)	(Vdc)	(MHz)	(PPM)	
	Frequency Stab	pility vs. Temperature		
50	3.7	462.62512	0.259389354	
40	3.7	462.62524	0.518778708	
30	3.7	462.62555	1.188867873	
20	3.7	462.62522	0.475547149	
10	3.7	462.62512	0.259389354	
0	3.7	462.62525	0.540394488	
-10	3.7	462.62522	0.475547149	
-20	3.7	462.62511	0.237773575	
-30	3.7	462.62515	0.324236693	
	Frequency St	tability vs. Voltage		
20	4.20	462.62524	0.518778708	
20	3.15	462.62523	0.497162929	

FRS, CH 16

Reference Frequency 467.5625 MHz, Limit : 0.0005% or 5 PPM					
Environment Conditions		Frequency Measure with Time Elapsed			
50	3.7	467.56224	-0.562086205		
40	3.7	467.56251	0.021618700		
30	3.7	467.56225	-0.540467504		
20	3.7	467.56236	-0.302661802		
10	3.7	467.56245	-0.108093501		
0	3.7	467.56235	-0.324280503		
-10	3.7	467.56233	-0.367517903		
-20	3.7	467.56225	-0.540467504		
-30	3.7	467.56238	-0.259424402		
Frequency Stability vs. Voltage					
20	4.20	467.56235	-0.324280503		
20	3.15	467.56232	-0.389136603		

END OF REPORT