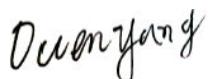
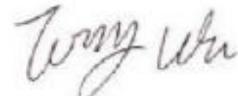


Test Report of FCC CFR 47 Part 15 Subpart C


On Behalf of

3 P.M.Shenzhen Manufacturing


No.1 HaoSi West Industrial Park, No1011 XiHuan Road ShaJing
Town, BaoAn, Shenzhen, P.R.C

Product Name:	Kenero
Model/Type No.:	Kenero
FCC ID:	2ACKI-KENERO
Prepared By:	Shenzhen Hongcai Testing Technology Co., Ltd. 1st-3rd Floor, Building C, Shuanghuan Xin Yi Dai Hi-Tech Industrial Park, No.8 Baoqing Road, Baolong Industrial Zone, Longgang District, Shenzhen, Guangdong, China Tel: +86-755-86337020 Fax: +86-755-86337028
Report Number:	HCT16ER117E
Tested Date:	June 1 ~15, 2016
Issued Date:	June 15, 2016
Tested By:	Haiqing Zhao/

Reviewed By:

Approved By:

Owen.Yang
EMC Technical Supervisor

Tony Wu
EMC Technical Manager

TABLE OF CONTENTS

1. GENERAL INFORMATION.....	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 TEST STANDARDS	5
1.3 TEST FACILITY.....	5
2. SYSTEM TEST CONFIGURATION.....	6
2.1 EUT CONFIGURATION	6
2.2 EUT EXERCISE	6
2.3 GENERAL TEST PROCEDURES.....	6
2.4 MEASUREMENT UNCERTAINTY	6
2.5 MEASURE RESULTS EXPLANATION EXAMPLE	7
2.6 LIST OF MEASURING EQUIPMENTS USED.....	8
3. SUMMARY OF TEST RESULTS	9
4. TEST OF AC POWER LINE CONDUCTED EMISSION	10
4.1 APPLICABLE STANDARD	10
4.2 TEST SETUP DIAGRAM	10
4.3 TEST RESULT.....	10
5. OUTPUT POWER MEASUREMENT.....	13
5.1 APPLICABLE STANDARD	13
5.2 EUT SETUP	13
5.3 TEST EQUIPMENT LIST AND DETAILS.....	13
5.4 TEST PROCEDURE	13
5.5 TEST RESULT.....	13
6. TEST OF PEAK POWER SPECTRAL DENSITY	14
6.1 APPLICABLE STANDARD	14
6.2 EUT SETUP	14
6.3 TEST EQUIPMENT LIST AND DETAILS.....	14
6.4 TEST PROCEDURE	14
6.5 TEST RESULT.....	15
7. TEST OF 6DB BANDWIDTH	17
7.1 APPLICABLE STANDARD	17
7.2 EUT SETUP	17
7.3 TEST EQUIPMENT LIST AND DETAILS.....	17
7.4 TEST PROCEDURE	17
7.5 TEST RESULT.....	18
8. TEST OF CONDUCTED SPURIOUS EMISSION	20
8.1 APPLICABLE STANDARD	20
8.2 EUT SETUP	20
8.3 TEST EQUIPMENT LIST AND DETAILS.....	20
8.4 TEST PROCEDURE	20
8.5 TEST RESULT.....	21
9. TEST OF RADIATED SPURIOUS EMISSION	23
9.1 RADIATED SPURIOUS EMISSION	23
9.1.1 LIMITS	23
9.1.2 EUT SETUP	23
9.1.3 TEST PROCEDURE	24
9.1.4 TEST RESULT	25
10. TEST OF BAND EDGES EMISSION	32
10.1 APPLICABLE STANDARD	32

10.2 EUT SETUP	32
10.3 TEST EQUIPMENT LIST AND DETAILS	32
10.4 TEST PROCEDURE	32
10.5 TEST RESULT	34
11. ANTENNA REQUIREMENT	36
11.1 STANDARD APPLICABLE	36
11.2 ANTENNA CONNECTED CONSTRUCTION	36
12 .RADIO FREQUENCY EXPOSURE	37

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant:	3 P.M.Shenzhen Manufacturing
Address of Applicant:	No.1 HaoSi West Industrial Park, No1011 XiHuan Road Shajing Town, BaoAn, Shenzhen, P.R.C
Manufacturer:	3 P.M.Shenzhen Manufacturing
Address of Manufacturer:	No.1 HaoSi West Industrial Park, No1011 XiHuan Road Shajing Town, BaoAn, Shenzhen, P.R.C

General Description of E.U.T

Items	Description
EUT Description:	Kenero
Trade Name:	Kenero
Model No.:	Kenero
BT Version	BT4.0 BLE
Frequency Band:	2402MHz~2480MHz
Channel Spacing:	2MHz
Number of Channels:	40 Channels
Type of Modulation:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain	0dBi
Power Supply:	DC 3-5V

Remark: * The test data gathered are from the production sample provided by the manufacturer.

1.2 Test standards

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V03r03: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

RSS-GEN Issue 4: General Requirements for Compliance of Radio Apparatus

RSS-210 Issue 8: Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

RSS 247 Issue 1: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

1.3 Test Facility

All measurement required was performed at laboratory of Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

FCC – Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December, 2013.

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

2. SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

2.3 General Test Procedures

Conducted Emissions: The EUT is placed on the turntable, which is 0.8 m above ground plane According to the requirements in ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode.

Radiated Emissions: The EUT is placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in ANSI C63.10-2013.

2.4 Measurement Uncertainty

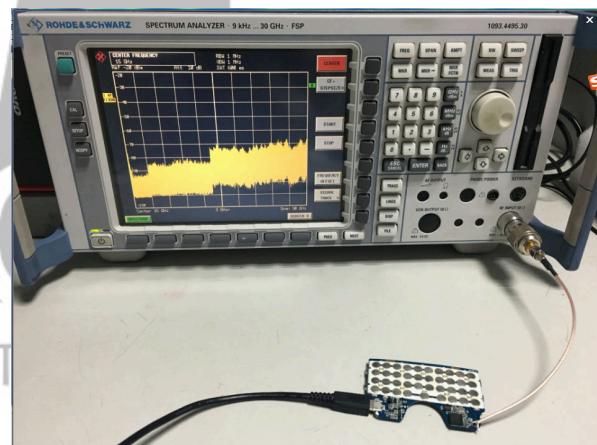
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Transmitter power conducted	+/- 0.57 dB
Transmitter power Radiated	+/- 2.20 dB
Conducted spurious emission 9KHz-40 GHz	+/- 2.20 dB
Occupied Bandwidth	+/- 0.01 dB
Power Line Conducted Emission	+/- 3.20 dB
Radiated Emission	+/- 4.32 dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.5 Measure Results Explanation Example


For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable less and attenuator factor.
Offset= RF cable less+ attenuator factor.

Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

Equipment	Manufacturer	Model No.	Frequency range(GHz)	Attenuation values(dBm)
Line	Zhenjiang south electronic	RG316	1-12	0.08
Connector	Zhenjiang south electronic	SMA-K/N-J	1-12	0.01

