

T20 IMU RTK GNSS Receiver

User Guide

Corporate office

ComNav Technology Ltd.

Building 2, No.618 Chengliu Middle Road, 201801 Shanghai, China

Tel: +86 21 64056796 Fax: +86 21 54309582

Website: http://www.comnavtech.com
E-mail: support@comnavtech.com

Trademark notice

© 2022 ComNav Technology Ltd. All rights reserved.

SinoGNSS is the official trademark of ComNav Technology Ltd., registered in People's Republic of China, EU, USA and Canada.

FCC Notice

SinoGNSS T20 GNSS receivers comply with the limits for a Class B digital device, pursuant to the Part 15 of the FCC rules when it is used in the Portable Mode.

Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference;
- (2) It must accept any interference received, including interference that may cause undesired operation.

Copyright Notice

This is the V1.0 (August, 2022) revision of the T20 GNSS Receiver User Guide. It cannot be copied or translated into any language without the written permission of ComNav Technology Ltd.

Technical Assistance

If you have any question and can't find the answer in this manual, please contact your local dealer from which you purchased the T20 receiver. Alternatively, request technical support from ComNav Technology Website: www.comnavtech.com or technical support email: support@comnavtech.com. Your feedback about this Guide will help us to improve it with future revisions.

Safety Information

Before using the receiver, please make sure that you have read and understood this User Guide, as well as the safety requirements.

- Connect your devices strictly based on this User Guide
- Install the GNSS receiver in a location that minimizes vibration and moisture
- Avoid falling to ground, or colliding with other items

- Do not rotate 7-pin Lemo port
- Do not cover the radio, keep a sound ventilation environment
- To reduce radiation, please keep above 2 meters away from the radio station
- Take lighting protection measures when installing antennas
- Change the cable if damaged

Related Regulations

The receiver contains integral Bluetooth® wireless technology and UHF. Regulations regarding the use of the datalink vary greatly from country to country. In some countries, the unit can be used without obtaining an end-user license. But in some countries the administrative permissions are required. For license information, please consult your local dealer.

Use and Care

The receiver can withstand the rough treatment that typically occurs in the field. However, the receiver is high-precision electronic equipment and should be treated with reasonable care.

Warning and Caution

An absence of specific alerts does not mean that there are no safety risks involved. A Warning or Caution information is intended to minimize the risk of personal injury and/or damage to the equipment.

WARNING- A Warning alerts you to a potential risk of serious injury to your person and/or damage to the equipment, because of improper operations or wrong settings of the equipment. **CAUTION-** A Caution alerts you to a possible risk of damage to the equipment and/or data loss.

Warranty Notice

ComNav Technology does not warranty devices damage because of force majeure (lighting, high voltage or collision).

ComNav Technology does not warranty the disassembled devices.

Contents

1	Introd	luction	1
	1.1	About the receiver	1
	1.2	Receiver Features	1
	1.3	T20 Receiver parts list	
1			
		1.3.1 Basic Supply kit	2
		1.3.2 Optional Datalink kit	3
		1.3.3 Transport Cases	4
2	Settii	ng up the receiver	6
	2.1	Environmental requirements	6
	2.2	Front panel	6
	2.3	Lower housing	6
		Power supply	
		2.4.1 Internal batteries	
		2.4.2 External Power Supply	
		2.4.3 Charge Battery via T20 Receiver	
8		ŭ ,	
	2.5	Pole-mounted setup	9
3	Gene	ral Operation	9
	3.1	Button functions	9
	3.2	LED behavior	10
4	Static	survey	11
	4.1	Receiver Configuration	11
	4.2	Static Data Collection	13
	4.3	Static Data Download	13
	4.4	RINEX Convert	14
5	Real-	Time Kinematic Survey (RTK)	16
	5.1	Installation of Survey Master	16
	5.2	Wizard function in Survey Master	16
	5.3	Start a New Project	18
		Bluetooth connection	
		Internal RadioMode	
		5.5.1 Start Base Station by Survey Master	22
		5.5.2 Start Rover Station by Survey Master	
	5.6	PDA CORS Mode	
6		Survey Functions	
		Topo survey	
		6.1.1 Survey settings	
		6.1.2 Bubble setting for Tilt survey	
	6.2	Auto survey/Area survey	
		Stake points/lines	
		, ,	
	6.4	PPK	38
	6.5	Site calibration/Grid Shift	39
		6.5.1 Site calibration	39
		6.5.2 Grid Shift	41

SinoGNSS T20 GNSS receiver User Guide

6.6	COGO	41		
ata	Export/Import	42		
7.1	Import	42		
7.2	Export	43		
7.3	Import Basemap	43		
7.4	Export Result	44		
7.5	NMEA 0183 output	44		
7.6	Register T20 via Survey Master	45		
8 Firmware Upgrade				
endix	A: Physical Parameter of Modules inside of T20			
	ata 7.1 7.2 7.3 7.4 7.5 7.6 mw	6.6 COGOata Export/Import		

1 Introduction

The SinoGNSS^{OR} T20 GNSS Receiver User Guide is aimed to help you get familiar with the T20 receiver and start your project effectively. We highly recommend you to read this manual before surveying, even you have used other Global Positioning System (GPS) receivers before.

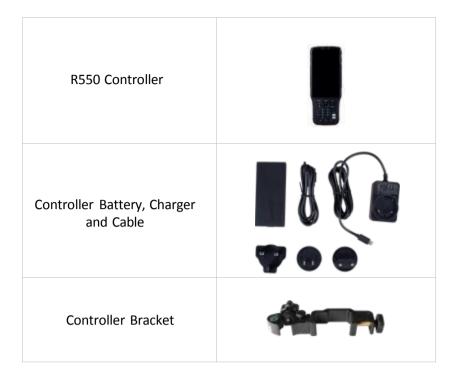
1.1 About the receiver

With SinoGNSS® Quantum™ algorithm, T20 GNSS receiver can be applied in RTK mode with all GNSS constellations. T20 receiver has ultra-small size and strong anti-interference ability to make it possible to work even in harsh environments. It is the ideal RTK/GNSS product for surveyors.

1.2 Receiver features

The SinoGNSS® T20 GNSS Receiver keyfeatures:

- Ultra small and super light
 - Size (W × H): 14.9cm × 4.8cm
 - Weight: 650g
- 1590 channels of simultaneously tracked satellitesignals
- Increased measurement traceability with SinoGNSS® Quantum™ algorithm technology
- Cable-free Bluetooth wireless technology
- 4 indicator LEDs for battery, diff, satellite, and 2 function buttons for power and static
- IP67 waterproof
- Full base/rover interoperability
- Integrated receiving & transmitting radio
- Integrated IMU sensor
- Long distance range radio module
- Support long baseline E-RTK™ (Beidou B3 signal is included in RTK calculate engine)


1.3 T20 Receiver parts list

This section provides overall T20 receiver parts list, including basic supplies and customized kits based on your requirements.

1.3.1 Basic Supply kit

SinoGNSS® T20 GNSS Receiver Basic Supply kit contains two receivers and related accessories.

