

RF TEST REPORT

Applicant iRay Technology Co. Ltd.

FCC ID 2ACHK-01070189

Product Wireless Digital Flat Panel Detector

Model Mars1717X; Mars1417X

Report No. R2407A0990-R2V2

Issue Date October 31, 2024

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15E (2023)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Xu Ying

Approved by: Xu Kai

Eurofins TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Test Laboratory	<u></u>
1.1. Notes of the test report	
1.2. Test facility	
1.3. Testing Location	
General Description of Equipment under Test	
2.1. Applicant and Manufacturer Information	
2.2. General information	6
3. Applied Standards	8
4. Test Configuration	9
5. Test Case Results	11
5.1. Unwanted Emission	11
5.2. Conducted Emission	23
6. Main Test Instruments	28
ANNEX A: The EUT Appearance	29
ANNEX B: Test Setup Photos	30
ANNEX C: Product Change Description	

RF Test Report Report No.: R2407A0990-R2V2

Version	Revision Description	Issue Date
Rev.0	Initial issue of report.	October 17, 2024
Rev.1	Updated data and description.	October 18, 2024
Rev.2	Updated data.	October 31, 2024

Note: This revised report (Report No.: R2407A0990-R2V2) supersedes and replaces the previously issued report (Report No.: R2407A0990-R2V1). Please discard or destroy the previously issued report and dispose of it accordingly.

RF Test Report Report Report No.: R2407A0990-R2V2

Summary of measurement results

Number	Test Case	Clause in FCC rules	Verdict
1	Average output power	15.407(a)	Not Test ¹
2	Occupied bandwidth	15.407(e)	Not Test ¹
3	Frequency stability	15.407(g)	Not Test ¹
4	Power spectral density	15.407(a)	Not Test ¹
5	Unwanted Emissions	15.407(b)	Only tested 802.11ac VHT80 CH155, 30MHz-18GHz and PASS; Others Not Test ¹
6	Conducted Emissions	15.207	PASS

Date of Testing: August 15, 2024 ~ August 16, 2024 and October 25, 2024 ~ October 26, 2024 Date of Sample Received: July 26, 2024

Note:

- 1. Not Test means after evaluation, test items are no need to test, the test results please refer to Original Report.
- 2. All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Mars1717X; Mars1417X (Report No.: R2407A0990-R2V2) is a variant model of Mars1717X (Report No.: R2008A0570-R2).

The detailed product change description please refers to following table:

Mo	odel	Dimension (mm)	port (Pin No.)	HW Version	SW Version
Variant	Mars1717X	460 x 460 x 15	10nin	A01	53
Vanani	Mars1417X	460 x 384 x15	19pin	AUT	42
	Mars1717X 460 x	460 x 460 x 15			SDK:4.1.0.7574
			4pin A		ARM: Core: 2.1.10.69
Original				A0	Kernel: 1.0.4.0
					FPGA: main: 2.10.6.6
					MCU: 2.10.0.19

Considering to the difference, this report only tested Unwanted Emissions (802.11ac VHT80 CH155, 30MHz-18GHz) and Conducted Emission based on the worst case of the original report and other test data please refer to the original report.

This report is used in conjunction with the original report (Report No.: R2008A0570-R2).

The detailed product change description please refers to the Product Change Description.

RF Test Report No.: R2407A0990-R2V2

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **Eurofins TA**

Technology (Shanghai) Co., Ltd. The results documented in this report apply only to the tested

sample, under the conditions and modes of operation as described herein. Measurement

Uncertainties were not taken into account and are published for informational purposes only. This

report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company: Eurofins TA Technology (Shanghai) Co., Ltd.