2.6 List of Measuring Equipments Used

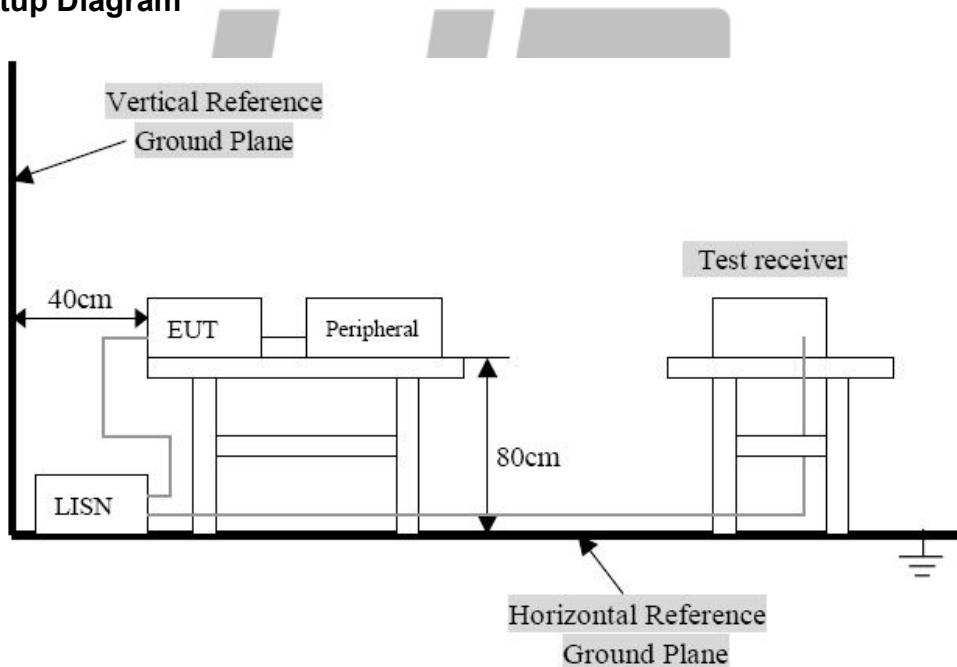
No.	Instrument no.	Equipment	Manufacturer	Model No.	S/N	Last Calibration	Due Calibration
1	BCT-EMC001	EMI Test Receiver	R&S	ESCI	100687	2015-8-25	2016-8-24
2	BCT-EMC002	EMI Test Receiver	R&S	ES PI	100097	2015-11-1	2016-10-31
3	BCT-EMC003	Amplifier	HP	8447D	1937A02492	2015-8-25	2016-8-24
4	BCT-EMC018	TRILOG Broadband Test-Antenna	SCHWARZBECK	VULB9163	9163-324	2015-8-25	2016-8-24
5	BCT-EMC021	Triple-Loop Antenna	EVERFINE	LLA-2	711002	2015-11-1	2016-10-31
6	BCT-EMC026	RF POWER AMPLIFIER	FRANKONIA	FLL-75	1020A1109	2015-8-25	2016-8-24
7	BCT-EMC029	6dB Attenuator	FRANKONIA	N/A	1001698	2015-8-25	2016-8-24
8	BCT-EMC032	10dB attenuator	ELECTRO-METRICS	EM-7600	836	2015-8-25	2016-8-24
9	BCT-EMC036	Spectrum Analyzer	R&S	FSP	100397	2015-11-1	2016-10-31
10	BCT-EMC037	Broadband preamplifier	SCH WARZBECK	BBV9718	9718-182	2015-8-25	2016-8-24
11	BCT-EMC039	Horn Antenna	SCHWARZBECK	BBHA 9120D	0437	2015-8-25	2016-8-24
12	BCT-EMC038	Horn Antenna	SCHWARZBECK	BBHA9170	0483	2015-8-5	2016-8-4
13	BCT-EMC050	Pulse power sensor	Anritsu	MA2411B	110553	2015-11-1	2016-10-31
14	BCT-EMC050	Power Meter	Anritsu	ML2487B	100345	2015-11-1	2016-10-31

HONGCAI TESTING

3. SUMMARY OF Test RESULTS

FCC/IC Rules	Description of Test	Result
FCC §15.207 IC RSS-GEN Clause 7.2.2	AC Power Line Conducted Emission	N/A
FCC §15.247(b) IC RSS-247 Issue1 Clause 5.4 (4)	Output Power Measurement	Pass
FCC §15.247(e) IC RSS-247 Issue1 Clause 5.2 (2)	Power Spectral Density	Pass
FCC §15.247(a) IC RSS-247 Issue1 Clause 5.2 (1)	6dB Bandwidth 99% Occupied Bandwidth	Pass
FCC §15.247 (d) IC RSS-247 Issue1 Clause 5.5	Conducted Spurious Emission	Pass
FCC §15.205 and §15.209 IC RSS-210 Clause 2.6 (Transmitter) IC RSS-GEN Clause 6 (Receiver)	Radiated Spurious Emission	Pass
FCC §15.247 (d) and §15.205 and §15.209 IC RSS-247 Issue1 Clause 5.5	Unwanted Emissions	Pass
FCC §15.203/15.247(b)/(c) IC RSS-GEN Clause 7.1.4	Antenna Requirement	Pass

4. Test OF AC POWER LINE CONDUCTED EMISSION


4.1 Applicable standard

Refer to FCC §15.207 and IC RSS-GEN Clause 7.2.2

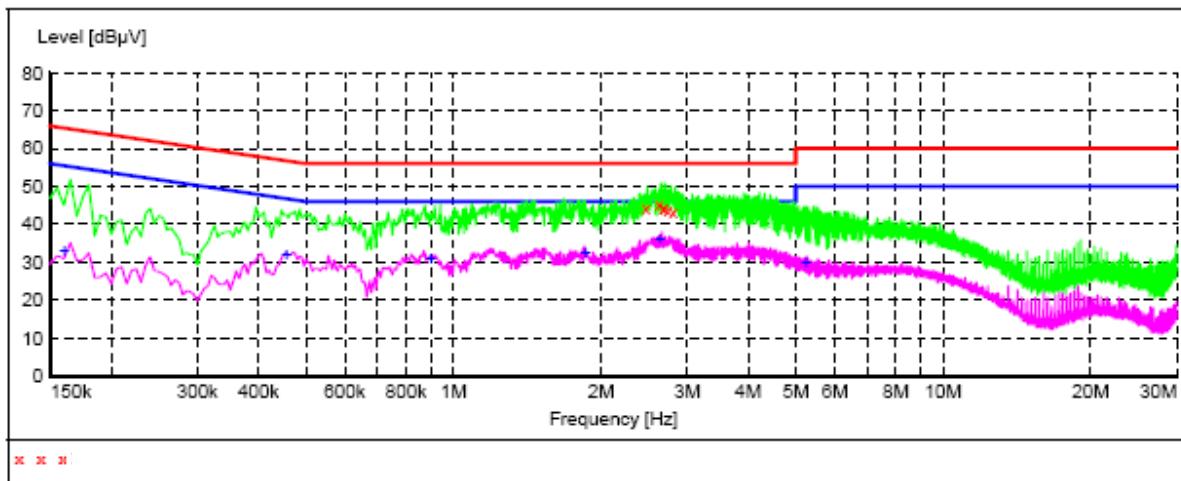
For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency Range (MHz)	Limits (dBuV)	
	Quasi-Peak	Average
0.150~0.500	66~56	56~46
0.500~5.000	56	46
5.000~30.00	60	50

4.2 Test Setup Diagram

Remark: The EUT was connected to a 120 VAC/ 60Hz power source.

4.3 Test Result


Temperature (°C) : 23~25	EUT: Kenero
Humidity (%RH) : 45~58	M/N: Kenero
Barometric Pressure (mbar) : 950~1000	Operation Condition: Tx Mode

Test result:PASS

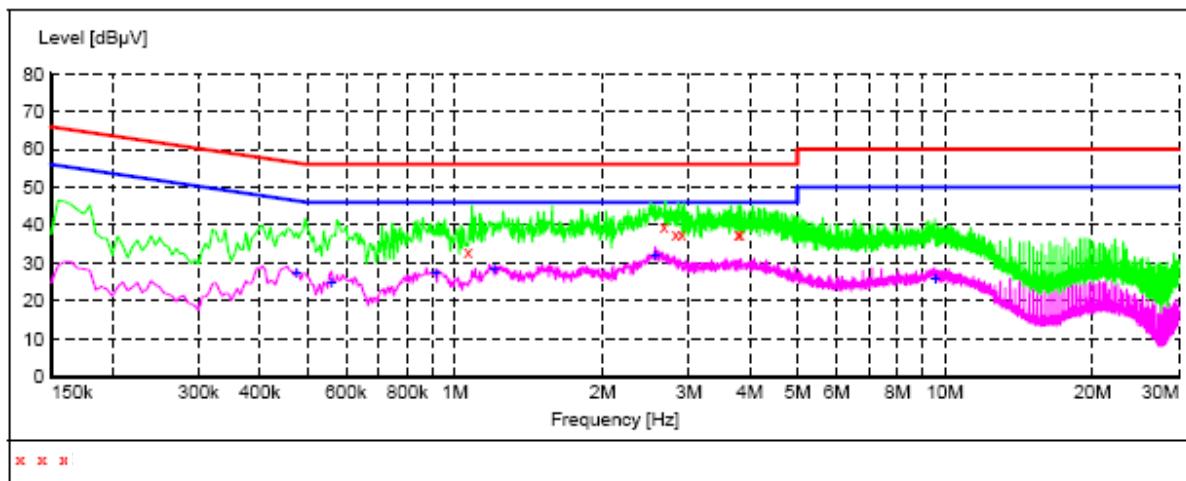
Conducted Emission:

EUT: Kenero
 M/N: Kenero
 Operating Condition: Tx Mode
 Test Site: Shielded Room
 Operator: Yang
 Test Specification: AC 120V/60Hz for adapter
 Comment: L Line

SCAN TABLE: "Voltage (150K-30M) FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT:

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
2.475000	44.40	10.4	56	11.6	QP	L1	GND
2.630000	45.10	10.4	56	10.9	QP	L1	GND
2.685000	44.30	10.4	56	11.7	QP	L1	GND
2.690000	44.50	10.4	56	11.5	QP	L1	GND
2.740000	44.00	10.4	56	12.0	QP	L1	GND
2.810000	43.50	10.4	56	12.5	QP	L1	GND


MEASUREMENT RESULT:

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.160000	33.10	12.9	56	22.4	AV	L1	GND
0.455000	32.00	10.6	47	14.8	AV	L1	GND
0.900000	31.00	10.4	46	15.0	AV	L1	GND
1.860000	32.60	10.4	46	13.4	AV	L1	GND
2.640000	35.90	10.4	46	10.1	AV	L1	GND
5.255000	29.90	10.4	50	20.1	AV	L1	GND

Conducted Emission:

EUT: Kenero
 M/N: Kenero
 Operating Condition: Tx Mode
 Test Site: Shielded Room
 Operator: Yang
 Test Specification: AC 120V/60Hz for adapter
 Comment: N Line

SCAN TABLE: "Voltage (150K-30M) FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT:

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
1.065000	33.20	10.5	56	22.8	QP	N	GND
2.675000	39.50	10.4	56	16.5	QP	N	GND
2.825000	37.60	10.4	56	18.4	QP	N	GND
2.900000	37.70	10.4	56	18.3	QP	N	GND
3.780000	37.50	10.4	56	18.5	QP	N	GND
3.815000	37.80	10.4	56	18.2	QP	N	GND

MEASUREMENT RESULT:

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.475000	27.10	10.5	46	19.3	AV	N	GND
0.560000	24.90	10.5	46	21.1	AV	N	GND
0.915000	27.50	10.4	46	18.5	AV	N	GND
1.205000	28.30	10.4	46	17.7	AV	N	GND
2.565000	31.90	10.4	46	14.1	AV	N	GND
9.580000	25.60	10.6	50	24.4	AV	N	GND

5. Output Power Measurement

5.1 Applicable standard

Refer to FCC §15.247 (b) and IC RSS-247 Issue1 Clause 5.4 (4).
 KDB 558074 v03r03 – Section 9.1.2 PKPM1 Peak Power, Method
 KDB 558074 v03r03 – Section 9.2.3.2 Method AVGPM-G

The maximum permissible conducted output power is 1Watt.

5.2 EUT Setup

5.3 Test Equipment List and Details

See section 2.5.

5.4 Test Procedure

Method PKPM1 (Peak Power Measurement)

Peak power measurement were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor, The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurement were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor, The pulse meter implemented triggering and fading capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter, The trace was averaged over 100 traces to obtain the final measured average power.

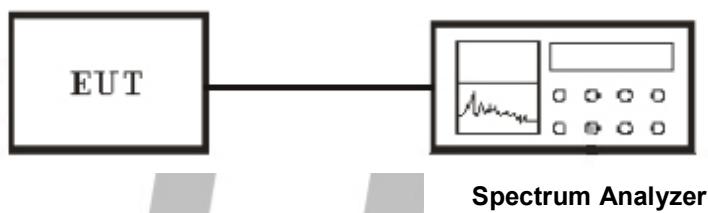
5.5 Test Result

Temperature (°C) : 22~23	EUT: Kenero
Humidity (%RH) : 50~54	M/N: Kenero
Barometric Pressure (mbar) : 950~1000	Operation Condition: Tx Mode

GFSK mode

Channel	Channel Frequency (MHz)	Average Power (dBm)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2402	-7.42	-4.15	30	PASS
Middle	2440	-8.61	-3.23	30	PASS
High	2480	-7.22	-2.11	30	PASS

6. Test of Peak Power Spectral Density


6.1 Applicable standard

Refer to FCC §15.247 (e) and IC RSS-247 Issue1 Clause 5.2 (2).

KDB 558074v03r03 – Section 10.2 Method PKPSD

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.2 EUT Setup

6.3 Test Equipment List and Details

See section 2.5.

6.4 Test Procedure

The transmitter output was connected to the spectrum analyzer and the parameter was set as below:

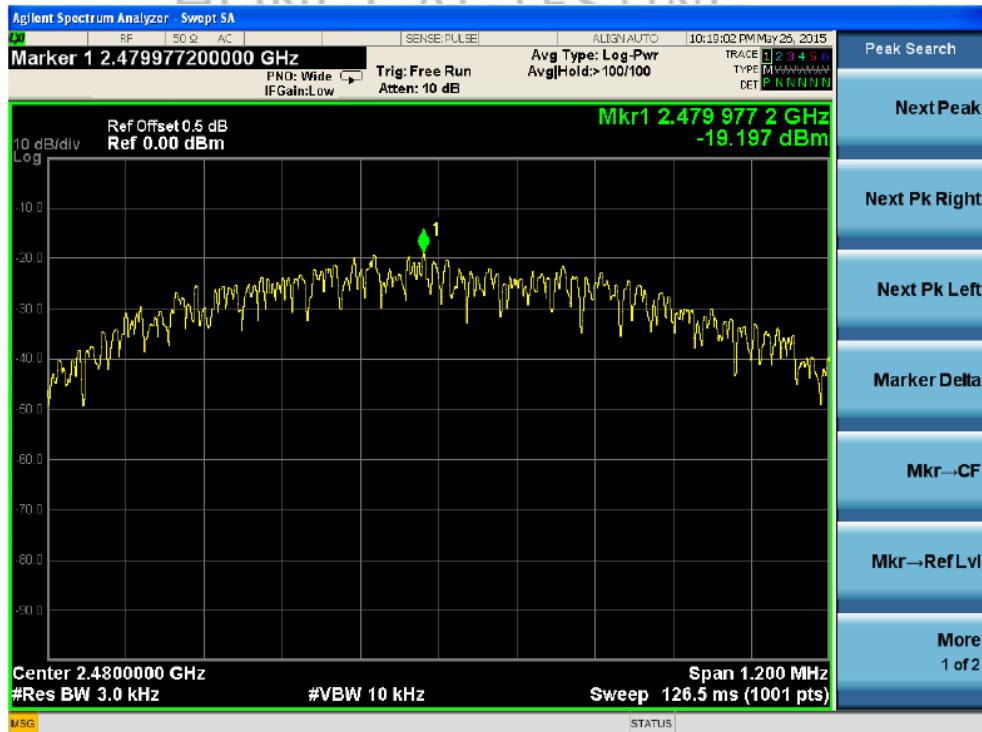
1. Set analyzer center frequency to DTS channel center frequency.
2. Set the span to 1.5 times the DTS channel bandwidth.
3. Set the RBW ≥ 3 kHz.
4. Set the VBW $\geq 3 \times$ RBW.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use the peak marker function to determine the maximum amplitude level.
10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


6.5 Test Result

Temperature (°C) : 22~23	EUT: Kenero
Humidity (%RH): 50~54	M/N: Kenero
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

GFSK mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz RBW (dBm)	Maximum Limit (dBm)	Pass / Fail
Low	2402	-19.621	8	PASS
Middle	2440	-19.665	8	PASS
High	2480	-19.197	8	PASS


POWER SPECTRAL DENSITY (GFSK MODE CH Low)

POWER SPECTRAL DENSITY (GFSK MODE CH Mid)

POWER SPECTRAL DENSITY (GFSK MODE CH High)

7. Test of 6dB Bandwidth

7.1 Applicable standard

Refer to FCC §15.247 (a) (2) and IC RSS-247 Issue1 Clause 5.2 (1).

KDB558074 v03r03 – Section 8.2 Option 2

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

7.2 EUT Setup

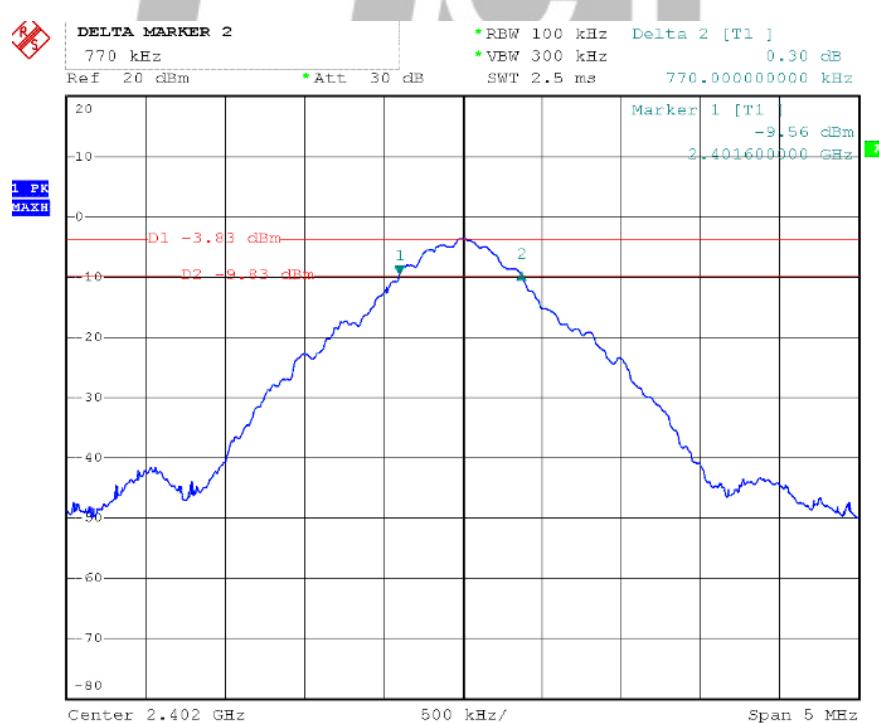
7.3 Test Equipment List and Details

See section 2.5.