Item	Picture
2* Kits T20 Receivers	0
1*GNSS Connector	
2* Whip Antenna (UHF)	
1*2m-Range Pole with yellow bag	

Optional accessories:

Double Bubbles Tribrach with High Adapter	
1* 30cm Extension bar	-

2 Setting up the receiver

This chapter provides general information on environmental requirements, setup, power supply and connection of the T20 receiver.

2.1 Environmental requirements

To keep the receiver with a reliable performance, it is better to use the receiver in safe environmental conditions:

- Operating temperature: -40°C to +65°C
- Storage temperature: -40°C to +85°C
- Out of corrosive fluids and gases
- With a clear view of sky

2.2 Front panel

Receiver front panel contains 5 indicator LEDs, Power button and Record button. The indicator LEDs show the status of differential, satellite tracking, GPRS and battery. For detailed information, see *chapter 3.3*.

2.3 Lower housing

Receiver lower housing contains, UHF radio antenna connector, and a threaded insert.

2.4 Power supply

T20 GNSS receiver supports internal batteries and external power input.

2.4.1 Internal batteries

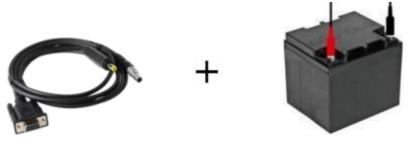
The receiver is equipped with two Lithium-ion batteries, which can be removed for charging. The T20 receiver adopts the internal battery design that provides you an effective survey workflow. The internal batteries typically provide about 25-hour operating time as a rover, about 19-hour operating time if operated as a base station with internal UHF Tx (transmit at 1-2 watts). However, this operating time varies based on environmental conditions.

Battery Safety

Charge and use the battery only in strict accordance with the instructions below:

- Do not use or charge the battery if it appears to be damaged. Signs of damage include, but are not limited to, discoloration, warping, and leaking battery fluid.
- Do not expose the battery to fire, high temperature, or direct sunlight.
- Do not immerse the battery in water.
- Do not use or store the battery inside a vehicle during hot weather.
- Do not drop or puncture the battery.
- Do not open the battery or short-circuit its contacts.
- Charging the Lithium-ion Battery

Please charge the internal battery via type-c cable


- Storage of the Lithium-ion Battery
 - Keep batteries in dry conditions.

- Dispose of the Lithium-ion Battery
 - Discharge a Lithium-ion battery before dispose of it.
 - Dispose of batteries is an environmentally sensitive manner, and adhere to any local and national regulations concerning battery disposing or recycling.

WARNING – Do not damage the rechargeable Lithium-ion battery. A damaged battery can cause an explosion or fire, and can result in personal injury and/or property damage.

2.4.2 External Power Supply

The receiver is connected to an external power supply through a lemo to RS232 cable, and make sure that the red alligator clip is connected to the positive of external power supply, black one to negative. Over-voltage function cannot protect your T20 receiver if reverse connection.

Tip: The power consumption will be increasing if the base station transmits correction data through internal UHF in the RTK mode; therefore, we strongly suggest using external power (7-28 volt DC) for the base station.

2.4.3 Charge Battery via T20 Receiver

T20 GNSS Receiver can work as a charger, it means you can charge batteries directly if the charger not by your side.

- 1. Power off T20 receiver with batteries inside;
- 2. Connect T20 receiver to 12V external power with type-c cable;
- 3. Receiver will charge the battery from Side B to Side A, the white power led will flashing during charging and will off when battery full.

2.5 Pole-mounted setup

To mount the receiver on a range pole as the figure shown below:

- Thread the receiver onto the range pole
- Mount the controller bracket to the pole
- Install the controller into the bracket

Tip: Do not tightly clamp the controller on the Range Pole.

3 General Operation

This chapter introduces all controls for the general operation, including button functions and all LED behaviors on the front panel.

3.1 Button functions

There are two buttons on the front panel, power button and record button.

Power button:

Press the power button for about 1 second to turn on the receiver;

To turn off the receiver, long press the button for 3-4 seconds until all LEDs off.

Record button:

Switch to static mode: Long press the record button for about 2 seconds, release immediately when hearing beep from receiver;

Switch to RTK mode: press the button until Raw Data recording LED off.

Tip: The record button only works when receiving satellite signals, otherwise it will show timeout.

3.2 LED behavior

The LEDs on the front panel indicate receiver working status. Generally, a lit or slowly flashing indicates normal operation, and an unlit LED indicates that no operation is occurring. The following table define each possible LED state:

LEDs	States	Description
Dower	Lit	Enough power
Power	Flashing	Low power
Differential Data	Flashes once per second	Receiving/transmitting differential data
Satellite Tracking	Fast flashing/ Flashes 1 time every 5 seconds	No satellite received
	Flashes N times every 5 seconds	Received N satellite signals
	Flashes according to the selected sample interval	1) Sample interval varies from 20Hz to 60s.
		2) Flashing 1/s simultaneously with differential light if internal memory is run off

Power LEDs:

Power supply: 1) Two power LEDs are on if using the external power supply; 2) Only power LED of working battery will be on if using the internal battery.

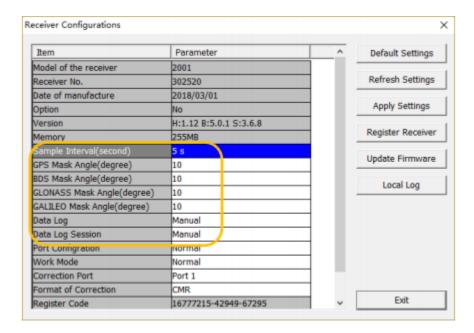
Low battery: 1) Power LED will flash with beep only with one battery; 2) if with two batteries, the power LED of low battery will flash, and swapped to another battery when it is run off.

4 Static survey

This chapter describes static survey through T20 receiver and CRU software. For static survey, you cannot change settings through front panel, you can configure it via Compass Receiver Utility (CRU): 1) Receiver configuration; 2) check receiver settings and status; 3) convert data to Rinex format.

4.1 Receiver Configuration

1. Download and install CRU software from the link below (ensure the driver is properly installed in your PC):


http://www.comnavtech.com/download.asp?bigclassid=28

- 2. Connect the receiver with your PC through serial port cable.
- 3. Turn on your T20 receiver and click **set port** in CRU -> select proper serial port in the serial port option-> enter proper baud rate -> click **Ok** to complete receiver connection. The SN of receiver will appear in the title bar if connected successfully.

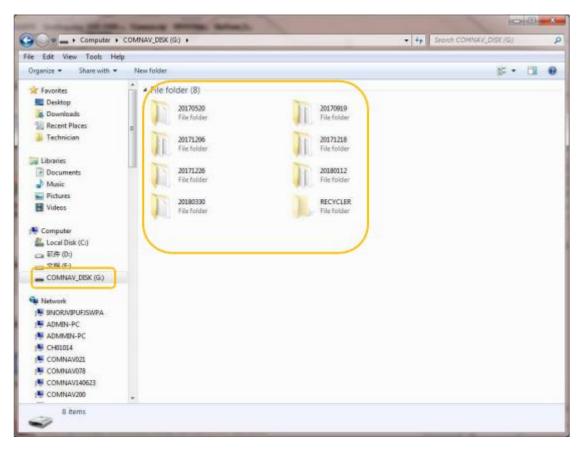
Tips: two types of cable are provided in your package,

- 1) We recommend to use type-c cable to download raw observation data;
- 2) With type-c cable, you can connect T20 receiver with external power or firmware upgrade.
- 4. Click **Config** to configure the receiver:
- **Sample Interval**: change the sample interval of observations, the maximum data rate is 20 Hz, the minimum is one observation per minute.
- Mask angle: disable the receiver to track satellites that below the mask angle. You
 can set mask angle values for different constellations, which can reduce serious
 multipath influence or low SNR.

