

TEST REPORT**Report No.: 14050180HKG-002****LF Products Pte Ltd**

Application
For
Certification
(Original Grant)
(FCC ID: 2ACIG-9751USRX)

Superregenerative Receiver

Prepared and Checked by:

Signed On File
Chan Kwan Ho, Alex
Assistant Engineer

Approved by:

Wong Kwok Yeung, Kenneth
Lead Engineer
Date: June 25, 2014

- The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.
- This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

INTERTEK TESTING SERVICES

GENERAL INFORMATION

Grantee:	LF Products Pte Ltd
Grantee Address:	10 Raeburn Park, #03/08 Block A, Singapore 088702.
Contact Person:	Philip Chiu
Tel:	(852) 2300 5439
Fax:	N/A
e-mail:	PhilipChiu@LFProducts.com
Manufacturer:	Max-Plus Co., Ltd
Manufacturer Address:	4/F, A Building, No. 3 Jin Ye Street, Ping Nan Village, San Xiang Town, China.
Brand Name:	The Elf Light
Model:	9751-US
Type of EUT:	Superregenerative Receiver
Description of EUT:	Elf Light Green/Red with Remote
Serial Number:	N/A
FCC ID:	2ACIG-9751USRX
Date of Sample Submitted:	May 05, 2014
Date of Test:	May 05, 2014 to June 10, 2014
Report No.:	14050180HKG-002
Report Date:	June 25, 2014
Environmental Conditions:	Temperature: +10 to 40°C Humidity: 10 to 90%

INTERTEK TESTING SERVICES

SUMMARY OF TEST RESULT

TEST SPECIFICATION	REFERENCE	RESULTS
Receiver / Digital Device Radiated Emissions	15.109	Pass
Digital Device Conducted Emissions	15.107	Pass

The equipment under test is found to be complying with the following standards:
FCC Part 15, October 1, 2012 Edition

INTERTEK TESTING SERVICES

Table of Contents

1.0	<u>General Description</u>	1
1.1	Product Description	1
1.2	Related Submittal(s) Grants	1
1.3	Test Methodology	1
1.4	Test Facility	1
2.0	<u>System Test Configuration</u>	2
2.1	Justification	2
2.2	EUT Exercising Software	2
2.3	Special Accessories	2
2.4	Measurement Uncertainty	2
2.5	Support Equipment List and Description	2
3.0	<u>Emission Results</u>	3
3.1	Field Strength Calculation	3
3.2	Radiated Emission Configuration Photograph	4
3.3	Radiated Emission Data	4
3.4	Conducted Emission Configuration Photograph	4
3.5	Conducted Emission Data	4
4.0	<u>Equipment Photographs</u>	7
5.0	<u>Product Labelling</u>	7
6.0	<u>Technical Specifications</u>	7
7.0	<u>Instruction Manual</u>	7
8.0	<u>Miscellaneous Information</u>	8
8.1	Stabilization Waveform	8
8.2	Discussion of Pulse Desensitization	9
8.3	Calculation of Average Factor	9
8.4	Emissions Test Procedures	9
9.0	<u>Equipment List</u>	11

INTERTEK TESTING SERVICES

1.0 General Description

1.1 Product Description

The Equipment Under Test (EUT) is an ELF Light Green/Red with Remote Control. It operates at frequency of 433.920 MHz. The EUT is powered by an adaptor 120VAC to 12VAC 1000mA. It is a laser light projector with built-in superregenerative receiver. It can emit green/red laser color, flashing and timer preset to turn OFF/ON light via the portable wireless remote controller.

Antenna Type: External, Integral

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

1.2 Related Submittal(s) Grants

This is a single application for certification of a receiver.

The Certification procedure of transmitter (with FCC ID: 2ACIG-9751USTX) for this receiver (with FCC ID: 2ACIG-9751USRX) is being processed as the same time of this application.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (2009). All radiated measurements were performed in an Open Area Test Site. Preliminary scans were performed in the Open Area Test Site only to determine worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the “**Justification Section**” of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been placed on file with the FCC.