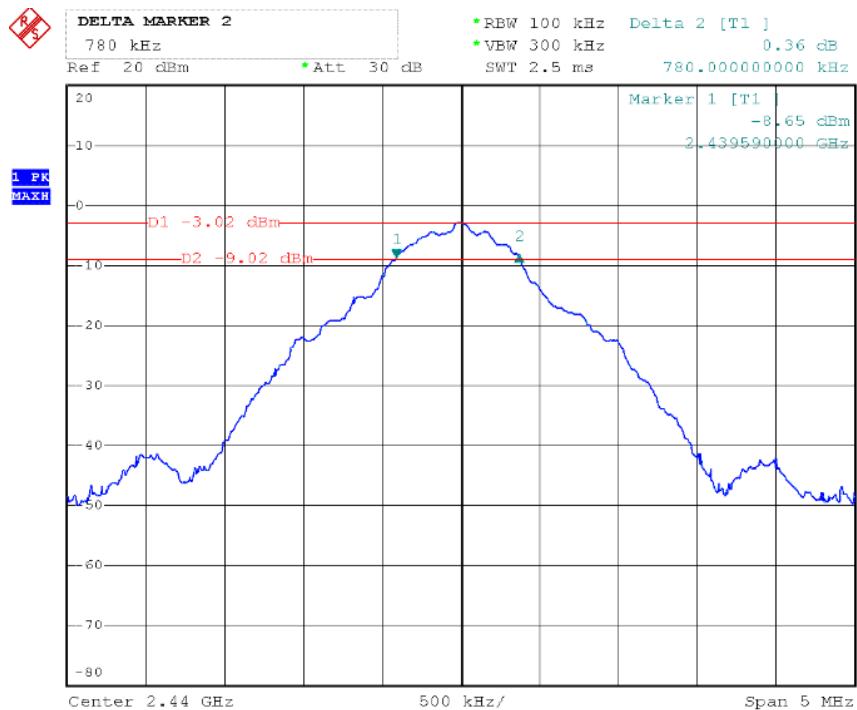
7.4 Test Procedure

The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. The transmitter output was connected to a spectrum analyzer and the parameter was set as below:

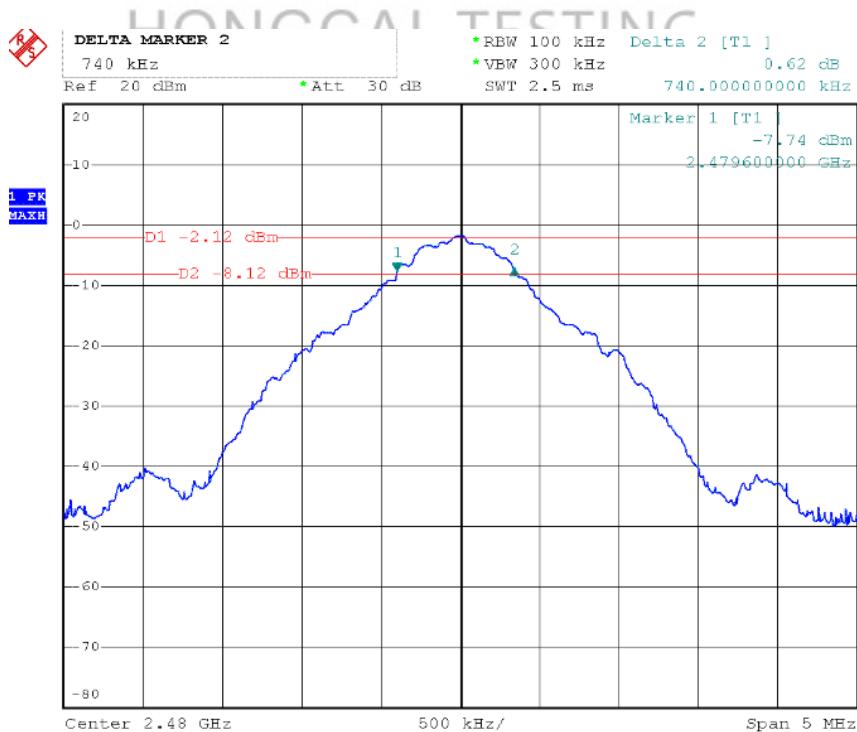
1. Set resolution bandwidth (RBW) = 1-5% or DTS BW, not to exceed 100 kHz.
2. Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


7.5 Test Result

Temperature (°C) : 22~23	EUT: Kenero
Humidity (%RH) : 50~54	M/N: Kenero
Barometric Pressure (mbar) : 950~1000	Operation Condition: Tx Mode


GFSK mode

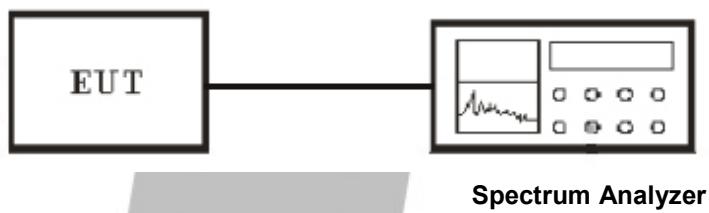
Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2402	770	500	PASS
Middle	2440	780	500	PASS
High	2480	740	500	PASS


6dB BANDWIDTH (GFSK MODE CH Low)

6dB BANDWIDTH (GFSK MODE CH Mid)

6dB BANDWIDTH (GFSK MODE CH High)

8. Test of Conducted Spurious Emission


8.1 Applicable standard

Refer to FCC §15.247 (d) and IC RSS-247 Issue1 Clause 5.5.

KDB 558074 v03r03 – Section 11.3

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

8.2 EUT Setup

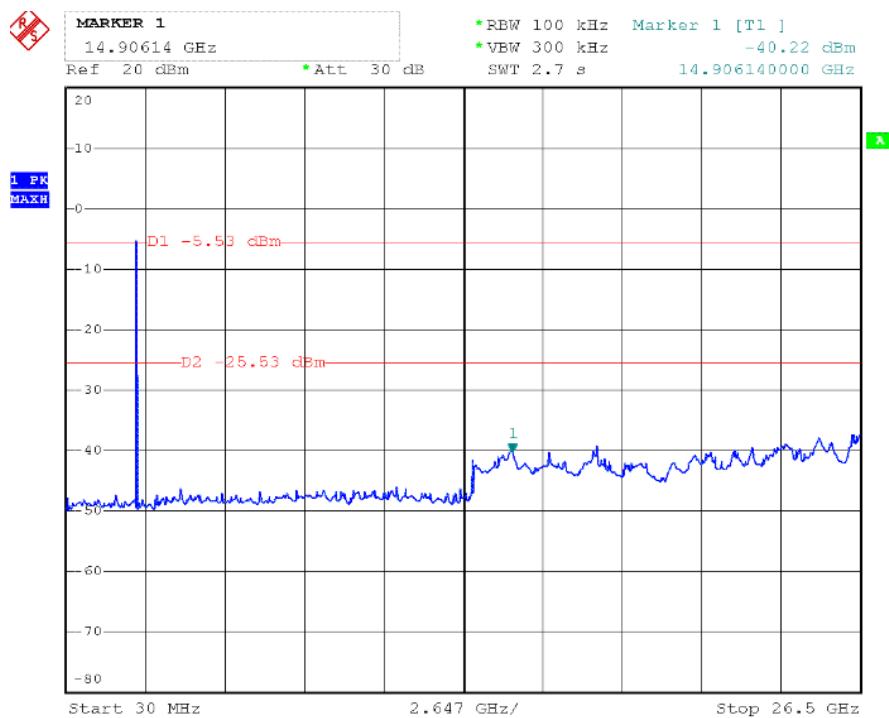
8.3 Test Equipment List and Details

See section 2.5.