- Data Log: logging data manually or automatically.
- Data Log Session: 1) Manual means that the receiver keeps recording data in one file until the receiver is turned off or its memory runs out; 2) if set to 1\2\3\4\12 hours, the data recorded will be saved into a file every 1\2\3\4\12 hours.

5. Complete all configurations and click Apply Settings to save settings. Exit and restart the receiver to activate configurations

4.2 Static Data Collection

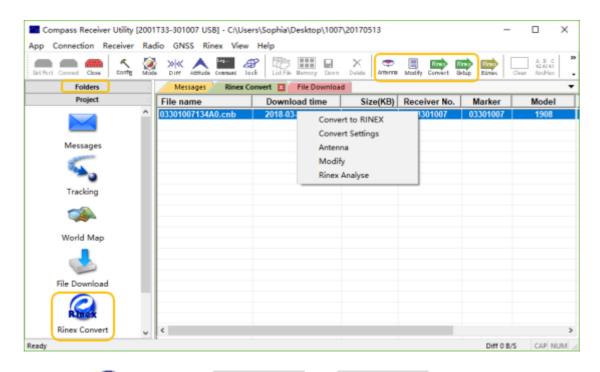

Static survey is mainly used for the control survey. To reach millimeter accuracy, follow as below:

- At least 3 GNSS receivers are required to form a stable triangulation network.
- It is better to set Data Log Session as manual on the known point.
- Power off the receiver before moving to other observation site.
- To quickly post-process static observation raw data, write down the station name, receiver SN, antenna height, start and end time for each observation site.

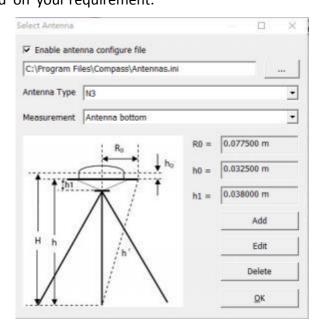
Tip: You can start recording static data in the front panel, it's convenient for you.

4.3 Static Data Download

The raw observation data is saved in internal memory of T20 receiver, when connected with PC via USB cable, the T20 receiver can work as a USB Flash Disk, which means you can copy or cut static data to PC directly.

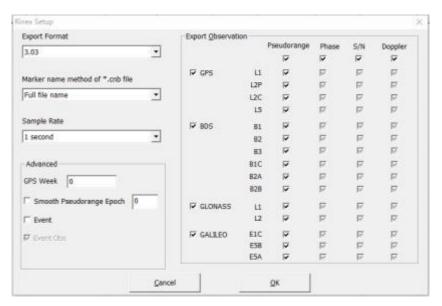

Tip1: Default memory for T20 receiver is 8GB, and 16GB, 32GB optional.

Tip2: The receiver will stop recording raw data if the internal memory runs out.


4.4RINEX Convert

After copy raw observation data to PC, you can convert the data from ComNav binary format (*.cnb) to RINEX in CRU software.

- 1. Start CRU software;
- 2. Click Folders and select the path of your CNB data;
- 3. Click *Rinex Convert* to check all raw data on main window. Right click on the file to modify antenna, Convert Settings and Convert to RENIX, or use fast icon in standard bar.



Click to select the **Antenna Type** and **Measurement**. If you cannot find T20 antenna, 1) input the value of R0 (horizontal offset from measurement mark to phase center), h0 (vertical offset from measurement mark to phase center) and h1 (vertical offset from measurement mark to receiver bottom). R0 is 0.0745m, h0 is 0.0135m and h1 is 0.0294m respectively for T20 receiver; 2) or check **Enable antenna configure file** to select **Antennas.ini** file to select Antenna type again. You can also add, edit and delete antenna types based on your requirement.

Click to change Convert Settings, mainly export format and export

observation information.

Tip: In some Post Processing software, the BeiDou observations cannot be processed, you can uncheck the BeiDou B1,B2,B3 observations.

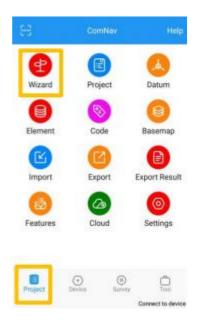
• Click to **Convert to RINEX**, the RINEX data will be save in the same path as raw observation data.

5 Real-Time Kinematic Survey (RTK)

This chapter introduces how to conduct RTK Survey with Survey Master Software, including software installation, start a new project, receiver connection and RTK working modes (Radio, CORS).

5.1 Installation of Survey Master

Survey Master is available on Google play, you can download for free and install the software to SinoGNSS controller R550.

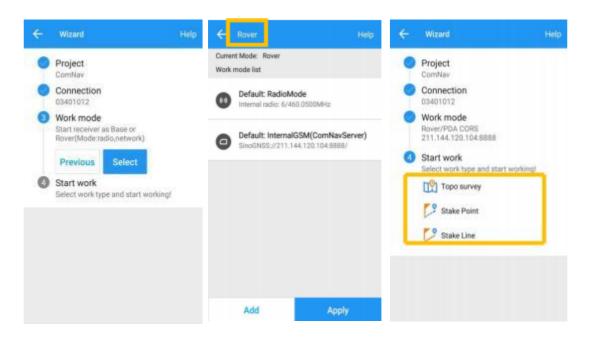

Also you can download the latest version from our website: Software Download ComNav Technology Ltd.

5.2 Wizard function in Survey Master

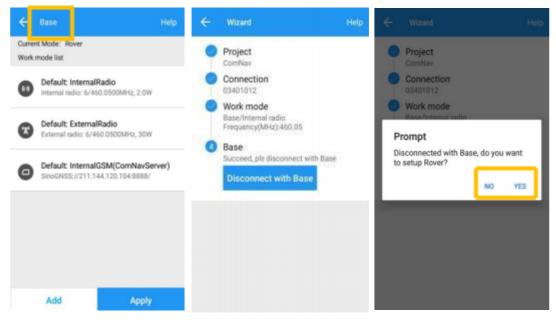
Follow the Wizard, you can quickly learn the general workflow of Survey Master, also you can quick start your survey by this function no matter you are experienced one or new user.

In Project menu, tap Wizard.

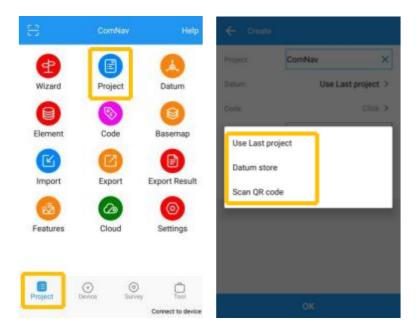
1. **Project**: Click **Select** to go into Project interface to create or select a project. For detailed information, you can refer to chapter 5.3.