INTERTEK TESTING SERVICES

2.0 System Test Configuration

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (2009).

The device was powered by AC/AC Adaptor (Model: XY-12100AUO, Input: 120VAC 60Hz, Output: 12VAC 1000mA 12W).

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The rear of unit shall be flushed with the rear of the table.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was mounted to a plastic stand if necessary and placed on the wooden turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

All the relevant operation modes have been tested, and the worst case data is included in this report.

2.2 EUT Exercising Software

There was no special software to exercise the device. Once the unit is powered up, it receives the RF signal continuously.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

2.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

2.5 Support Equipment List and Description

An AC adaptor (Input:120VAC 60Hz; Output: 12VAC 1000mA, 12W Model: XY-12100AUO, Brand: Xing Yuan) (Supplied by Applicant)

INTERTEK TESTING SERVICES

3.0 Emission Results

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any), Average Factor (optional) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG - AV$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

AV = Average Factor in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

$$FS = RR + LF$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RR = $RA - AG - AV$ in $\text{dB}\mu\text{V}$

LF = $CF + AF$ in dB

Assume a receiver reading of 52.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB are added. The amplifier gain of 29 dB and average factor of 5 dB are subtracted, giving a field strength of 32 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

$$RA = 52.0 \text{ dB}\mu\text{V}/\text{m}$$

$$AF = 7.4 \text{ dB}$$

$$RR = 18.0 \text{ dB}\mu\text{V}$$

$$CF = 1.6 \text{ dB}$$

$$LF = 9.0 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$AV = 5.0 \text{ dB}$$

$$FS = RR + LF$$

$$FS = 18 + 9 = 27 \text{ dB}\mu\text{V}/\text{m}$$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm } [(27 \text{ dB}\mu\text{V}/\text{m})/20] = 22.4 \mu\text{V}/\text{m}$$

INTERTEK TESTING SERVICES

3.2 Radiated Emission Configuration Photograph

The worst case in radiated emission was found at 434.200 MHz

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

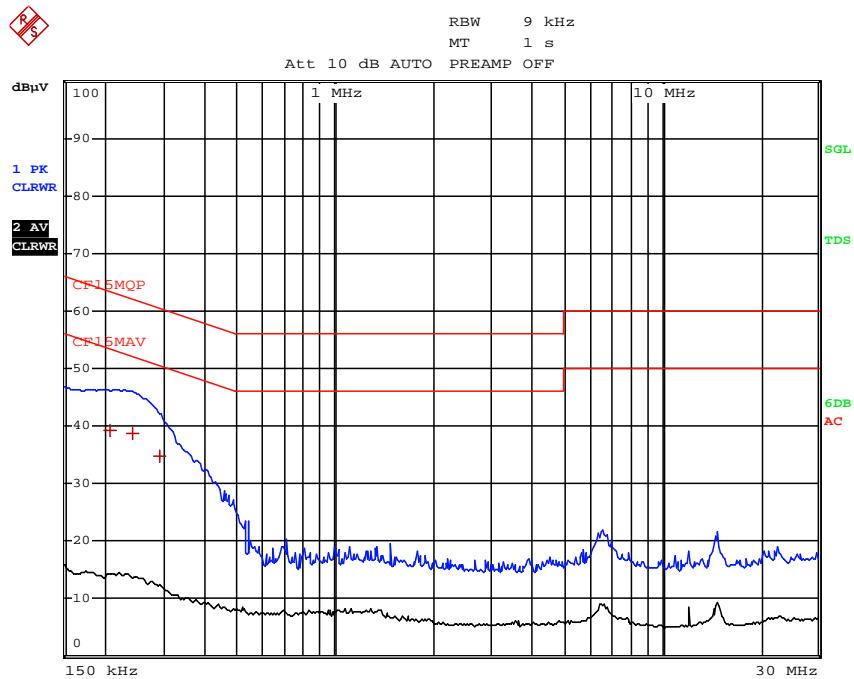
3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgment: Passed by 3.1 dB

3.4 Conducted Emission Configuration Photograph

For electronic filing, the worst case line-conducted configuration photographs are saved with filename: conducted photo.pdf.