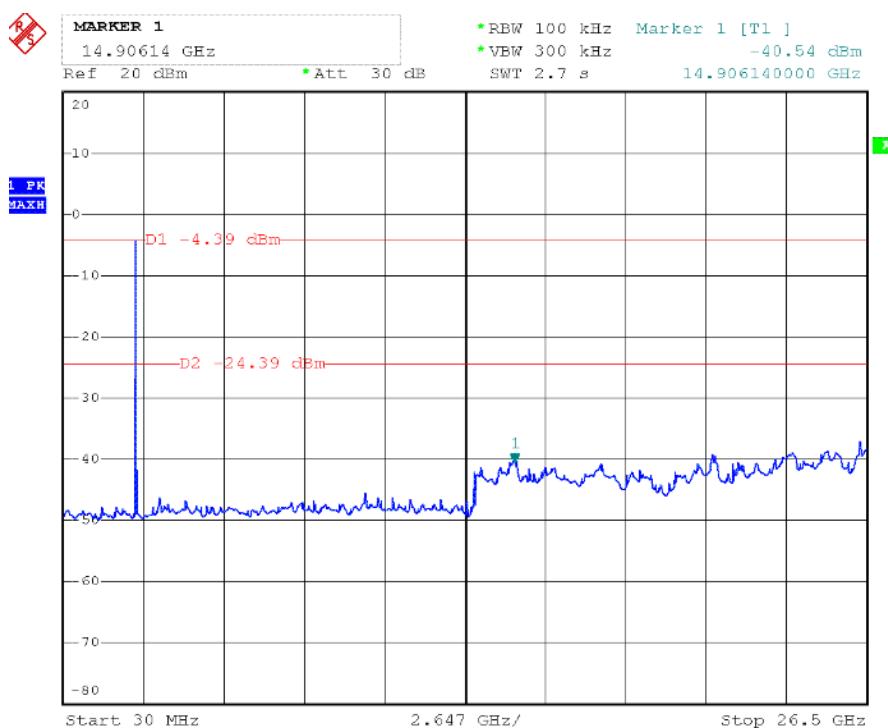
8.4 Test Procedure

The transmitter output was connected to a spectrum analyzer. The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band. The parameter of the spectrum analyzer was set as below:

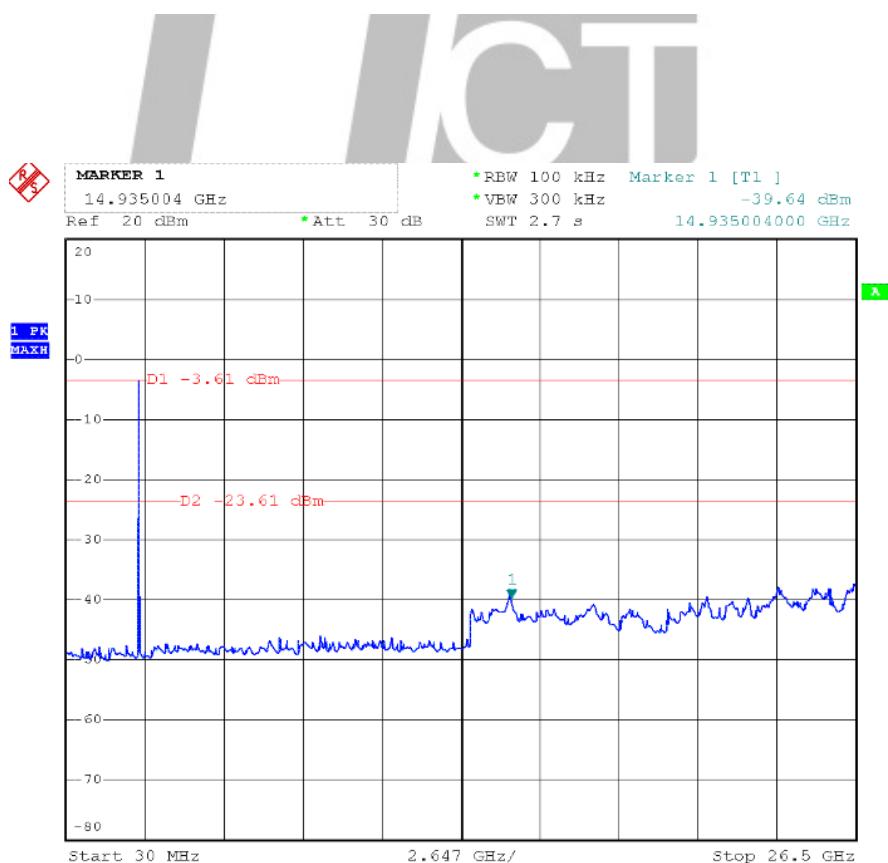
1. Set start frequency to DTS channel edge frequency.
2. Set stop frequency so as to encompass the spectrum to be examined.
3. Set RBW = 100 kHz.
4. Set VBW ≥ 300 kHz.
5. Detector = peak.
6. Trace Mode = max hold.
7. Sweep = auto couple.
8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
9. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.


8.5 Test Result

Temperature (°C) : 22~23	EUT: Kenero
Humidity (%RH) : 50~54	M/N: Kenero
Barometric Pressure (mbar) : 950~1000	Operation Condition: TX Mode


PASS

GFSK mode


CH Low

CH Mid

CH High

9. Test of Radiated Spurious Emission

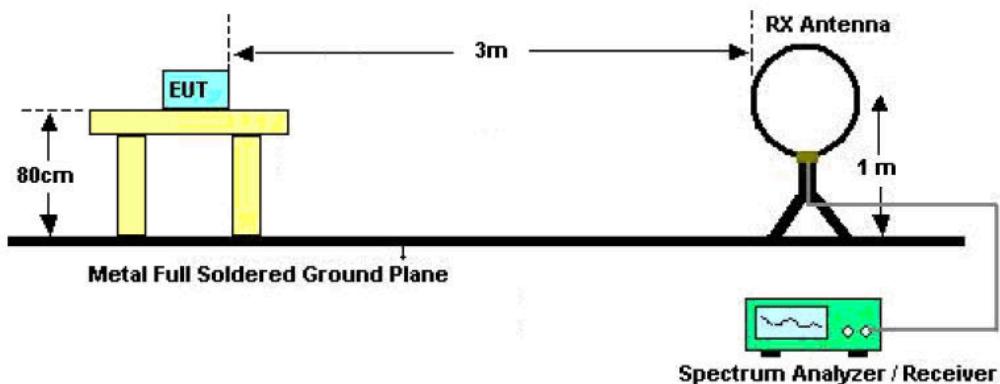
9.1 Radiated Spurious Emission

Refer to FCC §15.205 and §15.209

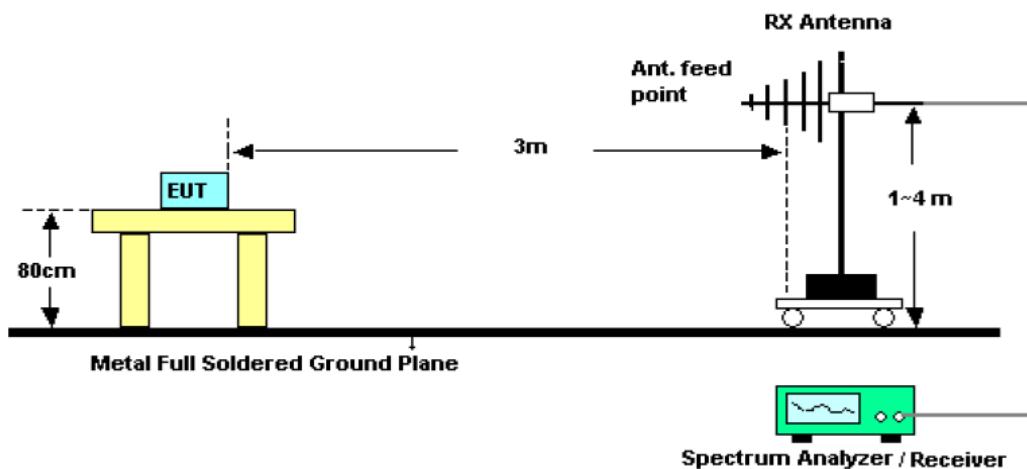
IC RSS-210 Clause 2.6 (Transmitter) & IC RSS-GEN Clause 6 (Receiver)

KDB 558074 v03r03 – Section 12.1, 12.2.7

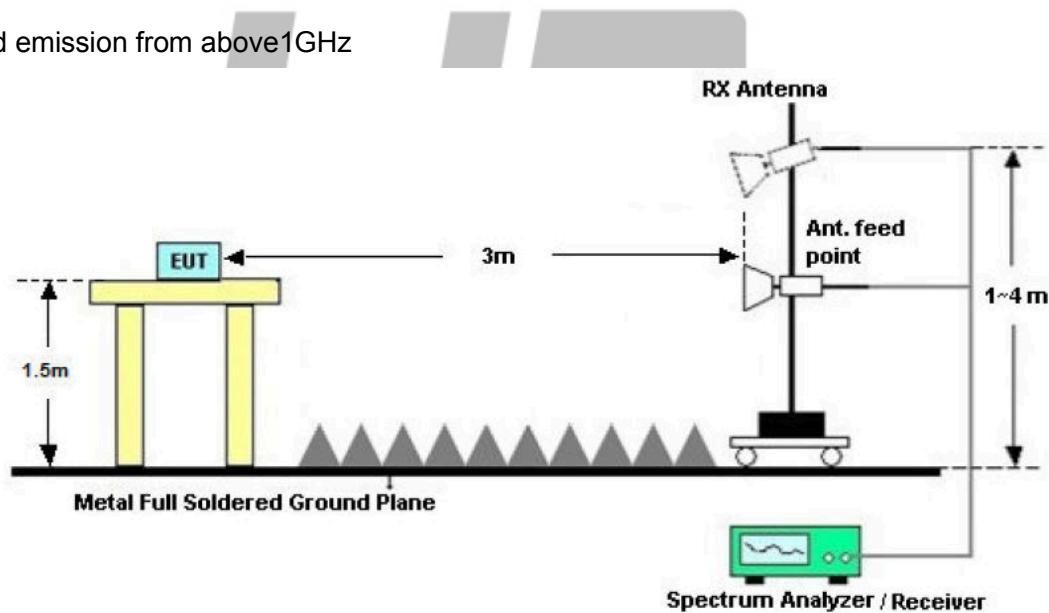
9.1.1 Limits


All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3


HONGCAI TESTING

9.1.2 EUT Setup


For radiated emission below 30MHz

For radiated emission from 30MHz to1GHz

For radiated emission from above1GHz

9.1.3 Test Procedure

KDB 558074 v03r03 – Section 12.1, 12.2.7

Quasi-Peak Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Set RBW = 120kHz(for emissions from 30MHz-1GHz)
3. Detector = Quasi-Peak
4. Trace Mode = max hold.
5. Sweep = auto couple.
6. Trace was allowed to stabilize