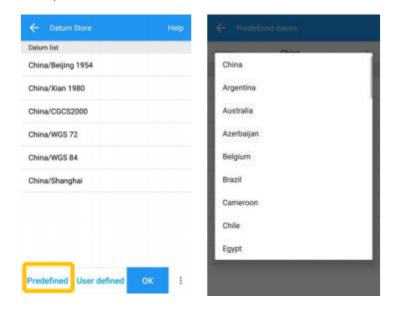
2. **Connection**: Click **Select** to go into Bluetooth connection interface. For detailed information, you can refer to <u>chapter 5.4</u>.


3. **Work mode**: Click **Select** to go into QuickSetup interface to start your receiver as Base/Rover. For detailed information, you can refer from <u>chapter 5.5</u>.

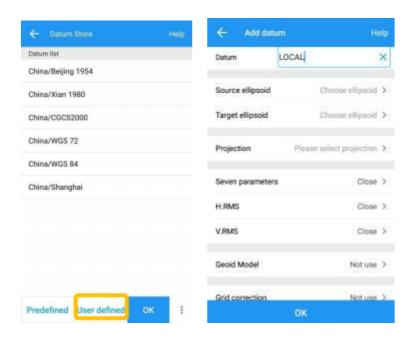
If you start your receiver as Rover, then you can start work directly of topo survey or stakeout.


If you start your receiver as Base, after Disconnect with Base, there will be a Prompt. YES: will guide you to start Rover in Wizard interface;

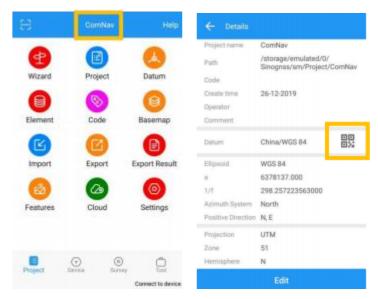
NO: will disconnect the base and exit Wizard.



5.3 Start a New Project

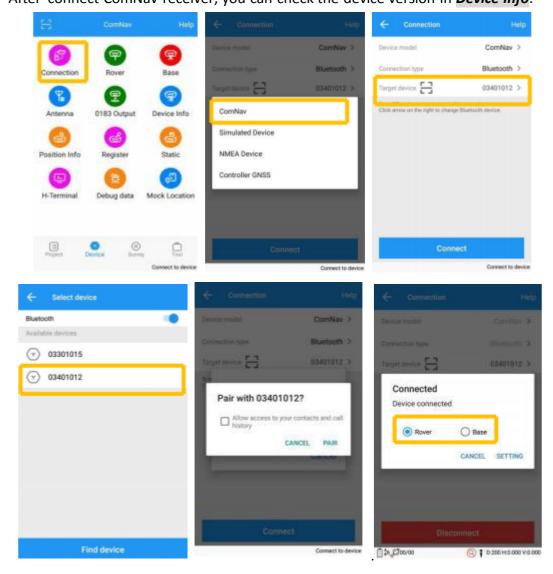

Click **Project**, you can use the same Datum with last project, choose a datum in store and scan QR code from other controller to add Datum, even sharing project with cloud.

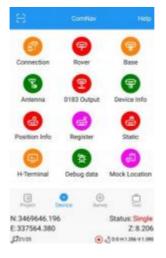
Select a Predefined datum: You can select datum directly from the list. Survey
 Master currently has 49 countries datum and will add more afterwards.



 Create a User defined datum: If you cannot find datum you want in the list, follow instructions below to add one: select Ellipsoid, Projection for your datum, and even seven parameters, geoid model based on your request.

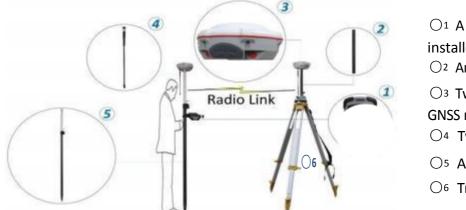
Tip1: if asked username and password for seven parameters, enter **admin admin**Tip2: For H.RMS and V.RMS, it will show if do **Site Calibration**.


- Share Datum via QR code.
- After you build a project, press the project name, it will generate a QR code.
 Users can use the Scan function in the main interface to access the coordinate
 system.


5.4 Bluetooth connection

To connect Survey Master with T20, switch to **Device** interface, tap **Connection** to go into Bluetooth connection interface.

- Make sure device Bluetooth turned on;
- Click Find device—select SN of your T20 receiver—allow pair
 After connect ComNav receiver, you can check the device version in Device Info.


After connected successfully, the bottom will show the positioning status.

Tip: If you are failed to connect with receiver through Survey Master, you can just follow prompt info to go into the device Bluetooth setting interface to make sure Bluetooth paired successfully. Sometimes you need restart the receiver or Survey Master Software.

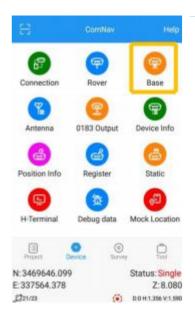
5.5 Internal Radio Mode

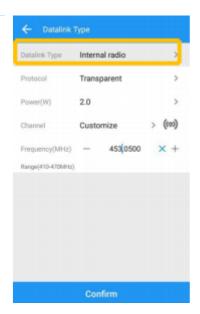
T20 GNSS receiver supports transmit & receive the correction data in internal radio mode. To conduct the RTK survey in internal radio mode, it requires:

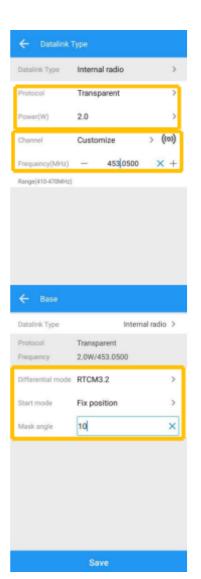
- O1 A controller with software installed
- O₂ An extension bar
- O3 Two units of T20 GNSS receiver
- O4 Two whip antennas
- ○5 A range pole with bracket
- O₆ Tripod and tribrach

Tip: The external power supply is recommended when T20 set as a base station.

More: Aim to improve the radius of workfield, we can change the base receiver's Whip Antenna to External Antenna. And others no need change.

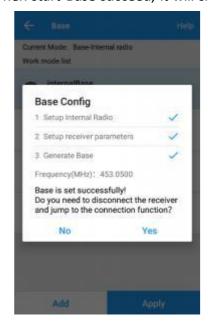



5.5.1 Start Base Station by Survey Master

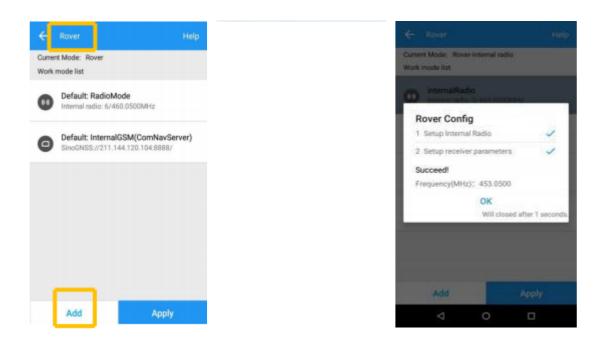

Firstly, build Bluetooth connection between the T20 receiver and your controller as shown in <u>Chapter 5.4.</u>

Secondly, modify parameters including correction format, antenna type and communication protocols:

Click Device-> Base ->Add, select Internal radio.


