

TEST REPORT

Applicant: Yuneec Technology Co., Limited
Address: Unit 2301, 23/F, 9 Chong Yip Street, Kwun Tong, Kowloon, Hong Kong.
Equipment Type: Smart Remote Controller
Model Name: T-One
Brand Name: YUNEEC
FCC ID: 2ACS5-TONE
ISED Number: 11554B-TONE
Test Standard: 47 CFR Part 15 Subpart E
RSS-Gen Issue 5
RSS-247 Issue 2
(refer section 3.1)
Test Date: Mar. 28, 2022
Date of Issue: Jun. 27, 2022

ISSUED BY:

Shenzhen BALUN Technology Co., Ltd.

Tested by: Julie Zhu**Checked by:** Ye Hongji**Approved by:** Liao Jianming

(Technical Director)

Julie ZhuYe HongjiLiao Jianming

Revision History

Version	Issue Date	Revisions
<u>Rev. 01</u>	<u>Jun. 27, 2022</u>	<u>Initial Issue</u>

TABLE OF CONTENTS

1	Administrative Data (GENERAL INFORMATION)	4
1.1	Identification of the Testing Laboratory	4
1.2	Identification of the Responsible Testing Location	4
2	PRODUCT INFORMATION	5
2.1	Applicant Information	5
2.2	Manufacturer Information.....	5
2.3	Factory Information.....	5
2.4	General Description for Equipment under Test (EUT).....	5
2.5	Technical Information	6
2.6	Channel List	7
3	SUMMARY OF TEST RESULTS	11
3.1	Test Standards	11
3.2	Test Verdict	11
4	GENERAL TEST CONFIGURATIONS	12
4.1	Test Environments.....	12
4.2	Test Equipment List.....	12
4.3	Test Software List.....	13
4.4	Measurement Uncertainty.....	13
4.5	Description of Test Setup	14
5	TEST ITEMS	17
5.1	RF Output Power	17
5.2	Emission Bandwidth and 6 dB Bandwidth.....	19
5.3	Power Spectral density (PSD)	20
5.4	Conducted Emission.....	21

5.5	Radiated Spurious Emissions and Band Edge (Restricted-band).....	22
ANNEX A	TEST RESULT	27
A.1	RF Output Power	27
A.2	Emission Bandwidth & 99% Bandwidth	27
A.3	6 dB Bandwidth	28
A.4	Power Spectral Density	28
A.5	Conducted Emissions	29
A.6	Radiated Spurious Emissions and Band Edge (Restricted-band).....	31
ANNEX B	TEST SETUP PHOTOS	38
ANNEX C	EUT EXTERNAL PHOTOS.....	38
ANNEX D	EUT INTERNAL PHOTOS.....	38

1 Administrative Data (GENERAL INFORMATION)

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe West Road, Nanshan District, ShenZhen, GuangDong Province, China
Phone Number	+86 755 6685 0100

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe West Road, Nanshan District, ShenZhen, GuangDong Province, China
Accreditation Certificate	The laboratory is a testing organization accredited by FCC as a accredited testing laboratory. The designation number is CN1196. The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 11524A.
Description	All measurement facilities used to collect the measurement data are located at Block B, 1/F, Baisha Science and Technology Park, Shahe West Road, Nanshan District, ShenZhen, GuangDong Province, China

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Yuneec Technology Co., Limited
Address	Unit 2301, 23/F, 9 Chong Yip Street, Kwun Tong, Kowloon, Hong Kong.

2.2 Manufacturer Information

Manufacturer	Yuneec International (China) Co., Ltd
Address	No.388 East Zhengwei Road, Jinxi Town, Kunshan, Jiangsu 215324, China

2.3 Factory Information

Factory	Yuneec International (China) Co., Ltd
Address	No.388 East Zhengwei Road, Jinxi Town, Kunshan, Jiangsu 215324, China

2.4 General Description for Equipment under Test (EUT)

EUT Name	Smart Remote Controller
Model Name Under Test	T-One
Series Model Name	N/A
Description of Model name differentiation	N/A
Serial Number	Tone20220322
Hardware Version	N/A
Software Version	N/A
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.5 Technical Information

Network and Wireless connectivity	Bluetooth (BR+EDR+BLE) WIFI 802.11a, 802.11b, 802.11g, 802.11n and 802.11ac U-NII-1/2A/2C/3 2.4G ISM Band (OFDM modulation) 5.8G ISM Band (OFDM modulation)
-----------------------------------	---

The requirement for the following technical information of the EUT was tested in this report:

Frequency Range	U-NII-1: 5150 MHz to 5250 MHz (Only for FCC) , U-NII-2A: 5250 MHz to 5350 MHz, U-NII-2C: 5470 MHz to 5725 MHz, U-NII-3: 5725 MHz to 5850 MHz
Product Type	<input type="checkbox"/> Mobile <input checked="" type="checkbox"/> Portable <input type="checkbox"/> Fix Location
Modulation technology	OFDM
Modulation Type	256QAM, 64QAM, 16QAM, BPSK, QPSK
Product Type	Indoor for IC standard Mobile and Portable for FCC standard
Transfer Rate (Mbps) (Single RF path)	802.11a: 54/ 48/ 36/ 24/ 18/ 12/ 9/ 6 Mbps 802.11n: up to 150 Mbps 802.11ac: up to VHT-MCS9
Channel Bandwidth	802.11a: 20 MHz 802.11n: 20 MHz, 40 MHz 802.11ac: 20 MHz, 40 MHz, 80 MHz
Maximum Output Power	U-NII-1: 24.15mW U-NII-2A: 24.66mW U-NII-2C: 25.59mW U-NII-3: 21.63mW
Antenna Type	PCB Antenna
Antenna Gain	U-NII-1: 5150 MHz to 5250 MHz: 5 dBi U-NII-2A: 5250 MHz to 5350 MHz: 5 dBi U-NII-2C: 5470 MHz to 5725 MHz: 5 dBi U-NII-3: 5725 MHz to 5850 MHz: 2 dBi (In test items related to antenna gain, the final results reflect this figure. This value is provided by the applicant.)
About the Product	The equipment is Smart Remote Controller, intended for used with information technology equipment.

2.6 Channel List

20 MHz		40 MHz		80 MHz	
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230	58	5290
44	5220	54	5270	106	5530
48	5240	62	5310	122	5610
52	5260	102	5510	138	5690
56	5280	110	5550	155	5775
60	5300	118	5590		
64	5320	126	5630		
100	5500	134	5670		
104	5520	142	5710		
108	5540	151	5755		
112	5560	159	5795		
116	5580				
120	5600				
124	5620				
128	5640				
132	5660				
136	5680				
140	5700				
144	5720				
149	5745				
153	5765				
157	5785				
161	5805				
165	5825				

Note: This report equipment will not transmit in the 5600-5650 MHz frequency band when used in Canada. This restriction is to protect weather radars operating in this frequency band.

The Lowest frequency, the middle frequency and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11a/n(HT20)/ac(VHT20)

U-NII-1 (5150 - 5250 MHz)			U-NII-2A (5250 - 5350 MHz)		
Channel Number	Channel	Frequency (MHz)	Channel Number	Channel	Frequency (MHz)
36	Low	5180	52	Low	5260
44	Mid	5220	60	Mid	5300
48	High	5240	64	High	5320

U-NII-2C (5470 - 5725 MHz)			U-NII-3 (5725 - 5850 MHz)		
Channel Number	Channel	Frequency (MHz)	Channel Number	Channel	Frequency (MHz)
100	Low	5500	144	--	5720
116	Mid	5580	149	Low	5745
140	High	5700	157	Mid	5785
144	--	5720	165	High	5825

For 802.11n(HT40)/ac(VHT40)

U-NII-1 (5150 - 5250 MHz)			U-NII-2A (5250 - 5350 MHz)		
Channel Number	Channel	Frequency (MHz)	Channel Number	Channel	Frequency (MHz)
38	Low	5190	54	Low	5270
46	High	5230	62	High	5310

U-NII-2C (5150 - 5250 MHz)			U-NII-3 (5725 - 5850 MHz)		
Channel Number	Channel	Frequency (MHz)	Channel Number	Channel	Frequency (MHz)
102	Low	5510	142	--	5710
118	Mid	5590	151	Low	5755
134	High	5670	159	High	5795
142	--	5710			

For 802.11ac(VHT80)

U-NII-1 (5150 - 5250 MHz)			U-NII-2A (5250 - 5350 MHz)		
Channel Number	Channel	Frequency (MHz)	Channel Number	Channel	Frequency (MHz)
42	Mid	5210	58	Mid	5290

U-NII-2C (5470 - 5725 MHz)			U-NII-3 (5725 - 5850 MHz)		
Channel Number	Channel	Frequency (MHz)	Channel Number	Channel	Frequency (MHz)
106	Low	5530	138	--	5690
122	High	5610	155	Mid	5775
138	--	5690			