Peak Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Set RBW = 1MHz
3. Set VBW = 3MHz
4. Detector = Peak
5. Trace Mode = max hold.
6. Sweep = auto couple.
7. Trace was allowed to stabilize

Average Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Set RBW = 1MHz
3. Set VBW = 3MHz
4. Detector = power average (RMS)
5. Number of measurement points=1001 ($\geq 2 \times \text{span}/\text{RBW}$)
6. Sweep = auto couple.
7. Trace (RMS) averaging was performed over at least 100 traces

NOTE:

1. Configure the EUT according to ANSI C63.10-2013
2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.

9.1.4 Test Result

Temperature (°C) : 22~23	EUT: Kenero
Humidity (%RH) : 50~54	M/N: Kenero
Barometric Pressure (mbar) : 950~1000	Operation Condition: TX Mode

WORST-CASE RADIATED EMISSION BELOW 30 MHz

GFSK TX (CH Low):

Frequency	Meter Reading	Antenna Factor	Cable Loss	Emission Levels	Limits	Margin	Detector Mode
(MHz)	(dB μ V)	(dB/M)	(dB)	(dB μ V/M)	(dB μ V/M)	(dB)	PK/QP
0.587	22.56	8.23	1.03	29.76	67	-37.24	QP
14.78	21.38	9.07	1.19	29.26	49.5	-20.24	QP
21.56	21.59	9.25	1.08	29.76	49.5	-19.74	QP
24.69	21.45	8.43	1.66	28.22	49.5	-21.28	QP

GFSK TX (CH Middle):

Frequency	Meter Reading	Antenna Factor	Cable Loss	Emission Levels	Limits	Margin	Detector Mode
(MHz)	(dB μ V)	(dB/M)	(dB)	(dB μ V/M)	(dB μ V/M)	(dB)	PK/QP
0.522	24.58	8.22	-1.01	31.79	67.0	-35.21	QP
18.43	24.74	8.17	-1.20	31.71	49.5	-17.79	QP
23.71	22.92	8.03	-1.05	29.90	49.5	-19.60	QP
24.88	24.28	7.48	-1.69	30.07	49.5	-19.43	QP

GFSK TX (CH High):

Frequency	Meter Reading	Antenna Factor	Cable Loss	Emission Levels	Limits	Margin	Detector Mode
(MHz)	(dB μ V)	(dB/M)	(dB)	(dB μ V/M)	(dB μ V/M)	(dB)	PK/QP
0.510	19.10	7.89	1.02	28.01	67.0	-38.99	QP
15.40	19.50	8.75	1.21	29.46	49.5	-20.04	QP
19.30	16.20	8.73	1.05	25.98	49.5	-23.52	QP
23.20	21.20	7.33	1.68	30.21	49.5	-19.29	QP

Note:

1. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. The worst case data is recorded in the report.
2. Emission level (dB μ V/m) = Raw Value (dB μ V) + Correction Factor (dB/m)
3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
4. The other emission levels were very low against the limit.
5. Margin value = Emission level.- Limit value

WORST-CASE RADIATED EMISSION BELOW 1 GHz

GFSK TX (CH Low):

Horizontal

Frequency	Meter Reading	Tansd	Limits	Margin	Detector
					Mode
(MHz)	(dB μ V)	(dB)	(dB μ V/M)	(dB)	PK/QP
36.76	27.80	13.6	40	-12.2	QP
86.26	25.60	13.8	40	-14.4	QP
101.78	27.80	16.1	43.5	-15.7	QP
187.14	25.60	13.7	43.5	-17.9	QP
549.92	32.70	20.9	46	-13.3	QP
873.90	39.00	25.4	46	-7.0	QP
N/A	----	----	----	----	----

Vertical

Frequency	Meter Reading	Tansd	Limits	Margin	Detector
					Mode
(MHz)	(dB μ V)	(dB)	(dB μ V/M)	(dB)	PK/QP
33.88	35.40	13.8	40	-4.6	QP
107.6	33.70	15.5	43.5	-9.8	QP
121.18	36.00	13.4	43.5	-7.5	QP
134.76	37.60	11.8	43.5	-5.9	QP
148.34	36.10	11.6	43.5	-7.4	QP
922.40	38.50	25.9	46	-7.5	QP
N/A	----	----	----	----	----

GFSK TX (CH Middle):

Horizontal

Frequency	Meter Reading	Tansd	Limits	Margin	Detector
					Mode
(MHz)	(dB μ V)	(dB)	(dB μ V/M)	(dB)	PK/QP
36.78	27.82	13.62	40	-12.18	QP
86.28	25.62	13.82	40	-14.38	QP
101.8	27.82	16.12	43.5	-15.68	QP
187.16	25.62	13.72	43.5	-17.88	QP
549.94	32.72	20.92	46	-13.28	QP
873.92	39	25.4	46	-7	QP
N/A	----	----	----	----	----

Vertical

Frequency	Meter Reading	Tansd	Limits	Margin	Detector
					Mode
(MHz)	(dB μ V)	(dB)	(dB μ V/M)	(dB)	PK/QP
33.84	35.36	13.76	40	-4.64	QP
107.56	33.66	15.46	43.5	-9.84	QP
121.14	35.96	13.36	43.5	-7.54	QP
134.72	37.56	11.76	43.5	-5.94	QP
148.3	36.06	11.56	43.5	-7.44	QP
922.36	38.46	25.86	46	-7.54	QP
N/A	----	----	----	----	----

GFSK TX (CH High):

Horizontal

Frequency	Meter Reading	Tansd	Limits	Margin	Detector
					Mode
(MHz)	(dB μ V)	(dB)	(dB μ V/M)	(dB)	PK/QP
36.83	27.87	13.67	40	24.63	36.83
86.33	25.67	13.87	40	71.93	86.33
101.85	27.87	16.17	43.5	86.15	101.85
187.21	25.67	13.77	43.5	169.31	187.21
549.99	32.77	20.97	46	536.69	549.99
873.97	39.07	25.47	46	866.97	873.97
N/A	----	----	----	----	----

Vertical

Frequency	Meter Reading	Tansd	Limits	Margin	Detector
					Mode
(MHz)	(dB μ V)	(dB)	(dB μ V/M)	(dB)	PK/QP
33.95	35.47	13.87	40	-4.53	QP
107.67	33.77	15.57	43.5	-9.73	QP
121.25	36.07	13.47	43.5	-7.43	QP
134.83	37.67	11.87	43.5	-5.83	QP
148.41	36.17	11.67	43.5	-7.33	QP
922.47	38.57	25.97	46	-7.43	QP
N/A	----	----	----	----	----

Note:

1. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. The worst case data is recorded in the report.
2. Emission level (dB μ V/m) = Raw Value (dB μ V) + Correction Factor (dB/m)
3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
4. The other emission levels were very low against the limit.
5. Margin value = Emission level.- Limit value

WORST-CASE RADIATED EMISSION ABOVE 1 GHz
GFSK TX (CH Low)

Channel Low (2402MHz)								
Maximum Frequency (MHz)	Polarity and Level				Result dB μ V/m	Limit (dB μ V/m)	Margin (dB μ V/m)	Mark (P/Q/A)
	Polarity	Height (m)	Reading dB μ V	Transd				
1385.21	H	1	46.27	-7.97	38.30	74	-35.70	P
			33.36	-7.97	25.39	54	-28.61	A
1368.33	V	1	46.36	-7.97	38.39	74	-35.61	P
			32.74	-7.97	24.77	54	-29.23	A
2402	H	1	86.24	-6.47	79.77	---	---	P
			79.54	-6.47	73.07	---	---	A
2402	V	1	84.24	-6.47	77.77	---	---	P
			78.25	-6.47	71.78	---	---	A
4804	H	1	41.30	0.52	41.82	74	-32.18	P
			30.27	0.52	30.79	54	-23.21	A
4804	V	1	42.71	0.52	43.23	74	-30.77	P
			30.22	0.52	30.74	54	-23.26	A
7206	H	1	40.15	7.41	47.56	74	-26.44	P
			30.63	7.41	38.04	54	-15.96	A
7206	V	1	40.15	7.41	47.56	74	-26.44	P
			30.46	7.41	37.87	54	-16.13	A
11145.34	---	---	---	---	---	---	---	---
16327.65	---	---	---	---	---	---	---	---
25376.32	---	---	---	---	---	---	---	---