 Protocol and channel: Set protocol and frequency for the base;

- Start mode: Fix position means you have a known coordinate for base, or get a point from GNSS;
- Differential mode: Support RTCM32, RTCM32(MSM5), RTD, CMR, CMR+(GPS only)


- Library choose: Choose a known point from Element;
- Receive: Receive a point from GNSS;

When start Base succeed, it will show as below in Survey Master.

5.5.2 Start Rover Station by Survey Master

- Connect Survey Master with T20 receiver via Bluetooth based on Chapter 5.4.
- Set same protocol and frequency with Base receiver.
- The current status on the bottom will change from Single to Fixed.

5.6 PDA CORS Mode

Without setting up your own base stations, the T20 GNSS receiver can receive correction data transmitted from continuously operating reference station via PDA's GPRS or WIFI. To do RTK survey in PDA CORS mode, it requires:

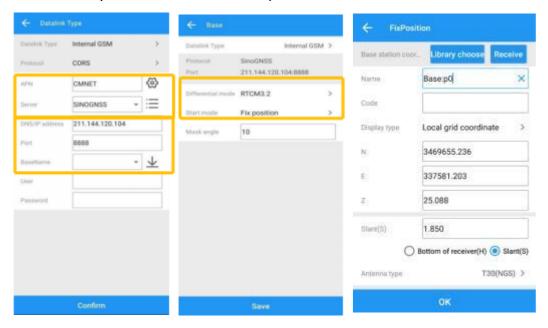
- O₁ A T₂₀ receiver
- O₂ A controller with SIM card and software
- O₃ A range pole with bracket

Configure the Rover as below:

- Make sure your controller can access to internet via SIM card or Wi-Fi, then run Survey Master Software.
- Build Bluetooth connection as shown in <u>chapter 5.4</u>, Click <u>Device</u> -> <u>Rover</u> -> PDA CORS.

- Enter CORS DNS/IP address and port-> Click Source List and select the proper source -> enter User and password.
- After Confirm succeed, the diff LED (yellow) on receiver will flash, and software can get a fixed result.
- It also provides TCP protocol.

http://www.hw-group.com/products/HWg-Ares/HWg-Ares GSM APN en.html#top


5.6.1 Point to Point/Points mode (P to PS mode)

In point to point mode, the correction data is transmitted from the base station to the server, then rovers can log on the server to get the correction data. Therefore, wireless network are required both in the Base and Rover.

Tip: ComNav technology provides a free static server address **211.144.120.104:8888**, anyone can upload CORS data as long as abide by the agreement.

Below shows Base configuration with ComNav server:

- Server: select SINOGNSS server(IP: 211.144.120.104 and Port:8888)
- BaseName: Click BaseName to get SN of Base receiver directly, when start Rover, just select the name as source
- Differential mode: make sure to choose RTCM32
- Fix Position: Click *Library choose* to select a known point for the Base, or *Get* from GNSS if you do not have a known point.

After successfully starting the Base station, the differential LED (yellow) flashes once per second, which means the Base is broadcasting correction data;

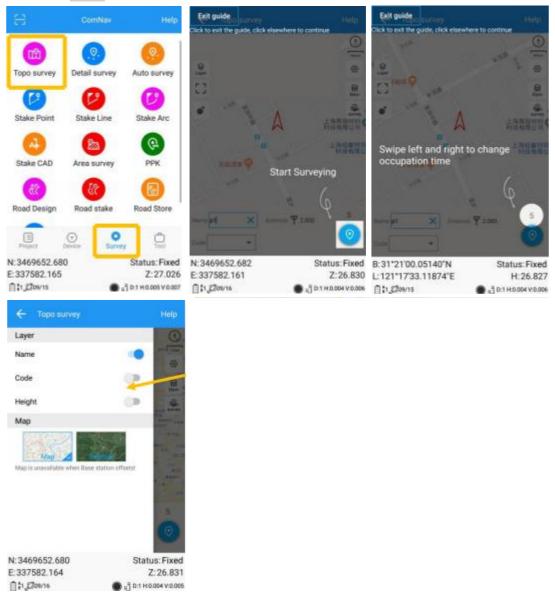
Configure the Rover as below:

- Protocol: Select SINOGNSS directly;
- BaseName: Enter the SN of the Base receiver.

5.6.2 Ntrip client mode

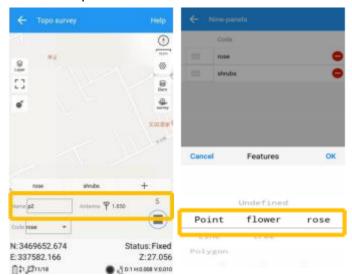
For Ntrip client mode, Rover acquires correction data from Ntrip(CORS) server.

- Enter proper APN, DNS/IP Address and Port.
- Click **Source List**, select the proper source-> enter User and Password

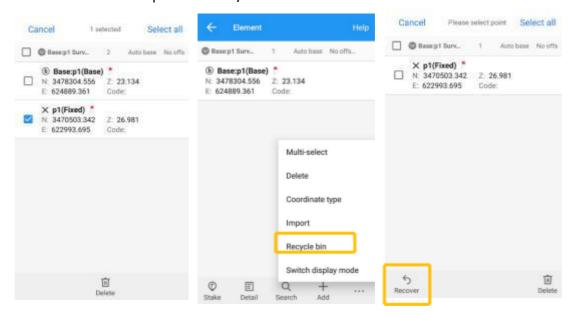

6 Basic Survey Functions

This section describes the basic survey functions of Survey Master, including point measurement, Topo survey, Auto survey, Area survey, Static, PPK, staking, site calibration, import and export measured points.

6.1 Topo survey

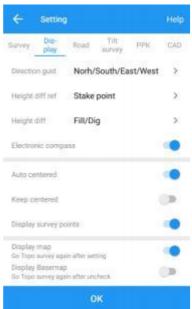

Click Topo Survey-> enter point name, ->click oto start or stop collecting data.

- You can quickly change antenna height in the survey interface.
- Tap *Elem* to check point coordinates.
- Tap *Layer* to show the layers you want display on map.



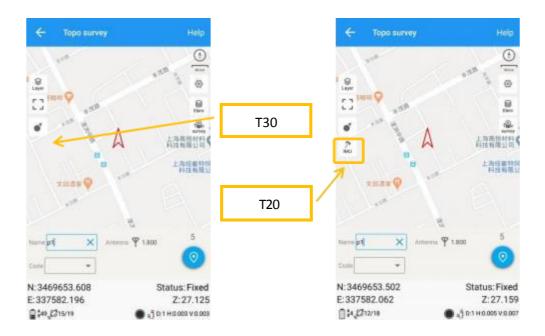
• Fast survey by pressing Code: Tap the code in nine panels, will survey the point directly.

Go into code management interface to modify code list, then you can choose code to use in nine panels.