Address: Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: https://www.eurofins.com/electrical-and-electronics

E-mail: Kain.Xu@cpt.eurofinscn.com

2. General Description of Equipment under Test

2.1. Applicant and Manufacturer Information

Applicant	iRay Technology Co. Ltd.
Applicant address	RM 202, Building 7, No. 590, Ruiqing RD.,Pudong, Shanghai, China
Manufacturer	iRay Technology Co. Ltd.
Manufacturer address	RM 202, Building 7, No. 590, Ruiqing RD.,Pudong, Shanghai, China

2.2. General information

EUT Description				
Model	Mars1717X; Mars1417X			
Lab internal SN	R2407A0990/S01			
Hardware Version	A01			
Software Version	Mars1717X: 53			
Software version	Mars1417X: 42			
Power Supply	Battery/AC adapter			
Antenna Type	Internal Antenna			
Antenna Connector	A permanently attached antenna (meet with the standard FCC			
Anterna Connector	Part 15.203 requirement)			
	5.07dBi for Wi-Fi antenna 1			
Antenna Gain	5.07dBi for Wi-Fi antenna 2			
	5.07 dBi for Wi-Fi MIMO			
Directional Gain	NA			
Operating Fraguency Bango(a)	U-NII-1(5150MHz-5250MHz)			
Operating Frequency Range(s)	U-NII-3(5725MHz-5850MHz)			
Modulation Type	802.11a/n (HT20/HT40): OFDM			
Wiodulation Type	802.11ac (VHT20/VHT40/VHT80): OFDM			
Operating temperature range	10 ° C to 35° C			
Operating voltage range	9.0 V to 13.2 V			
Testing temperature range	-30 ° C to 50° C			
State DC voltage	10.8V			
Date of Sample Received	July 26, 2024			
EUT Accessory				
	Manufacturer: iRay Technology Taicang Ltd.			
Battery	Model: BATTERY-KX			
	Ratings:11.55Vdc,4700mAh			
Adapter	Manufacturer: Shenzhen Longxc Power Supply Co., LTD			
Adapter	Model: LXCP61-024300			

RF Test Report No.: R2407A0990-R2V2

10 10011100011	110001111011110111101111111111111111111	
Charger	Manufacturer: iRay Technology Taicang Ltd.	
Charger	Model: CHARGER-COMBO	
X-Ray flat panel detector Control	Manufacturer: iRay Technology Co. Ltd.	
Box	Model: Control Box-KX	

Note:

- 1. The EUT is sent from the applicant to Eurofins TA and the information of the EUT is declared by the applicant.
- 2. This device support automatically discontinue transmission, while the device is not transmitting any information, the device can automatically discontinue transmission and become standby mode for power saving. The device can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.
- 3. (a) Manufacturers implements security features in any digitally modulated devices capable of operating in any of the U-NII bands, so that third parties are not able to reprogram the device to operate outside the parameters for which the device was certified. The software prevents the user from operating the transmitter with operating frequencies, output power, modulation types or other radio frequency parameters outside those that were approved for the device. Manufacturers uses means including, but not limited to the use of a private network that allows only authenticated users to download software, electronic signatures in software or coding in hardware that is decoded by software to verify that new software can be legally loaded into a device to meet these requirements and must describe the methods in their application for equipment authorization.
- (b) Manufacturers take steps to ensure that DFS functionality cannot be disabled by the operator of the U-NII device.

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15E (2023) Unlicensed National Information Infrastructure Devices

ANSI C63.10-2013

Reference standard:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

RF Test Report Report Report No.: R2407A0990-R2V2

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (X axis) and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Band	Data Rate		
Dallu	Antenna 1	Antenna 2	MIMO
802.11a	6 Mbps	6 Mbps	/
802.11n HT20	MCS0	MCS0	MCS8
802.11n HT40	MCS0	MCS0	MCS8
802.11ac VHT20	MCS0	MCS0	MCS8
802.11ac VHT40	MCS0	MCS0	MCS8
802.11ac VHT80	MCS0	MCS0	MCS8