3.5 Conducted Emission Data

The graph and data table of conducted emission is shown in the following pages.

Judgment: Pass by more than 20dB margin compared with limit

INTERTEK TESTING SERVICES

Worst-Case Operating Mode: Receive (Light On)

EDIT PEAK LIST (Final Measurement Results)				
Trace1:	CF15MQP			
Trace2:	CF15MAV			
Trace3:	---			
TRACE	FREQUENCY	LEVEL dBµV	DELTA	LIMIT dB
1 Quasi Peak	208.5 kHz	39.15	N	-24.11
1 Quasi Peak	240 kHz	38.74	N	-23.35
1 Quasi Peak	294 kHz	34.73	N	-25.67

INTERTEK TESTING SERVICES

Applicant: LF Products Pte Ltd

Date of Test: May 27, 2014

Model: 9751-US

Worst-Case Operating Mode: Receive (Light On)

Table 1

Radiated Emissions Pursuant to FCC Part 15 Section 15.109 Requirement

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-amp (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	425.800	30.3	16	25.0	39.3	46.0	-6.7
V	432.200	31.2	16	25.0	40.2	46.0	-5.8
V	434.200	33.9	16	25.0	42.9	46.0	-3.1
V	438.000	31.3	16	26.0	41.3	46.0	-4.7
V	442.200	27.7	16	26.0	37.7	46.0	-8.3
H	864.757	21.7	16	31.0	36.7	46.0	-9.3
H	866.886	22.2	16	31.0	37.2	46.0	-8.8
H	869.300	19.4	16	31.0	34.4	46.0	-11.6
H	1302.200	42.6	33	26.1	35.7	54.0	-18.3
H	1305.700	41.7	33	26.1	34.8	54.0	-19.2

NOTES: 1. Peak Detector Data unless otherwise stated.

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative sign in the column shows value below limit.
4. Horn antenna is used for the emission over 1000MHz.

INTERTEK TESTING SERVICES

4.0 Equipment Photographs

For electronic filing, the photographs are saved with filename: external photos.pdf and internal photos.pdf.