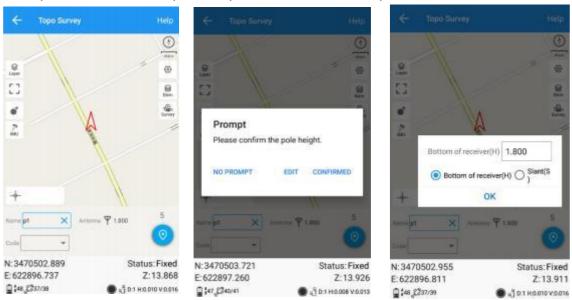


• Recover deleted points in Recycle Bin.

6.1.1 Survey settings



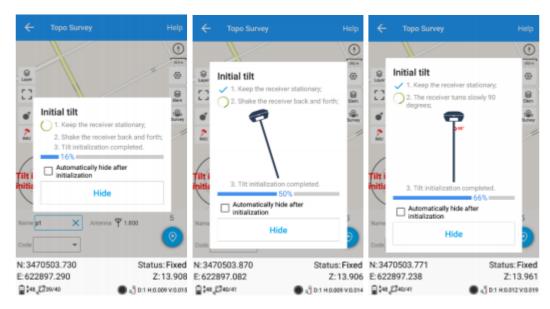
- Fixed: only fixed result can be saved;
- Duplicate name: allow point name same;
- RMS: point accuracy need higher than the value;
- Offset radius: point cannot offset bigger than the value during measure;
- Occupation time: measure times for one point;
- Point stepsize: for point name;
- Stake range: show circle when close to target point;
- Direction guide: 3 methods showing guide for stake out;
- Electronic compass: Use controller compass during stake out;
- Auto centered: Map will go to current location after 5 seconds;
- Keep centered: Map will go to current location after 1 second;
- Display survey points: will show all survey points on map;
- Display Basemap: for showing DXF/SHP file on map


6.1.2 Tilt survey

Tilt survey option will appear when receiver supports for tilt survey, it is available for ComNav Technology T20 GNSS receiver, use IMU sensor.

According to the IMU sensor, can not only meets the requirement of high precision measurement, but also relieves the users from continually checking whether the pole is plumb. When the pole tilts within 60° , the built-in sensor based IMU precisely calculates the actual offset, which accuracy can up to 2.5 cm

1. Open IMU: Go into Topo survey—click the button to open.



After you click IMU button, it will give you one prompt to check the antenna information. **Edit**: Change the antenna information.

Confirmed: You have been confirmed the antenna information, and it is correct. **NO PROMPT**: will not give this prompt next time when you do IMU calibration.

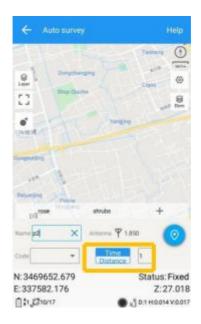
2. Initialization

If you power off the receiver or freset it, need to initialize again. After open IMU button, you can follow the guidance in interface to complete it. During operation, make receiver can search the satellites and get a fixed solution.

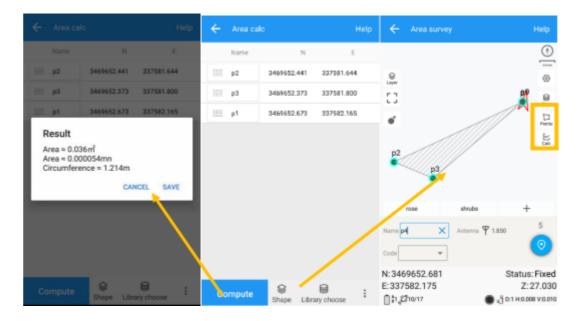
Keep the receiver stationary

shake the receiver

rotating the receiver


In survey interface, you can find the bubble and angle value shows the pole you tilt. For more accuracy, angle less than 60° will be better.

Tip: Do not shake or rotate the receiver violently, otherwise you need to re-initialize.

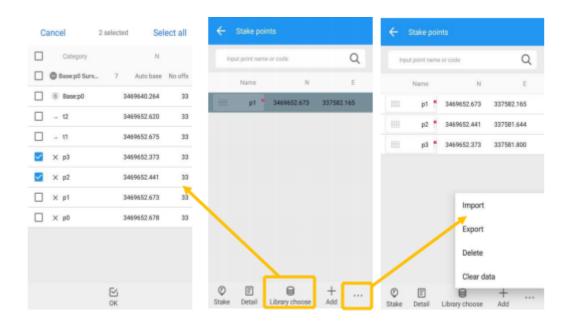

6.2 Auto survey/Area survey

For Auto survey, it supports automatic and continuous survey according to Time or Distance.

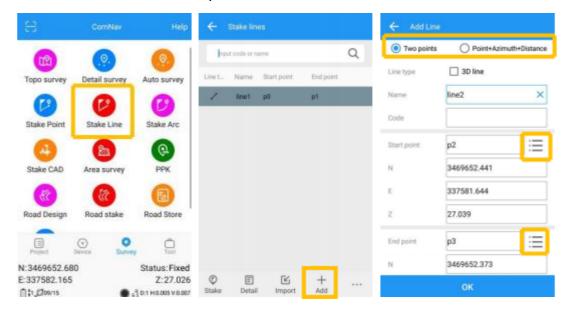
For Area survey, it can compute area directly after getting points.

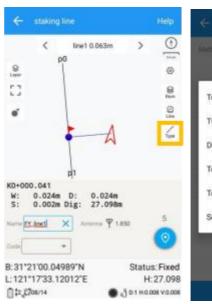
Press , it will show the coordinate information, press , it will show the area result, press , it will show the shape on map.

6.3 Stake points/lines


Go into **Stake point** interface, click to choose a point and tap **Stake**. Survey Master provides a navigation map when staking points/lines. If you are close to the target point enough, it will alarm you based on the alarm range you set.

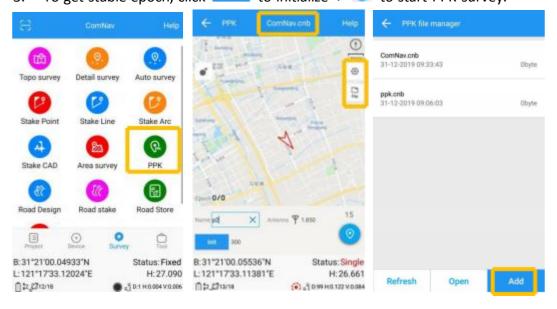
Enter the point name and code based on your requirements, then click

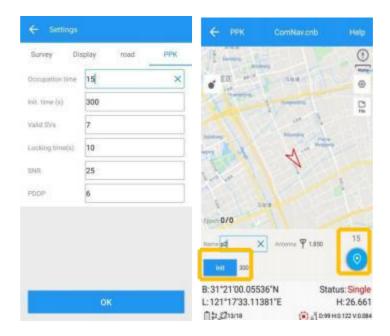

Various navigation info choices


You can also Import points for staking, or add from Library choose.

Tip: keep your receiver vertical to the ground.

For staking lines, click -> add line (Two points or Point + Azimuth + Distance) -> click -> Choose one line and click Stake. The default method to stake is "To line", press method to choose a method you want.