Wireless Technology and Frequency Range

Wireless Technology		Bandwidth	Channel	Frequency	
			36	5180MHz	
		20 MH -	40	5200MHz	
		20 MHz	44	5220MHz	
	U-NII-1		48	5240MHz	
		40 MHz	38	5190MHz	
		40 IVITZ	46	5230MHz	
		80 MHz	42	5210MHz	
Wi-Fi			149	5745MHz	
	20 MHz U-NII-3		153	5765MHz	
		20 MHz	157	5785MHz	
			161	5805MHz	
			165	5825MHz	
		40 MU-	151	5755MHz	
		40 MHz	159	5795MHz	
		80 MHz	155	5775MHz	
Does this	Does this device support TPC Function? □Yes ⊠No				

RF Test Report No.: R2407A0990-R2V2

5. Test Case Results

5.1. Unwanted Emission

Ambient condition

Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band range from 9kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

9kHz~150 kHz

RBW=200Hz, VBW=1kHz/ Sweep=AUTO

150 kHz~30MHz

RBW=9kHz, VBW=30kHz,/ Sweep=AUTO

Below 1GHz

RBW=100kHz / VBW=300kHz / Sweep=AUTO

a) Peak emission levels are measured by setting the instrument as follows:

Above 1GHz

PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

b) Average emission levels are measured by setting the instrument as follows:

Above 1GHz

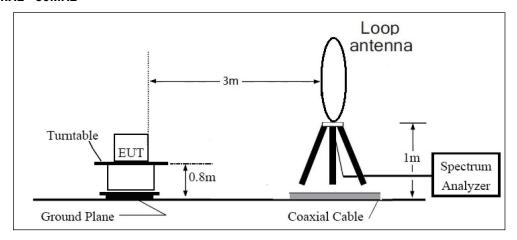
AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO

- c) Detector: The measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission

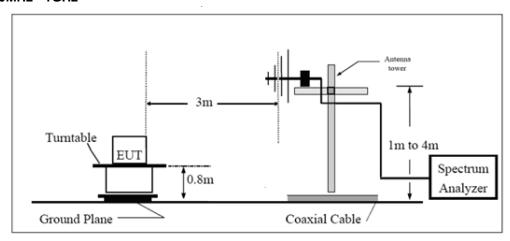
RF Test Report No.: R2407A0990-R2V2

is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

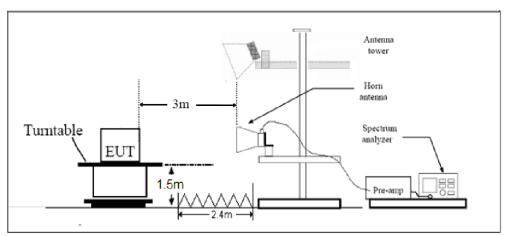
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 $\log (1 / D)$], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.


Reduce the video bandwidth until no significant variations in the displayed signal are observed in subsequent traces, provided the video bandwidth is no less than 1 Hz. For regulatory requirements that specify averaging only over the transmit duration (e.g., digital transmission system [DTS] and Unlicensed National Information Infrastructure [U-NII]), the video bandwidth shall be greater than [1 / (minimum transmitter on time)] and no less than 1 Hz.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the loop antenna is vertical, others antenna are vertical and horizontal.


The test is in transmitting mode.

Test setup


9kHz~30MHz

30MHz~1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

Limits

- (1) For transmitters operating in the 5725-5850 MHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBμV/m).

Note: the following formula is used to convert the EIRP to field strength

- §1、E[dBμV/m] = EIRP[dBm] 20 log(d[meters]) + 104.77, where E = field strength and
- d = distance at which field strength limit is specified in the rules;
- $\S2$ \times E[dB μ V/m] = EIRP[dBm] + 95.2, for d = 3 meters
- (3) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table.