Remark: 1. Transd.=Antenna Factor+Cable Loss+Pre-amplifier
Margin = Level-Limit
Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value
2. Data of measurement within this frequency range shown “ - ” in the table above
means the reading of emissions are attenuated more than 20dB below the
permissible limits or the field strength is too small to be measured.
3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average):
RBW=1MHz, VBW=3MHz.
4. The test limit distance is 3m limit

GFSK TX (CH Middle)

Channel Middle (2440MHz)								
Maximum Frequency (MHz)	Polarity and Level					Limit (dB μ V/m)	Margin (dB μ V/m)	Mark (P/Q/A)
	Polarity	Height (m)	Reading dB μ V	Transd	Result dB μ V/m			
1311.67	H	1	45.43	-8.23	37.20	74	-36.80	P
			34.04	-8.23	25.81	54	-28.19	A
1311.67	V	1	46.01	-8.23	37.78	74	-36.22	P
			34.74	-8.23	26.51	54	-27.49	A
2440	H	1	86.21	-6.37	79.84	---	---	P
			78.12	-6.37	71.75	---	---	A
2440	V	1	85.23	-6.37	78.86	---	---	P
			77.27	-6.37	70.9	---	---	A
4880	H	1	40.77	0.75	41.52	74	-32.48	P
			30.64	0.75	31.39	54	-22.61	A
4880	V	1	42.25	0.75	43.00	74	-31.00	P
			31.64	0.75	32.39	54	-21.61	A
7320	H	1	39.41	7.48	46.89	74	-27.11	P
			30.84	7.48	38.32	54	-15.68	A
7320	V	1	40.08	7.48	47.56	74	-26.44	P
			30.73	7.48	38.21	54	-15.79	A
11238.52	---	---	---	---	---	---	---	---
16327.71	---	---	---	---	---	---	---	---
25376.58	---	---	---	---	---	---	---	---

Remark: 1. Transd.=Antenna Factor+Cable Loss+Pre-amplifier
Margin = Level-Limit
Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value
2. Data of measurement within this frequency range shown “ - ” in the table above
means the reading of emissions are attenuated more than 20dB below the
permissible limits or the field strength is too small to be measured.
3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average):
RBW=1MHz, VBW=3MHz.
4. The test limit distance is 3m limit

GFSK TX (CH High)

Channel High (2480MHz)								
Maximum Frequency (MHz)	Polarity and Level					Limit (dB μ V/m)	Margin (dB μ V/m)	Mark (P/Q/A)
	Polarity	Height (m)	Reading dB μ V	Transd	Result dB μ V/m			
1321.44	H	1	45.77	-8.23	37.54	74	-36.46	P
			33.67	-8.23	25.44	54	-28.56	A
1321.44	V	1	46.27	-8.23	38.04	74	-35.96	P
			33.78	-8.23	25.55	54	-28.45	A
2480	H	1	85.74	-6.28	79.46	----	----	P
			76.74	-6.28	70.46	----	----	A
2480	V	1	84.27	-6.28	77.99	----	----	P
			72.48	-6.28	66.20	----	----	A
4960	H	1	41.07	0.97	42.04	74	-31.96	P
			30.74	0.97	31.71	54	-22.29	A
4960	V	1	44.59	0.97	45.56	74	-28.44	P
			31.73	0.97	32.70	54	-21.30	A
7440	H	1	40.48	7.56	48.04	74	-25.96	P
			30.24	7.56	37.80	54	-16.20	A
7440	V	1	39.84	7.56	47.40	74	-26.60	P
			29.75	7.56	37.31	54	-16.69	A
11243.58	----	----	----	----	----	----	----	----
16327.45	----	----	----	----	----	----	----	----
25376.26	----	----	----	----	----	----	----	----

Remark: 1. Transd.=Antenna Factor+Cable Loss+Pre-amplifier

Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

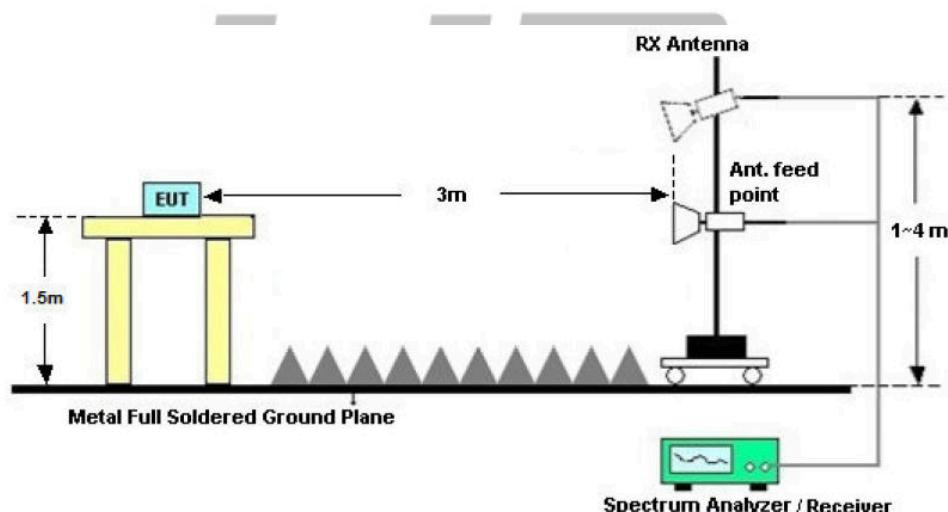
2. Data of measurement within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.

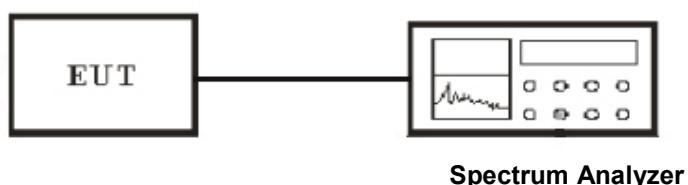
4. The test limit distance is 3m limit

10. Test of Band Edges Emission

10.1 Applicable standard


Refer to FCC §15.247 (d), IC RSS-247 Issue1 Clause 5.5

KDB558074 v03r03 – Section 11.3


Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

10.2 EUT Setup

Radiated Measurement Setup

Conducted Measurement Setup

10.3 Test Equipment List and Details

See section 2.5.

10.4 Test Procedure

Conducted Measurement

KDB558074 v03r03 – Section 11.3

1. Set the center frequency and span to encompass frequency range to be measured.

2. Set the RBW = 100 kHz.
3. Set the VBW $\geq 3 \times$ RBW.
4. Detector = peak.
5. Sweep time = auto couple.
6. Trace mode = max hold.
7. Allow trace to fully stabilize.
8. Use the peak marker function to determine the maximum amplitude level.

Radiated Measurement

KDB 558074 v03r03 – Section 12.1, 12.2.7

Peak Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Set RBW = 1MHz
3. Set VBW = 3MHz
4. Detector = Peak
5. Trace Mode = max hold.
6. Sweep = auto couple.
7. Trace was allowed to stabilize

Average Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Set RBW = 1MHz
3. Set VBW = 3MHz
4. Detector = power average (RMS)
5. Sweep = auto couple.
6. Trace (RMS) averaging was performed over at least 100 traces