Note: Preliminary tests were performed in different data rate in above table to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Modulation Type	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3
				Channel	Channel	Channel	Channel
RF Output Power	11a	6	BPSK	48/44/36	64/60/52	140/116/100	165/157/149
	11n(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11n(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11ac(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(80 MHz)	29.3		42	58	122/106	155
Emission Bandwidth & 99% Occupied Bandwidth	11a	6	BPSK	48/44/36	64/60/52	140/116/100	165/157/149
	11n(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11n(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11ac(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(80 MHz)	29.3		42	58	122/106	155
6 dB bandwidth	11a	6	BPSK	N/A	N/A	N/A	165/157/149
	11n(20 MHz)	6.5		N/A	N/A	N/A	165/157/149
	11n(40 MHz)	13.5		N/A	N/A	N/A	159/151
	11ac(20 MHz)	6.5		N/A	N/A	N/A	165/157/149
	11ac(40 MHz)	13.5		N/A	N/A	N/A	159/151
	11ac(80 MHz)	29.3		N/A	N/A	N/A	155
Power Spectral Density	11a	6	BPSK	48/44/36	64/60/52	140/116/100	165/157/149
	11n(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11n(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11ac(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(80 MHz)	29.3		42	58	122/106	155
Radiated Spurious Emissions	11a	6	BPSK	48/44/36	64/60/52	140/116/100	165/157/149
	11n(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11n(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11ac(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(80 MHz)	29.3		42	58	122/106	155
Band Edge (Restricted-band)	11a	6	BPSK	48/36	64/52	140/100	165/149
	11n(20 MHz)	6.5		48/36	64/52	140/100	165/149
	11n(40 MHz)	13.5		46/38	62/54	134/102	159/151
	11ac(20 MHz)	6.5		48/36	64/52	140/100	165/149
	11ac(40 MHz)	13.5		46/38	62/54	134/102	159/151
	11ac(80 MHz)	29.3		42	58	122/106	155

Test Items	Mode	Data Rate	Modulation Type	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3
				Channel	Channel	Channel	Channel
RF Output Power	11a	6	BPSK	48/44/36	64/60/52	144/140/116/100	165/157/149/144
	11n(20 MHz)	6.5		48/44/36	64/60/52	144/140/116/100	165/157/149/144
	11n(40 MHz)	13.5		46/38	62/54	142/134/118/102	159/151/142
	11ac(20 MHz)	6.5		48/44/36	64/60/52	144/140/116/100	165/157/149/144
	11ac(40 MHz)	13.5		46/38	62/54	142/134/118/102	159/151/142
	11ac(80 MHz)	29.3		42	58	138/122/106	155/138
Emission Bandwidth & 99% Occupied Bandwidth	11a	6	BPSK	48/44/36	64/60/52	144/140/116/100	165/157/149/144
	11n(20 MHz)	6.5		48/44/36	64/60/52	144/140/116/100	165/157/149/144
	11n(40 MHz)	13.5		46/38	62/54	142/134/118/102	159/151/142
	11ac(20 MHz)	6.5		48/44/36	64/60/52	144/140/116/100	165/157/149/144
	11ac(40 MHz)	13.5		46/38	62/54	142/134/118/102	159/151/142
	11ac(80 MHz)	29.3		42	58	138/122/106	155/138
6 dB bandwidth	11a	6	BPSK	N/A	N/A	N/A	165/157/149/144
	11n(20 MHz)	6.5		N/A	N/A	N/A	165/157/149/144
	11n(40 MHz)	13.5		N/A	N/A	N/A	159/151/142
	11ac(20 MHz)	6.5		N/A	N/A	N/A	165/157/149/144
	11ac(40 MHz)	13.5		N/A	N/A	N/A	159/151/142
	11ac(80 MHz)	29.3		N/A	N/A	N/A	155/138
Power Spectral Density	11a	6	BPSK	48/44/36	64/60/52	144/140/116/100	165/157/149/144
	11n(20 MHz)	6.5		48/44/36	64/60/52	144/140/116/100	165/157/149/144
	11n(40 MHz)	13.5		46/38	62/54	142/134/118/102	159/151/142
	11ac(20 MHz)	6.5		48/44/36	64/60/52	144/140/116/100	165/157/149/144
	11ac(40 MHz)	13.5		46/38	62/54	142/134/118/102	159/151/142
	11ac(80 MHz)	29.3		42	58	138/122/106	155/138
Radiated Spurious Emissions	11a	6	BPSK	48/44/36	64/60/52	144/140/116/100	165/157/149/144
	11n(20 MHz)	6.5		48/44/36	64/60/52	144/140/116/100	165/157/149/144
	11n(40 MHz)	13.5		46/38	62/54	142/134/118/102	159/151/142
	11ac(20 MHz)	6.5		48/44/36	64/60/52	144/140/116/100	165/157/149/144
	11ac(40 MHz)	13.5		46/38	62/54	142/134/118/102	159/151/142
	11ac(80 MHz)	29.3		42	58	138/122/106	155/138
Band Edge (Restricted-band)	11a	6	BPSK	48/36	64/52	144/140/100	165/149/144
	11n(20 MHz)	6.5		48/36	64/52	144/140/100	165/149/144
	11n(40 MHz)	13.5		46/38	62/54	142/134/102	159/151/142
	11ac(20 MHz)	6.5		48/36	64/52	144/140/100	165/149/144
	11ac(40 MHz)	13.5		46/38	62/54	142/134/102	159/151/142
	11ac(80 MHz)	29.3		42	58	138/122/106	155/138

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 15 Subpart E	Unlicensed National Information Infrastructure Devices
2	RSS-Gen Issue 5	General Requirements for Compliance of Radio Apparatus
3	RSS-247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems(FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
4	KDB Publication 789033 D02v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E
5	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

3.2 Test Verdict

No.	Description	FCC Part No.	RSS Part No.	Test Result	Verdict
1	Antenna Requirement	15.203	RSS-247, 6.2	--	Pass ^{Note1}
2	RF Output Power	15.407(a)	RSS-247, 6.2	ANNEX A.1	Pass
3	Emission Bandwidth & 99% Occupied Bandwidth	15.407(a)	RSS-247, 6.2	ANNEX A.2	Pass
4	6 dB bandwidth	15.407(e)	RSS-247, 6.2	ANNEX A.3	Pass
5	Power Spectral Density	15.407(a)	RSS-247, 6.2	ANNEX A.4	Pass
6	Conducted Emission	15.207	RSS-GEN, 8.8	ANNEX A.5	Pass
7	Radiated Spurious Emissions and Band Edge (Restricted-band)	15.407(b)	RSS-247, 6.2	ANNEX A.6	Pass
8	Receiver Spurious Emissions	--	RSS-Gen, 7.1.2	--	N/A ^{Note2}

Note ¹: The EUT has a permanently and irreplaceable attached antenna, which complies with the requirement FCC 15.203.

Note ²: Only radio communication receivers operating in stand-alone mode within the U-NII-30-960 MHz, as well as scanner receivers, are subject to Industry Canada requirements, so this test is not applicable.

Note ³: Under all normal operating conditions specified in the user manual, frequency stability can keep radiation within the operating frequency band.

Note ⁴: The RF module (Model Name: K019-CW43-DW) installed in the EUT is electronically and mechanically identical to the original certified module in the test report No. RF200116W006-3 and IC200116W006-3, so just Conducted Emissions & cabinet radiated test of Radiated Spurious Emissions and Band Edge (Restricted-band) were retested in this report. Other test items please refer to the report as below.

FCC test report of No. RF200116W006-3 is issued by BV 7Layers Communications Technology (Shenzhen) Co. Ltd on May. 22, 2020.

IC test report of No. IC200116W006-3 is issued by BV 7Layers Communications Technology (Shenzhen) Co. Ltd on May. 22, 2020.

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	45% to 55%		
Atmospheric Pressure	100 kPa to 102 kPa		
Temperature	NT (Normal Temperature)	+22°C to +25°C	
	LT (Low Temperature)	-20°C	
	HT (High Temperature)	+85°C	
Working Voltage of the EUT	NV (Normal Voltage)	12 V	
	LV (Low Voltage)	10.2 V	
	HV (High Voltage)	13.8 V	

4.2 Test Equipment List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-40	101544	2022.01.04	2023.01.03
Spectrum Analyzer	KEYSIGHT	N9020A	MY50330200	2021.06.01	2022.05.31
Bluetooth Signaling Unit	ROHDE&SCHWARZ	CMW500	142028	2021.06.01	2022.05.31
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-30	103118	2021.08.09	2022.08.08
Vector Signal Generator	ROHDE&SCHWARZ	SMBV100A	260592	2022.02.09	2023.02.08
Signal Generator	ROHDE&SCHWARZ	SMB100A	177746	2021.08.24	2022.08.23
Switch Unit with OSP-B157	ROHDE&SCHWARZ	OSP120	101270	2021.06.01	2022.05.31
Power Sensor	KEYSIGHT	U2063XA	MY58000247	2021.09.13	2022.09.12
EMI Receiver	KEYSIGHT	N9038A	MY53220118	2021.10.10	2022.10.09
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2021.06.08	2022.06.07
LISN	SCHWARZBECK	NSLK 8127	8127-687	2021.04.16	2024.04.15
Test Antenna-Loop(9 kHz-30 MHz)	SCHWARZBECK	FMZB 1519	1519-037	2021.08.20	2024.08.19
Test Antenna-Bi-Log(30 MHz-3 GHz)	SCHWARZBECK	VULB 9163	9163-624	2019.07.02	2022.07.01
Test Antenna-Horn(1-18 GHz)	SCHWARZBECK	BBHA 9120D	9120D-1917	2021.07.02	2023.07.01
Test Antenna-Horn (18-40 GHz)	A-INFO	LB-180400KF	J211060273	2022.02.19	2024.09.03
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2021.08.15	2024.08.14
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60 *7.35m	N/A	2022.01.04	2023.01.03
Shielded Enclosure	ChangNing	CN-130701	130703	--	--