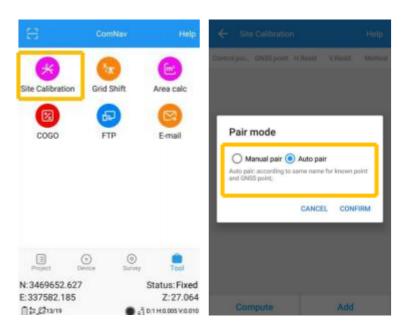

- To line: show shortest way to find a point on line;
- To station ID: stake points on line by defined interval;
- Distance of 2 points: show distance of current location to the line's start point and end point;
- Segment: Stake on line by defined segment value.


6.4 PPK

PPK (post processing kinetic) is the unique function of survey master, which is used for post-processing dynamic measurements.

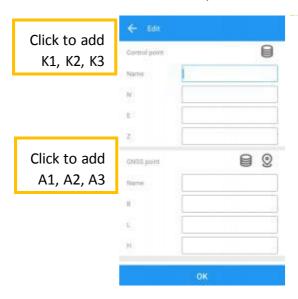
It also needs two receivers to work together, one work as Base to record static data, and another one work as Rover as shown below.

- 1. Click PPK in survey interface -> choose or create a PPK file.
- 2. Go to settings, configure PPK settings based on your requirements.
- 3. To get stable epoch, click to initialize -> 10 to start PPK survey.

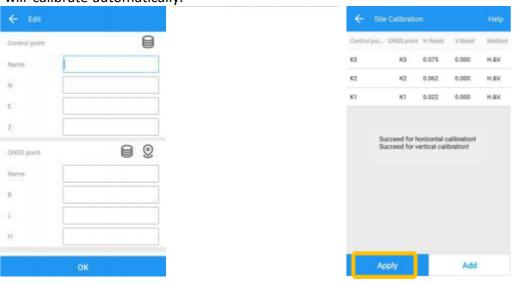


6.5 Site calibration/Grid Shift

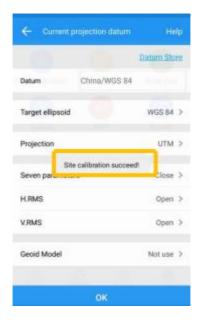
6.5.1 Site calibration


Site calibration is commonly needed once in one project, and all the points will be collected based on calibrated datum system.

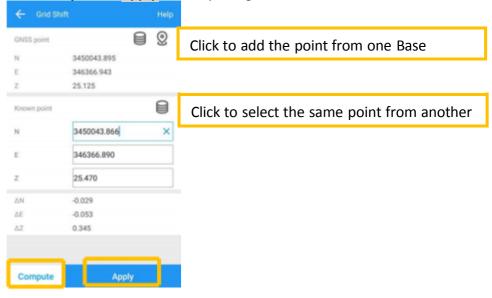
1. Choose manual pair or auto pair.



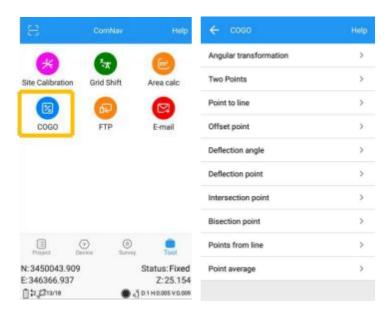
2. If you choose manual pair, you can directly enter at least three groups' point to compute. (for example, take K1,K2,K3 as known points, take A1,A2,A3 as measured points) After click *Compute* to calculate, the software will calibrate


automatically.

 If you choose auto pair, it will auto compute according to the same name for known point and measured point. After click *Compute* to calculate, the software will calibrate automatically.


4. Click **Apply** to confirm to replace datum. The value of H.Resid and V.Resid should meet the requirement (H.Resid \leq 0.015m, and V.Resid \leq 0.02m).

6.5.2 Grid Shift

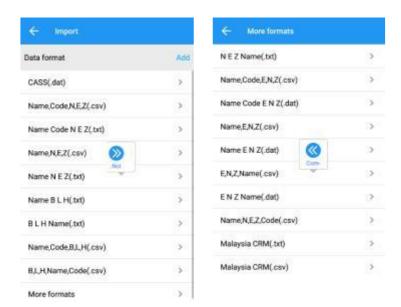

Grid reset function is applied when you need to change the position of Base station in the same project.

Click *Grid Shift* in Survey interface -> add current Base point and target Base point -> Click *Compute* -> *Apply* to complete grid shift.

6.6 COGO

With COGO function, you can calculate points/lines/angle directly on field.

- Angular transformation: Angular type transform;
- Two points: Calculate two points distance;
- Point to line: Distance from point to one line;
- Offset point: Calculate point with azimuth and distance;
- Deflection angle: Calculate angle of two lines;
- Deflection point: Calculate point with angle and distance;
- Intersection point: Calculate intersection points from two lines;
- Bisection point: Calculate point from angle bisector;
- Points from line: Calculate points on line by distance or segment;
- Point average: Calculate average from points;


7 Data Export/Import

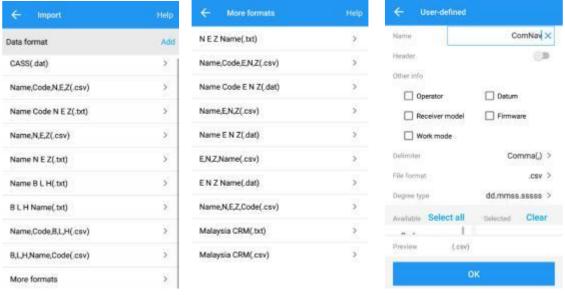
Survey Master supports to import/export data including grid coordinate, Lat/Lon coordinate with various data format, support import DXF/DWG file and export result of DXF/KML, etc.

7.1 Import

Tap *Import* in project interface, there are some predefined data formats, click *More formats* to get more predefined formats. Besides, you can click *Add* to create a User-defined type.

Long press the predefined data format that you don't use often, you can move this format to the More formats page; also, you can move the data format of More formats page to the previous page where stored the formats you usually use.

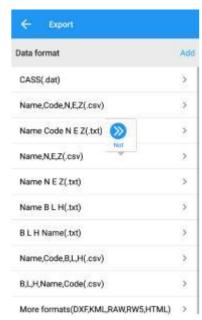
- Name: Enter the name for the format
- Delimiter: support Comma(,), Space(), Semicolon(;)
- File format: support *.csv, *.dat, *.txt format


Click **Select all** to choose all elements, Click **Clear** to eliminate all elements selected.

The elements include: code, name, N, E, Z, B, L, H, X RMS, Y RMS, V.RMS, status, start time, occupation time, diff age, base ID, total AntHgt, Antenna height, measure type, antenna name, ending time, comment, RMS, PDOP, HDOP, VDOP, TDOP, GDOP, total SV, used SV, elevation, tilt offset, tilt angle, tilt distance

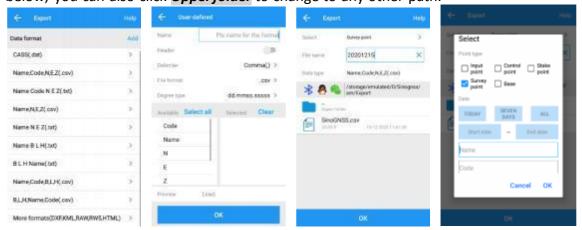
Tip: The format you defined will also be saved to Export interface.