Frequency of emission (MHz)	Field strength(μV/m)	Field strength(dBµV/m)
0.009-0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

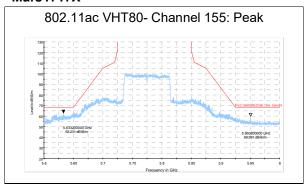
RF Test Report Report No.: R2407A0990-R2V2

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

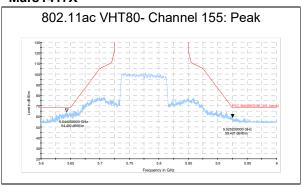
Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
9kHz-30MHz	3.55 dB
30MHz-200MHz	4.17 dB
200MHz-1GHz	4.84 dB
1-18GHz	4.35 dB
18-26.5GHz	5.90 dB
26.5GHz~40GHz	5.92 dB

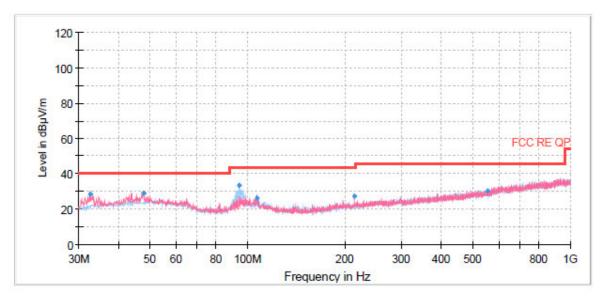

RF Test Report Report No.: R2407A0990-R2V2

Test Results:


The following graphs display the maximum values of horizontal and vertical by software. Blue trace uses the peak detection, Green trace uses the average detection.

A symbol (dB礦/m) in the test plot below means (dBμV/m)

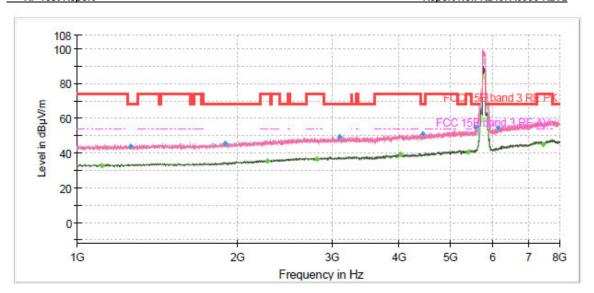
Mars1717X


Mars1417X

Result of RE

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

Continuous TX mode: Mars1717X 802.11ac VHT80 CH155

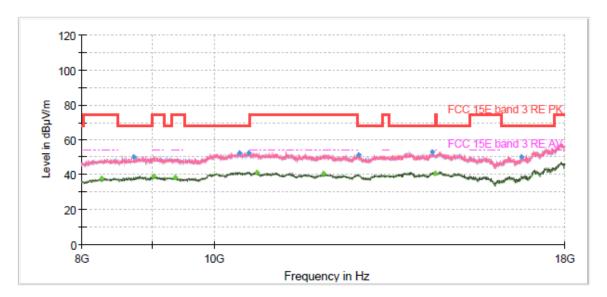

Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
32.59	28.34	40.00	11.66	101.0	V	77.00	17
47.80	28.90	40.00	11.10	103.0	V	272.00	20
94.40	33.40	43.50	10.10	176.0	Н	210.00	18
106.67	26.25	43.50	17.25	100.0	V	266.00	18
214.50	27.21	43.50	16.29	215.0	V	270.00	18
554.69	29.96	46.00	16.04	122.0	Н	352.00	26

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit - Quasi-Peak

RF Test Report Report No.: R2407A0990-R2V2



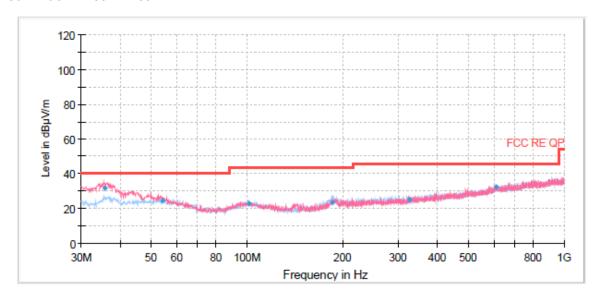
Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 8GHz