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2021.09.04	2024.09.09
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60 *7.35m	N/A	2021.08.15	2024.08.14
Shielded Enclosure	ChangNing	CN-130701	130703	--	--

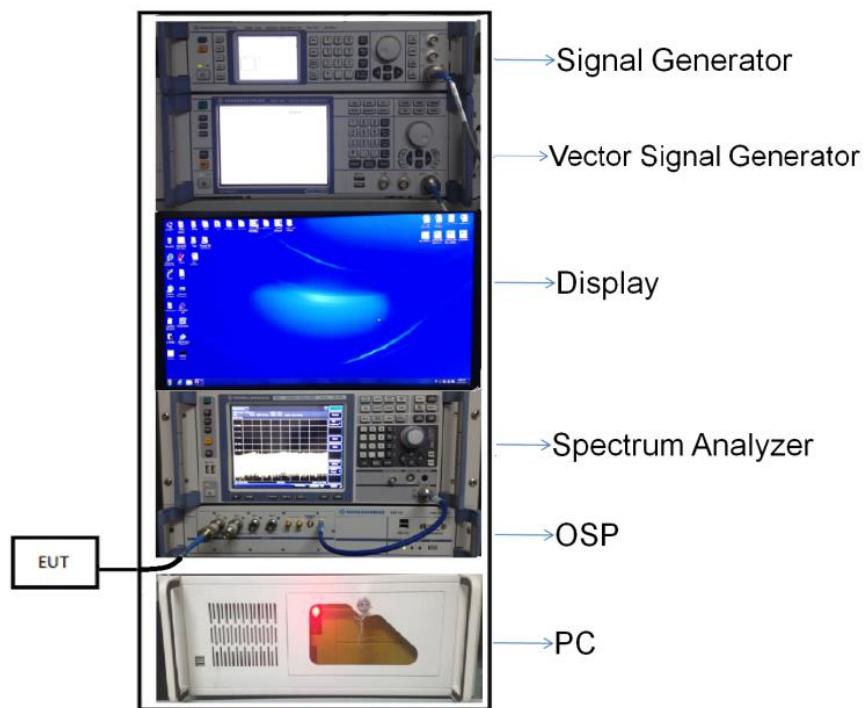
4.3 Test Software List

Description	Manufacturer	Software Version	Serial No.	Applicable test Setup
BL410R	BALUN	V2.1.1.488	N/A	The section 4.5.1
BL410E	BALUN	V19.8.28.435	N/A	The section 4.5.2&4.5.3&4.5.4&4.5.5

4.4 Measurement Uncertainty

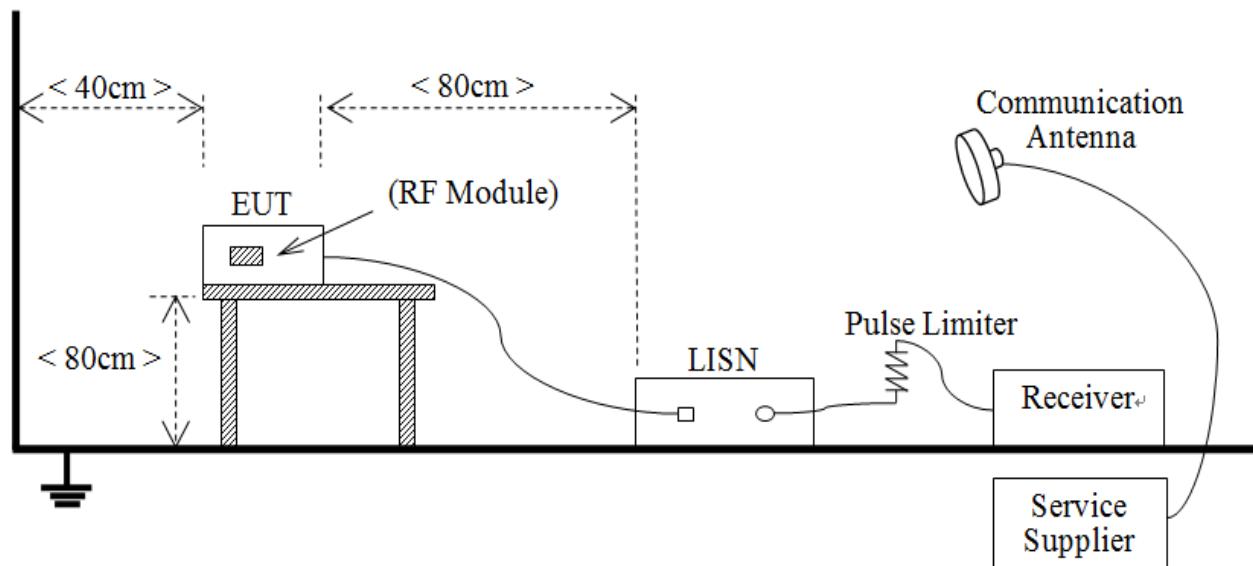
The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

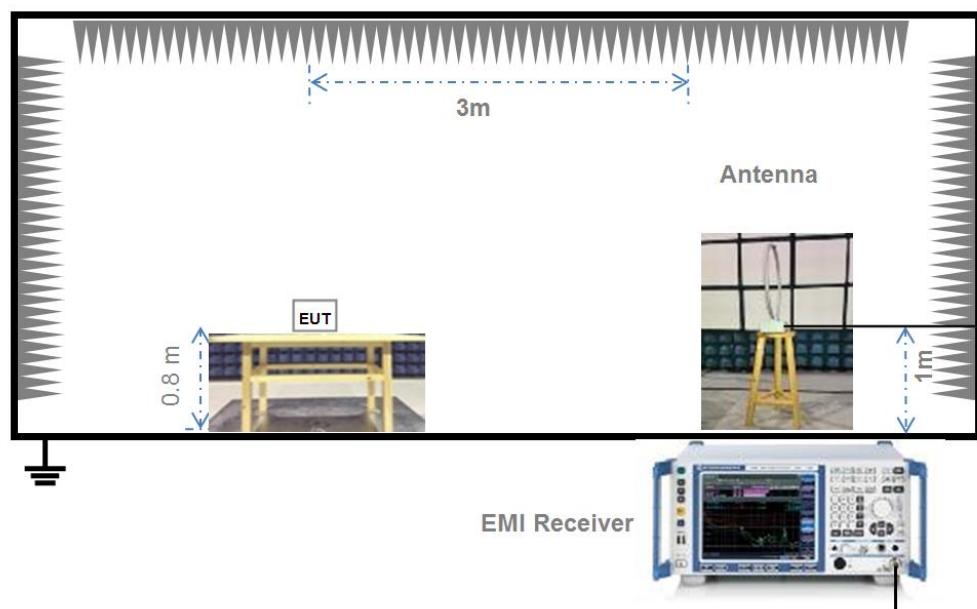

Parameters	Uncertainty
Occupied Channel Bandwidth	2.8%
RF output power, conducted	1.28 dB
Power Spectral Density, conducted	1.30 dB
Unwanted Emissions, conducted	1.84 dB
All emissions, radiated	5.36 dB
Temperature	0.82°C
Humidity	4.1%

4.5 Description of Test Setup

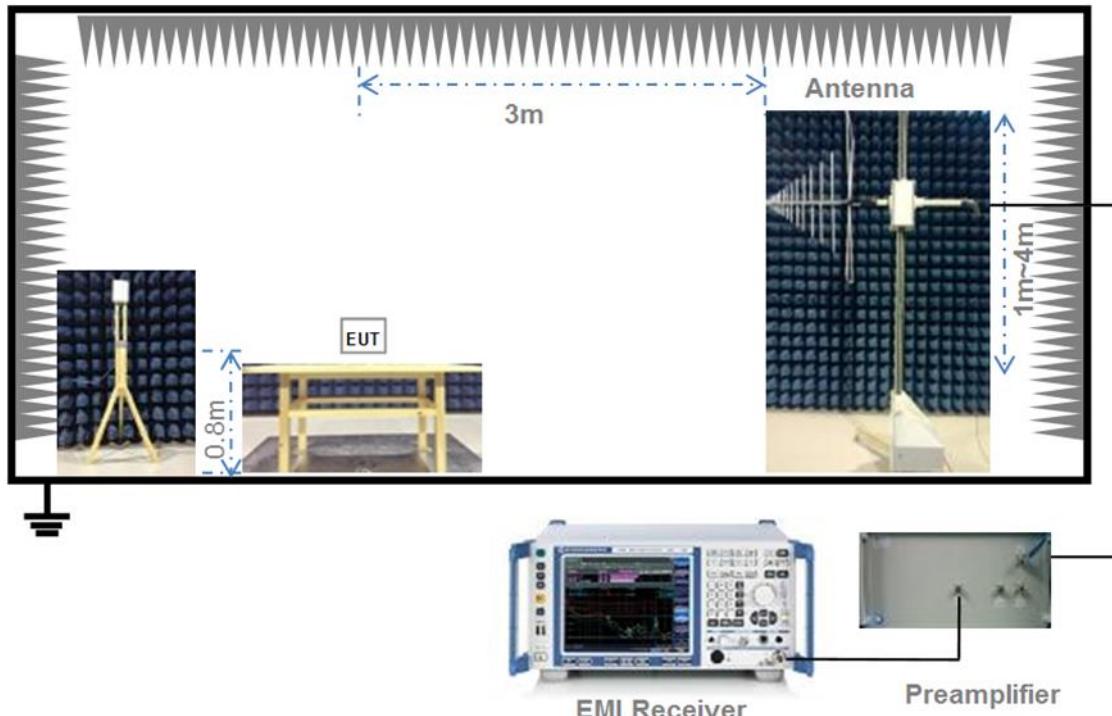
4.5.1 For Antenna Port Test


Conducted value (dBm) = Measurement value (dBm) + cable loss (dB)