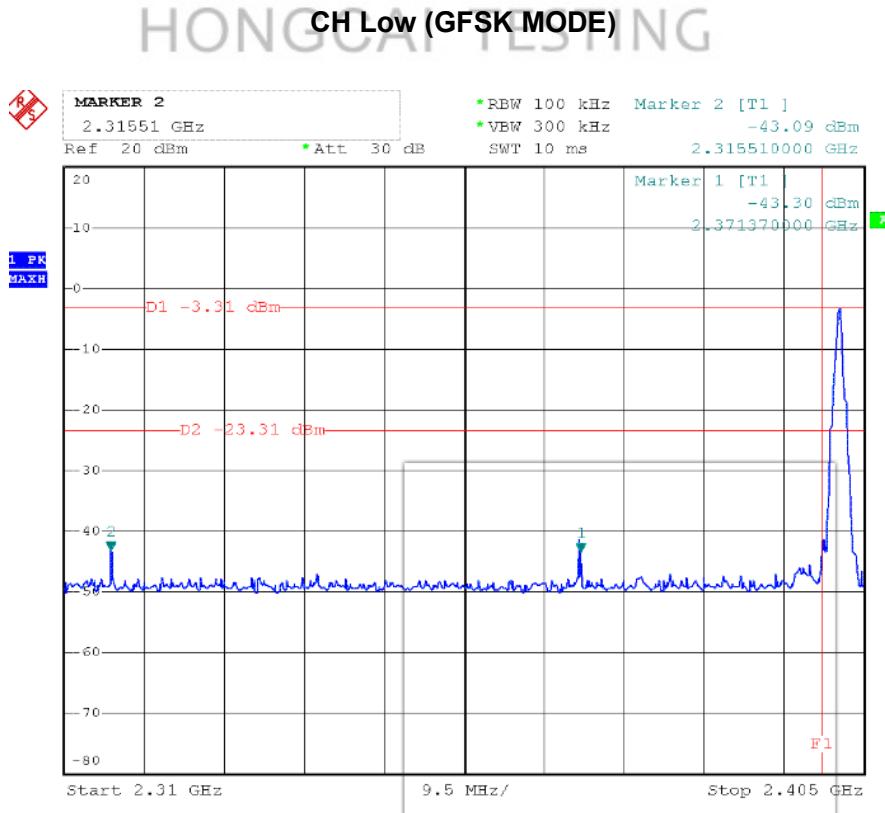
NOTE :

1. Configure the EUT according to ANSI C63.10-2013
2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.

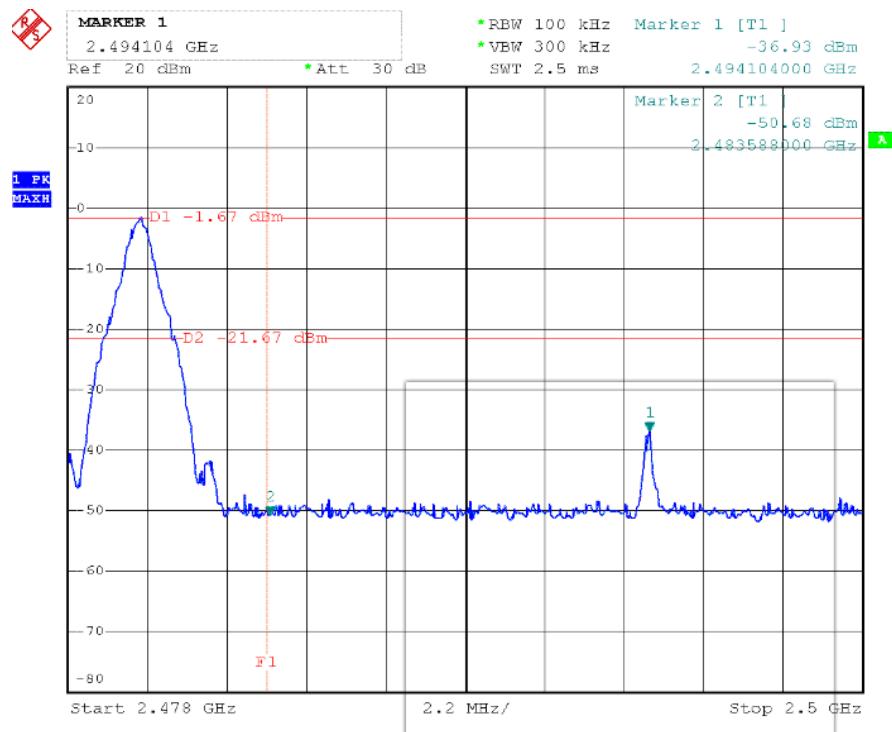
10.5 Test Result

Temperature (°C) : 22~23	EUT: Kenero
Humidity (%RH) : 50~54	M/N: Kenero
Barometric Pressure (mbar) : 950~1000	Operation Condition: Tx Mode

PASS


Radiated Test Result

GFSK mode


Channel	Freq.(MHz)	Level(dBuV)	Limit(dBuV)	Margin(dB)	Detector
	2408	48.72	74	-25.28	Peak
LOW	2408	36.53	54	-17.47	Average
	2480	47.76	74	-26.24	Peak
HIGH	2480	36.33	54	-17.67	Average

Note: 1. Emission Level = Emission Read Value + Correction Factor
2. Correction Factor) = Antenna Factor + Cable Loss- amplifier gain
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value

Test of Conducted band edges

CH High (GFSK MODE)

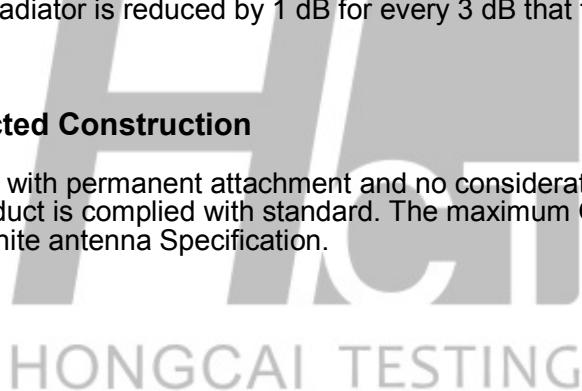
HONGCAI TESTING

11. ANTENNA REQUIREMENT

11.1 standard Applicable

Section 15.203 & IC RSS-GEN Clause 7.1.4

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


Section 15.247(b)/(c) & IC RSS-GEN Clause 7.1.4

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

11.2 Antenna Connected Construction

The antenna is designed with permanent attachment and no consideration of replacement. The antenna used in this product is complied with standard. The maximum Gain of the antenna lower than 6.0dBi and have the definite antenna Specification.

12 .Radio Frequency Exposure

12.1 Applicable Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §RSS-102, Devices that have a radiating element normally operating at separation distances greater than 20 cm between the user and the device shall undergo an RF exposure evaluation. SAR evaluation may be performed in lieu of an RF exposure evaluation for devices operating below 6 GHz with a separation distance of greater than 20 cm between the user and the device.

According to §1.1310, KDB447498 and §2.1093 RF exposure is required.

OET Bulletin 65 Supplement C [June 2001]: Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields

KDB447498 D01 General RF Exposure Guidance v06: RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices

12.2 Limit

According to KDB447498 D01 General RF Exposure Guidance v06 Section 4.3.1 Standalone SAR test exclusion considerations: "Unless specifically required by the *published RF exposure KDB procedures*, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding *SAR Test Exclusion Threshold* condition(s), listed below, is (are) satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum *test separation distance* required for the exposure conditions.²⁸ The minimum *test separation distance* defined in 4.1 f) is determined by the smallest distance from the antenna and radiating structures or outer surface of the device, according to the host form factor, exposure conditions and platform requirements, to any part of the body or extremity of a user or bystander. To qualify for SAR test exclusion, the *test separation distances* applied must be fully explained and justified, typically in the SAR measurement or SAR analysis report, by the operating configurations and exposure conditions of the transmitter and applicable host platform requirements, according to the required *published RF exposure KDB procedures*. When no other RF exposure testing or reporting are required, a statement of justification and compliance must be included in the equipment approval, in lieu of the SAR report, to qualify for SAR test exclusion. When required, the device specific conditions described in the other *published RF exposure KDB procedures* must be satisfied before applying these SAR test exclusion provisions; for example, handheld PTT two-way radios, handsets, laptops and tablets, etc.²⁹ "

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR, 30 where}$

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

According to KDB447498 D01 General RF Exposure Guidance v06 Appendix A: SAR Test Exclusion Thresholds for 100 MHz-6 GHz and ≤ 50 mm, Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz	5	10	15	20	25	mm
150	39	77	116	155	194	<i>SAR Test Exclusion Threshold (mW)</i>
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1500	12	24	37	49	61	
1900	11	22	33	44	54	
2450	10	19	29	38	48	
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	
MHz	30	35	40	45	50	mm
150	232	271	310	349	387	<i>SAR Test Exclusion Threshold (mW)</i>
300	164	192	219	246	274	
450	134	157	179	201	224	
835	98	115	131	148	164	
900	95	111	126	142	158	
1500	73	86	98	110	122	
1900	65	76	87	98	109	
2450	57	67	77	86	96	
3600	47	55	63	71	79	
5200	39	46	53	59	66	
5400	39	45	52	58	65	
5800	37	44	50	56	62	

12.3 RF Exposure

TEST RESULTS

Test Frequency (MHz)	Output Power (dBm)	Output Power including Power Drift (dBm)	Output Power including Power Drift (mW)	Separation Distance (mm)	Evaluated SAR test exclusion	SAR test exclusion thresholds	Verdict
2402	-4,15	-2.11	0.62	5	0.192	3	PASS
2440	-3.23	-2.11	0.62	5	0.193	3	PASS
2480	-2.11	-2.11	0.62	5	0.195	3	PASS

12.4 Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1093 for the uncontrolled RF Exposure and SAR Exclusion Threshold per KDB447498 D01 General RF Exposure Guidance v06.