		T C	diates Emissi	OII II OIII I	3HZ 10 6GHZ		Г		
Frequency (MHz)	MaxPeak (dB µ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1113.75		32.87	54.00	21.13	500.00	200.0	V	233.00	-12
1261.63	44.06		68.20	24.14	500.00	200.0	Н	171.00	-11
1890.75	45.37		68.20	22.83	500.00	100.0	Н	208.00	-9
2269.63		35.60	54.00	18.40	500.00	200.0	Н	334.00	-8
2815.63		36.76	54.00	17.24	500.00	200.0	Н	309.00	-7
3099.13	49.39		68.20	18.81	500.00	100.0	Н	8.00	-6
4018.75		39.61	54.00	14.39	500.00	100.0	V	358.00	-3
4444.88	50.86		68.20	17.34	500.00	200.0	Н	99.00	-2
5403.00		40.71	54.00	13.29	500.00	200.0	Н	0.00	0
5564.00	55.16		68.20	13.04	500.00	200.0	V	242.00	0
6142.38	54.60		68.20	13.60	500.00	200.0	V	113.00	3
7458.38		44.74	54.00	9.26	500.00	200.0	Н	326.00	6

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit -MAX Peak/ Average

Radiates Emission from 8GHz to 18GHz

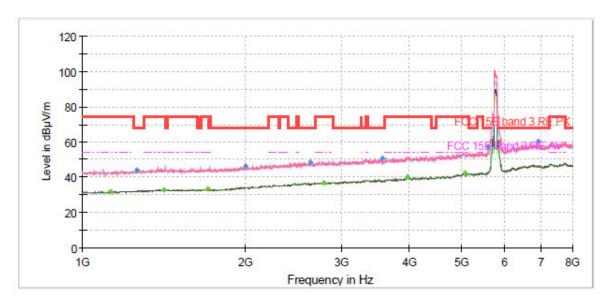

		. 15.5			0112 10 100112				
Frequency (MHz)	MaxPeak (dB µ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
8270.00		37.73	54.00	16.27	500.00	100.0	V	285.00	-3
8733.75	50.35		68.20	17.85	500.00	100.0	Н	12.00	-3
9023.75		38.88	54.00	15.12	500.00	200.0	V	101.00	-3
9363.75		38.29	54.00	15.71	500.00	200.0	V	0.00	-2
10418.75	52.48		68.20	15.72	500.00	200.0	Н	0.00	0
10580.00	52.43		68.20	15.77	500.00	100.0	V	58.00	0
10740.00		41.53	54.00	12.47	500.00	200.0	V	7.00	0
12008.75		40.70	54.00	13.30	500.00	100.0	Н	8.00	1
12727.50	51.49		68.20	16.71	500.00	100.0	Н	2.00	1
14408.75	53.24		68.20	14.96	500.00	200.0	V	56.00	3
14478.75		40.92	54.00	13.08	500.00	100.0	V	356.00	3
16732.50	50.01		68.20	18.19	500.00	100.0	V	352.00	0

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit -MAX Peak/ Average

Mars1417X

802.11ac VHT80 CH155

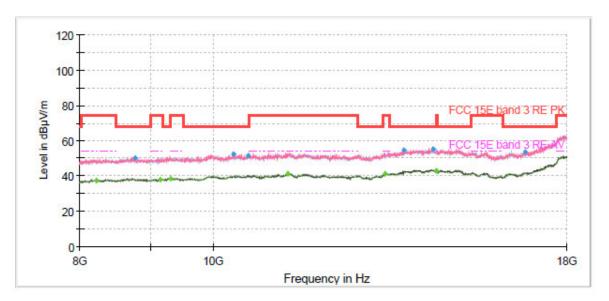


Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
35.61	31.92	40.00	8.08	102.0	V	266.00	18
54.29	24.73	40.00	15.27	104.0	V	290.00	20
101.50	22.73	43.50	20.77	210.0	Н	338.00	19
185.48	23.48	43.50	20.02	104.0	Н	300.00	17
325.45	25.39	46.00	20.61	100.0	Н	88.00	22
612.22	32.50	46.00	13.50	182.0	Н	64.00	28