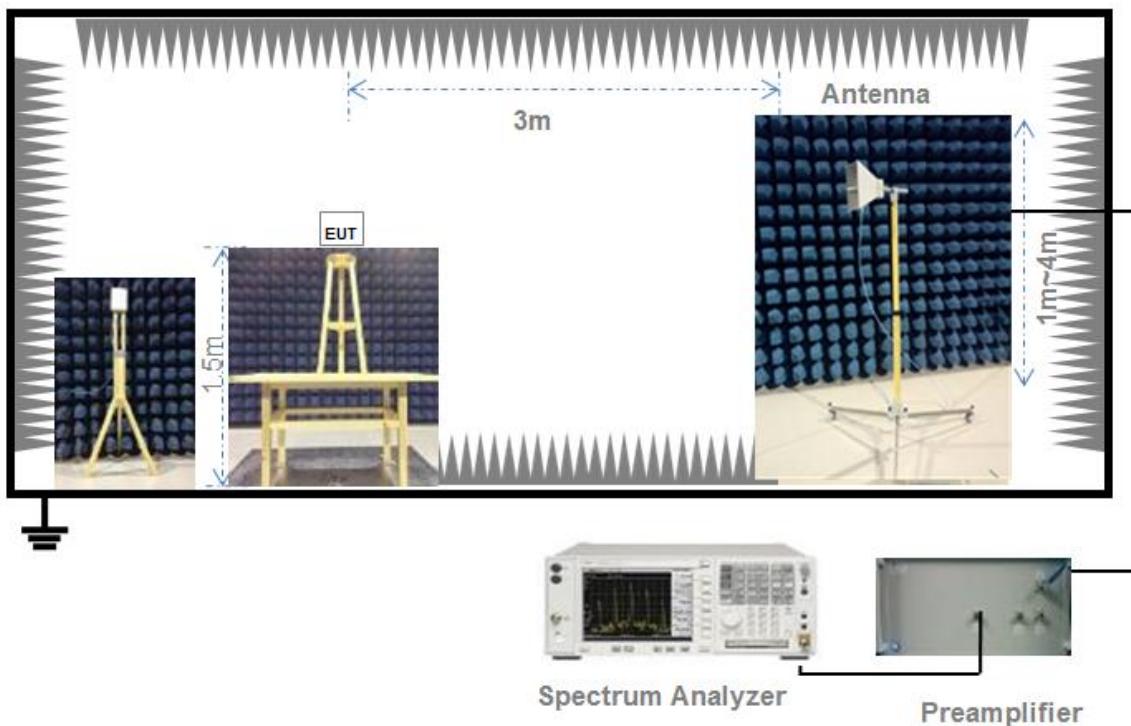
For example: the measurement value is 10 dBm and the cable 0.5dBm used, then the final result of EUT:
Conducted value (dBm) = 10 dBm + 0.5 dB = 10.5 dBm


(Diagram 1)

4.5.2 For AC Power Supply Port Test


(Diagram 2)

4.5.3 For Radiated Test (Below 30 MHz)


(Diagram 3)

4.5.4 For Radiated Test (30 MHz-1 GHz)

(Diagram 4)

4.5.5 For Radiated Test (Above 1 GHz)

(Diagram 5)

5 TEST ITEMS

5.1 RF Output Power

5.1.1 Test Limit

FCC §15.407(a)

The maximum conducted output power should not exceed:

Frequency Band (MHz)	Limit
5150-5250	250 mW
5250-5350	250 mW or 11 dBm + 10log B, whichever is less.
5470-5725	250 mW or 11 dBm + 10log B, whichever is less.
5725-5850	1 W

Note: Where "B" is the 26 dB emissions bandwidth in MHz.

RSS-247, 6.2

The maximum conducted output power shall not exceed:

Frequency Band (MHz)	Limit
5150-5250	N/A
5250-5350	250 mW or 11 dBm + 10log B, whichever is less.
5470-5725	250 mW or 11 dBm + 10log B, whichever is less.
5725-5850	1 W

Note: Where "B" is the 99% emissions bandwidth in MHz.

The maximum e.i.r.p. shall not exceed:

Frequency Band (MHz)	Limit
5150-5250	200 mW or 10 dBm + 10log B, whichever is less.
5250-5350	1W or 17 dBm + 10log B, whichever is less.
5470-5725	1W or 17 dBm + 10log B, whichever is less.
5725-5850	N/A

Note: Where "B" is the 99% emissions bandwidth in MHz.

5.1.2 Test Setup

The section 4.5.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.1.3 Test Procedure

The maximum peak conducted output power may be measured using a broadband Average RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the emission bandwidth and utilize a fast-responding diode detector.

The E.I.R.P used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.

5.1.4 Test Result

Please refer to ANNEX A.1.

5.2 Emission Bandwidth and 6 dB Bandwidth

5.2.1 Limit

FCC §15.407(a), RSS-247, 6.2

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

5.2.2 Test Setup

The test setup photo please refer to 4.5.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

Emission bandwidth

1. Set RBW = approximately 1% of the emission bandwidth.
2. Set VBW $\geq 3 \times$ RBW,
3. Detector = Peak.
4. Trace mode = Max hold.
5. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Occupied Bandwidth

1. Set Span = 1.5 times to 5.0 times the OBW
2. Set RBW = 1% to 5% of the OBW.
3. Set VBW $\geq 3 \times$ RBW, Detector = Peak.
4. Trace mode = Max hold.
5. Use the 99% power bandwidth function of the instrument.

6 dB bandwidth

1. Set RBW = 100 kHz, VBW = 300 kHz.
2. Detector = Peak. Trace mode = Max hold.
3. Allow the trace to stabilize.
4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.2.4 Test Result

Please refer to ANNEX A.2 and ANNEX A.3.

5.3 Power Spectral density (PSD)

5.3.1 Limit

FCC §15.407(a)

The maximum power spectral density should not exceed:

Frequency Band (MHz)	Limit
5150-5250	11 dBm/MHz
5250-5350	11 dBm/MHz
5470-5725	11 dBm/MHz
5725-5850	30 dBm/500kHz

RSS-247, 6.2

The maximum power spectral density should not exceed:

Frequency Band (MHz)	Limit
5150-5250	N/A
5250-5350	11 dBm/MHz
5470-5725	11 dBm/MHz
5725-5850	30 dBm/500kHz

The e.i.r.p. spectral density should not exceed:

Frequency Band (MHz)	Limit
5150-5250	10 dBm/MHz
5250-5350	N/A
5470-5725	N/A
5725-5850	N/A

5.3.2 Test Setup

The section 4.5.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth.

1. Set RBW = 510 kHz/1 MHz, VBW \geq 3*RBW, Sweep time = Auto, Detector = RMS.
2. Allow the sweeps to continue until the trace stabilizes.
3. Use the peak marker function to determine the maximum amplitude level.
4. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.

5.3.4 Test Result

Please refer to ANNEX A.4.

5.4 Conducted Emission

5.4.1 Limit

FCC §15.207, RSS-GEN, 8.8

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the U-NII-150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).

Frequency range (MHz)	Conducted Limit (dB μ V)	
	Quai-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
0.50 - 30	60	50

5.4.2 Test Setup

The section 4.5.2 (Diagram 2) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

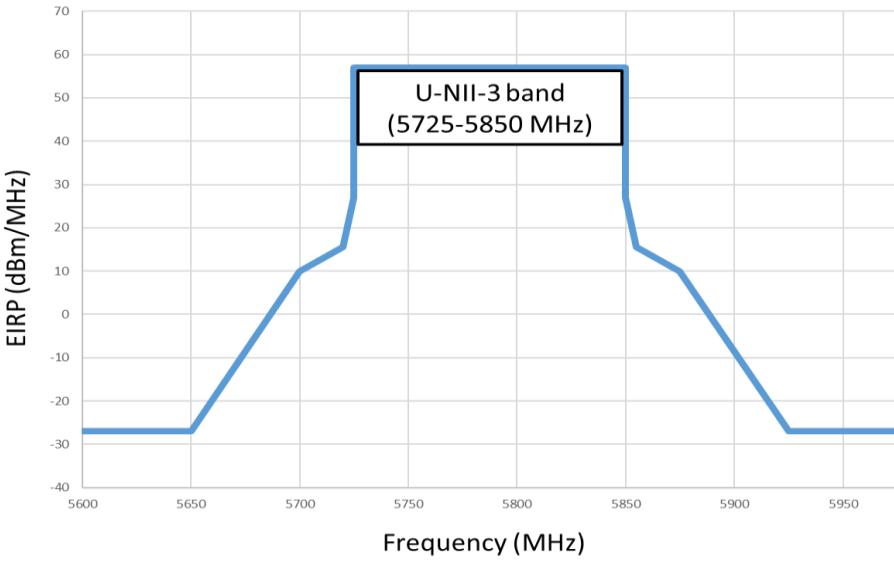
5.4.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

5.4.4 Test Result

Please refer to ANNEX A.5.

