

RF Exposure Evaluation Declaration

Product Name : Receiver Module

Model No. : SR24NP

FCC ID : 2ACS5-SR24NP

Applicant : Yuneec Technology Co., Limited

Address : 2/F Man Shung Industrial Building, 7 Lai Yip Street,
Kwun Tong, Hong Kong

Date of Receipt : Mar. 29, 2016

Issued Date : Apr. 26, 2016

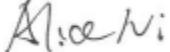
Report No. : 1632107R-RF-US-P20V01

Report Version : V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.


The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date : Apr. 26, 2016
Report No. : 1632107R-RF-US-P20V01

Product Name : Receiver Module
Applicant : Yuneec Technology Co., Limited
Address : 2/F Man Shung Industrial Building, 7 Lai Yip Street, Kwun Tong, Hong Kong
Manufacturer : Yuneec International (China) Co., Ltd.
Address : No.388 East Zhengwei Road, Jinxi Town, Kunshan, Jiangsu 215324, China
Model No. : SR24NP
FCC ID : 2ACS5-SR24NP
Brand Name : YUNEEC
EUT Voltage : DC 3.3V
Applicable Standard : KDB 447498D01V06
FCC Part1.1310(b)
Test Result : Complied
Performed Location : Quietek Corporation - Suzhou EMC Laboratory
No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China
TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098
FCC Registration Number: 800392

Documented By :

(Senior Adm. Specialist: Alice Ni)

Reviewed By :

(Senior Engineer: Frank He)

Approved By :

(Engineering Manager : Harry Zhao)

Laboratory Information

We, **QuiTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C.	:	BSMI, NCC, TAF
USA	:	FCC
Japan	:	VCCI
China	:	CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuiTek Corporation's Web Site : <http://www.quietek.com/english/about/certificates.aspx?bval=5>
The address and introduction of QuiTek Corporation's laboratories can be founded in our Web site : http://www.quietek.com/index_en.aspx

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory :

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C.
TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : service@quietek.com

LinKou Testing Laboratory :

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.
TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : service@quietek.com

Suzhou Testing Laboratory :

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China
TEL : +86-512-6251-5088 / FAX : 86-512-6251-5098 E-Mail : service@quietek.com

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
1632107R-RF-US-P20V01	V1.0	Initial Issued Report	Apr. 26, 2016

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (Minutes)
(A) Limits for Occupational/ Control Exposures				
300-1500	--	--	F/300	6
1500-100,000	--	--	5	6
(B) Limits for General Population/ Uncontrolled Exposures				
300-1500	--	--	F/1500	6
1500-100,000	--	--	1	30

F= Frequency in MHz

Friis Formula

Friis transmission formula: $P_d = (P_{out} \cdot G) / (4 \cdot \pi \cdot r^2)$

Where

P_d = power density in mW/cm²

P_{out} = output power to antenna in mW

G = gain of antenna in linear scale

π = 3.1416

R = distance between observation point and center of the radiator in cm

P_d is the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18 °C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	Receiver Module
Test Item	:	RF Exposure Evaluation
Test Site	:	AC-6

- Antenna Gain:

Model No.	N/A					
Antenna manufacturer	N/A					
Antenna Delivery	<input type="checkbox"/>	1*TX+1*RX	<input checked="" type="checkbox"/>	2*TX+2*RX	<input type="checkbox"/>	3*TX+3*RX
Antenna technology	<input checked="" type="checkbox"/>	SISO				
	<input type="checkbox"/>	MIMO	<input type="checkbox"/>	Basic		
	<input type="checkbox"/>		<input type="checkbox"/>	CDD		
	<input type="checkbox"/>		<input type="checkbox"/>	Beam-forming		
Antenna Type	<input checked="" type="checkbox"/>	External	<input checked="" type="checkbox"/>	Dipole		
	<input type="checkbox"/>	Internal	<input type="checkbox"/>	PIFA		
	<input type="checkbox"/>		<input type="checkbox"/>	PCB		
	<input type="checkbox"/>		<input type="checkbox"/>	Ceramic Chip Antenna		
	<input type="checkbox"/>		<input type="checkbox"/>	Metal plate type F antenna		
Antenna Gain	1dBi					

- Output Power into Antenna & RF Exposure Evaluation Distance:

2.4GHz:

Test Mode	Frequency Band (MHz)	Maximum Output Power to Antenna (dBm)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm ²)
Zigbee	2405 ~ 2475	4.88	1.0	0.000770

So according to transmission formula: $P_d = (P_{out} \cdot G) / (4 \cdot \pi \cdot r^2)$ and the power density limit according to KDB 447498D01V06 and FCC Part1.1310(b), the limit is 1mW/cm²

Safety Distance Calculation Formula:

The power flux:

$$S = \frac{P \cdot G_{(\theta, \phi)}}{4 \cdot \pi \cdot r^2}$$

So safety distance as following:

$$r = \sqrt{\frac{P \cdot G}{4 \cdot \pi \cdot S}}$$

P = input power of the antenna

G = antenna gain relative to an isotropic antenna

θ, ϕ = elevation and azimuth angles.

r = distance from the antenna to the point of investigation

Test Mode	Frequency Range (MHz)	Maximum EIRP (dBm)	Limit of Power Density S(mW/cm ²)	Safety Distance r(cm)
Zigbee	2405 ~ 2475	5.88	1	0.56

Note: The safety distance is 0.56cm for the router without any other radio equipment.

The End