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit - Quasi-Peak



Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 8GHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1126.00		31.65	54.00	22.35	500.00	200.0	Н	104.00	-5
1257.25	43.95		68.20	24.25	500.00	200.0	V	13.00	-4
1411.25		33.15	54.00	20.85	500.00	100.0	Н	0.00	-3
1705.25		33.43	54.00	20.57	500.00	100.0	V	358.00	-2
1994.00	46.16		68.20	22.04	500.00	200.0	V	42.00	0
2632.75	48.65		68.20	19.55	500.00	100.0	V	282.00	2
2779.75		36.91	54.00	17.09	500.00	100.0	V	115.00	3
3574.25	50.51		68.20	17.69	500.00	200.0	V	0.00	4
3964.50		40.34	54.00	13.66	500.00	200.0	V	0.00	6
5061.75		42.62	54.00	11.38	500.00	100.0	V	108.00	10
5593.75	57.59		68.20	10.61	500.00	100.0	V	0.00	11
6904.50	60.16		68.20	8.04	500.00	100.0	V	59.00	14

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit -MAX Peak/ Average

Radiates Emission from 8GHz to 18GHz

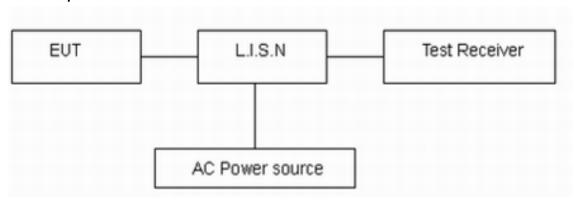
		rtac	ilates Emissic	711 11 0111 00	5HZ (0 16GHZ		F		
Frequency (MHz)	MaxPeak (dB µ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
8227.50		37.42	54.00	16.58	500.00	200.0	Н	120.00	7
8775.00	50.18		68.20	18.02	500.00	200.0	V	2.00	7
9152.50		38.05	54.00	15.95	500.00	100.0	V	303.00	7
9312.50		38.77	54.00	15.23	500.00	100.0	V	0.00	7
10332.50	52.44		68.20	15.76	500.00	200.0	Н	352.00	8
10585.00	51.47		68.20	16.73	500.00	100.0	V	359.00	8
11312.50		41.42	54.00	12.58	500.00	100.0	V	197.00	9
13305.00		41.19	54.00	12.81	500.00	200.0	V	0.00	9
13727.50	54.49		68.20	13.71	500.00	200.0	V	127.00	10
14410.00	55.46		68.20	12.74	500.00	200.0	V	0.00	11
14470.00		42.98	54.00	11.02	500.00	100.0	V	328.00	11
16790.00	53.35		68.20	14.85	500.00	200.0	V	143.00	11

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit -MAX Peak/ Average

5.2. Conducted Emission

Ambient condition


Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

Methods of Measurement

The test is in transmitting mode.

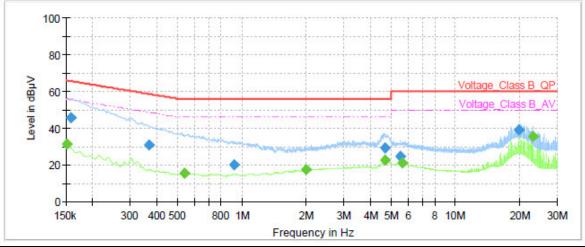
The EUT IS placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10.Connect the AC power line of the EUT to the LISN Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9kHz, VBW is set to 30kHz The measurement result should include both L line and N line.