5.5 Radiated Spurious Emissions and Band Edge (Restricted-band)


5.5.1 Limit

FCC §15.209 & 15.407(b), RSS-247, 6.2

Frequency (MHz)	Field Strength (μ V/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note ¹: The Limit for radiated test was performed according to FCC Part 15C

Note ²: The tighter limit applies at the band edge.

Un-restricted band emissions	
Out Operating Band (MHz)	Limit
5150 - 5250	e.i.r.p. -27 dBm (68.2 dBuV/m@3m)
5250 - 5350	e.i.r.p. -27 dBm (68.2 dBuV/m@3m)
5470 - 5725	e.i.r.p. -27 dBm (68.2 dBuV/m@3m)
5725 - 5850	<p>All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.</p>

Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength.

5.5.2 Test Setup

The section 4.5.3-4.5.5 (Diagram 3 - Diagram 5) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.5.3 Test Procedure

Since the emission limits are specified in terms of radiated field strength levels, measurements performed to demonstrate compliance have traditionally relied on a radiated test configuration. Radiated measurements remain the principal method for demonstrating compliance to the specified limits; however antenna-port conducted measurements are also now acceptable to demonstrate compliance (see below for details). When radiated measurements are utilized, test site requirements and procedures for maximizing and measuring radiated emissions that are described in ANSI C63.10 shall be followed.

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

General Procedure for conducted measurements in restricted bands

- a) Measure the conducted output power (in dBm) using the detector specified (see guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see guidance on determining the applicable antenna gain)
- c) Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies \leq 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies $>$ 1000 MHz).
- d) For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- e) Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

$$E = EIRP - 20\log D + 104.8$$

where:

E = electric field strength in $\text{dB}\mu\text{V}/\text{m}$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

- f) Compare the resultant electric field strength level to the applicable limit.
- g) Perform radiated spurious emission test.

Quasi-Peak measurement procedure

The specifications for measurements using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Frequency Interference (CISPR) of the International

Electrotechnical Commission.

As an alternative to CISPR quasi-peak measurement, compliance can be demonstrated to the applicable emission limits using a peak detector.

Peak power measurement procedure

Peak emission levels are measured by setting the instrument as follows:

- a) RBW = as specified in Table 1.
- b) VBW $\geq 3 \times$ RBW.
- c) Detector = Peak.
- d) Sweep time = auto.
- e) Trace mode = max hold.
- f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be longer for low duty cycle applications).

Table 1—RBW as a function of frequency

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Trace averaging across on and off times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT (i.e., duty cycle ≥ 98 percent) cannot be achieved and the duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent), then the following procedure shall be used:

- a) The EUT shall be configured to operate at the maximum achievable duty cycle.
- b) Measure the duty cycle, x, of the transmitter output signal as described in section 6.0.
- c) RBW = 1 MHz (unless otherwise specified).
- d) VBW $\geq 3 \times$ RBW.
- e) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
- f) Averaging type = power (i.e., RMS).

- 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
- 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB

averaging shall not be used.

g) Sweep time = auto.

h) Perform a trace average of at least 100 traces.

i) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

1) If power averaging (RMS) mode was used in step f), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.

2) If linear voltage averaging mode was used in step f), then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.

3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

NOTE: Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission - not on an average across on and off times of the transmitter.

Determining the applicable transmit antenna gain

A conducted power measurement will determine the maximum output power associated with a restricted band emission; however, in order to determine the associated EIRP level, the gain of the transmitting antenna (in dBi) must be added to the measured output power (in dBm).

Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

See KDB 662911 for guidance on calculating the additional array gain term when determining the effective antenna gain for a EUT with multiple outputs occupying the same or overlapping frequency ranges in the same band.

Radiated spurious emission test

An additional consideration when performing conducted measurements of restricted band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than the antenna port) also comply with the applicable limits.

For these cabinet radiated spurious emission measurements the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Procedures for performing radiated measurements are specified in ANSI C63.10. All detected emissions shall comply with the applicable limits.

The measurement frequency range is from 30 MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for $f < 1$ GHz

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.5.4 Test Result

Please refer to ANNEX A.6.

ANNEX A TEST RESULT

A.1 RF Output Power

(For FCC)

Note: RF Output Power test please refer to the Report. No. RF200116W006-3 issued by BV 7Layers Communications Technology (Shenzhen) Co. Ltd on May. 22, 2020., **Section 3.4 MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT.**

(For ISED)

Note: RF Output Power test please refer to the Report. No. IC200116W006-3 issued by BV 7Layers Communications Technology (Shenzhen) Co. Ltd on May. 22, 2020., **Section 3.3 MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT.**

A.2 Emission Bandwidth & 99% Bandwidth

(For FCC)

Note: Emission Bandwidth & 99% Bandwidth test please refer to the Report. No. RF200116W006-3 issued by BV 7Layers Communications Technology (Shenzhen) Co. Ltd on May. 22, 2020., **Section 3.4 99% OCCUPIED BANDWIDTH & 26dB BANDWIDTH.**

(For ISED)

Note: Emission Bandwidth & 99% Bandwidth test please refer to the Report. No. IC200116W006-3 issued by BV 7Layers Communications Technology (Shenzhen) Co. Ltd on May. 22, 2020., **Section 3.3 99% OCCUPIED BANDWIDTH.**

A.3 6 dB Bandwidth

(For FCC)

Note: 6 dB Bandwidth test please refer to the Report. No. RF200116W006-3 issued by BV 7Layers Communications Technology (Shenzhen) Co. Ltd on May. 22, 2020., **Section 3.4 99% OCCUPIED BANDWIDTH & 26dB BANDWIDTH/6dB Bandwidth.**

(For ISED)

Note: 6 dB Bandwidth test please refer to the Report. No. IC200116W006-3 issued by BV 7Layers Communications Technology (Shenzhen) Co. Ltd on May. 22, 2020., **Section 3.3 99% OCCUPIED BANDWIDTH.**

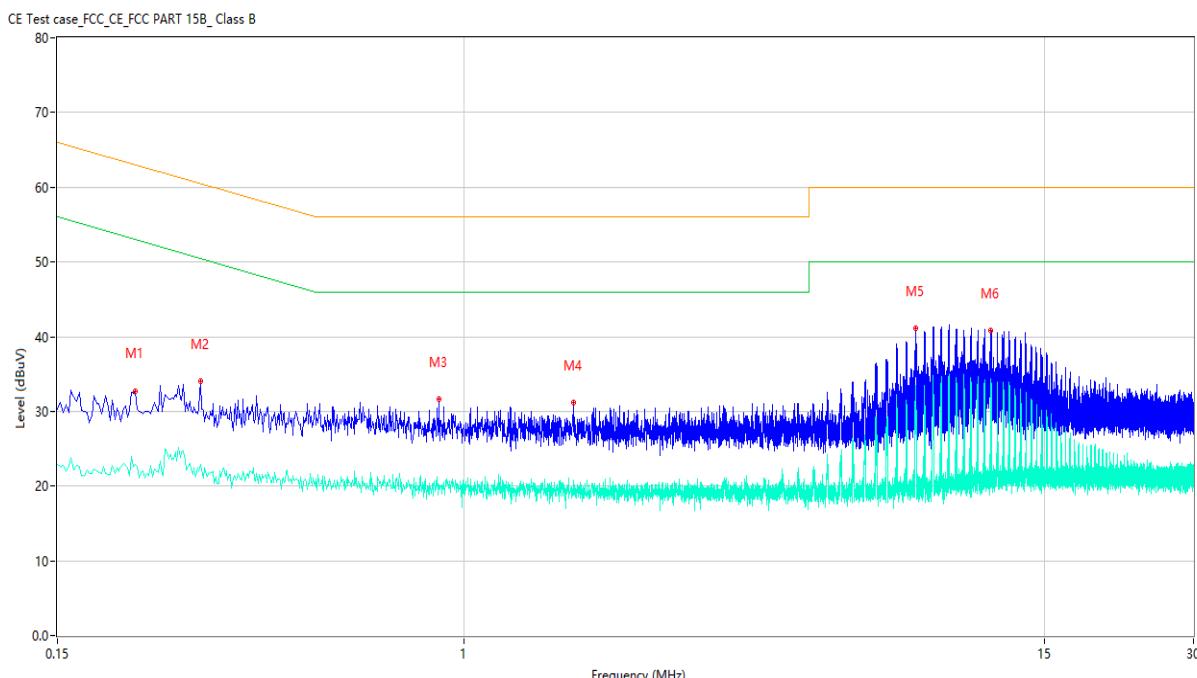
A.4 Power Spectral Density

(For FCC)

Note: Power Spectral Density test please refer to the Report. No. RF200116W006-3 issued by BV 7Layers Communications Technology (Shenzhen) Co. Ltd on May. 22, 2020., **Section 3.5 MAXIMUM POWER SPECTRAL DENSITY MEASUREMENT.**