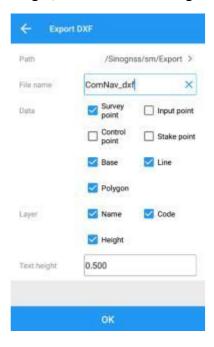
Choose one format to import data.


- The default export path is .../Sinognss/sm/data, you can also click **Upperfolder** to change to any other path where the file is.
- Point type: support Input point, Control point, Stake point

7.2 Export

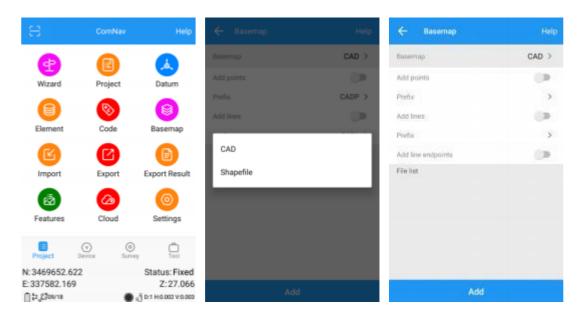
Tap **Export** in Project interface to export simple data of survey points. Also, click **More formats** to export the survey points with detailed information or other formats like stake points/lines, DXF, SHP, KML, RAW, RW5, HTML, CASS feature result.

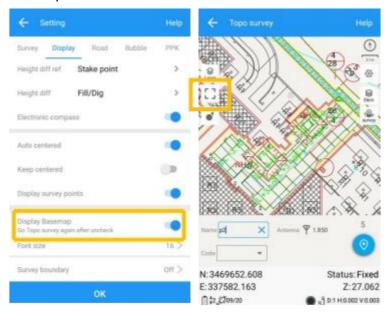

Same with Import result, long press the predefined data format to select the interface you want to place.


- File format: support *.csv, *.dat, *.txt format Choose one format to export data.
- Select: support Survey point, Control point, Input point, Stake point, Base, also, you can set the date, name, code of data to specific export

The default export path is .../Sinognss/sm/export, and the previous saved file will be shown below, you can also click **Upperfolder** to change to any other path.

For the points, lines and polygons you surveyed in Topo survey and Feature survey, you can click **Export DXF** to export dxf file, then you can edit them in third party CAD software, or import to **Basemap** to check, or import to **Stake CAD** to stake.

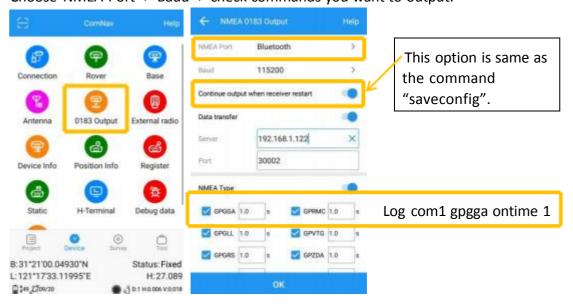

Choose the data that you want to export including survey point, input point, control point, stake point, base, line and polygon, and the layer properties includes name, code and height, the default text height is 0.5.


7.3 Import Basemap

Tap *Basemap* to import DXF/DWG/SHP file into Survey Master.

- Add points: Save points from the dxf/dwg/shp file to element.
- Add lines: Save lines from the dxf/dwg/shp file to element.
- Prefix: Support add prefix name for points/lines saved to Elements.
- Add line endpoints: add line endpoints to point element.

Remember go survey settings to check on display basemap, click zoom button to auto show basemap.



8 Export Result

8.1 NMEA 0183 output

With **NMEA 0183** function, you can quickly set to output NMEA data from lemo port or Bluetooth. In fact, this function is same as enter commands "log comX gpXXX ontime X".

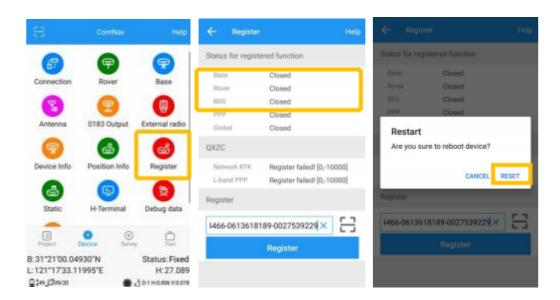
Choose NMEA Port -> Baud -> check commands you want to output.

Data transfer: for transmit all the BT output to the address.

8.2 Register T20 via Survey Master

Normally, the register code is like this:

ID:03401012 \$\$:49-0B-79-23-00-00-00-95-85


FUNCTIONREG:2207453726-3851620954-0949162572-0697504466-0613618189-0027539229

Note: The length of code may different according to different requirements.

Following shows two methods to register the receiver.

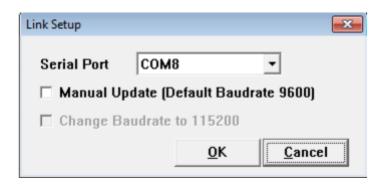
Register function

For Register function, you need only enter the number: 2207453726-3851620954-0949162572-0697504466-0613618189-0027539229

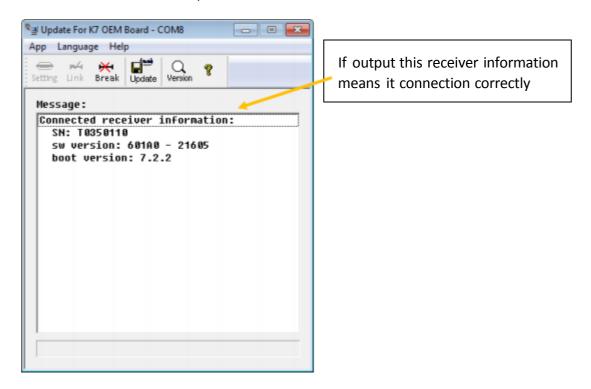
> Register via commands

You need copy the whole code, include the word 'FUNCTIONREG:'

FUNCTIONREG:2207453726-3851620954-0949162572-0697504466-0613618189-0027539229

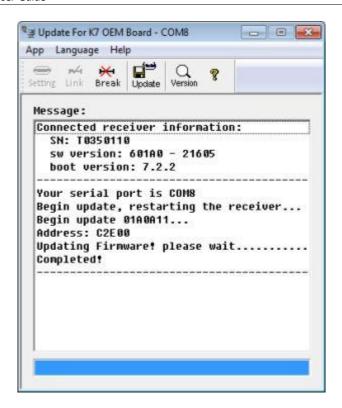

Copy the whole code, and enter the cursor to next line, then send.

Send command: LOG REGLIST To check receiver register status.


9 Firmware Upgrade

Prepare a Lemo to serial port cable.

- 1. Copy the firmware software to your PC, connect T20 to your PC via type-c cable and turn on the receiver.
- 2. Open the firmware program, choose "APP->Link setup", select **proper port** to connect with receiver, and then click "OK".



3. Click "Link" icon to build the connection (this is important to check if the T20 is connect to PC successful)

Then click "*Update*" icon to start the update (a few seconds are needed), during update, the T20 will restart automatically and all LEDs on T20 should be on.

When the progress bar is full, and "Completed!" appear below, it seems the update has been completed and then you can click "Break" to finish the update.

FCC Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Caution: Any changes or modifications to this device not explicitly approved by manufacturer could void your authority to operate this equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

RF Exposure Information

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body.