Test Setup

Note: AC Power source is used to change the voltage 110V/60Hz.

Limits

Frequency	Conducted Limits(dBμV)						
(MHz)	Quasi-peak	Average					
0.15 - 0.5	66 to 56 *	56 to 46*					
0.5 - 5	56	46					
5 - 30	60	50					
*: Decreases wit	h the logarithm of the frequency.						

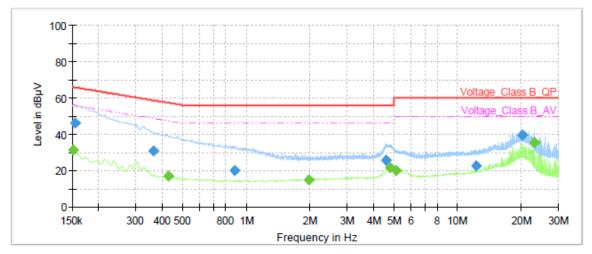

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 2.69 dB.

Test Results:

Following plots, Blue trace uses the peak detection and Green trace uses the average detection.

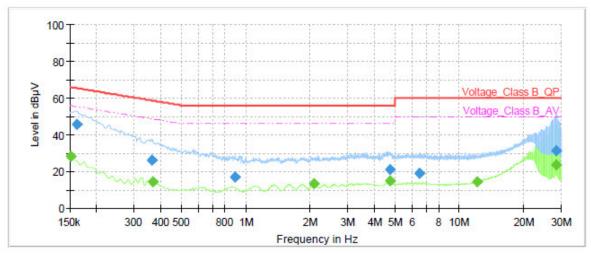
Mars1717X



Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.15		31.26	55.88	24.62	1000.0	9.000	L1	ON	21.0
0.16	45.77	-	65.52	19.75	1000.0	9.000	L1	ON	21.0
0.37	30.55		58.59	28.04	1000.0	9.000	L1	ON	21.0
0.54		15.25	46.00	30.75	1000.0	9.000	L1	ON	20.8
0.92	19.92	-	56.00	36.08	1000.0	9.000	L1	ON	20.3
2.00		17.35	46.00	28.65	1000.0	9.000	L1	ON	19.7
4.66	29.31		56.00	26.69	1000.0	9.000	L1	ON	19.5
4.68		22.43	46.00	23.57	1000.0	9.000	L1	ON	19.5
5.51	24.52		60.00	35.48	1000.0	9.000	L1	ON	19.5
5.65		21.10	50.00	28.90	1000.0	9.000	L1	ON	19.5
19.71	39.15		60.00	20.85	1000.0	9.000	L1	ON	19.7
23.13		35.24	50.00	14.76	1000.0	9.000	L1	ON	19.7

Remark: Correct factor=cable loss + LISN factor

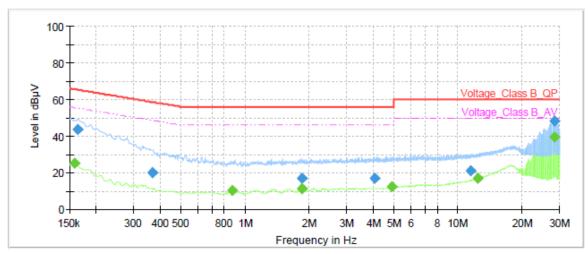
L line Conducted Emission from 150 kHz to 30 MHz



Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.15		31.46	55.88	24.42	1000.0	9.000	N	ON	21.0
0.15	46.21		65.75	19.54	1000.0	9.000	N	ON	21.0
0.36	30.70		58.64	27.94	1000.0	9.000	N	ON	21.0
0.43		16.85	47.27	30.43	1000.0	9.000	N	ON	20.9
0.88	20.03		56.00	35.97	1000.0	9.000	N	ON	20.3
1.98		15.11	46.00	30.89	1000.0	9.000	N	ON	19.7
4.59	25.70		56.00	30.30	1000.0	9.000	N	ON	19.5
4.80		21.71	46.00	24.29	1000.0	9.000	N	ON	19.5
5.13		20.04	50.00	29.96	1000.0	9.000	N	ON	19.5
12.19	22.56		60.00	37.44	1000.0	9.000	N	ON	19.6
20.26	39.56		60.00	20.44	1000.0	9.000	N	ON	19.8
23.13		35.37	50.00	14.63	1000.0	9.000	N	ON	19.8

Remark: Correct factor=cable loss + LISN factor

N line Conducted Emission from 150 kHz to 30 MHz


Mars1417X

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.15		28.07	55.88	27.81	1000.0	9.000	L1	ON	21.0
0.16	45.90		65.40	19.50	1000.0	9.000	L1	ON	21.0
0.36	26.37		58.64	32.27	1000.0	9.000	L1	ON	21.0
0.37		14.28	48.54	34.26	1000.0	9.000	L1	ON	21.0
0.89	17.01		56.00	38.99	1000.0	9.000	L1	ON	20.3
2.09		13.31	46.00	32.69	1000.0	9.000	L1	ON	19.7
4.72		14.76	46.00	31.24	1000.0	9.000	L1	ON	19.5
4.76	21.20		56.00	34.80	1000.0	9.000	L1	ON	19.5
6.52	19.11		60.00	40.89	1000.0	9.000	L1	ON	19.5
12.17		14.52	50.00	35.48	1000.0	9.000	L1	ON	19.6
28.35	31.52		60.00	28.48	1000.0	9.000	L1	ON	19.7
28.35		23.69	50.00	26.31	1000.0	9.000	L1	ON	19.7

Remark: Correct factor=cable loss + LISN factor

L line Conducted Emission from 150 kHz to 30 MHz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.16		25.06	55.52	30.46	1000.0	9.000	N	ON	21.0
0.16	43.64		65.28	21.64	1000.0	9.000	N	ON	21.0
0.37	19.85		58.54	38.69	1000.0	9.000	N	ON	21.0
0.87		10.17	46.00	35.83	1000.0	9.000	N	ON	20.4
1.84		11.46	46.00	34.54	1000.0	9.000	N	ON	19.8
1.85	16.82		56.00	39.18	1000.0	9.000	N	ON	19.8
4.04	17.01		56.00	38.99	1000.0	9.000	N	ON	19.5
4.87		12.33	46.00	33.67	1000.0	9.000	N	ON	19.5
11.41	20.84		60.00	39.16	1000.0	9.000	N	ON	19.6
12.35		16.93	50.00	33.07	1000.0	9.000	N	ON	19.6
28.45		39.48	50.00	10.52	1000.0	9.000	N	ON	19.8
28.46	48.44		60.00	11.56	1000.0	9.000	N	ON	19.8

Remark: Correct factor=cable loss + LISN factor

N line Conducted Emission from 150 kHz to 30 MHz

6. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date	
EMI Test Receiver	R&S	ESCI3	100948	2024-05-07	2025-05-06	
Signal Analyzer	R&S	FSV40	101298	2024-05-07	2025-05-06	
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	01111	2022-10-25	2025-10-24	
Horn Antenna	SCHWARZBECK	BBHA 9120D	430	2024-07-18	2027-07-17	
Amplifier	MWPA.CN	MWLA-010200 G40	YQ2103039B01	2024-05-07	2025-05-06	
Software	R&S	EMC32	9.26.01	1	1	
Artificial main network	R&S	ENV216	102191	2022-12-10	2024-12-09	
EMI Test Receiver	R&S	ESR	101667	2024-05-07	2025-05-06	
Software	R&S	EMC32	10.35.10	1	1	

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.

ANNEX C: Product Change Description

The Product Change Description are submitted separately.

***** END OF REPORT *****