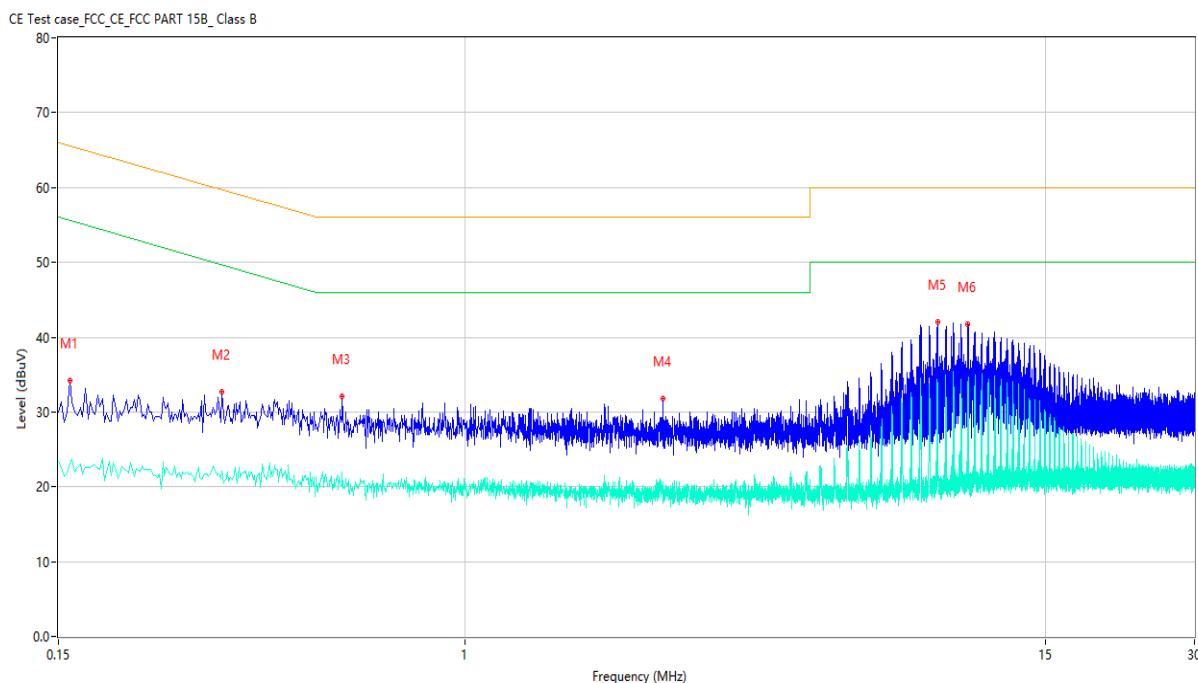
(For ISED)

Note: Power Spectral Density test please refer to the Report. No. IC200116W006-3 issued by BV 7Layers Communications Technology (Shenzhen) Co. Ltd on May. 22, 2020., **Section 3.4 MAXIMUM POWER SPECTRAL DENSITY MEASUREMENT.**


A.5 Conducted Emissions

Note ¹: The EUT is working in the Normal link mode. All modes have been tested and normal link mode is worst.

Note ²: Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.


Test Data and Plots

PHASE L

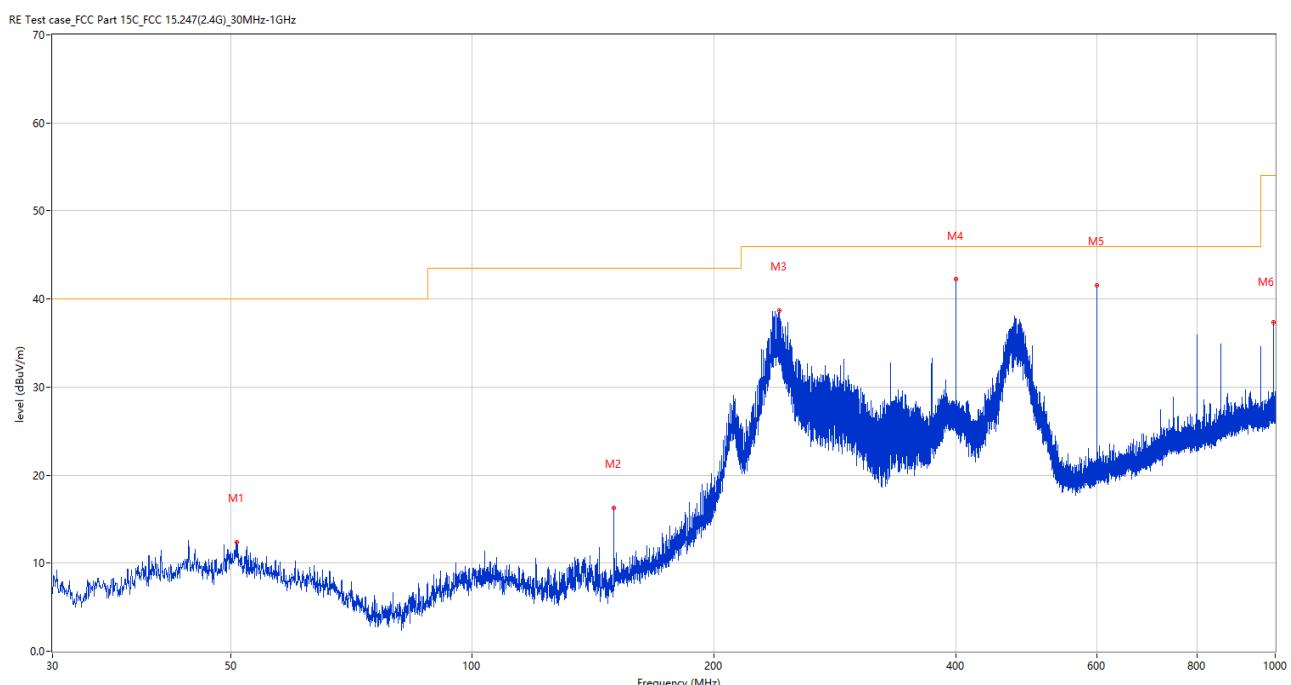
No.	Frequency (MHz)	Results (dBuV)	Factor (dB)	Limit (dBuV)	Over Limit (dB)	Detector	Line	Verdict
1	0.216	32.72	10.33	62.97	-30.25	Peak	L	Pass
1**	0.216	22.92	10.33	52.97	-30.05	AV	L	Pass
2	0.292	34.01	10.40	60.47	-26.46	Peak	L	Pass
2**	0.292	22.84	10.40	50.47	-27.63	AV	L	Pass
3	0.890	31.64	10.30	56.00	-24.36	Peak	L	Pass
3**	0.890	19.81	10.30	46.00	-26.19	AV	L	Pass
4	1.668	31.14	10.20	56.00	-24.86	Peak	L	Pass
4**	1.668	20.79	10.20	46.00	-25.21	AV	L	Pass
5	8.216	41.12	10.56	60.00	-18.88	Peak	L	Pass
5**	8.216	32.14	10.56	50.00	-17.86	AV	L	Pass
6	11.674	40.84	10.95	60.00	-19.16	Peak	L	Pass
6**	11.674	34.05	10.95	50.00	-15.95	AV	L	Pass

PHASE N

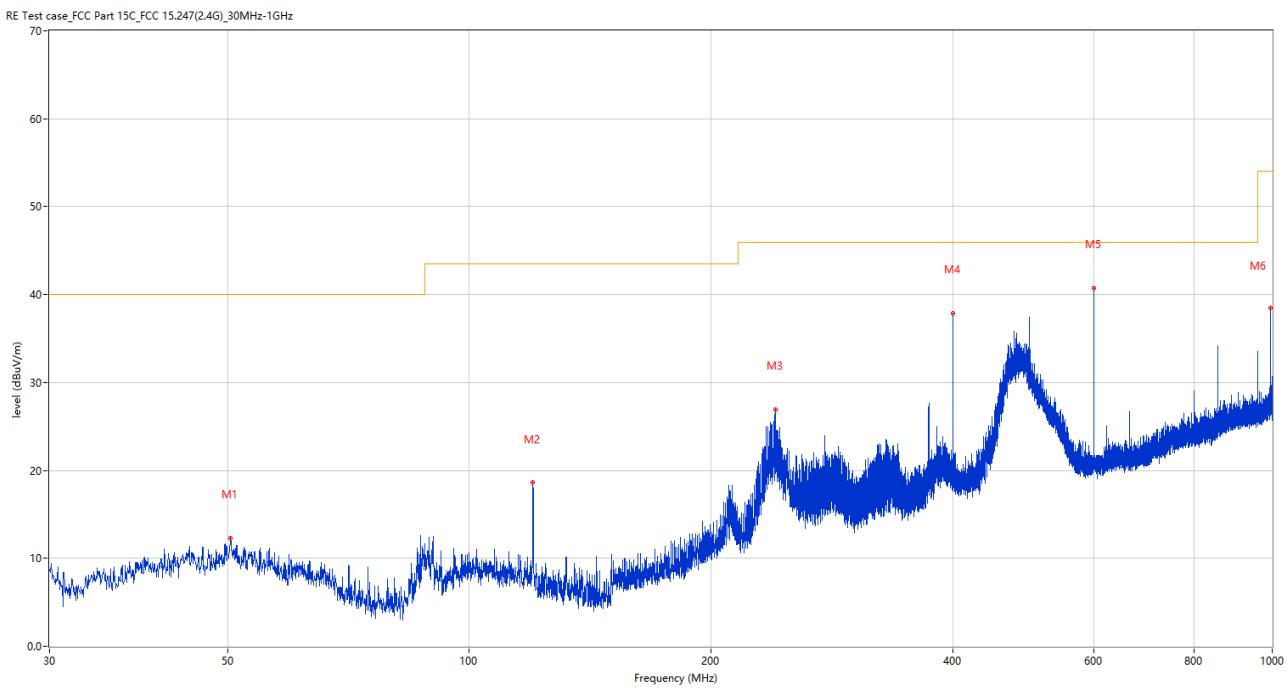
No.	Frequency (MHz)	Results (dBuV)	Factor (dB)	Limit (dBuV)	Over Limit (dB)	Detector	Line	Verdict
1	0.158	34.15	10.15	65.57	-31.42	Peak	N	Pass
1**	0.158	23.22	10.15	55.57	-32.35	AV	N	Pass
2	0.322	32.69	10.45	59.66	-26.97	Peak	N	Pass
2**	0.322	22.08	10.45	49.66	-27.58	AV	N	Pass
3	0.564	32.10	10.13	56.00	-23.90	Peak	N	Pass
3**	0.564	22.04	10.13	46.00	-23.96	AV	N	Pass
4	2.510	31.73	10.28	56.00	-24.27	Peak	N	Pass
4**	2.510	19.70	10.28	46.00	-26.30	AV	N	Pass
5	9.056	42.10	10.67	60.00	-17.90	Peak	N	Pass
5**	9.056	32.52	10.67	50.00	-17.48	AV	N	Pass
6	10.422	41.72	10.70	60.00	-18.28	Peak	N	Pass
6**	10.422	34.04	10.70	50.00	-15.96	AV	N	Pass