5.0 Product Labelling

For electronics filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

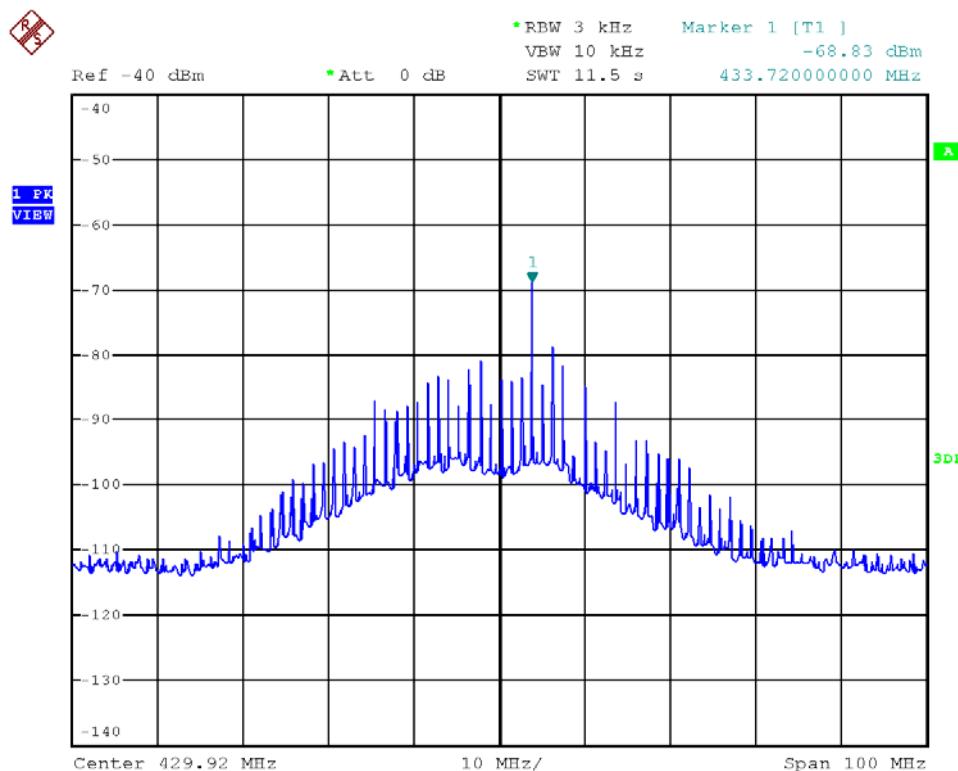
6.0 Technical Specifications

For electronic filing, the block diagram and schematic of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

7.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.


INTERTEK TESTING SERVICES

8.0 Miscellaneous Information

This miscellaneous information includes details of the stabilizing process (including a plot of the stabilized waveform), the test procedure and calculation of the factors such as pulse desensitization and averaging factor.

8.1 Stabilization Waveform

Previous to the testing, the superregenerative receiver was stabilized as outlined in the test procedure. The plot shows the fundamental emission when a signal generator was used to stabilize the receiver. Please note that the antenna was placed as close as possible to the EUT for clear demonstration of the waveform and that accurate readings are not possible from this plot.

INTERTEK TESTING SERVICES

8.2 Discussion of Pulse Desensitization

This device is a Superregenerative receiver. No desensitization of the measurement equipment is required as the received signals are continuously.

8.3 Calculation of Average Factor

This device is a Superregenerative receiver. It is not necessary to apply average factor to the measurement result.

8.4 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services Hong Kong Ltd. in the measurements of Superregenerative receivers operating under the Part 15, Subpart B rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 (2009). A typical or an unmodulated CW signal at the operating frequency of the EUT has been supplied to the EUT for all measurements. Such a signal is supplied by a signal generator and an antenna in close proximity to the EUT. The signal level is sufficient to stabilize the local oscillator of the EUT.

The equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the groundplane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The antenna height and polarization are also varied during the testing to search for maximum signal levels. The height of the antenna is varied from one to four meters.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings.

The frequency range scanned is from 30 MHz to 2000 MHz.

INTERTEK TESTING SERVICES

8.4 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements were made as described in ANSI C63.4 (2009).

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Measurements are normally conducted at a measurement distance of three meters. All measurements are extrapolated to three meters using inverse scaling, unless otherwise reported. Measurements taken at a closer distance are so marked.

INTERTEK TESTING SERVICES

9.0 Equipment List

1) Radiated Emissions Test

Equipment	EMI Test Receiver	Biconical Antenna	Log Periodic Antenna
Registration No.	EW-2666	EW-0571	EW-0446
Manufacturer	R&S	EMCO	EMCO
Model No.	ESCI7	3104C	3146
Calibration Date	Jun. 20, 2013	Nov. 01, 2013	Apr. 30, 2013
Calibration Due Date	Jun. 20, 2014	May 01, 2015	Oct. 30, 2014

Equipment	Spectrum Analyzer	Double Ridged Guide Antenna	Spectrum Analyzer
Registration No.	EW-2188	EW-1015	EW-2249
Manufacturer	AGILENTTECH	EMCO	R&S
Model No.	E4407B	3115	FSP30
Calibration Date	Apr. 16, 2014	Mar. 05, 2013	Oct. 28, 2013
Calibration Due Date	Apr. 16, 2015	Sep. 05, 2014	Oct. 28, 2014

2) Conducted Emissions Test

Equipment	EMI Test Receiver	LISN
Registration No.	EW-2251	EW-2501
Manufacturer	R&S	R&S
Model No.	ESCI	ENV-216
Calibration Date	Nov. 20, 2013	Dec. 25, 2013
Calibration Due Date	Nov. 20, 2014	Nov. 30, 2014

END OF TEST REPORT