A.6 Radiated Spurious Emissions and Band Edge (Restricted-band)

Test Data


Note ¹: The symbol of “--” in the table which means not application.

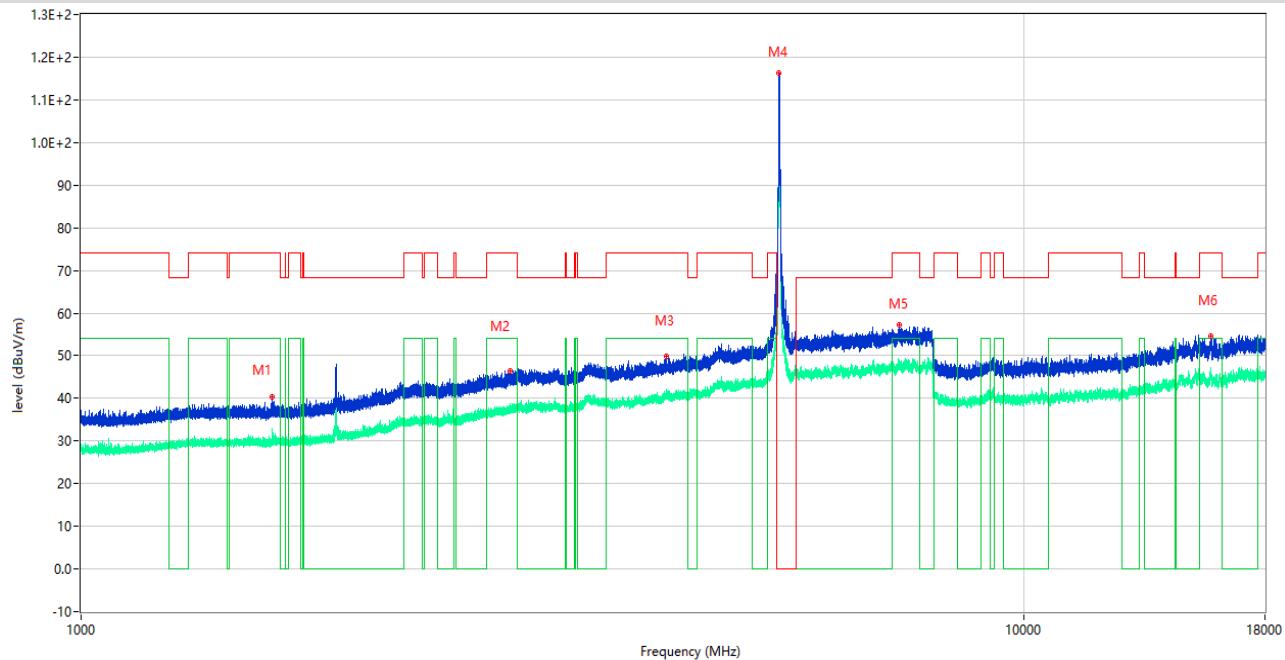
Note ²: For the test data above 1 GHz, According the ANSI C63.4, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.


Note ³: The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Note ⁴: The EUT is working in the Normal link mode below 1 GHz. All modes have been tested and normal link mode is worst.

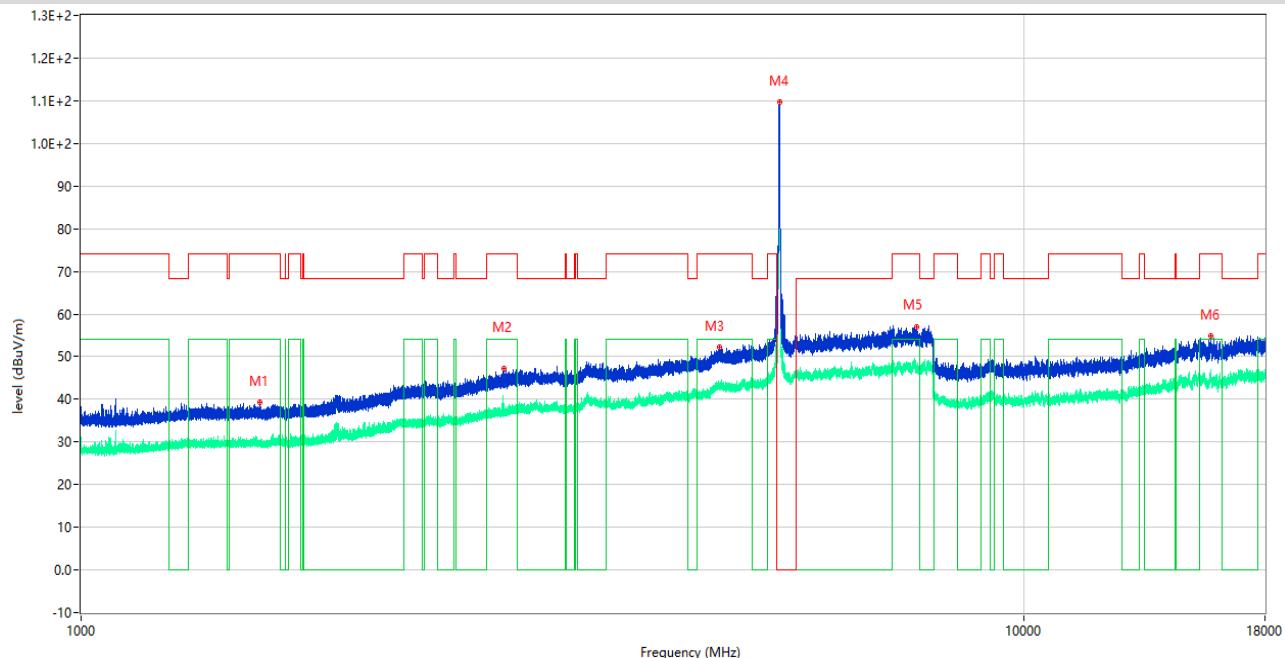
30 MHz to 1 GHz, ANT H

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Over Limit (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	50.904	12.42	-25.99	40.0	-27.58	Peak	38.00	100	Horizontal	Pass
2	150.038	16.24	-29.49	43.5	-27.26	Peak	167.00	100	Horizontal	Pass
3	241.412	38.71	-25.14	46.0	-7.29	Peak	124.00	100	Horizontal	Pass
4	400.006	42.23	-21.02	46.0	-3.77	Peak	86.00	100	Horizontal	Pass
5	599.972	41.52	-16.11	46.0	-4.48	Peak	198.00	100	Horizontal	Pass
6	995.974	37.39	-8.77	54.0	-16.61	Peak	239.00	100	Horizontal	Pass


30 MHz to 1 GHz, ANT V

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Over Limit (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	50.370	12.32	-26.00	40.0	-27.68	Peak	91.00	100	Vertical	Pass
2	120.016	18.58	-29.54	43.5	-24.92	Peak	1.00	100	Vertical	Pass
3	240.344	26.91	-25.15	46.0	-19.09	Peak	42.00	100	Vertical	Pass
4	400.006	37.92	-21.02	46.0	-8.08	Peak	168.00	100	Vertical	Pass
5	599.972	40.72	-16.11	46.0	-5.28	Peak	301.00	100	Vertical	Pass
6	995.974	38.46	-8.77	54.0	-15.54	Peak	266.00	100	Vertical	Pass

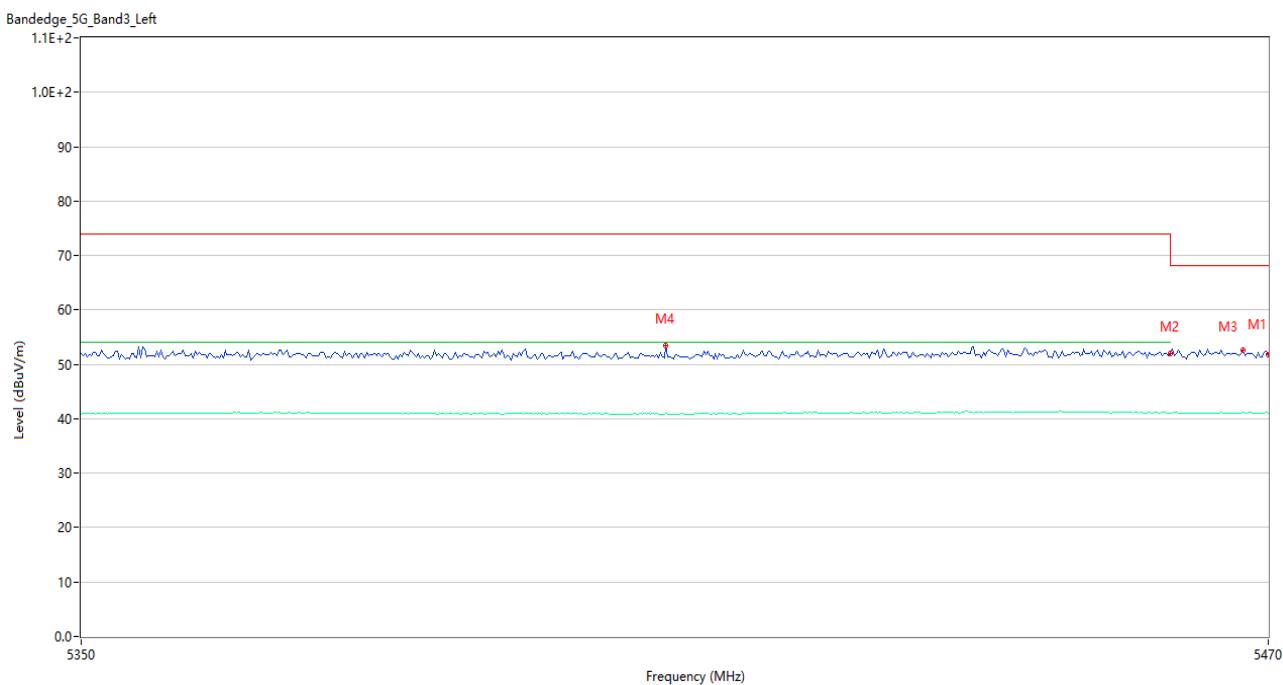
Note: The spurious above 18G is noise only, do not show on the report.


Cabinet Radiated Test data

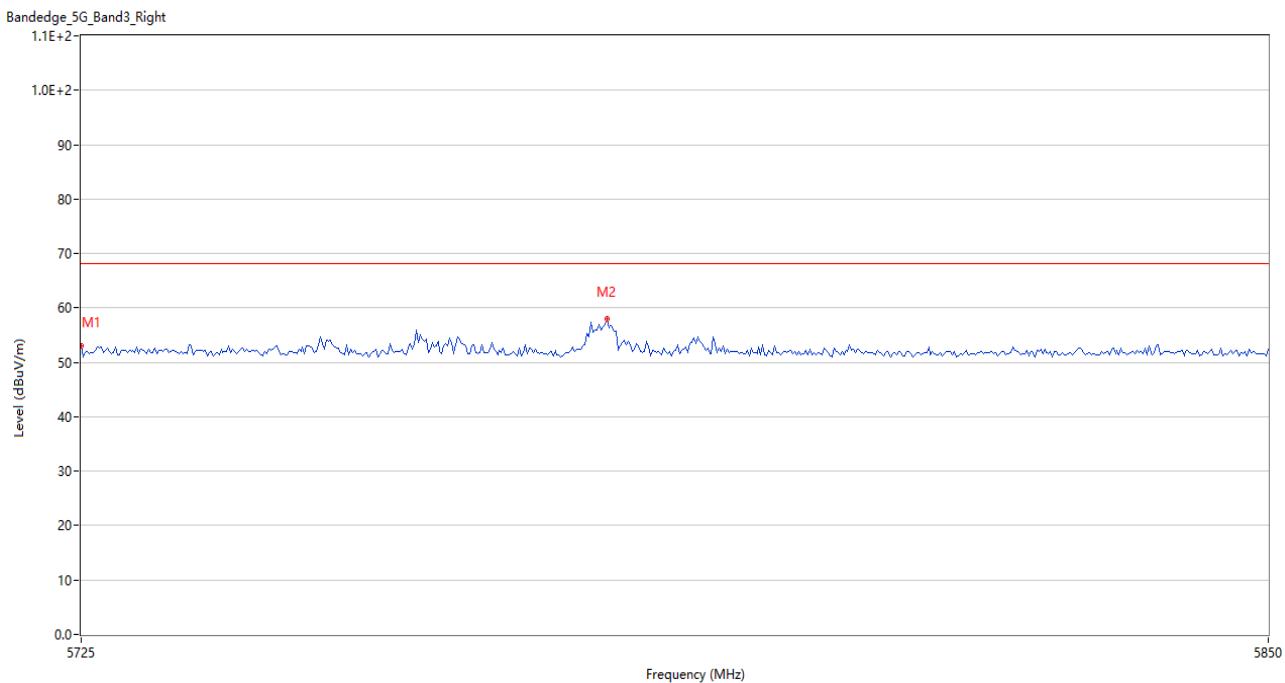
11a, U-NII-2C, 1 GHz to 18 GHz, Low Channel, ANT H

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Over Limit (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	1594.300	40.30	-16.18	74.0	-33.70	Peak	248.00	150	Horizontal	Pass
1**	1594.300	29.31	-16.18	54.0	-24.69	AV	248.00	150	Horizontal	Pass
2	2847.200	46.32	-8.25	74.0	-27.68	Peak	150.00	150	Horizontal	Pass
2**	2847.200	36.97	-8.25	54.0	-17.03	AV	150.00	150	Horizontal	Pass
3	4169.250	49.75	-2.30	74.0	-24.25	Peak	258.00	150	Horizontal	Pass
3**	4169.250	40.42	-2.30	54.0	-13.58	AV	258.00	150	Horizontal	Pass
4	5497.500	116.38	0.49	--	--	Peak	93.00	150	Horizontal	N/A
4**	5497.500	110.61	0.49	--	--	AV	93.00	150	Horizontal	N/A
5	7375.500	57.14	3.80	74.0	-16.86	Peak	258.00	150	Horizontal	Pass
5**	7375.500	47.45	3.80	54.0	-6.55	AV	258.00	150	Horizontal	Pass
6	15766.500	54.61	5.56	74.0	-19.39	Peak	335.00	150	Horizontal	Pass
6**	15766.500	45.84	5.56	54.0	-8.16	AV	335.00	150	Horizontal	Pass

11a, U-NII-2C, 1 GHz to 18 GHz, Low Channel, ANT V


No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Over Limit (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	1548.600	39.37	-16.38	74.0	-34.63	Peak	142.00	150	Vertical	Pass
1**	1548.600	30.27	-16.38	54.0	-23.73	AV	142.00	150	Vertical	Pass
2	2810.100	47.25	-8.65	74.0	-26.75	Peak	310.00	150	Vertical	Pass
2**	2810.100	37.32	-8.65	54.0	-16.68	AV	310.00	150	Vertical	Pass
3	4757.250	52.22	-0.60	74.0	-21.78	Peak	200.00	150	Vertical	Pass
3**	4757.250	43.34	-0.60	54.0	-10.66	AV	200.00	150	Vertical	Pass
4	5499.000	109.73	0.53	--	--	Peak	275.00	150	Vertical	N/A
4**	5499.000	101.96	0.53	--	--	AV	275.00	150	Vertical	N/A
5	7697.500	56.92	3.51	74.0	-17.08	Peak	324.00	150	Vertical	Pass
5**	7697.500	47.42	3.51	54.0	-6.58	AV	324.00	150	Vertical	Pass
6	15775.000	54.77	5.31	74.0	-19.23	Peak	221.00	150	Vertical	Pass
6**	15775.000	46.03	5.31	54.0	-7.97	AV	221.00	150	Vertical	Pass

A.6.2 Band Edge (Restricted-band)


Test Band	Mode	Channel	Verdict
U-NII-2C	802.11a	Low	Pass
		High	Pass

Test Data and Plots

U-NII-2C 11a CH100

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Over Limit (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	5470.000	51.69	-1.46	68.2	-16.51	Peak	324.99	150	Horizontal	Pass
2	5460.000	51.91	-1.39	68.2	-16.29	Peak	302.79	150	Horizontal	Pass
2**	5460.000	41.09	-1.39	54.0	-12.91	AV	302.79	150	Horizontal	Pass
3	5467.400	52.66	-1.44	68.2	-15.54	Peak	27.00	150	Horizontal	Pass
4	5408.800	53.37	-1.81	74.0	-20.63	Peak	37.00	150	Horizontal	Pass
4**	5408.800	40.96	-1.81	54.0	-13.04	AV	37.00	150	Horizontal	Pass

U-NII-2C 11a CH140

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Over Limit (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	5725.000	52.99	-1.67	68.2	-15.21	Peak	56.00	150	Horizontal	Pass
2	5780.000	58.01	-1.88	68.2	-10.19	Peak	155.00	150	Horizontal	Pass

ANNEX B TEST SETUP PHOTOS

Please refer the document “BL-EC2220625-AR.PDF”.

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document “BL-EC2220625-AW.PDF”.

ANNEX D EUT INTERNAL PHOTOS

Please refer the document “BL-EC2220625-AI.PDF”.

Statement

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
5. The test data and results are only valid for the tested samples provided by the customer.
6. This report shall not be partially reproduced without the written permission of the laboratory.
7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--END OF REPORT--